AD-751 514

C-J DETONATION STUDIES IN HYDROGEN-CHLORINE, CARBON DISULFIDE-OXYGEN AND CARBON MONOXIDE-HYDROGEN-OXYGEN- NITROGEN MIXTURES

Christiane M. Guirao, et al

McCill University

Prepared for:

Air Force Office of Scientific Research

July 1972

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

	sification				
(Security class	DOCUMENT TO	NEROL DATA - R	& D 1919-1919 When 19	a amount an and the advantation	tadi
1. ORIGINATING ACTIV	TY (Corporate author)		24. REPORT	SECURITY CLASSIFICAT	ION
DEPARTMENT OF	MECHANICAL ENGINEERING		UNC	SSIFIED	
MONTREAL 110,	P.Q., CANADA		28. GROUP		
S REPORT TITLE					10
C-J DETONATION MONOXIDE HYDRO	STUDIES IN HYDROGEN-CHLOR GEN-OXYGEN-NITROGEN MIXTU	RINE, CARBON D RES	ISULFIDE-	OXYGEN AND CARB	SON SON
4. DESCRIPTIVE NOTES	(Type of report and inclusive dates)				
SCIENCIIIC S. AUTHOR(S) (First neg	e, middle initial, last name)				N
CHRISTIANE M G	UIRAO ROMAS KNYSTAUTA	AS JÙHN H	LEE		2
4. REPORT DATE		74. TOTAL NO. 0	FPAGES	78. NO. OF REFS	
SULY 1776	NT NO.	147		31	
	AF-AFOSR-69-1752	- University COR	- REPORT NU	mg2.7(4)	
A. PROJECT NO.	9711-01	MEDI 12-4			
с.		MEAL 72-0			
	61102F	this report)	~ I NQ(3) (AAY	ourer munders that noy bi	assigned
d.	681308	AFOSI	2 - TR -	72-2146	
IU. DISTRIBUTION STAT	EMENT				
TECH, OTHER	OTES	AF Office 1400 Wilso	of Scient n Bouleva	civity Cific Research (ard	NAE)
		Arlington,	Virginia	1 22209	
calculated for hydrogen-oxyge pressures in t compositions. (CS ₂ +30 ₂) mix than the calcu equilibrium at	Reproduced by NATION/	AL TECHNICAL	ygen and rature of s initial ric (H ₂ 4 y, are al t of only	carbon monoxide $20^{\circ}C$, initial mixture Cl ₂) and bout 2% larger y partial	· ,
	U S Depart Spring	afield VA 22151			

UNCLASSIFIED						
Security Classification	LIN	K A	LIN	к в	LINI	< c
KEY WORDS	ROLE	WT	ROLE	WT'	ROLE	WT
CHAPMAN- INICLET DETONATIONS						
				• •		
HYDROGEN-CHLORINE MIXTURE			Ì			
CARBON DISULFIDE-OXYGEN MIXTURE						
CARBON MONOXIDE HYDROGEN-OXYGEN-NIIROGEN MIXTURE	1		Ì			
· .						
						÷
	1					
×		Ì				
		ĺ				
•						
						ŀ
· · · · · ·						
-						
				·		
					1	
		1				
	1					
ib						
		JNCLAS	SIFIED			
		Secuti	ty Classi	lication		

AFOSR - TR - 72 - 2146

AFOSR Scientific Report

这些这个人的是不可能出来。 第44日的时候,这些人们的这些主要的时候,我们就是这些这些。

and the state of the second second

C-J DETONATION STUDIES IN H_2 -Cl₂, CS₂-O₂ AND CO-H₂-O₂-N₂ MIXTURES

by

C.M. Guirao R. Knystautas J.H. Lee

MERL Report 72-6

Progress report for research sponsored in part by the United States Air Force Office of Scientific Research, Col. R.W. Haffner, Technical Monitor under AFOSR Grant 69-1752B and by the a Jonal Research Council of Canada under Grants A-3347, A-118 and A-6819.

10

Department of Mechanical Engineering McGill University Montreal, Canada

July 1972

ABSTRACT

- d

Detonation properties in steady, one-dimensional, equilibrium flows have been calculated for hydrogen-chlorine, carbon disulfide-oxygen and carbon monoxide-hydrogen-oxygennitrogen mixtures at an initial temperature of 25° C, initial pressures in the range from 30 to 760 torr and various initial mixture compositions. Experimental velocities in stoichiometric (H₂+Cl₂) and (CS₂+30₂) mixtures, at atmospheric pressure initially, are about 2% larger than the calculated values and may reflect achievement of only partial equilibrium at the C-J plane.

areas as a substant for the substance of the

TABLE OF CONTENTS

Ver Mit Wildow with

- JUS

Page Nos.

ABSTRACT	i
TABLE OF CONTENTS	ii
LIST OF SYMBOLS	iii
PREFACE	vi
1. INTRODUCTION	1
2. GOVERNING EQUATIONS	9
3. METHOD OF SOLUTION	13
4. RESULTS	
4.1 The (H ₂ -Cl ₂) System	16
4.2 The (CS ₂ -0 ₂) System	18
4.3 The $(CO-H_2-O_2-N_2)$ System	21
APPENDIX I	24
APPENDIX II	27
APPENDIX III	
A. The (CO-H ₂ -O ₂) System	34
B. The (CO-H ₂ -O ₂ -N ₂) System	38
REFERENCES	46
IABLE2	49
FIGURE CAPTIONS	103

- ii -

LIST OF SYMBOLS

111

A. Congradiation a start

an faith of

2

Shall Balance

いたかないのないのである

State State State State State

a _i = reactant mole number
A _i = chemica ¹ symbol for species i
b _i = product mole number
B _i ≡ log _e bi
c _i = concentration of species i (mole/cm ³)
c ₂ (fr) = frozen sound speed (cm/sec)
$c_i \equiv c_i(T_2, \boldsymbol{v}_2)$
C _{p,i} = specific heat at constant pressure for species i (cal/mole - ^O K)
<pre>D = detonation velocity (cm/sec)</pre>
H = enthalpy of reactive mixture (kcal/mole)
$(H^{0}-H^{0}_{298})_{i} \equiv \int_{agg}^{T} C_{p,i} dT = difference between enthalpies in the standard states at$
temperatures T and 298 ⁰ K for species i
(kcal/mole)
J = energy conversion factor = 4.187 x 10 ¹⁰ (ergs)
k _b = backward specific rate constant
k _f = forward specific rate constant

k

Kc	(T)	= equilibrium constant in terms of concentrations
К _р ((T)	= equilibrium constant in terms of partial pressures (in atm) = K _i
М	=	Mach number
n i	=	mole number of species i
р	=	pressure (dyne/cm ²)
R ^O	a	ideal gas constant = 8.3143 x 10 ⁷ erg/mole - ⁰ K
Т	=	temperature (⁰ K)
u	=	fluid particle velocity (cm/sec)
۷	=	fluid velocity with respect to stationary detonation wave (c /sec)
V	=	volume (cm ³)
พ	=	mean molecular weight of mixture (gm/mole)
Wi	=	molecular weight of species i (gm/mole)
×,	Ħ	mole fraction of species i

Greek

 $\kappa_{s,i}$ = number of atoms of kind s in molecule of type i $[\Delta F^{0}(I)]_{i}$ = standard free energy of formation of species i (kcal/mole) A STATE AND A S

440000

iv -

 $(\Delta H^0_f)_i$ = standard heat of formation of species i (kcal/mole) $\Delta v_i \equiv v_i^2 - v_i^4$

- $\gamma_2(fr) = frozen specific heat ratio$
- v_i' = stoichiometric coefficient for reactant species i
- $v_i^{\prime\prime}$ = stoic...ometric coefficient for product species i

Subscripts

- i = ary species
 - = resclar*
- k = product
- 1 = atom
- s = atom

Index

- 1 = unburnt gas
- 2 = burnt gas

PREFACE

vi -

The research reported herein is a preliminary study of gaseous detonative combustion in novel chemical systems, namely in hydrogen-chlorine, carbon disulfide-oxygen and carbon monoxide-hydrogen-oxygen-nitrogen mixtures. The global objective of all gaseous detonation research is to further the understanding of the instability mechanism associated with the multi-headed structure observed universally in gasecus actonative combustion. The specific reasons whereby we have chosen to study the above mentioned reactive systems are twofold. In the first instance, the former two possess much simpler kinetic schemes than the oxyhydrocarbon systems conventionally studied in this research area. There are indications that the kinetic schemes may be linked to the instability mechanism and hence the simplified kinetics could help in isolating this linkage. Secondly, all of the above reactive systems produce potentially lasing media and it is of interest to investigate the feasibility of exploiting them in powerful, infrared, self-sustained chemical lasers.

As a first step, one must obtain reliable theoretical and experimental data on the global detonative behavior of the above mentioned gaseous systems. In this report, we present the theoretical aspect of the problem, i.e., the C-J calculations of detonation parameters in (H_2-Cl_2) , (CS_2-O_2) and $(CO-H_2-O_2-N_2)$ systems.

1. INTROPUCTION

Gaseous detonation waves have been extensively studied since the end of the 19th century. However, most of these theoretical and experimental investigations have been mainly devoted to hydrocarbon-oxygen systems for utilitarian purposes. Although the classical C-J model of a detonation wave which assumes 1, 2 the wave to possess a uniform and unidimensional structure predicts detonation velocities in good agreement with experimentally measured values, it has been demonstrated 3, 4 that planar detonation waves are inherently unstable, consisting of an intersecting transverse wave pattern composed of elemental triple point intersections. Sufficient experimental evidence exists 5, 6, 7to infer that the onset of instability is in the form of periodic formation of randomly distributed reaction centers. From the striking qualitative resemblance of the onset of instability in gaseous detonations and in a reacting system involving autocatalytic or chain-branching steps in the reaction scheme 8, 9, we have postulated 10 that the instability mechanisms in gaseous detonations may also arise from such autocatalytic or chain-branching schemes. However, due to the complexity of the proposed chain-branching kinetic schemes in hydrocarbon-oxygen systems, we have suggested ¹⁰ to investigate systems with relatively simpler kinetic schemes such as the hydrogen-chlorine and/or the carbon disulfide-exygen systems.

- 1 -

It is commonly admitted that, in both systems, chemical reactions proceed through a chain reaction mechanism. For the (H_2-Cl_2) system, the relevant kinetic steps are:

$$Cl_2 + M + 2\underline{Cl} + M$$
 initiation (1.1.a)

$$\frac{C1}{Propagation} + H_2 + HC1 + H_2$$
(1.1.b)

$$\underline{H} + C1_2 \rightarrow HC1^* + \underline{C1}$$
 (1.1.c)

$$2\underline{C1} + M \rightarrow \underline{C1}_2 + M$$

termination (1.1.d)

 $2\underline{H} + \underline{M} + \underline{H}_2 + \underline{M}$

where underlined species denote chain carriers, HCl is a molecule in the electronic and vibrational ground state and HCl^{*}, a vibrationally excited molecule in the electronic ground state. Because it has been inferred from experiments ^{11, 12} that the energy liberated in reaction (1.1.c), namely 45.5 kcal/mole, is initially concentrated mainly in the HCl^{*} molecule (with vibrational quantum number v = 6), it has been postulated ¹³ that under flame conditions such energetic molecules could dissociate Cl₂ molecules through an energy chain-branching reaction, viz.,

 $HC1^{*} + C1_{2} + 2C1 + HC1$ (1.1.e)

this process being endothermic by 11.7 kcal/mole, only.

- 2 -

Although no experimental evidence for the existence of reaction (1.1.e) has been found in (H_2-Cl_2) flames ¹⁴, the instability observed under detonative combustion ¹⁰ suggests the presence of the energy chain branching step in (H_2-Cl_2) detonations according to the autocatalytic instability mechanism.

On the other hand, two chain-branching steps are commonly considered in the (CS_2-O_2) kinetic scheme which is usually described by the following _hain reaction mechanism ¹⁵, 16

 $0_{2} + M + 20 + M,$ $CS_{2} \div 0 + CS + S0, \text{ (branching)}$ $\underline{S0} + 0_{2} \div S0_{2} \pm 0,$ $\underline{CS} \pm 0 \div C0^{*} \pm S,$ $\underline{CS} \pm 0_{2} \div C0S \pm 0,$ $\underline{S} \pm 0_{2} \div S0 \pm 0, \text{ (branching)}$ $20 \pm M \pm 0_{2} \pm M,$

where CO^* denotes a vibrationally excited molecule in the electronic ground state. Although this chemical scheme is somewhat more complex than the (H_2-Cl_2) one, it is still much simpler than the oxyhydrocarbon one and the instability

observed under detonative combustion in preliminary experiments can be easily linked to the chain-branching steps of the (CS_2-O_2) kinetic scheme.

In the context of the present report, C-J detonations in (H_2-Cl_2) systems have been investigated as eariy as the beginning of the 20th century 17-19. Detonation velocities have been measured in stoichiometric 17-19and fuel-rich mixtures 17 in the pressure range from 200 tc 760 torr. Comparison with theoretical calculations in stoichiometric mixture: has shown a qualitative discrepancy, experimentally measured values of 1730 m/sec being pressureindependent from 760 to 200 torr 18, 19 whereas calculated values ²⁰ decrease by approximately 2.5% from 1720 m/sec at 760 torr to 1680 m/sec at 200 torr. This discrepancy has been attributed ¹⁹, ²⁰ to achievement of only partial equilibrium, the resulting Cl atom concentration being less than that corresponding to the equilibrium reaction $Cl_2 \neq 2Cl$, therefore resulting in calculated detonation temperatures and velocities less than the true values. In preliminary investigations of spherical and cylindrical detonations in stoichiometric mixtures at subatmospheric pressures (30 - 120 torr), we have recently measured detonation velocities from 1470 m/sec at 30 torr to 1625 m/sec at 100 torr. At atmospheric pressure, with increasing fuel concentration, detonation velocities increase from 1729 m/sec for the sto, chiometric mixture to 1855 m/sec in a $(3H_2 + Cl_2)$ mixture ¹⁷. Recently, soot film records in cylindrical

- 4 -

and spherical detonations in stoichiometric (H_2-CI_2) mixtures, at subatmospheric pressures, have given 10 a concrete evidence of the multi-headed structure in this Due to the lack of experimental and theoretical system. data at subatmospheric and atmospheric pressures and various initial compositions in (H_2-CI_2) systems, we have started a detailed theoretical and experimental investigation of this system under detonative combustion conditions with the aim of ascertaining the relevant kinetic schemes and rate constants prevailing under non-equilibrium conditions in order to get some understanding of the instability mechanisms arising in most gaseous detonable sy;tems and with the hope of achieving a more accurate description of the propagation of multi-headed detonation waves.

5

Detonation studies in (H_2-Cl_2) systems have also been motivated by their possible application to the development of powerful, infra-red, self-sustained, chemical lasers. At present, successful operation of pulsed and/or continuous wave mode (H_2-Cl_2) lasers have been reported ²¹, ²². The feasibility of a detonation laser rests on the degree to which large population inversion in vibrationally excited reaction products formed in the reaction zone and/or in the hot combustion product region behind a detonation wave can be achieved. Because non-equilibrium prevails behind a detonation front and because of the fast hydrodynamic expansion accompanying a detonation wave, vibrational freezing should be readily achieved; in other words, collisional deactivation of excited species should be appreciably reduced by the resulting lowering of the translational temperature of the reacted mixture. Therefore, the non-linear coupling between chemical reactions and hydrodynamics in a transient flow field should guarantee the feasibility of population inversion under detonative combustion.

In addition to the (H_2-Cl_2) system, two other systems, namely, the carbon disulfide-oxygen and carbon monoxide-oxygen-hydrogen-nitrogen systems, appear to be possible candidates for detonative laser applications. The (CS_2-0_2) system has been successfully operated as a chemical laser, lasing resulting from vibrationally excited CO formed in chemical reactions initiated by an electrical discharge ²³ and/or under deflagrative combustion ¹⁵. Under detonative combustion, the (CS_2-O_2) system has been experimentally investigated since the beginning of the 20th century in relation with explosions in coal mines. Deconation velocities of 1800 m/sec have been measured 24, 25 in (CS₂ + 30_2) mixtures at atmospheric pressure. No experiments at subatmospheric pressures and other initial compositions have been reported and no theoretical data are available for comparison.

On the other hand, there have been extensive studies of deconation properties in $(CO-O_2-H_2)$ systems.

- 6 -

The $(CO-O_{\gamma})$ system supports a stable detonation wave in the presence of trace amounts of hydrogen 26, 27, whereas in a dry $(CO-O_2)$ mixture, no self-developed detonation has ever been observed. The main products of the reaction between CO, 0_2 and H_2 are CO₂ and H_2O . Therefore, the $(CO-O_2-H_2)$ system should provide the essential species for CO_2 laser operation. CO_2 lasers have been extensively studied since the last decade, vibrationally excited CO_2 in the (OO^01) level resulting from very efficient V-V exchange between $N_2(v = 1)$ and $CO_{2}(CO^{0}O)$ due to the near resonance between the $N_{2}(v = 1)$ and $CO_2(00^{\circ}1)$ levels ²⁸. In addition, population inversion between the $(00^{\circ}1)$ and $(10^{\circ}0)$ CO₂ levels is enhanced by the presence of water vapour, one of the most efficient quenching molecules for the CO_2 lower laser level 28 . Addition of N₂ to a $(CO-O_2-H_2)$ mixture should provide the main species, namely, CO_2 , H_2O and N_2 , for successful operation of a CO_2 detonation laser.

Therefore, the (H_2-Cl_2) , (CS_2-O_2) and $(CO-O_2-H_2-N_2)$ systems appear to be possible candidates for successful operation of detonation lasers. The first task in investigating the feasibility of such devices is to study theoretically and experimentally the behavior of these gaseous mixtures under detonative combustion. In this report, we present a theoretical investigation of the detonation properties of these systems. The classical C-J model has been used to calculate detonation parameters

/ -

in (H_2-Cl_2) , (CS_2-O_2) and $(CO-O_2-H_2-N_2)$ mixtures under a wide variety of initial conditions. The method of computation is slightly different than that proposed by Eisen et al ²⁹. Instead of solving simultaneously the system of non-linear, algebraic equations (hydrodynamics + chemistry), we have devised a method by which for a given temperature of the burnt gases, the equilibrium composition at the C-J plane is obtained by iteration of the chemical equilibrium and atom balance equations, for an assumed volume of burnt gases. Then, iteration of the hydrodynamic equations yields a solution for all detonation parameters. The C-J solution is then obtained by finding the minimum detonation velocity compatible with the given initial conditions.

