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! . The articles in this collection contain the results of
theoretical and experimental studies of heat transfer in gas
turbines, and the temperature states of turbine blades, disks,
and votors. Analysis is given of the boundary conditions
formulated when stating problems of thermal conductivity rela-
tive to gas turbines. Resulis are given of a generalization

of criterial formulas for calculating the heat-transfer
coefficient in vane cascades. Certain specific problems of
thermal! conductivity are solved irn gener:z! form and numerically
for cooled hollow blades and disks.
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The collection is intendad for specialists in gas-turbine
construction. It will also be of interest to teachers and
students in this discipline.
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The collection includes 4 tables, 64 illustrations, and
41 references.
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FOREWORD

Recently, ever increasing attention has been paid to questions
of heated and loaded parts of high-temperature gas turbines, since
improvement of turbine cooling 1s one of the effectlive ways of im-
proving thelr performance. The materials used to make turbine parts

allow raising the temperature of the gas ahead of a ccoled turbine
4 to 1400-1500°K. However, imperfections of the cooling systems do
f not allow heating the gas to such a temperature.

5 Turbine cooling can be improved only after careful study of the
temperature state of individual stator and rotor parts under operating
conditions.

In this collection we present the results of theoretical and ex-
1 perimental studies of ine temperature state of the most critical parts
3 of turbine stators and rotors — the nozzle and rotor blades and disks.

The statement and solution of research problems had the aim of
explaining the reasons for high heating of these parts and finding
ways of improving methods for their cooling.

The first articles analyze the boundary conditions in the rotors
of axial gas turbines and nozzle blades. The rules established by the
authors make it possible to refine and simplify the familiar methods
3 of heat calculations. Then, on the basis of a generalization of the
? eriterial dependences. used to determine the average heat-transfer
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coefficient in vane cascades, calculation fcrmulas are obtaired for ;
calculating this coefficient in cascades with varying reaction. As §
a result of an examination of steéady and transient heat conductlion ¢

of the rotor with the blades, disks, nozzle blades, and rotor blades
and other parts, finite express:c' s are derived which can be used when
analyzing their temperature state. i

-

Subsequent articles study the ¢ooling of rotor blades by blowing
cooling air from inside onto the bléde surface through perforated
holes and show the effectiveness of this method, and also give a
method for calculating disk cooling.

Of considerable interest are the results of an experimental
study of the thermal stute of the rotor of an axial. three-stage gas
turbine; these mzke it possible to evaluate the :ffectiveness of the
cooling system and note ways for 1mproving it.

The last article oresents a theoretical study of the process of
heat transfer in the flow of cooling liquid, considering the energy
dissipation. i

The results of the studies are presented in the form of mathe-
matical dependences suitable for calculations; the most complex
solutions are presented as nomograms or are reduced to numerical
{ functions.

The authors ask that all comments on the contents of this
collection be sent to the following address: Mocscow, B-66, 1l-y
Basmannyy per., 3, Izdatel'stvo "Mashinostroyeniye."
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BOUNDARY CONDITIONS IN PROBLEMS OF HEAT CONDUCTION FOR GAS~-TURBINE
ROTORS

V. S. Petrovskiy and M. I. Tsaplin

In a theoretical study of the temperature states of gas-turbine
rotors the boundary conditions are formulated on the basls of spe-
cific physical premises which depend on the structural, gas-dynamic,
and operational characteristics of the turbine. In order not to
complicate the solution of the initial differential equations, we
usually attempt to simplify the boundary condlitions within tolerable
limits. In this case we will examine only one-dimensional problems.

Let us set the coordinate system as shown in Fig. 1. If the

heat problem 1s solved separately for a rotor blade, at the base of
the blade (x = 0) the boundary condition can be

t2(0) =4y 1
c Gy o
or
. d1,(0
—2, ~—d:)= 3 (2)

Fig. 1. Coordinate system used for stating
heat problems for the cooled rotors of gas
turbines: 1 - approximate experimental
curve; 2 — theoretical curve.
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whére ln is the eat conduction of the blade material.

In both cases the boundary conditions contain values which can-
not be determined by calculation, and therefore a theoretical study
of the temperature field 1s possible if we know the experimentally
determined values of temperature tl or heat flux qn.g'

Measurement of tl, to say nothing of qn.n and q;.A involves
laborious experiment; however, this is justified since, first, by
kncwing the actual temperature on the boundary of the blade with the
disk we reduce the probablility of error when calculating the tempera-
ture dependence for the disk or blade, while information on heat flows
qn..u and q;.n makes it possible to predict the tempgrature gradient
from the middle to the root of the blade or from the periphery to the
center of the disk. 3econd, measurement of tl, qn.g’ and q;'n in
conjunction with the calculation method of determining the tempera-
ture fieid in the blade and disk 1s a less laborious process than
purely experimental study of the temperature state of turbine rotors.

In designing a turbine there is no need to measure temperature
tl, and therefore we assign its value in the calculations. As has
been shown by experimental study of temperature distribution in gas-
turbine rotor blades and disks, the value of tl depends to a con-
siderable extent on the tcmperature of the gas at the blade root and
on the cooling of its root section or footing (if such exists). If
we know the calculation mean-mass temperatures of the gas at the
inlet to the rotor cascade and at its outlet, we can assume that tl
is 0.7-0.8 of the arithmetic mean of these tgmperatures.

We can avoid the need for measuring tl, qn.g’ and q;. by
solving the problem for a turbine rotor for the system disk/blade,
i.e., by solving a system of two differential heat-conduction equa-
tions. In this case we must formulate, besides the boundary con-
ditions for x = L and r = 0 (or r = r2), two more boundary conditions
on the blade/disk joint.

FTD-HT-23-1344-72 2
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In tinal analysis, temperature distribution in the system disk/
blades is caused by the gas flow passing through the rotor cascade,
and by disk and blade cooling conditions. The characteristics of the
gas flow are known from previous thermal gas-dynamics calculations,
while the characteristics of the cooling air are determined, for the

Pt e E o A S SO B S LT D S e DA Lt e LA B

ziven design, by its flow rate. The flow of air for cooling is
usually 3-U4% of its total flow rate through the engine. Corresponding
hydraulic calculation should show the distribution of cooling air as
it move through the entire cooled blading of the rotor before passing
into the gas flow or to the atmosphere. Knowing the distribution of
the cooling air, we can calculate its speeds of motion along the
cooled surfaces, and then the values of the heat-transfer coefficient.

Thus, the characteristics which determine the temperature field
in the rotor can te obtained from calculation. They can be used to
determine the boundary conditions of the blade/disk system and to
find the temperature field as functlons of the gas-flow and cooling
air parameters. ]

First let us examine the typical boundary conditions for turbine
disks. With one-dimensional statement of the problem, the turbine
disk is a symmetrical body whose temperat..e changes along the radius.
If there is no central opening (r = 0) the heat flow in the center of
the disk (because of symaetry) is zero:

dt;(0)/dr=0. (3)

For a disk with an opening in the center (r = r2) the boundary
condition can be given in the form of the equation

— L”1 (I'_v)
N dr

=alf lr))—t], (4)

where r, is the radius of the opening in the disk.
Disks have variable thickness along the radius. Thelr profiics

can be approximated by hyperbolic, linear, or parabolic functions
(Fig. 2). By correcting the profile or heat-transfer conditions in

FTD~HT-23-1344-72 3
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r the central part of the disk, the boundary
x“iQE__"J‘ conditions (with r = r,) can also be
il written in the form [dt (r,)/dr] = 0.
; (ra- 25} 1 { {2 Here the solutions of the initial dif-
3 ?5}5; %?- ferentlal equations are simplified.
: 3%
% //1é#ﬁt})’ . We can give the following example of
% g ! i correction. If the disk profile can be
: | ;

approximated by a hyperbolic function,
Fig. 2. Approximation of when constructing the theoretical profile
a disk profile by linear, there can possibly be too strong develop-
hyperbolic, and parabolic  jon¢ of 1ts lateral surface as the center
functions:

1-segy+lrg-m" n>152- of the disk 1s approached. Convection
heat transfer from the surface of the
opening will be compensated by this in-
creased area of heat transfer with corresponding dimensiocns of the
disk ovening. For disks of trapezoldal profile the correction can
be done by increasing somewhat the heat-transfer coefficient on the
lateral surface of the disk.

:-:occlr;s-:-ur.

The boundary condition for a disk with r = r, can be written in
the form

. dty(ry) g

_I.,‘ dar =g, (5)

where qL a 1s the heat flow to the disk from the blades and the vane
| channel, with consideration of the thermal resistance in the roots.

The value of qL.A in condition (5) is determined mainly by the
heat from the blades to the disk. But thls heat, in turn, is deter-
mired by the boundary condition with x = 0, which can be found from
the heat-balance equation. Consequently, we can connect the tem-
perature flelds of the blade and disk at their joint using the
general boundary condition; then the thermal problem for the general
temperature field of the disk/blade system will be solved using only
initial data from gas-dynamics and aerodynamics calculations for the
gas and cooling air, respectively.
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Let us see how we can associate furnctions tA(r) and tn(x) using

the boundary conditions.

Let us assume that in the sector from ta(rl) to tn(o) (from the
disk periphery to the blade root) the temperature gradient does not
change, i.e., At/Ax = const. This makes 1t possible to represent
the temperature differential at the blade/disk boundary in the form
of the cdifference

At=13(0)—1:1(n) (6)

and ‘ntroduce the value of At into one of the terms of the heat-
balance equations compiled for tn(x), with x = 0, and tA(r), with
r=r, since the conduction heat flow from the tlade to the disk
in this case is proportional to At.

Thus, if we solve the differential equations for heat conduction
for the blade and the disk indivijually, in the final expregsions we
get the unknown At which we introcduced into the boundary conditions
and which can be defined by supplementary equation (6). Substituting
into i1t the values of tn(o) and tg(rl)’ found from the general
solutions of the heat conduction equations, we get a formula for
calculating At 1n terms of known values.

As an example, let us examine the connection in terms of the
temperature differential in the blade and the disk. Let the disk
have blades with roots, and also an upper and lower shroud. During
assembly, channels are formed for alr passage during turbine operation
between the surfaces of the root, the lower shroud, and the disk
crown. The diagram of such a blade, mounted on a disk, is shown in

Fig. 3.

For such a design it is expedient to consider the change in
temperature along the blade root from tn(o) to tg(rl) to be linear;
the coordinate origin along the blade should be in a plane which coin-
clides approximately with the middle thickness of the shroud, while
the terminal coordinate of the radius coincides with ry.

.
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Considering all heat-transfer surfaces
when x = 0, we can compile the followlng heat-
balance equation (see Fig. 3):

Qi+ Q2= Qs+ Qs 7N

where Q,=), ‘“‘(o’s,'n is the amount of heat fed
per unit time from the working part of the
blades to their lower sections SO’ which we
will consider to be located in plane x = 0

Fig. 3. Schematic is the heat obtained by the surfaces of the

drawing of a shrouded -
solld rotor blade lower shrouds of the blades, turned toward the

with root, positioned gas flow; Qf:k,%?SJlis the heat removed from

on a turblne disk: boundary sections (S ) to the blade roots (h is
a -~ average heat-transfer
soefflcients of the corres- the height of the root S, 1s the area of its

ponding aurfaces, 4 — heat
removed from them.

section); Q‘._u,[l (0).-113,,,;.% [1 (n)__.. 1}5,‘

is the heat removed by the ccoling air from the convection heat-trans-

fer surfaces S& and Sg within the channels in the lower part of the
5 5

blades.

Substituting the expressions for Ql-u into equation (7), after
transformations we get (with x = 0)

46,0
RO et (8)

Here

b,==4,—tr, 9, (0)—1,(0)—11(0):

_—— as (S ‘) < u;S,.
e %25,
as (S,, +5,,) S, )
Fym Tt 1 (0)—1, ——t )zt
T Sy [t -]+ (l.s 0.5, A

. Now let us formulate the boundary condition for the disk with
r=r. The heat-balance equation

Qs—Qs=Qs, (9)

(n is the number of blades); Qp=:—u,f, (O}—~#(0))S.,,n
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where QT=@’AL$J115 the quantity of heat fed per unit time through

n
the root cross section from all blades to the disk crown (to an arbi-
trary coaxial surface of radius r = rl); Qﬁ=asp4rﬂ-4dsln i1s the heat
removed by the cooling air from the blade surfaces Sg of convection

heat transfer; Of=23qfﬁk,ﬁ%£?1 is the heat entering the disk through
the outer surface of the crown (H is the width of the disk crown, 8
is a coefficient which takes into account the thermal resistance in
the blade Joints). '

Substituting Q5_7 into equation (9), after transformations we
get

ds;r(r“ =0 N+ - (10)

Here !

ass:‘n
8 (r)=ty(r)— 13 O o
2ar H>
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Boundary conditions (8) and (10), together with boundary con-
ditions (1) and (3) or (4), make it possible to obtain particular
x solutions to the initial differentlal equations
for the blade and disk, from which we can also
find the formula for determining At. 1In cal-
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culations by the obtalned formulas it is con-
venient first to find the numerical value of

N L L TR E - TS SN v )

At from formula (6), and then calculate the
temperature distribution in the blade and disk.

Let us examine the case of determination
of the general boundary condition at the joint
Fig. 4. Diagram for between a disk and blades without roots. The
compiling heat-bal-
ance equations for diagram for connecting the blade to the disk
lower part of solid in this version is shown in Fig. 4. The origin
shrouded rotor blade
without root, and of coordinatyv x (along the blade) is best located
for a disk with r = in the root section, and it is advisable to ex-
- t

r. amine the temperature differential throughout

the disk crown (coordinate r). Let us consider that plane x = 0
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coincldes with coordinate ry. For blade cross section So coineiding
with this plane we can compile  the following heat~balance equation
for the amount of heat passing per unit time:

Qs+ Qo= Qio+Qu. (11)

Here Q.=}._"1-'ﬁ92$.,n} is the heat coming to the cross section from
the working parts of the blades; (,=¢,[1(0)—1,0)|S,n 18 the heat fed
to the disk crown from the vane channels; Q, =1, l':i(i%:j 18 the hcat
removed from the outer surface of the crown (At is the temperature
differential throughout the crown from r, to ri); Q"a=2c,[g(0y-%$-¢)x

X 2k, r'-}-'i'-i‘ is the heat removed from the side surfaces of the crown
12

by the cooling air.

Substituting Q8-11 into (11), after transformations we get

2 (0, )
""%;(-)‘_'?sea(o)T?h (12)

where

gyt Stu wy Ihee(ny HRs2)
Th s 1, Son3

dan, o (3= 1,6.2) . .
em e Sl )

A
_fas 21hog (ry+ hos'?) k- /
i Sgns by Serilairin) )T

For a disk with r = ri the balance equation can be written in the form
Q2= Q. (13)

v dty(ry
Here Q,,=12arH —s-r(—"-l- is the heat removed per unit time from the crown
to the web of the disk.

After substituting Q,, and Q,, into (13), with transformations,
we get

dv, (r‘,)
Jr

=z (14)

vir
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Obtained boundary conditions (12) and (14) include the tempera-
ture differential At = tn(o) - tn(ri). Just as for a disk having
shrounded blades, we can first find the particular solutions for the

€ blade and the disk, and then eliminate the unknown At from them.

eyt ja3 . .
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The boundary condition at the blade tip (x = Z) in the form

i,

g (15)
dx P
; i1s the only item found in the literature. ' %
2 - :
b Measurements show the nonagreement between the actual temperature B

distribution along the blade and that calculated with boundary con- :
dition (15). This 1s explained by the fact that the final formula for ;
determining tn(x) does not take into account changes in gas tempera- ‘
ture along the blade (see, e.g., [1, 2]). In addition, boundary c n-
dition (15) is physically incorrect, since there is actually a tem- !
perature gradient at the blade tip.

In [2] a solution is giver for the thermal stationary problem

for a blade wilth a profile cof variable cross section, in which the

] change in gas temperature along the blade is taken into account; this

5 same source recommends finding the constants in the general solution
of the initial differential equation using, in particular, boundary
condition (15). The function for the change in gas temperature along
the blading of the rotor cascade, leading to the occurrence of a tem-
perature gradient at the blcde tip, is incommensurate when solving

. the heat problem with boundary condition (15). To ovei:ome the contra-
diction between the proposed and the actual boundary conditions at the
blade tip we can isolate, at the blade tip, a short segment of length
0.21, considering 1ts temperature constant and equal to the temperature
of the gas on the periphery of the blading of the rotor cascade. Such
an assumption is not far wrong, since the blade tip receives a cer-
tain amount of heat from its middle part due to heat conduction, and
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this to some extent compensates for heat lost to radiation in the
examined segment. For rotor blades with an upper shroud we can dis-
regard the-heat fed to the shroud through the blade ﬁip section.
Then the temperature at the blade tip can be considered equal to the
temperature of the shroud and defined as some steady temperature
established as a result of the balance of the heat fed to the shroud
by the gas flow and lost by it due to radiation. The heat lost to
radlation can be defined approximately by the formula .

2 AR e A i e A A AR B s

g Shd e s St i,

(16)

Q=g 52>,
[3 6.1 1001

where €.n is the coefficient of blackness of the shroud surface; o
is the thermal-radiation constant; T6 n 18 the steady temperature of
the shroud. ' ' p

T AR AR KL e,

When compiling equation (16) we disregarded the radiation heat
transfer between the gas flow, the surrounding parts, and the shroud,
considering that the shroud only gives off heat. This assumption
lowers '1‘6‘r| only insignificantly.

Based on conditilons of consective heating of the shroud and the
heat lost to radiation, we can wrlite the heat~flow equation in the
form

-l
bl P ‘d.n
@[T N—T4,) t6.0% o001 ° ‘ (17)
Here o = 0.5(a; + a,) is the average heat-transier coefficient for
the upper and lower shroud surfaces; T#(Z) is the gas temperature at
the shroud.

Numerical solution of (17) for To n can be easily done by trial
and error with subsequent approximation.

Thus, for the tlp of a rotor blade of a gas turbine (x = 1) the
following boundary condition is more precise: .

)=ty OF  B()=tya—Lrul). (18)

10
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where pé ﬁfis the'steaéy tenperature of the blade tip, equal to the

temperature of the upper shroud en(Z) = t“(l) - t¥(2).

‘fhe rotor blace¢s can be cooled from within»byAair, liquid, the
vapors from some liqnid or other, or other means. In all casés,
when formulating the boundary conditions for x = 0, x = I, r.= r,
r = r,, and.r = rj, the above discussions remain valid. Certain
features can appear only when compliling the equations for the heat
balance at the blade/disk joint and when compiling the heat-balance
equation for the determination of the equilibrium temperatufe of
the rotor blade tip. Thus, boundary conditions (8), (10), (12), (lN),

and (18) can be considered as typiral for gas-turbine rotor blades.

blades with an upper shroud,

It should be noted that -for rot
lade tip usling boundary con-

galculation of the temperature of the
dition (15) 1is not alloﬁed, since an enroneous rise in temperature

can make it necessary to increase the amea of the profile cress

section due to high mechanical loads at the point where the blade

touches the upper shroud. Increase cross-sectional area increases
the dimensions and welght of the blade &s a whole, which is very

undesirable for gas turbines.

One-dimensional transient heat conduction in a gas-turbine
rotor is described by the followling equations:

for the disk -

ty(r.1) 8y Y ((.1’) a; (r) -
ax rz(n) or {r ") ] :0.:2 (r) tatrs T=funll (19)

for solid blades ~

Ua(x, 1) @, .(x 0] _ P e
o S(x) ax [ ) ] 108 (] lf (x, 7) {r(-\ll (20)

and for a hollow cooled blade ~
c)t_,(.\.'r):: a, _d_{s(x)m.(x,t)'}_

ov S(x) ox ox (21)
ag(X)Pr(X; — t Q, (‘\) PK (X) —_
sty Lt = G 2 E S ()= ()
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where 1 1s the time; z(r) is hall the disk thickness; a_, a ., P

A
[ cn, and c, are the thermal conductivity, density, and Specific

heat of the disk and blade, respectively.

a’
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The equations which describe the steady heat state of the disk
and blade can be obtained from equations (19)-(21), if we consider
that t:'q or t do not depend on T, 1.et, atA(r,T)(at and atn(x,r)(at
are equal to zero.

sl

+
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Solution of equations (19)-(21) in general form, with consider-

AT AR R e e e s

ation of the possible dependences of z, d3, Qgs O, Sl, P, t#, and té
on x, 18, as a rule, impossible due to ilnsurmountable mathematical
difficulties.. In thls case the simplicity of %he‘boundary conditions £
allows us to complle an 1nitial differentiel equation or a syétem of
equations without significant simplifications, and thus obtain more
precise final functions tn(r,T), tn(x,r), or tn(r),,tn(x).

AT

Valid simplification of the boundéry conditions can be combined
with the use of initial differential equations in the most general
form, if we consider the features of the actual temperature distri-
bution aloryz the blade foil.

Experiments show that in the midsection of the blade the tem-
perature distribution curve has a maximum. This is natural, since
the shape of the dependence tn(x) of a solid or hollow cooled rotor
blade is determined, to a considerable extent, by the temperature of
the gas in the blading. From this 1t follows that in the middle of
the blade foill there is no longlitudinal heat flow. Therefore, if we-
formulate the heat problem for two independent sectlions of the blade
0 < X £ Zl and 0 < X, < s (assuming that Zl ® 12 ané Zl + Z2 =1),
on the boundary of sections x, and x, (xl =1y, X5 = 0) we can, with
sufficient accuracy, assume that 3tn(ll,r)/3xl = 0 and atn(O,T)x2 g
3 8x2 = 0,

The arb?® -ary division of the blade into two sections makes it
possible to ¢ up one heat problem for the disk and the root

12
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g)w,aw‘ . ﬂ seccions «f the blades (segment xl) and
! ,§’§#§§§\ another independent problem for the blade
as 2713 ! _ tips (segment x,).
: g S' ' Such a method makes it relatively
%10 N simple to take into account, in initial P
o és b:;z differential equation (20), a number of
5 functions of x, including the most im-
ol gé%ff ;_J portant one - t*(x). Figure 5 shows, in’
67075 08 09 (xﬁﬂ relative coordinate., the most typical
chauge in gas temperature along the blade
] iiietgée g?agg:tigngig' cascade. Division of the blade into seg-

gas flow along the blade ments Xq and Xy makes 1t possible to
cascade, 1in relative )

q c t¥(x)

coordinates: represent function r(x/ in the form of
1 — groph constructed from measure- two fourth-order parabolas on segment X
ment results; 2, 3 — graphs of the type

T e 1- ¢ 30, whore n = 8 ard 6; T x  8nd two elghth-order parabolas on segment

x (X,) = t.!(xz)/tg(o)xz; 4, 5 - graphs X2.
of the type 'E,!(i'l) “ 1.0 Yx)n,
vhore n = 3 and U; 61(x,) = talxy) ¢ When stating transient problems for :
+ 601y, 5 TA(L,) o TRO), :
ot S S gas turbines it becomes necessary, as a

* 1,04t} .cp.nace (here ;1 = x,/2;,

%, = 2./1.). rule, to take into account the variable
2 2772

nature of the process not only along the :
examined direction (with one-dimensional solutions), but also on the
boundaries of the corresponding coordinates. Let us examine the

possible transient boundary conditlons and formulate them in more
general form.

4’, .k o
F g e ¢ gL g % il £ S S S i e e Bt B Gl R 6
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In the center of a solid disk the cona_tions of symmetry, re- {
gardless of time, allow us to consider that 8tA(r,r)/ar = 0. This ;
boundary condition is not always acceptable. If the central part of
the disk is in contact with a shaft whose temperature is always kept
lower than the disk temperature, heat wlll be removed from the cen-
tral part of the disk. This clircumstance must be considered, even
though it does not change the condition atn/ar = 0,

R

In this case we can state the problem f¢r the intevrval

13
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Ei ry, < <r < rys where r, is a certain radius; we can consider approxi- §

f mately that on this radius the direction of the heat flow in the %

ﬁ disk, from the periphery to the center, coincides with the direction :

3 of reading. The value of the heat flow q, will equal Q/S, (Q 1s - :

. ~ 2 2 Ex

E the total quantity of heat removel to the turbine shaft, S, is an E

; 2 . ;

-3 ! arbltrary coaxial surface on the disk at radius re). The value of f

) | a, for particular cases can be determined from equatlcons of the i %

2 2 - ‘ S’i

conservation of energy (heat balance). {

For a dilsk with a central opening the inner surface of the g

, .

3 ‘ opening can be cooled. This is taken into account by the boundary V

E condition (with r = r,) ' g

3 o Oy (ra,T)__ .

) hy 5 e, |4, (ra) =1, (ra)]. (22) éf

h ’ In the absence of cooling the boundary condition wili be 5

3 . ’
. Oty (r3, %) lor =0,

At the point where the blade rocts join the disk the boundary
condlitions consist of the heat-balance equation, just as for the
case of steady problems, but with consideration of the dependence

2 of At on time. In accordance with this, stationary boundary con-
4 ditions (8) and (10) assume the form [3]:
? wnen r = r,
§: d, (
;. e A R N R (23)
and when X, = 0
dt, (0, t)
axy —--4f (0 'r)-—..‘,t\(r,‘ T)-vs (2[])
Here :
- 1 Sun ;s S'n
: R T T U coa(S, 8 )n . a:S, —q,S, S
* 3 F1 7T e i %=-L—~f)4wu sam={zm— o), (1)) By —— f% sl 2 N
3 032 s A 2azH3 1,80 hSy 2. ,Sg
© ‘x Su a-,S' : u‘s"u [' 0 ' a3 (S;D*S;Q)
e o= e Tl gie 2 (0), S (),
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For blades without roots the boundary conditions have a some-
what different form. It is not advisable to use, in this case, the
assumption of a logarithmic law of the change in temperature on the
disk crown, as was done for the steady process, sin:ec the time de-
pendence t (r,t) is cf a diffe-ent nature. Let us compile a heat-
balance equation with r = ry and Xq = 0 (see Fig. 5):

14 R e

fﬁfﬁlbl.sdw is the heat from the blades to the disk in

d"'l
1 second; Q=g |f; (M, —1,in. 1)) S,,2 1s the heat to the disk from the

where Q.=1,

vane channels; Q,=i, ‘—Jil‘%-’-‘—‘-g%r,ﬁ is the quantity of heat removed from -
r .

a surface of radius ry to within the disk in 1 second.

