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The articles in this collection cof.tain the results of
theoretical and experimental studies of heat transfer in gas
turbines, and the temperature states of turbine blades, disks,
and rotors. Analysis is given of the boundary conditions
formulated when stating problems of thermal conductivity rela-
tive to gas turbines. Results are given of a generalization
of critvrial formulas for calculating the heat-transfer
coefficient in vane cascades. Certain specific problems of
thermal conductivity are solved ir general form and numerically
for cooled hollow blades and disks.

The collection is intended for specialists in gas-turbineconstruction. It will also be of interest to teachers and

students in this discipline.

The collection includes 4 tables, 64 illustrations, and
41 references.
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FOREWORD

Recently, ever increasing attention has been paid to questions
of heated and loaded parts of high-temperature gas turbines, since

improvement of turbine cooling is one of the effective ways of im-

proving their performance. The materials used to make turbine parts

allow raising the temperature of the gas ahead of a cooled turbine

to 1400-1500 0 K. However, imperfections of the cooling systems do

not allow heating the gas to such a temperature.

Turbine cooling can be improved only after careful study of the

temperature state of individual stator and rotor parts under operating
conditions.

In this collection we present the results of theoretical and ex-

perinental studies of tne temperature state of the most critical parts
of turbine stators and rotors - the nozzle and rotor blades and disks.

The statement and solution of research problems had the aim of

explaining the reasons for high heating of these parts and finding
ways of improving methods for their cooling.

The first articles analyze the boundary conditions in the rotors

of axial gas turbines and nozzle blades. The rules established by the

authors make it possible to refine and simplify the familiar methods
of heat calculations. Then, on the basis of a generalization of the

criterial dependences. used to determine the average heat-transfer

FTD-HT-23-1344-72 vi



coefficient in vane cascades, calculation formulas are obtained for

calculating this coefficient in cascades with varying reaction. As

a result of an examination of steady and transient heat conduction

of the rotor with the blades, disks, nozzle blades, and rotor blades

and other parts, finite express:•o* are derived which can be used when

analyzing their temperature state.

Subsequent articles study the dooling of rotor blades by blowing

cooling air from inside onto the blade surface through perforated

holes and show the effectiveness of this method, and also give a

method for calculating disk cooling.

Of considerable interest are the results of an experimental

study of the thermal state of the rotor of an axial: three-stage gas

turbine; these make it possible to evaluate the ýffectiveness of the

cooling system and note ways for improving it.

The last article presents a theoretical study of the process of

heat transfer in the flow of cooling liquid, considering the energy

dissipation.

The results of the studies are presented in the form of mathe-

matical dependences suitable for calculations; the most complex

solutions are presented as nomograms or are reduced to numerical

functions.

The authors ask that all comments on the contents of this

collection be sent to the following address: Moscow, B-66, 1-y

Basmannyy per., 3, Izdatel'stvo "Mashinostroyeniye."

FTD-HT-23-1344-72



BOUNDARY CONDITIONS IN PROBLEMS OF HEAT CONDUCTION FOR GAS-TURBINE I
ROTORS

V. S. Petrovskiy and M. I. Tsaplin

In a theoretical study of the temperature states of gas-turbine

rotors the boundary conditions are formulated on the basis of spe-

cific physical premises which depend on the structural, gas-dynamic,

and operational characteristics of the turbine. In order not to

complicate the solution of the initial differential equations, we

usually attempt to simplify the boundary conditions within tolerable

limits. In this case we will examine only one-dimensional problems,

Let us set the coordinate system as shown in Fig. 1. If the

heat problem is solved separately for a rotor blade, at the base of

the blade (x = 0) the boundary condition can be

dx =q . (2)

dt -0 ('-.0) ___________________________t2 r

Fig. 1. Coordinate system used for stating

ro~ o 4.0 . heat problems for the cooled rotors of gas
r, 0 40 turbines: 1 - approximate experimental

disk curve; 2 - theoretical curve.

FTD-HT-23-1344-72 1
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vlhdre ). is thL eat conduction of the blade material.

In both cases the boundary conditions contain values which can-

not be determined by calculation, and therefore a theoretical study

of the temperature field is possible if we know the experimentally

determined values of temperature tI or heat flux q

Measurement of tl, to say nothing of qn and q. involves

laborious experiment; however, this is justified since, first, by

knowing the actual temperature on the boundary of the blade with the

disk we reduce the probability of error when calculating the tempera-

ture dependence for the disk or blade, while information on heat flows

q and q' makes it possible to predict the temperature gradient

from the middle to the root of the blade or from the periphery to the

center of the disk. Second, measurement of t,, qn.A' and q' in

conjunction with the calculation method of determining the tempera-
ture field in the blade and disk is a less laborious process than

purely experimental study of the temperature state of turbine rotors.

In designing a turbine there is no need to measure temperature

tl, and therefore we assign its value in the calculations. As has

been shown by experimental study of temperature distribution in gas-

turbine rotor blades and disks, the value of t1 depends to a con-

siderable extent on the t-mperature of the gas at the blade root and

on the cooling of its root section or footing (if such exists). If

we know the calculation mean-mass temperatures of the gas at the

inlet to the rotor cascade and at its outlet, we can assume that t

is 0.7-0.8 of the arithmetic mean of these temperatures.

We can avoid the need for measuring tl, qn and q.A by

solving the problem for a turbine rotor for the system disk/blade,

i.e., by solving a system of two differential heat-conduction equa-

tions. In this case we must formulate, besides the boundary con-

ditions for x - I and r 0 (or r 12), two more boundary conditions

on the blade/disk joint.

FTD-HT-23-1344-72 2



In final analysis, temperature distribution in the system disk/

blades is caused by the gas flow passing through the rotor cascade,

and by disk and blade cooling conditions. The characteristics of the

gas flow are known from previous thermal gas-dynamics calculations,

while the characteristics of the cooling air are determined, for the

given design, by its flow rate. The flow of air for cooling is

usually 3-4% of its total flow rate through the engine. Corresponding

hydraulic calculation should show the distribution of cooling air as

it move through the entire cooled blading of the rotor before passing

into the gas flow or to the atmosphere. Knowing the distribution of

the cooling air, we can calculate its speeds of motion along the

cooled surfaces, and then the values of the heat-transfer coefficient.

Thus, the characteristics which determine the temperature field

in the rotor can be obtained from calculation. They can be used to

determine the boundary conditions of the blade/disk system and to

find the temperature field as functions of the gas-flow and cooling

air parameters.

First let us examine the typical boundary conditions for turbine

disks. With one-dimensional statement of the problem, the turbine

disk iV a symmetrical body whose temperat.:e changes along the radius.

If there is no central opening (r = 0) the heat flow in the center of

the disk (because of syimaetry) is zero:

dta(O)/dr=O. (3)

For a disk with an opening in the center (r = r 2 ) the boundary

condition can be given in the form of the equation

_ t, = a It, (r,)--j (4)
fir

where r 2 is the radius of the openinF in the disk.

Disks have variable thickness along the radius. Their profi-os

can be approximated by hyperbolic, linear, or parabolic functions

(Fig. 2). By correcting the profile or heat-transfer conditions in

FTD-HT-23-1344-72 3
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the central part of the disk, the boundary

conditions (with r - r2) can also be

written in the form [dtA(r 2 )/dr] 0.

.2 2Here the solutions of the initial dif-
" ferential equations are simplified.

fj. • ••.We can give the following example of

correction. if the dtsk profile can be

approximated by a hyperbolic function,

Fig. 2. Approximation of when constructing the theoretical profile

a disk profile by linear, there can possibly be too strong develop-hyprboicand parabolic ment of its lateral surface as the center
hyperbolic,anprboi
functions:

S-a so +,%( - ),n 31 2- of the disk is approached. Convection
soo r; 3 - -a Vr. heat transfer from the surface of the

opening will be compensated by this in-
creased area of heat transfer with corresponding dimensions of the

disk opening. For disks of trapezoidal profile the correction can

be done by increasing somewhat the heat-transfer coefficient on the

lateral surface of the disk.

The boundary condition for a disk with r = rI can be written in

the form

-•, ,)=q,.,,(5
dr

where q. is the heat flow to the disk from the blades and the vane
nA i

channel, with consideration of the thermal resistance in the roots.

The value of q' in condition (5) is determined mainly by then.A
heat from the blades to the disk. But this heat, in turn, is deter-

mined by the boundary condition with x = 0, which can be found from

the heat-balance equation. Consequently, we can connect the tem-

perature fields of the blade and disk at their joint using the

general boundary condition; then the thermal problem for the general

temperature field of the disk/blade system will be solved using only

initial data from gas-dyn.mics and aerodynamics calculations for the

gas and cooling air, respectively.

14/

~ ~at fl~tS~r~c



r

Let us see how we can associate functions t (r) and t (x) using
A AI

the boundary conditions.

Let uz assume that in the sector from t (rl) to t (0) (from the

disk periphery to the blade root) the temperature gradient does not

change, i.e., At/Ax = const. This makes it possible to represent

the temperature differential at the blade/disk boundary in the form

of the difference

and 4.ntroduce the value of At into one of the terms of the heat-
balance equations compiled for t ii(x), with x =0, and t A(r), with

r = rl, since the conduction heat flow from the blade to the disk

in this case is proportional to At.

Thus, if we solve the differential equations for heat conduction

for the blade and the disk individually, in the final expressions we

get the unknown At which we introduced into the boundary conditions

and which can be defined by supplementary equation (6). Substituting

into it the values of tn C(0) and tA (rl), found from the general

solutions of the heat conduction equations, we get a formula for

calculating At in terms of known values.

As an example, let us examine the connection in terms of the

temperature differential in the blade and the disk. Let the disk

have blades with roots, and also an upper and lower shroud. During

assembly, channels are formed for air passage during turbine operation

between the surfaces of the root, the lower shroud, and the disk

crown. The diagram of such a blade, mounted on a disk, is shown in

Fig. 3.

For such a design it is expedient to consider the change in

temperature along the blade root from t, A(0) to tA (rl) to be linear;

the coordinate origin along the blade should be in a plane which coin-

cides approximately with the middle thickness of the shroud, while

the terminal coordinate of the radius coincides with r 1 .



Xz Considering all heat-transfer surfaces

when x - 0, we can compile the following heat-

balance equation (see Fig. 3):

I, Q1+Q2-Q3+Q4. (7)

Swhere Q 'S,*, is the amount of heat fed
A- dX

per unit time from the working part of the

blades to their lower sections So, which we

will consider to be located in plane x . 0
(n is the number of blades); Q2=z--v,•[(O)--.t(O))S..

Fig. 3. Schematic is the heat obtained by the surfaces of the
drawing of' a shrouded lower shrouds of the blades, turned toward the

V solid rotor blade
with root, positioned gas flow; .. n-S is the heat removed from
on a turbine disk: boundary sections (S0 ) to the blade roots (h is

coflf•..t of the core- the height of the root, SH is the area of its
podinS surface, Q -heat s [ " 1

removed from them. M ..

is the heat removed by the cooling air from the convection heat-trans-

fer surfaces S' and S" within the channels in the lower part of the
L5 c5

blades.

Substituting the expressions for Q into equation (7), after

transformations we get (with x - 0)

Cie.,+ýrl-(8)
dx

Here

•,=,.,- 0) 1., O) = ) -- t,.0):

,5 (S,, +S:,) + ,,s"

a(S" +S.4-)___"_"_____ - - -"..SI At

Now let us formulate the boundary condition for the disk with

r = rI. The heat-balance equation

Q--Q6 =Q,. (9)

6 6'



where Q•=. S,1', is the quantity of heat fed per unit time through

the root cross section from all blades to the disk crown (to an arbi-

trary coaxial surface of radius r - rI); Q6=ujl1,(rjl--trjS;.n is the heat

removed by the cooling air from the blade surfaces S" of convection
-5 fheat transfer; Q7=2:rtIl.1 dl is the heat entering the disk through

-ea theser disk-tthrough
the outer surface of the crown (H is the width of the disk crown, 8

is a coefficient which takes into account the thermal resistance in

the blade joints).

Substituting Q into equation (9), after transformations we

get

d81( 19.- t_ trlj) (10)
tdr

Here

~,2.2r1Hh .

Boundary conditions (8) and (10), together with boundary con-

ditions (1) and (3) or (4), make it possible to obtain particular

solutions to the initial differential equations

for the blade and disk, from which we can also

find the formula for determining At. In cal-

x.O culations by the obtained formulas it is con-

" ' Q venient first to find the numerical value of

k At from formula (6), and then calculate the

I�Q�� temperature distribution in the blade and disk.

QI2  Let us examine the case of determination

of the general boundary condition at the joint

Fig. 4. Diagram for between a disk and blades without roots. The
compiling heat-bal- diagram for connecting the blade to the disk
ance equations for
lower part of solid in this version is shown in Fig. 4. The origin
shrouded rotor blade of coordinatu x (along the blade) is best located
without root, and
for a disk with r = in the root section, and it is advisable to ex-
= r'. amine the temperature differential throughout

the disk crown (coordinate r). Let us consider that plane x =0



coincides with coordinate rI. For blade cross section SO coinciding

with this plane we can compile" the following heat-balance equation

for the amount of heat passing per unit time:

Qs+Q,-Qw0+Q,,. (11)

Here is the heat coming to the cross section from
dx

the working parts of the blades; Q,=,u4 f;0)--tý,%OJS,,a is the heat fed
to the disk crown from the vane channels; Q10•*., is the heat

removed from the outer surface of the crown (At is the temperature

differential throughout the crown from r. to r); Q, c*2a, [2a,.(0-•- A ) x

x 2t:o (r;+141) is the heat removed from the side surfaces of the crowni

by the cooling air.

Substituting Q8- 1 1 into (11), after transformations we get

(12)
dx

where

• S.,+ 4.-,,,.(6 +,,hA

14 SO ). 3 Spnp
a t42,ho (rjh-. h.6.2) [ 0]-

!?son 4... (r +0)]).. •'

17 sons . Sorns In (r, a

For a disk with r - rj the balance equation can be written in the form

Q12=Q,o. (13)

Here Q,2 ,2.trH is the heat removed per unit time from the crown
dr

to the web of the disk.

After substituting Q1 2 and QI0 into (13), with transformations,

we get

S _'r,) _ - - ( 14)
Jr

8



where

Obtained boundary conditions (12) and (14) include the tempera-

ture differential At = t (0).- t (ri). Just as for a disk having

shrounded blades, we can first find the particular solutions for the

blade and the disk, and then eliminate the unknown At from them.

The boundary condition at the blade tip (x Z) in the form

!Y=1 ( 0 (15)
dx

is the only item found in the literature.

Measurements show the nonagreement between the actual temperature

distribution along the blade and that calculated with boundary con-

dition (15). This is explained by the fact that the final formula for

determining t,(x) does not take into account changes in gas tempera-

ture along the blade (see, e.g., [1, 2]). In addition, boundary ckn-

dition (15) is physically incorrect, since there is actually a tem-

perature gradient at the blade tip.

In [2] a solution is giver for the thermal stationary problem
for a blade with a profile of variable cross section, in which the

change in gas temperature along the blade is taken into account; this

same source recommends finding the constants in the general solution

of the initial differential equation using, in particular, boundary

condition (15). The function for the change in gas temperature along

the blading of the rotor cascade, leading to the occurrence of a tem-

perature gradient at the blade tip, is incommensurate when solving

the heat problem with boundary condition (15). To ovei.3ome the contra-

diction between the proposed and the actual boundary conditions at the

blade tip we can isolate, at the blade tip, a short segment of length

0.2Z, considering its temperature constant and equal to the temperature

of the gas on the periphery of the blading of the rotor cascade. Such

an assumption is not far wrong, since the blade tip receives a cer-

tain amount of heat from its middle part due to heat conduction, and



this to some extent compensates for heat lost to radiation in the
examined segment. For rotor blades with an upp'er shroud we can dis-

regard the-heat fed to the shroud through the blade tip section.

Then the temperature at the blade tip can be considered equal to the
I j

temperature of the shroud and defined as some steady temperature

established as a result of the balance of the heat fed to the shroud
by the gas flow and lost by it due to radiation. The heat lost to

radiation can be defined approximately by the formula

" (16)

where e is the coefficient of blackness of the shroud surface; a
is the thermal.-radiation constant; T 6 . is the steady temperature of

the shroud.

When compiling equation (16) we disregarded the radiation heat

transfer between the gas flow, the surrounding parts, and the shroud,

considering that the shroud only gives off heat. This assumption

lowers T 6 .n only insignificantly.

Based on conditions of con;ective heating of the shroud and the

heat lost to radiation, we can write the heat-flow equation in the

form

lout" (17)

Herr a = 0.5(aI + a2) is the average heat-transf'er coefficient for

the upper and lower shroud surfaces; T*(Z) is the gas temperature at
the shroud.

Numerical solution of (17) for T can be easily done by trial
and error with subsequent approximation.

Thus, for the tip of a rotor blade of a gas turbine (x = t) the

following boundary condition is more precise:

or (18)

10
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where t6. is the steady temperature of the blade tij, equal to the
.temperature of the upper shroud 0 (Z) = t () - t(l).,n n

The rotor blacjs can be cooled from within by air, liquid, the
vapors from some liquid or other, or other means". In al cases,
when formulating the boundary conditions for x .- 0, x = 1', r-= rl,

r = r , and-r = r', the above discussions remain valid. Certain
features can appear only when compiling the equations f6r the he.at
balance at the blade/disk Joint and when compiling the heat-balance
equation for the determination of the equilibrium temperature of
the rotor blade tip. Thus, boundary conditions (8), (10), (12), (14),

and (18) can be considered as typil4al for gas-turbine rotor blades.

It should be noted that *for rot blades with an upper shroud,
calculation of the temperature of the lade tip using boundary con-
dition (15) is not allowed, since an e roneous rise in temperature
can make it necessary to increase the a ea of the profile crcss
section due to high mechanical loads at the point where the blade
touches the upper shroud. Increase cross-sectional area increases
the dimensions and weight of the blade as a whole, which is very'
undesirable for gas turbines.

One-dimensional transient heat conduction in a gas-turbine
rotor is described by the following equations:

for the disk -

81(r.i) a, ar f(r.r)1_ r
-rz (r) (19)jt(r

for solid blades -

dt,(X. r) = a, o S(o ., (x. r) -a, (x) P (x) f,(.r-txI(0
ax S (X) ax I Ix I .Lsx

and for a hollow cooled blade -

Od.T) =a,d (It, (X r) _S (x).( X)Ox a (21)
- .(x)p'(; [t, t,)- t;(x) 1 z,.(x)P" P x) (x, ,)-t.(x)j.

C.,.,S (x) C..,S (x)W

¶5 i



where T is the time; z(r) is half the disk thickness; a , a , P,

p 1, c4, and c.1 are the thermal conductivity, density, ar4d. pecific

heat of the disk and blade, respectively.

The equations which describe the steady heat, state of the disk

and blade can be obtained from equations (19)-(21), if we consider

that t or t do not depend on T, i.e., Bt (r,¶)/B¶ and ;t (x,t)/3t
A Ai A n '

are equal to zero.

Solution of equations (19)-(21) in general form, with consider-

ation of the possible dependences of z, c3, a6, a9  Sl, P, t*, and t,
31a r 8

on x, is, as a rule, impossible due to insurmountable mathematical

difficulties.. in this case the simplicity of the boundary conditions

allows us to compile an initial differential equation or a system of

equations without significant simplification3, and thus obtain more

precise final functions t (r,T), t (x,'), or t (r), t (x).

Valid simplification of the boundary conditions can be combined

with the use of initial differential equations in the most general

form, if we consider the features of the actual temperature distri-

bution along the blade foil.

Experiments show that in the midsection of the blade the tem-

perature distribution curve has a maximum. This is natural, since

the shape of the dependence t (x) of a solid or hollow cooled rotor

blade is determined, to a considerable extent, by the temperature of

the gas in the blading. From this it follows that in the middle of

the blade foil there is no longitudinal heat flow. Therefore, if we

formulate the heat problem for two independent sections of the blade

0 < x1  Z and 0 < x 2 S 12 (assuming that 11 = Z2 and 11 + z2 = 1),

on the boundary of sections x, and x 2 (x 1 = z1l x 2 = 0) we can, with

sufficient accuracy, assume that BtA( 1 ,T)/3Xl = 0 and at,(0,T)x

a ax =0.S~2

The arb• 'ary division of the blade into two sections makes it

possible to • up one heat problem for the disk and the root

12
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g'vZ -another independent problem for the blade

- - 1 tips (segment x 2 ).r)" Such a method makes it relatively

40 simple to take into account, in initial

* differential equation (20), a number of

5. functions of x, including the most im-
.portant one - t!(x). Figure 5 shows, in,

Z 07 0,7S 0.8 0,9 10 relative coordinates, the most typicalSr (x)

change in gas temperature along the blade
Fig. 5, Cagei temn-oftebaeio

in cascade. Division of the blade into seg-
perature of a stagnant
gas flow along the blade ments xI and x2 makes it possible tocascade, in relative
cacadeinarelrepresent function t*(x) in the form of
coordinates:r3
1 - graph constructed from measure- two fourth-order parabolas on segment x
ment results; 2, 3 - graphs or the type 1

S1 - 3 2n. Where n 8 and 6; -c and two eighth-order parabolas on segment
x 2 ) * t•(x 2 )/t 4(O)1 ; •, 5 - graphs x 2 .

of the type (Xl) - 1 - 3 (1 - ,

wh•eren - 3 and~e' t(•) - t,(x• 4 When stating transient problems for

s.t'f* (,),ie " gas turbines it becomes necessary, as ax 1.04tp.cp.mo.cc (,-ere 1"X/l

X.cX2-r•1. 2 rule, to take into account the variable
nature of the process not only along the

examined direction (with one-dimensional solutions), but also on the
boundaries of the corresponding coordinates. Let us examine the
possible transient boundary conditions and formulate them in more
general form.

In the center of a solid disk the conQ._tions of symmetry, re-

gardless of time, allow us to consider that at (r,-)/ar = 0. This
-A

boundary condition is not always acceptable. If the central part of
the disk is in contact with a shaft whose temperature is always kept

lower than the disk temperature, heat will be removed from the cen-
tral part of the disk. This circumstance must be considered, even
though it does not change the condition at /3r = 0.

In this case we can state the problem for the interval

13
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r < r < rl, where r is a certain radius; we can consider approxi-

mately that on this radius the direction of the heat flow in the

disk, from the periphery to the center, coincides with the direction

of reading. The value of the heat flow q will equal Q/S (Q is
22

the total quantity of heat removed to the turbine shaft, S is an

arbitrary coaxial surface on the disk at radius r 2 ). The value of

q2 for particular cases can be determined from equations of the
2

conservation of energy (heat balance).

For a disk with a central opening the inner surface of the

opening can be cooled. This is taken into acc-ount by the boundary

condition (with r =r

ar *-)--- ,, i• (:)- t,(r.)].(22)

In the absence of cooling the boundary condition will be

01a (rN, ") 1dr = 0.

At the point where the blade rocts Join the disk the boundary
conditions consist of the heat-balance equation, Just as for the

case of steady problems, but with consideration of the dependence

of At on time. In accordance with this, stationary boundary con-

ditions (8) and (10) assume the form [3]:

when r = r

Ot, (r 1 . T)
dr -1UO.(23)Ox2  = t.•n )-- tir 1 (rj, . (24)

and when xz = 0

Ot, (24)•

Here

k., h (tS.,so ' nl __-___._ ; *.,s

S I'
i.2 r1I13 IzS0,H IS 2KSO

14

I•



. .......... O

For blades without roots the boundary conditions have a some-
what different form. It is not advisable to use, in this case, the
assumption of a logarithmic law of the change in temperature on the
disk crown, as was done for the steady process, sin~e the time de- A

pendence t (r,T) is of a diffe'.ent nature. Let us compile a heat-

balance equation with r =r and x= 0 (see Fig. 5):

Q;-+ Q-Q---'Q-, (25)

where ,..Q:, __. , Son, i is the heat from the blades to tie disk in

1 second; It )-:(r•)] S,,, is the heat to the disk from the

vane channels; Q, •r' T) 2ar,H is the quantity of heat removed fromOr

a surface of radius rI to within the disk in 1 second.