The second s

In the following, we shall first review the governing equations of the C-J model and describe the numerical method used to solve the corresponding system of non-linear, algebraic equations for any reacting gaseous mixture. Next, we shall present the relevant thermodynamic equilibrium and atom balance equations for each particular system, namely, (H_2-Cl_2) , (CS_2-O_2) and $(CO-O_2-H_2-N_2)$. Finally, the results will be discussed and compared with available experimental data. - 8 -

2. Governing Equations

In the classical theory of detonation waves, the detonation process is considered as a one-dimensional one. The detonation front moves with uniform velocity \mathcal{D} into a reactive gas mixture, initially at rest, $\mathcal{U}_1 = \mathcal{O}$, at initial temperature and pressure, \mathcal{T}_r and \not{P}_r , respectively. The passage of the wave sets the gas behind it in motion at a velocity \mathcal{U}_2 (Fig. 1a). In a reference system in which the wave is stationary, let \mathcal{V}_r and \mathcal{V}_2 denote the gas velocities with respect to the stationary wave (Fig. 3.b), so that

9

$$\mathbf{A} = \mathbf{D} \tag{2.1}$$

and

$$V_2 = D - u_2 \tag{2.2}$$

Across a detonation wave, the flux densities of mass, momentum and energy are continuous. In the stationary wave reference system, these conditions take the following forms:

- mass flux continuity:

$$f_{1}V_{1} = f_{2}V_{2}$$
 (2.3)

where \boldsymbol{f} denotes the gas density and subscripts 1 and 2, the unburnt and burnt gases, respectively.

- momentum flux continuity:

$$p_{1} + p_{1}V_{1}^{2} = p_{2} + p_{2}V_{2}^{2} \qquad (2.4)$$

where $\not b$ is the gas pressure.

- energy flux continuity:

 $H_{1} + \sum_{i=1}^{k} m_{i} W_{i} V_{i}^{2} = H_{2} + \sum_{i=1}^{k} m_{i} W_{i} V_{2}^{2}$ (2.5)

where M_i denotes the number of moles of specie *i*, i = 1, 2, ..., j for reactants and i = 1, 2, ..., k for reaction products. W_i is the molecular weight of species *i* and H, the enthalpy of the reactive mixture:

$$H = J \sum_{i=1}^{j \circ rk} \left[(\Delta H_{f}^{\circ})_{i} + (H^{\circ} - H_{298}^{\circ})_{i} \right]$$
(2.6)

where $(\Delta H_f^{\circ})_i$ is the standard enthalpy of formation of species i, $(H^{\circ} - H_{298}^{\circ})_i = \int_{298}^{T} C_{f,i} dT$ is the difference between the enthalpies in the standard state at temperatures T and 298°K, respectively and J is the energy conversion factor.

Assuming a mixture of perfect gases, the equation of state is given by:

$$p = \int \frac{R^{\circ}T}{\overline{W}} = \sum_{i} m_{i} R^{\circ} T$$
(2.7)

where \mathcal{R}^{\bullet} is the ideal gas constant, \mathcal{O} is the gas volume and $\overline{\mathcal{W}}$, the mean molecular weight of the mixture

$$\overline{W} = \sum_{i} X_{i} W_{i}^{-} \qquad (2.8)$$

where

$$\chi_{i} = m_{i} / \sum_{i} n_{i} \qquad (2.9)$$

is the mole fraction of species \boldsymbol{i} .

The classical model of a detonation wave assumes

- 10 -

the state of the burnt gas mixture to be the thermodynamic and chemical equilibrium state. The equilibrium composition at constant pressure and temperature, β_2 and \mathcal{T}_2 , respectively, is determined by writing that each chemical reaction taking place in the reaction zone behind the detonation front reaches equilibrium at section 2, the corresponding equations being:

- i) the chemical equilibrium equations
- ii) the conservation of mass (or atoms) equations.For a given chemical reaction,

$$\sum_{i} u_{i}^{\prime} A_{i} \stackrel{k_{i}}{\longrightarrow} \sum_{i} u_{i}^{\prime \prime} A_{i}$$

the equilibrium constant $\mathcal{K}_{\mathbf{c}}$ is defined as

$$K_{c}(T) = \frac{k_{f}}{k_{b}} = \prod_{i} C_{i}^{\Delta \nu_{i}}$$
(2.10)

where k_{f} and k_{b} denote the specific forward and backward reaction rates, respectively, $c_{i} \equiv \mathcal{M}_{i}/\mathcal{U}$ is the concentration of species i and $\Delta \mathcal{Q}_{i} \equiv \mathcal{Q}_{i}'' - \mathcal{Q}_{i}''$, where the \mathcal{D} 's are the stoichiometric coefficients. Using Dalton's law for a mixture of ideal gases, viz.,

$$p_i = X_i p \tag{2.11}$$

and the second second states and the second second

unan arabitan isidi ku oktit natan takatan nata kin da ku da ku ang kana kina ka babahata

where \not{k} is the partial pressure of species \dot{c} and the perfect gas law for species \dot{c} ,

$$p_i = m_i R^{\circ} T / v \qquad (2.12)$$

Eq. (2.10) can be rewritten in terms of partial pressures and/or number of moles, viz.,

$$K_{c}(T) = \prod_{i} h_{i}^{\Delta \nu_{i}}(R^{\circ}T)^{-\sum_{i} \Delta \nu_{i}}$$

$$= \prod_{i} m_{i}^{\Delta \nu_{i}} \cdot \upsilon^{-\sum_{i} \Delta \nu_{i}}$$
(2.13)

Defining the equilibrium constant k_p in terms of partial pressures, viz.,

$$K_{p}(T) = \prod_{i} p_{i}^{\Delta \mathcal{P}_{i}^{*}} \qquad (2.14)$$

たい、国家になった。

to and the state of the second state of the second state of the second state of the state of the second state of t

Eq. (2.13) becomes

$$K_{p}(T) = \prod_{i} m_{i}^{\Delta \nu_{i}} \left(\frac{R^{o}T}{v} \right)^{2,2,2,2}$$
(2.15)

The functions $K_p(\mathcal{T})$ are tabulated ³⁰ or can be obtained from the well-known thermodynamic relation:

$$R^{\circ}T \log k_{\rho}(\tau) = - \sum_{i} \Delta \nu_{i} \left[\Delta F^{\circ}(\tau) \right]_{i}^{i} \qquad (2.16)$$

where $[\Delta F(\tau)]$, the standard free energy of formation of species i is also tabulated in Ref. 30.

Finally, for a given gas mixture containing λ different atoms, λ atom balance equations can be written,

viz.,

 $\sum_{i=1}^{k} \mathcal{A}_{s,i} \mathcal{M}_{i} - \sum_{i=1}^{j} \mathcal{A}_{s,i} \mathcal{M}_{i} = 0,$ $5 = 1, 2, \dots, k$ (2.17)

where $\boldsymbol{<}_{\boldsymbol{S},\boldsymbol{c}}$ is the number of atoms of kind \boldsymbol{S} in molecule of type \boldsymbol{c} .

3. METHOD OF SOLUTION

For given initial conditions, i.e., state 1, viz., \not{p} , T_{1} , U_{1} , χ_{i} , i = 1, 2, ..., j and $V_{1} = D$, properties of state 2 are determined by solving the system of (4 + k) non-linear, algebraic equations (Eqs. 2.3-2.5, 2.7, 2.15, 2.17) in (4 + k) unknowns, namely, \not{p}_{2} , T_{2} , U_{2} , V_{2} and the equilibrium composition (k species). However, since the detonation velocity V_{1} (or D) is also unknown, the system can only be solved by assuming either the detonation velocity or any property of state 2. In the following, we shall assume a temperature T_{2} and solve for the other unknowns. The Chapman-Jouguet state is the state 2 for which the detonation velocity is minimum.

For a given temperature T_2 , the chemical equilibrium equations (Eq. 2.15) can always be expressed as functions of the volume t_2 and atom numbers only. Therefore, assuming a volume t_2 , the atom balance equations can be solved by the Newton-Raphson method to yield the equilibrium composition. The pressure k_2 is then obtained from Eq. (2.7). Next, the hydrodynamic equations (Eqs. 2.3-2.5) are rewritten in the following forms. Combining Eqs. (2.3), (2.4) and (2.7) yields an expression for the detonation velocity, viz.,
$$V_{i}^{2} = D^{2} = \frac{R^{\circ}T_{i}}{\overline{W_{i}}} \cdot \frac{(1 - h/h_{2})}{\frac{h}{R_{2}} \cdot \frac{W_{i}}{W_{2}} \cdot \frac{T_{2}}{T_{i}} - 1}$$

$$= F_{i}(T_{2}, v_{2})$$
(3.1)

13 -

A second expression for V_1^2 is obtained by combining Eqs. (2.3), (2.5)-(2.7), viz., $V_{1}^{2}=2\left\{\sum_{i=1}^{k}m_{i}\left[\left(\Delta H_{f}^{\circ}\right)_{i}^{\circ}+\left(H(T_{2})-H_{298}^{\circ}\right)_{i}^{\circ}\right]\right\}$ $= \sum_{i=1}^{n} m_{i} \left[(\Delta H_{f}^{\circ})_{i} + (H^{\circ}(T_{i}) - H_{298}^{\circ})_{i} \right]_{i}^{f}$

 $x \left\{ \sum_{n:W_i} - \sum_{n:W_i} \left(\frac{R}{R}, \frac{W_i}{W_i}, \frac{T}{T} \right) \right\}^{-1}$

 $= F_2(T_2, V_2)$

(3.2)

Equations (3.1) and (3.2) are then solved by iteration (false position method, to yield a solution for V_{1} and V_{2} when $|F^{(m)} - F^{(n-n)}|/|F^{(m-n)}| < 10^{-8}$, where $F = F_1(T_2, U_2) - F_2(T_2, U_2)$ Note that for each intermediate value of v_2 , the equilibrium composition must be recomputed as described above. The advantage of this method over Eisen et al's method ²⁹ is its simplicity, the rapidity of convergence to the solution, (usually, only four iterations by the false position method are necessary) and the absence of instability always present in the Newton-Raphson method when the number of equations increases with increasing complexity of the burnt gas mixture. Finally, the method of steepest descent is used to obtain the minimum detonation velocity D, i.e., the C-J state. The C-J state is considered to be reached when $\left| D^{(n)} - D^{(n-1)} \right| / D^{(n-1)} < 10^{-8}$

 $\gamma_{2}(fr) = \frac{\sum_{i=1}^{k} m_{i} C_{p,i}}{\sum_{i=1}^{k} m_{i} [C_{p,i} - R^{*}]}$

where Cp; is the molar specific heat at constant pressure of species i.

 $M_{2}(f_{r}) = V_{2}/c_{2}(f_{r})$

and

 $C_2(fr) = \left(\gamma_2(fr) R^2 T_2 / \overline{W}_2 \right)^{\frac{1}{2}}.$

where $C_2(fr)$ is the frozen sound speed of the burnt gases. All thermodynamic data, namely, enthalpy differences, standard free energies of formation and molar specific heats at constant pressure tabulated in Ref. 30 were fitted by a least-squares fit program to polynomials of degree equal or greater than four, in the temperature range from 2000 to 5000° K. Calculations were performed in double precision on an IBM360/75 OS and the results shown in Tables I-XVIII are presented in computer outputs. In these tables, each specie name denotes the corresponding mole percent, the pressures are in atmospheres and the fluid velocities with respect to the stationary detonation wave are in km/sec.

4. <u>RESULTS</u>

In this section, we present the calculated properties of C-J detonation waves in (H_2-Cl_2) , (CS_2-O_2) and $(CO-O_2-H_2-N_2)$ systems. All calculations were performed with initial pressures ranging from 30 to 760 torr and an initial temperature of 298^oK. Initial mixture compositions were also varied.

4.1 The (H₂-Cl₂) System

The equilibrium composition at the C-J plane in (H_2-Cl_2) detonations consists of five species, namely, Cl_2 , Cl, H_2 , H and HCl. The relevant equations and detailed analysis of the (H_2-Cl_2) chemistry are given in Appendix I.

The detonation properties calculated by the method described in Section 3 are presented in Tables I to VII and plotted in Figs. 2 to 6 for Cl_2 initial mole percent ranging from 30 to 70 and initial pressures from 30 to 760 torr. At constant initial pressure, the detonation velocity (Fig. ?) first decreases quite linearly with increasing Cl_2 initial mole percent, up to 50%, then decreases sharply with Cl_2 increasing from 50 to \sim 57.5%, then retains a negative slope with Cl_2 increasing up to 70%, the limit of the present calculation. At constant Cl_2 initial mole percent, decreasing the initial pressure causes a small decrease in the detonation velocity, the largest drop (\cong 6%) occurring for the stoichiometric mixture. Figure 3 shows the corresponding variations of the

temperature ratio T_2/T_1 with initial pressure p_1 and Cl_2 initial mole percent. At any initial pressure (30 - 760 torr), the maximum temperature ratio does not occur for the stoicmiometric mixture but is shifted towards lower Cl₂ concentration (approximately around 47.5%). The maximum also becomes quite flat at pressures below 100 torr. On the other hand, the pressure ratio \bar{p}_2/p_1 and the detonation Mach number M_1 , shown in Figs. 4 and 5, peak at 50% Cl₂ initial mole fraction for all initial pressures as expected from stoichiometry, while retaining the same qualitative shape as the comporature ratio. The HCl mole percent variations shown in Fig. 6 exhibit the same qualitative behavior as the other thermodynamic parameters but the maxim m HCl mole percent shifts from 50% initial Cl₂ at atmospheric pressure, as expected from stoiometry, to \sim 55% initial Cl₂ at 30 torr. The present results are in good agreement with Zel'dovich's calculated detonation parameters 20 in stoichiometric mixtures at 760 and 200 torr, initial pressure. Therefore, the qualitative discrepancy between calculated ²⁰ and experimentally measured ¹⁸, ¹⁹ detonation velocities, already discussed in Section 1, is also reflected by the present calculation. Similarly, comparison of the present calculation with Dixon's measurements ¹⁷ at atmospheric pressure and varying initial composition shows a poor agreement (Fig. 2), calculated detonation velocities being higher at low Cl, mole percent and lower for the stoichiometric mixture. Experiments at subatmospheric pressures are in progress and the results will

- 17 -

1966 C 1960

be compared to the theoretical values in a near future.

4.? The (CS_2-O_2) System

Whereas the (H_2-Cl_2) syste has only one stoichiometric composition, the equimolar one, the (CS_2-O_2) system possesses at least three stoichiometries, namely:

 $CS_2 + 30_2 \rightarrow CO_2 + 2SO_2$, (4.2.1)

$$CS_{2} + 20_{2} + CO_{2} + 2SO_{3}$$
 (4.2.2)

and

$$cs_2 + 0_2 \Rightarrow 2c0 + 2s_2$$
 (4.2.3)

Therefore, under detonative combustion, CO, CO₂, SO, SO₂ and S₂ are likely to be found in the burnt gas at the C-J flame. In addition, kinetic studies in shocked-heated (CS_2-O_2) mixtures, highly diluted in A, also include among the product, carbonyl sulfide, COS ^{16, 31}. Hence, the equilibrium composition at the C-J plane should consist of 11 species, namely, CS_2 , CS, CO, CO₂, COS, O₂, O, SO₂, SC, S₂ and S. We have also included in the calculation C₂ and C to account for CO and CS dissociations. The detailed analysis of the equilibrium composition at the C-J plane in (CS_2-O_2) mixtures is given in Appendix II. The results are presented in Tables VIII to XIII and Figs. 7 to 19, for initial pressures ranging from 30 to 760 torr and CS_2 initial mole percent from 25 to 80%. Below 25% initial CS₂ and above 80% initial CS₂, no solution could

be obtained. The absence of theoretical solutions beyond these initial compositions may correspond to the detonability limits of the (CS_2-O_2) mixture, although the model does not account for these limits. At constant initial pressure, detonation velocities decrease with increasing CS_2 initial mole percent and seem to be maximum at 25% initial CS₂ (Figs. 7, 11). At constant initial composition, decreasing the initial pressure from 760 to 30 torr decreases the detonation velocity comparison with an experimentally measured value in $(CS_2 + 30_2)$ mixture at 1 atm, initial pressure ²⁵ shows some disagreement, the calculated value being \sim 1.4% less than the measured one. Such a discrepancy may result from achievement of partial equilibrium at the C-J plane. Due to the various possible stoichiometries of the (CS_2-0_2) system, it is difficult to define a priori the stoichiometry for which all thermodynamic parameters will be maximum. From Figs. 8 and 12, it is seen that the temperature ratio T_2/T_1 is maximum at \sim 30% initial CS₂ for all initial pressures considered in the present calculation whereas the pressure ratio P_2/p_1 (Figs. 9, 13) and detonation Mach number M_1 (Figs. 10, 14) are both maximum at \sim 35% initial CS₂, for the same range of initial pressures. Therefore, the stoichiometry described by Eqs. (4.2.2) corresponding to a $(CS_2 + 2O_2)$ mixture seems to prevail under detonative combustion. In addition, all detonation parameters (Figs. 11-14) show a very sharp decrease at 60% initial CS_2 . This behavior may reflect a shift in shoichiometry

- 19 -

from $(CS_2 + 2O_2)$ to $(2CS_2 + O_2)$ and is supported by the corresponding variations in product mole percents as shown in Figs. 15 - 19. As expected from stoichiometry (Eq. 4.2.1), CO_2 is maximum, although much smaller than the CO mole percent, for (CS_2) initial = 25% at all initial pressures considered 15). Similarly, SO₂ is also maximum for the same Fig. initial composition (Fig. 16). Increasing the fuel mole percent shifts the stoichiometry to the reaction described by Eqs. (4.2.2), hence resulting in SO reaching a maximum at \sim 35% (Fig. 17). Further increase in fuel concentration shifts again the stoichiometry to the reaction described by Eq. (4.2.3), resulting in CO and S₂ reaching a maximum at \sim 70% initial CS₂ (Figs. 18, 19). Moreover, in this case, equal mole percents of CO and S₂ are approximately formed, in good agreement with the corresponding stoichiometry. Whereas all detonation parameters decrease with decreasing initial pressures, the CO mole percent increase with increasing initial pressure (Fig. 18), S_2 and SO mole percents first decrease, then increase after reaching their maximum (Figs. 17 and 19) and CO_2 and SO_2 mole percents exhibit the same qualitative behavior as the detonation parameters (Fig. 15, 16). The lack of experimental data makes it difficult to draw any conclusion on the behavior of the (CS_2-O_2) system under detonative combustion. Experiments are in progress and will be compared with theoretical data in a near future.