After substituting Qg Qé, ard QA into equation (25) we get

o 0140, V), . .
Bl g D i D= (26)
dar ex‘
where
“:'—' \_,SgnB M ! — G;S,‘n . '="'t. 0)
Al carv Al

Now let us determine the boundary condition for %he tip of the
rotor blade. With truasient heating, the temperature of the blade
tip changes somewhat more slowly than that of its middle section,
due to temperature nonuniformity in the gas flow. First let us € X~
amine a shrouded blade. The shroud at the blade tip has a
sufficiently large neat-exchange surface, and we can consider that
in the general energy balance that heat which is fed from the
middle, more heated, part of the blade is not definitive. Basically,
the temperature of the shroud depends on convection heating by the !
gas, and to a lesser extent on the heat lost to radiation at a
high temperature, which we can disregard. Then heating of the shroud !
will occur in accordance with a regular regime of the first kind,

i.e., when X, = 12

tyily D= bl - [t L)~ ] e™™, (27)
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where tn(lz,i) is the temperature of the shroud (and the blade tip);
to is the initial temperature of the shroud; m::iffa-is tne rate of
the regular regime (Sﬁ.n 1s the area of the surface and Mﬁ.n 1s the
mass of the shroud).

According to boundary condition (27), the shroud should, in
time, be heated to the temperature of the gas (as 1 + ). This
does not really happen, since as a result of the rise in temperature
of the shroud, equilibrium gradually sets in between its convection
heating and radiation cooling. Here we cannot use boundary con-
dition (18) for the steady process because tG.n will depend, uander
transient conditions, on time. For precise determination of the
boundary condition, considering the radiation heat losses, it
would be necessary to complle a transient differential heat-balance
equation using the Stefan-Boltzmann law; because c¢f the difficulties
inveolved in integrating this equation we can use the following
method. Let us introduce into (27) a correction tactor which can
depend regularly on time; as 1 + «» it becomes numerically egual to

* - =
tr(zz) tﬁ. i.e., when x, 1, we should have

n ®
Ly D=t~ [ =] €™ = [ — 15} (1— 7). (28)

For blades without a shroud we can formulate condition (27)
under certaln assumptions, which nevertheless leaé to more precisc
results than does the condition atn(l2,r)/ax2 = 0 for the blade tip.
In this case the blade element whose temperature changes by the law
of a regular regime will be a certain section near its tip. The
length of this section should be about 10% of the length of the
working part of the blade. Then coordinate 12 will pertain to the
section of the blade at the boundary between the entire workiig
part and the 1solated segment. Here the assumption that A + « for
the blade tip section somewhat distorts the final temperature
function. This distortion can be corrected by arbitrarily changing
the tren. of the temperature fuction tq(x) when graphically analyz-
ing the calcu’ation results. 'The correéted graph will follow along
the upper boundary of the fl=1ld of scatter of the results of calcu-
lating the blade temperature, and thus correspond to more rigid

16
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conditions for operation of the upper part of the blade foil.

The examined method also makes it possible to use boundary con-
dition (28) for a blade without a tip shroud.

This analysis of the boundary conditions for a transient pro-
cess in the disk/blade system makes possible a well-founded selection
of that comblnation of boundary conditions which is close to reality.
Undoubtedly, particular cases can occur which require a certain re-
finement of the examined bcundary conditions. These refinements
obviously should be introduced into the initial heat-balance equa-~
tions. Then, if refinements become necessary, the final form of the
expressions for the boundary conditions when r = Ty, T = Iy, Xy T o,
and Xy = 12 will hardly change in any significant manner.

The statement and solution of two independent heat problems for
a disk with blade roots (xl) and for blade tips (x2) result in the
fact that function tn(x,T) for the entire blade can have a dis-
continuity at point X, = Z1 and X, = 0. Practice has shown that
the value of this discontinuity is very insignificant, and it is
much less than the error of the calculation method as a whole.
Therefore we can eliminate the discontinuity of the function tn(X,T)
on the blade-section boundary Xy and X5 by calculating the arith-

. 0, 1) (0,
metic mean temperature f-- (’T*;‘( ey

value for the coordinates Xy = Zl and X, = 0. The entire
function tn(x,r) at this point should be corrected graphically and
represented as a continuous function.

and using it as the only

Thus, the known forms of the boundary conditions, encountered
when solving the problems of heat conduction for gas-turbine rotors,
do not always correspond to the actual forms. The data given in
the article give grounds for considering that in certain cases we
snould solve the problem of heat conduction for the disk and blades
simultaneously. This 1i1s advisable when the only initial data for
calculating the temperature state cf the rotor are data from pre-
liminary calculation of turbine blading and hydrodynamic calculation

17

.y Arp o L T IR Y L - -, e e nk AT = lpo ke g2l

. ) s LN
s ata b T SR PR i e SRS LA P

IOPFTREN ) ST (T SRy S Sy




or rotor cooling.

The heat-balance equations compiled for the blade root and the
periphery of the disk allowed us to formulate, and represent in
general form, the boundary conditions with x = 0 and r = ry both for
steady and transient processes orf heat conduction. For shrouded
blades the boundary condition at t¢the blade tip can be compiled vy
starting from the thermal state of the upper shroud which, when the
turblne operates under steady-state conditions, has a certain steaay
temperature which is found by solving the corresponding heat-balance
equation.
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BOUNDARY CONDITIONS IN HEAT-CONDUCTION PROBLEMS FOR COOLED NOZZLE
BLADES

V. 8. Pztrovskiy

Theoretical study of the temperature state of nozzle blades of
a gas turbine involves solution of the boundary-value problem, which
includes the boundary conditions at the blade tips. The accuracy
with which the boundary conditions are given determines, to a con-
siderable extent, the accuracy of the final result.

Let us ex mine one of the versions for formulating the boundary
conditions at the tips of a hollow cooled nozzle blade when solving
a one-~dirensional steady heat problem.

At the blade tips there are shrouds, and the tips are in con-
tact with the inner and outer shrouding strips. With steady-state
operation of the gas turblne the temperature of the shrouds depends
little on the design of the cooling system within the blades. If
we disregard the heat which is fed to the shrouds from tha working
part of the blades, the shroud temperature can be found from the cor-
ditlon of thermal equilibrium between the heat flows from the gas to
the inner surface of the shroud and from its inner surface to the
cooling air. Such thermal equilibrium can be described by the cor-
responding equation for the balance of the heat flows.
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Let us examine a nozzle blade

- to which cooling alr 1is fed from an ’g

‘ annular cavity in the upper shroud
(Fig. 1). After cooling the blade,

‘ the alr enters the blading of the

‘ ?‘5 turbine through openings near the

i . rear edge on the concave part of the

l

Dl € it A s

o

profile (Fig. la) or combines with .
\ »C;”“ the air flow which cools the turbine
ﬁl R s - =) rotor, through an opening in the
T lower shroud (Fig. 1b). In both
cases the temperature of the shroud

Fig. 1. JTmbedding of nozzle . -
blades into e shrouds. The is determined by convection and ra

arrows show the path of the diation heating from the gas flow

cooling air within the blades: o
8 — emergence into the tur- and by cooling by the alr {low. To

bine blading; b — emergence complle the heat-balance equation
ggaggg.base of the rotor let us schematize the design of the
shroud, representing it in the form
A of a plane wall (Fig. 2).
(33 ] = -
‘se“/ i % Let us also give the coordinate system
L i in which we wlll determine the boundary values
; of blade temperature and gas-flcw stagnation
% temperature. The coordinate origin (x = 0)
< :&4,): 2 Y is made to coincide with the inner surface of
T lq;" - the lower shroud adjacent to the inner shroud
Fig. 2. Schema- strip.

tized nozzle blade.

In the heat-balance equations we consider radiation heat trans-
fer, proportional tc the fourth power of the absolute temperature.
This makes it necessary t¢ express the temperature differential for
convection heat flows in the form of the difference between the ab-
solute temperatures of the medium and the wall.

Ultimarely the equation for hezat-flow balance for the upper
shroud can be written as follows:

2C
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§1=q2=qs+ 44, (1)

where g¢,==q, [T;()—T,] 1s the convection heat flow from the gas to the

)}
. shroud (ar is the coefficient of heat transfer of the gas); qf=37~

+ (T\—T,) is the conduction heat flow through the shroud (A is the

RN RN SRNCA R VE YIRS N2

coefficient of heat conduction of the blade, 61 1s the shroud
thickness); ¢;=u,(7»—T7,) 1s the heat fiow from the outer surface of

the shroud to the cooling air (aa is the coefficient of heat trans-
4

T,
fer from the shroud to the air); qp:s:—ﬁﬁT is the heat lost to ra-

diation from the cooled surface of the shroud (e is the coefficient

of blackness of the shroud surface, o is the thermal radiation con~
stant).

Equation (1) does not take into account radiation heat trans-
fer between the inner surface of the shroud, the heated surfaces of
adjacent parts, and the gas flow. We can assume that the value of
this flow, determined by the Stefan-Boltzmann law, will be very
small compared with the intensity of convection heat transfer, since
the difference in temperatures of the inner surface of the shroud
and the surfaces of the surrounding parts is not great, while the
gas flow has a low radiation coefficient. 1In radlant heat flow ay
no account 1s taken of the component of radiation of the heated sur-
face of the shroud, since the temperature of this surface is con-

siderably lower than temverature T2 of the outer surfas ' of the
shroud.

TR { T S T

Substituting the values of Q_y into expression (1) and solving
the resulting equations for Tl’ we get

Bi 7 (h=Ts . - 3
—_— e Ty B (JamT )23 2L
Bre =} T 12— T. A

|2

TR (2)

3

¢

where BL::%;Q and Bi,==32:: are the Biot criteria for the inner and

A
outer surfaces of the upper shroud.
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To determine T2 for the corresponding values of all quantities
entering into equation (2), we can solve the latter by selecting
that value of T2 for which the equation becomes 1dentical. This
method allows us to find T2 from the 3rd or 4th approximation. . 5
Using the found value of T2’ from equation (1) in the form

v e S LRV
,'w"’)'tﬁ" A m1 » " G o

.
2 s TSP

a,[T;(I)—-T,]::—'l (F1=T2) (3)

o f A E

we can calculate the value of Tl.

Temperature T1 will thus be a certain steady temperature of
the blade cross section when x = I, which makes it possible to wr'“e "
the boundary conditions )

f2(l) =t,. () ;

Ir the cooling air emerges into the cavity of the lower shroud,
the steady temperature of the inner surface of the lower shroud i
determined analogously. Using as our basis the same concepts as ‘
when compiling equatlion (2), we get

Bi, T (0) £ 7,4 . . i, T
——— e Tyo= Bi T =T ) Lo 22 4
- Ti=BL(T—T )+ =L —. (5)

Solving equation (5) for Tu ty selecting and substituting the
obtalned numerical value of TH in equation (1) in the ferm

e 1) =T ]l =T, (6)
we get the formula for calculating T3.

If the cooling air emerges into the turbine blading, the heat-
balance equation has the following form:

g1= ga==q. (7

where ¢==u,|/7 3 —7,] is the convective heat flow from the gas to the

inner surface of the lower shroud; q§=-%qTV—TJ is the heat flow
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across the shroud; Qﬁ=!1-$% is the heat lost to radiation by the

outer surface of the shroud.

From equation (7), by substitution of the values of qi, qé, and
q&, vie get

we TY

Bi,7}(0) =T, T
B o A s
Bi;[T:(O)"‘Ta]=T3"T« (9)

from which we can calculate TH and then T3.

Thus, in both cases for the lower end of a nozzle blade x = 0)
the boundary condition can be written in the form
t:(0)=t.. (10)

Boundary conditions (4) and (10), obtained as a result of these
discussions, are definlitely not the only possible ones. They can
change depending on the deslign of the fitting of the nozzle blades
into the shrouds. However, for the design shown in Fig. 1 these
boundary conditions give quite good colncidence between the theoreti-
cal distribution of tn(x) and the experimental distribution: the
results of calculating tn(x) from the equations obtalned when solving
the corresponding thermal problem differed by no more than 4-5% from
data on direct measurements at the nozzle blade tips.

The boundary conditions obtained can be used when setting up
steady-state problems of heat conduction relative to cooled nozzle

blades.
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THE QUESTION OF THE AVERAGE HEAT-TRANSFER COEFFICIENT IN VANE
CASCADES ’

N. A. Petrovskaya and V. S. Petrovskiy ‘

The heat-transfer coefficient a in a vane casbade is one of the
basic values describing the distribution of heat, in gas-turbine
rotors and stators. The initial differential gﬁuations for transient
and steady heat conduction, compiled for solving the appropriate
problems, include the coefficient of heat trgﬁsfer to the blade
surfaces. //

/
/

The intensity of the heat transfer oﬁ blade surfaces determines,
to a considerable extent, the temperatugé field in turbine rotor
disks, since heating of the disk is cayéed baslically by the flow of
heat from the blades. The influence Jf the heat-transfer coefficient
in a rotor vane channel on the temperature field of the blades and
disk of the rotor is particularly noticeable when simultaneously
solving the initial equations of heat conduction for the blades and
disk. In this case, in final analysis we get temperature depen-
dences (linear, two-dimensional, or three-dimensional) for the
blades and disk which are connected, at the point where they come
together, by approvriate boundary conditions. These conditions in-
clude the functlons t (x) or dt (x)/dx when x = 0 (see, e.g., [5])
which also include the value of the heac-transfer intensity coef-
ficient a on the blade surface (x is a coo- iinate along the blade).
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For two- and three-dimensional heat-conduction problems the distri-
bution of heat~transfer intensity along the blade profile is of
interest. Such data have been obtained in certain investigations,
but it is difficult to use them in calculations since it is im-
possible to deseribe the dependence a = f(x) by a function which
would coincide with the actual disiribution of a. If this can be
done, however, it is extremely complex to solve the problem by intro-
dueing such a function into the initial equations. Therefore it
becomes necessary to replace it by simpler dependences which only
approximately correspond to the true distribution of o along the
blade profile.

The distribution of heat-transfer intensity along the blade
foll should have a substantial influence on the dJstribution of tem-
perature along the blade,

As shown in the work by V. M. Kapinos and A. G. Knabe [1], the
intensity of heat transfer in a vane cascade depends on the nature
of the gas flow along the blade proflle, which in turn 1s determined
by the reaction of the cascade. Consequently, the dependence of o
on x can be determined if we know how the reaction of the cascade
changes along the blade.

The authors of [1] qualitatively substantiate the dependence
of heat transfer on the shaping of the cascade — its reaction. Act-
ually, as shown in the works by Ainley [2, 3] and Andrews and Bradley
(4], the intensity of convection heat transfer is determined by the
nature of the gas flow in the blade channel., more precisely, by the
position of the polnt of transition of laminar into turbulent flow
on the convex and concave sides of the blade.

On active profiles, on profiles with small leading-edge radius,
the length of the segment with turbulent flow increases, since the
point of transition of laminar into turbulent flow 1is displaced
toward the leading edge of the profile. The probability is especially
high of turbulence of the gas flow on the convex side of the profile,
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where stability of the laminar flow 1s easily lost due to centrifugal
forces. The experiments of K. Bammert [6], L. P. Lozitskiy [7]. and
M. N. Bodunov [8] on determining the dependence of heat transfer on
the angle of attack (leak angle) are very indicative in this sense.
They show that there 1s a leak angle for which heat transfer will be
mini~um. This angle, measured between the flow direction and the
front of the cascade, 1s somewhat greater than the calculated angle
of inlet of the gas flow into the cascade, since when the flow im-
pinges against the convex side of the blade, movement along the con-
vex rurface of the profile, up to certain limits, is easler to
establish than for the calculated ‘inlet angle. The authors of [1]
generalize the studles on convection heat transfer in various cas-
cades performed by various authors. They explain the nonagreement
of thelr obtalned experimental results by the incompleteness of the
similarity criteria, and to expand the range of application of the
generalizing expression they introduce the value y = sin B2/sin B,
where 81 and B are the calculated inlet and outlet angles of the
gas flow to and from the cascade. Angle B; 1s measured between the
frontal line of the cascade and the tangent to the convex part of
the profile at the inlet.

We cannot agree with the authors of [1] that the discrepancy
of the data obtalned 1in various studles does not depend on experiment
errors. Undoubtedly, the errors arising when processing the experi-
mental data and which depend on selection of the determining param-
eters do not play a major role in the spread of coefficient C and
exponent n in the final criterial formulas. Analysis has shown that
the ready formula in [1] is alsc valid only within specific limits,
although it was obtained on the basis of analysis of criterial form-
ulas reduced to the 1ldentical determining magnitudes. In our opinion,
the main reason for the discrepancy in the experimental data is
pecullarities in the experiments. These 1nclude differences in the
shapes of the blade profiles, relative pitch, and other structural
data of the cascade, and also differences in varilous details of the
experimeﬁt methods: selection of the direction of the heat flow,
ways of ﬂfasuring the calculated temperatures, the amount of heat,
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methods for scavenging the cascade, features in che design of the
test apparaﬁus, the forms and characteristics of the heating agents,
ete, For @hese reasons it 1s quite unlikely that tests of specific
cascades by various authors using, e.g., the method presented in [12],
would yileld identical final calculation formulas. We should note

that the use of any empirical formula can give a precise result only
under very specific particular conditions, although it might have

the form of a criterial dependence. )

The 1dea of generalizing criterial formulas for an entire range
of change of parameter y is of great practical significance, but it
1s also advisable to find criterial relationships for narrower ranges
of change of the cascade characteristics. In this case we can reduce
the error arising due to nonagreement of the generallizing expression
with the individual particular formulas. It makes sense also to find
generalizing criterial expressions with-constant values of coefficlent
C and exponent n in a formula of the type Nu = C Re® for cascades of
the impplse or reaction type. Such formulas are suitable for pre-
liminary calculations of heat transfer.

In thls article we have perforﬁed repeated analysis of existing
criterial formulas that describe convection heat transfer in gas-
turbine vane cascades. HKere we consldered certaln of the inaccuracies
admitted in [1]. As an additional similarity criterion for heat
transfer in cascades, one which takes into account the geometric and
hydrodynamic disparity of comparable processes, we used, unlike the
auvthors of [1], a convergence coefficient k = sin Bi/sin B2, where
£, and B, are the calculated inlet and outlet angles of the gas flow
betwe:rn the front line of the cascade and the tangent to the middle
line of t«a: profile at the leadlng and tralling edges of the blade.
This covfficlent is more often used in gas-dynamic and thermal cal-
culations ard, in our opinion, is more expedient as an auxiliary
criterion. ‘The coefficients k and y and approximately reciprocals.
All initial criterial formuias are given in Table 1 and presented in
order of increaning convergence coefficients of the cascades f§
which they were obtained. Likewlse, the reaction of the cascades
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Designations:

A, P, U — heat conduction, density, and dynamic viscosity of

the gas; ,
t = 0.5(t1 + tg); 5 = 0.5(p1 + pZ)S ‘
W= 0.5(w;, + wa); t = 0.5(t + t%); |
tl, t2 — static temperatures of the gas flow at the cascade

inlet and outlet;
t* — temperature of stagnant gas flow;
t{ — the same, measured at cascade inlet;
Pqys Py, — static pressures at cascade inlet and outlet;
Wys Wy = relative speeds of gas flow at cascade inlet and

outlet;
tn — temperature of blade surface;
t' ~ cascade pitch; b' — cascade width.

wlll increase from the beginning to the end of the table. For form-
ulas 4, 6, 12, 16, 17, and 18, which were obtained from study of
heat transfer as a function of leak angle, the values of C and n were
taken for zero angle of attack. When processing the measurement re-
sults, as the determining dimension in various cases we used the

" profile chord b or the equivalent dlameter d . The determining tem-
perature also varied In order to be able to compare the results of
the investigations, all criterial formulas were reduced to a single
determining dimension and a single determining temperature. As the
determining dimension we used the equivalent diameter d = P/7,

3K
which is the one most often encountered in studies on heat transfer
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in vane cascades; as the determining temperature t we used the arith-
metic mean of the gas temperatures at the cascade inlet and outlet.
This determining temperature is obviously more advisable that deter-
mining temperatures which include the blade *temperature; usually the
latter is an unknown value and therefore it must be specified for
calculating heat-transfer coefficlents in a theoretlcal study of the
tempevrature states of a turbine stator or rotor. The use, in the
calculations, of an approximate value for the determining tempera-
ture leads to an error in the value of the heat-transfer coefficlent
and thus reduces the accuracy of the desired temperature. The gas
density led to the selected determining temperature and pressure p
which is the arithmetic mean of the static pressures of the gas at
the cascade inlet and outlet. As the determining veloclity for the
Reynolds number, in accowdance with recommendations in [1], we used
the arithmetic mean of the velocities of relative motion of the gas
in the inlet and outlet sections of the vane cascade (wW).

The initial formulas are reduced to these determining parameters
with consideration of the concepts presented in [1]. As the initial
transfer equation we used

\u" R 1ex ¢
C Cucx Ny 2 (_'-'_) . (1)

Uiex R"np H

Basically, a change in C involves transfer to a new determining
dimznsion and new determining speed. Therefore, dropping the ratio
of determining tempersztures, equation (1) can be written in the form

C ~C"“ I’ur\) _I_;‘_ n-1 (:."m )"
(Pnp ( dyy ) Cyp ) (2)
The ratio pmcx/pnp in all cases was equal to, or close to, one., Hence
C' o~ wex Y31 Wher \*
1% Cn 22 (=) (3)

The flow equation for the inlet zand outlet sections of the cascade
allows us to represent expressicen (3) in the following form:

R ol by "
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Here k 1s the convergence coefficlent, V1 and V2 are the specifilc
volumes of the gas, and Zl and 12 are the blade heights at the cas-
cade inlet and outlet.

To obtain criterial expressions which generalize all formulas,
reduced to parameters d T, p, and w from Table 1, we first found

an?
the dependence
n
oS ) c n(k) (Fig. 1).
= v | P
06 T V4 Then, from thcse
°
a7~° o N 05 //,ﬂ values of n for
I gy < o each formula in
(-]
. \\\ ° 03 Y4 — Table 1 which gave
i - 0.2} H——pf T~ the dependence
[+ j
o5 e o n(k), and from the
" T
10 5 2025 K 050 2 F corresponding aver-
Fig. 1. Form of the Fig. 2. The depen- age values of cri-
generalizing dependen- dence C(k) for 0.9 < teria Nu and Re,
ces n(k). The points < k < 2.8. we found the thus

show the values of n
from individual experi-
ments.

corrected values of
constants C. The
obtained constants C were used to find the dependence C(k) (Fig. 2).
As a result, for convection heat transfer in any type of cascade we
obtained the following criterial formula:

Nu=C(4)Re"*, (5)

—O.B. As the calculations

where C = 0.328k - 0.282, and n = 0.736k
showed, the difference in the values of the heat-transfer coefficients
calculated from formula (5) and from the appropriate formulas in

Table 1 depends on Re. For the lnterval Re = 7°10u to 3*105 it does
not exceed 3-8%, and only in four cases does 1t reach 15%. For Re =

= 10" to 7~10u and 3-105 to 106 the discrepancy ircreases to 10-15%,
and to 20-30% in individual cases. The obtained formula can be used
to calculate the average coefficient of heat transfer along the blade
profile and along the vane cascade. For this, i1f k depends on the
cascade height, it is necessary to find its average value along the

entire blade and then, from this value of k, determine n and C in
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calculation formula (5) using graphs (Figs. 1 and 2). As the average
value we can use the half-sum of the convergence coefficient at the
blade root and tip, since the dependence of k on the coordinate along

the blade 18 close to linear.

When compiling the boundary condition for the blade surface with
hermetic twisting, i.e., with varlable reactlion along the bladé, we
must take into consideration the change in heat transfer along the
blade foil. For this we should know the dependence k(x), which we
then substitite into equation (5), from which we can obtain the de-
pendence a(x). To simplify the equation for the boundary conditions
we can recommend the following method. For specific values of k
corresponding to the coordinates x = 0 (blade root), x = 7 (blade
tip), and certain intermediate values of x, we calculate the héat
transfer coefficients a from formula (%). From the found values of
a we can construct the dependence a(x) and describe it by the most

suitable and simple equation.

Equation (5), written for the entire range of change of k, leads
to considerable spread of the results acv the end of this interval,
i.e., in those regions where cascades of a specific type are grouped.
To refine equation {5), if there is no need for using it over a broad
range of change of k, we can propose linear

L]
——

86 © dependences of the change in C and n for
05 % ’///,"// impulse and reacticn Llades, respectively.
04 - < As such dependences (Figs. 1 and 3) we will

have, for impulse cascades (0.9 < k < 1.5)

%2211
o1 4?/ : C=0,165k—0,104; n=0,835—0,125% (6)

¥
0
» 5 20 % k¥ and for reaction cascades (1.5 < k < 2.8)
Fig. 3. Dependence C(n)
for 0.9 < k < 1.5 (im~ C=0,177k+-0,012; n=0,632—0,0173k. (7
pulse cascade) and for
1.5 < k < 2.8 (reaction .
cascade). Both the initial as well as the general-

izing criterial formulas allow us to cal-

culate the heat-transfer coefficient only with an error whose magnitude
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depends not only on the accuracy of the calculation formula. It is
determined, in addition, by the degree of agreement of the gas-
dynamic parameters used as the initial ones fer calculating o from
the appropriate formulas, their true value, the incomplete similarity
of the actual process of heat transfer in the cascade to that de-
scribed by the cal~ulation formula, and a number of other factors
mentioned above. In this connection it 1s advisable to examine how
the inaccuracy of the value of a for a vane cascade influences the
error of the calculated value of the blade or disk temperature.

As calculations have shown, the decisive factors for the accu-
racy with which the temperature field in blades or a disk can be
determined are the correctness of the formula for the boundary con-
ditions and consideration, in the initial differential equations,
of the change in gas temperature along the vane cascade. In addition,
the coefficient o often enters to the 0.5 power in the calculation
equations used for theoretical determination of the temperature of
gas-turbine rotors or disk. This reduces the value of the relative
error, introduced by an inaccurate value of the heat-transfer coef-
ficient into the final result, by one-half.

From this it follows that, in addition to generalizing formula
(5), it makes sense to find approximate criterial relationships which
would allow us, with acceptable accuracy, to calculate relatively
simply the average heat-transfer coefficient on the blade surface
for cascades with impulse or reaction profiles. As can be seen from
Flg. 1, the finding of such relationships is simplified by the fact
that in the entire field of scatter of points n(k) we observe an
expressed tendency toward grouping around two average values: with
k < 1.5 and with k > 1.5. This can be explained by the fact that
the nature of the gas flow in the vane channel of a cascade with a
value of k of about 1.5 1s such that the position of the point of
translition of laminar into turbuient flow is unstable. Therefore,
the relationshop between the extent of the sections of laminar and
turbulent flow continually changes and, consequently, the value of
the exponent n for Re wlll also be unstable.
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As the criterial formulas with
constant values of C and n we can
propose the following (Figs. 1 and
4): for impulse cascades (k < 1.5)

g1 *}-E'E’Z—“» Nu=0,085 Re0*3; (8)
o 10 15 20 45' “Jox  for reaction cascades (k > 1.5)

Fig. 4. Constant values of . . .