After substituting QA, Q1, and Q into equation (25) we get

9 ArOt(ri, T) at , O (O., T)

ar (26)

where
1.. gSP

Now let us determine the boundary condition for the tip of the
rotor blade. With tr:.nsient heating, the temperature of the blade
tip changes somewhat more slowly than that of its middle section,
due to temperature nonuniformity in the gan flow. First let us ex-
amine a shrouded blade. The shroud at the blade tip has a
sufficiently large neat-exchange surface, and we can consider that
in the general energy balance that heat which is fed from the
middle, more heated, part of the blade is not definitive. Basically,
the temperature of the shroud depends on convection heating by the

gas, and to a lesser extent on the heat lost to radiation at a

I high temperature, which we can disregard. Then heating of the shroud

will occur in accordance with a regular regime of the first kind,

i.e., when x2 =1 2
li t:, )= (1- [1 (12)-i•O-•e, (27')

15
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where t A (Z2 ,3) is the temperature of the shroud (and the blade tip);

t is the initial temperature of the shroud; n=--is the rate of
the regular regime (S 6 .n is the area of the surface and M i.n Is the
mass of the shroud).

According to boundary condition (27), the shroud should, in

time, be heated to the temperature of the gas (as T ÷ o). This
does not really happen, since as a result of the rise in temperature
of the shroud, equilibrium gradually sets in between its convection

heating and radiation cooling. Here we cannot use boundary con-
dWtion (18) for the steady process because t6.n will depend, under
transient conditions, on time. For precise determination of the
boundary condition, considering the radiation heat losses, it

would be necessary to compile a transient differential heat-balance
equation using the Stefan-Boltzmann law; because of the difficulties
involved in integrating this equation we can use the following
method. Let us introduce into (27) a correction tactor which can

depend regularly on time; as T - - it becomes numerically equal to
t(Z 2) - t 6 .n, i.e., when x2 = I2 we should have

t., (l. r)-- ~-. j;(]--it; oJ e"'- [:0I•)-t6 ,, (1-e.). (28)

For blades without a shroud we can formulate condition (27)
under certain assumptions, which nevertheless lead to more precise
results than does the condition Dt (. 2 ,)/ax 2 = 0 for the blade tip.

In this case the blade element whose temperature changes by the law

of a regular regime will be a certain section near its tip. The
length of this section should be about 10% of the length of the
working part of the blade. Then coordinate I2 will pertain to the
section of the blade at the boundary between the entire workinIg
part and the isolated segment. Here the assumption that X + for
the blade tip section somewhat distorts the final temperature
function. This distortion can be corrected by arbitrarily changing
the tren.. of the temperature f'iiction ' (x) when graphically analyz-
ing the calcu'atiori results. The corrected graph will follow along
the upper boundary of the f=tld of scatter of the results of cal'3u-
lating the blade temperature, and thus correspond to more rigid

16



Sii
conditions for operation of the upper part of the blade foil.

The examined method a~so makes it possible to use boundary con-
dition (28) for a blade without a tip shroud.

This analysis of the boundary conditions for a transient pro-
cess in the disk/blade system makes possible a well-founded selection

of that combination of boundary conditions which is close to reality.

Undoubtedly, particular cases can occur which require a certain re-

finement of the examined boundary conditions. These refinements

obviously should be introduced into the initial heat-balance equa-
tions. Then, if refinements become necessary, the final form of the
expressions for the boundary conditions when r = r 2 , r = r1 , xIl 0,
and x 2 = 12 will hardly change in any significant manner.

The statement and solution of two independent heat problems for
a disk with blade roots (xl) and for blade tips (x 2 ) result in the

fact that function t n(x,T) for the entire blade can have adis-
continuity at point x1 = 11 and x 2 = 0. Practice has shown that

the value of this discontinuity is very insignificant, and it is
much less than the error of the calculation method as a whole.

Therefore we can eliminate the discontinuity of the function t B(x,,-)
on the blade-section boundary xI and x 2 , by calculating the arith-

metic mean temperature . +( and using it as the only2

value for the coordinates xI = 11 and x 2 = 0. The entire

function t (X,T) at this point should be corrected graphically and
represented as a continuous function.

Thus, the known forms of the boundary conditions, encountered
when solving the problems of heat conduction for gas-turbine rotors,

do not always correspond to the actual forms. The data given in
the article give grounds for considering that in certain cases we

snould solve the problem of heat conduction for the disk and blades

simultaneously. This is advisable when the only initial data for
calculating the temperature state of the rotor are data from pre-

liminary calculation of turbine blading and hydrodynamic calculation

17



or rotor cooling.

The heat-balance equations compiled for the blade root and the
periphery of the disk allowed us to formulate, and represent in
general form, the boundary conditions with x = 0 and r - rI both for
steady and transient pr-ocesses of heat conduction. For shrouded

blades the boundary condition at the blade tip can be compiled by
starting from *%-he thermal state of the upper shroud which, when the

turbine operates under steady-state conditions, has a certain steaay
temperature which is found by solving the corresponding heat-balance
equation.
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BOUNDARY CONDITIONS IN HEAT-CONDUCTION PROBLEMS FOR COOLED NOZZLE
BLADES

V. S. Petrovskiy

Theoretical study of the temperature state of nozzle blades of
a gas turbine involves solution of the boundary-value problem, which
includes the boundary conditions at the blade tips. The accuracy
with which the boundary conditions are given determines, to a con-

siderable extent, the accuracy of the final result.

Let us ex mine one of the versions for formulating the boundary
conditions at the tips of a hollow cooled nozzle blade when solving

a one-di.,ensional steady heat problem.

At the blade tips there are shrouds, and the tips are in con-
tact with the inner and outer shrouding strips. With steady-state
operation of the gas turbine the temperature of the shrouds depends
little on the design of the cooling system within the blades. If

we disregard the heat which is fed to the shrouds from the working

part of the blades, the shroud temperature can be found from the con-
dition of thermal equilibrium between the heat flows from the gas to
the inner surface of the shroud and from its inner surface to the
cooling air. Such thermal equilibrium can be described by the cor-
responding equation for the balance of the heat flows.
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Let us examine a nozzle blade

:.1,' to which cooling air is fed from an ;

S~ annular cavity in the upper shroud
(Fig. 1). After cooling the blade,the air enters the blading of the

turbine through openings near the

rear edge on the concave part of the

profile (Fig. la) or combines with

the air flow which cools the turbine

rotor, through an opening in the

lower shroud (Fig. lb). In both
a) b) cases the temperature of the shroud

Fig. 1. Tmhedlding of nozzle is determined by convection and ra-
blades into ti..e shrouds. The
arrows show the path of the diation heating from the gas flow
cooling air within the blades: and by cooling by the air flow. To
a - emergence into the tur-
bine blading; b - emergence compile the heat-balance equation
to the base of the rotor let us schematize the design of the
blades.

shroud, representing it in the form

of a plane wall (Fig. 2).

"Let us also give the coordinate system

in which we will determine the boundary values

of blade temperature and gas-flow stagnation

temperature. The coordinate origin (x = 0)

,-'- - . is made to coincide with the inner surface of
the lower shroud adjacent to the inner shroud

Fig. 2. Schema- strip.
tized nozzle blade.

In the heat-balance equations we consider radiation heat trans-

fer, proportional to the fourth power of the absolute temperature.

This makes it necessary to express the temperature differential for

convection heat flows ir, the form of the difference between the ab-

solute temperatures of the m-dium and the wall.

Ultimately the equation for heat-flow balance for the upper

shroud can be written as follows:
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q I=q 2 =q +q3, (q)

where q-ur[T•()-Tr] is the convection heat flow from the gas to the

shroud (a is the coefficient of heat transfer of the gas); q2= ,-
F_

trf--Tr) is the conduction heat flow through the shroud (X is the

coefficient of heat conduction of the blade, 61 is the shroud

thickness); q,=u,(T7-r,) is the heat flow from the outer surface of
the shroud to the cooling air (a is the coefficient of heat trans-

rB

fer from the shroud to the air); q4 =E--- is the heat lost to ra-1004

diation from the cooled surface of the shroud (e is the coefficient

of blackness of the shroud surface, a is the thermal radiation con-

stant).

Equation (1) does not take into account radiation heat trans-

fer between the inner surface of the shroud, the heated surfaces of

adjacent parts, and the gas flow. We can assume that the value of

this flow, determined by the Stefan-Boltzmann law, will be very

small compared with the intensity of convection heat transfer, since

the difference in temperatures of the inner surface of the shroud

and the surfaces of the surrounding parts is not great, while the

gas flow has a low radiation coefficient. In radiant heat flow q

no account is taken of the component of radiation of the heated sur-

face of the shroud, since the temperature of this surface is con-

siderably lower than temoerature T of the outer surf& of the

shroud.

Substituting the values of q 1-4 into expression (1) and solving

the resulting equations for T1 , we get

Bir.Tr ( T , 71 T

T U - , i.(7.-T.J- X W0o (2)

where Hi, - , and Bi.--- Z. are the Biot criteria for the inner and

outer surfaces of the upper shroud.
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To determine Tfor the corresponding values of all quantities
entering into equation (2), we can solve the latter by selecting
that value of T2 for which the equation becomes identical. This
method allows us to find T2 from the 3rd or 4th approximation. 1<
Using the found value of T2 , from equation (1) in the form

21,

we can calculate the value of T.

Temperature T will thus be a certain steady temperature of

the blade cross section when x = Z, which makes it possible to wr'"e
the boundary conditions

! ~ ~~~t.. (1) .( )

If the cooling air emerges into the cavity of the lower shroud,
the steady temperature of the inner surface of the lower shroud iN
determined analogously. Using as our basis the same concepts as
when compiling equation (2), we get

BiT;((1) -'T4  T~i( 4 TT4_. ,r4 =Th " L 'Z - (5)

Solving equation (5) for T4 ty selecting and substituting the
obtained numerical value of Tt in equation (1) in the form,,

4t

, [T, tO)- T] • .- (T..--T , (6)

we get the formula for calculating T3 .

If the cooling air emerges into the turbine blading, the heat-
balance equation has the following form:

q; (7)

where i•----4L j•,.-T 3, is the convective heat flow from the gas to the

inner surface of' the lower shroud; q;=-!T7--T4 • is the heat flow

22



T 4

across the shroud; q4=,s 4 is the heat lost to radiation by the
:004

outer surface of the shroud.

From equation (7), by substitution of the values of q', qI, and

q4, we get

BiT;(0)- T, _ T4 .
Bi;+I , (8)

B31; [T; (0) -- rJ = T3 TO, (9 )

from which we can calculate T4 and then T3.

Thus, in both cases for the lower end of a nozzle blade :x = 0)

the boundary condition can be written in the form

t.1(o) =t,. (10)

Boundary conditions (4) and (10), obtained as a result of these

discussions, are definitely not the only possible ones. They can

change depending on the design of the fitting of the nozzle blades

into the shrouds. However, for the design shown in Fig. 1 these

boundary conditions give quite good coincidence between the theoreti-
cal distribution of t (x) and the experimental distribution: the

results of calculating tn(x) from the equations obtained when solving

the corresponding thermal problem differed by no more than 4-5% from

data on direct measurements at the nozzle blade tips.

The boundary conditions obtained can be used when setting up

steady-state problems of heat conduction relative to cooled nozzle

blades.
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THE QUESTION OF THE AVERAGE HEAT-TRANSFER COEFFICIENT IN 'VANECASCADES

N. A. Petrovskaya and V. S. Petrovskiy

The heat-transfer coefficient a in a vane cascade is one of the

basic values describing the distribution of heat/in gas-turbine

rotors and stators. The initial differ:ential e/juations for transient
and steady heat conduction, compiled for solving the appropriate
problems, include the coefficient of heat transfer to the blade

surfaces.

The intensity of the heat transfer on blade surfaces determines,
to a considerable extent, the temperaturel field in turbine rotor
disks, since heating of the dLik is caused basically by the flow of
heat from the blades. The influence of the heat-transfer coefficient
in a rotor vane channel on the temperature field of the blades and
disk of the rotor is particularly noticeable when simultaneously
solving the initial equations of heat conduction for the blades and
disk. In this case, in final analysis we get temperature depen-
dences (linear, two-dimensional, or three-dimensional) for the

blades and disk which are connected, at the point where they come
together, by appropriate boundary conditions. These conditions in-
clude the functions t (x) or dt (x)/dx when x = 0 (see, e.g., [5])
which also include the value of the heac-transfer intensity coef-
ficient a on the blade surface (x is a coo-linate along the blade).
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For two- and three-dimensional heat-conduct'.on problems the distri-

bution of heat-transfer intensity along the blade profile is of

interest. Such data have been obtained in certain investigations,

but it is difficult to use them in calculations since it is im-

possible to describe the dependence a = f(x) by a function which

would coincide with the actual distribution of a. If this can be
"done, however, it is extremely complex to solve the problem by intro-

ducing such a function into the initial equations. Therefore it

becomes necessary to replace it by simpler dependences which only

approximately correspond to the true distribution of a along the

blade profile.

The distribution of heat-transfer intensity along the blade

foil should have a substantial influence on the d~stribution of tem-

perature along the blade,
:1k

As shown in the work by V. M. Kapinos and A. G. Knabe [1], the

intensity of heat transfer in a vane cascade depends on the nature

of the gas flow along the blade profile, which in turn is determined

by the reaction of the cascade. Consequently, the dependence of a

on x can be determined if we know how the reaction of the cascade

changes along the blade.

The authors of 11] qualitatively substantiate the dependence

of heat transfer on the shaping of the cascade - its reaction. Act-

ually, as shown in the works by Ainley [2, 3] and Andrews and Bradley

[43, the intensity of convection heat transfer is determined by the

nature of the gas flow in the blade channel, more precisely, by the

position of the point of transition of laminar into turbulent flow

on the convex and concave sides of the blade.

On active profile5, on profiles with small leading-edge radius,

the length of the segment with turbulent flow increases, since the

point of transition of laminar into turbulent flow is displaced

toward the leading edge of the profile. The probability is especially

high of turbulence of the gas flow on the convex side of the profile,
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where stability of the laminar flow is easily .lost due to centrifugal
forces. The experiments of K. Bammert [6], L. P. Lozitskiy [7]:o and
M. N. Bodunov [8] on determining the dependence of heat transfer on

the angle of attack (leak angle) are very indicative in this sense.

They show that there is a leak angle for which heat transfer will be

mini'ium. This angle, measured between the flow direction and the

front of the cascade, is somewhat greater than the calculated angle

of inlet of the gas flow into tne cascade, since when the flow im-

pinges against the convex side of the blade, movement along the con-

vex rurface of the profile, up to certain limits, is easier to

establish than for the calculated inlet angle. The authors of [l]

generalize the studies on convection heat transfer in various cas-

cades performed by various authors. They explain the nonagreement

of their obtained experimental results by the incompleteness of the

similarity criteria, and to expand the range of application of theI generalizing expression they introduce the value y = sin 02/sin 0 1,

where 80 and 02 are the calculated inlet and outlet angles of the

gas flow to and from the cascade. Angle 1 is measured between the

frontal line of the cascade and the tangent to the convex part of

the profile at the inlet.

We cannot agree with the authors of [1] that the discrepancy

of the data obtained in various studies does not depend on experiment

errors. Undoubtedly, the errors arising when processing the experi-

mental data and which depend on selection of the determining param-

eters do not play a major role in the spread of coefficient C and

exponent n in the final criterial formulas. Analysis has shown that

the ready formula in [l] is also valid only within specific limits,

although it was obtained on the basis of analysis of criterial form-

ulas reduced to the identical determining magnitudes. In our opinion,

the main reason for the discrepancy in the experimental data is

peculiarities in the experiments. These include differences in the

shapes of the blade profiles, relative pitch, and other structural

data of the cascade, and also differences in various details of the

experime4nt methods: selection of the direction of the heat flow,

ways of ieasuring the calculated temperatures, the amount of heat,
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metQods for scavenging the cascade, features in che design of the

teot apparatus, the forms and characteristics of the heating agents,

etc. For these reasons it is quite unlikely that tests of specific

cascades by various authors using, e.g., the method presented tn [12],

would yield identical final calculation formulas. We should note

that the use of any empirical formula can give a precise result only

under very specific particular conditions, although it might have

the form of a criterial dependence.

The idea of generalizing criterial formulas for an entire range

of change of parameter y is of great practical significance, but it

is also advisable to find criterial relationships for narrower ranges

of change of the cascace characteristics. In this case we can reduce

the error arising due to nonagreement of the generalizing expression

with the individual particular formulas. It makes sense also to find

generalizing criterial expressions with-constant values of coefficient

C and exponent n in a formula of the type Nu = C Ren for cascades of

the impulse or reaction type. Such formulas are suitable for pre-

liminary calculations of heat transfer.

In this article we have performed repeated analysis of existing

criterial formulas that describe convection heat transfer in gas-

turbine vane cascades. Here we considered certain of the inaccuracies

admitted in [1]. As an additional similarity criterion for heat

transfer in cascades, one which takes into account the geometric and
hydrodynamic disparity of comparable processes, we used, unlike the

au'.hors of [1], a convergence coefficient k " sin B1/sin a2, where

6 and R2 are the calculated inlet and outlet angles of the gas flow
bet'.,e:-n the front line of the cascade and the tangent to the middle

line of t•: profile at the leading and trailing edges of the blade.

This coe f'clent is more often used in Fas-dynamic and thermal cal-

culations and, in our opinion, is more expedient as an auxiliary

criterion. 'he coefficients k and y and approximately reciprocals.

All initial criterial formulas are given in Table 1 and present-ed in

order of increasin:g convergence coefficients of the cascades I

which they were obtained. Likewise, the reaction of the cascades
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Designations:

X, p, P~ - heat conduction, density, and dynamic viscosity of
the gas;

T 0.5(ti + t2); p o.5(pi + p2);
w= 0.5(w, + w2 ); t = 0.5(tn + t');

tl, t 2 - static temperatures of the gas flow at the cascade
inlet and outlet;

t* - temperature of stagnant gas flow;

t!- the same, measured at cascade inlet;

Pl, P 2 - static pressures at cascade inlet and outlet;
w1 , w2 - relative speeds of gas flow at cascade inlet and

outlet;

t - temperature of blade surface;

t' - cascade pitch; b' - cascade width.

will increase from the beginning to the end of the table. For form-

ulas 4, 6, 12, 16, 17, and 18, which were obtained from study of
heat transfer as a function of leak angle, the values of C and n were

taken for zero angle of attack. When processing the measurement re-
sults, as the determining dimension in various cases we used the
profile chord b or the equivalent diameter d . The determining tem-

SK*perature also varied. In order to be able to compare the results of
the investigations, all criterial formulas were reduced to a single
determining dimension and a single determining temperature. As the

determining dimension we used the equivalent diameter d 3

which is the one most often encountered in studies on hpat transfer
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In vane cascades; as the determining temperature t we used the arith-

metic piean of the gas temperatures at the cascade inlet and outlet.

This determining temperature is obviously more advisable that deter-

mining temperatures which include the blade temperature; usually the

latter is an unknown value and therefore it must be specified for

calculating heat-transfer coefficients in a theoretical study of the

temperature states of a turbine stator or rotor. The use, in the

calculations, of an approximate value for the determining tempera-

ture leads to an error in the value of the heat-transfer coefficient

and thus reduces the accuracy of the desired temperature. The gas

density led to the selected determining temperature and pressure p

which is the arithmetic mean of the static pressures of the gas at

the cascade inlet and outlet. As the deternining velocity for the

Reynolds number, in accoi.dance with recommendations in [1], we used

the arithmetic mean of the velocities of relative motion of the gas

in the inlet and outlet sections of the vane cascade (w).

The initial formulas are reduced to these determining parameters

with consideration of the concepts presented in [1]. As the initial

transfer equation we used

Basically, a change in C involves transfer to a new determining

dimension and new determining speed. Therefore, dropping the ratio

of determining temperatures, equation (1) can be written in the fort

The ratio px/Pn in all cases was equal to, or close to, one. Hence

The flow equation for the inlet and outlet sections of the cascade

allows us to represent expression (3) in the following form:

Clip Cr___ _ (4)
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Here k is the convergence coefficient, VI and V2 are the specific

volumes of the gas, and I and Z2 are the blade heights at the cas-

cade inlet and outlet.

To obtain criterial expressions which generalize all formulas,

reduced to parameters dK, 3 , 0 , and w from Table 1, we first found

the dependence

"V -
n(k) (Fig. 1).

0, j . Then, from thcse

, ,values of n for
4 V,-7 - -0 each formula in

04- Table 1 which gave
0-- . the dependence

n(k), and from the

o i5 2.0 2,5 I • • 2.5ll •.• • corresponding aver-

Fig. 1. Form of the Fig. 2. The depen- age values of cr1-
generalizing dependen- dence C(k) for 0.9 < teria Nu and Re,
ces n(k). The points < k < 2.8. we found the thus -

show the values of n
from individual experi- corrected values of
ments. constants C. The

obtained constants C were used to find the dependence C(k) (Fig. 2).

As a result, for convection heat transfer in any type of cascade we

obtained the following criterial formula:

Nu=C(k)Re*'", (5)

where C = 0.328k - 0.282, and n = 0.736k-0". As the calculations

showed, the difference in the values of the heat-transfer coefficients

calculated from formula (5) and from the appropriate formulas in

Table 1 depends on Re. For the interval Re - 7*10 to 3105 it does

not exceed 3-8%, and only in four cases does it reach 15%. For Re =

= l0 to 7.10 4 and 3.105 to 106 the discrepancy increases to 10-15%,

and to 20-30% in individual cases. The obtained formula can be used

to calculate the average coefficient of heat transfer along the blade

profile and along the vane cascade. For this, if k depends on the

cascade height, it is necessary to find its average value along the

entire blade and then, from this value of k, determine n and C in
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* calculation formula (5) using graphs (Figs. 1 and 2). As the average

value we can use the half-sum of the convergence coefficient at the

blade root and tip, since the dependence of k on the coordinate along

the blade is close to linear.

When compiling the boundary condition for the blade surface with

hermetic twisting, i.e., with variable reaction along the blade, we

must take into consideration the change in heat transfer along the

blade foil. For this we should know the dependence k(x), which we
then substiti.te into equation (5), from which we can obtain the de-

pendence a(x). To simplify the equation for the boundary conditions

we can recommend the following method. For specific values of k

corresponding to the coordinates x = 0 (blade root), x = I (blade

tip), and certain intermediate values of x, we calculate the heat

transfer coefficients a from formula (5). From the found values of

a we can construct the dependence a(x) and describe it by the most

suitable and simple equation.

Equation (5), written for the entire range of change of k, leads

to considerable spread of the results at the end of this interval,

i.e., in those regions where cascades of a specific type are grouped.