- 20 -

4.3 <u>The $(CO-H_2-O_2-N_2)$ System</u>

For an (H_2-0_2) system, the relevant stoichiometry is:

 $H_2 + .50_2 + H_20$ (4.3.1)

Accounting for dissociation and recombination under detonative combustion, the equilibrium composition should consist of six species, namely, H_2 , O_2 , H, O, OH and H_2O . Addition of carbon monoxide to the (H_2-O_2) system while maintaining the stoichiometry, i.e., fuel/oxidizer = 2, viz.,

$$[yH_{2} + (1-y)CO] + .50_{2} + yH_{2}O + (1-y)CO_{2} \qquad (4.3.2)$$

yields CO_2 as reaction product. Again, accounting for dissociation and recombination, the relevant equilibrium composition for the $(CO-O_2-H_2)$ system should consist of ten species, namely, H_2 , O_2 , CO, CO_2 , H, O, OH, H_2O , C_2 and C. Finally, with nitrogen distribution, N_2 , N, NO, NO_2 , N_2O , HN and HNO should also be included in the equilibrium composition at the C-J plane. Therefore, we shall consider seventeen species to be present at the C-J plane in detonations in $(CO-O_2-H_2-N_2)$ system. The detailed analysis of the chemistry of this system is presented in Appendix III.

Because experimental data are available for the undiluted system only, we have first calculated detonation parameters in the stoichiometric mixture given by Eq. (4.3.2) at atmospheric pressure, initially. The results of these calculations with varying initial CO mole percent are shown in Table XIV and Figs. 20 - 24. Complete agreement with Lu et al's ²⁶ calculated detonation velocities is shown in Fig. 20 whereas experimental data 26 , 27 are about 2% lower than the theoretical ones. As shown in Figs. 21 - 23, temperature and pressure ratios and detonation Mach number all exhibit a minimum at a high CO content. However, the minimum temperature ratio occurs at \sim 85% initial CO/(CO + H₂) whereas the pressure ratio and detonation Mach number have a minimum at \sim 80% initial CO/(CO + H₂). CO and CO₂ product mole percents (Fig. 24) are seen to increase with increasing $CO/(CO + H_2)$ initial mole percent, the CO mole percent being larger than the CO_2 mole percent at low initial $CO/(CO + H_2)$ content whereas the reverse is true at high initial $CO/(CO + H_2)$ content, both product percentages being equal for \sim 80% CO/(CO + H₂) initial.

With nitrogen dilution, no experimental data are yet available for comparison with the theoretical results presented in Tables 15 - 18 and Figs. 25 - 29. In these calculations, we maintain the stoichiometry as given by Eqs. (4.3.2), the initial H_2 mole percent being fixed at 1% and the initial N_2 mole percent varying from 10 to 40%. At constant initial pressure, with increasing N_2 dilution, all detonation properties decrease monotonically. Similarly, at constant N_2 dilution, decreasing the initial pressure also decreases all detonation properties. The corresponding variations of the CO_2 and COproduct mole percents are shown in Fig. 29. The CO_2 mole

- 22 -

percent exhibits the same qualitative behavior as the thermodynamic properties when the initial pressure and/or the N₂ dilution are varied whereas the CO mole percent increases with decreasing initial pressure at constant N₂ dilution being slightly larger (a few percent) than the CO_2 mole percent at low dilution and initial pressure and smaller ($\sim 15\%$) than the CO_2 mole percent at larger N₂ dilution for any initial pressure in the range (760 - 30 torr). The calculation was not carried beyond 40% N₂ dilution because one may expect quenching of the detonation in highly diluted mixture. These results will be compared with experimental Lata in a near future.

ACKNOWLEDGEMF!IT

We wish to acknowledge the contribution of G.G. Bach in the form of discussions on the method of solution.

<u>Appendix I</u>

The overall reaction for the equilibrium composition at the C-J plane in (H_2-Cl_2) mixtures can be written as:

$$a_{1}Cl_{2} + a_{2}H_{2} \longrightarrow b_{1}Cl_{2} + b_{2}H_{2} + b_{3}Cl \qquad (1.1)$$
$$+ b_{4}H + b_{5}HCl$$

where the a's and b's denote reactant and product mole numbers, respectively. The corresponding atom balance equations are:

$$[C1] 2a_1 = 2b_1 + b_3 + b_5 \qquad (1.2)$$

$$[H] \quad 2a_2 = 2b_2 + b_4 + b_5 \tag{1.3}$$

For a given temperature T_2 and a given volume U_2 of the burnt mixture, the equilibrium composition is determined by solving simultaneously the atom balance and equilibrium equations. Therefore, three equilibrium equations are needed corresponding to the following chemical reactions, viz.,

$$\frac{1}{2}H_2 \stackrel{K_1}{\longrightarrow} H \qquad (1.4)$$

$$\frac{1}{2}C_2 \xrightarrow{k_2} C/ \tag{1.5}$$

$$\frac{1}{2}H_2 + \frac{1}{2}C_2 \xrightarrow{k_3} HCl$$
 (1.6)

- 25 -

where the k's are the corresponding equilibrium constants, namely,

$$k_{1} = \frac{b_{H}}{b_{H_{2}}} = (\frac{b_{4}}{b_{2}}) \chi \qquad (1.7)$$

$$K_2 = k_1 / p_{c_1}^{\prime 2} = (b_3 / b_1^{\prime 2}) \chi$$
 (1.8)

$$K_{3} = \frac{\beta_{HCI}}{\beta_{H_{2}}} \left(\frac{\beta_{H_{2}}}{\beta_{H_{2}}} \right)^{\frac{1}{2}} = \frac{b_{5}}{(b_{1}b_{2})^{\frac{1}{2}}}$$
(1.9)

where

$$\chi = \left(R^{\circ} T_2 / U_2 \right)^{1/2}$$
(1.10)

Defining

$$B_i = log_e b_i \quad j = 1, 2, \dots, 5$$

it can be seen that Eqs. (I.2, I.3, I.7-I.9) can be expressed in terms of B_3 and B_4 for given T_2 and U_2 . Solving Eqs. (I.7-I.9) yields:

$$b_1 = b_3^2/C_1$$
 (1.11)

$$b_2 = b_4^2 / C_2 \tag{1.12}$$

$$b_5 = b_3 b_4 / C_3$$
 (1.13)

where the C's are functions of T_2 and U_2 , only, viz.,

$$C_1 = k_2^2(T_2)/\chi^2$$
 (I.14.a)

$$C_2 = k_1^2 (T_2) / \chi^2$$
 (I.14.b)

$$C_3 = K_1(T_2)K_2(T_2)/(K_3(T_2)\chi^2)$$
 (1.14.c)

Using Eqs. (I.11-I.14) into Eqs. (I.2, I.3) yields a system of two non-linear, algebraic equations in b_3 , b_4 , T_2 and U_2 , viz.,

$$F(x, y, T_{2}, v_{2}) = \begin{bmatrix} 2x^{2} + x + \frac{xy}{c_{3}} \end{bmatrix} - 2a, = 0$$

$$G(x, y, T_2, v_2) = \left[\begin{array}{c} 2y^2 \\ C_2 \end{array} + y + \begin{array}{c} xy \\ C_3 \end{array} \right] - 2a_2 = 0$$

where $\chi \equiv b_3$ and $\gamma \equiv b_4$. For given values of T_2 and U_2 , this system can readily be solved for χ and γ by the Newton-Raphson method and the remaining unknowns, namely, b_1 , b_2 and b_3 are then given by Eqs. (I.11-I.13).
Appendix II

The overall reaction for the equilibrium composition at the C-J plane in (CS_2-O_2) mixtures is:

$$a_{1}C_{2} + a_{2}O_{2} \rightarrow b_{1}C_{2} + b_{2}C_{5} + b_{3}CO_{4} + b_{4}CO_{5} + b_{5}C_{2} + b_{6}C_{5} + b_{4}CO_{5} + b_{5}O_{2} + b_{3}O_{5} +$$

The corresponding atom balance equations are written as:

$$[5]: 2a_{1} = 2b_{1} + b_{2} + b_{4} + b_{3} + b_{10} + 2b_{11}$$
(11.3)
+ b_{12}

$$[0]: 2a_2 = b_3 + b_4 + 2b_7 + b_8 + 2b_9 + b_{10}$$

$$+ 2b_{13}$$
(11.4)

Since thirteen species are assumed to be present at the C-J plane and three atom balance equations can be written for the (CS_2-O_2) system, ten equilibrium equations are needed to obtain the equilibrium composition for given 7_2 and 42_2 . These equations correspond to the following chemical reactions, viz., - 27 -

- 28 -1 02 × 0 (II.5.a) SQ = 50+202 (II.5.b) $CS_2 \stackrel{k_3}{=} CS + \frac{1}{2}S_2$ (II.5.c) 50 = 1 2 52 + 2 02 (II.5.d)1-52 = 5 (II.5.e) CS = 1 C2 + 2 S2 (II.5.f)1 C2 + C (II.5.g) $\cos \frac{k_s}{1} c_s + \frac{1}{2} o_2$ (II.5.h) $CO = \frac{k_{0}}{2} \frac{1}{2} C_{2} + \frac{1}{2} O_{2}$ (11.5.i) $CQ \stackrel{k_0}{=} CO + \frac{1}{2}O_2$ (II.5.j)

$$k_{1} = \frac{k_{0}}{k_{0}} = \frac{b_{8}}{b_{1}} \chi \qquad (11.6)$$

$$K_{2} = \frac{\frac{k_{30}k_{01}}{k_{02}}}{\frac{k_{30}}{k_{30}}} = \frac{\frac{b_{1}^{\prime h}}{b_{10}}}{\frac{k_{30}}{k_{30}}}\chi$$
 (11.7)

$$K_{3} = \frac{p_{cs} p_{s_{2}}^{\prime \prime }}{p_{cs_{2}}} = \frac{b_{2} b_{\prime \prime}^{\prime \prime }}{b_{\prime}} \chi \qquad (11.8)$$

San and San and

Manu Anari

$$K_{4} = \frac{(k_{3} k_{0})^{n}}{k_{0}} = \frac{(b_{3} b_{n})^{n}}{b_{n}}$$
(11.9)

$$K_{5} = \frac{k_{5}}{k_{5}^{\prime \prime \prime }} = \frac{b_{12}}{b_{11}^{\prime \prime }} \chi \qquad (11.10)$$

$$K_{6} = \frac{(k_{c}, k_{s_{1}})^{\prime \prime }}{k_{cs}} = \frac{(b_{s}, b_{ii})^{\prime \prime }}{b_{2}}$$
(11.11)

$$K_{2} = \frac{k_{c}}{k_{s}^{\prime\prime}} = \frac{k_{c}}{b_{s}^{\prime\prime}} \chi$$
 (11.12)

- 29 -

$$k_{g} = \frac{h_{s} h_{a}^{\prime \prime \prime}}{h_{cos}} = \frac{h_{s} h_{a}^{\prime \prime \prime}}{h_{a}} \chi$$

$$K_{g} = \frac{(k_{1}k_{3})^{h}}{k_{co}} = \frac{(k_{3}k_{3})^{h}}{k_{3}}$$
 (11.14)

(11.13)

uru, attainista katakuta kata kata kata kata ku

N. C. M. C

$$K_{n0} = \frac{k_{c0}k_{01}}{k_{02}} = \frac{b_3 b_4^{\prime \prime \prime}}{b_3}\chi \qquad (11.15)$$

where

$$\chi = (R^{\circ}T_2/U_2)^{1/2} \qquad (11.16)$$

Defining:

10.200

$$B_i = \log b_i$$
, $i = 1, 2, \cdots, 13$

it can be seen that all the **b**'s in Eqs. (II.6-II.16) can be expressed as functions of T_2 , U_2 and U_2 , U_3 ,

10

$$b_{1} = b_{6} b_{12} / C_{1}$$

$$b_{3} = b_{6} b_{12} / C_{2}$$

$$b_{3} = b_{6} b_{8} / C_{3}$$

TOTAL ASSAULT

- 31 $b_{q} = b_{g} b_{g} b_{p} / C_{4}$ bs = b; 2/C5 $b_1 = b_8^2 / C_6$ $b_{3} = b_{8}^{2} b_{12} / C_{2}$ (11.17) $b_{10} = b_{3} b_{12} / C_{8}$ $b_{1} = b_{12}^{2}/C_{g}$ b13 = b2 b8 1C10 where the C's are functions of T_2 and U_2 , only, viz., $C_{1} = k_{3}k_{5}^{2}k_{6}k_{7}/\chi^{2}$ C2 = K5-K6 K3/22 $C_3 = K_1 K_2 K_g / {\frac{9}{2}}^2$

C4 = K, K5 K6 K7 K8/X4 $C_5 = k_1^2/\chi^2$ $C_{c} = k_{i}^{2}/\chi^{2}$ $C_{2} = k_{1}^{2}k_{2}k_{4}k_{5}/\chi^{4}$ $C_{g} = K_{1}K_{4}K_{5}/\chi^{2}$ $C_g = k_s^2/\chi^2$

(II.18)

- 32 -

Cin = K, K2 Kg Kio/X4

Using Eqs. (I1.17) into Eqs. (II.2-II.4) yields a system of three, non-linear, algebraic equations in five unknowns b_6 , b_8 , b_{12} , T_2 and U_2 , namely,

- 33 - $F(x,y,z,T_2,u_1) = \frac{2y^2}{C_1} + \frac{xy}{C_2} + \frac{xz}{C_1} + \frac{xyz}{C_1} + \frac{xyz}{C_1}$ $+\frac{2x^{2}}{C_{S}}+x+\frac{x^{2}}{C_{D}}=Q_{1}$ $G(x, y, z, T_2, U_2) = 2xy^2 + \frac{xy}{C} + \frac{xyz}{C} + \frac{yz^2}{C}$ $+ \frac{y_{\pm}}{c_8} + \frac{2y_1^2}{c_9} + y - 2a_1$ $H(x, y, z, T_1, v_2) = \frac{x_1^2}{C_1} + \frac{x_2y_2^2}{C_2} + \frac{2z_1^2}{C_2} + z_1^2$ $+ 2\frac{y^2}{C_2} + \frac{y^2}{C_3} + 2\frac{x^2}{C_2} - 2\alpha_2 = 0$

where $x = b_2$, $y = b_2$ and $z = b_3$. These equations are readily solved for given U_2 and T_2 by the Newton-Raphson method, then Eqs. (11.17) give the remaining unknown b's.

and the sector of the sector

Appendix III

- 34 -

A. <u>The $(CO-H_2-O_2)$ System</u>

The overall reaction for the equilibrium composition at the C-J plane is written as:

 $a_{1}CO + a_{2}O_{2} + a_{3}H_{2} \rightarrow b_{1}CO_{2} + b_{2}CO + b_{3}O_{2}$ $+ b_{4}O + b_{5}H_{2}O + b_{6}OH$ (III.A.1) $+ b_{4}H_{2} + b_{3}H + b_{5}C_{2}$ $+ b_{4}C$

The corresponding atom balance equations are:

 $[Cj: a_{1} = b_{1} + b_{2} + 2b_{3} + b_{6} \qquad (111.A.2)$

$$[H]: 2a_3 = 2b_5 + b_6 + 2b_7 + b_8 \qquad (III.A.4)$$

For given temperature and volume of the burnt gas mixture, the equilibrium composition (10 species) is completely determined by solving simultaneously the atom balance and equilibrium equations. Therefore, seven equilibrium equations are needed, representing the following reactions:

an service in the sector of th

$$Co_2 \stackrel{k_1}{=} Co + \frac{1}{2}o_2$$
 (III.A.5)