C for impulse and reaction Nu=0,326 Re*8, (9)
cascades.

In conclusion we should note that in this article we have
generalized the results of studies of convection heat transfer in
nonmoving cascades. In a moving cascade the heat-transfer coefficient
coefficient increases 1.3-1.4-fold ccmpared with a nonmoving one.
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HEAT-TRANSFER COEFFICIENTS ON THE SURFACES OF THE BLADED ROTOR OF
AN AXIAL GAS TURBINE

V. Z. Kitayev and V. S. Petrovskly

The diversity of conditions for convection heat transfer in
gas turbines and, in particular, on rotor surfaces, and the complex-
ity of a clear determination of the hydrodynamics of this process
make the finding of the heat-transfer coefficient values an inde-~
pendent, specific, important problem. Existing recommendations for
calculating heat-transfer coefficients are based both on e use of
generally-known criterial formulas, obtalned for certain comparatively
simple cases of convection heat transfer, as well as on the results
of individual experimental studies under conditions close to those of
heat transfer in resl operating turbine constructions. Up to the
present, convection heat transfer in vane cascades has been studied
most completely.

As a rule, the calculation formulas are obtained from study of
an immobile object consisting of several blades. For an operating
gas turbine, however, these formulas are applicable only after care-
ful analysis of the similarity of the specific case of heat transfer
to that for which the criterlal equation employed was obtained.

The need for conducting the operations discussed below arose in
connection with solution of the problem of heat conduction for a
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system turbine disk/rotor blade. Unlike problems solved individually
for a disk, blade, or other part of a gas turbine, it was necessary
to introduce, into the boundary conditions, the heat-transfer coef-
flcient o on various surfaces of a bladed rotor. Naturally, the
accuracy of the calculation results was determined, to a considerable
extent, by the sum of the errors which can be introduced into the
problem by coefficlients a. Tals necessitated a more accurate vallda-~
tion of selection of the criterial formulas, explanation of the gen-
eral picture of convection heat transfer over the entire gas-turbine
rotor, and determination of the dependence of the heat-transfer
coefficients on the turbline operating conditions and, what is par-
ticularly important, on the ambient condltions characterized by

specific tH and Py-

Errors in the values of the heat-transfer coefficlents can
occur due to discrepancies in the real conditions of heat transfer
from those conditions under which the calculation formula was ob-
tained, and due to errors in the values of the initial determining
parameters (the temperature of the flow medium, its pressure, flow
rate, and determining dimensions).

With combined study of ccuvection heat transfer in the entire
rotor it was possible, by comparing various coefficients a, to ex-
plain how correctly the values of the initial determining parameters

were chcsen.

Figure 3 of the first article in this collection (see p. 6)
shows a diagram of a shrouded rotor blade with base attached to a
disk, and gives values for the average heat-transfer coefficients
entering into the initial equations of heat conduction and into the
boundary conditions when solving the appropriate problem for a
specific three-stage axial turbine.

Let us examlne, in sequence, esach heat-transfer surface of in-
terest to us, and validate the selection of some criterial expression
for calculating the average value of «c.
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The upper blade shrouds, closing, create two heat-transfer sur-
faces: an external cylindrical surface and an internal vane surface
on the side toward the gas flow. When stating the problem of heat

. conduction the boundary condition at the blade tlp 1s as follows
(when x = 1):

P oy
e TR K TS S A2

e

1,

ok W

. ta(l, x) =tun(v) (1)

for a transient process, and

t:t(l):tn.n- (2)

for a steady process.

The value of tB n is determined from the heat-balance equation
for Yhe upper shroud

' AY

,. AT =Tu) = sl oz (3)

; S5 = * o
j where a O.S(al + a2), and Tr and T, ., are in °K.

T%e coefficient o also appears in the expression for ta.n(r).
Convection heat transfer on the outer and inner surfaces of the upper
shroud occurs under varylng conditions. We can assume that the de-
termining temperature and pressure will be identical on the outer and
inner surfaces of the shroud. Heat transfer on the outer cylindrical
surface moving relative to the stator surface can be examined as con-
vection in a slot channel or as heat transfer in a plane of length nd.
The high degree of turbullizatior of the gas in the gap between the
outer shroud surface and the stator surface does not allow us to
e assume laminar flow in the gap. Even if we consider that flow of
the gas in the axial direction creates relatively low washing speeds,
the high peripheral speeds of the rotor result in high Reynolds num-
bers in the gap and, consequently, high gas turbulence. Such con~
ditions of convection do not allow us to use the criterial formulas
recommended for slot gaps and labyrinth seals: thlis would lead to
a lowering of the heat-transfer coefflcient. In this case it is
advisable to use a formula that describes convectlon heat transfer
in a plane with turbulent motion of the washing medium:

it R R L L S A

Rt s
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Nu=-0,032 Red®, {4)

Theoretical gas-dynamics calculation shows that ‘at the upper
shrouds the temperature of the gas is somewhat higher than at the
level of the middle section of the blade. This was not actiially
observed. The temperature of the gas in the turbine blading is
sharply reduced in the lower and upper parts of the vane cascades.
Consequently, as the determining temperature we must use not the
gas temperature obtained from gas-dynamics calculation but a some-~
what lower value.

In the absence of expe_!mental data on gas-temperature distri-
bution along the vane cascade we can, bated on numerous measurementsg,
consider it equal to 0.85-0.90 of the gas temperature in the middle
section cf the blade. Then the determining temperature in (i) is

f=:0,9 411 ;—fcn . (5)

Here tlI and t2II wre the temperatures in the middle section
of the blade at the lnliev to and outlet from the rotor cascade for
the appropriate stage, taken from gas-dynamics calculation.

The determining pressure and the relative speed will be
F=05(pu+pm) and w=nadn. (6)

(Subscripts 1 and 2 pertain to the cascade inlet and outlet, re-
spectively; the values of Pr and pyy are taken from gas-dynamics
calculation; n 1s the number of turbine rotor revolutions per unit
vime; d 1s the diameter of the upper shroud of the rotor cascade.)

The determining dimension in formula (4) should be plate length
1. In this case 1t is advisable to use the length of the generatrix
of the cylindrical surface md as the determining dimension.

The ccefficlent of heat transfer on the inner surface of the

upper shrouds (in the vane channel) can be determined, based on the
following concepts. The bottom of the vane channel <&n be represented
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as a flat surface whose length is equal to the length of the cascade
blading, as part of a short channel of variable section, and,
finally, as one of the surfaces of the vane cascade for which the
value of a, is determined from known criterial expressions. There
are no equations for convection heat transfer for short channels of
variable cross section. The use of the crit "~-1 relationships
recommended for a vane cascade 1s also unacceptable here. The flow
of gas alung the blade profile, to which the formulas for convection
heat transfer in vane cascades, obtained in various studies, obtain,
is of a different nature than flow along the inner surface of the
upper shroud. Correspondi.gly, there 1s no hydrodynamic similarity
of the processes, i.e., the criterial formulas for convection hegt
transfer should be different. We see, in the given case, Just as
for the outer shroud surface, that the most suitable formula for

el g ey BN, At K AME 1220 12 2 vk i B s R e

e

{ calculating a will be formnrla ‘4) in which the determining tempera- {
3 ture and pressure remalin the same, while the determining veloclty i
; is equal to the arithmetic mean of the gas velocities at the cascade :

inlet and outlet in the upper section of the blade (subscripts I,
II, and II in Fig. 1, p. 56): f

#==05 (winy+wam). (7)

% The determining dimension will be the length of the vane chan-

é nel 1; along its middle line.

i | The next heat-transfer coefficlent is @3, which describes heat

3 ; transfer in the vane cascade itself. To determine this coefficient

2 . we have many criterial relationships of the form

3 Nu=CRe", (8)
differing in the values of C and n. These relationships were ob-

3 tained in experiments with various cascades, wicth various gas-flow

% leak angles, for a broad range of change of temperatures and other ;

§ parameters describing heat transfer. At present attempts are being

% made to find a more or less universal criterial relationship for

calculating coefficient a. The first results obtained require ad-
ditional verification and comparisons. Therefore, it is most advis-
able to use a formula which takes into account a sufficient numoer
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of similarity criteria for processes of heat transfer in vane cas-
cades. Such a formula

Nu=C Re™5K,05K,° 12 (9)

has been obtained at| the Kazan' Aviation Institute [1]. Here KT =
= Tn/Tr is a temperaFure factor; Kp = y/b is the cascade pitch~-chord
ratio,

The value of C in (9) depends on the radius of the leading edge
of the blade. The determining temperature and pressure are found :
as the arithmetic mepn for the cascade inlet and outlet: : {

-~y

1=05(Ln+4n) and  ju=03(mu+pam).

As the determining dimenslon we use the equivalent dlameter 4, =

= Pn/n. The determining velocity is found from formula (7), except
that the gas velociyies are taken at the level of the middle section
(subscript II). Foymula (9) was obtalned for a static cascade. Ac-
cording to existing{recommendations, the coefflicient a for the rotor
cascade of a workinL turbine shouid be increased by a factor of

1.25-1.30.

The heat—transFer doefficient on the inner (turned toward the
gas flow) surface of the lower shroud is determined based on the
same concepts as for the inner surface of the upper shroud. Here
the determining temperature will be the same as for a, (i.e., EiII =
= Ei). The uetermining pressure and velocity are calculated from
formulas (6) and (7), but the initial values of p and w are taken
for the lower blade section (subscript III).

Stages I and II of a turbine have unique heat chokes in the form
of cooling channels in the blade roots between the lower shroud and
the disk crown. The 1nfluéhce of the passage of alr through these
channels on the total temperature field of the blade and disk, as
appropriate calculations have shown, is extremely great. In this .
connection the coefficient as, which characterizes heat transfer in
the cooling channels, 1s of particular importance.

4o
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An error in calculating coefficient ag occurs msinly not due to
the sclected criterial relationship's not corresponding to the exam-
ined hest-transfer conditions, but due to the low accuracy in deter-
mining the rate of flow of cooling air through the channels. The
air speed here can be determined by using the continulty equation,
but the initial values of the flows through'each channel are not re-
liable. It should be noted that for any turbine, in the absence of
well-organized air flow, its flow rate for cooling the individiv~i
rotor elements can only be cdetermined with high error.

At the same time, gas-dynamics calculation for the blading gilves,
with sufficient accuracy, values of the gas pressure at the vane
cascade inlet and outlet at the base. If we consider that the pres-
sure differential from the cavity ahead of the cooling chanel to
the turbine blading is approximately equal to the differential behind
the cooling channel, the pressure differential of the cooling alr in
the channel of a turbine of the given design 1s approximately equal
to Ap = Pirrr - Porrr’ Using this value for the differential we
can obtain an expression for determining the veloeclity through an
individual channel in the form of the Bernoulli equation for arbi-
trary sections ahead of the inlet to the channel and at its outlet:

[EIX]

2
e, C

= Pa 0
g = Pen (19)

ol

n -

Here w,=u sin 9 is the speed of the cooling alr, occurring
due to the compressor effect during peripheral movement of the blade
ro. positioned at angle ¢ to the flow axis, u is the peripheral
speed of the cooling channels, p and p are air pressure and density.

Subscripts 1 and 2 pertain to sectlons at the channel inlet and outlet.

If we assume that Py - Py ® Pyrr1 ~ Porrre then Ap 1s known.
Speed wo is taken as the determining one when calculating Gg . We
get the calculation formulz for Wy from equation (10):

(11)

J—
S S ¢ T I
w:_-l/ :93(-Ap ).
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The resjstance coefficient c mugt be determined considering the
recommendations pres sented in [2]. It depends on the speed of rotation
Oof the disk and 1is found from the formuls

. _ . S
- + iy . ‘=-=—2—, (12)
" where Pom s —= - s the flow factor, te=(] 7' 1s the flow
. -5 JI\ 3005472 e

. factor for a statiec disk; z' is the hydraulio resistance ¢f a short
chaknel with different inlet and outlet cross sertions; K = u/w2 is
. & parameter which defines the dependence of & on the peripheral
speed for known Vige

. From the formulas derived we see that before finding the value
of.w2 we must know the coefficlent ¢ which, in turn, depends on Woe
Here we can proceed as follows. First, from the flow equations find
'the approximate value of LPY Then from formula (11) find the more
accurate value for the spe2sd in the couling channel and repeat the
~calculation using the correcteo value of . In determining LP using
, the continuity equation we used the results of a preliminary tenta-
tive .hydraulic calculation. An initial -approximate value of L2 is
required both for parameter X as well as for determining coefficient
7'. This.coefficient depends on the ratio of the areas of the channel
inlet and outlet (sl/sz), and on tne Reynolds number, which is cal-
culated from the initia’ value of wy, [3]. The refined speed of the
cocling alr in the channels 1s then used tu calculate the Reynolds
number; as the'detefmininq dimension we used the equivalent channel
diameter dah = 4S/r, wiiere S is the channel section and P is its

. perimeter.

As calculatlons have shown, the Reynolds number for cooling
channels of stage I of a rotor does not exceed 104; while for stage
IT 1% does not exceed 103. Consequently, tne sirflow here can be
considered laminar, or.at least transitional, bHut not turbulent.
Then the fcrmula for determining aé wlll have the form

Ko=0,17 ket 3 ¢, (13)
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here Ky = NuPr'o‘u3 is a complex that depends on the Reynolds number;
¢ is a coefficlent which takes into account the dependence of heat
transfer on the ratio Z/qu for short channels.

The values of Ko for the appropriate Reynolds number can be
found from graphs given in [4]. The coefficient €, is defined in this
same work. The determining temperature and pressure when using for-
mula (13) will be the ambient tempersature and pressure.

The next heat-transfer coefficient of interest to us is a6,
which describes convection heat transfer cn the side surface of the
disk. To calculate og it is expedient to use the formula

Nu=0,0348 Re%7, (14)

obtained at the Kazan' Aviation Institute. As parameterz we use
here the air temperature and pressure and the diameter of the disk 1
bed. The Reynolds number is calculated from the relative alr speed. |
The air flows for disk cooling are relatively slow, and therefore the '
relative speed found from the continuity equation can be determining

only for the central part of the disk. For the peripheral regilon,

however, 1t 1s advisable to consider the relative alr speed equal to

the peripheral speed of the rotating disk.

The examined heat-transfer coefticients were calculated for two
turbine cperating modes -- idle and nominal (va%ed) —~ at ambient air
temperature tH = ~50, =30, *15, and +50°C. The dats obtained are
represented in the lorm of graphlc dependences in Figs. 1-5. Opera-
tion of a turbine in the nominal regime 1is characterized by the depen-
dences c¢f coeyrlicient ay_y ON tH’ shown in Fig. 1. The same order of
magnitude of these coerficients 1is observed for most gas turbines.
Convection heat transfer is most intense in the vane cascade. This
has the result tnat with low heat-transfer intensity to the disk,
the tempersture of solid blades is 2lmost the same as that of the
gas throughcut the length of the rotor section, except for a smgll
area near the root.
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The descrease in the heat-transfer coefficlents with an increase
in ty 1is expleined by the associated decrease in air density and,
correspondingly, the gas density. The pressure of the gas, and its
temperature, decrease from stage to stage. The combined influence
of these factors alsv results in decreased gas density. Therefore
the heat-transfer coefficients become less in each successive stage.
The change in speed of the gas flow has a lesser influence on the
recction in coefficients a from stage to stage.

Figures 2a and 2b show the generalized results of calculating
the coef "icients oy _y for all rotor stages and both turbine opera-
ting mode: in the form of the dependences

¢

Oty ( Ty 4y { Or,T0
—_— k-—— and T\
“r . " T rou

respectively, where T, = 273°K (or 0°C). When constructing these
0

graphs the values of Op were found from Fig. 1, as well as by calcu-~
0
lation. All calculated points lie quite well on the line

ur,, = up (1,62—0,062537;,) (15)
(Fig. 2a) and
917 — Lo\
ar, =1 16ur, | 217 = 7%) (16)

(Fig. 2b). Dependence (16) is more accurate, since the field of
scatter of the calcuiation data is narrower.

Formulas (15) and (16) can be used to determine the heat-trans-
fer coefficients for various TH, but we must rirst know the coef-

ficient O of each stage, which complicates the calculation. It
0

is considerably simpler to use the dependence of the heat-transfer
coefficients of each successive turbine stage on the heat-transfer
coefficients of stage I (Fig. 3).

In constructing the graph, along the horizontal we plotted the

values of O for stage I, and along the vertical — the corresponding

0
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valyes of aT for stage I1. Then along the horizontal we plotted
0
% for stage.ll, and along the vertical — the values for stage III.
0

The connection between the heat-transfer coefficients with To =
= 273°K for various stages, based on this graph, can be represented
by the formula

__S%ra
ar\‘ll— 1.34-_._) . ] (17)

where n is the sequence number of the turbine stage.

Substituting this expression into (16) in place of Ap 5 We
0
obtaln the followlng dependence, which 1s more convenlent for prac-
tical use:

“rll e l' lsar,l (2. 17—-—-72;1.\,": 1.34‘-”1 . ( 18)

M.

The change in coefficient a5 in the cooling channels of stages
I and ITI of a turbine rotor is shown in Fig. 4. From the absolute
values of as we see that this coefficient is approximately one order
of magnitude smaller than 05 Q5 a3, and oy Because of the ex-
tremely weak alir flow through the cooling channels of stage II, the
value of as here' 1s practically independent of TH' For stage I this
coefficlient is very sensitive to a change in temperature of the
amblent ailr, and decreases abruptly when the latter is increased.
As was ncted above, ccefficlent a5 has a very slight influence on
the nature of temperature dependence t (x) and tA(r); consequently,
its sharp decrease with an increase in TH will, to a concsiderable
extent, determine the nature of the temperature field in the bliades
and disk of turbine stage I.

a
Figure 5 gives the generalized dependence EQL(§¢)for uS. 1t
Te 1}

1s described by the equation
U7, = U7, (3,9 —0,011T ). (19)

The value of A in formula (19) is determined from the graphs
05
given in Fig. 4.
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Thus, in this article, using the criterial formulas which are
most expedlent for calculating convection, we have obtained calcu-
lation dependences of o on t, for the examined axial turbine. From
them i1t follows that the intensity of convection in the turbine is
reduced with a rise in tH and the coefficients of heat transfer on
the surfaces of the vane cascades are reduced from stage I to III. :
The value of tH has an especially great influence on reducing the
heat-transfer coefficient in the cocling channels.

From the results of calculation of heat-transfer coefficients
for the given turbine we have found formulas by which we can, rela-
tively easily, calculate the value of the heat-transfer coefficient
for any turbine operation mode and for any temperature t

PRIEN N

Ho

The method used to process the results of this theoretical
study of convection heat transfer in a gas turbine can be useful
in heat calculations of other types of turbines.
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SOLUTION OF THE PROBLEM OF STEADY HEAT CONDUCTION FOR HOLLOW COOLED
NOZZLE BLADES OF GAS TURBINES

V. 3. Petrovskiy

Let us examine the dy heat problem for a cooled nozzle
blade having construction as shown in Fig. 1. Cooling air enters
the annular cavity of the upper shroud and then the inner blade
channels. To increase the cooling effect, a deflector can be in-
stalled in the inner cavity of the blade. After cooling the blade
the air goes to the rotor cavity and then to the turbine flow
channel,

The influence of the deflector on blade cooling can be taken
into account by a certain coefficient k. Then a, = kaé, where aé
is the heat-transfer ccefficient, calculated by known [1, 2] cri-
tevial relationships. We can set k¥ = 1 for cooling without a de-
flector, k = 1.3-1.8 for cooling with a deflector, and k = 2.1-2.6
for jet cooling using a deflector.

To facilitate solution of the problem and obtain finlte expres-
sions in a form convenient for practical use, let us divide the
blade lengthwlse into two approximately equal parts X4 and X, (Fig.
2). We will seek the solution for each part individually.

The initial equations for section X9 considering the change in

L3
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temperature of the gas along the blade, can be written as follows:

LD gt () H R, )= — R () (1)
Jx,
alx) ks () + Rt () =-0. (2)
d.\’,

Here

k‘=anl’u_-'— arPr . k =anPu . k‘=°rpr . bk =gﬁﬁ

s T st s YT G,

(Pa and Pr are the perimeters of the blade profile, washed by the
alr and gas; S is the blade section; G is air flow). For section X

t: (x‘)'—_-ks [1 - c—:i(.\"!"t'a)]. ( 3)

Solution of system of equations (1) and (2) for tn(xl) gives a linear
nonhomogeheous third-order differential equation:

(2 g ) G T poa g ey (A L B, (1)
dx; i ky d.\'? ky dx: 5 1.1( 1) (A5

where A,=kkikx: By= (Li—ki)keks.

Setting

k3k4f;(.\'|)+A|=y, (5)

we get

b9
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d3y d% - dy . - ’
—_—l b e kb ——'—--—h’kl——k-kee wé, \6)
dx} ! 4 du; ! dxy Al A

We will seek the solution of equation (6) as the sum of the solut.ons
of the homogeneous and nonhomogeneous parts of the equatlon, i.e.,

y=if . (7)
For y we can write the characteristic equation
fa-'l'kﬂn-—kgf—'k;,k‘ ==(, (8)

For the interval of change of coefficlents kl’ k3, and ku-which
18 possible under the examined conditions, the discriminant of
equation (8) is less than 2ero. Coun3equently, it has three real
roots. On this basis the solution of the homogeneous part of the
equation can be represented in the form

P=CE e CultT Gy (9)
? [ - PR M

Here

P k4 k . e
rp=s =~ {dvens — ""‘) P ory=2vcos 60— )= =1
=g g ek 3
&

r".-:.:? v COS (60’-] —%‘) - -

voz — | D}'l: c=arce0s 4,
\3
. 2 3
== .--(.ﬁ.-‘_f—‘-): ='ki-' A AL
3 ' 9 27 6 2

The solution of the nonhomogeneous part can be obtained from the
equation

]]o"—’DﬂZ_; X, (10)

Successively differentiating it, and substituting the obtained
expressions into equation (C), we find

D= kL) I (11)

G b3 — byt 5 Y,

Substituting (9) and (10) into (7), and considering (5), we get
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Constants Cl, 02, and C3 are defined by the following boundary
gonditions:

when x; = 0 4 L0 =t (13)
Y
when x; = 1,7} di (hYdx, =0. (1%)

In addition, from equation (1) it follows that when X, = 0

a2, (C l)x'
dxy

= k!,{u.n - kﬁfu (n)-\'l - k-'\t: (0-)-\’| . ( 15 )

In boundary condition (13) ton is the steady equilibrium tem-
perature of the surface of the upper shroud turned toward the gas
flow. Temperature te.n can be determined from the heat-balance
equation for the condltion of steady heat conduction through the
shroud from the cavity with the cocling air to the flow channel of
the turbine vane cascade. This equation for a shroud represented

in the form of a flat wall will be as follows:

qr=9:7= g3+ ¢, {16)
where a; is the convective heat flow from the gas to the shroud

(tB_n enters into the expression for ql), a4y 1s the conduction heat
flow across the shroud, 43 1s the convective heat flow from the
cooled surface of the shroud into the air flow, and ay is heat lost
to radiation from the air-cooled shroud surface.

Simultaneous solution of equations (13)-(15) gives

D D
C =26, c=2¢, c=2%, (17)
D Dy2y Dy
where
De,= 1 erib—r.etivrar Ky +(rd—rd) Kot (r.enb—rpent) K (18)
Dct= (’ler." —ro‘,,ll‘) l<l —:-(fg—- rf) I\’Q -!.(rle"'l -roer"’) K.\; ( 19 )
DC.:(’-'.‘"""' _— f‘c”l') rlr:,\,l -:‘(r¥‘ r;) K2 +(,-,‘,_w,l.,-l¢r.l.) K.\: ( 20 )
D)= ("'3""'3) rient 4+ (ri—ri) raenh +4(ri—ri) refsh, (21)
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In expressions (18)-(21)

Ky=kikd, o= Dy~ Ay Ky==lDyeobs;
1 3 B 1 1 2 141 (22)

K3= [k 11,,_‘, -— k:t‘ (O)x‘ - kal: (o):;] kskc"' C¥Dl .

The initial differential equations for section X5 of the blade
wlll be the same as for X The function 1s described by the ex-

pression

. gl Xy
’ £2 () = £ Oy = 15 00— 108 - (23)
Repeating the series of discussions for section Xy we get

1 Dyeffr Ay
k;kQ ka'ﬂ k‘k.i

(24)

6 (%)= (Cyenrs + Ciefrr - Cen*)

Here

Dy= ksk:Bo .

t3 A
L3 katg— Rty — bk

A, =\ e — 1 (O)n_‘ kke

l—-e“"
By=(G+hy) kJ[ 1—ells

Constants Ch’ CS’ and C6 can be found from the followlng boundary

conditions:

vhen X, = 0 d?,(0)s,fdxy=0; (25)
when x, = 1, 1N =t, (26)
when x, = 0 £, O, =t,(h)e,- 1)

Here ¢ is the steady equilibrium temperature of the surface

H'n
of the lower shroud turned toward the gas flow. It is found in the

Temperature tn(zl) is calculated using (24).

same way as ts.n

From conditions (25)-(27) we find

D, D D
Cym—Sty  Cymemt;  Cpmm it 28
YT D 57 Dy ¢ Dy (28)
where
52
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Lo, == (08 em el Ny 2try—=r ) K- (reritr—r onin) K (29) ' E

Dey==t{enls— oYKy S (ry—r VI (et —ryent) Kt (30) :;

De,=(ents—erst ) Ky (rp=—ry) Kyt (rient:—ryenh) K,: (31) ~

D4-€=U',‘-—rc)a’ll:-‘l-(rl—-l'-}l."’(‘ +(r,—r,::e’=". ( 32) 3‘:

Re= =D K=k, o — Dt Az . (33) f

Kom= kb, ()= Dyt Ay, ;

Thus we obtain all the required calculation expressions for %
calculating the temperature along the blade.