To refine equation (5), if there is no need for using it over a broad

C - range of change of k, we can propose linear

S-- dependences of the change in C and n for

impulse and reaction blades, respectively.
0,4 iAs such dependences (Figs. 1 and 3) we will
3 F I I have, for impulse cascades (0.9 < k < 1.5)

0.z1 C=0,165k-0,I104; ti=0,835-0,125k (6)

1.0 I ' 0S and for reaction cascades (1.5 < k < 2.8)

Fig. 3. Dependence C(n)
for 0.9 < k < 1.5 (im- C=0,177ki-0,012; n=0,632-0,04753k. (7)
pulse cascade) and for
1.5 < k < 2.8 (reaction Both the initial as well as the general-
cascade).

izing criterial formulas allow us to cal-
culate the heat-transfer coefficient only with an error whose magnitude
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depends not only on the accuracy of the calculation formula. It is
determined, in addition, by the degree of agreement of the gas-
dynamic parameters used as the initial ones for calculating a from
the appropriate formulas, their true value, the incomplete similarity
of the actual process of heat transfer in the cascade to that de-
scribed by the calnulation formula, and a number of other factors
mentioned above. In this connection it is advisable to examine how
the inaccuracy of the value of a for a vane cascade influences the
error of the calculated value of the blade or disk temperature.

As calculations have shown, the decisive factors for the accu-
racy with which the temperature field in blades or a disk can be
determined are the correctness of the formula for the boundary con-
ditions and consideration, in the initial differential equations,
of the change in gas temperature along the vane cascade. In addition,
the coefficient a often enters to the 0.5 power in the calculation
equations used for theoretical determination of the temperature of

gas-turbine rotors or disk. This reduces the value of the relative
error, introduced by an inaccurate value of the heat-transfer coef-

ficient into the final result, by one-half.

From this it follows that, in addition to generalizing formula
(5), it makes sense to find approximate criterial relationships which
would allow us, with acceptable accuracy, to calculate relatively
simply the average heat-transfer coefficient on the blade surface
for cascades with impulse or reaction profiles. As can be seen from
Fig. 1, the finding of such relationships is simplified by the fact
that in the entire field of scatter of points n(k) we observe an
expressed tendency toward grouping around two average values: with
k < 1.5 and with k > 1.5. This can be explained by the fact that
the nature of the gas flow in the vane channel of a cascade with a
value of k of about 1.5 is such that the position of the point of
transition of laminar into turbulent flow is unstable. Therefore,

* the relationshop between the extent of the sections of laminar and
turbulent flow continually changes and, consequently, the value of
the exponent n for Re will also be unstable.
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________As the criterial formulas with
S0-I

- ___. ___. constant values of C and n we can

J_ ___ *2.. __propose the following (Figs. 1 and

0' j /4): for impulse cascades (k < 1.5)

, .Nu 0,085ReO ..9; (8)

. 3,o 1,5 2.o 2,5 o for reaction cascades (k > 1.5)

Fig. 4. Constant values of
C for impulse and reaction Nu=0,326Re' 58. (9)cascades,.i

In conclusion we should note that in this art,.cle we have

generalized the results of studies of convection heat transfer in

nonmoving cascades. In a moving cascade the heat-transfer coefficient

coefficient increases 1.3-1.4-fold compared with a nonmoving one.
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HEAT-TRANSFER COEFFICIENTS ON THE SURFACES OF THE BLADED ROTOR OF
AN AXIAL GAS TURBINE

V. Z. Kitayev and V. S. Petrovskiy

The diversity of conditions for convection heat transfer in

gas turbines and, in particular, on rotor surfaces, and the complex-
ity of a clear determination of the hydrodynamics of this process
make the finding of the heat-transfer coefficient values an inde-

pendent, specific, important problem. Existing recommendations for
calculating heat-transfer coefficients are based both on ie use of

generally-known criterial formulas, obtained for certain comparatively

simple cases of convection heat transfer, as well as on the results
r of individual experimental studies under conditions close to those of

heat transfer in real operating turbine constructions. Up to the
present, convection heat transfer in vane cascades has been studied

most completely.

As a rule, the calculation formulas are obtained from study of
an immobile object consisting of several blades. For an operating
gas turbine, however, these formulas are applicable only after care-
ful analysis of the similarity of the specific case of heat transfer
to that for which the criterial equation employed was obtained.

The need for conducting the operations discussed below arose in
connection with solution of the problem of heat conduction for a
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system turbine disk/rotor blade. Unlike problems solved individually

for a disk, blade,'or other part of a gas turbine, it was necpssary

to introduce, into the boundary conditions, the heat-transfer coef-
ficient a on various surfaces of a bladed rotor. Naturally, the

accuracy of the calculation results was determined, to a considerable

extent, by the sum of the errors which can be introduced into the

problem by coefficients a. This necessitated a more accurate valida-

tion of selection of the criterial formulas, explanation of the gen-
eral picture of convection heat transfer over the entire gas-turbine

rotor, and determination of the dependence of the heat-transfer

coefficients on the turbine operating conditions and, what is par-

ticularly important, on the ambient conditions characterized by
specific tH and PH'

Errors in the values of the heat-transfer coefficients can

occur due to discrepancies in the real conditions of heat transfer

from those conditions under which the calculation formula was ob-
tained, and due to errors in the values of the initial determining

parameters (the temperature of the flow medium, its pressure, flow

rate, and determining dimensions).

With combined study of convection heat transfer in the entire

rotor it was possible, by comparing various coefficients a, to ex-

plain how correctly the values of the initial determining parameters

were chosen.

Figure 3 of the first article in this collection (see p. 6)
shows a diagram of a shrouded rotor blade with base attached to a

disk, and gives values for the average heat-transfer coefficients

entering into the initial equations of heat conduction and into the

boundary conditions when solving the appropriate problem for a

specific three-stage axial turbine.

Let us examine, in sequence, each heat-transfer surface of in-

terest to us, and validate the selection of some criterial expression

for calculating the average value of a.
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The upper blade shroucs, closing, create two heat-transfer sur-

faces: an external cylindrical surface and an internal vane surface

on the side toward the gas flow. When stating the problem of heat

conduction the boundary condition at the blade tip is as follows
(when x - 1):

t.., (, t) =,tL,,,(T) (1 )

for a transient process, and

.() K.•. (2)

for a steady process.

The value of t is determined from the heat-balance equation

for "he upper shroud

S It; r.. -, .•eo ...•:,(3)

where a 0.5(al + cc) and Tr* and Te~ are In OK.

Thie coefficient a also appears In the expression for te.n (T).

Convection heat transfer on the outer and inner surfaces of the upper
shroud occurs under varying conditions. We can assume that the de-

termining temperature and pressure will be identical on the outer and

inner surfaces of the shroud. Heat transfer on the outer cylindrical
surface moving relative to the stator surface can be examined as con-

vection in a slot channel or as heat transfer in a plane of length lvd.

The high degree of turbulizatior of the gas in the gap between the
outer shroud surface and the stator surface does not allow us to

assume laminar flow in the gap. Even if we consider that flow of

the gas in the axial direction creates relatively low washing speeds,

the high peripheral speeds of the rotor result in high Reynolds nuln-

bers in the gap and, consequently, high gas turbulence. Such con-

ditions o* convection do not allow us to use the criterial formulas

recommendedl for slot gaps and labyrinth seals: this would lead to

a lowering of the heat-transfer coefficient. In this case it is

advisable to use a formula that describes convection heat transfer

in a plane with turbulent motion of the washing medium:
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Theoretical gas-dynamics calcwlatlon shows that at the upper

shrouds the temperature of the gas is somewhat higher than at the''"

level of the middle section of the blade. This was not act ally

observed. The temperature of the gas in the turbine blading is
sharply reduced in the lower and upper parts of the vane cascades.

Consequently, as the determining temperature we must use not the

gas temperature obtained from gas-dynamics calculation but a some-
what lower value.

In the absence of expe_!mental data on gas-temperature distri-

bution along the vane cascade we can, bazed on numerous measurements,

consider it equal to 0.85-0.90 of the gas temperature in the middle

section of the blade. Then the determining temperature in (4) is

0 9 f l 6 1 ( 5 )

Here t1i and t21 1 are the temperatures in the middle section

of the blade at the inlet to and outlet from the rotor cascade for

the appropriate stage, taken from gas-dynamics calculation.

The determining pressure and the relative speed will be

iiO, 5 (p,,+p.,i) and w=ndn. (6)

(Subscripts 1 and 2 pertain to the cascade inlet and outlet, re-

spectively; the values of p, and pII are taken from gas-dynamics

calculation; n is the number of turbine rotor revolutions per unit
time; d is the diameter of the upper shroud of the :rotor cascade.)

The determining dimension in formula (4) should be plate length

1. In this case it is advisable to use the length of the generatrix

of the cylindrical surface ffd as the determining dimension.

The coefficient of heat transfer on the inner surface of the

upper shrouds (in the vane channel) can be determined, based on the
following concepts. The bottom of the vane channel -Mn be represented

38

A. I



as a flat surface whose length is equal to the length of the cascade

blading, as part of a short channel of variable section, and,

finally, as one of the surfaces of the vane cascade for which the

value of a2 is determined from known criterial expressions. There

are no equations for convection heat transfer for short channels of

variable cross section. The use of the crit "nl relationships

recommended for a vane cascade is also unacceptable here. The flow

of gas along the blade profile, to which the formulas for convection

heat transfer in vane cascades, obtained in various studies, obtain,

is of a different nature than flow along the inner surface of the

upper shroud. Correspondiagly, there is no hydrodynamic similarity

of the processes, i.e., the criterial formulas for convection heat

transfer should be different. We see, in the given case, Just as

for the outer' shroud surface, that the most suitable formula for
calculating a will be formrula 1,4), in which the determining tempera-

ture and pressure remain the same, while the determining velocity

is equal to the arithmetic mean of the gas velocities at the cascade

inlet and outlet in the upper section of the blade (subscripts I,

II, and II in Fig. 1, p. 56):

(7)

The determining dimension will be the length of the vane chan-
nel lI along its middle line.

The next heat-transfer coefficient is a3, which describes heat

transfer in the vane cascade itself. To determine thIs coefficient

we have many criterial relationships of the form

Nti= CRe", (8)

differing in the values of C and n. These relationships were ob-

tained in experiments with various cascades, with various gas-flow

leak angles, for a broad range of change of temperatures and other

parameters describing heat transfer. At present attempts are being

made to find a more or less universal criterial relationship for

calculating coefficient a. The first results obtained require ad-

ditional verification and comparisons. Therefore, it is most advis-

able to use a formula which takes into account a sufficient number
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of similarity criteria for processes of heat transfer in vane cas-

cades. Such a formula

Nu ,C RC"..VSK 1,.Kp° (9)

has been obtained at the Kazan' Aviation Institute (1]. Here KT
= T /Tr is a tempera ure factor; K a y/b is the cascade pitch-chord

ratio.

The value of C n (9) depends on the radius of the leading edge

of the blade. The d termining temperature and pressure are found

as the arithmetic me for the cascade inlet and outlet*

i 1=0,5(tin+lltn) and j•u,=, 5 (ph•-p.It).

As the determining imension we use the equivalent diameter da =

F ?1 /w. The determ ning velocity is found from formula (7), except

that the gas veloci ies are taken at the level of the middle section

(subscript II). Fo ula (9) was obtained for a static cascade. Ac-

cording to existing recommendations, the coefficient a for the rotor

cascade of a workin turbine should be increased by a factor of

1.25-1.30.

The heat-trans er doefficient on the inner (turned toward the

gas flow) surface of the lower shroud is determined based on the

same concepts as for the inner surface of the upper shroud. Here

the determining temperature will be the same as for a2 (i.e., -iII

Sti). The acetermining pressure and velocity are calculated from

formulas (6) and (7), but the initial values of p and w are taken

for the lower blade section (subscript III).

Stages I and II of a turbine have unique heat chokes in the form

of cooling channels in the blade roots between the lower shroud and

the disk crown. The influence of the passage of air through these

channels on the total temperature field of the blade and disk, as

appropriate calculations have shown, is extremely great. In this

connection the coefficient a5, which characterizes heat transfer in

the cooling channels, is of particular importance.
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An error in calculating coefficient a 5 occurs m&.±nly not due to

the sclected criterial relationship's not corresponding to the exam-

ined heat-transfer conditions, but due to the low accuracy in deter-

mining the rate of flow of cooling air through the channels. The

air speed here can be determined by using the continuity equation,

but the initial values of the flows through each channel are not re-

liable. It should be noted that for any turbine, in the absence of

well-organized air flow, its flow rate for cooling the individi'&'

rotor elements can only be determined with high error.

At the same time, gas-dynamics calculation for the blading gives,

with sufficient accuracy, values of the gas pressure at the vane

cascade inlet and outlet at the base. If we consider that the pres-

sure differential from the cavity ahead of the cooling chanel to

the turbine blading is approximately equal to the differential behind

the cooling channel, the pressure differential of the cooling air in

the channel of a turbine of the given design is approximately equal

to A = PlIII P211 1  Using this value for the differential we

can obtain an expression for determining the velocity through an

individual channel in the form of the Bernoulli equation for arbi-

trary sections ahead of the inlet to the channel and at its outlet:

P ". " (10)

2 ~ 2

Here wu = u sin p is the speed of the cooling air, occurring

due to the compressor effect during peripheral movement of the blade

ro\ positioned at angle q to the flow axis, u is the peripheral

speed of the cooling channels, p and p are air pressure and density.

Subscripts 1 and 2 pertain to sections at the channel inlet and outlet.

If we assume that Pl - P2 • PlIII - P 2 1 1 1 , then Ap is known.

Speed w2 is taken as the determining one when ýtalculating a5 " We

get the calculation formula for w2 from equation (10):
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The resistance coefficient g must be determined considering the

. 4

recommendations presented in [2]. It-depends on the speed of rotation

,of the disk andis found from the formula

-. (12)

where -:-_.. is, the flow factor; I -'is the flow

Sfactor for a static disk; i' is the hydraulic resistance of a short
chahnel with different inlet and outlet cross se'ýtions; K - u/w 2 is

a. paramet-er which defines the dependence of • on the peripheral
speed for known w2 .

C

., From the formulas derived we see that before finding the value

of w2 we must know the coefficient C which, in turn, depends on w2 .

Here we can proceed as follows. First, from the flow equations find

"the approximate value of w2 . Then from formula (11) find the more
accu.ra'te value for the speed in the cooling channel and repeat the
calculation using the corrected Value of C. In determining w2 using
the continuity equation we used the results of a preliminary tenta-
tive'hydraulic calculation. An initial -approximate value of w2 is
required both for paratieter K as well es for determining coefficient
,t This coefficient depends on Uhe ratio of the areas of the channel
inlet and outlet (PI/$ 2 ), and on tne Reynolds number, which is cal-
culated from the initia2 value of w2 [3]. The refined speed of the

cooling air in the channels is then used to calculate the Reynolds
number; as the determining dimension we used the equivalent channel

"-2 diameter d = 40/v, wh.ere S is the channel section and P is its

perimeter.

As calculations have shown, the Reynolds number for cooling
channels of stage I of a rotor does not exceed 10 , while for stage
II it does not exceed l03. Consequently, the airflow here can be

considered laminar, or.at least transitional., hut not turbulent.

Then the formula for determining a will have the form

Ko = 0,j 7f3, (i (13)
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here K0 = NuPr-0.43 is a complex that depends on the Reynolds number;

C, is a coefficient which takes into account the dependence of heat

transfer on the ratio Z/d, for short channels.

The values of K0 for the appropriate Reynolds number can be

found from graphs given in [4]. The coefficient ,. is defined in this

same work. The determining temperature and pressure when using for-

mula (13) will be the ambient tempert.ture and pressure.

The next heat-transfer coefficient of interest to us is a6 '

which describes convection heat transfer on the side surface of the

disk. To calculate a6 it is expedient to use the formula

Nu=0,0348 Re°' 77, (1)4)

obtained at the Kazan' Aviation Institute. As parameters we use

here the air temperature and pressure and the diameter of the disk

bed. The Reynolds number is calculated from the relative air speed.

The air flows for disk cooling are relatively slow, and therefore the

relative speed found from the continuity equation can be determining

only for the central part of the disk. For the peripheral region,
however, it is advisable to consider the relative air speed equal to

* the peripheral speed of the rotating disk.

The examined heat-transfer coefficients were calculated for two

turbine operating modes - idle and nominal (rated) - at ambient air

temperature tH = -50, -30, ý15, and +50 0 %. The data obtained are

represented in the form of graphic dependences in Figs. 1-5. Opera-

tion of a turbine in the nominal regime is characterized by the depen-

dences of coeificient a11 4 on tH, shown in Pig. 2. The same order of

magnitude of these coefficients is observed for most gas turbines.

Convection heat transfer is most intense in the vane cascade. This

has the result that with low heat-transfer intensity to the di.sk,

the temperature of solid blades is almost the same as that of the

gas throughout the length of the rotor section, except for a smiall

area near the root.
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; The decrease in the heat-transfer coefficients with an increase
•, in tH is explained by the associated decrease in air density and,
• correspondingly, the gas density. The pressure of the gas, and its

"• ~temperature, decrease from stage to stage. The combined influence
• of these factors alsQ results in decreased gas density. Therefore

the heat-transfer coefficients become less i a s

-- •:•The change in speed of the gas flow has a lesser influence on the
redu:,ction in coefficients a from stage to stage.

FI •ures 2a and 2b show the generalized results of calculating
the coef •icients al- for all rotor stages and both turbine opera-

1-41

ring mode. in the form of the dependences

-- I•r.\ rUr .T \ arr,!.
respectively, where TrO = 273sK (or 0sC). When constducting these
graphs the values of aT0 were found from Fig. 1, as well as by calcu-

relation. All calculated points lse quite well on the lsne

(Fig. 2a) and

Uri (16

(Fig. 2b). Dependence (16) is more accurate, since the field of
scatter of the calculation daw a is narrower.

Formulas (15) anlculad poin le uieto determin the heat-trans-
fer coefficients for various TH, but we must eirst know the coef-

ficient a of each stage, which complicates the calculation. ItCTo

is considerably simpler to use the dependence of the heat-transfer

* coefficients of each successive turbine stage on the heat-transfer
coefficients of stage I (Fig. 3).

In constructing the graph, along the horizontal we plotted the

values of aT for stage I, and along the vertical - the corresponding
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vall4t of a0 for stage II. Then along the horizontal we plotted

aT for stage.lI, and along the vertical - the values for stage III.
0

The connection between the heat-transfer coefficients with T0 *

= 273 0 K for various stages, based on this graph, can be represented
by the formula

aT,1

UT 1fn (17)

where n is the sequence number of the turbine stage.

Substituting this expression into (16) in place of aT0, we
0

obtain the following dependence, which is more convenient for prac-

tical use:

Or 1  
1, (2, 17 --- L 1.34'. (18)

(,,,"-• . 'r,.18

The change in coefficient a5 in the cooling channels of stages

I and III of a turbine rotor is shown in Fig. 4. From the absolute

values of a5 we see that this coefficient is approximately one order

of magnitude smaller than a 1 , a 2 , a 3 , and a4 . Because of the ex-

tremely weak air flow through the cooling channels of stage II, the

value of a5 here' is pr'actically independent of TH. For stage I this

coefficient is very sensitive to a change in temperature of the

ambient air, and decreases abruptly when the latter is increased.

As was noted above, coefficient a 5 has a very slight influence on

the nature of temperature dependence t (x) and t (r); consequently,

its sharp decrease with an increase in TH will, to a considerable

extent, determine the nature of the temperature field in the blades

and disk of turbine stage I.

Figure 5 gives the generalized dependence 1-__' ( fora I"ar. T or Q5. It

is described by the equation

ur• -3,9 -- ,O11T,). (19)

The value of aT05 in formula (19) is determined from the graphs

given in Fig. 4.
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Thus, in this article, using the criterial formulas which are

most expedient for calculating convection, we have obtained calcu-lation dependences of a on tH for the examined axial turbine. From
them it follows that the intensity of convection in the turbine is
reduced wi.th a rise in tH and the coefficients of heat transfer onIH
the surfaces of the vane cascades are reduced from stage I to III.The value of tH has an especially great influpnce on reducing the

heat-transfer coefficient in the cooling channels.

From the results of calculation of heat-transfer coefficients

for the given turbine we have found formulas by which we can, rela-

tively easily, calculate the value of the heat-transfer coefficient

for any turbine operation mode and for any temperature tH*

The method used to process the results of this theoretical

study of convection heat transfer in a gas turbine can be useful

in heat calculations of other types of turbines.
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SOLUTION OF THE PROBLEM OF STEADY HEAT CONDUCTION FOR HOLLOW COOLED
NOZZLE BLADES OF GAS TURBINES

V. S. Petrovskiy

Let us examine the dy heat problem for a cooled nozzle
blade having construction as shown in Fig. 1. Cooling air enters

the annular cavity of the upper shroud and then the inner blade

channels. To increase the cooling effect, a deflector can be in-

stalled in the inner cavity of the blade. After cooling the blade

the air goes to the rotor cavity and then to the turbine flow
channel.

The influence of the deflector on blade cooling can be taken
into account by a certain coefficient k. Then a.as where a,

is the heat-transfer coefficient, calculated by known [1, 2] cri-

terial relationships. We can set k = 1 for cooling without a de-

flector, k = 1.3-1.8 for cooling with a deflector, and k = 2.1-2.6

for jet cooling using a deflector.

To facilitate solution of the problem and obtain finite expres-

sions in a form convenient for practical use, let us divide the

blade lengthwise into two approximately equal parts x1 and x 2 (Fig.

2). We will seek the solution for each part individually.

The initial equations for section xl, considering the change in
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Fig. 1. DU-1

'i Ij Igri-a of hollow

cooled nozzle f )X
blade mounted •" o x,-0 jxz- o i-l X

,a between the ýjtjza :-1
uppar and lower
iSlIOru6s-. The Pig. 2. Arrangement of the coordinate

arrow:w %howi the item when stating the thermal prob-
o eLm, an* the approximate behavior ofpath Ot the th dendtncos t*(X1) and t*(x2) from

cooling ai.. quaticnr (3) and (23): 1 - expel-
mental curve; 2 - exponents (tpO) l

a (0.80.0.86)trC(9i); tr(tl) a 1.05 x
to (tc - mean-mass tenp*rature of

the gas)].

temperature of the gas along the blade, can be written as follows:

,t:• (x .�,�t. (x,) + kj. :.' - '4 (x,); (1)

d/n (xI).k(, (X) ±k•. ()'.O 0. ((2)

dx1

Here

kj .P-rk.P k2 k ' is!!~ k=

(P and Pr are the perimeters of the blade profile, washed by the

air and gas; S is the blade section; G is air flow). For section x

t (x,) =k5 f1[•-•-"t+'°)J. (3)

Solution of system of equations (1) and (2) for t (x gives a linear

nonhomogeneous third-order differential equation:

",t'1 (x') + d2, (x,) I, - (x) (A .+ - Be-:, 0,, (4)

dx- 1x dx, (i~-( 1 ±~~

where A=k3k4k-,: BI (t,-k 4 )k.ks.

Setting

k3k4 :.- (X.,) +A,=y, (5)

we get
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t.r , d.- ,. , 'k 4  -4 -6)

We will seek the solution of equation (6) as the sum of the solutions

of the homogeneous and nonhomogeneous parts of the equation, i.e.,

p=9+!o. (7)

For y we can write the characteristic equation

r3A-k4r"--kr--kk 4 --. 0 (8)

For the in-terval of change of coefficients kl, k 3 , and k1. which

is possible under the examined conditions, the discriminant of

equation (8) is less than zero. Cou3equently, it has three real

roots. On this basis the solution of the homogeneous part of the

equation can be represented in the form

Here

rt•- 2v c;-, . -: r.=.Vcos 60O--,

r....=') 6

v-=- IpI): y=arccos -;

k~k, k~k.1• .. : q= -- 4- ,
39 I27 6 2

The solution of the nonhomogeneous part can be obtained from the

equation

--D ' (10)

Successively differentiating it, and substituting the obtained

expressions into equation (6), we find

•- 'tZ-" kj,: - k,'I :, A-3.., "( i

Substituting (9) and (10) into (7), and considering (5), we get

50



SConstants CI, C2, and C 3 are defined by the following boundary

*_-:." . conditions :

when xI 0 1 ,()r l.:( 3

when xI I , 0 (14)

In addition, from equation (1) it f'ollows that when xI 0

d~li

In boundary condition (13) ts.n is the steady equilibrium tem-

perature of the surface of the upper shroud turned toward the gas
flow. Temperature ta.n can be determined from the heat-balance

equation for the condition of steady heat conduction through the

shroud from the cavity with the cooling air to the flow channel of

the turbine vane cascade. This equation for a shroud represented

in the form of a flat wall will be as follows:

q,4x 1  "/q.)q4, (165)

where qa is the convective heat flow from the gas to the shroud

(tf. enters into the expression for ql), q the conduction heat

flow across the shroud, o3 is the convective heat flow from the

cooled surface of the shroud into the air flow, and q is heat lost

to r a d iation from the a hr-cooled shroud surface.