 $CO = \frac{k_2}{2} \frac{1}{2} C_2 + \frac{1}{2} O_2 \qquad (111.A.6)$

$$\frac{1}{2}O_2 \stackrel{k_3}{=} O \qquad (111.A.7)$$

$$\frac{1}{2}C_2 \stackrel{\text{red}}{=} C \qquad (111.A.8)$$

$$\frac{1}{2}H_2 \stackrel{K_2}{=} H \qquad (III.A.9)$$

$$H_2 O = H_2 + \frac{1}{2} Q_2$$
 (III.A.10)

$$OH = \frac{1}{2}Q + \frac{1}{2}H_2$$
 (111.A.11)

where the k's are the corresponding equilibrium constants, víz.,

A NUMBER OF STREET

$$K_{1} = \frac{k_{co} p_{c_{2}}^{\prime \prime \prime}}{k_{c_{2}}} = \frac{b_{1} b_{3}^{\prime \prime \prime}}{b_{1}^{\prime}} \left(\frac{R^{2} T_{2}}{v_{2}}\right)^{\prime \prime \prime} \qquad (111.A.12)$$

$$K_{2} = \frac{b_{12}^{\prime \prime \prime} b_{12}^{\prime \prime \prime}}{b_{co}} = \frac{(b_{3} b_{3})^{\prime \prime \prime}}{b_{3}}$$
(111.A.13)

$$k_{3} = \frac{p_{0}}{p_{3}''_{2}} = \frac{b_{4}}{b_{3}''_{2}} \left(\frac{R^{\circ}T_{2}}{v_{2}}\right)^{\prime'_{2}}$$
(111.A.14)

$$K_{4} = \frac{k_{e}}{p_{12}^{\prime \prime \prime \prime}} = \frac{b_{ro}}{b_{3}^{\prime \prime \prime}} \left(\frac{R^{\circ}T_{2}}{v_{2}} \right)^{\prime \prime \prime}$$
 (III.A.15)

$$K_{5} = \frac{h_{H}}{p_{H_{2}}^{\prime \prime }} = \frac{h_{B}}{6^{\prime \prime }} \left(\frac{R^{\circ} T_{2}}{v_{2}} \right)^{\prime \prime }$$
(111.A.16)

$$K_{5} = \frac{p_{0H} b_{H_{2}}}{p_{H_{0}}} = \frac{b_{2} b_{3}^{\prime \prime 2}}{b_{5}} \left(\frac{R^{\circ} T_{2}}{V_{2}}\right)^{\prime \prime 2}$$
(111.A.17)

and

$$k_{2} = \left(\frac{b_{1}}{b_{2}}, \frac{b_{1}}{b_{2}}\right)^{2} = \left(\frac{b_{3}}{b_{3}}, \frac{b_{3}}{b_{3}}\right)^{2}$$
(111.A.18)

$$k_{2} = \left(\frac{b_{1}}{b_{2}}, \frac{b_{3}}{b_{3}}, \frac{b_{3}}{b_{3}}\right)^{2}$$
(111.A.18)

Defining: $B_i \equiv \log b_i$ and $\chi \equiv (R^{\circ}T_2/U_2)^{\prime h}$ inspection of Eqs. (III.A.2 - III.A.4, III.A.12 - III.A.18) shows that for given T_2 and U_2 , all the b's are functions of the atom numbers only, namely, b_4 , b_8 and b_0 , respectively. Solving Eqs. (III.A.13 - III.A.18) in terms of b_4 , b_3 and b_6 yields the equilibrium composition, viz.,

$$b_{j} = b_{4}^{2} b_{j0} / C_{j}$$
 (111.A.19)

$$b_2 = b_4 b_{10}/C_2$$
 (III.A.20)

$$b_3 = b_4^{-1} (C_3)$$
 (111.A.21)

$$b_{5} = b_{4} \frac{b_{8}^{2}}{C_{4}}$$
 (III.A.22)

$$b_6 = b_4 b_8 / C_5$$
 (III.A.23)

 $b_{2} = b_{8}^{2}/C_{6}$ $b_{9} = b_{10}^{2}/C_{7}$ (III.A.24)

(III.A.25)

$$C_{1} = k_{1}k_{2}k_{3}^{2}k_{4}/\chi^{4}$$
 (III.A.26)

$$C_2 = k_2 k_3 k_4 / \chi^2$$
 (III.A.27)

$$C_3 = k_3^2 / \chi^2$$
 (III.A.28)

$$C_4 = k_3 k_5^2 k_c k_7 / \chi^4$$
 (III.A.29)

 $C_{5} = k_{3}k_{5}k_{7}/\chi^{2}$ (III.A.30)

 $C_6 = k_5^2 / \chi^2$ $C_7 = k_4^2 / \chi^2$

(III.A.32)

Using Eqs. (III.A. 19 - III.A.25), Eqs. (JTI.A.2 - III.A.4) become:

$$F(x, y, z, T_3, v_2) = x_{C_1}^{22} + x_{C_2}^{22} + \frac{2z^2}{C_1} + \frac{2z^2}{C_2} + z - a_1 = 0$$

$$G(x, y, z, T_2, v_2) = 2x_{C_1}^{22} + x_{C_2}^{22} + \frac{2x^2}{C_3} + \frac{2x^2}{C_3} + \frac{2x^2}{C_3} + \frac{xy}{C_3} = 0$$

$$H(x, y, z, T_2, v_2) = 2x_{C_4}^{22} + x_{C_3}^{22} + \frac{2y^2}{C_3} + y - 2a_3 = 0$$

where $\chi \equiv b_4$, $\gamma \equiv b_8$ and $z \equiv b_6$, respectively. This system of three, non-linear, algebraic equations may be solved by the Newton-Raphson method for a given temperature T_2 and a given volume U_2 and the corresponding equilibrium composition is completely determined by using Eqs. (III.A.19 - III.A.25).

- 38 -

B. The (CO-H₂-O₂-N₂) System

The overali reaction for the equilibrium composition at the C-J plane is given by:

 $\begin{aligned} a_{1}CO + a_{2}O_{2} + a_{3}N_{2} + a_{4}H_{2} &\longrightarrow \\ b_{1}CO_{2} + b_{2}CO + b_{3}O_{2} + b_{4}O \\ + b_{5}N_{2} + b_{6}N + b_{4}NO + b_{8}N_{2}O \\ + b_{3}NO_{2} + b_{10}H_{2}O + b_{11}OH + b_{2}H_{2} \\ + b_{13}H + b_{14}C_{2} + b_{15}C + b_{16}NH + b_{17}HNO \end{aligned}$ (III.B.1)

The corresponding atom balance equations are:

 $[C]: a_{1} = b_{1} + b_{2} + 2b_{14} + b_{15} \qquad (III.B.2)$

 $[0]: a_1 + 2a_2 = 2b_1 + b_2 + 2b_3 + b_4 + b_2$ (III.B.3) $+b_{2}+2b_{2}+b_{10}+b_{1}+b_{12}$

 $[N]: 2a_3 = 2b_5 + b_6 + b_4 + 2b_8 + b_9$ (III, B.4)+ 6, + 6,

 $[H]: 2a_4 = 2b_{10} + b_{11} + 2b_{12} + b_{13} + b_{14} + b_{17}$ (III.B.5)

The equilibrium composition consisting of 17 species is obtained by solving simultaneously the atom balance and equilibrium equations for a given temperature 7_2 and a given volume 1_2 of the burnt mixture. Therefore, 13 equilibrium equations are needed, corresponding to the following reactions:

$$Co_2 \stackrel{K_1}{=} CO + \frac{1}{2}O_2 \qquad (III.B.S)$$

$$Co = \frac{k_1}{2} (111.8.7)$$

$$\frac{1}{2}O_2 \stackrel{k_3}{=} O \qquad (III.B.8)$$

$$\frac{1}{2}C_2 \stackrel{k_4}{=} C \qquad (III.B.9)$$

$$\frac{k_{\rm s}}{2N_2} = N \qquad (111.B.10)$$

$$NO = \frac{1}{2}N_2 + \frac{1}{2}O_2$$
 (III.B.11)

$$NO_2 \stackrel{k_3}{=} \frac{1}{2}O_2 + NO$$
 (III.B.12)

$$N_2 O \stackrel{k_2}{=} \frac{1}{2} N_2 + NO \qquad (III.B.13)$$

$$\frac{1}{2}H_2 \stackrel{K_9}{\stackrel{\scriptstyle ?}{\scriptstyle =}} H \qquad (III.P.14)$$

$$H_2 O \stackrel{K_{10}}{=} OH + \frac{1}{2} H_2$$
 (111.B.15)

$$OH = \frac{k_{11}}{2}O_2 + \frac{1}{2}H_2$$
 (III.B.16)

$$NH \stackrel{K_{n}}{=} \frac{1}{2}N_{2} + \frac{1}{2}H_{2} \qquad (III.B.17)$$

$$HNO \stackrel{K_{13}}{=} \frac{1}{2}H_2 + NO \qquad (III.B.18)$$

where the k's are the corresponding equilibrium constants, viz.,

このためになるというないできょうできょうできょうない

and a state of the state of the

$$K_{1} = \frac{k_{0} p_{0}''}{R_{0_{2}}} = \frac{b_{2} b_{3}''}{b_{1}'} \frac{R^{\circ} T_{2}}{U_{2}} \int_{2}^{U_{2}} (\text{III.B.19})$$

$$K_{2} = \frac{\left(\frac{k_{c}}{k_{c}} \frac{h_{a}}{h_{c}}\right)^{2}}{\frac{k_{c}}{k_{c}}} = \frac{\left(\frac{h_{3}}{b_{4}}\right)^{2}}{\frac{h_{2}}{b_{2}}}$$
(111.B.20)

$$K_{3} = \frac{k_{0}}{p_{0_{2}}^{\prime\prime}} = \frac{b_{4}}{b_{3}^{\prime\prime}} \left(\frac{k^{\circ}T_{2}}{u_{2}}\right)^{\prime\prime} \qquad (\text{III.B.21})$$

r koror. Verme den fondersten fremenskille statiskeren bij blen forskille statisker og som forskille som for so

$$K_{4} = \frac{k_{c}}{R_{3}^{\mu}} = \frac{b_{15}}{b_{14}^{\mu}} \left(\frac{R^{\circ}T_{2}}{b_{2}}\right)^{\mu}$$
 (III.B.22)

- 40 -

$$K_{5} = \frac{h_{N}}{p_{N_{2}}^{\prime \prime \prime_{2}}} = \frac{b_{6}}{b_{5}^{\prime \prime_{2}}} \left(\frac{R^{\circ} T_{2}}{U_{2}}\right)^{\prime \prime_{2}}$$

$$K_{6} = \frac{(b_{1}, b_{0})^{h}}{k_{N0}} = \frac{(b_{3}, b_{5})^{h}}{b_{1}}$$
(III.B.24)

$$K_{7} = \frac{P_{NO}P_{O_{1}}}{P_{NO_{2}}} = \frac{b_{2}b_{3}^{\prime \prime \prime}}{b_{3}} \left(\frac{R^{\circ}T_{2}}{O_{2}}\right)^{\prime \prime} \qquad (\text{III.B.25})$$

$$K_{B} = \frac{k_{NO} + k_{N_{2}}}{k_{N_{2}O}} = \frac{b_{2} + b_{3}^{\prime \prime \prime}}{b_{3}} \left(\frac{R^{\circ} T_{2}}{v_{2}}\right)^{\prime \prime \prime} \qquad (III.B.26)$$

$$K_{g} = \frac{p_{H}}{p_{H_{2}}^{\mu_{1}}} = \frac{b_{13}}{b_{12}^{\mu_{2}}} \left(\frac{R^{\circ}T_{2}}{U_{2}}\right)^{\prime_{2}}$$
(III.B.27)

(III.B.23)

$$K_{10} = \frac{p_{H_2}^{H_2} p_{OH}}{p_{H_2O}} = \frac{b_n^{H_2} b_{H}}{b_{10}} \left(\frac{R^{\circ} T_2}{U_2}\right)^{H_2} \quad (\text{III.B.28})$$

$$K_{II} = \frac{(p_{H_1} p_{0_1})^{1/2}}{p_{0H}} = \frac{(b_3 b_{1_2})^{1/2}}{b_n}$$
(III.B.29)

$$K_{12} = \frac{(P_{NL}, P_{HL})}{P_{NN}} = \frac{(b_{5}, b_{12})^{\prime \prime_{2}}}{b_{1L}}$$
(111.B.30)

and a subsection of the second s

 $K_{13} = \frac{p_{H_2}^{1/2} p_{N0}}{p_{HN0}} = \frac{b_2 b_2^{1/2}}{b_1 p_2} \left(\frac{R^{\circ} T_2}{U_2}\right)^{1/2}$ Defining $B_i \equiv \log_0 b_i$ and $\chi \equiv \left(\frac{R^{\circ} T_2}{U_2}\right)^{1/2}$

(III.B.31)

A CONTRACT ON MUSICAL CONTRACTOR CONTRACT OF A CONTRACT OF A

Defining $B_{i} \equiv \log b_{i}$ and $\chi \equiv (R^{\circ}T_{2}/V_{2})^{\circ}$, inspection of Eqs. (III.B.2 - III.B.31) shows that b_{4} , b_{6} , b_{13} and b_{15} (the 0, N, H and C atom numbers, respectively) can be chosen as independent variables. Solving Eqs. (III.B.19 - III.B.31) in terms of these variables yields:

$$b_{i} = b_{4}^{2} b_{i5} / C_{i}$$
 (III.B.32)

$$b_2 = b_4 b_{15} / C_2$$
 (III.B.33)

$$b_3 = b_4^2/C_3$$
 (III.B.34)

$$b_5 = b_6^2/C_4$$
 (III.B.35)

$$b_{2} = b_{4}b_{c}/C_{5}$$
 (III.B.36)

$$b_{g} = b_{4} b_{g}^{2} / C_{c}$$
 (III.B.37)

$$b_g = b_4^2 b_6 / C_1$$
 (III.B.38)

$$b_{10} = b_4 b_{13}^2 / C_8$$
 (III.B.39)

$$b_{11} = b_4 b_{13} / C_g$$
 (III.B.40)

- 42 -

$$b_{12} = b_{13}^2 / C_{10}$$
 (III.B.41)

$$b_{14} = b_{15}^2 / C_{11}$$
 (III.B.42)

$$b_{16} = b_6 b_{13} / C_{12}$$
 (III.B.43)

$$b_{17} = b_4 b_6 b_3 / C_{13}$$
 (III.B.44)

where the C's are functions of U_2 and T_2 only and are given by:

a.comments for water to the states and the

$$C_{1} = k_{1}k_{2}k_{3}^{2}k_{4}/\chi^{4}$$

$$C_{2} = k_{2}k_{3}k_{4}/\chi^{2}$$

$$C_{3} = (k_{3}/\chi)^{2}$$

$$C_{4} = (k_{5}/\chi)^{2}$$

$$C_{5} = k_{3}k_{5}k_{6}/\chi^{2}$$

$$C_{6} = k_{3}k_{5}^{2}k_{6}k_{8}/\chi^{4}$$

$$C_{7} = k_{3}^{2}k_{5}k_{6}k_{7}/\chi^{4}$$

$$C_{8} = k_{3}k_{9}^{2}k_{10}k_{11}/\chi^{4}$$

$$C_{9} = k_{3}k_{9}k_{11}/\chi^{2}$$

$$C_{10} = (k_{9}/\chi)^{2}$$

$$C_{11} = (k_{4}/\chi)^{2}$$

$$C_{12} = k_{5}k_{9}k_{12}/\chi^{4}$$

· - Area Barting

- 44 -Substitution of Eqs. (III.B.32 - III.B.44) into Eqs. (III.B.2 - III.B.5) yields a system of four, non-linear, algebraic equations, viz., $F(w, x, y, z, T_2, v_2) = w_2^2 + w_2^2 + 2z^2 + 2 - a_1$ $G(\omega, x, y, \pm, T_2, U_2) \equiv 2\omega_{\overline{C_1}}^2 + \omega_{\overline{C_2}}^2 + 2\omega_{\overline{C_3}}^2$ $+W+WZ+WZ^{2}+2W^{2}Z$ $+ \frac{wy^2}{C_8} + \frac{wy}{C_9} + \frac{wzy}{C_1}$ $-(a_1+2a_2)=0$ $H(w, x, y, z, T_{1}, v_{2}) = 2 \frac{2 x^{2}}{C_{4}} + x + \frac{w x}{C_{5}} + 2 \frac{w^{2} x}{C_{5}}$ $+ \frac{\omega x}{G} + \frac{x y}{C_{12}} + \frac{\omega x y}{C_{13}}$. 2az

 $I(\omega, \chi, \gamma, 2, \overline{T_2}, N_2) = \frac{2\omega \gamma^2}{C_8} + \frac{\omega \gamma}{C_g}$ 24 Cio

 $+y'' + xy + wxy - 2u_4 = 0$ G_{12} G_{13}

where $\mathcal{W} \equiv b_4$, $\mathcal{X} \equiv b_2$, $\mathcal{Y} \equiv b_{13}$ and $\mathcal{Z} \equiv b_{15}$, respectively. Solving this system by the Newton-Rapison . thod for given \mathcal{T}_2 and \mathcal{U}_2 yields the equilibrium atom numbers and the mole numbers are then obtained from Eqs. (III.B.32 - III.B.44).

carrow of the construction of the state of

REFERENCES

1. Chapman, D.L., Phil. Mag., Vol. 5, No. 47, 90 (1899).

ar er den stade in stadstadstadstadstad i den som den den det at den stadstad i den det den der ste der det den

- Jouguet, E., J. Math., 347 (1905); ibid., 6 (1906);
 C.R. Acad. Sci., Paris, Vol. 144, 415 (1906); Mecanique des Explosifs, Paris (1907); C.R. Acad. Sc., Paris, Vol. 181, 546 (1925).
- 3. White, D.R., "Turbulent Structure of Gaseous Detonations", Phys. of Fluids, Vol. 4, 465 (1961.
- 4. Denisov, Yu. N. and Troshin, Ya. K., "On the Mechanism of Detonative Combustion". 8th (International) Symposium on Combustion, Williams and Wilkins, Baltimore, 600 (1962).
- Soloukhin, R.I., "Shock Waves and Detonation Waves in Gases", Mono Book Corp., p. 89 (1966).
- Edwards, D.H., "A Survey of Recent Work on the Structure of Detonation Waves", 12th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, Pa., p. 819 (1969).
- Meyer, J.W. and Oppenheim, A.K., "On the Shock-Induced Ignition of Explosive Gases", 13th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, Pa., p. 1153 (1971).
- Zhabotinskii, A.M., "Periodic Course of Oxidation of Malonic Acid in Solution (Investigation of the Kinetics of the Reaction of Bolonsov), Biofizika 9, No. 3, 306 (1964); translation in Biophysics, Pergamon Press, 329 (1965); Doklady Phys. Chem., Proc. Ac. Sci. of USSR, Vol. 157, 1-6, 701 (1964).
- Glansdurff, P. and Prigogine, I., "Thermodynamic Theory of Structure, Stability and Fluctuations". Wiley-Interscience, 222-271 (1971).