The proposed calculation method makes it possible to take into : E

account relatively easily the changes in gas temperature along a
vane cascade. This method can be used to calculate the steady tem-
perature state of cooled nozzle blades.
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SIMULTANEOUS SOLUTION OF STATIONARY PROBLEMS OF HEAT CONDUCTION FOR
GAS-TURBINE BLADES AND DISKS

V. S. Petrovskiy

In this pdper we examine stationary heat problems for the
shrouded rotor bliades and the disk of a gas turbine with a central
opening, where the profile of the disk can be approximated by a
hyperbolic function. '

Solution of stationary neat problems for gas-turbine blades
and disks ha. been examined in [1-3]. In this article we aim to
show how we can assocliate the independent solutions of heat problems
for the blades and disks into a single temperature function. In
addition, we show how to formulate the boundary conditions for
shrouded biades with a root and for a disk containing such blades.
The examined method for associating the distributions of temperature
in the blade tn(x) and in the disk tA(r) in terms of the linear
temperature differential in the root showed that 1t yields a
comparatively slmple finite system of expressions )or calculating
the temperature of the disk and blade in the form of a continuous
functlion. The need is also eliminated for giving the temperature
at any point of the disk or blade a priori, in order that further
calculation be done based on this temperature. 7The only initial
data which we use in calculations by the proposed formulas are the
results of pre~thermal gas-dynamics calculation.
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First let us examine the thermal probtler for the blade. 1n
general form it can be described by the equation

d 0. _‘.l_tl___.: e i .
‘-;;[)..1(1_,)5(.\) dx] a, (V= £(x0] P(x) (1)

In equation (1) the values of heat conduction of the blade
material (xn), the area of its section (S), and the perime.er {(P),
and also the average heat-transfer coefficient (aa) and the stagnant
gas~flow temperature (t#), depend on cuordinate x along the blade.
Considerable difficulties are involved in solving equation (1) with
substitution of functions Aa(tn)’ S(x), aa(x), tﬁ(x), and P(x). It
was obtained, using certain assumptions, in [1] and [2].

Let us examine the case when ln, Oy and t§ do not depend on x.
The area of the blade cross section will be ccasidered to change by

the law S = SOeTkQ/L, where k is a constant which defines the steep-
ness of curve S{(x), and L is the blade length.

The function P(x) can also be represented by an exponent, but
a more sloping one, since the perimeter of the blade changes more
slowly than the area or its section. Calculations have shown that
this makes it possible, when P(L)/P(0) > 0.8, to introduce into (1),
in place of function P(x), the value of the average perimeter P,
which does not depend on X and is equal to the arithmetic mean perim-
eter of the base and tip of the blade.

Here equation (1) assumes the form

A2 oA, ap ket . R -
T T R T b (=t fo), (2)

where tﬁII is the temperature of the gas at the level of ...e average
blade cross section {Fig. 1). Equation (2) is solved by substituting
e(k/z)x = z:

0,02 P [ A, (2™ ) o B K (et ), (3)

/fﬁii%.lz() and K2() are modified Bessel functions.

where == o
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) ,2,,,,,,,,,,,:.:/,;1'“ ' Constants A, and B are found from the
.——ﬁ,

’(dg boundary conditions at the blade basc and tip.
~ ’/L.de Let us superpose the reference origin x
= . - and the plane of the blade base .section. Let us
//"‘c assume that the temperature along the root changes
g linearly, while 1t remains con-tant throughout
£ ﬁ ‘V//l,“%::d the lower shroud, equal to the cemperature of the
</ e blade base. Then the boundary condition with

Fig. 1. Dlagram of a X = 0 can be obtalned from the heat-balance

ghrouded blade on 2. root )

(a desigrates the mean equation /Fig. 2)
heat-transfer coef-

fiolents).

0, +Q,=Q+Q;, ()

# adc("dc) p

T where Q,==i, - " ~=Sis the heat entering
sectlon S0 per unit time from the
working part of the blade; Q,c

Gk = — ¢ (5, +6,— )5, 18 the heat ob-
tained by the surface of the lower
el g (5etg) shroud, turned toward the gas flow;
Q,;:k_‘%s,, is the heat removed from

n

.Pig. 2. Diagram for compiling heat- .
balance equaiions with x = 0 and r = r;.  section S0 across the blade root to

the turbine disk (here af=f,(M—fry
ti(r)) 1s the temperature of the 2lsk when r = r; )5 Q; _u4(1.+1',"~—1|5 +

+a, (0 -—")’—-‘,,,,-t\s, is the heat removed from surfaces s! and S}
%q ad

by the ccoling air.

As can be seen from the last expression, the intensity of con-
vection heat transfer depends not on o but on the gas temperature
at tnc butt section (tﬁIII)' The difference in the values of t?II
and t#III takes into account the drop in gas temperature at the
\}lade boundary (when x = C). The gas-temperature distribution

cion thus given, with consideration of its lowering at the blade
, is of rectangular shape (Fig. 3). Actually, the change in
temperature will be smoocther. Above 1t was noted that t: along
the blade foil is assumed to be constant, to faciliitate solution of
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equation {1). 'Thus, assuming the gas-

%
. : temperature distribution function to
T I s
1 } be rectangular we can reduce, to the
. ' { best of our ability, the unfavorable
Ferte ? T role of the approximation made when
=3 =i stating the problem.
z?® FEs -
A 54 vri
Pig. 3. Distiibution of t¥ along the We nust also explain why the second

blade, used to state the problem.
term appears in the equation for Q& .

d
Althouvgh the area of cooling Sg does not correspond to coordinate
d
X = 0, nonetheless convection cooling of the side surfaces of the
root occurs and it can be taken into account by this te . 1In final
analysis 1t also influences the value of tn(O). Thus the boundary
condition for x = 0 will be refined.

Substituting Qn’ Qo s Qx, and Q& into equation (4) we get
(o} d

[
_ ,-;!(;_‘.L-._:., (5)
where

(S, +S, ) TS,
1= 725 —_—
U (tru~ ;Hl)sar-!_ o (S,, +S,, (et
7Sy TS, T T

{S a8, )
H d
Y S— NV
+‘JISO 2}.-.30 A

-

Fa=

Unlike the boundary condition dtn/dx = C, where x = L, used by
many suthors, we can assume that the temperature of the upper shroud
and, consequently, the blade tip, is constant. Actually the upper
shroud, having a developed surface, easily reacts to a change in the
dynamic equilibrium thermal state, and its temperature iz determined
by the neat-balarnce equation, in which the convective influx of heat
from the gas to the shroud is equal to vhe heat lost to radiation,
i.e.,

Q.,=Q,. (6)
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It is also esdential that the boundary conditio. dtn/dx = J, when '?
x = L, 1s completelr unconfirmed by experimental data. These data 5
indicate that the tempersture has a maximum value in the middle of i

i the blade and drops off toward the base and the tip.

; It is not possible to precisely express the components Qa and
a
Qe’ since the first of these is determined by the heat-vransfer

coefficlent and the gas temperature, which will differ at various
points on the shroud surface. %The value of Qe depends on the tem-
perature of the parts surrcunding the shroud and the mutual ir-
radiation surface, which will change as the rotor rotates.

To calculate the ecquilibrium temperature of the blade in this
case Wwe can use the equation of the vaiues of the convective and |
radlant flures which are average for the entire shroud surface:

q;.);= qu (7)

where . .
- ( R ) e T.:‘lu"T‘xct - . a,=g,
(’-,a::“x- o '_T.-.'J Qi=es ‘_"'100—‘ s Ug==-

By temper -ture Tner ve mean vhe tentatlive average temperature of
the surfaces of all parts surrounding the upper shroud. It will be

approximately 150-200° lower than TnO' For practical calculations
we can disregard Tior and then, substituting q; and q into equa-
tion (7), we get a

T
“a(rtl'“rat"““m' (8)

The boundary condition assumed when x = L is written in the
form

0.1=1:.)'— rle (9)

Using boundary ccnditicns (5) and (9), let us find the partic-
ular sclutlion of equation {2):

kxl
“ S . (’ '
'J‘..‘- [C,[‘:\‘..Iiilc“' 2")‘5" C_.K'_- (21’110"1”)] ’ES-- -‘-

10
. " €ad bl ( )
= [C s 2yete 2L C o (2010872 Y) == .
5
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Plg. 4. Diagranm for for-
mulation of initial dif-

ferential equation for
stationary heat conductio
for a gas-turbine disk.

n

Cr = (L= 1) [K(2m)+ Ky (2my)]:
Co=(tn— 1) [112m0) =51 1. (2my));

. % r2
Co=e*K, 2™y Cy==c 1, 2me"°)

Cs=¢" Ky2ue™) [11(2m) —enf, (2my)} +

+ "1, (2mye™?) [ Ky (2imy) 4 51K (200)].

Thus we have solved the first part of the general thermal problem,
for the turbine rotor.

Now let us find the particular solution for the differential
equation of stationary heat conduction for the turbine disk. The
equation for an elemental annular section of the disk will be (FPig.

)
Q: = Qf:‘Qx"g‘ Qb (11)

Where Qr—Qf=j;[h&v2ypﬁ%£1dris the quantity of

heat propagating along the radius of the d4isk in
1 second by means of heat conduction; Q.--Q;=

= {u, (N [{y—1. (M) - u (O, — 64} 2ardr 1s the quantity

of heat given off by the lateral surfaces of the
annular seztion c¢f the disk (2wr is the length of
an elemental ring of width dr; y(r) is half the
thickness of the disk as a function of r; ae3(r)
and aeu(r) are heat-transfer coefficlients on the
lateral surfaces of the disk, t83(r) and teu(r)
are the temperatures of the ailr which coouls the

lateral surfaces of the disk).

In further discussions we will set

(P =u (r)==u (r) and {, (rN=thr==f(r.

As shown by comparison of the results of calcuiation with =x-

perimental data, we can consider approximately that o and tB do not

depend on r.

P Ly - T _ o e

2
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Substitution of Ql - Q2 and Q

+ Qu into equation (11) with

3
consideration of the approximations made gives
i Y0) dr =0 (f. - ) 2ardr. |
- (4.1).!;,‘" ) dr=2a,{t,~-{)2ardr (12)
By a_ we can also mean the arithmetic mean of the heat-transfer .

e
coefficient between aB3 and ooy

; R i
v e F AR etk SSerh 5 2 ML A I 2 5 s

BRSSP E S P A po et A
. »

After differentiation of equation (12) we get

d2, y di, . dy db; 4, . n
[} ———— e — e et — — ) o
dar? + r odr dr dar b, ) (13)

where eA = tA - tB.

7

3 As an example, let us examine a disk having a hyperbolic pro-
’ file with a central opening (y = a/r, where a is a constant).
Usually, the crown of the disk 1s thicker than its bed, but for
solving the heat problem we can replace the stepped transition from
the crown to the hed by an approximate monotonlc hyperbolic
function, correcting it with a profile coefficient such that the
change in the average value of the thermal resistance of a real
disk 1s the same as that of the present hyperbolic-profile disk.

7 For a disk with the selected profile, equation (13) has the

form

a0, Up
Ch le,g,==0.
dr2 -azﬂr‘ (14)

Tt TR,

It can be represented as
l ; 23
- (2™

A R TR -
! ——— T et B =0 e L.
[( 2 )I dre 1 Kz "-) " 1 e ]/ ar, (1%)
hpeau 7 4.3 . .

it

=

Setting (%—mglxn=: we get
Syt e ¥, =0, (16)
Equation (16) is one of the particular cases of the generalized

Bessel equations, and its general soiutioun will be
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8=V % [Au13(2?) 5 Balean (). (17)

Returning to the initial independent variable we have

4, = (-;I:—m:r“ "')"'3[,4_./, N (—%— m.r’ 2) 4 Byl_13 (-—;’;- mzr‘”)} . (18)

iy 8

Constants A2 and B2 are found from the boundary conditions when r =
=T, and r = ry (see Fig. 4). For coordinate r - r, we can compile
the following heat-balance equation:

Qi—Q;, = (19)

Here Q"::).z-‘—‘llo—’f.?:lr,/‘/:ﬁ is the amount of heat fed wi’hin the disk
r

per 1 second from the arbitrary cylindrical generating sur-

face of a disk with radius ry and width H (it is assumed that the
isothermal surfaces in the body of the disk are positioned coaxially);
B is a coefticiént which takes into account the thermal resistance

of the blade roots; Q;an%%.&ﬁ is the heat which enters the disk
through the above-mentioned arbitrary cylindrical generating sur-

face (SH is the cross section of the blade root); n is the number

of blades; Qé:sa;“Sbn is the heat removed by the cooling air from

the sections of the su.face of the disk crown included between the
grooves of the blade roots (see Fig. 4).

Substituting the values of QA’ Qi, and Q& into (19) we get,
é
when r = Ty

d,

—-:-—-'..';30:'*“:-?41 (20)
dr
where
0,5, 1 2.8l
e e T S e T (20%)
W2anlli LI N

The boundary conditions when-r = r, are compiled based on the
following concepts. Since we are using a hyperbolic disk profile,
the theoretical piofile of its stepped part will be too strongly
developed in the axlal direction. This greatly increases the ares
of the central part of the disk, air-cooled with heat-transfar
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coefficient Qg+ To compensate for the artificlally elevated heat
removal in the stepped section we can stlpulate that there 1s no
heat transfer along the inner surface of the opening, and then the
boundary condition when r = r, will b~

N AL g AT Y

d05/dr=0. (21)

3 Boundary conditions (20) and (21) determine the values of constants
A2 and B2 in equation (18), whose particular form in this case will
be as follows:

|
2 {
y i f W %
3 i h=t1/ L V..es(-%-x'lgrg'\l..m(——nzr ')-—-
3 ¢ g . (22)
Y
H 2 37 ] 2 ~
. —lsaf—=— m.ra )l S myrit ],
3 i (3 ara xa‘\ 3 \
4 i where
Com/lons(Zmri®) [murtar, (2 mrre 32
s=/-u{ 5 mrt ) myr] ?3(—5- lrx.r,~\)—-- /_;,(-—m,r, ]...

2 2 2,
~1=3 (? msre, ) {m:r:""l__g 3 (-—;—- m:r‘l’"J —-_';J/, 3 (_ nari ‘)]

RNk da e e L e

In equations (10) and (22) the constants ¢, and @, include the tem-
perature differential along the root At = tn(o) - tn(rl)' ;

Ry

Pirst let us find en(O) and eg(rl):

9..‘ \0\-'-'2 —.:Cg: [C;/_,(Qm,) : C)I’\ “)I’llllc ! Tlc ln(ql' 1)-—C‘K~(..m; ] (23)
b (r)= ;: [1:.-.(-3«"” ) J &—"hf? )
2 24
__[..1\—-m\/,”)/‘3(7 1,0 3 \] (24)
3
Let us intrcduce the designations
E, @ l. - i) S, us S; --S; .
3 C.,-.-.-. t( rlX‘ ‘l“ {.%_ ( ...‘ ‘_.) (l'r:l—’..);
3 1Sy 143y
] . . S .
E S _ quy _ " T_'u;s’fz
i 8 MI:S, 2150 ' s 1.2ar13
C,.,==l_‘3;. ’\;—- In..rg’) l.as \—2--"1;':; ?) -
fen &—- nr ‘ IR K% n_r?"') .
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Then, considering the values of ¢, and @, from formulas (5) and
(20), equations (23) and (24) can be rewritten in the form

£ —fasre G120 Oy {2y} €31 +
FC-Ta g2 = C Ka (2] €5 1 Cp - Coatis (25)
la"‘ fn = CE:C'.'CIO-‘-I“ (26)

Subtracting (26) from (25) we get

= far [Col 3 (20)--C K< (9] €T {Cle(@my)— CiRs Qi) €T ior

.= .
A T (G2 @) — ok 3] €2 g Ci 1L (27)

The right side of (27) does not depend on x or r, and therefore the
value of At = tn - tn can be determined on the basis of initial data
of gas-dynamics calculations before determining functions tn(x) and
tﬂ(r). This does not contradict physlical sense, since At in final
analysis depends on blade temperature when x = 0 and disk tempera-
ture when r = r;. 1In other words, the values of tn(O) and tA(rl)
are interconnected unambiguously by conditions of heat transfer and
heat conduction, which also determine the nature of functions tn(x)
and tA(r) themselves. Thus, substituting (27) into (10) and (22)
we get interrelated dependences tn(x) and tﬂ(r) in final form. 1In
practice it is advisable to substitute the numerical value of At
directly into (10) and (22).

Theoretical calculation of blade and disk temperature using
these calculation functions begins with determination of the heat-
transfer coefficients. For this we must have data from gas-dynamics
calculation and data on air used to cool the turbine. The next step
in calculating the temperatsure state will be solution of the inter-
mediate equations in numerlcal form: first to find the value of At
and then to calculate the constants Cl/CS’ C2/CS’ C3¢2/CS, Cu¢2/05

'E'"~""ff and — —-—7;:—"~-in equations (10) and (22), reduced to
t 1 y

comparatively simple form, changing coordinate x within limits from
0 to L, and r within limits from r, to r,, we can find the radial
distribution of temperature in a gas-turbine rotor disk and blacde.
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Thus, solution of the simultaneous problem of heat conduction
for a turblne disk and blades allows us to calculate the temperature
field cf a turbine rotor, using only initial data from gas~dynamics
calculations for the blading and hydrodynamlc calculations for

cooling.

The use of the temperature different. ~t the root makes it
possible to complle boundary conditions for the blade base and the
disk periphery such that after colution of individual initial
equations for the disk and blade we get a single temperature functlon

for the rotor disk and blades.
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3 NUMERICAL SOLUT.ON OF THE PROBLEM OF NONSTATIONARY HEAT CONDUCTION
é FOR A GAS-TURBINE ROTOR WITH ROOT-SHROUDED BLADES
4
; !
2 Ye. Ye. Denisov and V. S. Petrovskiy ;
i The one-dimensional nonstationary process of heat conduction
o
3 for a gas-turbine rotor wilth blades will be described by the follow-
1 ing system of equations:
F for the disk |
3 ('»l:(r,_\_\_= a: o _ _é(r.v) e - . '
: i & rz(ry ¢ér rel or J e () Fatr v bl (1)
o
. for a solid blade
= | .
. A SORUNRCIIRUN <2 % B I GO L AN Ry :
g ot S(x) Gv [S(’\' dx ] e S (%) l i€ T I \) (2) .
: f;
% We will examin: a disk with a central opening. The designation .
3 of the heat-transfer coefficients on the approprliate surfaces, the

direction of the heat flow, the quantities of heat passing acruss

1 specific heat-transfer surfaces in ] second and used in the heat-

balance equations when formulating the boundary conditions are

given in Flg. 3 on p. 6.
To obtaln equations convenient for numerical analysis, let us

use the feature of the actual distribution of temperature in the
blade and formulate, for the system disk/blades, two heat problems
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ta(x,,T), Lalxsm)

root h////"—\\\\
p(nc) /
”¥’<:/,///i/

opening

disk

2
L——// -blefe |
! Is Xy Xz_i
oK ® K x
¥ig. 1. Position of coordinates and approximate

foru of the temparature cependence for the sys-
tem disk/blades: 1 ~ disk without opening; 2 —
disk with opening.

ing form:

for section 0 < xy <17,

We will solve the
sanctions ¥ in initial

b S T i A A S R

T

4gir) = a,(r)e™,

AL

be constants.

lem.

adiabtatic. Then

the second for the blade tip sec-

cance for tie distribution of temperature in the blade in the follow-

¥ fo ()=o) =Sy (h— X% (3)
for section 0 < x, < 1,
£ (x )= (0) —Uixh (%)

problem relative to a gas turbine, for which
equations (1) and (2) can be written thusly:

2(r=2g+0r—roh,

P {.‘.') =M :
St S (0 ¢~
-1.0 S

: -tv_\ ‘: l.\‘o

The temperature of the cooling alr tB and the average heat-
transfer coefficlent in the vane cascade a3 will be considered to

is2t w: Teoermulate toundary conditions for the first heat prob-
We will consider the surface of the

(W)

or

the first for the disk

(Fig. 1):
(r, < r < r;) and the root sections
of the blades (0 < X, £ Zl), and

o w2 BN S e MG A BN R Y P

tions (0 < x, < 1,). Here the
total length of the blade 7 = zl + :
+ 12 and Zl X 12. With such indi-~ 5
vidual statement of the heat prob-~ .
lem we can formulate relatively

gsimple boundary conditions for the

entire system and obtaln the function

tﬁ(x) which is of decisive signifi-

(r2\<;r '\:.rl)n (5)
(f'-_‘\*::f\‘;f‘), (6)

'J' 0 Sx<hy (7
(8)

central opening to be

(9)
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when r = ry. From the heat-balance equation, compiled for coordi-
nate r = ry 3]

Qi+Q2=Qs (10)
we can obtain the followlng boundary conditions:

ot (I'l, T)

a’ li (n T)x.“-"nt (r,. t)—'- ‘e (ll)

From the heat-balance equation zompiled for coordinate
Qu+Qs=Qs+Q: (12)
we get

9t (0, 1)‘,

axy =":~‘1.|(0' T)"l-—"f (rl‘ )_?'3' (13)

And, finally, for x, = 1

1 we can set

1
9t M) g, (14)

In boundary conditions (11) and (13)

. 13.),- ) - a;,S;-;n
N ks
3= (Fg— i

S, s Sa aS

.«4-::——-—--——- — e e

%S (V) 55, (0)  2.S.qb)
S H a"sfs
TS @) 28,0

a5, ( S, )
Saw TS O

Let us write equations (1) and (2) as follows:

G, (1% &M Y N . . .
¢ _,_(r_.) a, (_,_L._‘gr’. ﬂ - by (r )” (r AL —r(r)i, - ‘t')/-.-:_]drﬁ (lf/)
or?

N

ot (x1, 1) Gt (ry,7) B )t (X1, 1) -
LA D g Il by ) i T AN, = .04 16)
ar A ox ! Y Ca(Xy 00 V)= SN (
Here

)

i L ()= =M (Y
r - coin hi(r) LRI

CZ('\‘I)"_‘ _ G (x)P(x)) .

* ‘A'.‘ = — Lix .
‘I-‘l 0.8 (x7) ) S )
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The time variable varies withe

!
T1. 7711 1in the limits 0 < 1 < =,
Xl - X1
- % As the initial condition
Jb! R %;J let us assume (when T = 0)
! }1 ] te=(r, 0) =t (xy, 0) =la. (17)
js'g-ﬂ LN f:??‘: thy f} We will seek the solution
o . 3 0 3 X
{ = ng' X “..  in the rectangles r, sr<r,
- ..{;_... []
Toot 0 <t<T, and 0 < Xy < zl,
Pig. 2. Calculacion diagram using the grid method. 0 i T f_ T (Fig. 2) which are

associated with the appropriate boundary conditions.

Let us examine a node grid formed by the points of intersection
of two families of parallel stralght lines. The first famlly

[rm-_—.ih.:- ra (im0, 1,2 ) s
x{flenit, (0220, 1, 2, 000 B by=4h];

the second family [v.-jir (j=0,1,2,...)]).

Stey h along axes x and r1 and time step At along axls T are
taken tne¢ same for the disk and the blaue.

The nodes lying on the lines r = Pay P =Ty, X3 = 0, and kl =
= Zl wlll be boundary ncdes for the examined protlem; all others are
internai nodes.

It some node in the resctangle for the disk/blade pertains to
funct Lon tA(r’T) or tn(xl,r), respectively, for it we can write the
difrerence which approximaies the real values of the derivatives
at this point., For

oty(r, T)i0r and dty(x,, 1)/0x,
this is

=LA wir=tul (18)

et e g s e et o
1

2h

while for
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29
23

B
.
ey

-

Gy (r, ©)/0rr and o, (x:, 1).0%,

this 1is

gli+tiianlle i) o yli=1.01
h?

. (19)

The derivative 3t/dt in node [1,j] can be represented in three

forms:
PSS ARSI

i ) (20)
Gl __gli-i=11
—_— . (21)
6“"—“;:::;".—” . ( 22)

In accordance with (20)-(22) we can use three sc:hemes for
approximating initial equations (1) and (2). To solve the posed
problem on a computer with limited storage, the first dirference
scheme 1s more céonvenient, since the initlal condition gives the
value of the approximating functions eA and en for all nodes of the
first series (t = 0). Using these da%a we can calculate the values
corresponding to the second-series nodes (Ti’o + A1),

The values in che nodes located on the boundaries of the rect-
angles can be obtained using boundary conditions (9), ."1), (13),
and (14). Then all calculation ouperations are repeatsd . . the next

series of rodes 1 + A1, ete.

i1

The use of a difference scheme involving equation (21) makes it
necessary to solve z system of {(n + 1) + (k1 + 1)1 equations with
the same number of unknowns, which is too much of a load on the

computer memory.

The difference scheme vsing equation (22) is unstable. The
calculation errors in this case accumulate extremely rapidly, and
after only several time steps in many nodes they become commensurate
with the value of the approximating function,

Using the first scheme for approximating initial differential
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equations (1) and (2), we get the following system of difference
equations: )

TN . lod,
1 o) gl
1 v L] ”‘ . "’

'3.‘!‘4.,'”'—6!11-"” TPRIN) 3] ({N]]
g+ lls 4 Al ae 0 (23)

where ’ ¥ ' ’

a, r - £ fme :
(LU TR { N el RS SR (L OO S
i M ry "30;’)

Az =N (e, 2,00, n=1 10 j=0, 1, 2,...)

!

and
,ynm_mpn+w—ul

h

' b!v['H.”"’(a.\

ALl gl =11 B
- 0h1 2 %“ +wywﬂ”+fyjﬁr+¢9”. (24)
where . ' .

Sty Q» 1 LR I ]
,)'.,”1 01 / ' Ch Tt ame ' n. - l‘
: S; BETEE s c,q,s, jg !‘

The boundary conditions must also be represented in difference
form. For the line r =T,

(A gt}
?-—’;-9--—-:-:0 or ’Jlonn')“”' (25)
for lines r = ry and X, = 0

f-,""":"”,“(;!""'o)':’”
1 A

S g 0y (26
L1041 . :
e 0 e 00 (27)
for the line X, ® ll
[“u“ AR '
-—--.- -—-—o - “n or "k‘ “ ‘J!‘tl-‘Q,'. (28)

h

The initial conditions for the examined problem can be written
ag follows:

Bl

Bl rr, fwO 1, 2,00

(29)
W T, L 2 B

The problem is formulated such that the rectangular grid for a
alsx on lirs r = ry has no independent boundary condition. The
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values of approximating function BA in nodes belonging to line r =

= r, are determined from the associated boundary conditions for

lines r = ry and Xy = 0. In turn, each of the values of the numeri-
cal solution in the nodes on these lines 1is defined, on the one hand,

[n"lxj] [0: ]
by o: 80>

(1,31 Tn,J]
Gn and GA

and according to (26), and on “2e other hand, by

according to (27)-

Consequently, to associate equations (23) and (24) by means of

such dii'ference relationships, in which there would be successive

transition from known values in the nodes on the 1lir .3 r[n—l]

[n]
xln

and
to unknown values of the apnroximating functiuas in nodes on
the lines r = r, and Xy = 0, we must solve equatiors (25) and (27)

for ehn’J] and GEO’J]; we get
drte 2y e (30)

where

7,

A=

P NE ST N ER

{r=1t .. gli.il Na=1,jl.
- :'1".1 )'— . ]

o
A

Ay=l (33 - wi) - Al =30
o . v I L pin=-lag) 1471
=0 =)= Az -0 = 2394 )-—- ht.