Simultaneous solution of equations (13)-(15) gives

C, ,C,= pc: C,= C, (17)

where

(19)

Dr..=•rc',,-r~','lrr.K, -- 1.,- _r• K23 -1 (r. el',,--r ',, ; (18)

Dr,= ( r,,e":' -- r~el'"t' KI •-r •-rK) i',(e ,- r~ e lI,) K.,; (1

Dc, (r.e,,:,-- rc,i,r,) rKi -- ( r -r'K2 re, ., r31 . ,, ; (19

,(r 2 r')K -r(r.e4,( r ac~ 'S)K.,, (20)

D,,. = (r- r re,,-(r-- r r.e', "(r -- ,r .' ,. r



% - P1 -, 4 _,
K

In expressions (18)-(21)

K kk 3 -",K D-h(22)K•:' k It [,...- kJ(0)=,-- k4(0),.,] k•k,- to D.

The initial differential equations for section x2 of the blade

will be the same as for xI. The function is described by the ex-

pression

t;(X,.) = ;t), tit), -,, k,.! 41 _,21 ,, ( 23)

Repeating the series of discussions for section x2 we get

I + D•e•" A (A2
t~(.V,)= (C4e".x* +LC.,et + C~eraX!) -(24)

k3k4  kAk kjk4

Here
D2= k k.Bo

2A, " (0), - 4;(02) • ; (O)xsI k•k4 ;

S'~L .

Constants Cg, C5 and C6 can be found from the following boundary
conditions :

when x2 = 0 dt, O)x,Idx.,O; (25)

when x2 = 12 (26)

when x2 - 0 t, O)41=t (/1),,. ,47)

Here tH.n is the steady equilibrium temperature of the surface

of the lower shroud turned toward the gas flow. It is found in the

same way as t Temperature t (ZI) is calculated using (24).i 'n 1

From conditions (25)-(27) we find

Dc. C c' c. (28)
0,: whr

where
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Oc =%,t,_,.,.)I -r - r•t,•".(•,:.t rtc,,its) :( 30 )

1 4 (31

(32)Dc, =(-',i, - f':a) ¾• +t- r{., IK% -+(rae"=I: -- r. c',t,) K6: ( 30) )
D..r•-tr--r•)c, i,-(rI -- rl r 3 ±',-(r=-- ~rl)e,"t,, K:( 31 )

K•=-,:);K5=k5,&.•--DI=- : (33)

K 6•kkt.,(I)-D,- A.

Thus we obtain all the required calculation expressions for
calculating the temperature along the blade.

The proposed calculation method makes it possible to take into
account relatively easily the changes in gas temperature along a
vane cascade. This method can be used to calculate the steady tem-

perature state of cooled nozzle blades.
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SIMULTANEOUS SOLUTION OF STATIONARY PROBLEMS OF HEAT CONDUCTION FOR
GAS-TURBINE BLADES AND DISKS

V. S. Petrovskiy

SI
In this pa~er" we examine stationary heat problems for the

shrouded rotor blades and the disk of a gas turbine with a central
opening, where the profile of the disk can be approximated by a

hyperbolic function.

Solution of stationary neat problems for gas-turbine blades

and disks ha, been examined in [1-3]. In this article we aim to
show how we can associate the independent solutions of heat problems

for the blades and disks into a single temperature function. In

addition, we show how to formulate the boundary conditions for

shrouded blades with a root and for a disk containing such blades.
The examined method for associating the distributions of temperature

in the blade t (x) and in the disk t (r) in terms of the linear

temperature differential in the root showed that it yields a
comparatively simple finite system of expressions 'or calculating

the temperature of the disk and blade in the form of a continuous

function. The need is also eliminated for giving the temperature

at any point of the disk or blade a priori, in order that further
calculation be done based on this temperature. The only initial
data which we use in calculations by the proposed formulas are the

results of pre-thermal gas-dynamics calculation.

J ,~da t..fl..u. -- ~- * -~'- - r54-



First let us examine the thermal probler for the blade. in
general form it can be described by the equation

d[t'S (X) (Ix rx -I(i ~)

In equation (I) the values of heat conduction of the blade
material (X), the area of its section (S), and the perimeter (P),
and also the average heat-transfer coefficient (a ) and the stagnantB
gas-flow temperature (t*), depend on coordinate x along the blade.
Considerable difficulties are involved in solving equation (1) with
substitution of functions X,(t Sx) (s(x), t*(x), and P(x). It

was obtained, using certain assumptions, in [1] and [2].

Let us examine the case when X., a., and t* do not depend on x.r
The area of the blade cross section will be ccasidered to change by

the law S S 0 e-ka/L, where k is a constant which uefines the steep-
ness of curve S(x), and L is the blade length.

The function P(x) can also be represented by an exponent, but
a more sloping one, since the perimeter of the blade changes more
slowly than the area of its section. Calculations have shown that
this makes it possible, when P(L)/P(0) > 0.8, to introduce into (1),
in place of function, P(x), the value of the average perimeter P,
which does not depend on x and is equal to the arithmetic mean perim-
eter of the base and tip of the blade.

Here equation (1) assumes the form
""j l , (r, = I ,- , I,),(

dx,) L t.x ý..S.,)

where t*ll is the temperature of the gas at the level of _,le average
blade cross section (Fig. 1). Equation (2) is solved by substituting

e(k/z)x = z:

, . ' . 4 /[A ll, :)i (3 )

where 12() and K2 () are modified Bessel functions.
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zip.

/ //"",',, ///;.Constants AI and BI are found from the

boundary conditions at the blade base and t.p.

.•Let us superpose the reference origin x

and the plane of the blade base.section. Let us

Sassume that the temperature along the root changes
:7 linearly, while it remains conrtant throughout
Td - ,,the lower shroud, equal to the cemperature of theee'. eau"/f h

/ •blade base. Then the boundary condition with

.1. Diagram ox = 0 can be obtained from the heat-balance
4hrouded blade on a- root
(a dealsgates the mean equation ,Fig. 2)
he.At-trarnster coef-j• flalente ).

Is' 'Q-a
Q•'- 'd where Q,:=k.T-.S 0 is the heat entering

j -section So per unit time from the

Cs (t••cidworking part of the blade; Q, =

4- 11 - -( I;tl,)S,, is the heat ob-

tained by the surface of the lower

Q •(3'•) shroud, turned toward the gas flow;.At
Q,•.=•- Si is the heat removed from

Fig. 2. Diagram for compiling heat- -
balance equations with x a 0 and r - rI. section S 0 across the blade root to

the turbine disk (here (01-t. r'.
t,(rj is the temperature of the disk when r = r 1 ) i QJ=U4 ('I..+,t-11 I.IS +

+ J, S'., ., 'ts,- the heat removed from surfaces S' and S"
- i'd d

by the cooling air.

As can be seen from the last expression, the intensity of con-

vection heat transfer depends not on ad but on the gas temperature

at tn• butt section (t* ). The difference in the values of t*iIrIII"rI

and takes into account the drop in gas temperature at the

O1ade boundary (when x = C). The gas-temperature distribution

:zion thus given, with consideration of its lowering at the blade

is of rectangular shape kFig. 3). Actually, the change in

temperature will be swoother. Above it was noted that t* along
V

the blade foil is assumed to be constant, to facilitate solution of
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equation (1). Thus, assuming the gag-

temperature distribution function to

b:: rectangular wz can reduce, to the

A I best of our ability, the unfavoiable
'-.tr• role of the approximation made when

S. . stating the problem.

Fig. 3. Distvl:utlon or tr along the We must also explains why the second
blad. used to state the problem. term appears in the equation for Q'ad

Although the area of cooling S" does not correspond to coordinatead

x = 0, nonetheless convection cooling of the side surfaca of the

root occurs and it can be taken into account by this te In final

analysis it also influences the value of t (0). Thus the boundary

condition for x = 0 will be refined.

Substituting Q, Q , , and Qd into equation (4) we get
C adC

•", . •, . .., 5 )

where

ald(S.d+S' )-3,S,
i • (s'.• s) + ,s,,

dd""),kSo

S( S H s

Unlike the boundary condition dt /dx = C, where x = L, used by

many authors, we can assume that the temperature of the upper ohroud

and, consequently, the blade tip, is constant. Actually the upper

shroud, having a developed surface, easily reacts to a change in the

dynamic equilibrium thermal state, and its temperature is determined

by the neat-balarne equation, in which the convective influx of heat

from the gas to the shroud is equal to the heat lost to radiation,

i.e.,

Q,==, (6)
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It is also esdential that the boundary conditio,! dt /dx 0, when 1'
x = L, is completely unconfirmed by experimental data. These data

indicate that the temperature has a maximum value in the middle of

the blade and dropa off toward the base ard the tip.

It is not possible to precisely express the components Qa and

Qe, since the first of these is determined by the heat-oransfer

coefficient and the gas temperature, which will differ at various
points on the shroud surface. The value of Q. depends on the tem-

perature of the parts surrounding the shroud and the mutual ir-

radiation surface, which will change as the rotor rotates.

To calculate the equilibrium temperature of the blade in this

case we can use the equation of the values of the convective and

radiant fluxes which are average for the entire shroud surface:

9; J q,, (7)
whradatfe ~ hc r
where q;• --- ,(T,--T.•): q5 -• 7i".--T'°7  - -.

•; a q, ~ 2

By temper'ture TAT we mean The tentative average temperature of

the surfaces of all parts surrounding the upper shroud. It will be

approximately 150-2000 lower than T O. For practical calculations

we can disregard T and then, substituting q- and q into equa-

tion (7), we get

Soo--q"(8)

The boundary condition assumed when x = L is written in the

form

. (9)

Using boundary conditions (5) and (9), let us find the partic-

ular sclution of equation (2):
'•.- [Cl I; t',,cf ,-_C..K 2:?ctl2mL••-)) --• -+ l

CS (10)

3C5
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Here

C = (iý - 4j) hi <(2mjl)- ý A, (2mj)];.

C,= ekK. 2m •k:); C4=e4'-.(2,"nje 2)
and SC,= e k K,t2rze'`2) [Ij (--,2tn)- .: I., C2tr,)l +

+- " + ':/2 i,2,ek2) 1K , (2-z,) + 1,K2(2iz1)].

Thus we have solved the first part of the general thermal problem,

for the turbine rotor.

Now let us find the particular solution for the differential

equation of stationary heat conduction for the turbine disk. The

equation for an elemental annular section of the disk will be (Fig.

14)

Q, Q Q 2 (Ii)

rA w r. (r ,-"']dr is the quanti ty ofSwhere Q2-Q:"=•rZ:'- r drJ

-,. <;•. -Qi heat propagating along the radius of the disk in

*.1j 1 second by means of heat conduction; Q,-:-Q =
• 1 !; ; ...4".".':•i•.,}, z = u' rl[/ --l (r)] i l(r)[t, -- t"•(r)]1 2"rdr is the quantity

. .. of heat given off by the lateral surfaces of the
•' !/' '•/.;/•,,,annular section cf the disk (2ffr is the length of

an elemental ring of width dr; y(r) is half the

iFig. 4. Diag;ram forfo- thickness of the disk as a function of r; ca(r)
Smulatfon of Initial dnf- of

,ferential equa tion for and ae4(r) are heat-transfer coefficients on the
Sstationary heat conduction e

for a gas-turbine disk. lateral surfaces of the disk, t3(r) and t (r)

are the temperatures of the air which cools the

lateral surfaces of the disk).

In further discussions we will set

(L, 1(r)---L,,,(r)--u,(r) and ,rr=t. (ir.

As shown by comparison of the results of calculation with ex-

perimental data, we can consider approximately that ae and ta do not

depend on r.
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Substitution of Q- Q2 and Q3 + Q4 into equation (11) with
consideration of the approximations made gives

- 0 (d4.2. 1 • ,) r 2u, ( -t. Q 2.rtdr. ( 12)dr\ " r

By ae we can also mean the arithmetic mean of the heat-transfer
coefficient between a6 3 and a6 4

After differentiation of equation (12) we get

d.,, t/ d). d.

-r- r dr dr dr i., (13)

where 6 t - t.

As an example, let us examine a disk having a hyperbolic pro-

file with a central opening (y = a/r, where a is a constant).

Usually, the crown of the disk is thicker than its bed, but ."or

solving the heat problem we can replace the stepped transition from

the crown to the bed by an approximate monotonic hyperbolic

function, correcting it with a profile coefficient such that the

change in the average value of the thermal resistance of a real

disk is the same as that of the present hypeJ-bolic-profile disk.

For a disk with the selected profile, equation (13) has the

form

0. (14)
dr2• -A

It can be represented as
2[( :rI ,. 9 r-
3 ". 2-. ". ,

Setting r,=z we get

dr ,,,r, 9 20,=0. (16)

Equation (16) is one of the part-icular cases of the generalized

Bessel equations, and its general solutiun will be
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S.." ;(17)

Rviurning to the initial independent variable we have

9 3 'A J 1 , \ ' 3 11-x 2)./ I 3 2 ý( 8

Constants A2 and B2 are found from the boundary conditions when r =

=r and r = rI (see Fig. 4). For coordinate r r1 we can compile

the following heat-balance equation:

Q'- Q~= Q*• (19)

Here Q•--=). . 2.ýr,1I" is the amount of heat fed within the disk
dr

per 1 second from the arbitrary cylindrical generating sur-

face of a disk with radius rI and width H (it is assumed that the

isothermal surfaces in the body of the disk are positioned coaxially);

8 is a coefficint which takes into account the thermal resistance

of the blade roots; Q'=,,-L, S,,h is the heat which enters the disk

through the above-mentioned arbitrary cylindrical generating sur-

face (S H is the cross section of the blade root); n is the number

of blades; Q' n-%S t is the heat removed by the cooling air from
the sections of the suiface of the disk crown included between the

grooves of the blade roots (see Fig. 4).

Substituting the values of Q, Q, and Q i into (19) we get,

when r =r,

T 3+ 4, 
(20)

where

).2ij~ (20')

The boundary conditions when-r = r 2 are complied based on the

following concepts. Since we are using a hyperbolic disk profile,
the theoretical ;ioofile of its stepped part will be too strongly

developed in the axial direction. This greatly increases the area

of the central part of the disk, air-cooled with heat-transfer
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coefficient ae. To compensate for the artificially elevated heat

removal in the stepped section we can stipulate that there is no

heat transfer along the inner surface of the opening, and then the

boundary condition when r = r will bT.

dO•ldr = 0. (21)

Boundary conditions (20) and (21) determine the values of constants
A2 and B2 in equation (18), whose particular form in this case will

be as follows:

61. ' " -
r•\3 "- /3 (22)

2!., H - /1 3r3.11, r

where

2 -( r.)""' r 3 (2 m. " ]2

In equations (10) and (22) the constants P2 and 9 include the tem-

perature differential along the root At = t (0) - t (rl).

First let us find 6.(0) and EA(r

.: , - [C l 2 -+ C ,', -2,n1 •"i C [C .,1 t2,:n'I-- C ,K (2m ,; (23)

Let us introduce the designations

- . (S':S"C 7 •= r' --0 - I) I5 0

i-.so

, s ,, S , . . S :,nIf IC 8 hS , .%S ,, C 9 "6,22rlll

fi r" 2 m ,
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Then, considering the values of 9a2 from formulas (5) and

(20), equations (23) and (24) can be rewritten in the form

* J 1C~~~-I,i2i~CjK 2(2:l'J- C5K(w) ~C7:b. (5

":1-* i.-.C 1I. (2': •)-,. K- .(2 ',, I C :! • ( C 7_.!.{2n Cb.• (2.• (2 5;

I C ,l -- (21l: =-C C(m 1 j"C. -C'Co1. ( 267)

oS-dtnactics calculation befo et d
th d(27) I -It.), (,,h -C4K2-'r 0•r,] C-•"•*--C_'€CA.)

The right side of (27) does not depend on x or r, and therefore the

value of At = t• tA can be determined on the basis of initial data

AA

of gas-dynamics calculations before determining functions t (x) and !

t A(r). This does not contradict physical sense, since At in final

analysis depends on blade temperature when x = 0 and disk tempera-

ture when r = r1 . In other words, the values of t (0) and tA(rl)

are interconnected unambiguously by conditions of heat transfer and

heat conduction, which also determine the nature of functions t n(x)

and t (r) themselves. Thus, substituting (27) into (10) and (22)

we get interrelated dependences t (x) and t (r) in final form. In
practice it is advisable to substitute the numerical value of At
directly into (10) and (22).

Theoretical calculation of blade and disk temperature using

these calculation functions begins with determination of the heat-

transfer coefficients. For this we must have data from gas-dynamics

calculation and data on air used to cool the turbine. The next step

in calculating the temperature state will be solution of the inter-

mediate equations in numerical form: first to find the value of At

and then to calculate the constants C1/C05 C2 /C 5 , C392/C5' C4 q 2 /C 5
S,,r .) ,.. -

i---'" and = in equations (10) and (22), reduced toC'. J 1 C6  Ifr

comparatively simple form, changing coordinate x within limits from

0 to L, and r within limits from r 2 to rl, we can find the radia2

distribution of temperature in a gas-turbine rotor disk and blace.

63



Thus, solution of the simultaneous problem of heat conduction

for a turbine disk and blades allows us to calculate the temperature

field cf a turbine rotor, using only initial data from gas-dynamics

calculations for the blading and hydrodynamic calculations for

cooling.

The use of the temperature different-. 2t the root makes it

possible to compile boundary conditions for the blade base and the

disk periphery such that after colution of individual initial

equations for the disk and blade we get a single temperature function

for the rotor disk and blades.
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NUMERICAL SOLUTiON OF THE PROBLEM OF NONSTATIONARY HEAT CONDUCTION
FOR A GAS-TURBINE ROTOR WITH ROOT-SHROUDED BLADES

Ye. Ye. Denisov and V. S. Petrovskiy

The one-diniensional nonstationary process of heat conduction

for a gas-turbine rotor with blades will be described by the follow-
ing system of equations:

for the disk

el ,- (r. -4 _ . 6 Fr - 1 (r'r, l i"(')

6E rz (r) v- Jr j c :(r)

for a solid blade

61.- 1.* TI 1  r ch i L .((X)P() '

S(A..(2)

We will examin! a disk with a central opening. The designation
of the heat-transfer coefficients on the appropriate surfaces, the

direction of the heat flow, the quantities of heat passing acruss

specific heat-transfer surfaces in I second and used in the heat-

balance equations when formulating the boundary conditions are

given in Fig. 3 on p. 6.

To obtain equations convenient for numerical analysis, let us

use the feature of the actual distribution of temperature in the
blade and formalate, for the system disk/blades, two heat problems
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(Fig. 1): the first for the disk
S-x root (r 2 < r < rI) and the root sections

disk of the blades (0 < x< 1), and
the second for the blade tip see-

tions (0 < 2 x 2) Here the

total length of the blade Z = 1I +

+ Z~ and Z1 -- With such indi-
r vidual statement of the heat prob-

S lem we can formulate relatively

Pig. 1. Position of :oordinates and approximate simple boundary conditions for the
feor of the temperature aependence for the sys-
tem dlsk/blades: 1 - disk without opening; 2 - entire system and obtain the function
disk with opening.

-C*( which is of decisive signifi-

cance for tiie distribution of temperature in the blade in the follow-

ing form:

for section 0 < x < I

t(xo 10, tit) - (1(11--'0,(3)

for section C < <z

. t" X, 1x: t(O) - ("A . (14)

We wu.1l solve the problem relative to a gas turbine, for which

Dunctions 7 -In initial equations (M) and (2) can be written thusly:

z(r)-•zo-(,(r--ro)-, (r 2.< r •r, (5)

.• (r)=-"= (z .) e:", (r, < r .r,), (6)

• } (0 .•..\' I1,: (7)

0 X. (8)

The temperature of the cooling air t and the average heat-B

transfer coefficient in the vane cascade a 3 will be considered to

be constants.

Let u. formulate boundary conditions for the first heat prob-

lem. We will consiuer the surface of the central opening to be

adiabatic. Then
at," (9)

Or
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when r = r 2 . From the heat-balance equation, compiled for coordi-

nate r = rI [3]
Qt +Q2= Q3 (1i0)

we can obtain the following boundary conditions:

o , (rl,, O ?t . (0, xx-?,t(,,'•.( i
Or

From the heat-balance equation ;oinpiled for coordinate x= 0,

Q4+QS= Q6+Q7 (12)

we get

•t:(0 )x . f,(0, t, - •t (r, )- . ( 13 )
OxI

And, finally, for x= I we can set

, =0. (14 )
OXr

In boundary conditions (11) and (13)

X.12.-Tr !~,q z . .•:r ~?

cL7S z1S -S
S..s.(a) hS,(0) 2.,s-,S(6)

u-S
h S., (0) 2;.,S. (0)

C. v;. _ .(s:,-!s:
-'° t ,o - I 0),"S (.. l.a6) X'.1"S.1 (o)

Let us write equations (1) and (2) as follows:
&'"t. (r -r) of, ( T ,,=-.

i•*:•r,•) ~b a "b(r)- r,(r),: (r. T1""(r;( •
err ,r- Or

av Uxi aix,

Here
b,(r)--- a, d.- r) ..22: c, (r): ,t} /~ ) _ arl(,

r(r) Jr r c:O,:fr)

" I ( dXt... (x' ) "6
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The time variable varies with.,-

I' . .. in the limits 0 < T < M.

- -"--4-- - - ,--- I-• 4 As the initial condition

r 'aI' Ii Li i let (r us assum (when, 0 t (-0)

, -ý- -- ,• .. We will seek the solution
dade ' . in the rectangles r 2 :< r < rl

So*en F- roo 0 < T < T, and 0 < xI <i
Fig. 2. Calculation diagram usirg th. grid method. 0 < T < T (Fig. 2) which are

associated with the appropriate boundary conditions.

Let us examine a node grid formed by the points of intersection

of two families of parallel straight lines. The first family
rlil:= ih."r, (=-0 1, 2, ... n, 0 -, t-r,

I i',. 'i---,Q, 1. 2 ..... k 1, = ,h;

the second family I,--iAy, (i=O, 1, 2,...)].

Step h along axes x and r and time step AT along axis T are
taken týn same for the disk and the blade.

The nodes lying on the lines r = r 2 , r = rl, x1 = 0, and xI =
=1 will be boundary nodes for the examined protlem; all others are
Internai nodes.