and the second s

k verd for verde for the second s

10.	Lee, J.H., Knystautas, R., Guirao, C., Bekesy, A. and Sabbach, S., "On the Instability of H ₂ -Cl ₂ Gaseous Detonations", Combustion and Flame, Vol. 18, 3, 321 (1972).
11.	Cashion, J.X. and Polanyi, J.C., "Infrared Chemiluminescence from the Biseous Reaction Atomic H. plus Cl ₂ ", J. Chem. Phys., Vol. 29, 195 (1958).
12.	Cashion, J.K. and Polanyi, J.C., "Resolved Infrared Emission Spectrum of the Reaction Atomic H. plus Cl_", J. Chem. Phys., Vol. 30, 1097 (1959).
13.	Kondrat'ev, V.N., "Chemical Kinetics of Gas Reactions". Pergamon Press, 568-569 (1964).
14.	Corbeels, R. and Scheller, K., "Observations on the Kinetics of Hydrogen-Chlorine Flames", 10th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, Pa., 65 (1965).
15.	Djeu, N., Pilloff, H.S. and Searles, S.K., "CW CO Laser from the CS ₂ -O ₂ Flame", Aupl. Phys. Letters, Vol. 18, 538 (1971).
16.	Sheen, D.B., "Shock-Tube Study of the Oxidation of Carbon Disulfide", J. Chem. Phys., Vol. 52, 648 (1970).
17.	Dixon, H.B., Phil. Trans., Vol. A184, 97 (1893); ibid., Vol. A293, 315 (1903); Trans. Chem. Soc., 759 (1896).
	Sokolik, A.S. and Shchelkin, K.I., Zh. Fiz. Khim., USSR, Vol. 5, 1459 (1934).
19.	Sokolik, A.S., "Self-Ignition, Flame and Detonation in Sases", NASA Report TTF-125, 348 (1963).
29.	Zel'dovich, Ya. B., "Theory of Combustion and Detonation of Gases", Acad. Sci., USSR, Moscow-Leninyrad (1944).
2].	Corneil, P.H. and Pimentel, G.C., "Hydrogen-Chlorine Explosion Laser .II.DCl", J. Chem. Phys., Vol. 49, 1379 (1968).

good more real restriction and real restriction of the state of the st

- 22. Glaze, J.A., Finzi, J. and Krupke, W.F., "A Transverse Flow CW HCl Chemical Laser", Appl. Phys. Letters, Vol. 18, 173 (1971).
- 23. Arnold, S.J. and Kimbell, G.H., "Chemical Laser Action in Electrically Pulsed Flowing CS₂-0₂ Mixtures", Appl. Phys. Letters, Vol. 15, 351 (1969).
- 24. Mallard, E. and Le Chatelier, H., C.R., Vol. 93, 141 (1881); Ann. Mines, Vol. 4, 274 and 335 (1883); C.R., Vol. 130, 1755 (1900); ibid., Vol. 131, 30 (1900).
- 25. Lafitte, P., C.R., Vol. 177, 178 (1923); ibid., Vol. 179, 1394 (1924); Ann. Physique, Vol. 10, 623 (1925).
- 26. Lu, P.L., Dahora, E.K. and Nicholls, J.A., "The Structure and Kinetics of the H.-CO-O. Detonations", Technical Report, ORA Project 06996 (1968).
- 27. Dixon, H.B. and Walls, N.S., "On the Propagation of the Explosion Wave. Part I. Hydrogen and Carbon Monoxide Mixture", J. Chem. Soc. London, Vol. 123, Transaction Fart 1, 1025 (1923).
- 28. Taylor, P.L. and Bitterman, S., "Survey of Vibrational Relaxation Data for Processes Important in the CO₂-N₂ Laser System", Rev. Modern Phys., Vol. 41, 26 (1969).
- 29. Eisen, C.L., Gross, R.A. and Rivlin, T.J., "Theoretical Calculations in Gaseous Detonations", Combustion and Flame, Vol. 4, 137 (1960).
- 30. Janaf Thermochemical Tables, 2nd Edition, U.S. Department of Commerce, National Bureau of Standards, NSRDS-NBS 37 (1971).

nether and a statistic and a statistic and a statistic of the statistic of the statistic of the statistic of the

the second s

3]. Arnold, S.J., Brownlee, W.G. and Kimbell, G.H., "Reactions of Shock-Heated Carbon Disulfide-Argon Mixtures. II. Kinetics of the Dissociation of Carbon Disulfide", J. Phys. Chem., Vol. 74, 8 (1970).

- 48 -

(c1 ₂) ₁ ^c	= .300D 02		Υ] =	.138D 01
Pia	.100D 01	.500D 00	.250D 00	.158D 00
T ₂ /T ₁	.917D 01	.904D 01	.890D 01	.680D 01
P2/P1	.164D 02	.162D 02	.161D 02	.160D 02
01/02	.566D 00	.564D 00	.562D 00	.551D 00
ν _ι b	.197D 01	.195D 01	.194D 01	.193D 01
v2 ^b	.1110 01	.110D 01	.109D 01	.108D 01
M ₁	.507D 01	.504D 01	.5000 01	.497D 01
M ₂ (fr)	.9720 00	.967D 00	.962D CO	.958D 00
γ ₂ (fr)	.130D 01	.130D 01	.130D 01	.130D 01
c12 ^c	.528D-02	.565D-02	.402D-02	.361D-02
H2 ^c	.396D 02	.395D 02	.394D 02	.394D 02
c1 ^c	.104D 01	.128D 01	.1550 01	.173D 01
К ^С	.993D 00	.1220 01	.148D 01	.166D 01
HC1 ^C	.583D 02	.580D 02	.575D 02	.572D 02
^a press are in k	ures are i m/sec; ^C	n atmosphe mole frac	res; ^b v tion perce	velocities entage.

Table I

1017-1-377+54-34

49

^p l	.132D 00	.105D 00	.789D-01	.526D-01	.395D-01
T ₂ /T ₁	.876D 01	.871D 01	.864D 01	.854D 01	.847D 01
^p 2 ^{/p} 1	.159D 02	.158D 02	.158D 02	.156D 02	.156D 02
ρ ₁ /ρ ₂	.560D 00	.560D 00	.559D 00	.558D 00	.557D 00
٧٦	.192D 01	.1920 01	.191D 01	.190D 01	.189D 01
v ₂	.108D 01	.107D 01	.107D 01	.106D 01	.106D 01
۲	.496D 01	.495D 01	.493D 01	.491D 01	.489D 01
M ₂ (fr)	.957D 00	.955D 00	.953D 00	.950D 00	.948D 00
γ ₂ (fr)	.130D 01	.131D 01	.131D 01	.131D 01	.131D 01
C1 ₂	.345D-02	.326D-02	.302D-02	.271D-02	.250D-02
н ₂	.393D 02	.393D 02	.393D 02	.392D 02	.391D 02
C1	.1810 01	.190D 01	.203D 01	.220D 01	.233D 01
200	.173D 01	.1820 01	.194D 01	.210D 01	.223D 01
HC1	.571D 02	.570D 02	.568D 02	.565D 02	.563D 02

- 50 -

an an a state of the state of the

Ta	b 1	е	II	
----	------------	---	----	--

-**%**______ 2

320

额

いたまたれたためないとうとうだくとしたたたちないです。そうで、そう

(C1 ₂) ₁ =	.400D 02		γ ₁ = .	137D 01
P ₁	.100D 01	.500D 00	.250D 00	.158D 00
^T 2 ^{/T} 1	.103D 02	.109D 02	.975D 01	.958D 01
P ₂ /P ₁	.191D 02	.187D 02	.184D 02	.181D 02
ρ ₁ /ρ ₂	.557D 00	.555D 00	.554D 00	.553D 00
۷	.185D 01	.183D 01	.181D 01	.179D 01
v ₂	.103D 01	.1010 01	.100D 01	.990D 00
м	.545D 01	.5400 01	.533D 01	.529D 01
M ₂ (fr)	.95 , 00	.948D 00	.943D 00	.940D 00
γ ₂ (fr)	.131D 01	.131D 01	.132D 01	.132D 01
C1 ₂	.380D-01	.306D-01	.243D-01	.207D-01
H ₂	.208D 02	.208D 02	.209D 02	.209D 02
CI	.470D 01	.530D 01	.590D 01	.629D 01
Н	.194D 01	.221D 01	.249D 01	.267D 01
HC1	.726D 02	.716D 02	.707D 02	.701D 02

- 51 -

16

- 52 -

P ₁	.132D 00	.105D 00	.789D-01	.526D-01	.395D-01
τ ₂ /τ ₁	.951D 01	.943D 01	.933D 01	.918D 01	.908D 01
^P 2 ^{/P} ī	.181D 02	.179D 02	.178D 02	.176D 02	.174D 02
₂ م/ ₁ م	.552D 00	.552D 00	.551D 00	.551D 00	.550D 00
٧	.179D 01	.178D 01	.177D 01	.176D 01	.175D 01
v ₂	.986D 00	.982D 00	.976D CO	.968D 00	.962D 00
MJ	.528D 01	.526D 01	.523D 01	.519D 01	.517D 01
M ₂ (fr)	.939D 00	.937D 00	.936D 00	.933D 00	.932D 00
γ ₂ (fr)	.132D 01	.132D 01	.1320 01	.133D 01	.133D 01
C1 ₂	.195D-01	.180D-01	.162D-01	.140D-01	.126D-01
^H 2	.210D 02	.210D 02	.210D 02	.210D 02	.211D 02
C1	.644D 01	.663D 01	.686D 01	.719D 01	.742D 01
H	.274D 01	.283D 01	.294D 01	.309D 01	.320D 01
HC1	.698D 02	.696D 02	.692D 02	.687D 02	.683D 02

ability the interference is the second state of the second state of the second s

é

nered terrete diversed remarked were referenced to be and the second of the second of the second states of the

مر المراجع الم

Table	III
-------	-----

(陸)

(C1 ₂)	$\gamma_1 = .450D 02$ $\gamma_1 = .136D 01$
PJ	.100D 01 .500D 00 .250D 00 .158D 00
^T 2 ^{/T} 1	.105D 02 .102D 02 .994D 01 .976D 01
P2/P1	.200D 02 .196D 02 .191D 02 .189D 02
°1 [/] °2	.554D 00 .553D 00 .552D 00 .551D 00
۷٦	.179D 01 .176D 01 .174D 01 .173D 01
v ₂	.989D 00 .975D 00 .961D 00 .951D 00
MŢ	.558D 01 .551D 01 .545D 01 .540D 01
M ₂ (fr)	.944D 00 .939D 00 .935D 00 .932D 00
Y ₂ (fr)	.132D 01 .133D 01 .133D 01 .134D 01
C1 ₂	.865D-01 .672D-01 .517D-01 .433D-01
н ₂	.126D 02 .128D 02 .130D 02 .131D 02
C1	.787D 01 .863D 01 .935D 01 .982D 01
Н	.186D 01 .209D 01 .231D 01 .246D 01
нст	.776D 02 .764D 02 .753D 02 .746D 02

- 53 -

Table III (continued)

P	.132D 00	.105D 00	.789D-01	.526D-01	.395D-01
^T 2 ^{/T} 1	.968D 01	.959D 01	.948D 01	.932D 01	.921D 01
^P 2 ^{/P} 1	.188D 02	.186D 02	.185D 02	.182D 02	.180D 02
°1 ^{/°} 2	.551D 00	.550D 00	.550D 00	.549D 00	.549D 00
٧٦	.172D 01	.171D 01	.171D 01	.169D 01	.168D 01
٧ ₂	.948D 00	.943D 00	.937D 00	.929D 00	.924D 00
м	.538D 01	.536D 01	.533D 01	.529D 01	.526D 01
^M 2	.931D 00	.929D 00	.928D 00	.9250 00	.924D 00
γ ₂ (fr)	.134D 01	.134D 01	.134D 01	.1340 01	.1350 01
C1 ₂	.404D-01	.370D-01	.330D-01	.290D-01	.250D-01
^H 2	.132D 02	.132D 02	.133D 02	.134D 02	.134D 02
C1	.100D 02	.102D 02	.105D 02	.109D 02	.111D 02
Н	.252D 01	.259D 01	.268D 01	.281D 01	.290D 01
НСІ	.743D 02	.739D 02	.735D C2	.729D 02	.725D 92

- 54 -

う: ご

になるないというないなないないないであるとので、

たいと言語の思えたい。こことになっていた。

NALISTIAN STREET, STREE

han yasadalar oʻzhendalog hing hing hele qoʻlaga shikaga

Ta	61	е	I	Y
----	----	---	---	---

-

55 -

(C1 ₂) ₁ =	.500D	02 ·			۲	= .1	36D 01	
P ₁	.100D	01	.500D	00	.250D	00	.158D	00
T ₂ /T ₁	.1050	02	.102D	02	.994D	01	.975D	01
P ₂ /P ₁	.204D	02	.2000	02	.195D	02	.193D	02
ρ ₁ /ρ ₂	.554D	00	.552D	00	.551D	00	.550D	00
٧	.172 0	01	.1700	01	.167D	01	.166D	01
٧ ₂	.951D	00	.937D	00	.929D	00	.914D	00
M	.565D	01	.5580	01	.5510	01	.546D	01
M ₂ (fr)	.936D	00	.931D	00	.9270	00	.924D	00
γ ₂ (fr)	.135D	01	.135D	01	.136D	0]	.136D	01
C1 ₂	.210D	00	.156D	, 00	.116D	00	.950D	-01
H ₂	.568D	10	.597D	01	.624D	01	.641D	00
C1	.122D	02	.130D	02	.138D	02	.143D	02
H	.125D	01	.141D	0]	.158D	01	.169D	01
нст	.8C7D	02	.794D	02	.782D	02	.775D	02

語の学校の語言語を言い

- 56 -

έx.

Table IV (continued)

P1	.132D 90	.105D 00	.789D-01	.526D-01	.395D-01
^T 2 ^{/T} 1	.967D 01	.958D 01	.946D 01	.930D 01	.9190 01
^P 2 ^{/P} 1	.191D O2	.190D 02	.188D 02	.186D 02	.184D 02
°1 ^{/°} 2	,550D 00	.550D 00	.549D 00	.549D 00	.548D 00
٧	.165D 01	.165D 01	.164D 01	.163D 01	.162D 01
۷ ₂	.910D CO	.906D 00	.900D 00	.892D 00	.887D 00
М	.5449 01	.542D 01	.539D 01	.535D 01	.532D 0ī
M ₂ (fr)	.923D 00	.921D 00	.920D 00	.917D 00	.916D 00
γ ₂ (fr)	.136D 01	.136D 01	.136D 01	.137D 01	.137D 01
C1 ₂	.877D-01	.796D-01	.702D-01	.587D-01	.517D-01
^H 2	.648D 01	.656D 01	.666D 01	.680D 01	.690D 01
C1	.145D 02	.147D 02	.150D 02	.154D 02	.157D 02
H ₂	.173D 01	.179D 01	.185D 01	.1950 01	.202D 01
HC1	.772D 02	.768D 02	.764D 02	.758D 02	.753D 02

and the second second

(C1 ₂) ₁ =	.550D	02 [.]			۲۱	= .	136D 01	ł
P	.100D	01	.500D	00	.250D	00	.158D	00
T ₂ /T ₁	.984D	01	.962D	01	.940D	01	.925D	01
^P 2 ^{/P} 1	.193D	02	.190D	02	.187D	02	.185D	02
°1/°2	.563D	00	.561D	00	.559D	00	.557D	00
٧٦	.161D	01	.159D	01	.158D	01	.157D	01
٧ ₂	.906D	00	.894D	00	.882D	00	.874D	00
MJ	.555D	01	.550D	01	.544D	01	.540D	01
M ₂ (fr)	.940D	00	.93‡D	00	.929D	00	.925D	00
γ ₂ (fr)	.138D	01	.138D	07	.139D	01	.139D	01
C1 ₂	.883D	00	.605D	00	.413D	00	.321D	00
H ₂	.788D	00	.943D	00	.112D	01	.125D	01
C1	.182D	02	.1510	02	.198D	02	.203D	02
H	.257D	00	.323D	00	.401D	00	459D	00
НСІ	.7990	02	.791D	02	.783D	02	.777D	02

Table V

3-14-ji -

\$

2037

Season and the season of the s

iner he history of XX Proofs

narrannarhalandanarranarhanarranarranarranarharranarranarranarranarranarranarranarranarranarranarranarranarrana

になった。そのためにいたたちできたかがないです。

- 57 -

44

.

A CARECH TO

Τa	b	le	V	(continued)
				\ • • • • • • • • • • • • • • • • • • •

~ 58

100.VE

1.1.2

••••••

Second Responses of the second second

The work the second

SAME TO A DESCRIPTION OF THE PARTY OF THE PA

second and the second second

÷-

P	.132D 00	.105D 00	.789D-01	.526D-01	.395D-01
T ₂ /T ₁	.920D OI	.9130 01	.903D 01	.891D 01	.881D 01
P ₂ /P ₁	.184D 02	.1830 02	.182v O2	.180D 02	.179D 02
°1/°2	.5570 00	.556D 00	.555D 00	.554D 00	.554D 00
۲	.156D 01	.156D 01	.1550 01	.154D 01	.153D 01
v ₂	.870D 00	.866D 00	.861D 00	.854D 00	.849D 00
M _T	.539D 01	.537D 01	.534D 01	.5310 01	.528D 01
M ₂ (fr)	.923D 00	.922D OU	.919D 00	.9160 00	.914D 00
γ ₂ (fr)	.1390 01	.140D 01	.140D 01	.140D G1	.1400 01
C1 ₂	.2900 00	.257D 00	.220D 00	.1770 00	.1520 00
H ₂	.1310 01	.1370 01	.146D 01	.158D 01	.1670 01
C1	.2C4D 02 .	2060 02	.209D 02	.212D 02	2150 02
^H 2	.484C 00 .	5]4D 00	.554D 00	.6]3D nn	6550 00
HC1	.775D 02 .	7720 02	.769D 02	.7640 02	7600 00
				STORE .	1000 02

Ti	ab	1	е	v	T
	~ ~	٠	-	•	-

*

j

-

59 -

. . .

`. •

and the state of t

the product and the production of the state of the state

فرايان الارادة أرثيانا بالجلاميرية المر

Ser. J.