’

The set of initial difference equations (23) and (24) and
bcundary conditions (25)-(28), where (26) and (27) are presented
in the form of (30), allow us to determine, on a computer, the
approximate numerical scolution of the thermal problem for the disk
and the lower part of the blades.

Let us formulate the problem for the blade tips (0 < x, < Z,).
The node zrid for the approrimate solutions is aiso shown in “ig. 3.
It 15 adjacent to the node ;. } for the lower part of the blades

(0 < Xy £ Zl), and is formed vy the intersecit’ .a of the families orf

[1] j = JArt.

parailel iines x; ih (1 =06, 1, 2, ..., k?) and T

The process of heat conduction in this case is described by
equation (2), which in difference form will look 1like (24), ex.ept
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Fig. 3. Results of rumerical solution for stage I
of a gas turbine: a -~ experimental curve for the
steady process.

ular heat regimes.

follows:
for line x. = 0
-

glo-8) __ sl1l
3 h | .

== 6]

for line x, = 1,

that 1 changes from 1 %o

k2 ~ 1. Functions @3, P,
and Sn have the sane form
as for the hlade root sec-

tion (xl), but the numerical

values of P(0), Sn(o), Lys
and ;5 will differ Func-
tion tﬁ is represented by

parabolic equation (U).

As the boundary con-
ditions we have: when

i, nx o,

0.\'2 ’

(31)

when x2 = Ly

to ey T)=1 (1) —
— [Fer=te = (32)
— [ty =ty (1 —e"™),
Th: last equation is
based on the ideas that
the temperature of the

blade %ip is equal to that
of the upper shroud, whose

heating is determined malnly by convectlon and radiation heat transfer
with the ambient medium and occurs by a law similar to those for reg-

in difference form, conditions (31) and (32) are written as

(33)
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(34)

P ot S

The boundary conditions for Xq = Zl and Xy = 0 do not provide
for equality of the temperature functions on the left and righ.;
4 ‘ therefore it is possible that the approximate numerical solutioas
é j ’ for sections Xq ar.d Xy, obtained for the same moment of time jArT,
i will differ somewhat from one another. This difference does not
exceed the error of the calculation method as a whole, and therefore
we can use as the final result one of the two temperature values ob-
tained for the boundary of blade sections Xq and Xy, Obviously,
to inerease reserve blade strength it is best to take the higher of
the two adjacent temperature distributions.

3 i ok Aot e oAt

sl o PR

va il

' Figure shows the resuits of numerical integration by the pro-
posed method, and gives data on direct measurement of temperature

i
<3

for stege I ¢f a turbine rotcr. We see the good agreement between i
the theoretical and experimental results. The theoretical dependence ]
for a prolonged time (approaching the staticnary mode) is somewhat 1
above the experimental dependence because the calculation was done
‘ for the mean-mass temperature in the vane cascade of stage I, tﬁ =
* = 1176°K, while the experimental data were obtained at 1133°K.

TSy T T

With numerical integration by the grid methecd of the heat -con-
duction problem examined in this article, we used an explicit scheme.
In this case it is possible, since under stable conditions

A

" . N
cem—m—— and AT —
2mav S ) 2max [ (1)

(35)

L
L
-

functions S(x) and P(~) = rz(r) do nct change rapidly.

T,

The integration steps were selected as fouliows. We first gave
. the step h = 0.15r1. The selected step, identicai for the disk and
for the blade (the problem was posed for a 2isk of smazll diameter),

allowed us tu reduce the time step At to 0.5 seconds. Trial cal-

235

culaticns with three values of At, from maximum to minimum, dwed

the good convergence of the =clution.

73

P " e s e o R S I T S ket s ESiTAS b e

PPy - 22k




R e 7 Ty e, T T
The proposed calculation method allows us to divide the general ) ;

heat-conduction problem into two gimpler ones: one for the disk
and root sections, the other for the upper peripheral parts of the
blades. This method can be recommended for theoretical study of
the temperature state of the rotor of any gas turbine.

Use of the grid mecthod for solving the examined problem using
a computer with limite . storage is more feasible and economical. .
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INTENSIFYING THE COOLING OF THE LEADING EDGE OF ROTOR BLADES

V. 8. Petrovskiy and M. I. Tsaplin

With internal cooling of gas-turbine rotor blades it is not
always possible to guarantee a lowering of the temperature of the
hottest parts of the blade. We know that one of the hardest-to-cool
parts is the leading edge which receives about 25% of the heat fed
to the blade.

At present, great interest has arisen in sco-called penetratiocn
cooling. However, the development of such a cooling method has been
hampered by the lack of porous materials having the requisite
strength and hydrs-ilic characteristics. Therefore, : number of
organizations have studied cooling methods similar to penetration
cooling — perforation of a finished blade by electroerosion, laser,
or electron beam. The figure shows a blade in which ccolirg of the
leading and trailing edges is intensified by this method.

Naturally, the operating conditions of a wall perforated wiin
a specific spacing and a wall made of a porous material are differ-
ent, particularly relucive to the protective action. When air is
blown in in the form of individual jets, the decrease in heat flow
at the point of intake is of a clearly expressed local nature vhich
leads, on the whole, to a lowering of the effectiveness of the pro-
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tective effect. However, with
exhausting of the air there de-
velops a noticeable aftereffect,
protecting certain parts of the
blade in the direction of gas flow.
Thus we can consider that cooling
by blade perforation is midway
between purely penetration cooling
and film cooling. In this regard
Eégg‘f with perforated leading 1t is advisable to examine the
possibility of cooling the leading
edge of a hlade which combines the high effect of internal cooling,
characteristic of a permeable wall, with the protective aftereffect
at the point of inlet. The diagram of such leading-edge cooling is
shown in the figure, which also shows the locatlion of the coordinate
system with an indication of the reference origin and the heat-flow

scheme.

Let us examline the distribution of temperature on the leading
edge of a blade. Let us 1isolate a sector on the inlet edge which is
bounded by radius of curvature Ty and lines connecting the coordinate
origin with the points of discharge of air onto the blade surface.

A heat flow with known value a_ acts on a cylindrical surface of
radius rye The influence of the discarded walls on the temperature
of the leading edge is replaced by a heat flow of intensity q, uni-
formly distributed along the boundary lines, considering that this
value is known.

Under such conditions the heat~balance equation for an elemental
volume will have the form

A [,.F ) —”-] —adui (- 6)="2qh, (1)
Jr dr

where t 1s the current value of the temperature of the leading edge
along the radius; & is the temperature of the cooling medium; r is
the current radius; F(r) = erh is the area of a cylindrical section
of an element of the leading edge; h 1s the thickness of the isolatea
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element, equal to the distance between the channels along the blade;
d is the channel diameter; a, is the heat-transfer coefficient inside
the channel to the cooling air; & = Z/r0 is the proportionality
factor, which takes into account the difference between channel
length and radius ry.

Let us introduce the dimensionless parameter m=-Zcil and the

el

relative coordinate y = r/ro.

Let us rewrite the initial equation in the form

2 .
y ___d(.,'_.(.l.f_m([...f,)=2‘1.4., (2)
Y ody?2  dy gA

We take into account the heating of the cooling medium.

For the given cooling scheme we can assume that heat transfer
on the inner radius of curvature of the 1nlet edge is practically
equal to zero. Then the current value of the temperature 6 of the

cooling medium can be associated with the initial value 60 by the
relationship

rzh dt
0=, 232 , &L
o7 chde (3)

where G 1s the air flow arriving per element of length of the blade.

Substituting the value of 6 into equation (2) we get

J£2
du

~

. )
! .\]—E-~y)-‘-{l——-'l"(l—fl';,.!'—' l,fu' (u)

dy (32
Y

u

‘.‘

°

e 2
where s::i%frﬁL is a dimensionless parameter. Let us introduce the
l:p

new variable z = sy and Zev

9,
N . LF
==1 -'0 i ;.,m Y (5)

Then equation (4) cen be rewritten in the form

:f,l;.}-}-\l-x 3)"{%'-—/1===‘0. (6)

(¢,
where 1:=--{ 1is a dimensionless parameter,

L
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For integral values of n, the general solution can be found

using exponential series.

The general solution for the second-order equation will be
ﬁ"—‘C;ﬂnJ(:) +C10n.:(2).
while the first particular solution [1]

n

4\ .
nn.l (")""k o(kl)?(n-k)f . (7)

Since for boundary condltions of the form
dddz=Bi_({x—{) when z=s;

Q-—:O when 2==0
dz .

(8)

the integration constant C2 should be zero, it 1s not necessary to
seek a second particular solution.

Determining integration constant Cl from conditions (8) and
converting to the initial variables, we can obtain a ca. ~ulation

expression for determining the temperature across the in edge
femby R (), (9)
R U M
Here
294
G, =0 2
=" a (10)

is the equivalent temper.ture of the cooling medium;

-

n
!l .
B, ()= 2 TR S
270

sn(l) is the value of function sn(y) when y = 1; t, is the tempera-
ture on the surface of the edge, i.e., when v = 1,

: 1 adb. (i
f Bl:f“y'*' e.,c,.‘ 'a-'F‘)' '—-:‘(-‘-)— (l )
- . r (. @ l
! "B | O VR
’l‘ + ———— et
(1) du

where Bir = u Kro/k is the Blot criterion for the leading edge.
Thus we have obtalned an expression for calculating the temperature
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of the iniet édge which contalns, in addition to the known values,
the value of q which is still unknown. Let us find the value of q
from the condition that on the blade wall thevre is a protective film
of alr which passes through the opening on the leading edge.

Under the assumption of a one-dimensional scheme for heat flows,

the 1nitlal heat-conduction equation will bde

d . . dt 3

S LA B —f)— foe0,12=0),

- (,; ﬂ).;a,.ﬁ(z,, f)—a,H (t—9, (12)
where 6 and f = H6 are the wall thickness and area; H is the dis-
tance between the channels emerging on one side of the blade; 7 is
the distance from the point of air exhaust.

Introducing the concept of the average temperature of the
washing medium

_ Qelia Gy

ur + ay ) (13)

where ta’q is the adiabatic wall temperature, and designating the

relative coordinate as x = 1/6, we get initial equation (12) in the
form

B pt—T1=0, (14)

23
dx2

2a KX
where #°= f is a dimensionless parameter; g¢g=-——<"1s the average

heat-transier coefficient.

The adiabatic temperature tan is equal to the temperature or
the gas at the heat-insulated wall. It depends on the flow and tem-
perature of the coola-* the temperature of the gas flow, and the
distance from the point of injection. Usually, the adiabatic tem-
perature is determined experlimentally and is the basic factor which
takes into account the aftereffect of injection. The experimentally
determined adiabatic gas temperature at the wall approximated
quite well by the formula

' . —X N
f. ::01~.—-(t“-—-01)e oot

B (15)
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166,
2H (15,
the polnt of injection; oxn/o is the flow of coolant to one side

of the blade profile; 61 is the alr temperature at the outlet from
the cooling channels; k is a coefficlent which takes into account
the direction of inJection for tangential injection ka = 0,337,
for normal inkection k= 0.186.

Heve p, . = , Wwhere (Yw) is the mass velocity of the gas flow at

Since T is a complex function of x, to simplify the calcula-
tions dependence (13) can be approximated by the expression

'i"_'-.To-':-(. - f\ 1‘_(,- X)‘ (16)

where TO is the initial temperature of the washing medium when x = 03
T_ is the temperature of the . hing medium as y + «»; 8 1s an approx-

imation coefficient.

Setting AT = T - t and bearing in mind that

a7 ., - - i
—F=—FiTa=Tole™™, (17)
we get
d2(sT) N = =T =T )e= .
.._E{__.._A Wh)=—2(T.~Tyle= (18)

The general solution of the given equation is ohtained as the sum
of the general solution of the corresponding hcmogeneous equation

(AT),=Cyerv 5-Coe=?s
and the particular solution

{AT)utm— e .

Substituting the numerical solution into the initial equation
and solving it for D, we get

4 .
(AT dere=— ey (Te=Tyle—?x,

Then the general solution will have the form

(AT )= Cyers + Ce—5x — :2k, (T —To) =55, (19)
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The integration constant 1s determined from the following boundary
conditions:

5y s il el Y
ERA AR e L

08 PEH RIS S e AR AR Setert

t=1, when x=0, -

. | I (20)

{==1,. when x=00
vhere tl 0 is the average temperature of the inlet edge,
3
1 .
1,__3.—.5 tdy. (21)
0

Thus, the distribution of temperature along the blade profile
near thz inlet edge can be defined by the formula

=2
- k2

22

32 82

(Te—Ty) e (22)

t‘::—{7‘o'—il.°':‘ (T\—'To)] C"k". '!’ ey

Pres

Let us find the heat flow fiom the shaped part of the blade when

e R BAD A

x = 0:
:; Q= ~ 10l (-;-';I-Ii )1-0=-= —tH (:—:]_\--o: ::
; = — (T =T (-3{‘_—--?.,,,) : (23)

helc B ETIRR ot 1 R

where ﬁm=:$£:¥l 1s the average relative temperaturc of the leading
« 0

edge.

Consequently, the unknown intensity of the heat flow q = Q/2r0h.

TR

Solving equations (9), (10), (11), (21), and (23) simultaneously
we can define eo oK tl, and Q, corresponding to the given cooling
3

1
conditions. Setting ﬁw==\ldy::ﬁ€;§' where to is the temperature ol

the leading edge of the blade at radius y = 9, we can write the
eapression for the average temperature of the inlet edge

. o Ll S D) — fg, 5 (1= 84 () 2
o= AT . (24)

2 HE

ade,try

Setting =, we get
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n ® oy [
[m,a )+ ;("][-———- T, - T+ To-.Leo]—@m,tW[.-.- 0.3
y ]

60‘3“ ] a () (25)
== (0 4 1) 3 Bip by (1) (2 5 2) ~ Big &
and
1 d&,,(l)
y B‘rf\( T"O.nm d"
P
. d8, (1) (26)
Bie + 3700 a,.(x) dy
The alr temperature at the channel outlet
y Qr
o ==§, -1
Uy ==0p— Ge, (27)
where Qz is the total heat fed to the leading edge;
- ,l—" 5(10,,(1).() 3 Y C% —-I\ .
Qg =iz TR WHE(T o I}}(—-—;_!_k ’1..) (28)

It shou d be noted that the second term in expression (28) can
be both positive and negative, j.e.; there can be additional L:2at
removal to the wall adjacent t ., the leading edge or there can be
heat feed.

The direction of the heat flow ir determined by the sign of

the complex (?iju—i,).

When B/(B + k) > El,o there will be heut feed, while when 8 %
+ (B + k) < El 0 there will be heat removal. Thus, with an increase
in the value of B the ratio B/(B + k) will increase, and this means
that the temperature of the washing medium as a function of the dis-
tance from the point of injection wlll change very rapldly. There-
fore, to decrease the heat fed from the wall, in all cases 1t 1s

necessary to strive to increase the coefficlent k = v/2BI, where
= (QCD/A)G.

Below, by way of 1llustration, we glve an example of calcula-
tion of coollinz the leading edge of a rotor blade for the following

Initial data:

atl s SO Sl o Sty anedead e ua e e et

o e e
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Tw*=143"K; 0p=738°K; 0y x=4060 w/m?°K;
70=225.10"3m; 2=21 w/m°K; ar=2100 W/m3°K;
d=0,3.103 m; ay==267 “/p?°K; 6=15-10-3 n;
H=h=10"3m; $=0,55: £==0,94; ¢=1.2 rad;

G+=6,5-10"° xg/s (alr flow through one channel
on the leading edge).

On the basis of these initial daca we calculate the following
complexes which appear in the calcuiation expression: ’

Ge
Bi, =221 .- 0437: n=—=276:

). tsh
s= 2000 00835 g, =-2T% 1290 w/moK;
+ Gep 2
VAPTIEA R HE -
k= / 4 _O Jl M Q’::-:—':-'—"‘-=Ons'l.
l/ P S adadr,

Since we obtained n = 2.76, to calculate the values of the functions
sn(l) and dsn(l)/dy we must round n off to the nearest whole number.
When the calculation must be precise, we must calculate the initizl
values (i.e., tl, eo,su’ tl,o) for a number of values of n including
the interval of interest to us, and by interpolation calculate the
frue values cf tl, eO,au’ and tl,O’ corresponding to the fracilonal

value of n. Let us take n = 3; then

N B
Boryr= i y)=1—3sy-- —2—(5;/ . -'-(__.c-: = 1,9257:
L L3 I 3.» - -!---- y-— DA
d
" _C_r“1+c.“o =764 K ed tro
fo=—=0 e, /0K e pf°d“°\ b\e
tor =+ @8
Fd 3" Gn
To="Z 10 1171 K.

Up -~ a,

Here we assume that in first approximation 6., = eo + 30, since heating

of the air in the channels ir still unknown.

Setting n = 3, we can calculate, from formula (25), 6 = 654°K,
from formula (26) T1 « 1054°K, and from formula (24) Tl 0= 908°K.
3>

Then let us find ;,T =06 and ‘—'?—‘.o_ 0,369 -0~ “, i.e.

« -7'0
we obtained the case of heat removul to the wall adjacen. to the
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leading edge.

Then, using formulas (28) and (27) we get
Q:=202-10" ¥ and 8;=771°K.

This result corresponds to the case when the protective after-
effect of the air discharged from the openings on the leading edge
was estimated from the dependences for normal injection (at right
angles to the incoming flow). If we consider that at an injection
angle of less than 90° (in practice it can be about 60°) the pro-
tective aftereffect i1s intensified and will be somewhere between
the aftereffect with tangential and normal injection (at injection
angles from 0° to 30° the protective aftereffect will be identical),
with injection at an angle of 60° the protective effect can be es~ '
timated by the coefficlent kB, which 1s approximately equal to the
arithmetic mean of the values for normal and tangential injections.

Considering the influence of the injection angle and taking
coefficient B = 0.376, we get 80’3“ = 583°K, T, = 1031°K, and TI,O -
= 985°K, i.e., the maximum temperature of the leading edge is re-
duced from 1054 to 1031°K.

The relative depth of cooling H= fr—h =0.331. where tu is the

.

to—1,
temperature of the alr behind the compressor.

Thus, the depth of cooling 1is very great.

The method of coolirg the leading edge of a rotor blade, ex-
amined in tnis article, 1s very expedient since with the appropriate
materials it allows us to reduce the blade temperature and raise the
temperature of the gas in a turbine.

The given calculation example shows that as a result of the
simultaneous action of internal (in the channels) and external air
cooling (ty creating a low-temperature protective film on the tlade
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surface), the temperature of the leading edge is noticeably reduced
compared with that of an uncooled blade. .
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CALCULATING THE COOL.iING OF GAS-TURBI“E DISXS

V. S. Petrovskiy and M. I. Tsapllin

fhe reliability and longevity of gas-turbine instailations de~
pend, to a considerable extent, on the efficiency of one of the most
important parts — the turbine disks. The efficiency of the disks is
greatly influenced by the level of permitted temperatures, which is
guaranteed by uslng cooling.

When calculating alr cooling we must sclve the heat-balance
aquation for the turbiae rotor as a whcle, using dependences which
assoclate the heat flow with the temperatures of individual character-
istic points of the rotor. In rarticular, to perform such calcula-~
tions we must establish the dependence of heat transfer to the disk
on the temperature or the crown for the given geometric dimensions,
tlie the.mophysical properties selected, and the boundary conditions.

-The qu.stion of calculating the temperature in cooled disks has
already bzen examinecd in vhe technical literature. For example, [1]
contains a survey of methods for solving the heat-conduction equation
compilzd on the assumption of a one-dimensional heat-ficw scheme:

e
dx

e {}.f ;.x“-‘-',—:-}-—-{:!ur (=t x =11, (1)
Y dx

where F(x) is the area of a cylindrical c¢isk section; A and a are
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coefficients of the heat conduction of the disk material and heat
transfer from its lateral surface; t and 6 are the temperatures of
the disk and the coolant; r and x = r/r06 are current and dimension-

less radii; Ty is the radius of the disk crown.

6

On the basis of the survey the conclusion is drawn that simul-
taneous conslderation of variability, along the radius, of the area
of the cylindrical section, the temperature of the coolant, and the
heat-transfer coefficlients leads to a substantial complication of the
calculation erpressions, which hinders their practical application.
This same work poses the problem of developing sufficiently accurate
and simple engineering calculation methods. In particular, a number
of simplifying assumptions are proposed which reduce the problem to
one of solving the heat-conduction equation for a disk ¢f constant
thickness when the temperature of the coolant and the heat-transfer
and heat-conduction coefficlients are constant along the radius.

Under these assumptions, the expressions for calculating the
temperature distribution along the radius and heat transfer from
the disk with boundary conditions

{={,, whenx==1, } (2)
d1)ix=Owhen x=0 :

assume the form

‘l-ﬁ - \ {
i Io(nxy: _ (3)

(=04

Q=2H it (fyy— 0 S0 (4)
where I,(n), I (nx), and I;(n) are Bessel functions of the first kind

"’u:
of an imaginary argument; n==‘/,;ﬁ4- is a dimensionless parameter;
o5

t06 and H06 are the temperature and width of the disk crown.

The error in the method ¢f calculating temperatures with such
assumptions 1s too great, and therefore the proposed simplifications
raise a number of objections.
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First, the disks of modern gas-turbine installations, particu-
larly transport installations, are of complex shape due tc attempts
to achieve uniform-strength designs. Here the width of the Jisk
crown near the root joints 1s considersbly greater than that of the
shank "w with which the crown is attached with smooth fillets (Fig.
l). Obviously, approximation of such a disk by a profile of con-
stant thickness leads to a substantial increase in heat fransfer.

& . '
3 ! ‘¢<”+a”d Second, when organ-

f’ T TRE izing the cooling, tne

o | © relative flow of air to

q /'\\\ 7g-L one stage 1s usually

“[ S~ . 0.3-0.5%. With such

55 i g n low flows the heating of

Fig. 2. Change in relutive hest transfer the alr becomes notice-
from a disz of constant thickness as a
function of parsceter n, when the temper- ghle. Introduction into

aturé of the cooling medium is replaced
<A ;g'_‘giz*;::;::;"" for various valses  the calculation of the
average temperature of
Fig. 1. Disk the coolant &oes not allow proper correction of the
profile. heat-transfer value. By wey of 1llustration, Fig.
2 shows curves of the change in relative bheat transfer from a disk
of constant thickness when the coolant temperature 1is replaced by
the arithmetic mean temperature. As we can see, with a decrease in

flow the error can reach 40%, and increases heat transfer.

Third, when n > 10 the periphersl parts of the disk have the
greatest influence on heat transfer. In this case, use in the cal-
culations of heat~transfer coefficlient vaiues which are average over
the entire disk surface will also yield an error, since the local
heat-transfer coefficients in the region of the crown will be greater
than the average coefficients.

Thus, the problem posed in [1] of developing a simple and
sufficlently accurate method for calculating disk temperature can-
not he considered as having been satisfactorily solved.

88




e o e - 3 =5 —y ——
3 WEIEE Stk Tee & ~ A e - BRI 5 € o T RPN ST el e ot s Loy

Let us examine the problem of distribution of temperature in the
disk shown in Fig. 1. Let us divide a disk of complex shape iuto two
parts: peripheral part 1 adjacent to the crown, characterized by an
abrupt contraction in profile, and central part 2, having a slight
taper.

For the contour which approximates the contracting part of the
disk, the change in area of the cylindrical section
F(x) =Fazxr, (5)

where F06 = 21rr06H06 is the area of the cylindrical section of the

crown, and p is a certain constant.

Equation (1) can be solved in quadratures only for the case
p = 3 and constant temperature of the coolant. This solution, for
tyundary conditions (2), has the form
==ty 4 (Log—H ) xm, (6)
where m = -1 + /1 + n? is a dimensionless parameter.

For real turbine disks the contracting peripheral part cannot

always be reproduced by the contour p = 3 and, in addition, the
temperature of the cooling air 1s not constant along the radlus.

Let us assume that the temperature difference t - & will change
along the radius by an exponential law

—0=Alxs, (1)

where s 1s a certaln constant.

Then the solution of equation (1) with boundary conditions (2)
will be

* ‘=0|cx -+ ‘IOG'—OB\)x*' ( 8 )

where k is a dimensionless parameter, eex is the initial temperature
of the cooling air, and A6 is air heating due to heat transfer with
the disk.
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Thé parameter

k= —Efl""l/(e';':l")"i' u._._t.,“;!:;.\h ] (o)

From (8) and (9) it follows that Mafy—(0+30) and 8 = k + p -
- 3. In this case, heat transfer from the disk

0}{2.1” ochk (fos—0vx) . (10)

Let us express heating of the c¢ooling alr as a result of heat trans- .
fer with the disk as fcllows:

9 k(i
A= ghlhg— ) (11)

where ¢=

2aH.¢ 413 a dimensionless parameter and G is the flow of
¢

P

cooling alr on both 3ides of the disk, and subatitute it into ex-
pression (9). After certaln transformations we finally get

l.-=.._”.._.-_."1'2!'_‘123.*_1/("—1:0"'-’)".*,,3' (12)

Assumption (7) is valid when the temperature in the center of
the disk equals that of the cooling alr. Such a condition can be
strictly satisfied only for disks which are constricted toward the
center. The thickness of the disk can also be expressed as H =

= H dxg"l, which ineans that

p > 2. (13)

It 1. interesting to note that for disks of constant thickness,
for which the parameter n is rather high, the temperature in the cen-
ter approaches that of the cooling air. When n = 5 the temperature
difference is several degrees, while when n > 10 there 1is practically
no difference. Consequently, under such conditions formulas (6) and
(8) can be used to calculate temperatures and heat flow in disks of
constant thickness as well,

To illustrate this, Fig. 3 shows a curve of the change in Q@
for p =1 and q = 0, the ratio of the values cf heat transfer in a .
flat disk, calculated from formulas (4) and (10). When n > 10 the
error in deteimining the heat fiow from (12) is less than 5%.
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a This same result can be obtalned

0 by expanding the functions I (n) and
‘ /ﬂ' 0
¢ I(n). Then
o8 :
1 3 + 15
0.7 . ——— '-'—2 T e e 0
N T a
*g s 10 i5n e Y T

Fig. 3. Change in rela%ive error when

deterzinirg heat transfer from a disk . .