If some node in the rectangle for the disk/blade pertains to

t (r,T) or t ,), respectively, for it we can write the
difference which approximates the real values of the derivatives

at this point. For

Ot,(r, t)iOr and Ot.•(xi, x)lax,

this is

2h

while fo:r
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0821(r. ')/l3r 2  and a2l, (.- T),OxI

this is

J_ (19)

The derivative at/aT in node [i,J] can be represented in three

forms:

-1AT (20)

, 8  (21)

•ltJ-l_6lt•-•l(22)

In accordance with (20)-(22) we can use three smhemes for

approximating initial equations (1) and (2). To solve the posed

problem on a computer with limited storage, the first difference

scheme is more 6onvenient, since the initial condition gives the

value of the approximating functions e and 0 for all nodes of the

first series (T = 0). Using these data we can calculate the values

corresponding to the second-series nodes (T + AT).
i 0

The values in che nodes located on the boundaries of the rect-

angles can be obtained using boundary conditions (9), 11), (13),

and (14). Then all calculation operations are repeated 2 the next

series of nodes Ti, + AT, etc.

The use of a difference scheme involving equation (21) makes it

necessary to solve E, system of [(n + 1) + (k1 + 1)] equations with

the same number of unknowns, which is too much of a load on the

computer memory.

The difference scheme using equation (22) is unstable. The

calculation errors in this case accumulate extremely rapidly, and

after only several time steps in many nodes they become commensurate

with the value of the approximating function.

Using the first scheme fLor approximating initial differential

69



equations (1) and (2), we get the following system of difference

equations:

°, "" ; i. '4

+ jlli.16 + 4-'

6/ , "2 ,+ill) (23)
whorh

where
ir

fill.=--cil/llml, (1= 1, 2,. o - I , =0, 1, 2,...):

andSg-H/, CQ.h l

- " 1,. ) fl-...].l • l'l (24)

where

The boundary conditions must also be represented in difference

form. For the line r a r 2

"L.0, or lO ,,ll'Jl; (25)

for line . = r 1 and x 1 n 0

h+

lv= ,!,..i~ _,!.J~l ro./ 'J(27)

for the line xI 1 1

o, or ,.!,v,,¶'.," (28)
h

The initial conditions for the examined problem can be written

as f ollows:

,,l1.01. S- ..... (29)
,,,C . , 1. 2 . 1-,.

The probl.em is formulated such that the rectangular grid for a
ols; on lir.,. r ,- r, has no independent boundary condition. The
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values of approximating function e in nodes belonging to line r =
A

=r are determined from the associated boundary conditions for
lines r = rI and xI 0. In turn, each of the values of the numeri-

3al solution in the nodes on these lines is defined, on the one hand,

by e6nl'i] and eOIJ] according to (26), and on the other hand, by
A iA

0[l1j] rnjand 6 according to (27),
n A

Consequently, to associate equations (23) and (24) by means of
such differenut= relationships, in which there would be successive
transition from known values in the nodes on the ]iA,3 r n-l] and
xn• to unknown values of the approximating functit(.n; in nodes on
the lines r = r1 and xI = 0, we must solve equations (5$) and (27)

[n,j] ande0j]for A and 6 we get
A 1

• '= •; • I_(30)

where
_... . .l-• 13)• •- j

The set of initial difference equations (23) and (24) and

bcundary conditions (25)-(28), where (26) and (27) are presented

in the form of (30), allow us to determine, on a computer, the
approximate numerical solution of the thermal problem for the disk

and the lower part of the blades.

Let us formulate the problem for the blade tips (0 < x 2 <

The node grid for the approyi.mate solutions is also shown in 'ig. 3.
It, is adjacent to the node •. for the lower part of the blades
(0 < xI < S1), and is formed uy the intersect" a of the families a,"
parallel lines x[i] = ih (i = 0, 1, 2, ... , k,) and T = JoT.

The process of heat conduction in this case is described by
equation (2), which in difference form will look like ( 2 4), exept
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"that i changes from I 1o1200- -- ---12 1 k2 - 1. Functions a139 P,

1100 - L.1 and S. have the same form
as for .the blade root sec-

- -....... 1 *] tion (Xl), but the numerical
Svalues of P(0), SA(0, C41

H- -4 and 45 will differ Func-
|1 tion t* is represented by

oo 0parabolic equation (4).

700 1L-L. As the boundary con-
ditions we have: when

[211c 0;I -2ý

50 - - - • -

300 - --- V(IA---"• (32

disk 'bla-e
1-/

• 0 . . . . • • w h e n x 2 = 2

o.topeheAnp roos u wh
himnThem last equation is

it e be md ic byae based on the ideas that
Flg 3. Resull s of numerical solution for stase I the temperature of thei of agas turbine: a - experimental curve for the
steady process. blade tip is equal to that

J of the upper shroud, whose

Sheating is determined mainly by convection and radiation heat transfer

w•ith the ambient medium and occurs by a law similar to those for reg-

i ular heat regimes.

in differenrie form, conditions (31) and (32) are written as

follows:

for line x, = 0

,,•o:j_. -- •'"J, .(33)

for line x. 1 2
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The boundary conditions for xI = and x2  0 do not provide

for equality of the temperature functions on the left and righ.;

therefore it is possible that the approximate numerical soluti.ons

for sections x1 and x2 , obtained for the same moment of time jaT,

will differ somewhat from one another. This difference does not

exceed the error of the calculation method as a whole, and therefore

we can use as the final result one of the two temperature values ob-

tained for the boundary of blade sections xI and x2 . Obviously,

to increase reserve blade strength it is best to take the higher of

the two adjacent temperature distributions.

Figure shows the results of numerical integration by the pro-

posed method, and gives data on direct measurement of temperature

for stage I of a turbine rotor. We see the good agreement between

the theoretical and experimental results. The theoretical dependence

for a prolonged time (approaching the stationary mode) is somewhat

above the experimental dependence because the calculation was done

for the mean-mass temperature in the vane cascade of stage I, t*
r

= 11760 K, while the experimental data were obtained at 11330 K.

With numerical integration by the grid method of the heat-con-

duction problem examined in this article, we used an explicit scheme.

In this case it is possible, since under ztable conditions

V and T-"- (35)2 ~ ~ ~ ~ ~ ~ I ia X ,1 . i ,'i r (1)

functions S(x) and P(-) = rz(r) do not change rapidly.

F• The integration steps were selected as follows. We first gave

tne step h z 0.15r 1 . The selected step, identical for the disk and

for the blade (the problem was posed for a disk of small diameter),

allowed us to reduce the time step Ai to 0.5 seconds. Tria! cal-

culations with three values of AT, from maximum to minimum, Dwr-d

the good convergence of the -olution.
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The proposed calculation method allows us to divide the general

heat-conduction problem into two simpler ones: one for the disk
and root sections, the other for the upper peripheral parts of the
blades. This method can be recommended for theoretical study of

the temperature state of the rotor of any gas turbine.

Use of' the grid mc.hod for solving the examined problem using

a computer with limitt. storage is more feasible and economical.
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INTENSIFYING THE COOLING OF THE LEADING EDGE OF ROTOR BLADES

V. S. Petrovskiy and M. I. Tsaplin

With internal cooling of gas-turbine rotor blades it is not
always possible to guarantee a lowering of the temperature of the
hottest parts of the blade. We know that one of the hardest-to-cool
parts is the leading edge which receives about 25% of the heat fed

to the blade.

At present, great interest has arisen in so-called penetration
cooling. However, the development of such a cooling method has been
hampered by the lack of porous materials having the requisite
strength and hydrailic characteristics. Therefore, i number of
organizations have studied cooling methods similar to penetration
cooling - perforation of a finished blade by electroerosion, laser,
or electron beam. The figure shows a blade in which cooling of the
leading and trailing edges is intensified by this method.

Naturally, the operating conditions of a wall perforated witn
a specific spacing and a wall made of a porous material are differ-
ent, particularly relacive to the protective action. When air is
blown in in the form of individual jets, the decrease in heat flow
at the point of intake is of a clearly expressed local nature ;:hlch
leads, on the whole, to a lowering of the effectivenEss of thp pro-
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tective effect. However, with

exhausting of the air there de-
q '"velops a noticeable aftereffect,1f-T'L- -bprotecting certain parts of the

blade in the direction of gas flow.

Thus we can consider that coolingS•x• /• by blade perforation is midway

Xbetween purely penetration cooling
and film cooling. In this regard

Blade with perforated leading it is ad\isable to examine the
eage.

possibility of cooling the leading

edge of a blade which combines the high effect of internal cooling,

characteristic of a permeable wall, with the protective aftereffect

at the point of inlet. The diagram of such leading-edge cooling is

shown in the figure, which also shows the location of the coordinate

system with an indication of the reference origin and the heat-flow

scheme.

Let us examine the distribution of temperature on the leading

edge of a blade. Let us isolate a sector on the inlet edge which is

bounded by radius of curvature r0 and lines connecting the coordinate

origin with the points of discharge of air onto the blade surface.

A heat flow with known value a acts on a cylindrical surface of
radius r0 The influence of the discarded walls on the temperature
of the leading edge is replaced by a heat flow of intensity q, uni-

formly distributed along the boundary lines, considering that this
value is known.

Under such conditions the heat-balance equation for an elemental

volume will have the form

where t is the current value of the temperature of the leading edge

along the radius; e is the temperature of the cooling medium; r is

the current radius; F(r) = Trh is the area of a cylindrical section

of an element of the leading edge; h is the thickness of the isolated
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element, equal to the distarnce between the channels along the blade;

d is the channel diameter; a6 is the heat-transfer coefficient inside

the channel to the cooling air; • = Z/r 0 is the proportionality

factor, which takes into account the difference between channel

length and radius rO.

Let us introduce the dimensionless parameter i.-= =L .J and the

relative coordinate y = r/r 0 .

Let us rewrite the initial equation in the form

Y ttV- *=2 (2) .
" d,2 dy .

We take into account the heating of the cooling medium.

For the given cooling scheme we can assume that heat transfer

on the inner radius of curvature of the inlet edge is practically

equal to zero. Then the current value of the temperature 6 of the

cooling medium can be associated with the initial value e0 by the
relationship

"/=" dt

GPdy (3)

where G is the air flow arriving per element of length of the blade.

Substituting the value of 8 into equation (2) we get

, .- (4)

where s '-2J is a dimensionless parameter. Let us introduce the
(6Cp

new variable z = sy and -et

fr

Then equation (4) cE..n be rewritten in the form

- ... z.)1-• . -n:,*O. (6)

where i .... is a dimensionless parameter.
i,.I7
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For integral values of n, the general dolution can be found

using exponential series.

The general solution for the second-order equation will be

while the first particular solution [1]

ii

k-0

Since for boundary conditions of the form

dOdz=Bir(tj'.--i) when z=s:
d5 (8)

when z-O (
dz

the integration constant C2 should be zero, it is not necessary to

seek a second particular solution.

Determining integration constant C1 from conditions (8) and

converting to the initial variables, vie can obtain a ca. "ilation

expression for determining the temperature across the in edge

t= .att - ;. ,(y). (9)

Here

is the equivalent temper 'ure of the cooling medium;

k-0

n(1) is the value of function $n(y) when y = 1; t1 is the tempera-

ture on the surface of the edge, i.e., when v = 1,

•B ir + 0 );, (

040l) dt,

where Bi, r 0 is the Biot criterion for the leading edge.
Thus we have obtained an expression for calculating the temperature
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of the inlet edge which contains, in addition to the known values, '

the value of q which is still unknown. Let us find the value of q

from the condition that on the blade wall the-e is a protective film

of air which passes through the opening on the leading edge.

Under the assumption of a one-dimensional scheme for heat flows,

the initial heat-conduction equation will be

6-7 ( dj -'1+,t/ (t,H-I)-c,,H t-Oo' =o, (12)
Tz

where 6 and f = H6 are the wall thickness and area; H is the dis-

tance between the channels emerging on one side of the blade; Z is

the distance from the point of air exhaust.

Introducing tht concept of the ave.eage temperature of the

washing medium

T " , (13)
ar + C1,

where t is the adiabatic wall temperature, and designating theaA
relative coordinate as x = /16, we get initial equation (12) in the

form

2- --kJ'V-- 1 =-O. (14)

"wee" 3 .L+a" is ?he vrg
where k2=-!!± is a dimensionless parameter; a=-- ; e average

heat-transfer coefficient.

The adiabatic temperature t is equal to the temperature of

the gas at the heat-insulated wall. It depends on the flow and tem-

perature of the coola-4 the temperature of the gas flow, and the

distance from the point of injection. Usual-y, the adiabatic tem-

perature is determined experimentally and is the basic factor which

takes into account the aftereffect of injection. The experimentally

determined adiabatic gas temperature at the wall approximated

quite well by the formula

t (15)
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Het'e pt-- where (yw)r is the mass velocity of the gas flow at

the point of injection; G0 ×A/2 is the flow of coolant to one side

of the blade profile; 0, is the air temperature at the outlet from
the cooling channels; k is a coefficient which takes into account
the direction of injection: for tangential injection k. - 0.337,

for normal inkection k5  o 0.186.

isSince T is a complex function of x, to simplify the calcula-

tions dependence (13) can be approximated by the expression

(16)

where T is the initial temperature of the watching medium when x = 0;

is the temperature of thL ,. hvng medium as y 8 •; B is an approx-

imation coefficient.

Setting AT = T - t and bearing in mind that

d2T

we get

dX2( ) (18)
-dx

2  k(T •-('-~

The general solution of the given equation is obtained as the sum

of the general solution of the corresponding homogeneous equation

S(•),= Cie-" , C.e-kx

and the particular solution

Substituting the numerical solution into the initial equation

and solving it for D, we get

V (T,--T0 ) c-ax.

Then the general solution will have the form

(-%T) =Cle; -4- C.•e-r" - "2 (r. -- TO)e--;-. ( 19 )
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The integration constant is determined from the following boundary

conditions:

I=t1 Whenx~0 X (20)

where tl, is the average temperature of the inlet edge,

N,. = IY. ( 21 )
0

Thus, the distribution of temperature along the blade profile

near the inlet edge can be defined by the formula

t= 7- -[ i,,. : T- T - O .- 4.1 -I- (T- - 7'') - (22)
-2

Let us find the heat flow from the shaped part 3f the blade when

X =0:

Q*IIdl dx
I - . -j 7-.,)(23-)

= --. t/k(T. - TO) (I. + )(

where t--ris the average relative temperature of the leadingT, -- T.U
edge.

Consequently, the unknown intensity of the heat flow q = Q/2r 0 h.

Solving equations (9), (10), (11), (21), and (23) simultaneously

we can define 0O,,, tl, and Q, corresponding to the given cooling

conditions. Setting (i, 0 =\t/y-+' , where t is the temperature of'

the leading edge of the blade at radius y = 0, we can write the

expression for the average temperature of the inlet edge

(I)J (214)
;~2 2Hk (-

Setting =_,1_ -- ,,. we get
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• , ;L. • . . ..... _-" ___•'*•u_______ _ .__ __- ...... - ___ ____ . _ ___- (25

2 13 5n --- (1) ,, 6 ID B1,,)t7[ 101,1idi

and
S+ '* I dO,(1)

I. dA, (1 (26)

S()dy 00a.

The air temperature at the channel outlet

61 = o-r0(27)

where Q is the total heat fed to the leading edge;

Lh ~ .• ; -. Hk(.. - T,? -- - ,.;) • (28)

It shou'd be noted that the second term in expression (28) can

be both positive and negative, i.e., there can be additional haat

removal to the wall adjacent t, the leading edge or there can be
heat feed. '

The direction of the heat flow is determined by the sign of

the complex _-7--:).

When 1/(B + k) > El,0 there will be heat feed, while when B +

÷ ( ) + ) l,0 there will be heat removal. Thus, with an increase

in the value of 0 the ratio 0/(0 + k) will increase, and this means
that the temperature of the washing medium as a function of the dis-
tance from the point of injection will change very rapidly. There-
fore, to decrease the heat fed from the wall., in all cases it is
necessary to strive to increase the coefficient k = /V29, where

Bi = (.C /\)6.

Below, by way of illustration, we give an example of calcula.-
tion of cooli.ng the leading edge of a rotor blade for the following
initial data:
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Tw*= 1243 K; 0o=73$' K; at,,=4060 W/m'OK;
ro=2,25.10- 3m; ).=21 W!/moK; ar= 2 10 0 W/Mn*K;
d=0,3.10- 3 m; ai=267 '4//taaK; 6=1,5-10-3 m;
H =h---10-3 m; F5=0,55: Z=0,94; q'= 1.2 rad;
G-6,5. 10- kg/s (air floe: through one channel
on the leading edge).

On the basis of these initial daca we calculate the following

complexes which appear in the calculation expression:

BI,=Sr E0C =0,437: n=-a=2,76 K

k=11'dodr

Since we obtained n =2.76, to calculate the values of the functions

s(1) and d$ (1)/dy w must round n off to the nearest whole n0mber.
When the calculation must be precise, we must calculate the Initial

values (i.e., tl, o003, tl,o) for a ntuaber of values of n including
the interval of interest to us, and by interpolation calculate the

true values of tl, 0o,,,, and tlO, corresponding to the fractional

value of n. Let us take n = 3; then
,3 € S. 13

4: I .q) I - 3s' -- 1,257:

To= 764 -1K: dce P

r.= ' -"7 4 1171 *K.

Here we assume that in first approximation 0 a + 30, since heating

of the air in the channel? iF still unknown.

Setting n = 3, we can cal.culate, from formula (25), 0 = 654 0 K,
from formula (26) T1  10541K, and from formula (24) T1 ,0 = 908 0 K.

, -To- 0 ,6 and ---- t:0 = 059-.'',.ie

Then let us find _C 0an--d-i-

we obtained the case of heat removal to the iall adjacent. to the
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leading edge.

Then, using formulas (28) and (27) we get

Q. -2,02.10-3 W and 6,=771"K.

This result corresponds to the case when the protective after-

effect of the air discharged from the openings on the leading edge

was estimated from the dependences for normal injection (at right

angles to the incoming flow). If we consider that at an injection

angle of less than 900 (in practice it can be about 600) the pro-

tective aftereffect is intensified and will be somewhere between

the aftereffect with tangential and normal injection (at injection

angles fropi 00 to 300 the protective aftereffect will be identical),

with injection at an angle of 600 the protective effect can be es-

timated by the coefficient ks, which is approximately equal to the

arithmetic mean of the values for normal and tangential lnjectionn.

Considering the influence of the injection angle and taking

coefficient 0 = 0.376, we get eo,3K = 583 0 K, T1 = 10310 K, and T1 . 0 a

= 985 0 K, i.e., the maximum temperature of the leading edge is re-

duced from 1054 to 1031 0 K.

The relative depth of cooling ;=•t-" =.,331. where t K is the

temperature of the air behind the compressor.

Thus, the depth of cooling is very great.

The method of cooling the leading edge of a rotor blade, ex-

amined in titis article, is very expedient since with the appropriate

materials it allows us to reduce the blade temperature and raise the

temperature of the gas in a turbine.

The given calculation example shows that as a result of the

simultaneous action of internal (in the channels) and external air

cooling (by creating a low-temperature protective film on the blade
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surface), the temperature of the leading edge is noticeably reduced

compared with that of an uncooled blade.

REFERENCE
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CALCULATING THE COOLISG OF 6AS-TURBINE DISKS J

V. S. Petrovskiy and M. !. Tsaplin

",he reliability and longevity of gas-turbine installations de-

pend, to a considerable extent, on the efficiency of one of the most
Important parts - the turbine disks. The efficiency of the disks is

greatly influenced by the level of permitted temperatures, which is

guaranteed by using cooling.

When calculating air cooling we must solve the heat-balance

equation for the turbine rotor as a whole, using dependences which

associate the heat flow with the temperatures of individual character-

istic points of the rotor. In p.articular, to perform such calcula-

tions we must establish the dependence of heat transfer to the disk

on the temperature oe the crown for the given geometric dimensions,

= the theimophysical properties selected, and the bo~.ndary conditions.

The qu-stion of calculating the temperature in cooled disks has

already been exami:,ed in the technical literature. For example, [1l

contains a survey of methods for solving the heat-conduction equation

compiled on the assuraption of a one-dimenaional heat-flow scheme:

J.,. dA

where F(x) Is the area of a cylindrical disk section; A and m are
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coefficients of the heat conduction of the disk material and heat

transfer from its lateral surface; t and e are the temperatures of

the disk and the coolant; r and x = r/ro are current and dimension-

less radii; r 6 is the radius of the disk crown.

On the basis of the survey the conclusion is drawn that simul-

taneous consideration of variability, along the radius, of the area

of the cylindrical section, the temperature of the coolant, and the

heat-transfer coefficients leads to a substantial complication of the
calculation eydressions, which hinders their practical application.
This same work poses the problem of developing sufficiently accurate

and simple engineering calculation methods. In particular, a number

oi simplifying assumptions are proposed which reduce tne problem to

one of solving the heat-conduction equation for a disk of constant

thickness when the temperature of the coolant and the heat-transfer

and heat-conduction coefficients are constant along the radius.

Under these assumptions, the expressions for calculating the

temperature distribution along the radius and heat transfer from

the disk with boundary conditions

£--.,, when V= )
dt1dx=0whenx= (

assume the form

/o~nX :(3)
I.) (it

Q-2•i,,•? (fo• -2n (14)

where I 0 (n), 10 (rx), and Ii(n) are Bessel functions of the first kind

of an imaginary argument; 1= 1 -" is a dimensionless parameter;

t6 and H are the temperature and width of the disk crown.

The error in the method of calculating temperatures with such

assumptions is too great, and therefore the proposed 3implifications

raise a number of objections.
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First, the disks of modern gas-turbine installations, particu-

larly transport installations, are of complex shape due to attempts

to achieve uniform-strength designs. Here the width of the disk
crown near the root joints is considerably greater than that of '-he
shank ,', witlh which the crown is attached with smooth fillets (Fig.
1). Obviously, approximation of such a disk by a profile of con-
stant thickness leads to a substantial increase in heat transfer.

Second, when organ-
j.. izing the cooling, the

1e• MA •l relative flow of air to

one stage is usually
0.3-0.5%. With such

5 1low flows the heating of

.2. f.oe in relaiv neat ansfer the air becomes notice-
t a 8.Is~tof~c'onnstralntt t~hicckne~tssars a

iction of po•aw.te- n, when the tmer- able. Introduction into
atur of the cooling •adima Is replace
bythe arithmetic mean for various lsor KO - : , ac• ATH 1.o, the calculation of the
OfK0 1 Oc 9 /•wH 0O8

average temperature of

Fig. 1. Disk the coolant does not allow proper correction of the
Sprofile. heat-transfer value. By wP4 of illustration, Fig.

2 shows curves of the change in relative heat transfer from a disk
of constant thickness when the coolant temperature is replaced by

the arithmetic mean temperature. As we can see, with a decrease in

flow the error can reach 40%, and increases heat transfer.

Third, when n > 10 the peripheral parts of the disk have the

greatest influence on heat transfer. In this case, use in the cal-

culations of heat-transfer coefficient vaiues which are average over
the entire disk surface will also yield an error, since the local

heat-transfer coefficients in the region of the crown will be greater

than the average coefficients.

Thus, the problem posed in [1] of developing a simple and
sufficiently accurate method for calculating disk temperature can-

not be considered as having been satisfactorily solved.
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Let us examine the problem of distribution of temperature in the

disk shown in Fig. 1. Let us divide a disk of complex shape iato two

parts: peripheral part 1 adjacent to the crown, characterized by an

abrupt contraction in profile, and central part 2, having a slight

taper.

For the contour which approximates the contracting part of the

disk, the change in area of the cylindrical section

i"(W --- F,.'-' V)" ( 5 )

where F., = 27ro0Ho0 is the area of the cylindrical section of the

crown, and p is a certain constant.

Equation (1) can be solved in quadratures only for the case

P = 3 and constant temperature of the coolant. This solution, for

b'uundary conditions (2), has the form

t=--I + (toii-A)x•',, (6)

where m = -1 + Vi + n-- is a dimensionless parameter.