(012)] =	.600D 02		Υ ₁ = ,1	35D 01
^P 1	.100D 01	.500D 00	.250D 00	,158D 00
T ₂ /T ₁	.825D 01	.795D 01	.769D 01	.751D 0ì
^p 2 ^{/p} 1	.1630 02	.158D 02	.1540 02	.1510 02
°1 ^{/°2}	.5660 00	.566D 00	.566D 00	.566D 00
۷ _۱	.142D 01	.1400 01	.1380 01	.136D 01
v ₂	.804D 00	.792D 00	.780D 00	.772D 00
M ₁	.510D 01	.503D 01	.496D 01	.497D 01
M ₂ (fr)	.939D 00	.935D 00	.931D 00	.928D 00
γ ₂ (fr)	.139D 01	.140D U1	.141D 01	.141D 01
^{C1} 2	.742D 01	.553D 01	.570D 01	.518D 01
H ₂	.167D-01	.133D-01	.106D-01	.911D-02
C1	.2100 02	.225D 02	.2390 02	.247D 02
ų	.669D-02	.570D-02	.482D-02	.429D-02
нст	.716D 02	.710D 02	.704D 02	.7010 02

a stories and

Table VI (continued)

P1	.132D 00 .1050D (00 .7890-01	.525D-01	.3950-01
12/T]	.744D 01 .736D 01	.7260 01	.7120 01	.7020 01
P2 ^{/P} 1	.150D 02 .143D 02	.147D 02	.145D 02	.143D 02
ρ ₁ /ρ ₂	.566D 00 .566D 00	.556D 00	.565D 00	.5670 00
v,	.1360 01 .1350 01	.134D 01	.133D 01	.133D 01
v ₂	.769D 00 .766D 00	.761D 00	.755D 00	.7510 00
MJ	.489D 01 .487D 01	.484D 01	.480D 03	.4770 01
M ₂ (fr)	.927D 00 .926D 00	.925D 00	.9241)0	.923D 00
γ ₂ (fr)	.142D 01 .142D 01	.142D 01	.142D 01	.1430 01
C1 ₂	.500D 01 .475D 01	.446D 01	.407D 01	.3800 01
^н 2	.859D-02 .800D-02	.731D-02	645D-02	.5920-02
C1	.250D 02 .254D 02	.259D 02	.265D G2	2700 02
H ₂	.410D-02 .387D-02	.360D-02	.326D-02	3030 02
HC1	.700D 02 .698D 02	.696D 02	.694D 02	692D N2
	.0980 02	.696D 02	.694D 02 .	692D 02

这时,员府军队公司将

- 60 -

シートアクリート

COND I

S

~

Table	VII
-------	-----

(c1 ₂) ₁ =	.700D 02		γ ₁ = .	134D G1
p ,	.100D U1	.500D 00	.250D 00	.158D 00
^T 2 ^{/T} 1	.688D 01	,665D 01	.643D 01	.628D 01
P2/P1	.131D 02	.1280 02	.125D 02	.1220 02
ρ ₁ /ρ ₂	.5640 00	.563D 00	.532D 00	.561D 00
٧Ţ	.117D 01	.115D 01	.1130 01	.112D 01
٧ ₂	.659D 00	.648D 00	.637D 00	.630D 00
MJ	.4540 01	.447D 01	.441D 01	.436D 01
M ₂ (fr)	.942D 00	.937D 00	.9320 00	.929D OC
γ ₂ (fr)	.134D 01	.135D 01	.1360 01	.136D 01
^{C1} 2	.304D 02	.296D 02	.287D 02	.2820 01
H ₂	.384D-03	.266D-03	.181D-03	.139D-03
C1	.136D 02	.1490 02	.161D 02	.169D 02
Н	.123D-03	.926D-04	.680D-04	.546D-04
нсі	.559D 02	.555D 02	.5520 02	.549D 02

A NALES AND A DESCRIPTION OF A DESCRIPTI

Table VII (continued)

1

912 927

P ₁	.132D 00	.105D 00	.789D-01	.526D-01	.395D-01
T ₂ /T ₁	.6230 01	.616D 01	.607D Oĭ	.595D 01	.5870 01
P ₂ /P ₁	.1220 02	.121D O:	.119D 02	.117D 02	.116D C2
:1/92	.561D 00	.560D 00	.560D 00	.5600 00	.559D 00
y _ī	.112D 01	.111D 01	.111D 0ï	.110D 01	.1090 01
٧ ₂	.627D 00	.624D 00	.619D 00	.613D 00	.609D 00
MJ	.434D 01	.432D 01	.430D 01	.4260 01	.423D 01
M ₂ (fr)	.927D 00	.926D 00	.924D 00	.921D 00	.920D 00
_{Y2} (fr)	.136D 01	.136D 01	.1370 01	.137D 01	.137D 01
C1 ₂	.280D 02	.277D 02	.274D 02	.269D 02	.266D 02
H2	.125D-03	.110D-03	.927D-04	.7250-04	.608D-04
C1	.1720 02	.176D 02	.180D 02	.186D C2	.191D 02
H	.499D-04	.446D-04	.3850-04	.311D-04	,266D-04
HCI	.548D 02	.547D 02	.546D 02	.544D 02	.543D 02

- 62 -
37**2** 772

1995 P. F.

Table	V	I	I	I
-------	---	---	---	---

(cs ₂) ₁ =	.250D 02		γ ₁ = .]	133D 01
۲	.1000 01	.500D 00	.250D 00	.1580 00
¹ 2 ^{/T} 1	.1360 02	.131D 02	.126D 02	.123D 02
P ₂ /P ₁	.262D 02	.255D 02	.248D C2	.244D 02
ρ ₁ /ρ ₂	.540D 00	.540D 00	.539D 00	.539D 00
٧٦	.178D 01	.175D 01	.173D 01	.1710 01
v ₂	.959D 00	.945D 00	.931D 00	.921D 00
MJ	.641D 01	.632D 01	.623P 01	.618D 01
M ₂ (fr)	.984D 00	.9750 00	.967D 00	.962D OO
Y ₂ (fr)	.117D 01	.1190 01	.120D 01	.121D 01

Table VIII (continued)

P ₁	.132D 00	.1050 00	.789D-01	.526D-01	.395D-01
τ ₂ /τ ₁	.122D 02	.1210 02	.119D 02	.117D 02	.115D 02
P ₂ /P ₁	.243D 02	.241D 02	.238D 02	.234D 02	.232D 02
01/02	.539D 00	.538D 00	.538D 00	.538D 00	.538D 00
٧ ₁	.170D 01	.170D 01	.169D 01	.167D 01	.166D 01
v ₂	.9180 00	.913D 00	.908D 00	.900D 00	.894D 00
MJ	.615D OI	.613D 01	.609D 01	.604D 01	.601D 01
M ₂ (fr)	.961D 00	.9590 00	.956D 00	.953D OC	.951D 00
γ ₂ (fr)	.121D 01	.122D 01	.122D 01	.123D 01	.123D 01

· San · Sadder - Barker Bill - Baren Birtharther Harrister

-i.,

- 64 -

AN STATE

anten son der ber biet die einen an die teil Versingen

Table VIII (continued)

	P1	.100D 01	.500D 00	.250D 00	.158D 00	
	cs ₂	.205D-05	.113D-05	.618D-06	.413D-06	
	CS	.940D-04	.614D-04	.397D-04	.296D-04	
	C0	.174D 02	.176D 02	.177D 02	.178D 02	
••••		.661D 01	.620D 01	.584D.01	.563D 01	
	COS	.824D-02	.591D-02	.423D-02	.338D-02	
	c ₂	.565D-11	.181D-11	.563D-12	.257D-12	
	C	.106D-05	.6150-06	.350D-06	.238D-06	
	0 ₂	.158D 02	.156D 02	.153D 02	.151D 02	
	0	.124D 02	.133D 02	.142D 02	.148D 02	
	s0 ₂	.242D 02	.237D 02	.232D 02	.229D 02	
	S0	.208D 02	.208D 02	.208D 02	.208D 02	
	s ₂	.209D 00	.184D OO	.162D 00	.149D 00	
	S	.251D 01	.265D 01	.279D 01	.287D 01	

Table VIII (continued)

P ₁	.132D 00	.105D 00	.789D-01	.526D-01	.395D-01
cs ₂	.352D-06	.289D-06	.224D-06	.156D-06	.1210-06
CS	.263D-04	.227D-04	.188D-04	.144D-04	.119D-04
C0	.178D C2	.179D 02	.179D 02	.180D 02	.180D 02
co ₂	.555D 01	.546D 01	.534D 01	.518D 01	.508D 01
COS	.310D-02	.278D-02	.242D-02	.199D-02	.173D-02
C ₂	.188D-12	.127D-12	.773D-13	.380D-13	.229D-13
C	.204D-06	.169D-06	.132D-06	.939D-07	.722D-07
0 ₂	.150D 02	.149D 02	.148D 02	.146D 02	.145D 02
0	.150D 02	.152D 02	.156D 02	.160D 02	.164D 02
so ₂	.228D 02	.227D 02	.225D 02	.223D 02	.222D 02
S0	.208D 02	.208D 02	.2070 02	.207D 02	.207D 02
s ₂	.144D 00	.138D 00	.130D 00	.121D 00	.114D 00
S	.290D 01	.294D 01	.2990 01	.305D 01	.310D 01

Contraction of the second second

- 66 -

Table IX

(cs ₂)	$\gamma_1 = .3000 02$ $\gamma_1 = .1320 01$
P]	.100D 01 .500D 00 .250D 00 .158D 00
τ ₂ /τ ₁	.137D 02 .132D 02 .127D 02 .124D 02
P ₂ /P ₁	.273D 02 .266D 02 . 10D 02 .255D 02
°1/°2	.540D 00 .540D 00 .539D 00 .539D 00
٧ _٦	.177D 01 .175D 01 .172D 01 .171D 01
v ₂	.957D 00 .943D 00 .929D 00 .919D 00
м	.659D 01 .649D 01 .640D 01 .634D 01
M ₂ (fr)	.982D 00 .973D 00 .965D 00 .960D 00
Y ₂ (fr)	.1170 01 .1190 01 .1210 01 .1220 01

ENTRY IN BUILDING TRUTH THE AND THE AN

語のたちのと言語の語のないなるのと

ALC: NO PARTY

2 - C

- 67 ..

Table IX (continues)

P	.132D 00	.105D 00	.789D-01	.526D-01	.395D-01
T ₂ /T ₁	.123D 02	.122D 02	.120D 02	.118D 02	.116D 02
P ₂ /P ₁	.253D 02	.251D 02	.249D 02	.245D 02	.242D 02
°1 ^{/°} 2	.539D 00	.538D 00	.538D 00	.538D 00	.538D 00
۷٦	.170D 01	.169D 01	.168D 01	.167D 01	.166D 01
v ₂	.916D 00	.911D 00	.905D 00	.897D 00	.892D 00
MJ	.632D 01	.629D 01	.625D 01	.620D 01	.617D 01
M ₂ (fr)	.959D 00	.957D 00	.954D 00	.951D 00	.949D 00
γ ₂ (fr)	.122D 01	.122D 01	.123D 01	.123D 01	.124D 01

STATES OF THE PARTY OF THE PART

ž

- 68 -

Table IX (continued)

^р 1	.1000 01	.500D 00	.250D 00	.158D 00
cs ₂	.137D-04	.743D-05	.401D-05	.266D-05
CS	.345D-03	.224D-03	.144D-03	.107D-03
CO	.221D 02	.2220 02	.223D 02	.224D U2
co ₂	.571D 01	.533D 01	.500D 01	.4800 01
COS	.1980-01	.141D-01	.997D-02	.794D-02
¢2	.237D-10	.756D-11	.236D-11	.108D-11
C	.230D-05	.134D-05	.765D-06	.523D-06
⁰ 2	.8070 01	.799D 01	.789D 01	.781D 01
0	.930D 01	.100D 02	.108D 02	.1120 02
s0 ₂	.216D 02	.210D 02	.206D 02	.203D 02
S0	.276D 02	.275D 02	.275D 02	.274D 02
s ₂	.742D 00	.650D 00	.5682 00	.519D 00
S	.492D 01	.518D 01	.543D 01	.560D 01

NACAN DECEMBER NO.

- 70 -

Table 1X (continued)

1

35. S. 1978

P ₁	.132D 00	.105D 00	.789D-01	.526D-01	.395D-01
cs ₂	.226D-05	.185D-05	.143D-05	.994D-06	.767D-06
CS	.948D-04	.819D-04	.678D-04	.518D-04	.427D-04
CO	.224D 02	.224D 02	.224D 02	.225D 02	.225D 02
00 ₂	.473D 01	.464D 01	.453D 01	.439D 01	.429D 01
COS	.726D-02	.650D-02	.564D-02	.462D-02	.401D-02
°2	.786D-12	.534D-12	.324D-12	.159D-12	.960D~13
C	.449D-06	.371D-06	.291D-06	.205D-06	.159D-06
02	.778D 01	.7740 01	.769D 01	.761D 01	.755D 01
0	.114D 02	.116D 02	.119D 02	.123D 02	.1250 02
so ₂	.202D 02	.200D 02	.199D 02	.197D 02	.195D 02
S0	.274D 02	.274D 02	.273D 02	.2720 02	.272D 02
s ₂	.501D 00	.479D 00	.452D 00	.417D 00	.394D 00
S	.566D 01	.573D 01	.583D 01	.595D 01	.604D 01

an south the child best the to be

金田市正常のため代理

- 71 -

ŝ.

A Star Starting Large

Table	е Х	
-------	-----	--

(cs ₂) ₁ =	.350D 02		Υ ₁ = .1	31D C1
P ₁	.1005 91	.5000 00	"250D 00	.158D 00
^τ 2 ^{/τ} 1	.135D 02	.130D 02	.126D 02	.123D 02
^۴ 2 ^{/ ۹} 1	.278D 02	.2720 02	.265D 02	.2610 02
°1 [/] °2	.542D 00	.541D 00	.540D 00	.5405 00
۷ ₁	.175D 01	.1730 01	.170D 01	.169D Oï
٧ ₂	.948D 00	.9340 00	.920D CO	.911D 00
M	.6680 01	.660D 01	.651D 01	.645D 01
M ₂ (fr)	.979D OC	.970D 00	.962D GO	.958D 00
γ ₂ (fr)	.119D 01	.1210 01	.122D 01	.1230 01

and the second state of th

Table X (continued)

- 72 -

P 1	.132D 00	.105D 00	.789D-01	.526D-01	395D-01
^T 2 ^{/T} 1	.122D 02	.121D 02	.119D 02	.117D 02	.115D 02
^P 2 ^{/P} 1	.259D 02	.257D 02	.254D 02	.251D 02	.248D 02
₀₁ /02	.540D 00	.539D 00	.539D 00	.539D 00	.538D 00
۲	.168D 01	.167D 01	.166D 01	.165D 01	.164D 01
٧ ₂	.907D 00	.903D 00	.8970 00	.890D 00	.884D 00
MJ	.642D 01	.640D 01	.636D 01	.631D C1	.627D 01
M ₂ (fr)	.9570 00	.955D 00	.952D 00	.949D 00	.947D 00
γ ₂ (fr)	.123D 01	.124D 01	.124D 01	.124D 01	.125D 01

NEXE STATEMENTS

and the second second

のないの

Non-A.

医生物学系的

Table X (continued)

Pl	.100D 01	.500D 00	.2500 00	.158D 00
cs ₂	.774D-04	.417[;-04	.2240-04	.148D-04
CS	.9900-03	.643D-03	.414D-03	.308D-03
C0	.264 ט2	.264D 02	,265D 02	.2650 02
co ₂	.490D 01	.455D 01	.425D 01	.407D 01
COS	.436D-01	.307D-01	.217D-01	.172D-01
C ₂	.529D-10	.172D-10	.547D-11	.252D-11
C	.298D-05	.177D-05	.103D-05	.713D-06
°2	.325D 01	.326D 01	.325D 01	.324D 01
0	.523D 01	.573D 01	.622D 01	.654D 01
s0 ₂	.1820 02	.178D 02	.173D 02	.171D 02
SU	.318D 02	.319D 02	.319D 02	.319D 02
^{\$} 2	.232D 01	.203D 01	.1770 01	,1620 01
S	.783D 01	.831D 01	.876D 01	.905D 01

Table X (continued)

P ₁	.132D 00	.1050 00	.789D-01	.726D-01	.395D-01
cs ₂	.126D-04	.103D-04	.792D-05	.548D-05	.422D-05
CS	.273D-03	.236D-03	.196D-03	.150D-03	.123D-03
CO	.265D 02	.265D 02	.265D C2	.26AN 02	.266D 02
co ₂	.400D 01	.393D 01	.383D 01	.370D 01	.361D 01
COS	.157D-01	.141D-01	.122D-01	.995D-02	.862D-02
c ₂	.185D-11	.126D-11	.772D-12	.3831:->>	.232D-12
C	.€14D-06	.511D-06	.403D 06	.285D-06	.224D-06
0 ₂	.324D 01	.3230 01	.322D 01	.321D 01	.319D 01
0	.667D 01	.682D 01	.701D 01	./29D 01	.748D 01
s0 ₂	.170D 02	.169D 02	.167D 02	.1650 02	.164D 02
S0	.318D 02	.318D 02	.318D 02	.317D 02	.317D 02
³ 2	.156D 01	.149D 0ī	.140D 01	.129D 01	.122D 01
S	.916D 01	.930D 01	.947D 01	.970D 01	.985D 01

- 74 -

ALCONT OF MANY

a server of the second s

			Та	hle	хт	<i></i>		
			10	(1 ² · C	~1			
(cs ₂) ₁ =	.400D	02 [·]			۲J	= .1	30D 01	
Pl	.100D	01	.500D	00	.250D	00	.158D	00
T ₂ /T ₁	.129D	02	.125D	02	.121D	02	.118D	02
P ₂ /P ₁	.274D	02	.268D	02	.262D	02	.258D	02
°1 ^{/°2}	.545D	00	.545D	00	.544D	00	.543D	00
۶, Y	.170D	01	.168D	01	.166D	01	.164D	01
۷ ₂	.928D	00	.915D	00	.902D	00	.894D	00
M	.668D	01	.659D	01	.651D	01	.645D	01
M ₂ (fr)	.976D	00	.968D	00	.962D	00	.958D	C0
Y ₂ (fr)	.1215	01	.123D	01	.124D	01	.125D	01