4f conster: thickness, using simplified AS can be easily seen, this relationship
formulas, s a functior. of values of

paraeters » and q. tends toward one for large values oi n.

As already noted, the central parts of gas-turbine disks have
a slight taper. For fixed and portable gas-turbine plants with such
disks, n >> 5 as a rule. For these cases the additional heat trans-
fer along the turbine shaft, and also the central opening in the disk
(where tnere 1s no heat transfer), have no noticeable effect on the
distributlion of temperature along the radius or on the intensity of
heat transfer from the disk. Consequently, for these conditions, ac-
cording o [2], we can use the familiar dependences for a disk of
constant thickness derived relative to boundary conditions (2).

Let us write the distribution of temperature along the disk
radius relative to boundary conditions (2) in the form

Reproduced | - - .
best av.n.ui”ég”' 1==h - i'ff;ﬁ:-:iz(x). (i5)

where x(x) is some function of a dimensionless coordinate.

Having at our disposal solutions whlch describe the distribution
of temperature along the radius for the simplest contours, which
ingividually approximate the peripheral and central parts of the disks,
with the given boundary conditions we can find an expression for cal-
culating the temperature in a disk of more complex profile. For this
purpose, at the point where one contour becomes another i1t 1s neces-
sary tc combine solutions (15). Designating by subscripts 1 and 2
the values in the expression for the peripheral and central parts of
a disk, respectively, for the transition point (x = £) we gat
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the conditio

Obvious
are mutually
fiows at the
as to assure

n
ty=t.,
dn __dty -+ (16)

T e o

v dx

ly, for t» siven values of t g and 6, conditions (16)
exelusive. In order to observe equality of the heat
transition point, temperature eaxl must be selected so
the required heat transfer on the part of the peripheral

gectiun when replacing the poorly approximating contour in the cen-
tral piot. We designate this tempurature as eax,au’ ‘e prcceed
analog. ' ~ly wcen selectin;: temperature t062 and correspondingly ‘in-
trodu ae dnsigration too,au' ~hen the expression for calculating
heat t.-. Jer znd .2r::vature distribution along the disk radius
assumes "“ne orn
75 (D)
2l
The values in formuls (17) are the equivalent temperature of the
cooling medium for approximation contour 1

Q =2t -;6!;' ({ ol T lxo u) ( 17 )

N

nlU/ ﬁ)hx“’m(h()lﬂh)”'h()l‘bn (18)
2 (072G 2 B 12 G~ 0 () 12 ()

fog == Yo,

fy== 'J"_H‘—{- —"T 71(X) when 1 L xg,

L) ’A

(19)

fo= 0,y + 52T (Ywhen S v <0

ya(l) s

and the squivalen% temperature on the crown for approximation con-
tour 2

tog o =0y F hes = xu ) '7'."—"'? (.l) 7'. l"("“i’ . (20)
y AGRARS

In a number of cases, when perroraing actual calculations it 1is
possible to simplify considerably che derived formulas. For example,
when approximating the constricted peripheral sections xl(l) = 1,
Then, for relatively thin disks, with high values of the heat-trans-
fer coefficients, the dimensionless parameters for the central parts
are quite large (n2 > 10). In these cases © and ¢ tend

8X 43K 06 ,9K
toward eax and then relationships (17)-(20) degenerate into elemental
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' formulas (8) and (10). This indiéates that for large values of

R

A -

A}

parameter n, basic heat transfer occurs on the peripheral sections

of the disk, and the shape of the central portions has no substan-

tial Influence on it.

‘~e should note that a calculation expression of Phe type of

" (6), which is a particular case of expression (8), was proposed in

Stodola's work [3], and at that tim=z was widely used [4]. However,
criticism contained in [5] resulted in the fact that the Stodola
method was genefally relegated to cibscurity. This was not quite
Justified. -

Figure U4 shows curves of relative heat transfer from a disk
Q/21rr2a(t06 - 8) as a functlon of parsmeter n for various values of

fE?ﬁ%EEJB p. With an increase in n the rnflugnce of
) L W— constant p on heat transfer decreases.

i Lp=t i Consequently, the Stodola formula and cal-
&7 ! Z culation methods bgsed thereon can be used‘
6 in cases when n > 15. Such conditions, as
25 S\ a rule, exist for the disks of aviation
X AN ‘gas turbines. :

In conclusion, let us estimate the
4] : error when reducing the two-dimensional

) F; 73 »n  heat-conductlion to a one-dlmensional one.

Mg. 8§, cChange in relative heat
transfes from disk crown as g
function cf parssaters n and q.

tion in a flat disk under the assumption that the temperatufe of
the cooling medium does not change along the radiue. The initial
heat-conduction equation for this case ’

Let us examine temperature distribu-

ot , 1 ot 4 e : 21
032 ' x ox ' @l ’ (21)

where x = rH, y = h/H are dimensionliess coordinates.

Let us find the general solution for the following boundary
conditions:
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3) S SN " —~— (¢~} when J=l0
dy . PR pp—
: duced lrom .
Deslgnating §Zfe'°av‘if.fau. copy.
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after the solution, presented in [6],'we get calculation expressions
for determining the temperéture‘field through a flat disk and the
value of heat transfer from the crown:

— —b ’ v l‘rn ch (P—J) -+ sh (P— ,\‘ Jy (p..t) : . 2
Ftosm2lleg—2 80 (B M= pr) it (im) (23)

m—l
, - Memth ppy=ch 9y =1 ‘ "
m=dargh(f,— ) B N, Setfn (24)
¢ ot hes : ) ::; Bi' Mg —pdem
where M, = ——r hpatpotipntken . Pp = W,/X, 18 an expansion param-

Pri<h pp + Bi” ¢h py— £ Bi*
eter; umis the value of the roots of a zero-order Bessel function

of a real arg: ment.

In the case of symmetrical cooling conditions (Bi' = Bi" = Bi,
k = 1), calculation expression (21) is considerably simplified:

Q=8arjifig— B ¥} —— (25)
;‘ (ﬁ.n —_— Bﬂ:}n

Having determined heat flows G, from formula (25) for symmetrical
boundary conditions, and having calculated thelr corresponding heat
flows Q; from formula (4), we can construct the graph Ql/Q2 = f x
x (Bi, xou) (Fig. 5). From the graph we see that reduction of the
two~dimensional problem to a one-dimensional one leads {o an error
which becomes substantial at large Bi. This error tends to increase
the value of heet transfer from the disk and results in lower tem-
perature values on the crownj when Bl < 0.2 the error does nct ex~ .
ceed 5% and need not be taken into consideration.
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In order to bring into accord the heat
flows obtained from formulas (4) and (25),
it 1s necessary, vhen examining the one-
dimensional problem, to perform the.calcu-
latlions for a certain effective width H3¢
= H/n, where n = Ql/Q2 is a corrzction
factor.

lo: lr,J : i an !
.:,, ars 6?2 %58 93 -R;.-

Mg. S. Change in error when de- For contours which constrict toward

termining heat transfer from the
crown of  disk of constant thick- the center, the corrcction for two-dimen-

ness when reducing the two-dimen-
sional hest-conduction prodblem to  gionality will be substantially smaller,

a one~-dimensional one.

'since the thermal resistance nf such bodles
wlll tend toward its minimum value, deter-
mined by the one-dimensional scheme of

heat flows [T7].

Using expression (2U4) we can also es-.
timate the Influence of asymmetry of the
conditions for cooling of the lateral
surfaces on heat transfer from a disk. As
we know, when solving a one-dimensional
heat-conduction problem, to calculate the
th ' ) T asymmetry of cooling of the lateral sur-

Eégin‘}é o}_n{i:egggegglngsg?:ggsnn faces, by the values t, 8, and o we mean
of a flat disk with fix:d average  cepfgin gverage temperatures and average

. values of Bi on heat tronsfer
from the credn. heat-transfer coefficients, which should be

defined, as shown in [8], by the formulas

P e LY e ppl——

-

ot — ar T P
fomm—e ) e} (¥ ——— | (26)
‘a -l o +a” 2

where t', t", 6', 8", a', and o" are the temperatures on the surface
of the disk, the temperatures of the washing medlum, and the heat-

transfer coefficients on one side of the disk and the other, re-

spectively.

Such a method 1s approximate, and therefore the correct result
will be obtained only when the temperature on the lateral surfaces,

95

e
O LR AL TR o L e T T




i i

oy oo
o, X

T8, S F

e N3

s i

o B R IBARTD o

e N R R P I S R P S T o T

uveraged by the indicated method, does not differ substantially from
the average temperature across the section.

Figure 6 shows the results of calculating heat flows by formula
(24) in the form of the ratio of Q., obtained for the case Bi' =
» Bi" = Bi, to the value of Q, found for Bi' ¥ Bi" with Bi = idem
and unchanged temperature of the cc¢ ling medium (6 %= idem). In ac-
cordance with (26), Bi = (Bi' + Bi")/2. .
From the graph we see that with & decrease in the ratic Bi"/Bi',
i.e., with an increase in the degree of nonuniformity of cooling of
the lateral surfaces, heat transfer from the crown decreases, where-
upon its maximum deviation {rom the value corresponding tov symmetrical
cooling conditions will occur when Bi" = 0 and Bi' = 2Bi. A decrease
in heat transfer with asymmetrical cooling depends on the value of
Bi and also on the relative disk radius Xo6¢ and can attain, for real
disks, 20~30% of the heat transfer determined from the averaged Bi
values. Such asymmetrical conditions can e found in schemes where
one of the lateral sides of the disk 18 shielded from the cooling
air. Therefore, when calculating the heat trensfer from a cisk using
dependences of the type of (17) it is necessary, for the indicated
cases, to introduce a correction in accordance with the graph in
Fig. 6.

Such calculatiops carried out for ' = g, Bi' = Bi" = Bi, and
8 = (8' + 6")/2 = *dem, showed that & change in the value of (t06 -
- 8")/(t06 - 6') within limits from one to zerc leads to a decrease
in heat transfer from the disk crown by no more than 1.5% compared
with the heat transfer corresponding to symmetrical cooling con-
ditions with 0.1 < Bl < 10 and 1 < x, < 10. Thus, nonuniformity of
cooling, caused by varying temporatures of the washing medium, does

not result in noticeable errors.

The simple dependences obtained can be used when calculating
the cooling of gas-turbine rotors, with consideration of the
variable area cof the cylindrical disk section and heating of the

coolant.
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CYDERIMENTAL STUDY OF THE TEMPERATURE STATE OF THE ROTOR OF AN
AXIAL GAS TURBIMNE

A. A, Luzhin, V. 8. Petrovskiy, M. I. Tsaplin, and V. I. Krichakin

Experirental study of the temperature state of a gas-turbine
rotor 1s of primary importance for estimating its reserve strength,
determining the service life of the entire turbine, explaining de-
ficieacies in the rctor cooling system, and discussing prospects
for raising the temperature of the gay ahead of the turbine. Direct
thermometry allows us to refine a vast number of calculation charac-
teristics used as the basih for designing the turbine. Besides,
accumtlation of information on the actual temperature fields in
real gas-turbine designs allows us to improve the calculation methods
for studying the temperature states of the rotors, and develop new
theoretical methods for studying boundary conditions in operating
turbines.

In this article we give the results of thermometry of the rotor
of a small, three-~stage, axial gas turbine.

The mean~mass temperature of the gas ahead of the turbine during
the tests rvached 1100°K; the flow of air for cooling the rotor was
no more than 5% of the gas flow through the turbine. Air for cooling
the turbine rotor 1s taken at the compressor outlet and its tempera-
ture under rated conditions ~ 520-530°K.
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To reduce the temperature
dirferential along the disks of
the first stages, in the lower
parts of the rotor blades we
created unique heat chokes
in the form ¢f cooling channels.
The rotor blades of all three
turbine stages have upper and
lower shrouds. The cooling

channels, as can be seen from

\.;" z w-—%an} Fi 1
. are the blade
T S
» . nuserals
designate tne cavities which the cooling air enters. I'00T, the lower blade shrouds,
1 — gap batween flame tube and transfer ring of the
upper shroud of the rirst nezzle cascsde; 2 — point and the outer surface of the
g location of ;hosthomocguplc cc}ulwctxn‘ ltl‘isl
r seasusing t%; 3 -~ gop between flame tude an
lowar shroud of first nottle cascade; ¥ — annular disk crown.
slit through which cooling eir passes from the com
pressor to the rotorj 5 — openings in the deflector
on the leading side of the disk of stage I for
faeding cooling air to stages II and III.

Air from the compressor 1is
fed to cool the turbine through an annular gap between the flame
tube and the support housing, and goes to cavity I. From here it
1s directed through labyrinth seals to the rear bearing nd to the
peripheral part of the stage I disk crown, and also through 6 open-
ings in the deflector to the lateral surface of the disk and then
through central openings in the stage I disk to stages II and III of
the turbine.

Alr enters the cooling channels ¢s stage I from cavity II,
passing through the labyrinth seal; only a certain part of the air
enters the channels. The rest passes through the anrnular gap to the
turbine blading and creates unique film protection at the becttoms of
the blades.

The upper, peripheral, parts of the rotor blades, just as the
roots, will be in a zone of reduced-temperature gas flow since the
air which cools the stator is mixed with the gas. Thus, the middle

sectlions of the blades undergo the greatest heating.

Since the distribution of gas temperature with height of the
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vane cascade datermines, to a considerable extent, the temperature
field in the turbine rotor blades and disks, the results of rotor
thermometry c&n be correctly explained only if we simultaneously
measure the gas temperature at various sections of the rotor blades.
This was taken into consideration when setting up the experiment.

The following basics were used to prepare the turbine for
thermometry.

The turbine rotor is the most stressed part, and therefore we
provided for temperature measurements at all of its most important
points, from the standpoint of strength. Basically, these were
those points at which we can obtain data on the temperature d4if-
ferential along the disk radius from the periphery to the center,
through the disks, and in the blade firtree jolnts. It was also
important to measure the temperature of the blade foll at various
sections along its height.

Besides the turbine rotor, when conducting the experiment as
a whole we prepared for thermometry the following: the blades of
the nozzle cascades, the front and rear turbine shaft supports, the
stator shrouds, and a number of other items. Below we wlill examine
questions pertaining only to the thermal state of the rotor.

To obtain the required results from study of ccoling effective-
neas it was necessary, in addition to measuring the rotor tempera-
ture, to determine the temperature of the gas at the turbline inlet
(tg), the temperature field of the gas flow along the height of the
vane cascades of all three stages, and the air temperature behind
the compressor (tg) and at the compressor intake (tH).

In addition, it is necessary to know the alr pressurs at the
compressor intake and outlet (pH and pz) and the gas pressure at the

turbine inlet and outlet (p§ and pu).

The positioning of the thermometry points on the rotor also had
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to be associated with data from a theoretical preliminary determina-
tion of the temperature field in the turbline disks and rotor blades

to make possible later comparison nf the results of theory and experi- %
ment. The final scheme for pesitioning the thermometry points on :
the rotor is shown in Fig. 1. ;
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Measurement of t§ was carried out in two steps. In addition to
the thermocouples on the rotor, 12 thermocouples were placed at the
turbine inlet around the periphery, on the average diameter of the
blading. Tp measure the distribution of gas temperature along the y

vane cascades [t¥(x)] we first installed, in the .
.—-— nozzle cascades of all three stages, thermocouples

::: -3 on one nozzle blade of each stage, as shown in
— 4 Fig. 2. Processing of the results showed that it
1 , is impossible to determine t;(x) from one blade
a::: , per stage, since the gas temperature is nonuniform
§ —_—1 around the turbine blading. Therefore, to measure ;
¥ e t¥(x) we performed additional thermometry for which, f
] ——— :
¥ BV besides the 12 tiermocouples on the average dlam- f
1 Pig. 2. Diagram of ine €ter, we placed connecting strips of 5 thermocouples ;
3 . location of the thermo- .
couples on the noxzie each at six locatlions around the periphery ahead of I
blade (the numbers are
o e r%a'" the nozzle cascade of stage I; then in the nozzle :
i

cades). cascade of each stage we set up 6 blades with ;
; thermocouples positioned in shown in Fig. 2. The resulting distri-
3 bution of T#(x) at the outlet from the flame tube and in the nozzle
cascade of each stage, shown below in Figs. 4 and 5, was constructed
from points, each of which is the arithmetic mean of the readings of
6 thermocouples placed on the same dlameter around the periphery of

the blading.

We must mention the following relative to the thermocouples on
the nozzle blades. Since the bead of the thermocouple was 1.5 mm
above the blade surface, it was in the boundary layer of the gas
flow. Measurement of the temperature of the boundary layer, combined
with the damping exhibited by the thermocouple bead itself, assured
measurement of Tﬁ, to a certain extent. As additional verification
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asliowed, the error of this method when measuring stagnation tempera-
ture, did not exceed the errors arising from other causes (limited
-accuracy of the thermocouple 1ltself and the recording instrument,
due to heat transfer), and was within acceptable iimits.

o
RTO) w.»mnm-,.«'-w_«..*:b,u:::wﬁ,mﬁi\‘!:d""

The air temperature at the compressdr outlet was measured with
81X thermocouples. This sas a sufficient number, since tg varies
only insignificantly around the periphery of the compressor blading.

Four -thermod®uples :were installéd at the comptéssor inlet ghead
of the protectivé cascade to measure tﬂ' For greatsr experiment 7
reliability, the turbine rotor contained, as shown in Pi:. 1, dupli- ﬁ
.cate thermocoupl®#B on the same radii as the main thermocouples but ;
shifted 120° and 180° in a plane perpendicular to the turbine axis.

An indexing Bystem, which facilitated operations during the
experiment, was developed tor the entire thermocouple system.

: To measure the temperature of the gas and the rotor parts we

? uséd Chromel-Alumel thérmocouples, while tc measure tg and ty we
useéd Chromel-Kopél thermocouples of clasa 1 accuracy. The diameter
of the thermoelectrodes, depending on the measurement site, was 0.2-
0.5 mm. On the rotor blades and disks the thermocouple beads were
welded to the surface, while the thermoelectrode leads in the heat-
resistant insulation were covered with 0.l1-mm thick refractory steel
foil, spot-welded to the surface of the blades or disks. Figure 3

' shows a rotor prepared

erl ) \\‘m -
(“‘ / AN TISN for thermometry. The
> '.'.-f"' '.._, e Lo ;

R e foil assures the necess-

o
o
‘;.

¢,
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E .7« 3B, o FEaamynly
e E 2 55}2{ f‘_;&g.;j{g;‘j;?;i ary strength and protec-
. -p o e v ,:". '\\',\:‘ e e L0 ‘ *.t.'o K l" .- "'" ¥
TGN LY ) tion of the thermocouple .
o DY gy \\g ’
: I i v .. against the action of the
Fig. 3. Turbine rotor disks prepared for 58%» and also guarantees .
thermometry. measurement accuracy,

since it shields the thermocouple beads from direct action by the

waaﬁing medium.
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The thermoelectrodes from the thermocouples were braided
together and fed to a mercury slip ring attached to a bracket on
the exhaust pipe. Stage III of the turbine was used to drive the
slip ring.

The mercury slip ring is intended to transmit an electrical
' signal from sensors mounted on the rotating parts to fixed recorders.
It has 22 pairs of mercury contacts. Each palr of contacts is an
individual section; the moving contact is located on the rotor shaft
while the flxed contact is imbedded in the slip-ring stator. All
sections of the contacts are insulated from one another by textolite

washers.

The thermocouple leads fed to the slip ring are soldered to the
contacts on a sliding insulating ring placed on an intermediate
shaft. The contacts of the sliding ring, in turn, are connected to
the sliding mercury contacts of the slip ring. The intermediate
ring was introcduced intc the design to facilitate resoldering of

the thermocouples.

The cold junctions of the rotor thermocouples were located on
an insulating (textolite) washer which rotates inside a recess in
the bracket which holds the slip ring. A jet of air is directed
into the recess to balance the temperature of the cold junctions.
The temperature of the junctions varied depending on the injection
rate, the temperature of the amblient alr, and other factors. The
result 1s recording not of the true value of the temperature at the
investigated polnt but the difference in temperatures of the hot

and cold thermocouple junctlions. To obtain the true temperature it
. was necessary, when processing the measurement results, to add the
cold-Jjunction temperature to the instrument readings. This tempera-
ture was conslidered equal to that of the injected air, and was mea-
sured by a separace thermocouple.

hA total of 90 thermoccuples weie installed on the rotor. Since

the number of contacts allowed for the simultaneous use of no more
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than 11 thermocouples, some of them were periodically resoldered -in
order to compare the measurement results and compile them into a
single temperature field such as would be obtained if all thermo-
couples worked simultaneously.

Ag the measurement instruments for the .turbine rotor we used
single-point high-speed potentiometers, accuracy class 0.5, with
continuous regordaing. To measure the cold-junction temperatures
tH’ t!, and t§ we used muitiple-point potentiometers with complete
carriage coverdge ¢f the scale in 2.5 seconds. The high speed of
the carriage of the discrete potentiometers and the great number of
points for measuymipg each of the indicatad temperatures made it
possible, when processing the measurement results, to clarify the
trend of the tempsrature dependencea during transitional regimes
as well (start-up, stop).

To measure the distribution of gas temperature along the vane
cascgade we used multiple-point, discrete-recording potentiometers.
Th2 readings for identical thermocouples were recorded less fre-
quently than with thermometry of the rotor but, since we studied
only the steady state of the turbine, the number of repetitions was
quite satisfactory for obtaining precise results.

The correctnsss of the instrument readings was systematically
monitored using an additional potentiometer coupled in parallel with
all the others to measure the rotor temperature. If necessary, the
signal of the thermmocouple of any potentiometer could be fed to this
instrument using a switch.

The switch-on of all instruments was synchronized, using one
start button on the operator's control panel.

The steady turbine operating mode under various loads was of

particu.ar interest. At the same time 1t was also important to study
the nonsteady temperature states of the rotor.
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During sta?t-up, the turbine operates under severe thermal con-
ditions, under which we can observe high temperature differentials
on the disks, jumps in the thermal stresses in the joint section of
the disks, and other unfavorable phenomena. Study of nons%zady
temperature states should answer the question of the number of
start-ups which limit reliable turbine service life.

These then are the basic concepts for complling a graph of
turbine operation during theraometry. The entire period from start-
up to shutdown of the englne was divided into the following stages.

1. Start-up, idle, warmup, and measursment of all parameters
characteristic of turbilne operation.

2. A gradual increase of the load on vhe shaft with a rise in
temperature from t§ to tgmax in the intermediate mode. In both the
intermediate and maximum modes the measurements were made after a

slight delay, for the turblne to achieve the steady temperature

state,

3. A gradual decrease in load on the shaft and a correspondiig
drop in gas temperature ahead of the turbine to idle t¥ through an
)
intermediate load, with temperatures measured in each regime.

The results of all measurements were obtained in the form of
graphs or a group of points on the recorder tapes. Each group of
tapes, obtained for one day's testing, was processed individually.
All recorder tapes for one day were ¢oordinated relative to the
reference point and the check marks which were made pericdically,
during turbine testing, on the tapes of all instruments by simul-
taneously shutting them cIf. On the coordinated tapes we noted the
steady portions and the data obtained were compliled 'nto tables.
Nonsteady sections were noted only after the first start-up, when
the entire engine was still cold and its temperature was equal to

that of the amblent medium {t, ). The discrete values of t§, t;,
0

and tH were averaged, and from them we constructed, on the tapes,
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the continuous dependences tg(r), tg(r), and tH(r) The timz of the
nonsteady regime was reckoned from the morent ‘of start-up using the
tape showing the temperature of the cold Junction, which thue served
@8 a unique time scale.
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Figures 4 and 5 give the Al J 7}
resulting graphs of the change § 2
9 ‘.
in gas temperature with height ", /i //
of the turbine blading. Mea- '

8 ents we de in three 800 so0 000 TP °K
urements were made in r Fig. 5. Dependence ‘l"(.x), seasvred by thermo-
regimes: 1ldle, with an inter- couples ofi noszle blades of stages I, IT, snd
IIX. Ez'h point !s the average cf the read-
mediate loa,d, and with maximum ings of six thermoucujles poueiomd arcund

the blading. 1A'~ sane 2s Pig.
load on the shaft (with maximum

mean-mass temperature of the gas) at tH = +30 and +590°C. Each point
cn these graphs is the average reading from six thermocouples posi-
tloned about the periphery of the blading.

Simultaneous thermometry of the gas flow at rour points of the
turbine blading made it possible to get a clear picture of the change

in Tg(x) from the outlet from the flame tube to the r.ozzle cascade

of stage I11. A4ssociating the obtained dependences with the turbine
design features, it is easy to explain the reason for certain anom-
alies in the gas-flow temperature field and to explaln their effect
on turbine cLaracteristics.
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Thre 1cwer1né of the temperature in ttie peripheral and rcot
gections of vane .cascades 18 explained only by the adﬁixture of
cooling alr. This is indicated by the comparatively siight di=-
tortion of the zas temperature field at the flame-tube outlet. A
certain reducp;on in temperature in the peripheral reglon can be
explained here by the flow of air‘from the region arouﬂd the stator
into the turbine blading through the gap between the flecme, tube and
the inner surface of the transfer ring of the upper shroud of the
stage I nozzle cascade (see Fig. 1).

The intensity of flow through the gap increases with an in-
creasé in the préssure differential between the alr cavily and the
inlet to the stage I nozzle cascade. This 1s observed when thare
is an increased load on 'the turbine (an increase in shaft load) ang
is coufirmed by deformation of the temperature fleld, which is evi-
dent in Figs. & and 5 for stage I upon transition fiom idle to maxi-
mum %ake-off, A4 reduction in temperature of the gas of the peri-
pheral region at the outlet from the flame tube and the stage I
nozzle cascade does not appreclably iufluence turbine pzrfcrmance,
since 1t has an insignificant effect on the mean-mass gas tempera-
ture and it corresponds approximately to the calculated temperature.

A slight reductioni in gas temperature 1s also noted in the root
section of the first nozzle cascade (see Fig. 5). 'This can he ex-
plained by the leakage of air into the turbine blading at the point
where the flame-tube outlet and the inner shruud of tﬁe stage 1
nozzle cascade meet.

Distributicn of gas temperature at the inlet to the stage II
nozzle cascade 1s deformed in both the peripheral and the root
sections of the cascade. Cooling in the perlpheral region is ex-
pleined mainly by the influence of the air which reaches the bhlading
through the gap along the outer perimeter of the flame-tube outlet,
and then Ly the addition of air which cools the peripheral shroud
of the stage I nozzle cascade.
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: A lowering of the temperature in the root.section is expiained ,
by the feed, to the blading, of alr used to cool. the roﬁbr.' Thé ’
trend of curves T*(x) for the nozzle cascades of stages 1T and- TII
attests to the fact that the basic rotor-cooling air 18 expended .

in steage I.