For real turbine disks the contracting peripheral part cannot

always be reproduced by the contour p = 3 and, in addition, the

temperature of the cooling air is not constant along the radlus.

Let us assume that the temperature difference t - a will change

along the radius by an exponential law

t--e = Atxs, ( 7)

where s is a certain constant.

Then the solution of equation (1) with boundary conditions (2)

will be

• =01,x.+ (too--OCOXk+ (8)

where k is a dimensionless parameter, 8ex is the initial temperature

of the cooling air, and A6 is air heating due to heat transfer with

the disk.
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The parameter

k= + )' n2(9)

From (8) and (9) it follows that At-t.--(O.x+%O) and s a k + p -
- 3. In this case, heat transfer from the disk

0&-=2aloo; •k (46-Qm) ) (10)

Let us express heating of the cooling air as a result of heat trans-
fer with the disk as fcllows:

0 (nqk(V.--6.1 )

where). is a dimensionless parameter and G is the flow of

cooling air on both sides of the disk, and substitute it into ex-
pression (9). After certain transformations we finally get

k: n2 ¢ , )•i. (12)

Assumption (7) is valid when the temperature in the center of
the disk equals that of the cooling air. Such a condition can be

str'ictly satisfied only for disks which are constricted toward the
center. The thickness of the disk can also be expressed as H -

x which means that

p > 2. (13)

It i:, interesting to note that for disks of constant thickness,

for which the parameter n is rather high, the temperature in the cen-

ter approaches that of the cooling air. When n - 5 the temperature

difference is several degrees, while when n > 10 there is practically

no difference. Consequently, under such conditions formulas (6) and

(8) can be used to calculate temperatures and heat flow in disks of

constant thickness as well.

To illustrate this, Fig. 3 shows a curve of the change in Q

for p - 1 and q - 0, the ratio of the values of heat transfer in a

flat disk, calculated from formulas (4) and (10). When h > 10 the

error in determining the heat flow frcm (12) is less than 5%.
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This same result can be obtained

-- by expanding the functions 10 (n) and

-(n). Then

v-II+ 15 it" " 129

Pitg. 3. Change in relszIve error when
deter-n r.9 heat transfer from a diskc
6f constar. thickness, using simplified As can be easily seen, this relationship
formulas, &s a function or values of,raMterr•r and q. tends toward one for large values of n.

As already noted, the central parts of gas-turbine disks have

a slight taper. For fixed and portable gas-turbine plants with such

disks, n >> 5 as a rule. For these cases the additional heat trans-

fer along the turbine shaft, and also the central opening in the disk

(where tnere is no heat transfer), have no noticeable effect on the

distribution of temperature along the radius or on the intensity of

heat transfer from the disk. Consequently, for these conditions, ac-

cording to [2], we can use the familiar dependences for a disk of

constant thickness derived relative to boundary conditions (2).

Let us write the distribution of temperature along the disk

radius relative to boundary conditions (2) in the form

where X(x) is some function of a dimensionless coordinate.

Having at our disposal solutions which describe the distribution

of temperature along the radius for the simplest contours, which

individually approximate the peripheral and central parts of the disks,

with the given boundary conditions we can find an expression for cal-

culating the temperature in a disk of more complex profile. For this

purpose, at the point where one contour becomes another it is neces-

sary to combine solutions (15). Designating by subscripts 1 and 2

the values in the expression for the peripheral and central parts of

a disk, respectively, for the transition point (x = •) we gat
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6 he condition

, a(16)

Obviously, for tV, Piven values of to6 and 6 conditions (16)
ad ex

are mutually ex1,l'sive. In order to observe equality of the heat

flows at the transition point, temperature 0 xI must be selected so

as to asiure the required heat transfer on the part of the peripheral

sectivn when replacing the poorly approximating c.ontour in the cen-

tral pilt. We designate this tempe.rature as 0 esS. We proceed

analog -ly w•-ten 3electinr' temperature to 6 2 and correspondingly in-

trodw ie d-sii.agi-on to . r2hen the expression for calculating

heat t:.-- 'er snd .!r .:rature distribution along the disk radius

assumes "ne form

Q "og.,) .~(17)

The values in formula (17) are the equivalent temperature of the

cooling medium for approximation contour- 1

Sf, == •,•.. ,.,,~+ Z"' V)':•7. -' when X •.•••
S(19)

,. (X) when •,•<. I 0

and the equivalent temperature on the crown for approximation con-

tour 2

7.2(1).;(i

In a number of cases, when performing actual calculations it is

possible to simplify considerably ;he derived formulas. For example,

when approximating the constricted peripheral sections XI(l) - 1.

Then, for relatively thin disks, with high values of the heat-trans-

fer coefficients, the dimensionless parameters for the central parts

are quite large (n 2 > 10). In these cases 8exs and t oSK tend

toward S and then relationships (17)-(20) degenerate into elemental
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.formulas (8) and (10). This indidates that for large values of

parameter n, basic heat transfer occurs on the peripheral sections

of the disk, and the shape of the central portionb has no substan-V tial Tnfluence on it.

e should note that a calculation expression of the type of

(6), which is a particular case of express-on (8), was proposed in

Stodola's work K[3, and at that time was widely used [4]. However,

critici'sm contained in [5] resulted In the fact hat the Stodola

method was generally relegated to obscurity. This was not quite

Justified.

Figure 4 shows curves of relative heat transfer from a disk

Q/2wr2 3(t - 3) as a function of parameter n for various values ofa6
p. With an increase in n the influence of

_'____ constant p on heat transfer decreases.

"" Consequently, the Stodola formula and cal-

. ____ culation methods based -thereon can be used

" : Iin cases when n > i5. Such conoditions, as

. a rule, exist f6r the disks of aviation

gas turbines.

r.2 ~ In conclusion, let us estimate the

1.t .... error when reducing the two-dimensional

S • - ,,n heat-conduction to a one-dimensional one.

Fig. 4. Change in relative heat
tz.ansfe.' frrm disk oroun as a
function cr pareterks n and q. Let us examine temperature distribu-

1tion in a flat disk under the' assumption that the temperature of

the cooling medium does not change along the radius. The initial

heat.-conduction equation for this case

"-t I at . •(21)-. _ • ;:•- 'X Ox ' e:2-

where x rH, y h/H are dimension~ess coordinates.

Let us find the general solution for the following boundary

conditions:
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-'2) " , •,when 1 (22)

3••• ) AL=Jf (--1when y==O.

Reproduced from
Designat'.ng best available copy.

a'- Bi"= k B1" _ G__-_ V)

after the solution, presented in [6), we get calculation expressions

for determining the temperature field through a flat disk and the

value of heat transfer from the crown:

--t •-O - 2 (t,--J', BI,'' .I,,ch• Cp:) +•,i(p . ,)1/: (p. :) :( 23)

where h,,• --h 7,--

Sh P.i.7I -- Pa C.,, P

where .- rn-hP-Bi" hPki' m a /x is an expansion param-

eter; UmiS the value of the roots of a zero-order Bessel function
of a real arg,'ment.

In the case of symmetrical cooling conditions (Bi' - Bi" - Bi,
k = 1), calculation expression (21) is considerably simplified:

Q_& r;_.( 6 -B)BI • (25)

Having determined heat flows Q2 from formula (25) for symmetrical

boundary conditions, and having calculated their corresponding heat

flows Q from formula (14), we can construct the graph Q1 /Q 2 a f x

x (Bi, x0 6 ) (Fig. 5). From the graph we see that reduction of the

two-dimensional problem to a one-dimensional one leads to an error

which becomes substantial at large BI. This error tends to increase

the value of heet transfer from the disk and results in lower tem-

perature values on the crown; when Bi < 0.2 the error does not ex-

ceed 5% and need not be taken into consideration.
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.++. In .. bi i

SN I dimnina orde obling nto acrford the eatu

Sflatow:otindso for mua a, anti ffciewdt H.2,,

Lk

it n ce s ry he xa i in he o e

7:406

I H n wh r < _s o re t o

Change In error when - For contours which constrict toward
terining heat transfer from the
crown iof a disk of constant thick- the center, the corrcction for two-.dimnen-
ness when reducing the two-dimaen-
sional heat-conduction problem to s ionality will be substantially smaller,
a one-dimensional one.

since the thermal resistance a f such bodies

ft_ __actor___

ac will tend toward its minimum value, deter-
h4 wheb t o-dimensional scheme of

5 hheat flows[r]

Using expression (24d) we can also es-

=timate the influence of asymmetry of the

s conditions for cooling of the lateral
surfaces on heat transfer from a disk. As

we know, when solving a one-dimensional

heat-conduction problem, to calculate the
1 lOC0  05 1"asymmetry of cooling of the lateral sur-

Fig. 6. influer.ce or nonuniform faces, by the values t, 0, and a we rtean
cooling or the lateral surfaces.
of a flat disk with fIxed average certain average temperatures and average
values of Bi on heat trn t s o dker
from the crown. heat-transfer coefficients, which should be

defined, as shown in [8], by the formulas

who4ere tt, O, oft, at, and all are the temperatures on the surface

of the disk, the temperatures of the washing medium, and the heat-

transfer coefficients on one side of the disk anb the other, re-

spectively.

Such a method is approximate, and therefore the correct result

will be obtained only when the temperature on the lateral surfaces,
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averaged by the indicated method, does not differ substantially from

the average tempe:.rature across the section.

Figure 6 ahows the results of calculating heat flows by formula

(24) in the form of the ratio of Qc' obtained for the case Bi' =
w Bi" a Bi, to the value of Qt found for Bi' # Bi" with Bi - idem
and unchanged temperature of the cc ling medium (e w idem). In ac-

cordance with (26), Bi = (Bi' + Bi.")/2.

* From the graph we see that with a decrease in the ratio Bi"/Bi',

i.e., with an increase in the degree of nonuniformity of cooling of

the lateral surfaces, heat transfer from the crown decreases, where-

upon its maximum dcviation from the value corresponding to symmetrical

cooling conditionb will occur when Bi" - 0 and Bi' t 2Bi. A decrease

in heat transfer with asymmetrical cooling depends on the value of

Bi and also on the relative disk radius x 0., and can attain, for real

disks, 20-30% of the heat transfer determined fron the averaged Bi

values. Such asymmetrical conditions can be found in schemes where

one of the lateral sides of the disk is shielded from the cooling

air. Therefore, when calculating the heat transfer from a disk using
dependences of the type of (17) it is necessary, for the indicated

cases, to introduce a correction in accordance with the graph in

Fig. 6.

Such calculation,$ carried out for 0' p 8"1: Bi' Bi" = Bi, and
8 = (e' + 6")/2 = I.dem, showed that a chan/ge inthe value of (to0 -

- e")/(t 0 6 - 0,) within limits from one to zero leads to a decrease
in heat transfer from the disk crown by no more than 1.5% compared

with the heat transfer corresponding to symmetrical cooling con-

ditions with 0.1 < Bi < 10 and 1 < xod < 10. Thus, nonuniformity of

cooling, caused by varying tempgratures of the washing medium, does

not result in noticeable errors.

The simple dependences obtained can be used when calculating

the cooling of gas-turbine rotors, with consideration of the

variable area of the cylindrical disk section and heating of the

coolant.
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CVP!RIMENTAL STUDY OF THE TEMPERATURE STATE OF THE ROTOR OF AN

AXIAL GAS TUVRBINE

A. At Lushin, V. S. Petrovskiy, M. I. Tsaplin, and V. I. Krichakin

Experirental study of the temperature state of a gas-turbine
rotor is of primary importance for estimating its reserve strength,
determining the service life of the entire turbine, explaining de-
ficleacies in td~e rotor cooling system, and discussing prospects
for raising the temperature of the ga& ahead of the turbine, Direct
thermometry allows us to refine a vast number of calculation charac-
teristics used as the basis for designing the turbine. Besides,
accumulation of information on the actual temperature fields in
real gas-turbine designs allows us to improve the calculation methods

for studying the temperature states of the rotors, and develop new
theoretical methods for studying boundary conditions in operating
turbines.

In this article we give the results of thermometry of the rotor
of a small, three-stage, axial gas turbine.

The mean-mass temperature of the gas ahead of the turbine during
the tests mached 1100 0 K; the flow of air for cooling the rotor was
no more than 5% of the gas flow through the turbine. Air for cooling
the turbine rotor Is taken at the compressor outlet and its tempera-

ture under rated conditions - 520-530 0 K.
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To reduce the temperature

Ii7• differential along the disks of

the first stages, in the lowerI2i
S. parts of the rotor blades we

S, created unique heat chokes

in the form of cooling channels.

The rotor blades of all three

/ turbine stages have upper andK
00 lower shrouds. The cooling

-channels, as can be seen from

Pi. •. C* o t pos , on t t Fig. 1, are formed by the blade
dsotor, tae caviieswch the cooling air entrs. root, the lower blade shrouds,
I -- gap between flaime tube and transfer ring ofth•e
upper shroud of the first nozzle cascade; 2 - point and the outer surface of the
or location of the the*rmocouPle connecting strips
for IassUrtng t1; 3 - gap between flow tube Ian disk crown.lower shroud of first nozzle c5atcdej 4 - annular
f'e thi oug h which coooonlg ar passes from the com-

f pedsor t o the roto; 5 - otenengsIn the de arletore nL o~n the loaditng old* of the disk of sitage I for
readitng cooling air to staeits 11 and III. Air from the compressor Is

fed to cool the turbine through an annular gap between the flame

tube and the support housing, and goes to cavity I. From here it

is directed through labyrinth seals to the rear bearing -tnd to the

peripheral part of the stage I disk crown, and also through 6 open-

ings in the deflector to the lateral surface of the disk and then

through central openings in the stage I disk to stages II and III of

the turbine.

Air enters the cooling channels 0f stage I from cavity II,

passing through the labyrinth seal; only a certain part of the air

enters the channels. The rest passes through the annular gap to the

turbine blading and creates unique film protection at the bottoms of

the blades.

The upper, peripheral, parts of the rotor blades, just as the

roots, will be in a zone of reduced-temperature gas flow since the

air which cools the stator is mixed with the gas. Thus, the middle

sections of the blades undergo the greatest heating.

Since the distribution of gas temperature with height of the
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vave cascade determines, to a considerable extent, the tempe:,ature

fiold in the turbine rotor blades and disks, the results of rotor

thermometry can be correctly explained only if we simultaneously

measure the gas temperature at various sectionb of the rotor blades.

This was taken into consideration when setting up the experiment.

The following basics were used to prepare the turbine for
thermometry.

The turbine rotor is the moat stressed part, and therefore we

provided for temperature measurements at all of its most important
points, from the standpoint of strength. Basically, these were
those points at which we can obtain data on the temperature dif-
ferential along the disk radius from the periphery to the center,

through the disks, and in the blade firtree Joints. It was also

important to measure the temperature of the blade foil at various
sections along its height.

Besides the turbine rotor, when conducting the experiment as

a whole we prepared for thermometrt, the following: the blades of
the nozzle cascades, the front and rear turbine shaft supports, the

stator shrouds, and a number of other items. Below we will examine
questions pertaining only to the thermal state of the rotor.

To obtain the required results from study of cooling effective-
ness it was necessary, in addition to measuring the rotor tempera-

ture, to determine the temperature of the gas at the turbine inlet

(t¶), the temperature field of the gas flow along the height of the

vane cascades of all three stages, and the air temperature behind
the compressor (t1) and at the compressor intake (tH).

In addition, it is necessary to know the air pressure at the
compressor intake and outlet (p. and p 2 ) and the gas pressure at the

turbine inlet. and outlet (p• and pO).

The positioning of the thermometry points on the rotor also had
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to be associated with data from a theoretical preliminary determina-

tion of the temperature field in the turbine disks and rotor blades

to make possible later comparison of the results of theory and experi-

ment. The final scheme for positioning the thermometry points on

the rotor is shown in Fig. 1.

Measurement of t* was carried out in two steps. In addition to
3i

the thermocouples on the rotor, 12 thermocouples were placed at the

turbine inlet around the periphery, on the average diameter of the

blading. To measure the distribution of gas temperature alorng the

vane cascades Et*(x)] we first installed, in the

nozzle cascades of all three stages, thermocouples

on one nozzle blade of each stage, as shown in

-- Fig. 2. Processing of the results showed that it

is impossible to determine t*(x) from one blade

__ per stage, since the gas temperature is nonuniform
-_ around the turbine blading. Therefore, to measure

--- t*(x) we performed additional thermometry for which,

- -- besides the 12 t:iermocouples on the averaage diam-

Fig. 2. Diga of L,, eter, we placed connecting strips of 5 thermocouples
location of the thermo-

coupleson the nozle each at six locations around the periphery ahead of
blade (the numbers are
t•anos otf rootzsec- the nozzle cascade of stage I; then in the nozzle
tlona of nozzle emu-
codes). cascade of each stage we set up 6 blades with

thermocouples positioned in shown in Fig. 2. The resulting distri-
bution of T*(x) at the outlet from the flame tube and in the nozzle

r
cascade of each stage, shown below in Figs. 4 and 5, was constructed

from points, each of which is the arithmetic mean of the readings of

6 thermocouples placed on the same diameter around the periphery of

the blading.

We must mention the following relative to the thermocouples on

Sthe nozzle blades. Since the bead of the thermocouple was 1.5 mm

above the blade surface, it was in the boundary layer of the gas

flow. Measurement of the temperature of the boundary layer, combined

with the damping exhibited by the thermocouple bead itself, assured

measurement of T*, to a certain extent. As additional verification
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ihvWed, the error of this method when measuring stagnation tempera-
t~kte, did not exceed the errors ari.ing from other causes (limited

accuracy of the thermocouple itself and the recording instrument,
due to heat transfer), and was within acceptable limits.

The air temperature at the compressbr outlet was measured with
eii thermocouples. This #as a sufficient number, since tl varies
on4 insignificantly around the periphery of the compressor blading.

Pour thermoiBuples iwere installed at the compt'ssor inlet ahead

of the protecti* cascade to measure tH. For greater experiment
reliability, tht turbine rotor contained, as shown in Fi&,. 1, dupli-
cate thermocouplfb on the same radii as the main thermocouples but

shifted 1200 and 1800 in a plane perpendicular to the turbine axis.

An indexing bystem, which facilitated operations during the

experiment, was developed lVor the entire thermocouple system.

To measure the temperature of the gas and the rotor parts we
used Chromel-Alumel thermocouples, while to measure tl and tH we
used Chromel-Kopdl thermocouples of class 1 accuracy. The diameter
of the thermoelectrodes, depending on the measurement site, was 0.2-
0.5 mm. On the rotor blades and disks the thermocouple beads were

welded to the surface, while the thermoelectrode leads in the heat-
resistant insulation were covered with 0.1-mm thick refractory steel
foil, spot-welded to the surface of the blades or disks. Figure 3

... shows a rotor prepared
0ror thermometry. The

. .j.. .. • .. ...-- ary strength and protec-

"tion of the thermocouple

V zI-- against the action of the

Fig. 3. Turbine rotor disks prepared for gas, and also guarantees

thermometry. measurement accuracy,

since it shields the thermocouple beads from direct &ction by the

"washing medium.
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The thermoelectrodes from the thermocouples were braided

together and fed to a mercury slip ring attached to a bracket on

the exhaust pipe. Stage III of the turbine was used to drive the

slip ring.

The mercury slip ring is intended to transmit an electrical

signal from sensors mounted on the rotating parts to fixed recorders.
It has 22 pairs of mercury contacts. Each pair of contacts is an

individual section; the moving contact is located on the rotor shaft

while the fixed contact is imbedded in the slip-ring stator. All

sections of the contacts are insulated from one another by textolite

washers.

The thermocouple leads fed to the slip ring are soldered to the

contacts on a sliding insulating ring placed on an intermediate

shaft. The contacts of the sliding ring, in turn, are connected to

the sliding mercury contacts of the slip ring. The intermediate

ring was introduced into the design to facilitate resoldering of

the thermocouples.

The cold junctions of the rotor thermocouples were located on

an insulating (textolite) washer which rotates inside a recess in

the brauket which holds the slip ring. A jet of air is directed

into the recess to balance the temperature of the cold junctions.

The temperature of the junctions varied depending on the injection

rate, the temperature of the ambient air, and other factors. The

result is recording not of the true value of the temperature at the

investigated point but the difference in temperatures of the hot

and cold thermocouple junctions. To obtain the true temperature it

was necessary, when processing the measurement results, to add the

cold-junction temperature to the instrument readings. This tempera-

ture was considered equal to that of the injected air, and was mea-

sured by a separabe thermocouple.

A total of 90 thermoccuples weve installed on the rotor. Since

the number of contacts allowed for the simultaneous use of no more
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tq 11 thermocouples, some of them were periodically resoldered i

0rdpr to compare the measurement results and compile them into a
single temperature field such as would be obtained if all thermo-
couples worked simultaneously.

"As the measurement instruments for the turbine rotor we used
single-point high-speed potentiometers, accuracy class 0.5, with
continuous req~rdlng. To measure the cold-Junction temperatures
tHP tI. and tj we used muitiple-point potentiometers with complete

carriage coverfie pf the scale in 2.5 seconds. The high speed of
*thq carriage of •t discrete potentiometers and the great number of

points for meas4i."g each of the indicated temperatures made it
possible, sihen proceshing the measurement results, to clarify the
trend of the temperature dependencea during transitional regimes
as well (start-up, stop).

To measure the distribution of gas temperature along the vane
casQade we used multiple-point, discrete-recording potentiometers.

Th3 readings for identical thermocouples were recorded less fre-
quently than with thermometry of the rotor but, since we studied
only the steady atate of the turbine, the number of repetitions was
quite satisfactory for obtaining precise results.

The correctness of the instrument readings was systematically
monitored using an additional potentiometer coupled in parallel with

all the others to measure the rotor temperature. If necessary, the
signal of the theriocouple of any potentiometer could be fed to this
inqtrument using a switch.

The switch-on of all instruments was synchronized, using one
start button on the operator's control panel.

The steady turbine operating mode under various loads was of
particuA.ar interest. At the same time it was also important to study
the nonsteady temperature states of the rotor.
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During atart-up, the turbine operates under severe thermal con-

ditions, under which we can observe high temperature differentials

on the disks, Jumps in the thermal stresses in the Joint section of
the disks, and other unfavorable phenomena. Study of nonsteady

temperature states should answer the question of the number of

start-ups which limit reliable turbine service life.

These then are the basic concepts for compiling a graph of

turbine operation during thernometry. The entire period from start-
up to shutdown of the engine was divided into the following stages.

1. Start-up, idle, warmup, and measurement of all parameters

characteristic of turbine operation.

2. A gradual increase of the load on the shaft with a rise in
Stemperature from t# to t* in the intermediate mode. In both the3 3max

intermediate and maximum modes the measurements were made after a
slight delay, for the turbine to achieie the steady temperature

state.

I.
t 3. A gradual decrease in load on the shaft and a correspondiig

drop in gas temperature ahead of the turbine to idle t* through an
intermediate load, with temperatures measured in each regime.

The results of all measurements were obtained in the form of

graphs or a group of points on the recorder tapes. Each group of

tapes, obtained for one day's testing, was processed individually.

All recorder tapes for one day were qoordinated relative to the

reference point and the check marks which were made periodically,

during turbine testing, on the tapes of all instruments by simul-

taneously shutting them off. On the coordinated tapes we noted the

steady portions and the data obtained were compiled "nto tables.
Nonsteady sections were noted only after the first start-up, when

the entire engine was still cold and its temperature was equal to

that of the ambient medium H0). The discrete values of t*, t

and tH were averaged, and from them we constructed, on the tapes,
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the continuous dependences tj(T), tl(T), and tH(T). The timcn of the

nonsteady regime was reckoned from the momoent of start-up using the
tape showing the temperature of the cold Junction,,which thus served
as a unique time scale.

igg 112r-

using thermocouples st the ezxt frMo•- 7
,thefo ue. Suhpoint Is te_

avr$ rthe retifnc of six

bledine. I- idlesta a+304C;2~
Intezaiedlate rgm n-+0C3 -maximu regi--o t, v +30"0; 4 •X X.'