- 75 -

di de la compañía de

14 - 4 Z

こうちょうない マトインドアドラギ にんたいないため、アランデンテルをある

สมมัยระครั้งแม้ 2. ให้เมืองแต้สมให้เสียง เข้าได้ และได้และส่งสัตร์เจริงให้สร้ายเรื่อง เข้า เป็นเป็นไป เป็น เข้า

Table XI (continued)

P]	.132D 00	.1050 00	.789D-01	.526D-01	.395D-01
^T 2 ^{/T} 1	.117D 02	.116D 02	.115D 02	.113D 02	.111D 02
^P 2 ^{/P} 1	.256D 02	.234D 02	.252D 02	.248D 02	.∠46D 02
ρ ₁ /ρ ₂	.543D 00	.543D 00	.542D 00	.542D 00	.542D 00
٧٦	.164D 01	.163D 01	.162D 01	.161D 01	.160D 01
٧ ₂	.890D 00	.886D 00	.8810 00	.874D 00	.868D 00
۲	.643D 01	.640D 01	.637D 01	.632D 01	.629D 01
M ₂ (fr)	.957D 00	.955D 00	.953D 00	.951D 00	.949D 00
γ ₂ (fr)	.125D 01	.125D 01	.125D 01	.126D 01	.1260 01

- HEREN R

建金金属

- 77 -

-3: 19 Q

1.4

A STATE AND A STAT

STATES AND IN THE OWNER OF THE OWNER OWNER OF THE OWNER OWNER

haharilla, duric didda 🖓 🖓

A CALLARY A

101114

Table XI (continued)

P	.100D 01	.500D 00	.250D 00	.158D 00
cs ₂	.389D-03	.217D-03	.1210-03	.814D-0:
CS	.219D-02	.146D-02	.957D-03	.721D-03
CO	.302D 02	.302D 02	.303D 02	.303D 02
co ^S	.432D 01	.398D 01	.370D 01	.353D 01
COS	.913D-01	.654D-0]	.468D-01	.375D-01
c ₂	.550D-10	.183D-10	.594D-11	.278D-11
C	.203D-05	.122D-05	.722D-06	.504D-06
02	.942D 00	.939D 00	.931D 00	.925D 00
0	.200D 01	.219D 0î	.238D 01	.250D 01
s0 ₂	.148D 02	.144D 02	.140D ^2	.138D 02
S0	.314D .2	,318D 02	.3210 02	.322D 02
s ₂	.654D 01	.588D 07	.527D 01	.489D 01
S	.9790 01	.106D 02	.113D 02	.118D 02

なない、 はんちょういうしんないんはいななないのうななならななないない

2.3.42

Table XI (continued)

Sec. 1

10.30

P	.132D 00	.105D 00	.789D-01	.726D-01	.395D-01
cs ₂	.6900-04	.574D-04	.447D-04	.315D-04	.245D-04
CS	.643D-03	.560D-03	.467D-03	.360D-03	.300D-03
CO	.303D 02	.303D 02	.303D 02	.303D 02	.3C3D 02
c0 ₂	.346D 01	.339D 01	.330D 01	.317D 01	.309D 01
COS	.343D-01	.308D-01	.268D-01	.220D-01	.191D-01
c ₂	.205D-11	.1410-17	.869D-12	.436D-12	.267D-12
C	.4360-06	.364D-06	.288D-06	.207D-06	.163D-06
⁰ 2	.923D 00	.919D 00	.914D 00	.908D 00	.SO3D 00
0	.255D 01	.261D 01	.268D 01	.279D 01	.286D 01
s0 ₂	.137D 02	.136D 02	.135D 02	.1330 02	.132D 02
S0	.323D 02	.323D 02	.324D 02	.325D 02	.325D 02
s ₂	.474D 01	.457D 01	.435D 01	.405D 01	.385D 01
S	.120D 02	.1230 02	.126D 02	.130D 02	.133D 02

Table XII

 $P_1 = .100D 01$ (CS₂)₁ .500D 02 .6°0D 02 .700D 02 .800D 02 T₂/T₁ .114D 02 .989D 01 .748D 01 .533D 01 .253D 02 .228D 02 .170D 02 .110D 02 P_2/P_1 ρ₁/ρ₂ .549D 00 .554D 00 .569D 00 .569D 00 .157D 01 .144D 0' 121D 01 .192D 01 ٧_٦ .864D 00 .797D 00 .688D 00 .525D 00 ٧2 M₁ .648D 01 .620D 01 .543D 01 .431D 01 M₂(fr) .968D 00 .967D 00 .991D 00 .991D 00 .129D 01 .127D 01 .126D 01 .124D 01 Υı Y₂(fr) .125D 01 .127D 01 .127D 01 .122D 01

Tab¹e XII (continued)

(cs ₂) ₁	.500D 02	.600D 02	.700D 02	800D 02
cs ₂	.375D-02	.212D-01	.773D 01	.343D 02
CS	.453D-02	.581D-02	.104D 00	.370D-02
C0	.367D 02	.428D 02	.447D 02	.292D 02
c0 ₂	.401D 01	.355D 01	.765D-01	.141D 00
COS	.270D 00	.599D 00	.165D 01	.464D 01
C ₂	. 143D-10	.179D-11	.395D-11	.232D-17
C	.305D-06	.222D-07	.716D-09	.945D-15
0 ₂	.637D-01	.219D-02	.921D-09	.604D-13
0	.187D 00	.915D-02	.239D-06	.932D-11
s0 ₂	838D 01	.262D 01	.119D-03	.1300-04
S0	.199D 02	.688D 01	.108D-01	.286D-03
s ₂	.229D 02	.402D 02	.455D 02	.317D 02
S	.767b 01	.330D 01	.235D 00	.222D-02

and the shirts a state with the

- 81 -

1.1.1.1

Table XIII

 $P_1 = .1320 00$

(cs ₂) ₁	.500D 02	.600D 02	.700D 02	.8000 02
^T 2 ^{/T} 1	.104D 02	.924D 01	.732D 01	.514D 01
^P 2 ^{/P} 1	.238D 02	.218D 02	.168D 02	.107D 02
°1 ^{/°2}	.547D 00	.550D 00	.567D 00	.572D 00
٧٦	.152D 01	.140D 01	.1200 01	.911D 00
v ₂	.8290 00	.770D 00	.679D 00	.521D 00
MJ	.625D 01	.603D 01	.538D 01	.4260 01
M ₂ (fr)	.955D 00	.956D 00	.985D 00	.9 ⁻ 30 ().
۲۱	.129D 01	.127D 01	.126D 01	.124D (
γ ₂ (fr)	.127D 1	.128D 01	.127D 01	.123D 01

Table XIII (continued)

- 82 -

24 (1-Sec. 24. 24

Average Array

(cs ₂) ₁	.500D 02	.600D 02	.700D C2	.800D 02
cs ₂	.895D-03	.543D-02	.750D 01	.338D 02
CS	.151D-02	.217D-02	.209D OC	.509D-02
00	.369D 02	.433D 02	.454D 02	.314D 02
co ₂	.314D 01	.272D 01	.131D-01	.353D-01
COS	.116D 00	.264D 00	.672D 00	.230D 01
c ₂	.518D-12	.893D-13	.100D-10	.ī52D-17
C	.610D-07	.58iD-08	.218D-08	.920D-15
0 ₂	.528D-01	.205D-02	.101D-09	.537D-14
0	.208D 00	.119D-0!	.160D-06	.381D-11
s0 ₂	.7760 01	.2445 01	.737D-05	.123D-05
S0	.212D 02	.782D 01	.389D-02	.103D-03
s ₂	.206D 02	.386D 02	.457D 02	.325D 02
S	.101D 02	.484D 01	.500D-01	.353D-01

ers i sond leikeisekskiskiskiskisko kontaisiolet vittaisia kaistaisia kaista kaista kaista kun kun energeneren

P ₁ = .100D	01		⁰ 2	= .333	3D 02
CO/(CO+H ₂)	.985D O	02 .850D	02	.700D	02
^T 2 ^{/T} 1	.118D O	02 .117D	02	.1180	02
^P 2 ^{/P} 1	.184D 0)2 .183D	02	.183D	02
°1/°2	.543D O	00 .543D	00	.543D	00
٧	.180D (.` . 187D	01	.197D	01
v ₂	.980D O	00 .102D	01	.107D	01
MJ	.523D 0	0 1 . 521D	01	. 521D	01
M ₂ (fr)	.100D 0	01 .996D	00	.992D	00
۲ _۱	.140D 0)1 .140D	01	.140D	01
Y ₂ (fr)	.112D O	01 .113D	01	.114D	01

- 83 -

Table XIV

DECENTRED

exactions are adding building and

the all the second and the second second

÷.

のためでするというというないであるという

a tabarra -			- 84 -	in fan it feilin fan de fan it fan it feilige fan de fan stere fan stere fan stere fan stere fan stere fan ster	
in the second sector is the		τ.,΄ - :	×IV (conti	nued)	
A DE LA DESERVICIÓN D					
C KARDAN DI SANA	CO/(CO+H ₂)	.550D 02	.400D 02	.250D 02	
	T ₂ /T ₁	.119D 02	.120D 02	.1210 02	
	P ₂ /P ₁	.184D 02	.185D 02	.186D 02	
	ρ ₁ /ρ ₂	.543D 00	.544D 00	.544D 00	
	۷	.209D 01	.224D 01	.242D 01	
	٧ ₂	.114D 01	.122D 01	.131D 01	
	м	י0 522D.	.523D 01	.525D 01	
	M ₂ (fr)	.987D 00	.981D 00	.9750 00	
A Constant of the second se	۲ _۱	.140D 01	.140D 01	.140D 01	
	γ ₂ (fr)	.1160 01	.117D 01	.119D 01	
n de la constante de la constan					
and the second				States and a state of the state of the state of the states	

ない、とうないないないので、このないないないないで、

Table XIV (continued)

.

··· ·· · ·· ·· ···

CO/(CO+H ₂)	.985D 02	.850D 02	.700D 02
co ₂	.400D 02	.339D 02	.265D 02
C0	.373D 02	.330D 02	.288D 02
0 ₂	.160D 02	.138D 02	.121D 02
0	.472D 01	.426D 01	.413D 01
н ₂ 0	.381D 00	.765D 01	.166D 02
ОН	.1200 01	.510D 01	.746D 01
H ₂	.444D-0,	.932D 00	.226D 01
Н	.297ট 00	.133D 01	.214D 01
°2	.210D-12	.167D-12	.171D 12
С	.623D-07	.537D-07	.569D-07

- 36 -

Table XIV (continued)

1.6.15

A. 645 6

A DESTRICTION OF A DESTRICTION OF A DESTRICT AND A DESTRICT A D

CO/(CO+H ₂)	.550D 02	.400D 02	.250D 02
co ₂	.194D 02	.129D 02	.718D 01
C ()	.242D 02	.1900 02	.128D 02
0 ₂	.104D 02	.883D 01	.727D 01
0	.410D 01	.408D 01	.405D 01
H ₂ 0	.256D 02	.341D 02	.420D 02
ОН	.928D 01	.108D 02	.121D 02
^H 2	.397D 01	.623D 01	.924D C1
Н	.300D 01	.404D 01	.5330 01
^c 2	.185D-12	.189D-12	.154D-12
c .	.637D-07	.709D-07	.712D-07

Contraction of the

Table XV

ALL DONLY

(N ₂) ₁ =	.100D 02		γ ₁ = .	140D 01
PJ	.100D 01	.500D 00	.250D 00	.158D 00
^T 2 ^{/T} 1	.1150 02	.112D 02	.108D 02	.106D 02
P ₂ /P ₁	.180D 02	.176D 02	.173D 02	.170D 02
ρ ₁ /ρ ₂	.543D 00	.543D 00	.542D 00	.542D 00
۷ _٦	.179D 01	.176D 01	.174D 01	.173D 01
v ₂	.970D 00	.958D 00	.946D 00	.938D 00
MJ	.516D 01	.510D 01	.504D 01	.500D 01
M ₂ (fr)	.994D 00	.987D 00	.980D 00	.975D 00
γ ₂ (fr)	.114D 01	.115D 01	.116D 01	.1170 01

Table XV (continued)

٩	.132D 00	.1050 00	.789D-01	.526D-01	.3950-01
T ₂ /T ₁	.105D 02	.104D 02	.103D 02	.102D 02	.:00D 02
P2 ^{/P} 1	.169D 02	.168D 02	.166D 02	.164D 02	.163D 02
ρ ₁ /ρ ₂	.542D OO	.542D 00	.542D 00	.542D 00	.542D 00
٧ _٦	.172D O1	.172D 01	.171D 01	.1700 01	.169D 01
v ₂	.935D 00	.931D 00	.926D 00	.920D 00	.915D 00
м	.499D 01	.497D 01	.494D 01	.491D 01	.488D 01
M ₂ (fr)	.974D 00	.972D 00	.969D 00	.966D 00	.964D 00
Y ₂ (fr)	.117D 01	.118D 01	.118D 01	.119D 01	.119D 01

a series and a series

na para na kana na kana

t Song per ter statistic for the base of the statistic statistic statistic statistics of the statistics of the statistic statistics of the statistics of the statistic statistics of the statistics of the

日本語言が見たいというない。

- 88 -

Table XV (continued)

P ₁	.100D 01	.500D 00	.250D 00	.158D 00
c0 ₂	.3790 02	.365D 02	.353D 02	.346D 02
C0	.314D 02	.3220 02	.329D 02	.333D 02
⁰ 2	.127D 02	.130D 02	.133D 02	.135D 02
0	.336D 01	.372D 01	.408D 01	.4320 01
N ₂	.106D 02	.106D 02	.1060 02	.106D 02
N	.116D-02	.998D-03	.850D-03	.760D-03
NO	.221D 01	.204D 01	.187D 01	.177D 01
N ₂ 0	.179D-03	.115D-03	.734D-04	.544D-04
NO ₂	.282D-02	.196D-02	.135D-02	.105D-02
^H 2 ⁰	.458D 00	.436D 00	.415D 00	.402D 00
0H	.108D 01	.107D 01	.106D 01	.104D 01
H ₂	.481D-01	.495D-01	.508D-01	.516D-01
В	.254D 00	.289D 00	.327D 00	.353D 00
c ₂	.707D-13	.236D-13	.765D-14	.358D-14
C	.277D-07	.166D-07	.978D-08	.681D-08
N'	.533D-04	.379D-04	.267D-04	.211D-04
IINO	.987D-04	.541D-04	.4]4D-04	.309D-0A

STATES STATES

Statistics States

time in the second s

WARE BUILDER

R

كالالب السكانية والمل

Table XV (continued)

- 90 -

10.00

C.

والمرابع بالمحام أمراد ا

のなると言うと言う

7 500

in the life of the bandwid in

ýc a

Pl	.132D 00	·.105D 00	.789D-01	.526D-01	.395D-01
co ₂	.343D 02	.3400 02	.336D 02	.330D C2	.326D 02
00	.335D 02	.337D 02	.340D 02	.343D 02	.345D 02
⁰ 2	.135D 02	.136D 02	.137D 02	.138D 02	.139D 02
0	.441D 01	.453D 01	.468D 01	.490D 01	.505D 01
N ₂	.106D 02	.106D 02	.106D 02	.1060 02	.106D 02
N	.726D-03	.686D-03	.637D-03	.572D-03	.529D-03
NO	.172D 01	.167D 01	.161D 01	.153D 01	.147D 01
N ₂ 0	.483D-04	.418D-04	.346D-04	.265D-04	.219D-04
NO2	.954D-03	.845D-03	.722D-03	.578D-03	.493D-03
H ₂ 0	.397D 00	.390D 00	.383D 00	.372D 00	.365D 00
0H	.104D 01	.103D 01	.102D 01	.101D 01	.997D 00
^H 2	.519D-01	.522D-01	.527D-01	.532D-01	.536D-01
Н	.364D 00	.378D 00	.396D 00	.422D 00	.441D 00
c ₂	.265D-14	.182D-14	.112D-14	.563D-15	.344D-15
C	.589D-08	.4920-08	.389D-08	.279D-08	.219D-08
NH	.192D-04	.171D-04	.147D-04	.118D-04	.101D-04
HNO	.275D-04	.238D-04	.198D-04	.150D-04	.126D-04

Table	X	۷	I
-------	---	---	---

1123

SALES CALL CONTRACTOR OF SALES

reduct stated a try construction with the states of the

i sa ni a si shi kuta n shundalikasin ingan ta mulaka kuta ngalang si

(N ₂) ₁ =	.200D 02		γ ₁ =	.140D 01
P1	.1000 01	.500D 00	.250D 00	.158D 00
^T 2 ^{/T} 1	.112D 02	.109D 02	.106D 02	.104D 02
^P 2 ^{/P} 1	.176D 02	.173D 02	.169D C2	.167D 02
°1/°2	.544D 00	.543D 00	.543D 00	.543D 00
٧٦	.177D C1	.175D 01	.173D 01	.172D 01
v ₂	.962D 00	.951D 00	.940D 00	.932D 00
MJ	.511D 01	.505D 01	.499D 01	.495D 01
M ₂ (fr)	.988D 00	.981D 00	.975D 00	.971D 00
γ ₂ (fr)	.115D 01	.116D 01	.118D 01	.1180 01

- 91 -

33.34

er i star star for a star

100.42

375

3

P ₁	.132D 00	.1050 00	.789D-01	.526D-01	.395D-01
τ ₂ /τ ₁	.103D 02	.102D 02	.101D 02	.995D 01	.984D 01
^p 2 ^{/p} 1	.166D 02	.165D 02	.164D 02	.162D 02	.160D 02
°1/°2	.543D 00	.542D 00	.542D 00	.542D 00	.542D 00
v ₁	.171D 01	.17îD 01	.170D 01	.169D 01	.168D 01
۷2	.929D 00	.926D 00	.921D 00	.915D 00	.910D 00
MJ	.494D 01	.492D 01	.490D 01	.487D 01	.484D 01
M ₂ (fr)	.970D 00	.968D 00	.966D 00	.963D 00	.961D 00
$\gamma_{2}(fr)$.119D 01	.119D 01	.119D 01	.1200 01	.120D 01