The nature of the dependences T‘(x) for all-three stages allows
us to conclude that the real change in mean-mass T“ along the tur-
bine stages corresgponds to the calculated change.

An explanation is required for the ;certain discrepancy in gas
temperatures at the flame-tube outlet and at the inlet to the stage .
T nozzle cascade, although the maximum gaa temperature in both
casas should have been practlcally 1dentica1 ‘or somewhat higher: at
the flame-tube outiet. But the measurement results show just the
opposite: the gas temperature at the inlet %o the first nozzle casé

cade iz somewhat hlgher than at the flame-tube outlet. This can be

. explained by the nonuniformity of the gas temperature arourd the

turbine blading and by a slight displacement of the thermocouple
connecting strips relative to the stage I nozzle cascades.

The results of measurements of rotor temperature in steady
regimes are shown in Fig. 6 as functions t (T*) and ¢ ( ). Here
T§ is the mean-mass temperature at the inlet to the first nozzle
cascade, obtalned after processing the results of gas-temperature
measurements by 12 thermocouples simultaneously with thermometry
of the turbine rotor. Each.line in Fig. € was consprucﬁed from the
readings of a specific thermocouple during operation of the turﬁine
Naturally, during the tests T§ did not exceed
All the lines are extrapolated to
We can assume that such extrapo-

in various regimes,
the maximum permitted value.

the region of high values of T§.
lation is permissible for a specific turbine design. .In this par-

ticular case, with an increase in T§ the nature of the function
Tg(x) for the entire turbine blading will hardly change, since the
distribution of the cooling air over the stator and rotor does not,

1lity, depend on T#., Therefore, with -an increase in

in all probs 3
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Fig. 6. Dependence cf rotor temperatire cn gas temperature at the

turbine inist T# (che lines correspond to the points of temperature

measuremsat as shown in Fig. 1. The rcints or lines 8, 9, 18, 19,

28, and 29 designate temperatures for which we caiculated the re-

serve strangth of ¢ blade in a given section for rated turbine rpm

(see Fig. 19). .
in T§ the similarity of *he temperature flelds in the rotor parts
will be preserved. The possibllity ot extrapolation and its suf-
ficlent sccuracy are also confirmed by the linear nature of the de-

* *
pendenqes tn(T3) and tA(TB)'

Extrapolation of tn and tA beyond T% = 1150°K allows us to
more accurately establish the comnection between rotor strength
characteristics and the temperature field and find the most likely
places which limit the maxinum temperature Tg.

The linear nature of the graphs of the dependence of blade and
disk temperature on gas temperature at ‘"~ 2 turbine 1inlet, and their
varying slopes, confirm the results of a theorevical study of tem-
perature fields in gas-turbine rotors, presented in [1] and others.

Using the lines in Filg. 6 we can find the radial temperature
field in the disk and wvlades for each stage. Thls was done for
temperatures T§ = 1100 and 1209°K (Fig. 7). Ccmparison of the lires
makes it possible to estimate the effect of cooling of each rotor
stage. The very high temperature gradient f{rom the middle of the
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. blade to the base and tip for stage I
0 attests to the intensity of blade
cooling in the peripacizl and base
sectlons. This result agrees wilth
the distribution of gas temperature
along the rozzle vane cascades of
stages I and II (see Fig. 5). Such
an effect of cooling is not observed d
for the rotor blades of stages II and

III. The more uniform heating of the

blades of stage II and the high tem-

perature differentials along the disk

indicate that the main portion of alr

fed to the rotor from the compressor

1s used to cool stage I and the rear

support bearing. This can be con-

sidered as expedient, since siage I

operates under the sevevest tempera-

ture conditions. Calculations also

show that the temperature different-

ials along the stage II disk under

operating conditions are quite ac-

3 L AT W 559 b0L tg,t,te
3 : ' !
E: ! e III
b g5 B8 ‘\\\‘\\\\

Feg |
Fei

——

E: ! F=304

: & N .,

; N 25 ) 700 TavtaeC ceptable, since the reserve strength
3 in this case does not drop below

3 ' Pig. 7. Radial temperature distri-

3 ; bution ir'a turbine rotor in the standard.

i stationary mode, from thermometry

: . results. Tc the left are the
measurement points as in Pig. 1.

Judging from the lines in Fig.
7, from the standpoint of cooling, stages II and III are under prac-
tically identical conditions, if we consider that scmewhat more heat

enters the stage Il than the stage III disk from the gas.

The change in temperature along the leading and vrailing sides
of the disks of all three stages also confirms the weak cooling of
F stage II. Nevertheless, this cooling does exist, as attested to by
3 i the higher temperature of the rear side of the stage III disk.
Cooling of the fronts and backs of the stage II disk 1is symmetrical,
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since there is practically no temperature differential

hefe.

Of great interest is the break in the temperature dependences
at the junction -of the blade and disk; this can be explained by the
entrainment of paét of the heat by thiz cooling alr in the steady
state and, in addition, by the thermal resistance 5f the blade fir-
tree joints. Naturally, thermal resistince of the joint is charac-
terized by a temperature differential from the stem of the blade to

as : the projections on the disk (Fig. 8),
“I LAl AR .
TN e LA | but the combinea erfect of both fac-
' }'-,_FWV\ [ 5‘.\,-3 _ tors is more complex. Figure 9 shows
I I“ i 5;180 L the tempevature dependences tA(r) and
= 17 z; ) tn(x) under nonsteady conditions,
£ T determined theoretically for stage I
25 [}\ Er~ts of a turbine. Figurc 9a also gives
v
\s\\. /+\4<\ i ~ an experimental dependence (curve A).
e AR A Comparison of Fig. 9a (with cooling of
stage II
2 2T 25 T the lower part of the blade) and Fig.
25 —r~ ——  9b (without cooling) shows the great
p f\¥4fv~’tzf1u' [ part played by the cooling channels.
/ ——
5 ! l stage III We also see the influence of the
0TS s 29 IF 30 thermal resistance of the joint on
;:g;,,e;u";g’:d;gg::gi ;;:g:';;“*;;.f“‘ the temperature function with trans-
¥hen starting-up a tumbine. ition from the blade to the disk

since, despite the lack of cooling (see Fig. ¢b), there is still a
break in the llnes. We can conclude that thermal, resistance of a

firtree joint with no air passing through its channels leads to a

10-20°C temperature differential on the blade/disk boundary.

The strength of the rotor disks is determined, to a considerable

extent, by the temperature differential from the center to the peri-
phery of the disk. Table 1 glves temperatures of the centers and

peripheries.of the disks of all three stages of a turbine rotor under

steady conditions .and with T§ = 1100°K, and the corvesponding tem-
perature differentials. As 1s to be expected, the maximum differ-
entials are observed in the stage II disk. When designing a disk
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Pig. 9. Radisl temperature distribution in a turbine rotor
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Table 1.
Center of |Periphery ) .
disk of dizk :.; gq‘.
Sl e |sq] e ugo ‘;3
[ ]
stagel S35, 71871 § 187 & Bo° £38
Swl 2 5. 2 IR Pow L O
sf| B |EE| Bo| E2E B3es
5" 4 Vo o e m:g
x| B |ge| B Bt T
o6 O ng ] oog OO0
L] = RE| & He B B e
Front t: 32 ts 385 ts - t; = 60 tg =ty = =40
Back t2 has {tg | €22 t¢ - t; = 87 te - t1 = 167
Front ti1] 815 | tas] 555 1 %1s - t3; = 140ftys -~ 13 = 175
Back ti2] 280 |tie] 570 [tie = ti12 = 198)t1¢ - 1y = 163
I Front ta1 ]330 |tas] 480 [tas ~ t33 = 150{t,s - tyy = 105
Back taz ] 375 | tas] 495 | tae = tya = 120|tg¢ ~ T2y = 165
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for stréngth we- used temperature éifgqrentials'hiéﬁer ﬁhénﬁiaéé_% -
measured: . de.a result, for & stage II disk operating under méper
‘sever'e temperature conditions, the reserve strength with given o
was 3.8. for the ceinter of the disk aud 3.4 for the periphery.

o

an

1

Table 2.
Stage I sfage II Stage III
::aits.on ot| §- g %1 g" 5 # 1 gd 5 *
ernometry| w o s v o] A o =
points on ‘35’ Eo E'ﬁ -1k &5 5:" '3 25
blade ) Sl SR BRI e8] s¥l Ex] 89 g¥
-l § 3 2 - 8 =N [ v © g [ N
[ ] 8 ° [ oo 5 D:a ®o0 o g . ‘
K& & vl RE & B &8&] & I
Pecriphery tis] 622 | 6.35 tae ] 628 6.50 1 tse | 536 4.90
Middle e 795 3.37 t:s] 660 4.20 tsy | 600 2.78
Root te 703 3.96 tie] 645 3.64 tzs | 580 2.46

Table 2 gives the blade temperatures for the stationary regime
and T% = 1100°K. Because of high heating, the middle parts of

3
stage I disks have the least strength. Figure 10 shows dependences
,g ] ; of the coefficient of
“lad istage 1| |stage 1I| l’“ﬁ‘ | reserve strength on T#
RS LT TS T el T ’
lg;:>5<. comms BN L N L which show that a rise
aﬂ__{’;\\gqs - e | "%S£§_j i 1 in gas temperature ahead
§ ] ‘a2 H
' N L1 ) 1 121 N0t of the turbine is limited
16d 175 Lo nuea it e ngg 1088 AR /1]

IR to the root section of
Fig. 10. D d of strength reserve on tempera-
tuge " roz‘eg:geeggethe ;oat gtrcssed cross sections the stage III rotor blade.
of turBine rotor blades. The points indlcate the This can be explained by
calculation results. A

the fact that the material
of the stage III blades 1is less heat-resistant than the stage I and
II blades. However, the stage III vane cascade 1s under rather
stable temperature conditions, and therefore the reserve strength
of the blades, even at maximum gas temperatures, completely assures

reliabie efficiency of the turbine.

Practice has shown that the most important parts of vane cas-
cides is the midsection of the stage I rotor blades, which urdergo {
the action of the nonuniform temperature field of the gas flow, both
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along as well as around the turbine b»lading. Therefore, here the
possibility of short~-term heating of the midsection of the blade is
very likely and, during turbine operation with maximum values of Tg,
the reserve strength of stage I blades in the midsection will vary
and can assume lower values than in stage III. In addition, we cannot
help but consider the possibility of overheating of the thermally-
stressed leading and tralling edges of the blade foil.

Thus, we can consider that the rise in gas temperature ahead
of the turbine is 1limlted by the reserve strength in the midsection
of the stage I rotor blades. The influence of variations in the tem-
perature field around the blasding on the temperature and, conse-
quently, on the strength characteristics of the blades requires
additional study.

When processing the thermometry results we also examined the
nonstationary temperature state In the process of heating of the
rotor during start~up. Some of the more typical of the obtained
graphs for the temperature dependence are given in Figs. 11-12 for
stages I, II, and III (the marking of the measurement points is as
in Pig. 3).

The change in temperature of a stage I disk and blades 1is
shown in Fig. lla. The first start-up (see Fig. lla) was not stable,
and was characterized by sharp variations in t§ right up to the
moment of transfer from start-up fuel to maln fuel at the 1i3th
second. Suchh a turbine operating regime allowed us to explaln that
the thermal inertia of the blades 1s very low: variations in blade
temperature follow the varlations in the gas temperature. This in-
dicates the significant predominance of the amount of heat from the
gas over the amount of heat fed from the working part of the blades
to the disk and the correspondingly slight difference between the
temperature of the blade midsection and that of the gas.

Above it was noted that the rear of the stage I disk is hotter
than the front. The trend of the temperature at points 1, 3, 5, 2,
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Fig. 11. Change in disk and blcde temperature of stage
I during start-up: a — unstable regime; b — stable
regime. - .
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Fig 12. Crange in dick and btlade temperature of stage
II during scart-up. . :
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U, and 6 of the disk in
the nonstatlionary regime
makes 1t possible to .
trace how, from the very
first seconds, there 1s
a discrepancy in the
thermocouple readings;
the rear of the disk is
more strongly heated.

i This indlcates the main-
= o ;' tenance of the distri-
Pig. 13. Change in disk and blade temperature of stage bution, In the turbine,
III during start-uo. of the cooling air by
stages, in both steady

[

and transitional reglmes.

The maximum rate of heating of the peripheral part of the disk
in the first 4 seconds in 60-90°C/s.

Let us mention the feature of function ts(r) noted on the
graphs for ail stages. If the nature of the change of tg with time
can be expressed appruximately by an exponential function, tempera-
ture tg changes, in the first 4-5 second, by a parabolic law, and

then the rate of its increase decreases and it asymptotically ap-
proaches the rated value. These regularlities must be taken into
consideration when stating problems of heat conduction for a gas-
turbine rotor.

The graphs given in Fig. 11 were used to determine the depen-
dences of the temperature dlfferentials along the disk on the time
for all stages (Fig. 14). The graphs show that during start-up the
temperature differentials along the radius of the stage I disk are
somewhat higher than in the stationary temperature state. If in
steady-state regimes t5 - tl is 60°, during start-up this difference
reaches 95°, while. the differential tg - t2 reaches 140° instead of
87° in the stationary state. We can observe anomalies in which the
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differential increases continually with certain variations (line
ts - ti), but they cannot be considered typical. The nature of the
curve ts - t2 indicates that pepa?se’dr'the more rapid heating of

the disk periphery on the front side (lines 5 in Fig. 11) the differ-
ential t; - t, is first greater than zero and only after the 15th
second does it become negative, i.e., t5 < t,.

The trend of dependences t6 - tl and ts - t2 shows the absence,
during start-up, of a maximum temperatu.e differential for alternate
points.

The maximum temperature differential for a stage I disk durirz
start-up 1s lower than that which served as the initial one for the
strength calculations with steady heating. Consequently, the trans-
itional temperature state has no influence whatsoever on the effi-
clency and reliability of a disk. The time-dependence of the tem-
perature of stage II blades and sisks shows the low thermal inertia
of the blades (curve 18 in Fig. 12). Thanks to stable start-up we
easily see that the rate of heating of the central part of the disk
is somewhat less than that of the peripheral part.

Curves 11, 13, 12, and 14 show that in the first seconds after
start-up the center of the stage II disk is heated more rapidly
than 4ts middle part. To explain this we must simultaneously analyze
the temperature dependences for stage I and II disks. Above we noted
that alr from the compressor is almost completely expended on cooling
only the leading edge of the stage I disk. Therefore, we cannot ex-
plain the higher heating at points 11 and 12 than at points 13 and
14 (see Fig. 12) in the first seconds after start-up by the fact
that the center of the stage II disk is washed by hot air from the
compressor during this time, all the more so since 1n this case,
point 1 of the stage 1 disk (see Fig. 1llb) would be heated most
rapidly of all in this case. However, its temperature is lower
than at point 2, both during start-up as well as during subsequent
operation of the turbine.
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Such a heating peculliarlity can be explained as follows. Cooling
air on 1ts way to exhausting into the turbine blading between the
first rotor and the second nozzle cascade loses so much head that it
cannot counteract the pressure on the part of the gas flow. At the
same time, the difference in pressures at the inlet to and outlet
from the root section of the sezond and third nozzle cascades (Fig.
1) leads to suction of the gas into the gap between the first rotor
: and the second nozzle cascade. - The temperature of the gas entering
- the gap 1s low, since in the lower part of the filrst nozzle cascade
thire is mixed, with the gas flow, cooling air from the gap between
the first nozzle cascade and the first rotor. When the gas enters
the gap its temperature is reduced still more due to mixing of the
air coming from the cooling channels in the lower part of the first
rotor cascade. The gas, mixing with the cooling air, penetrates
through the radial openings in the skirt of the stage I disk and
washes its rear side. Thils 1s attested to by the synchronous vari-
ation of temperature dependences 2 and 4. A small amount of the gas-
alr mixture leaks through the labyrinth seal between stages I and
II, and also through the radial channels in the skirt of the stage
II disk, and enters the blading of the turbine between the second
nozsle cascade and the second rotor. The fact that this amount of
gas-air mixture is really slight 1s confirmed by the lower tempera-
ture at point 13 than at point 11 during start-up (see Fig. 12).

ot e e LA L R

L F A T R

The gas-air mixture, reaching the centrzl recess between the
stage I and II disks, passes to stage III, washing the walls of the
opening of the second disk and heating its central part. Along the
way it 1s agaln mixed with a certaili- quantity of cooling air from
the central opening of the first disk, and its temperature continues
to drop. Then from the cavity between the second and third dlsks
the gas-air mixture exits to the blading through the radial chanrels
in the skirt of the stage II disk. Here the rear surface of this
disk and the central part of the third disk are washed, which 1is well
illustrated by Fig. 13. The temperature at point 21 first rises
rather rapidly but, with influx of heat from the peripheral part,
heating on the part of the gas-air mixture plays a lesser role, and
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thﬁ»temperature at polnts. 22, 23, and 2& becomes higher thaﬁ at‘ -
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1t is 1mpor*ant to noce that circulation or the’ gas-air mixture,
in final analysis,<cools stages II and III of the turbine rotor.
The temperature of the mixture nashins the rea. surface of the first
disk does not exceed 390-&00°C, while that washing the rear surfacé
of the second disk and the front surface of the third disk does not
exceed 310-320°C. ,therefore, the gas-air mixture héats the disks
only during the first ew eeconds after start-up. As the disks be- -
come heated from the periphery, the ﬁixturé acts as a coclant,
assuring, under stationary turbine operating donditions, a stable
temperature field for the disks, which 18 ts™en into corsideration
in strength calculations of disks. In th. sence of such circula-
tion, heating of the central parts of stage II and III disks would
be determined by the temperature of the alr coming from the compres-
sor, which would lead to an increased temperature differentlal along
the disk radius and, consequently, o lnereased thermal stresses.

Heating of the central part of rotor disks also aids in rapid
heating of the rotor and passage to the statlonary temperature
regime.

Judging from the graphs ol nonstationary heating (see Fig. 11),
the washing medium begins to cool the stage I disk approximately
20 seconds after start-up, and the dlsks of stages II and IIXI — after
30 seconds.

The rule for the change in temperature differential in the stage
II disk from the periphery to the center during start-up 1s the same
as for the stage I disk, but the magnitude of the differentials in-
creases (see Fig. ill). In connection with the fact that the disk is
cooled symmetrically, the maximum temperature differentfal in the
first seconds of turbine operation is also observed fur alternate
points. For strength calculation of the stege II disk we assigned
a temperature differential of 300°C, and therefore the maximum
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ozcurring during start-up for t16 - t12 and Ty - tll is not defini-
tive. A negative differential can occur at the very beginning of
scart-up, as already stated, due to heating of the central part.

.

Th2 riles for temperature dis¢ribution in stage III dislks and
tlades during turbine start-up are the same .as for stages I and II
(3ee Fig. 13). .

The temperature differentials in a stage III dlsk are shown in
Fig. 14, From the graphs we 3ee that heating of point 21 in the
first few seconds after start-up all-ws us to make the temperature
inerease monotonic. As a result, function t25 - t2l became almost
monotonic, just as Crg = t?l'
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THE NONSTATIONARY. HEAT

M. N. Galkin and 'S. P. Kolesn¥kov

Ae

Many parte of airbcrne vehicles and their ehgines havé sharp
edges and projections in the form of dihedral and polyhedral angles.
During operation; these parts are subjected to short-term heating or

i cooling, and from a thermal standpoint can be examined as semi-

bounded bodies.

In chis work we give our general theoretical solutions to
problems on determining the temperature field znd the heat-retaining
capabilities of semi-bounded bodies having the form of dihedral and
polyhedral, acute and obtuse angles. The solutions are approximate
and have been obtained for the case of constant temperature on the

surface of the bodies.

The essence of the solution of the multidimensionsl nonstation-

ary problem i1s first examinel in detall using, as our example, a
dihedral angle (the two-dimensional problem), and is then extended

to polyhedral angles.

The particular solution to the problem for Lhe temperature fileld
of a dihedral right angle (Fig. 1) is the product of the solution
for two semi-bounded bodies (A. V. Lykov: Teoriya teplcprovodnosti
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(The theory of heat conduction), GI‘TTrL, 1952):

H
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X a

o Y o g X A ._-',_.
V=1 “f(e;/;;)”f(eyz;)' .
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g

Y,
S b 15, S5
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or a=1—ert( 1 )er({' 7 ) (1) 5

24 Fa, \"2} Fo, :

X Lo no- where 0=f&29—-Mh 15 the relative temperature of -

= Pig. 1. Detern’aing the e—lo . :
temperature fie 195" the body at a point with coordinates x and y at

time T3 té 1s the constant temperature of the
body surface; to is the initial temperature of the body; a = A/cp
“1s the coefficient of thermal conductivity of the body material;
A, ¢, and p are the heat conduction, specific heat, and density of
the body material; Fok = ar/x2 is the Fourier criterion; y = y/x;
= erf(U) is the Gauss error function, which is equal to zero when U =
= 0 and 1is practically equal to one when U > 2.

A R

To derive the approximate general solution we used the scheme
shown in Fig. 2. The temperature at point
X,y of investigated angle ¢ was determined
on the basis of %the equivalent right angle,

: at which the examined point has coordinates
Xy. Considering this, equation (1) can be

represented in the form - r -
Reproduced from
best available copy.

Dol —erf [ X1852 erf( L,
2V ax 2y ax

i Pig. 2. Determining the
3 . 5 - ge:pe{atur? tielg of di-
. tgs2 o edral angle ¢ of any
i {l=l-erf( g\:_ )crf( ',___). (2) sagnitude.
¢ 2 V' Foy 2V Fo,

Byuvation () allows us to approximately calculate the tempera-
ture fleld .F a body with any angle ¢, while it gives a preclse so-
lution in the two particular cases when angles ¢ are 180° and 90°.

‘ If ¢ = 1807, then tan 90° = », erf(«=) = 1 and
0 l—erff—2 Ve j—erf{ —=) .
1 eii(ﬂ,’ﬁ) 1 erf(',’,: at‘) (3)

Equation {3} is the known precise solution of the problem
2 semi-bounded body.
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If @ = 90°, then tan 45° = 1 and equation (2) is simplified,.
assuming the form of equation (1), which 'is ‘the precise solutionbto
*the problem for a right angle.’ "

‘ when calculating bodies with swall angles @ and, in partieuiar;'
when angle ® + O, i.e., the sides of the hody are parallel, an
indeterminacy arises in equation (2), since tan 0 = 0, erf(0) = 0,
und & = 17 To expcse this indeterminacy- in equation (2) we must ex-
clude the coordinate x: . ~

(A%

8.«1--er!( )erf(;—‘i--), RS ) W

\2 Fear ¥ar

where Y 1is half the distance between sides (or half the plate thick-
ness). ' '

To estimate the accuracy of approximate solution (4) we experi-
mentally studied the temperatufe field of bodles having various
thermophysical properties and angles @ from 0° to 180°. The maximum
devia@iou of the calculation data from experimental data occurred
on the bisector of angle ¢ and in the range 9 = 50°-180°, «nd did
not exceed *5%. The deviations were estimated using the criterion

,(t np " t )/(t -t ), where t_ np " to is the excess temperature,
.'calculated from formula (2), and t - ty 1s that found from experi-

ment (t is the approximate temperature, t:.n is the real temperature).

np

;ﬁ%? ' B Figure 3 shows the values of these
,f 2] [ i N criteria for angles ¢ from 0° to 180°
s e - .
v--’Jﬂz ot LY (curve 1).
P ("/r !
Y. oame T
o ‘w, | From Fig. 3 it follows that theo-
ORGS0 & 0 & L petical solution (2) glves an accurate

l(l‘:g. 3.t i));;(a:ndcncc)or the gri:ari:n result for angles ¢ = 180° and -90° s &an

- -t on aligie ¢, char- .
Aoteriting the maximus deviscions of. overvalued result for angles 180° > @ >

the calculated amperature fleld from )
the experinental one. Curve 1 is gon- > 90° (the maximum error is obtained at

structed from equation (2), curve 2 ~

from equation (5). ¢ = 140° and reaches 5%), and an under-
valued result for 90° > @> 0° {maxlmum error is obtained when ¢ = 0°
and reaches .7%).
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These deviations occur since, according bo the scheme (Fig. 2) = ¥~
used forvderiving equation (2), we get an undervalued heat flow along :
the bisector of the angle when 180° > @ > 90° and an overvalued flow
when 0° < @ < 90°. I . . . ;

To increase’ the acéuracy in calculating ‘the temperature field
of bodies with small angles @,. it 1s expedient to seek the theoreti- _
x . cal solution on the basis of the scheme shown *
in Fig. 4, which generally excludes heat trans- ,
port along the bisector of the angle. In such -
a case, each cross section x of angle ¢ at o
%?-;tgéI:EEEEZEE‘;E‘;:{%E:E?— depth Y can, from a thermal standpoint?, be ex-
e seaPanal) angles (9 < amined as half the thickness of a plate, for

which the solution (see Lykov's book mentioned

< 40°).,
above) has the -following form:

vy
i

1332 1875 2

-=‘v-_=1-i .{,cosp,,(l-—-—z—\. e::p&—-:x.fff';). (5)

Ael

where Aﬁﬁiip—l;"lis the initial thermal amplitude v5==wn-ué}).
#a 2

1n the particular case when ¢ = 0, in equation (5) we must ex-

clude coordinate x: * | Reproduced from
best available copy.

d=1—% .-1,“003:.1"(1 _.;_'-) ‘c:\.pk,__?':_‘_;_vz\, _ 6)

fiel

Equation (6) is the precise soluticn of the problem for an un-
bound~d plate. Curve 2 in Fig. 3 corresponds to the relative ex-

tny — ¢, :
cess temperature t’ " calculated from formula (5). Figure 3 shows
F S

that for @ = 0°-40° we must use approximate solution (5), while for
@ = 40°-180° we use solution (2). Here the maximum temperature-cal-
culation error does not exceed 9% (on the bisector, and only for a
body with angle ¢ = 40°).

In Fig. 3 we also see that the calculation error using approxi-
mate solutions (2) and (5) doces not exceed 2% for angles @ = 0°-20°,
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» 6, Curves of the distri-
bution of relative excess tex-
perature in dihedral angles
0% <9 < X0° as a Mguon of
the eriferion Fo,/tan’e/2.