Sexislm realtme Wr +500C. 2

Figures 4 and 5 give the 4 -_

resulting graphs of the change 2 -i ___!_"

in gas temperature with height ,

of the turbine blading. Mea- I
too Pig0 700a Trw 4

surements were made in three , r

71g. 5. Dependence TO ,batrdb hro
regimes: idle, with an inter- couples on nozsle blades of stages 1, 1', andI ~1I;l EE'h Point !* the &Ye"S or the read-

medite oadandwit maxmum •1 f six therm-ao•u~lee positiLoned arcund
medite oad andwit maimu bladlng. 1-41'- saise as PIS. A.

load on the shaft (with maximum
mean-mass temperature of the gas) at tH = +30 and +50 0 C. Each point
an these graphs is the average reading from six thermocouples posi-

tioned about the periphery of the blading.

Simultaneous thermometry of the gas flow at four points of the
turbine blading made it possible to get a clear picture of the change

in Tr(x) from the outlet from the flame tube to the nozzle cascade

of stage I1II. Associating the obtained dependences with the turbine

design features, it is easy to explain the reason for certain anom-

aliea in the gas-flow temperature field and to explain their effect

on turbine characteristics.
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I''
The lowering of the temperature in the peripheral and root

sections of vane cascades is explained only by the admixture of

cooling air. This is indicated by the comparatively sligiht diJ-

tortion of the -as temperature field at the flame-tube outlet. A

certain reduation in temperature in the peripheral region can be

explained here by the flow of air from the region around the stator

into the turbine blading through the gap betwbeen the flame, tube and

the inner surface of the transfer ring of the upper 9hroud of the

stage I nozzle cascade (see Fig. 1).

The intensity of flow through the gap increases with an in-

crease in the pressure differeritial between the air cavity and the

inlet to the stage I nozzle cascade. This is observed when there

is an increased load on 'the turbine (an increase in shaft load) and

is confirmed by deformation of the temperature field, which is evi-

dent in Figs. 4 and 5 for stage I upon transition from idle to maxi-

mum take-off. A reduction in temperature of the gas of the peri-

pheral region at the outlet from the flame tube and the stage I

nozzle cascade does not appreciably influence turbine performance,

since it has an insignificant effect on the mean-mass gas tempera-

ture and it corresponds approximately to the calculated temperature.

A slight reduction in gas temperature is also noted in the root

section of the first nozzle cascade (see Fig. 5). This can be ex-

plained by the leakage of air into the turbine blading at the point

where the flame-tube outlet and the inner shr(ud of the stage I

nozzle cascade meet.

Distribution of gas temperature at the inlet to the stage Ii

nozzle cascade is deformed in both the peripheral and the root

:tections of the cascade. Cooling in the peripheral region is ex-

plained mainly by the influence of the air which reaches the blading

through the gap along the outer perimeter- of the flame-tube outlet,

and then by the addition of air which cools the peripheral shroud

of the stage I nozzle cascade.
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A lowertn~r of the temperature in the rootisection is explained

by the feed, to the blading, of air used to cool the rotor. The
trend of curves T*(x) for the nozzle cascadies of stafadfIII:r
attests to the fact that the basic rotor-cooling air is expended.I n sta.ge I.

The nature of the dependences T*(x) for all-three stages allows

us to conclude that the real change in mean-mass T' along .the tur-
bino stages corresponds to the calculated change.

An explanation is required for the ;certain discrepancy in gas
temperatures at the flame-tube outlet anid at the inlet to the stage.[ nozzle cascade, although the maximum gas temperature in both

cases should have been practically Identical:or'somewhat higfier at

the flame-tube outlet. But the measurement results show Just the

opposite: the gas temperature at the inlet to the first nozzle cas-

cade is somewhat higher than at the flame-tube outlet. Thi5 can be

explained by the nonuniformity of the gas temperature around the

turbine blading and by a slight displacement of the thermocouple

connecting strips relative to the stage I nozzle cascades; -,

The results of measurements of rotor temperature in steady

regimes are shown in Fig. 6 as functions t,(T*) and t(T). Here

T1 is the mean-mass temperature at the inlet to the first nozzle

cascade, obtained after processing the results of gas-temperaturemeasurements by 12 thermocouples simultaneously with thermometry-

of the turbine rotor. Each line in Fig. 6 was constructed from the

readings of a specific thermocouple during operation of the turbine

in various regimes. Naturally, during the tests TP did not exceed

the maximum permitted value. All the lines are extrapolated to

the region of high values of T". We can assume that such extrapo-3.
lation is permissible for a specific turbine design. In this par-

ticular case, with an increase in T* the nature of the function

T*(x) for the entire turbine blading will hardly change, since the

distribution of the cooling air over the stator and rotor does not,

in all probf, lity, depend on T*. Therefore, with -an increase in
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turbine Inlet Tj (the lines correspond to th, po~ints or temperature
measurem--at as shown in Fig. 1. The rcints o~r. liner, 8, 9, 18, 19,
28, and 29 designate temperatures for which we calculatod the re-
serve strarigth of o blade in a given section ror rated t~urbine rpm
(see Fig. 10).

In TV the similarity of the temperature fi.elds in the rotor parts3A
will be preserved. The possibility of extrapolation and its suf-

ficient accuracay are also confirmed by the linear nature of the de-
pendences t (T*) and t L(T*)

Extrapolation of t and t beyond T* = 11500 K allows us to
A1 3

more accurately establish the connection between rotor strength

characteristics and the temperature field and find the most likely

places which limit the maximium. teraperature T*
3.

The linear nature of the graphs of the dependence of blade and

disk temperature on gas temperature at "-! tu.-bine inlet, and their

varying slopes, confirm the results of a theoretical study of tem-

perature fields in gas-turbine rotors, presented in [1] and others.V

UpIng the lines in Fig. 6 we can find the radial temperature
field in the disk and blades for each stage. This was done for

temperatures T* = 1100 and 12000K (Fig. 7). Comparison of the lines
3

makes it possible to estimate the effect of cooling of each rotor

stage. The very high temperature gradient from the middle of the

109



SReproduced from

best available copy.
jew;. __-__ , blade to the base and tip for stage IKI• r. -f----t-----±--•,-- I attests to the intensity of blade

cooling in the peripuirc= and base

I II 1 .r'-12Cj'K sections. This result agrees with

ri!' the distribution of gas temperature
sage I along the n~ozzle vane cascades of

----_- ---- stages I and II (see Fig. 5). Such
.ag~e I an effect of cooling is not observed

Z2T, 2" for the rotor blades of stageb II and

- .---- -c - .... -- III. The more uniform heating of the
, .blades of stage II and the high tern-
S•perature differentials along the disk

- -,--.. . indicate th.at the main portion of air

fed to the rotor from the compressor

is used to cool stage I and the rear
29 support bearing. This can be con-

. sidered as expedient, since stage I

operates under the severest tempera-

:5,- ture conditions. Calculations also

show that the temperature different-

Sials along the stage II disk under
*.... * operating conditions are quite ac-

, .~ ceptable, since the reserve strength

in this case does not drop below
Fis. 7. Radial temperature distri-bution tr.a turbine rotor in the standard.
stationary mode, from thermometry
results. Tc the left are the
measurement points as in Pig. 1.

Judging from the lines in Fig.

7, from the standpoint of cooling, stages II and III are under prac-
tically identical conditions, if we consider that somewhat more heat
enters the stage Il than the stage III disk from the gas.

The change in temperature along the leading and trailing sides
of the disks of all three stages also confirms the weak cooling of
stage II. Nevertheless, this cooling does exist, as attested to by

the higher temperature of the rear side of the stage III disk.

Cooling of the fronts and backs of the stage II disk is symmetrical,
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since there is practically no temperature differential here.

Of great interest is the break in the temperature dependences -
at the junction of the blade and disk; this can be explained by the

entrainment of part of the heat by th'e cooling air in the steady
state and, in addition, by the thermal resistance of the blade fir-
tree joints. Naturally, thermal resistý.nce of the joint is charac-

terized by a temperature differential from the stem of the blade to

At' the projecti~ns on the diskc ZFig. 8),

Ibut the-combaned effect of both fac-

S. .. tors is more complex. Figure 9 shows

I ~the temperature dependences t~ (r) and
-.c0 5 to 15 to U5 j3CT t J1(x) under nonsteady conditions,

determined theoretically for stage I

25 ___of a turbine. Figure 9a also gives
an experimental dependence (curve A).

C* 1 iI Comparison of Fig. 9a (with cooling of
s2YeI Ell the lower part of the blade) and Fig.

20 z 25 -T

25 'e - . 9b (without cooling) shows the great
tZf-t?SA . 11 part played by the cooling channels.

\J stage III JWe also see the influence of the
0513 15 79 V1 3JJ. thermal resistance of the joint on

Fig. 8. Dependence of temperature dir-
ferential In a rirtree joint on tism the temperature function with trans-
when starting-up a turbine. ition from the blade to the disk

since, despite the lack of cooling (see Fig. Ob), there is still a

break in the lines. We can conclude that thermal, resistance of a

firtree joint with no air passing through its channels leads to a
10-20 0 C temperature differential on the blade/disk boundary.

The strength of the rotor disks is determined, to a considerable

extent, by the temperature differential from the center to the peri-
phery of the disk. Table 1 gives temperatures of the centers and

peripheries of the disks of all three stages of a turbine rotor under
steady conditions .and with T* 11000K, and the corvesponding tern-

3
perature differentials. As is to be expected, the maximum differ-
entials are observed in the stage I! disk. When designing a disk

• .+.• <, J.;•+ .++ ++ .. • + ,+ + + +4 + • + _++ ++ +'++ •+ +--,. - ++ + + . . ,+. + + +• , - +• +•]+ +• :•11 1•o • + :++ _
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for -tl~eflgth~xe, used temperature diiferentiaJls'hiiher than _thosie'

measukted'. ,Ae.-.af result -for a stage II disk operating undei' more
severie temperature conditions, the reserve strength with givena

*was 3.'8. for, the censter of the disk &Ad 3.14 for the periphery.

Tab le 2.

- I Stage I -J Stage II Stage III

Position of. a- I C~ 14C
ther~ometry '4 v

points on J41 1 40 U .43t .

Periphery tat 622 6.05 t2 .j 628 6.50 1tse 536 41.9o
Middle ts 79 r 3.37 t *. 66o 4l.20 tg 600 2.78
Root t: 703 3.96 tis 6415 3.64I t::1 580 2.416

Table 2 gives the blade temperatures for the stationary regime
and T* 1100*X. Because of high heating, the middle parts of3
stage I disks have the least strength. Figure 10 shows dependences

_____________ of the coefficient of

*'1 stage I Isaei I ofag 3)Ir ~reserve strength on T~
_ ~' :'~ !I7j ~! which show that a rise

Efl-~~~¶~%.4  I ~ ~ 1 in gas temperature ahead
1J~J7~.7.'~ I ;i ~of the turbine is limited

V~ to the root section of
Fig. 10. Dependence of strength reserve on tempera- the stage III rotor blade.
ture T* foe some or the most stressed cross sections
of tur~ine rotor blades. The points indicate the This can be explained by
calculation redults.

the fact that the material
of the stage III blades is less heat-resistant than the stage I and
II blades. However, the stage III vane cascade is under rather
atable temperature conditions, and therefore the reserve strength
of the blades, even at maximum gas temperatures, completely assures

* reliable efficiency of the turbine,

Practice has shown that the most important parts of vane cas-
c.ides is the midsection of the stage I rotor blades, which undergo
the action of the nonuniform temperature field of the gas flow, both
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along as well as around the turbine blading. Therefore, here the

possibility of short-term heating of the midsection of the blade is

very likely and, during turbine operation with maximum values of T
the reserve strength of stage I blades in the midsection will vary

and can assume lower values than in stage III. In addition, we cannot

help but consider the possibility of overheating of the thermally-

stressed leading and trailing edges of the blade foil.

Thus, we can consider that the rise in gas temperature ahead

of the turbine is lnifmited by the reserve strength in the midsection

of the stage I rotor blades. The influence of variations in the tem-
perature field around the blading on the temperature and, conse-

quently, on the strength characteristics of the blades requires

additional study.

When processing the thermometry results we also examined the

nonstationary temperature state in the process of heating of the

rotor during start-up. Some of the more typical of the obtained

graphs for the temperature dependence are given in Figs. 11-13 for

stages I, II, and III (the marking of the measurement points ie as

in Fig. J).

The change in temperature of a stage I disk and blades is

shown in Fig. lla. The first start-up (see Fig. lla) was not stable,

and was characterized by sharp variations in tj right up to the

moment of transfer from start-up fuel to main fuel at the 13th

second. Such a turbine operating regime allowed us to explain that
the thermal inertia of the blades is very low: variations in blade

temperature follow the variations in the gas temperature. This in-
dicates the significant predominance of the amount of heat from the

gas over the amount of heat fed from the working part of the blades

to the disk and the correspondingly slight difference between the

temperature of the blade midsection and that of the gas.

Above it was noted that the rear of the stage I disk is hotter

than the front. The trend of the temperature at points 1, 3, 5, 2,

114

~k {



f".1 ~ I -I r

17 1

a)

0 5. -1 15 29 15 c

Fig. 11. Ch'ange in disk and blade temperature or stage
II during start-up:. ntbereie osal

regim15



O.,. &'C 4, and 6 of the disk in

.. ,J .. _ _ ' the nonstationary regime

makes it possible to.

.25 •trace how, from the very

, _--, r I I , first seconds, there is

, ,a discrepancy in the

thermocouple readings;
the rear of the disk is••_.• --_ -• ___• •o-o-
more strongly heated.

-J This indicates the main-
- V 'i "-' - " tenance of the distri-

b, S 10 2s 0 2.5 JO zne,
P!ig. 13. Change in disk and blade tweperature of stage bution, in the turbine,

III during. start-u,2. of the cooling air by

stages, in both steady
and transitional regimes.

The maximum rate of heating of the peripheral part of the disk

in the first 4 seconds in 60-90°C/s.

Let us mention the feature of function tf(T) noted on the

graphs for all stages. If the nature of the change of t* with time

can be expressed approximately by an exponential function, tempera-

ture tj changes, in the first 4-5 second, by a parabolic law, and

then the rate of its increase decreases and it asymptotically ap-

proaches the rated value. These regularities must be taken into

consideration when stating problems of heat conduction for a gas-

turbine rotor.

The graphs given in Fig. 11 were used to determine the depen-

dences of the temperature differentials along the disk on the time

for all stages (Fig. 1i). The graphs show that during start-up the

temperature differentials along the radius of the stage I disk are

somewhat higher than in the stationary temperature state. If in

steady-state regimes t 5 - tI is 600, during start-up this difference

reaches 950, while. the differential t 6 - t 2 reaches 1400 instead of

870 in the stationary state. We can observe anomalies in which the
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Fig. 14I. Change in temperature differential from the
periphery of the disk to its center during turbine
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Reproduiced from
best available ýcojyy.

117



differential increases continually with certain variations (line
t- t'), but they cannot be considered typical. The nature of the
curve t -t indicates that because 'lf the more rapid heating of
the disk periphery on the front side (lines 5 in-Fig. 11) the differ-
ential t 5 - t 2 is first greater than zero and only after the 15th
second does it become negative, i.e., t 5 < t 2..

The trend- of dependences t 6 - tI and t 5 - t 2 shows the absence,

during start-up, pf a maximum temperatute differential for alternate
points.

The maximum temperature differential for a stage I disk durinq
start-up is lower than that which served as the initial one for the
strength calculations with steady heating. Consequently, the trans-
itional temperature state has no influence whatsoever on the effi-
ciency and reliability of a disk. The time-dependence of the tem-
perature of stage II blades and sisks shows the low thermal inertia
of the blades (curve 18 in Fig. 12). Thanks to stable start-up we
easily see that the rate of heating of the central part of the disk
is somewhat less thaa that of the peripheral part.

Curves 11, 13, 12, and 14 show that in the first seconds after

start-up the center of the stage II disk is heated more rapidly

than -its middle part. To explain this we must simultaneously analyze
the temperature dependences for stage I and II disks. Above we noted

that air from the compressor is almost completely expended on cooling
only the leading edge of the stage I disk. Therefore, we cannot ex-

plain the higher heating at points 11 and 12 than at points 13 and

14 (see Fig. 12) in the first seconds after start-up by the fact

that the center of the stage II disk is washed by hot air from the

compressor during this time, all the more so since in this case,

point 1 of the stage I disk (see Fig. llb) would be heated most

rapidly of all in this case. However, its temperature is lower

than at point 2, both during start-up as well as during subsequent

operation of the turbine.
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Such a heating peculiarity can be explained as follows. Cooling

air on its way to exhausting into the turbine blading between the
first rotor and the second nozzle cascade loses so much head that it
cannot counteract the pressure on the part of the gas flow. At the
same time, the di-fference in pressures at the inlet to and outlet

from the root section of the se-ond and third nozzle cascades (Fig.

1) leads to suction of the gas into the gap between the fP'st rotor

and the second nozzle cascade. The temperature of the gas entering
the gap is low, since in the lower part of the first nozzle cascade

the, re is mixed, with the gas flow, cooling air from the gap between

the first nozzle cascade and the first rotor. When the gas enters
the gap its temperature is reduced still more due to mixing of the

air coming from the cooling channels in the lower part of the first

rotor cascade. The gas, mixing with the cooling air, penetrates

through the radial openings in the skirt of the stage I disk and

washes its rear side. This is attested to by the synchronous vari-

ation of temperature dependences 2 and 4. A small amount of the gas-

air mixture leaks through the labyrinth seal between stages I and
II, and also through the radial channels in the skirt of the stage
II disk, and enters the blading of the turbine between the second

nozsle cascade and the second rotor. The fact that this amount of

gas-air mixture is really slight is confirmed by the lower tempera-
ture at point 13 than at point 11 during start-up (see Fig. 12).

The gas-air mixture, reaching the central recess between the

stage I and II disks, passes to stage III, washing the walls of the

opening of the second disk and heating its central part. Along the
way it is again mixed with a certaini quantity of cooling air from

the central opening of the first disk, and its temperature continues
to drop. Then from the cavity between the second and third disks

the gas-air mixture exits to the blading through the radial channels

in the skirt of the stage II disk. Here the rear surface of this

disk and the central part of the third disk are washed, which is well
illustrated by Fig. 13. The temperature at point 21 first rises

rather rapidly but, with influx of heat from the peripheral part,

heating on the part of the gas-air mixture plays a lesser role, and
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It its important to note that circulation of the-gas-air mixture,

in final analysis, cools stages II and III of the turbine rotor.

The temperature of the mixturze tashirg the rear surface of the first

disk does not exceed 390-)400oC, while that washing the rear surface
of the secon4 disk and the front surface of the third disk does not
exceed 310-320 0C. ,thexefore, the gas-air mixture heats the disks
only during the first 4ew seconds after start-up. As the disks be-

come heated from the periphery, the mixture acts as a cocl'ant,Sassuring, under stationary turbine operating conditions, a stable
temperature field for the disks, which is ta."en into consideration
in strength calculations of disks. In ti. aence of such circula-

be determined by the temperature of the air coming from the compres-

sor, which would lead to an increased temperature differential along

the disk radius and, consequently, to increased thermal stresses.

Heating of the central part of rotor disks also aids in rapid

heating of the rotor and passage to the stationary temperature

regime.

Judging from the graphs oA nonstationary heating (see Fig. 11),

the washing medium begins to cool. the stage I disk approximately
20 seconds after start-up, and tbe disks of stages II and III - after

30 seconds.

The rule for the change in temperature differential tn the stage

II disk from the periphery to the center during start-up is the same

as for the stage I disk, but the magnitude of the differentials in-

creases (see Pig. 14). In connection with the fact that the disk is

cooled symmetrically, the maximum temperature differential in the

first seconds of turbine operation is also observed for alternate

points. For strength calculation of the stage II disk we assigned

a temperature differential of 300'C, and therefore the maximum
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o~curring during start-up for t16 t 1 2 and r15 is not defini

tive. A negative differential can occur at the very beginning of

s'vart-up, as already stated, due to heating of the central part.

Th- ruie; for temperature distribution in stage III disk-s and

blades during turbine start-up are the same .as for stages I and II
S ' (ace Ft.5. 13).•

The temperature differentials in a stage III disk are shown in

Fig. 14. From the graphs we zee that heating of point 21 in the
first few seconds after start-up al:-ws us to make the temperature

o itincrease monotonic. As a result, function t 2 5 - t 2 1 became almost
monotonic, .Just as 02 t1
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THE NONTATIONA•f HEAT CONbUCTION,QF'-9OD1ES OFz DKLCOP .EX CONFIGURATION

Mi N. Ualk'in and "S. P. xolesniloV

i!tMany parte of airborne vehicles and thbeir engines have sh~arp

edges and projections in the form of dihedral and polyhedral angles..
1 During operationj these, parts are subjected to short-term heating or

I~

cooling, and from a thermal standpoint can be examined as semi-
bounded bodies.

In chis work we give our general theoretical solutions to
problems on determining the temperature-field r-nd the heat-retaining
capabilities of semi-bounded bodies having the form of dihedral and

polyhedral, acute and obtuse angles. The solutions are approximate
and have been obtained for the case of constant temperatu.re on the
surface of the bodies.

The essence of the solution of the multidimensional nonstation-
ary problem is first examine%- in detail uqing, as our example, a
dihedral angle (the two-dimensional problem), and is then extended
to polyhedral angles.

) The particular solution to the problem for the temperature field
Sof a dihedral right angle (Fig. 1) is the product of the solution
• ~for two s eml-bgunded bodies (A. V. Yykov: Teoriya teploprovo'dnosti
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(The theoryj of heat conduction), GITTL, 1952):

I -err erf

M•or 1= Iert e (1)

0 .where O= (x'-)-', is the relative temperature of
Pig. 1. Determfnlng the le-to
diempedraluage , or 9h0 the body at a point wi.th coordinates x and y at
dihedral anile 9 - 90°..

time T; t is the constant temperature of the

body surface; t0 is the initial temperature of the body; a = X/cp

. iis the coefficient of thermal conductivity of the body material;

X, c, and p are the heat conduction, specific heat, and density of
2the body material; FoX = aT/x is the Fourier criterion; y y/x;

erf(U) is the Gauss error function, which is equal to zero when U =

= 0 and is practically equal to one when U > 2.

To derive the approximate general solution we used the scheme

shown in Fig. 2. The temperature at point

x,y of investigated angle T was determined

on the basis of the equivalent right angle,

at which the examined point has coordinates 900

Xy. Considering this, equation (1) can be

represented in the form Rpdd from

[best availabloe opy. A
xtg ,2 \ Yi

(..• 1ig. 2. Determining the
temperature field of di-t~r hedral angle 9 of any

er---.-)rerf ! " crf(' -,. (2) magoftad.

E'.:juatron (,.) allows us to approximately calculate the tempera-

ture Lield .. a body with any angle qp, while it gives a precise so-

lution in the two particular cases when angles q are 1800 and 900.

If p = 180'", then tan 90  ,erf(-) = 1 and

2)'-e f Y I -- )f(3
Equation (3) is the known precise solution of the problem

a semi-bounded body.
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if gooP0 then tan 1450 -1an~d equation (2) is simplified,.
asiuminj the form of equation '(1) which is the p&recise Solutionto
-the problem for a right angle.'

t-heii calculating bodies with small angles 4 and, in particular,-
when angle 0'. 0, i.e., the sides of the body are "paallel, an
indeterminacy arises in equation (2)., since tan 0 a 0, erf(0) -0,

,:nd $ * 1. To expose this indeterminacy in equation (2) we must ex-
elude the coordinate x:

_•: , ~~~O--.l-erf erff• 2"•-("

where Y is half the distance between sides (or half the plate thick-
ness).