- 92 -

5

, m,

連邦には、「「「「「「「「「「」」」」

*300033370031

natemina-endexistraculty.Autocatulty.aug

Table XVI (continued)

P	.100D 01	.500D 00	.250D 00	.153D 00
^{C0} 2	.354D 02	.342D 02	.331D 02	.324D 02
CO	.257D 02	.265D 02	.272D 02	.276D 02
⁰ 2	.102D 02	.105D 02	.108D 02	.110D 02
0	.238D 01	.207D 01	.297D 01	.317D 01
N ₂	.220D 02	.220D 02	.219D 02	.219D 02
N	.107D-02	.934D-03	.808D-03	.730D-03
NO	.262D 01	.243D 01	.224D 01	.212D 01
N ₂ 0	.300D-03	.194D-03	.124D-03	.927D-04
NO ₂	.312D-02	.218D-02	.152D-02	.119D-02
H ₂ 0	.535D 00	.510D 00	.486D 00	.471D 00
OH	.954D 00	.953D 00	.947D 00	.941D 00
^H 2	.500D-01	.517D-01	.534D-01	.544D-01
Ч	.210D 00	.242D 00	.277D 00	.301D 00
¢2	.215D-13	.746D-14	.252D-14	.121D-14
C	.116D~07	.718D-08	.435D-08	.309D-08
NH	.568D-04	.410D-04	.293D-04	.233D-04
HNO	.117D-03	.767D-04	.500D-04	.376D-04

a hat a feature of the

~ 94 -

Table XVI (continued)

P ₁	.132D 00	.105D 00	.789D-01	.526D-01	.395D-01
c0 ₂	.321D 02	.318D 02	.314D 02	.309D 02	.305D 02
C0	.2/8D 02	.280D 02	.283D 02	.286D 02	.288D 02
⁰ 2	.111D 02	.112D 02	.113D 02	.114D 02	.1150 02
0	.325D 01	.335D 01	.348D 01	.366D 01	.379D 01
N ₂	.219D 02	.218D 02	.218D 02	.2180 02	.218D 02
N	.700D-03	.665D-03	.621D-03	.562D-03	.523D-03
NO	.208D 01	.202D 01	.195D 01	.185D 01	.178D 01
N ₂ 0	.824D-04	.713D-04	.592D-04	.455D-04	.377D-04
NO ₂	.108D-02	.960D-03	.823D-03	.662D-03	.566D-03
H ₂ 0	.465D 00	.458D 00	.450D 00	.437D 00	.429D 00
ОН	.938D 00	.934D 00	.929D 00	.920D 00	.913D 00
^H 2	.548D-01	.553D-01	.559D-03	.566D-03	.572D-03
H	.3110 00	.324D 00	.341D 00	.365D 00	.383D 00
^ĉ 2	.904D-15	.630D-15	.394D-15	.218D-15	.125D-15
C	.269D-08	.227D-08	.182D-08	.132D-08	.105D-08
NH .	.213D-04	.190D-04	.164D-04	.133D-04	.115D-04
HNO	.335D-04	.291D-04	.243D-04	.187D-04	.156D-04

- 95 -

Table XVII

(N ₂)1 :	= .300D 02		۲۱	= .:40D 01
P1	.100D 01	.500D 00	.250D 00	.158D 00
^T 2 ^{/T} 1	.1080 02	.106D 02	.101D 02	.101D 02
P ₂ /+1	.172D 02	.169D 02	.1650 02	.163D 02
°1 ^{/°2}	.544D 00	.544D 00	.544D 00	.543D 00
vÿ	.175D 01	.173D 01	.172D 01	.170D 01
v ₂	.954D 00	.943D 00	.933D 00	.925D 00
۳	.504D 01	.499D 01	.494D 01	.490D 01
M ₂ (fr)	.982D 00	.976D 00	.971D 00	.967D 00
γ ₂ (fr)	.1170 01	.118D 01	.119D 01	.1190 01

The second s

10. (Y)

-

Table XVII (continued)

Pl	.1320 00	.105D 00	.789D-01	.526D-01	.395D-01
T ₂ /T ₁	.101D 02	.9970 01	.987D 01	.9720 01	.962D 01
P ₂ /P ₁	.162D 02	.1619 02	.160D 02	.158D 02	.157D 02
°1 ^{/°2}	.543D 00	.5431 00	.543D 00	.543D 00	.543D 00
٧٦	.170D 01	.169D 01	.168D 01	.167D 01	.167D 01
v ₂	.923D 00	.9190 00	.915D 00	.909D 00	.904D 00
MJ	.489D 01	.4870 01	.485D 01	.482D 01	.480D 01
M ₂ (fr)	.966D 00	.965D 00	.963D 00	.960D 00	.959D 00
_{Y2} (fr)	.120D 01	.120D 01	.120D 01	.)21D 01	.1210 01

- Indiana and an and a state

- 96 -

158-26

in Neg

THE REAL PROPERTY OF THE PARTY OF THE

Table XVII (continued)

Рį	.100D 01	.500D 00	.250D 00	.158D 00
co _z	.328D 02	.317D 02	.3070 02	.301D 02
C0	.201D 02	.2090 02	.216D 02	.220D 02
0 ₂	.785D 01	.821D 01	.854D 01	.875D 01
0	.159D 01	.181D 01	.204D 01	.219D 01
N ₂	.335D 02	.333D 02	.332D 02	.332D 02
N	.770D-03	.688D-03	.607D-03	.555D-03
NO	.256D 01	.240D 01	.223D 01	.212D 03
N ₂ 0	.355D-03	.232D-03	.150D-03	.112D-03
NO2	.282D-02	.200D-02	.141D-02	.111D-02
^H 2 ⁰	.622D 00	.595D 00	.569D 00	.553D 00
ОН	.807D 00	.816D 00	.820D 00	.820D 00
H ₂	.502D-01	.5250-01	.546D-01	.560D-01
Н	.164D 00	.192D 00	.222D 00	.244D 00
°2	.508D-14	.186D-14	.659D-15	.327D-15
С	.404D-08	.260D-08	.164D-08	.119D-08
NH	.478D-04	.351D-04	.256D-04	.206D-04
HNO	.112D-03	.748D-04	.494D-04	.374D-04

のないないないないので

e topper of

- REAL STREET

Table XVI1 (continued)

	P 1	.132D 00	.105D 00	.789D-01	.526D-01	.3950-01
ł	c0 ₂	.298D 02	.295D 02	.292D 02	.287D 02	.283D 02
	00	.222D 02	.224D 02	.227D 02	.230D 02	.232D 02
(⁰ 2	.882D 01	.891D 01	.903D 01	.918D 01	.928D 01
I	0	.226D 01	.234D 01	.244D 01	.259D 01	.270D 01
	N ₂	.331D 02	.331D 02	.331D 02	.330D 02	.330D 02
	N	.534D-03	.510D-03	.480D-03	.439D-03	.4110-03
	NO	.208D 01	.203D 01	.196D 01	.187D 01	.181D 01
	N2 ⁰	.100D-03	.869D-04	.724D-04	.559D-04	.464D-04
	N0 ₂	.101D-02	.901D-03	.775D-03	.626D-03	.538D-03
	H ₂ 0	.547D 00	.539D 00	.529D 00	.315D 00	.506D 00
	0H	.819D 00	.8180 00	.816D 00	.812D 00	.809D 00
	H ₂	.565D-01	.571D-01	.579D-01	.590D-01	.597D-01
	Н	.253D 00	.265D 00	.280D 00	.302D 00	.318D 00
	°2	.246D-15	.174D-15	.111D-15	.582D-16	.367D-16
	C	.104D-08	.890D-09	.722D-09	.535D-09	.4310-09
	NH	.189D-04	.170D-04	.147D-C4	.121D-04	.105D-04
	HNO	.335D-04	.292D-04	.245D-04	.190D-04	.159D-04

n den seren en heren her findere heren in ernen som er heren heren heren heren heren heren heren heren heren so

ersussianal hyer electric second

ARE DESCRIPTION OF THE STREET, STRE

and here the second matter in the personal and the second states and the second second states and the second s

ę

and the second second

The second s
Table XVIII

(N ₂) ₁ =	.400D 02		۲	= .140D 01
P1	.100D 01	.500D 00	.250D 00	.158D 00
^T 2 ^{/T} 1	.104D 02	.102D 02	.996D 01	.981D 01
P ₂ /P ₁	.167D 02	.164D 02	.161D Oz	.159D 02
°1 ^{/°2}	.546D 00	.545D 00	.545D 00	.545D 00
۲	.173D 01	.171D 01	.170D 01	.168D 01
٧ ₂	.944D 00	.934D 00	.924D 00	.917D 00
MI	.497D 01	.492D 01	.487D 01	.484D 01
M ₂ (fr)	.976D OC	.971D 00	.967D 00	.964D 00
γ ₂ (fr)	.119D 01	.119D 01	.120D 01	.121D 01

- 99 -

1.1. A.

14 M

127 44 144

Table XVIII (continued)

٩	.132D 00	.105D 00	.789D-01	.526D-01	.395D-01
^T 2 ^{/T} 1	.975D 01	.967D 01	.958D 01	.945D 01	.935D 01
^P 2 ^{/P} 1	.158D 02	.157D 02	.156D 02	.154D 02	.153D 02
p ₁ /p ₂	.545D 00	.544D 00	.544D 00	.544D 00	.544D ON
۷٦	.168D 01	.1670 01	.167D 01	.166D 01	.165D 01
٧ ₂	.915D 00	.911D OG	.907D 00	901D 00	.897D 00
М	.482D 01	.481D 01	.479D 01	.476D 01	.474D 01
M ₂ (fr)	.963D 00	.962D 00	.960D 00	.958D 00	.956D 00
γ ₂ (fr)	.1210 01	.121D 01	.121D 01	.122D 01	.122D 01

and and the second states of the second s

Table XVIII (continued)

P٦	.100D 01	.500D 00	.250D 00	.158D 00
C0 ³	.300D 02	.290D 02	.281D 02	.276D 02
C0	.148D 02	.155D 02	.1620 02	.166D 02
0 ₂	.572D 01	.606D 01	.637D 01	.657D 01
0	.950D 00	.110D 01	.127D 01	.138D 01
N ₂	.448D 02	.446D 02	.445D 02	.444D 02
N	.452D-03	.415D-03	.3752-03	.348D-03
NO	.222D 01	.2100 01	.198D 01	.189D 01
N ₂ 0	.349D-C3	.230D-03	.151D-03	.1140-03
NO ₂	.223D-02	.161D-02	.115D-02	.914D-03
H ₂ 0	.721D 00	.693D 00	.667D 00	.649D 00
OH	.641D 00	.657D 00	.669D 00	.675D 00
H ₂	.481D-01	.509D-01	.536D-01	.554D-01
Н	.117D 00	.140D 00	.165D 00	.183D 00
c ₂	.813D-15	.318D-15	.1200-15	.619D-16
C	.106D-08	.717D-09	.473D-09	.354D-09
NH	.333D-04	.251D-04	.187D-04	.153D-04
HNO	.930D-04	.631D-04	.424D-04	.325D-04

And the second second

and the second second

「「日本の」のないないないないないない。

と日本語と語言語である。

C.P.

มมสมมาณ 165 มีเป็นชาติ เป็น สีมีมีมีมีมีคนไป สมกิจให้เป็นไปหมือง ในแบบสาว แปลเห

Table XVIII (continued)

Pl	.132D 00	.105D 00	.789D-01	.526D-01	.395D-01
c0 ₂	.274D 02	.271D 02	.268D 02	.263D 02	.260D 02
C0	.168D 02	.170D 02	.172D 02	.176D 02	.178D 02
0 ₂	.665D 01	.674D 01	.6850 01	.7010 01	.711D 01
0	.143D 01	.149D 01	.156D 01	.168D 01	.176D 01
N ₂	.443D 02	.443D 02	.442D 02	.442D 02	.441D 02
N	.337D-03	.325D-03	.308D-03	.2850-03	.270D-03
NÛ	.186D 01	.182D 01	.1770 01	.169D 01	.164D 01
N ₂ 0	.1020-03	. 887D-04	.7420-04	.576D-04	.4810-04
NO2	.834D-03	.746D-03	.645D-03	.525D-03	.453D-03
H ₂ 0	.642D 00	.634D 00	.624D 00	.609D 00	.599D 00
он	.676D 00	.678D 00	.680D CO	.682D 00	.882D 00
^н 2	.560D-01	.569D-01	.579D-01	.593D-01	,603D-01
Н	.190D 00	.200D 00	.213D 00	.232D 00	.246D 00
c ₂	.474D-16	.341D-16	.222D-16	.121D-16	.777D-17
C	.315D-09	.272D-09	.224D-09	.170D-09	.139D-09
NH	.141D-04	.127D-04	.112D-04	.926D-05	.809D-05
HNO	.292D-04	.256D-04	.216D-04	.1690-04	.142D-04

- ----

いたちんないまであるのであっていましてい

FIGURE CAPTIONS

N. W. MANDA

-

FIGURE 1	Detonation Wave in a) Laboratory System b) Stationary Wave System
FIGURE 2	Detonation velocity in (H ₂ -Cl ₂) mixture at 298 ⁰ K.
FIGURE 3	Theoretical temperature ratio in detonated (K ₂ -Cl ₂) mixture at 298 ⁰ K.
FIGURE 4	Theoretical pressure <code>.t.j</code> in detonated (H ₂ -Cl ₂) mixture at 298 ⁰ K.
FIGURE 5	Theoretical Mach number in detonated (H ₂ -Cl ₂) mixture at 298 ⁰ K.
FIGURE 6	Theoretical HCl mole percent in detonated (H ₂ -Cl ₂) mixture at 298 ⁰ K.
FIGURE 7	Detonation velocity in detonated (CS ₂ -0 ₂) mixture at 298 ⁰ K.
FIGURE 8	Theoretical temperature ratio in detonated (CS ₂ -0 ₂) mixture at 298 ⁰ K.

Staring Bearing

-dula

		- 104 -
FIGURE	9	Theoretical pressure ratio in
		detonated (CS ₂ -0 ₂) mixture at 298 ⁰ K.
FICUDE		Theomotical Mach number in deterated
FIGURE	10	incorrectical mach number in detonated
		(CS_2-0_2) mixture at 298°K.
FIGURE	11	Theoretical detonation velocity in
		(CS ₂ -O ₂) mixture at 298 ⁰ K.
		(002 02)
FIGURE	12	Theoretical temperature ratio in
		detonated (CS ₂ -0 ₂) mixture at 298 ⁰ K.
FIGURE	13	Theoretical pressure ratio in
		detonated (CS ₂ -0 ₂) mixture at 298 ⁰ K.
FIGURE	14	Theoretical detonation Mach number
		in (CS ₂ -O ₂) mixture at 298 ⁰ K.
FIGURE	15	Theoretical CO ₂ mole percent in
		detonated (CS ₂ -0 ₂) mixture at 298 ⁰ K.
FIGURE	16	Theoretical SO ₂ mole percent in
		detonated (CS ₂ -0 ₂) mixture at 298 ⁰ K.
FIGURE	17	Theoretical SO mole percent in
		detonated (CS ₂ -0 ₂) mixture at 298 ⁰ K.

- 104 -

No. 10 States

and the second second

:

1.4

a state of the second state of the second second

2

Theoretical CO mole percent in

Theoretical S₂ mole percent in

detonated (CS_2-0_2) mixture at 298⁰K.

detonated (CS_2-0_2) mixture at 298⁰K.

Detonation velocity in $2(H_2 + C_0) + 0_2$

mixture at one atmosphere and 298⁰K.

FIGURE 18

FIGURE 19

FIGURE 20

FIGURE 21 Theoretical detonation temperature ratio in $2(H_2 + CO) + O_2$ mixture at one atmosphere and $298^{\circ}K$.

FIGURE 22 Theoretical detonation pressure ratio in $2(H_2 + CO) + O_2$ mixture at one atmosphere and $298^{O}K$.

FIGURE 23 Theoretical detonation Mach number in $2(H_2 + CO) + O_2$ mixture at one atmosphere and $298^{O}K$.

FIGURE 24 Theoretical CO_2 and CO mole percents in detonated $2(H_2 + CO) + O_2$ mixture at one atmosphere and $298^{\circ}K$.

FIGURE 25 Theoretical detonation velocity in $(CO-H_2-O_2-N_2)$ mixture at 298⁰K.

	- 106
FIGURE 26	Theoretical temperature ratio in
	detonated (CO-H ₂ -O ₂ -N ₂) mixture at 298 ⁰ K.
FIGURE 27	Theoretical pressure ratio in
	detonated (CO-H ₂ -O ₂ -N ₂) mixture at 298 ⁰ K.
FIGURE 28	Theoretical detonation Mach number
	in (CO- $H_2 - O_2 - N_2$) mixture at 298°K.
FIGURE 29	Theoretical CO ₂ and CO mole percents
	in detonated (CO-H ₂ -O ₂ -N ₂) mixture at

298⁰K.

NATES AND ADDRESS OF ADDRESS ADDRESS OF ADDR

international and the second states of the second second

. .

気が、たちたいと思いたがい

FIG.5

- -

AN CONTRACTOR

The Albert

AN ALL SILVER

HE WARDING THE

SALL HE HOW

44.5

FIG. 7

and the second state of th

ل المالية

ALCONTRACTOR OF

「「「「「「「「「」」」

and a stand of the second standard and the standard second standard standard standard standard standard standard

and the state of the

125

WARDEN CONTRACTOR AND CALL OF CALL

FIG. 20

「ため」などのなどはなないないというないというないになるないのとう

X

IN SEALING THE ADDRESS OF THE ADDRES

135

.