Pig. 5; Curyes of the distri-
bution of relstive exosss tea-
rutun in dihedral angles

0* < ¢ < 180° as a function
ot the oTitericn Po /tan'e/2,

Figures 5 and 6 show curves of the distribution of relative
excess temperature in dih:dral angles for various values of the
criterion Fox/tan2¢/2, constructed from solutions (2) and (5), re-
spectively.

The specific heat flow arriving at the body at time 1 per unit
area of heating surface, located at distance x from the vertex of the

‘ZE‘ATT”' angle (Fig. 7), 1s deterrined from the

. "1iir* Fourier law of heat conduction:
(HRILATIE -

3 ol (] tlfr----}.[ W ]:r-fj

where [llﬁ%LﬂlJ 1s the temperature gradient

on surface ox of the dihedral angle at time
1, determined with consideration of formula
(2) or (5) as a function of the value of

Pig. 7. Diagran of the heat flow
on the surface of a dihedral angle ¢.
angle. )

It should be noted that formulas {(2) and (5) gilve, for all prac- .
tical purposes, an accurate temperature at the body surface. There-
fore, the value of the heat flow found with consideretion of formulas
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(2) br*(E)&ﬁflIfﬁ§,ft6r all practical purposes, accurate.
Lét us find_the heat flow when ¢ = 130°-40°,

Having determined the gradient [at(x,y,r)/ay]y,o with con-
sideration of formuia (2) for the body surface (v = 0), we find

b xige 2
o et \femg ) orf (X182,
‘:x='at(r o)Uf( 21 a% )

(7

where b = ¥Xcp 18 the coefficient of accumulation of heat by the
body material. '

The quantity of heat passing in time interval T across a unit
of surface located at distvance x from the vertex of the angle

Q,=;~§q,¢lf- (7"
Substituting Qy from formula (7), after integration we get
— xtige'2y  xige2 -__xhg‘h;"_’
Q. [erf( Ty ) i Ei( e )]. (8)
or
AT g, 1872 gy t8s? }
Qe=-" -t o)l'l'[eff( ,_o\, i i m»,) (9)

The quantity of heat entering the body on segment X of unit
width in finite time 7t

X Eeproduced from )
Qx=:| Q.dx. |best availahle copy.
o

while after substitution of Qx from formula (8) and integrating

Q= (e X VT e SEE 4
. ) 10)
. Var ( 31%%" 1) AL oo A ] (107
T\~ - 1 -—————:‘—* A —
Xige 2)a . 1} = \ datv

or

Qe Felte— 1) X ¥ fert (822 ) 4

'.""
><
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”"-X' T Wy C
22 L3 = .
ek 1_‘.¢ﬁﬁ$v o ,

.
--‘-—A_-(c ox__ 1) g2 )} (11)
21 = 417V Vo,

where Fox = a't/)(2 is the Fourler criterion.
Let us find the heat flow for angle ¢ = 40°-0°,

Having determined the gradient [at(x,y,t)/ay]y,o with con~_
sideration of formula (5) for the body surface (y = 0) we get

r ) e(riztm) 2

After substituting the value of q, from formula (12) into form~
ula (7') and integrating, we get

R (x.)
¥ For

here the average relative excess temperature on the surface of a
dihedral angle in section x

= fe—ix) € 2 Ay
[t i LI AU | Rl —u3
e ) W P (= nz";m (h

The quantity of heat entering the body in segment X of unit width

in finite time ¢ duced from }
' Q EQ dx ?::?: oav.a‘ll‘ablo copy

Mx= | Uxdx.
]

Considering formulas (13) and (14), after integration we get

_ %o, Fo..
|1—a---——é— Ei(—;"-l—é-_-\]m?;’

~ - 1829,2 gz 2
= (L —EIX) T — :
Q.\ (r ] T 2‘, F".\r (15)
; From equation (8) it follows that when x + =, heat flow Q,
: reaches its maximum value
Q= U= 1) V. (16)

Equation (16) is the known particular solution to the problem of
the heat-retaining capability of a semi-bounded body (see Lykov).
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The ratio Q /Q* — the actual amoﬁgt-of heat to the maximum
amount — 1s the parametric criterion.Kk*Which'characterizes the in-
fluence of the angle (bilateral heat feed) on the heat-retaining’
capabllities of the body ‘in sectlon x.

A8 i Y G A AR AR Tk AL e

! From equations (9) and (16) it follows that ‘for angles 40° <
< @ < 180° the criverion

’ v 2 ’ o ae 2 N ’ 'g-_v,: 2 O
K er -E-":-—— --—--‘3_,3—'——-—- il -2, )
Si= f( , Fu‘ ) 2' ..”. an E ( 4‘,"-‘. ) (17) ‘;‘

Juced from
%:5: oady:ilabh copy.

K, =T Thes? (18)
. 2} Fo, .

Figure 8 shows the deprendence of criterion Kx on criterion

, l/Fox = x2/ar, calculated from formula (18), for various values of
angle @/2 within limits from 5° to 20°, while Figs. 9 and 10 show
analogous dependences, calculated from formula (17) for angles @/2 =
= 20°-L5° and 9/2 = U45°.75°, respectively.

From the graphs we see that the influence of the angle on the
. heat-retaining properties of a body lncreases with decreasing cri-
terion l/Fox, i.e., as the examined sectlion x approaches the vertex
of the angle, while with decreasing angle @ this 1nfluence increases.

Trom equations (17) and (18) we see that if eriterion 1/Fox ‘
vanishes, for any value of angle 9/2 (except /2 = 90°, when
tan @/2 = «) the criterion Kx = 0, Consequently, heat flow Qx =
= Q*Kx, passing through the vertex of any angle, is equal to zero.

If criterion l/Fox + w, in accordance with equations (17) and
(18) Kx + 1. In this case tha heat flow reaches the value Q% which

characterizes the heat-retaining capability of a semi-bounded bogdy
(16).

Theoretical analysis shows that section Xy behind which the
angle 1s heated practically as a semi-bounded body, can be found
from the condition

S e e st~
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Pig. 8. Dependence of parametric criterion
X, on the criterion wox for angles ¢/2

from 5° to 20°.
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Pig. 9. Same as Pig. 8, 9/2 = 20°-45°,

duced from }
’é:?{ oavuailablo ccpyY.
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Pig. 10. Same as Pig. 8, ¢/2 = §5°-75°,
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EBn
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MR vt R

v Actuslly, when the argu@e;f‘5455%%§~4§,3;-fgnctibn}etf z 18 practi-
) } H o, TR ‘W:b‘.
cally equal to one, While‘fundtiqnnEi(PZ%),=_Q, N

. . -

In this case, froq‘ggyation“(175'Ib"?oilows‘that K, = 1.

4 * « * .

LAt

An analogous conclusion is also obtained from equation (18).
For example, as Lykov showed, when z > 2 formula (14) for the average
temperature can be given in the form

& .. 1 °yFo,
V= —— - .
1 Va  agy2

Considering this, from formula (18) it follows that K = 1.

Using criterion K_, formulas (9) and (13) can be written in a
general form, convenlent for practical calculatlons:

3 = =) VK, (20)
E In many practical cases it 1s important to know the total quan-
j tity of heat QX absorbed by the surface of aubody in a cert. n sec-
é tion X (see Fig. 7). This heat can be expressed in percents Ky of

i the heat flow Qi passing in this same sectior X to a semi-bounded

; body, in accordance with equation (16): )

Q=2 (t.—1) XV

XT V&'

(21)

The value Kx = Qx/Qi is a parametric criterion which character-
izes the influence of the angle (bilateral heat feed) on the heat-
retaining properties of a body in section X.

From equations (11) and (21) it follows that for angles U40° <

i [

%
2%

T

b G E,
R

iRCa

< @ < 180°
22
Komer (1222 Ve VFL |, G N _'2’?’3) (22)
N (2]’ oy /' Ttez2) a 11 Fay ( 4Fo, ' '
i
i
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Pig. 12. Same & Pig. 11, @2 = 20%=A8°%,
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Pig. 13. Same as Pig. 11, ¢/2 = 45%-T5°,
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while. from engtions'ﬂlﬁ)!anﬁ (21),,f§p angies.
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. Figure 1l shows the dependence of criterion Kx on criterion 1 A

o e

l/Fox, calculated from -formula (23), for various values of_tﬁg argle
@/2 from 5° to 20°. ‘ {

-
v

Figures 12 and 13 giGE’énalogous dependences, calculated f?ém' 7 .
formula (22) for angles @/2 = 20°-45° and @/2 = 45°-75°, respectively.

Criterion K, allows us to write formulas (11) and (15) in a form
which 1s general and convenient for practlical use:
L gy’ i
The theoretical dependences obtalned were verified experimentally
on a device which 1s shown schematically in Fig. 1l4. Into a bath of

of 662 * 2°, i.e., superheated by 3 t 2°, we
. immersed for 60 seconds prisms made of re-
fractory magnesite brick whose éoefficient
of thermal conductivity a = g.10"3 ma/hr.
The working element of the prlsms was a di-
hedral angle which varied within limits
@/2 = 15°-90° at 15° intervals. The other
faces of the prisms were insulated by sheet
asbestos (a = 0.712+1073 m°/hr) 20 mm thick.

(EPP-05 molten pure aluminum, having a temperature
fil

PN NCKANNL

]
|
O]

]
o 0y Ao

i
it
I
!
it

At the control point of each prism we
installed a Chromel-Alumel thermocouple
whose readings were recorded by an EPP-09
D iy LT o ene fieiator”  electronic potentiometer. The thermocouple
dihedrai angles. leads (0.5 mm in diameter) were insulated
near the hot junction by a two-~channel porcelain tube 3 mm in diameter
and a cambric coverling.
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Based on the location of the control point e M;ative to the
vertex of the angle, all the prisms were dividad dnto t«o groups'
the first group had angles q:/2 = 15°, 30°, aﬁd 4o, tl'le second .group
had angles g/2 = 45°, 60°, 759, dnd -90°. Thé controd points’had the
following coordinates: group 1 — x = 22 mm, y-= 5., mn (y = 0.25);
group2—t-68mm,y-68m(v-l)

t-tp t~ty
t‘; L e ‘ 7c"‘ ]
[ ] b R
7z TA %"'5. ;
o8 o8 “,}J-4'T'_,;fwc=::
¢l et os / 752 J e s et
v ) 4 90°
o . 0 21 AT
(M /
42 5 .
0
0 TBLS T €19 015 G329 023 Fox
0 W 2 0 40 S0%.s 005 1 i3 2 25 fay
Pig. 15. Experisental and sulculation A0 30 "0 0T
hange in relasivt excess
g:l.:ou:m otctho control point of Pig. 16, Samo as Pig. 15, gooup 2
grou; ) prisas. prisus.

Figures 15 and 16 show the ex-
perimental points and calculation
curves of the change in relative ex-
cess temperature at the prism con-
trol point as a funstion of criterion
Fox and time t. From the graphs wa
see that the calculation results are
in good agreement with experimental
data.

Now let us examine the tempera-
ture ~“ield and heat flow on the sur-
face of a trihedral angle.

Figure 17 shows the trlihedral

Pig. 17. Dia f the dissributi
or‘....l flow o the surface of & trie angle OABC whose temperature field

hedral angle.
can be approximately described by

the following equation, derived from the scheme given atove (Fig. 2):
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-

where »={{&85:9=h 15 the relative temperature of the body at point

e ~1y

a with coordinates x,y,z at time t; ¢' and ¢ ~--e the plane and di-~
hedral angles of the trihedral angle; z = z/x.

The heat flow entering the. trihedral angle in time Tt across a ' ;
unit area with coordinates xy can be found, approximately, from the’
following expression:

Qi "-—"'"2—%(’:"'10) "!;.KJ'KU' (26) ‘

where Kx and Ky are criteria which characterize the influence of
angles ¢' and ¢" on the heav-recalning properties of a trihedral
angle at polnt xy. They are functions of, besides angles o' and o¢",
eriterla l/Fox and 1/Foy, and are determined from the graphs given
above in Figs. 8-10.

Thus, the formulas obtained from theoretical studies make it
possible to calculate the nonstationary temperature fiecld and the
heat-retaining properties of bodles having the form of di- ané tri-
hedral angles.

The results of an experimental verification of these formulas
confirmed the fact that they are correct, which allows us to recom-
mend them for actual calculations.
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HEAT TRANQFER IN A FLU;D FLOW HITH CONSIDERATION OF THE INFLUENCE
OF DISSIPATION °

M. N. Galkin gad S. V. Lomazov

When turbine blades are cooled by convection heat transfer,
che cooling fluld flows at high velocities through very narrow
channels. In this case the distribution of temperature along the
flow is influenced by the dissipative heat released as a result of
viscous friction.

With lamirar flow of a Newtonian fluild, the dissipation of
mechanical energy per unit time [1] iz defined by the formula

g, )

where n is the coefficlent of dynamic viscosity and 3vi/axk are
derivatives of the veloclity components with respect tc the coordi-
nates.

In the integrand, according to the symbolic notation of tensor.

algebra, there is summation over the repeating indices in the pro-
duct from 1 to 3.

The dissipated mechanical energy is converted into heat, and
therefore
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dr dv’ %
where dQA/dr is the heat released per unit time in the examined ’ iz
volume. : '1%
Let us examlne flow of a flulid along rectangular and round g
*  channels. We direct coordinate z along the channel, while coordi- 3
e nates x and y are in its cross-sectlional plane. With steady motion %
E s in a channel of constant cross section, the velocity will be a %
[ ! 3
f; function only of coordinates x and.y. In particular, in a rectangular 3
3 channel, with small height/width ratio E
§ i 20jb kL1, : (3) §
’ where h 1g one-half the height and b 1s the width of the channel E
i%' ' section. we can consider that the velocity changes only with the %
f height of the section, disregarding thne derivative of veloeclty with %
3 respect to cocrdinate x. In this case [1] the velocity will be = ;
K parabolic function of coordinate y: §
) — f!ﬂ 2 12 ) %
‘ 1—2“ dz 'It y)’ (u) ?
2 where dp/dz is the change in pressure per unit flow length. §
As fluld moves along a cylindrical tube of radius R, in the :
; case of Poiseuille rlow we have the famillar analogous formula ;
3 oV dp i
_ = o (RP=r). (5) |
3 ! Let us average the velocity across the channel. For a rectan- | J
% | gular se :ion P
4 3 - ¢ A dp
i 'v~—~§; S:-d;,:-—--a-n- g (6)
for a round section Reproduced from
3 , - best available copy.
‘ P ...l.--“ ."' r '-----._.&i.ie
4 - :(R.‘SS"‘I. "7—- 8n dz. (7)
¢ o
3 ; ) Considering (6) and (7), formulas (4) and (5) assume the form
e MR TUET.Y (8

- i 2 h2

,

S
;
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““Let. ua»determine the quantity Qf heat released during dissipa-<¢
tion of mechanical energy per unit length of the chsnnel. For this’

. let us integrate equation (1) across the section, with consideration
_of (8) for a- rectangular seation dnd (9) for a round one. Let us H ' +

N _ designate by dq /dT the quantity of heat released per unit time per . ‘-

’ - (unit channel ength. Then, for the rectangular sectlion

o
*\

w

Wana, figally,

A (10)
For tﬁe round ehannel
. ., ‘, "., - ggl=lls[(ﬂ2
’ ' . .‘ l.o' 2 [\ (}x
: and, finally, -
oo 93 o
. L - o Sﬂ\l{l . . (11)

. Formulas (10) and (11} show that the heat-relegse power per
1 unit channel length is proportional to the square of the averege
ve;@pity; for a round section it does ﬁbt depend on the channel
radius.

As a fluid moves .along narrow channcls, under conditions of

) d insignificant relative ;ntensity of heat transfer vetween the fluid
. and the channel walls, the temperature differential alang the flow
sectlon can be disregarded as a small value compéred with the tem-
perature head on the surface {Bi << 1). In this case the thermal
state of the flow can be characterized by iue temperature which de-~
pends only on one coordinate, z. ,

N -

Let us assume that heat transfer between the fluid and the
caannel walls 1s characterized by neat-transfer coefficient a., Then
the change in heat content of a flow elemer%t dz is expressed by the
algebralc sum of the heat of dissipation and thc exchenge heat be-
tween the channel and the fluid. The corresponding heat-balance
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,equation

oeSdzdt=:dydz - «F (1 ~-1)d2dr, (12)

where p, c¢ are the density and specific heat i the fluid; S and F
are the area of the section and the perimeter of the channel; tc is
the characteristic temperature of the medium.

After transformation we get

dt of , . dqy |
Jald A LAY JUSIN L DI A S S .
- Q,S‘ et =<5 s 0 (13

The differenbiél equation compiled characterizes the change,
with time, of the temperature of an isolated flow element. With
stationary flow we can turn to an examination of the temperature
field of the entire flow by exchange of varlables from the relation-
ship

de=92, (14)

[
Substituting (14) into (13) and separating the variables, let
us integrate the obtalned expression:

past | at , (15)
| JE———
or, in dimensionless coordinates,
| z_1s Gl , (16)
Lo S {i‘:""“"‘“%&%

te
where 7 iz the channel length; T* = I/v 1s trke characteristic time
for the total volume »f fluid in the channel.

Precise irtegration of equation (15) is possible if we know the
dependences of “luid density, specific heat, and -riscosity on the

temperature.

To explain the influence of the heat of dissipation on the
nature of th2 temperature field of the flow, in first approximation

we can assume




(in

geeeen s rcon‘t f)=const.

These physical values can be replaced by their~average va"ues,
“1f the totsl change in temperature as:the fluld moves along the N
channel 1is: 1nsignificant and 1s not accompanied by phase transitions.'

In thls case, 1ntegration of equa.tion (15) glvas

oyt ‘_' . N = 0eS uF(le-t)-r '
-t cF o Jt . (18)
- OF (re = )4 2
or,‘after involution,
OF (fe — ) + 282
=0~ =
L exp (-—-_- ﬁF—) (19)
4 ' ceS
oF (te ~ 1) 3+ =~ it

Let us expand the right side in a series, restricted to the

>

linear approximation:

ﬁ g3
aF((c-v)+°~§-

After transformations we get

tmtpt i -——[aF to—1) +""" (20)

Equation (20) solves the prcblem in the approximation used.
For a rectangular channel, considering (10),

r 2k 4 &) Weh
- i —0yR3 B 5
'.’M.(-c[ v < N ] (21)

For a round channel, using (11), we get
(22)

1R [ {fe—1t) -+ 8:13‘..']

From equations (21) and (22) we can determine the ccnditions
Obviously, in this

under which dissipation becomes substantial.
For a ruct~

case the terms in brackets should be of the same order.
angular section this conditior. (with b >> h) will be

from which

7o
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(23)

Analogously, for a rouand section

::-zl/ deR of ot (24)
1 9

Besides conditions (23) and (24), which determins the order cf
the flow velocities v for which the dissipative processes become
substantlial under the given conditions, we must take into account
the 1limit of applicability of formulas (21) and (22), associated
with retention of flow laminarity, i.e.,

Re<Re . (25)

Condition (25) determines the upper boundary of velocity Vv, up
to which the obtained dependences remain valid.

If the flow veloclties exceed the critical values, corresponding
to condition (25), dependences (21) and (22) become invalid, since
the heat of dissipation qu/dr will no longer be defined by formulas
(10) ard (11), which are quadratic functions of the average velocity.
In a turbulent regime we determine the heat of dissipation from the
conditions of conservation of energy, considering that the work of
external forces 1s completely converted into heat:

dg=dpS, (251')

where dp and qu are the drop in pressure and, correspondingly, tr.
average release of dissipative heat in channel section dz.

From known hydraulics formulas, the drop in pressure is deter-
mined from the relationship
. dz =,
dp=iy 7=, (26)

r

where Rr = S/F is the hydraulic radius; A = £(Re) is the friction
resistance coefficient.

Substivuting (20) into (25%) and dividing both sicas of the
equation by dr, we get
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-gi-- oF s, , (‘2 7)

The expression obtained for the dissipative'function is suﬁ;l
stituted into equation (20):

ety 2o Lo | (28)

Equation (28) defines the temperature field of the flow under
gsonditions of turbulent flow. Here, consideration of the dissipative
heat is necessary with flow veloclities defined by the relationship

. 8le—tdavyiza, (29)
v
or
- 3" a
T)s:nl -;-—‘:‘-(I‘-—lo). (30)

The conclusions arrived at are valid 1f the physical parameters
(p, ¢, n) are constant, which cccurs under flow conditions close to
adigbatic (o = 0) and with low temperature heads on the contact sur-
face between the fluid and ‘the channel walls (tc - to = 0)., Let us
determine, under these conditions, the influence of fluid viscosity
on the nature of heat transfer with laminar flow. Exarining a round
channel section, let us transform somewhat equation (22), expressing
velocity v in terms cf viscosity n [see formula (7)] and the pressure
gradient dp/dz: ‘

—tym e E MRy R

t—1,= ch i fe—1) J}]. (31)
ds

From equation (31) it follows that a change in flow temperature

under adiabatic conditions (with o = 0) does not depend on the vis-

cosity of the flowing fluid:

dp > Ap
fmt)ymgmm e SR 2L
! Ge=0 oc d:= ce { (32)

Equation (32) could have been obtained directly from the law
of conservation of energy for a moving fluld with constant viscoslty
in the absence of heat transfer with the ambient medium.
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If there is heat transfer between the fluid and the channel
walls, as follows from equation (31) the viscosity increases its
role in the total energy balance, and an increase in n with constant
moving flow forces (dp/dz = Ap/l = const) leads to a relative re-
duction in the role of the dissipative processes.

We should once more stress that these conclusions pertain to
small o and small initial differences in tempercztures tc - to. Unéer
cond tions of intense heat transfer, equation (20) is invalid, while
with large initial differences in temperatures between the fluid and
the channel walls equation (19) is also invalid, since the temperature
changes of density, specific heat, and viscosity »f the fluid begin
to play an essential rocle. For drop fluids, of the indicated physical
parameters it is the visco%i&y which changes particularly greatly.
Consideration of the temperature dependence of viscosity leads to
conslderable complications in integrating equation (15), while the
average veloclty can no longer be caiculated by formulas (6) and (7),
which result from solution of the hydrodynamics equations for fluids
with constant viscosity. Since the flow temperature is a function of
coordinate z, the viscoslity must be treated as a function of this
same argument. The pressure gradient along the flow will also be
variable. Therefore, equations (6) and (7) must be examined as dif-
ferential equations, while the average velocity is determined by
integrating them along the channel. For a ractangular channel, from
equation (6) we get

dp=—(3r)vd:,

from which
LT, (33)
’ 3 \nd-
0
For a round section
o= R2p -
V= = (34)
8 {nds

Forr a rectangular section the rate of release of the heat of dis-
sipation, defined by equations (10) and (11) with consideration of
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dx 3 t. ‘i . - O
| ndz, —r - )
6 / ", e I:’: g ‘
, For a.ré?nd‘section - . s 3 -
2 \ i | . o
5V aRt ) 2 £y
s . g_c.lzﬂ-—--‘k —'——-—'—p \ . (36) L

Y drt 8\“4)
nd:
A

Equation (13), which describes the temperature field of a fluid
flow, with consideration of (14), (35), and (36) assumes the form

dzz= : ge ¢ . (37)

{te =)+ _ Ap

3
P Ntz

L) IO

For a rectangular section the coefficient
k=3/R?, (38)
for a round section
k=8/R?, (39)
If the temperature dependence of viscosity n(t) is known, the

I
integral fqdz can be calculated. For this we must know the tempera-

TR e YRR ST v O oy

o .
ture field of the flow z(t). Then, replacing the variables under
the definite integral, we get
4 "y .

Snd::-_- ( 1}(!i%«1/. (u40)
0 ' "-.)

w'

T Yy

where tZ is the temperature of the flow at the channel outlet.

£ RS e LR e Ll s LR

Substitution of (40) into (37) results in a nonlinear integro-
differential equation for determining the dependence z(t). To cb-
tain an approximate solution tc equation (37) let us assume that the
density and specific heat of the fluid are constant and equal to
thelr average values in the examined temperature range. For drop |
flulds p and c change considerably less than viscosity n with a '

L i S i
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change in temperature, and thererore such an assumption 1s Justiried;

Further, using the theodem of the mean, let us represent 1ntegra1
(40) in the form

fﬂdl-ﬂv' , (41)

v

where n* 1s an intermediate value for viscosity in the interval
(ngs n;15 ng and n; are the viscosities of the fluid at the channel

. inlet and outlet, respectively.

Let us rewrite equation (37) considering (U41):

dz == cedt . (uz)

Lo - A
S (""l 3p ('C ')+ “o 1

Dimensionless viscosity n/n® is a temperature function, equal
to one within the temperature range [to, tz]. In linear anproxima-
tion

Lee (L)t (43)

coefficlent n is selected such that at point t = t#* linear function
(43) has a general derivative with function n/n* (see the figure):

l.l. x(—f—;-l)*l Ay
72 3, . li‘!—‘!-‘-‘-_- -—.-;’—--—. (uu)
]
] | Substituting expression (43) into (42) we get
‘llt = F ; ceut . (N )
-~ LY.} ? :
‘3:'(1(‘1\‘ :71 (!g-—l)-{-—l'—-lv. \—‘:- - l) - IJ

Integrating the obtained equation, we

arrive at the following expression for the flow temperature field:

F ! ! ‘

? T I;(‘_. e l) e dp [(l-'r.).- ¥, -‘—,- l’ -€- A :—-—le-'-_- .

= ; - =Cxpy — 3 2 L " (46)
e PN e (F e -t 9] e -—9- LC .

PRIy (' u)4-4p[(1 v) - ,~] \

When z = 1 expression (46) 1s the equation for determining the
temperature of the fluid at the channel outlet (tz). However, so-
lution of this equation is possible i1f we know the values of n* and

FTD-HT-23-1344-72 w5 | t:ﬁ'zi‘ﬁff.id " D
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n. These parameters can be determined by the method of auocesaive
approximations. In first approximation we can set n! = ngy and-nl
= -1. After this, from equation (46) we determine t,, and dg/dt;
then, using equations (40) and (41), knowing the temperature depen-
dence of viscosity n(t), we find the second approximation for ni:

".

n;r.--}- \ A '-%di. : (47)
t,

Solving the equation n = n(t) for I (or graphically), let us
determine the temperature t3 corresponding to-viscosity n§. Sub-
stituting this temperature into equation (43), we find the second
approximation for coefficlient »:

'n ¢ I' l» )
BT Iy (48)
1) ot

The values of n§ and u, are substituted into equation (46) and
when z = 1L we find the second approximation for the flow temperature
at the channel outlet‘tzz. To determine the third approximation,
the entire calculation process is repeated.

The method described allows us to construct the temperature field
of a flow of fluid as it moves in narrow channels, with consideration
of the temperature dependence of viscosity and the dissipation energy.
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