To estimate the accuracy of approximate solution (e) we experi-
mentally studied the temperature field of bodies having various
thermophysical properties and angles 4 from 00 to 1800. The maximum

J deviatioit of the calculation data from experimental data occurred
on the bisector of angle • and in the range ( - 50 0 -180 0 , And did

not exceed ±5%. The deviations were estimated using the criterion
.(tnp- to)/(tA - t 0 ), where tnp - t 0 is the excess temperature,

S"calculated from formula (2), and tA - to is that found from experi-
me'nt (t is the approximate temperature, t is the real temperature).W n A

Figure 3 shows the values of these
4 I - I T1 criteria for angles 4 from 00 to 1800

"" I ,.. r- 1...i I(curve 1).

TL , iI iFrom Fig. 3 it follows that theo-
Is "o ;J1 zo D 42 ýO Do 0 d.o ratical solution (2) gives an accurate

Fig. 3. Dependence or t•ie crzrion result 'for angles qp - 1800 and-900, an(tnp - to&/ltA - to) on cle V. rhar0
acter•iing the maximum devis•ions of. overvalued result for angles 180? > 4 >
the calculated timperature field from
the exp•o•rental one. curve 1 Is con- > 900 (the maximum error is obtained atstructed from equation (2), curve 2 -from equation ( �. - 1400 and reaches 5%), and an under-

valued result for 900 > qp• 00 (maximum error is obtained when 4 a 00
and reaches -7%). •

124



M _C:g W2 )7

These deviations occur since, according to the scheme (Fig. 2)ý

used for deriving equation (2), we get an undervalued heat flow along

the bisector of, the angle when 1800 >. 9 > 900 and an overvalued flow

when 00 < < < 909_

To increase the accuracy in calculating the temperature field

" of bodies with small angles p,, it is expedient to seek the theoreti-

------- cal solution onwhi the the scheme shown
SY-Yin Fig. 4, which generally excludes heat trans-ii

port along the bisector of the angle. In such

a case, each cross section x of angle 9 at

ep.,,, i- depth Y can, from a thermal standpoint, be ex-
"mate coution to the problem
for the temperature field of
bod'.ez wtn small angles (V amined as half the thickness of a platie, for

which the solution (see Lykov's book mentioned

above) has the ofollowing form:

;i-=l- A.,cos.•(1 2 \ tg-' (5)

(whereI:' is the initial thermal amplitude

ln the particular case when ? = 0, in equation (5) we must ex-
clude coordinate x: Reproduced from

besi available copy.
Z. Y --..co "-l., -)• (6)

Equation (6) is the precise solutici of the problem for an un-

boun&?d plate. Curve 2 in Fig. 3 corresponds to the relative ex-

cess temperature -- " calculated from formula (5). Figure 3 shows

that for 9 = 00-40 0 we must use approximate solution (5), while for

9 = 400-1800 we use solution (2). Here the maximum temperature-cal-

culation error does not exceed 9% (on the bisector, and only for a

body with angle 9 = 400).

In Fig. 3 we also see that the calculation error using approxi-

mate solutions (2) and (5) does not exceed 2% for angles (p 00-200,
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9 "700-1100, and q) 3.600-1800.

te-t---- zs0 0, C4. -s ga ' t A002 4 el C'

t-€ - "-' 0 ,----.-- --- ---

Fitl.5 Cur•ves of the dslt~ri- ft74.6 Curves of' the 41stri-

b•on ofelat" zX• excess tax- bton of relative excess 8 2
peraturs, in dihedral angiles r.pza~tue In dihedral ang~les
40* 180* as • timor.•' 0. < 9 < 40O° as at Awgtion of
of •e o-hter•Laf A R /tn'9/2. AQ hi-cr/•erlon Foj/tan'9/2,

excess temperature in dih,!•dral angles for various values of the

critrio FO /tan 2 4/2, constructed from solutions (2) and (5), e

Sre-

spective ly.

S~The specific heat flow arriving at the body at time T per unit
area of heating surface, located at distance x from the vertex of the

A angle (Fig. 7), is deteined from the

"---" Fourier law of heat conduction:

I . I :"

where O" •'•-')] is the temperature gradient

Son surface ox of the dihedral angle at time

T, determined with consideration of formula

(2) or (5) as a function of the value of?IS. 7, Diagram of the heat flow

on the surf~ace of' a dihedr~al angle qi.
angle.

It should be noted that formulas (2) and (5) give, for all pran-

tical purposes, an accurate temperature at the body surface. There-

fore, the value of the heati flow found with consideration of formulas
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(2) or (5)W wi-le ,jfor all ,practical purposes, accurate.

Let us find .the heat flow when 9 = l1O0°-40°.

UR

Having determined the gradient [at(x,y,r)/ayJy= with con-
:,i sideration of formul.a (2) for the body surface (y = 0), we find

! 4r

where b = 
pr e 

is the coefficient of accumulation of heat by the

body material.

The quantity of heat passing in time interval T across a unit

of surface located at distance x from the vertex of the angle

q., dT. (7')

Substituting q x from formula (7), after integration we get

x 1g,;2 x~ xig-2 1x2tg2VI_92
2 ElijW- a1 1L~ \ -'ar . J "E -J'• " . ar (8 )

or

26-[ef -l. ig -i2 E ts 2)

The quantity of heat entering the body on segment X of unit

width in finite time T

= e.st availabe copy.

while after substitution of Qx from formula (8) and integrating

en +Q I( .( -- I, eig \ 2 00)

, + I- E ( e 4" • 1 ""__ l'ii " P • "

at 2Y 4ax *J"" 4 1 "a

or

Q -- T :.(t -f .- ' i ert .+
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where FoX , aT/X 2 is the Fourier criterion.

Let us find the heat flow for angle fp -. 40O-0°.

Having determined the gradient [3t(x,y,T)/ay)y.0 with con-

sideration of formula (5) for the body surface (y a 0) we get

q•=)(l+-fO)x IS 5,2

After substituting the value of q from formula (12) into form-

ula (7') and integrating, we get

O , = b ~ -# o) l "7 ( I - W ) ' "g z •

here the average relative excess temperature on the surface of a

dihedral angle in section x

from= • •:• (114)

The quantity of heat entering the body in segment X of unit width
in finite time T from

.Q.V. (Qdx. l .,,,,lbt€

Considering formulas (13) and (14), after integration we getM X 2 r '2 "
_.. 1 -• -- tg2?.,2 (/ l -.• Ig•-"' / 12" 2 2'

From equation (8) it follows that when x ÷ w, heat flow Q

reaches its maximum value

Q" -to) (16) •

Equation (16) is the known particular solution to the problem of

the heat-retaining capability of a semi-bounded body (see Lykov).
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SThe ratio Qx/9* the actual amount,of heat to, the maximum

•: •amount -- is the parametric criterion Kx'Whlch- characterizes the in-

---- fluence of the angle (bilateral heat feed) on the heat-retaining'

!•_, Capabilities of the body-+in section x.

• From equations (9) and (16) it follows that-for angles 400 <"'

-.

u< T < 180i the craerioncaabliie ot er bod g: in setonx

2 1 V:,.i 21 Wt- faZ, 4 Pi. , (17)

while for angles 0 < of < i40o, from equations (13) and (16) we get
'f'7

Repodce fomK, j(i -T)19j'2 (18)
be t. - c 2 1 Pf- ,

Figure 8 shows the derendence of criterion KX on criterion

+1/FoX = x 2/ar, calculated from formula (18), for various values of

angle cp/2 within limits from 50 to 200, while Figs. 9 and 10 show

analogous dependences, calculated from formula (17) for angles 4/2 =

200-450 and V/2 = 450-750, respectively.

From the graphs we see that the influence of the angle on the

heat-retaining properties of a body increases with decreasing cri-

terion l/Fox, i.e., as the examined section x approaches the vertex

of the angle, while with decreasing angle 'p this influence increases.

From equations (17) and (18) we see that if criterion l/Fox

vanishes, for any value of angle (P/2 (except T/2 = 900, when

tan T/2 = c) the criterion Kx = 0. Consequently, heat flow Qx=
Q*Kx, passing through the vertex of any angle, is equal to zero.

If criterion 1/Fox + w, in accordance with equations (17) and

(18) Kx -1 1. In this case ths heat flow reaches the value Q* which

characterizes the heat-retaining capability of a semi-bounded body

(16).

Theoretical analysis shows that section x 0 , behind which the

angle is heated practically as a semi-bounded body, can be found

from the condition 1
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Fig. S. Dependence of parsmetria criterion
o n the criterion l/?o. for angles 9/2

fri 0to 20'.
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Pig. 10. Sume as Fig. 8, 9p/2 - 450-.75*0
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=2.

Actusily, when the argument ZJi. 2  ,f~nc tionl ,erf z 1.s practi-

cally equal to one, While- func'tioh .Ei(.-__=0

In this case, from equation' -(l?7- ft 'folows 'that K = 1.

An analogous conclusion is also obtained~from equation (18).
For example, as Lykov showed, when z > 2 formula (14) for the average

temperature can be given in the'form

Considering this, from formula' (18) it follows that Kx 1.

Using criterion Kx, formulas (9) and ('2) can be written in a

general form, convenient for practical calculations:

*In many practical cases it is important to know the total quan-

tity of heat QXabsorbed by the surface of a body in a cert, n sec-

tion X (see Fig. 7). This heat can be expressed in percentý. K X of

the heat flow Qj passing in this same section' X to a semi-bounded

body, in accordance with equation (16):

Q- o I (21)

The value Kx = Q / is a parametric criterion which character-
izes the influence of the angle (bilateral heat feed) on the heat-

retaining properties of a body in section X.

From equations (11) and (21) it follows that for angles 400O <

___ 1 X e (22)
KxCi ~ '21 X 22
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best available COPY.

whileý from equations (1)aO(lfor angles, -0a ip I' 4'-we 'St r

Kx 4 (23ýý

*Figure 11 shows the dependence of criterion Kx on eriterioni
i/FoX, calculated from -formu'la (23), for various valuies of the angl.e

qp/2 f'rom 50 to 200.'

Figures 12 and 13 giv-e analogous dependences, calculated tr6m-

formula (22) for angles 4p/2 =20o1-45* and q)/2 = 450-.750, respectively.

Criterion Kx allows us to write formulas, (11) and (15) in a form

which is general and convenient for practical use:

QX_(I -t.)X 1-7K,,. (241)

The theoretical dependences obtained were verified experimentally

on a devict which Is shown schematically in Fig. 14. Into a bath of

of 662 ± 20, i.e., superheated by 3 ± 20, we

immersed for 60 seconds prisms made of re-

A fractory magnesite brick whose coefficient

of thermal conductivity a =8.10-3 m
2 hr

The working element of the prisms was a di-
- ~ hedral angle which varied within' limits

LzŽ:.:.:::Z.:Y- q)/2 = 150-900 at 150 intervals. The other
faces of the prisms were insulated by sheet

*.* ,*.asbestos (a = 0.712-10". m2 /hr) 20 mm thick.

At the control point of each prism we
installed a Chromel-Alumel thermocouple

whose readings were recorded by an EPP-09
Fig. 14. Diagram of the device !or
studying tih. temperature field ol electronic' potentiometer. The thermocouple
dihedra. angles. leads (0.5 mm in diameter) were insulated

near the hot junction by a two-channel porcelain tube 3 mm in diameter
and a cambric covering.
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-Based on the location or the control pointj .r ive to the

verex f te agle, all the prism wiere divid'4d inop~ ups:
the first group hAO angle8 q;/2 150 ~ , 30,ai 4 , t s ecoiý4 group
had angles fp/2 P 45, 600, Th,~ 49 0 0. Teti control1 point.2 had the
following coordinates: group 1 - x-m 22 mm, ~-55 mm (Y 0.25);
group 2 - x - 6.8 mm, y - 6.8 mm (y,-t -l-).

Cdr &P ? 13 0.26.o

R0 70 -29 30 40 S0'%. 0 0, '.2

~Figures 15 and 16 show the ex-
perimental points and calculation

curves of' the change in relative ex-

cess temperature at the prism con-
* trol point as a function of criterion

Fo x and time T. From t-he graphs we

see that the calculation results are

in good agreement with experimental

a . (,Y.ZXY CNow let us examine the tempera-

A ture ýield and heat flow on the sur-
face of a trihedral angle.

Pig 17 Digrm o th 4a~rbutonFigure 17 shows the trihedral
or beat flow on the surface or a tri- angle QABC whose temperature field

can be approximately described by
the following equation, derived from the scheme given el~ove (Fig. 2):
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T b ea anglabe nt a

f__lown er expressio

t (264). )- .

where x1anKya), is the relative temperature of the body at point

a with coordinates x,y,z at time r; (pt and (p --e the plane and di-
hedral angles of the trihedral angle; p ra z/x.

The heat flow entering the trihedral angle in time T across a
unit area with coordinates xy can be found, approximately, from the
following expression:

where K tand K c uare criteria which characterize the influence of

angles tP and l P on the heav-reraining properties of a trihedral

angle at point xy. They are functions of, besides angles 1 and 4p",

criteria 1/Fo and l/Foy, and are determined from the graphs givenx
above in Figs. 8-10.

Thus, the formulas obtained from theoretical studies make it
possible to calculate the nonstationary temperature field and the
heat-retaining properties of bodies having the form of di- andi tri-
hedral angles.

The results of an experimental verification of these formulas
confirmed the fact that they are correct, which allows us to recom-

mend them for actual calculations.
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HEAT TRANSFER IN A FLUID'FLOW WlITH'CONSIDERATION OF TflE INFLUENCE
O SSIATION

M. N. Galkin and S. V. Lomazov

When turbine blades are cooled by convection heat transfer,
the coolin,g fluid flows at high velocities through very narrow
channels. In this case the distribution of temperature along the
flow is influenced by the dissipative heat released as a result of
viscous friction.

With laminar flow of a Newtonian fluid, the dissipation of
mechanical energy per unit time Ell is defined by the formula

,7, -'•• r -•• v 1

where n is the coefficient of dynamic viscosity and Dvi/Bxk are

derivatives of the velocity components with respect to the coordi-

nates.

In the ealcina to the symbolic notation of tensor

alnebral there is summation over the repeatine Indices in the pro-

duct from i to 3.

The dilssipaed mechanical ener[y is converted into heat, and

therefore
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dJE =dQ.. (2N
dr d

where dQ /dT is the heat released per unit time in the examined

volume.

Let us examine flow of a fluid along rectangular and round

channels. We direct coordinate z along the channel, while coordi-

nates x and y are in its cross-sectional plane. With steady motion

in a channel of constant cross section, the velocity will be a

function only of coordinates x and.y. In particular, in a rectangular

channel, with small height/width ratio

2hib < 1, (3)

where h is one-half the height and b is the width of the channel

section. we can consider that the velocity changes only with the

height of the section, disregarding the derivative of velocity with

respect to coordinate x. In this case [E] the velocity will be a

parabolic function of coordinate y:

'V -- -/1 , -- YI), (/4)
2q dz

where dp/dz is the change in pressure per unit flow length.

As fluid moves along a cylindrical tube of radius R, in the

case of Poiseuille flow we have the familiar analogous formula

_ LP_(z--r2). (5)

Lea us average the velocity across the channel. For a rectan-

gular se ;ion

"-= Id h2dp (6)
24• 311 dz 'o

-h

for a round section Reproduced from
best available copy.

- .•;•• •: •(7)
8q da

0 0

Considering (6) and (7), formulas (14) and (5) assume the form

7 (8)
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.- Let. _W ndete~rmine the quantity'qf heat released during dis~sipam~
tion of-mechanimca1 energy per unit length of the che~ranel. For this'

~le~t us integrate equation (1) acroab tfie section, with oonsideration,
..of (8)for a,,rectanguia seto a n (9 ofr a round one. Let us

designal~e by dq /dfT the quantity of heat released per unit time per
AL

unit channel ength. Thqn, for the: r'ectangular section

5d5 1 UdV)7xd -

,and,, finally,-1

dr k (10)

*For the round channel

and~, finally, _ o(1
dr.

Formulas (10) and (11) show that teheat-,relegse power. per

Junit channel len~th is proportional to the square of the average

vel o'city; for a round section it does ri'ot depend on the channel

radius.

As a fluid mqves .along narrow channels, under conditions of
insignificant relative i~ntensity of heat transfer between the fluid

and the channel walls, the temperature differential along the flow

section can be disregarded'as a small value compared with the tern-

perature-head on the surface (BJ << 1). In this ease the ther'mal

state of the flow can be characterized by L.he temperature which de-

pends only on one 6oordinate, z.

Let us assume that heat transfer between the fluid and the
channel walls is characterized by heat-transfer coefficient a. Then

the change in heat content of a flow element~ dz is expressed by the

algebraic sum of tS.he heat of dissi~ation and tkic exchange heat be-
tween the channel and the ifluid. The corresponding heat-balance
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" • ~equation •
Licgd.dt d=',qdz+uF(1, -- t)dzdT, (12)

where p, c are the density and specific heat cf the fluid; S and F

are the area of the section and the perimeter of the channel; tc is,

the characteristic temperature of the medium.

After transformation we get

di f'_ L) =-0. (13)

The differential equation compiled characterizes the change,
with time, of the temperature of an isolated flow element. With
stationary flow we can turn to an examination of the temperature

field of the entire flow by exchange of variables from the relation-
ship:

dT =-=_. (144)

Substituting (14) into (13) and separating the variables, let

us integrate the obtained expression:

C Yc(-- 1 ) + 
( 15)

Q cS LQcS TV

or, in dimensionless coordinates,

(16)
7 . - .- dt IcS

where Z is the channel length 'u* 10/7 is the characteristic time

for the total volume of fluid in the channel.

Precise irtegration of equation (15) is possible if we know the

dependences of fluid density, specific heat, and 71.scosity on the

temperature.

To explain the influence of the heat of dissipation on the

nature of the tempe:sature field of the flow, in first approxim&tion

we can assume
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These ph,/sical values can be replaced- by, their average, values,
-if the total change in temperature as the fluid moves along t h
charnel isinsignificant and is not abcompanied by phase transitions.

In this case, integration of equation (15) gives

:-~. :o( 1 (18)
,Fn

or, after involution,

oF (I,- ") 4'!

Let us expand the right side in a series, restricted to the

linear approximation:

q •te t
p (I a _-t) + .ud It

After trans formations we get b va%

~ UF(IC-17) +•SiL (20)

Equation (20) solves the prcllem in the approximation used.

For a rectangular channel, considering (10),

t~to ' '4-'•13 •(21)

For a round channel, using (11), we get

From equations (21) and (22) we can determine the conditions

under which dissipation becomes substantial. Obviounly, in th13

case the terms in brackets should be of the same order. For a roct-

angular section this conditiorn (with b >> h) will be

from which
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oil (23)

* Analogously, for a round section

Besides conditions (23) and (24), which determine the order cf
the flow velocities v for which the dissipative processes become
substantial under the given conditions, we must take into account
the limit of applicability of formulas (21) and (22), associated
with retention of flow laminarity, i.e.,

Re<Rc (25)
Condition (25) determines the upper boundary of velocity V, up

to which the obtained dependences remain valid.

If the flow velocities exceed the critical values, corresponding
to condition (25), dependences (21) and (22) become invalid, since
the heat of dissipation dq /dt will no longer be defined by formulas

A(10) and (11), which are quadratic functions of the average velocity.
In a turbulent regime we determine the heat of dissipation from the
conditions of conservation of energy, considering that the work of
external forces is completely converted into heat:

dq = dpS, (25')

where dp and dq are the drop in pressure and, correspondingly, tY.
average release of dissipative heat in channel section dz.

From known hydraulics formulas, the drop in pressure is deter-

mined from the relationship

-4R 2, (26)

where R = S/F is the hydraulic radius; X = f(Re) is the friction
resistance coefficient.

Substituting (26) into (25t) and dividing both sidas of the
equation by dT, we get

1 4i
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'-Y4

dv

The expression obtained for the dissipative function is oub- :'

stituted into equation (20):

*(28)

Equation (28) defines the temperature field of the flow under

conditions of turbulent flow. Here, consideration of the dissipative

heat is necessary with flow velocities defined by the relationship

VC ,(29)
U

or

V (30)

The conclusions arrived at are valid if the physical parameters

(p, c, n) are constant, which occurs under flow conditions close to

adiabatic (a = 0) and with low temperature heads on the contact sur-

face between the fluid and the channel walls (tc - to % 0). Let us
C

determine, under these conditions, the influence of fluid viscosity

on the nature of heat transfer with laminar flow. Examining a round

channel section, let us transform somewhat equation (22), expressing

velocity v in terms of viscosity n [see formula (7)] and the pressure

gradient dp/dz:

t L - (31)

From equation (31) it follows that a change in flow temperature

under adiabatic conditions (with a - 0) does not depend on the vis-

cosity of the flowing fluid:

z dp "p~C tz CC 1 ) (32)

Equation (32) could have been obtained directly from the law
of conservation of energy for a moving fluid with constant viscosity
in the absence of heat transfer with the ambient medium.
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If there is heat transfer between the fluid and the channel
walls, as follows from equation (31) the viscosity increases its
role in the total energy balance, and an increase in n with constant
moving flow forces (dp/dz a Ap/1 - const) leads to a relative re-
duction in the role of the dissipative processes.

We should once more stress that these conclusions pertain to
small a and small initial differences in temperE.tures tc - to. Under
conditions of intense heat transfer, equation (20) is invalid, while
with large initial differences in temperatures between the fluid and
the channel walls equation (19) is also invalid, since the temperature
changes of density, specific heat, and viscosity if the fluid begin
to play an essential role. For drop fluids, of the indicated physical
parameters it is the viscodky which change3 particularly greatly.
Consideration of the temperature dependence of viscosity leads to
considerable complications in integrating equation (15), while the
average velocity can no longer be calculated by formulas (6) and (7),
which result from solution of the hydrodynamics equations for fluids
with constant viscosity. Since the flow temperature is a function of
coordinate z, the viscosity must be treated as a function of this
same argument. The pressure gradient along the flow will also be
variable. Therefore, equations (6) and (7) must be examined as dif-
ferential equations, while the average velocity is determined by
integrating them along the channel. For a rectangular channel, from
equation (6) we get

dp -- (31/tý) "d ,
from which

1= h'1 • (33)

For a round section

, .• ' ""(34)

8 6(idz

For' a rectangular section the rate of release of the heat of dis-
sipation, defined by equations (10) and (11) with consideration of
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(33) and (34), wi'll be- •"dll~~;~' -" ° ,,

For a.r6nd' section b- Ap.

dr 8 1 (5
\fdz-

Equation (13), which describes the temperature field of a fluid
flow, with consideration of (i4), (35), and (36) assumes the form

dz = ed di (37)

? 611,1

For a rectangular section the coefficient

k, 31/h, (38)

for a round section

k-=8!R2. (39)

If the temperature dependence of viscosity n(t) is known, the

integral t dz can be calculated. For this we must know the tempera-

ture field of the flow z(t). Then, replacing the variables under
the definite integral, we get

0

where t1 is the temperature of the flow at the channel outlet.

Substitution of (40) into (37) results in a nonlinear. integro-
differential equation for determining the dependence z(t). To cb-

tain an approximate solution to equation (37) let us assume that the
density and specific heat of the fluid are constant and equal to
their average values in the examined temperature range. For drop

fluids p and c change considerably less than viscosity n with a

FTD-HT-23-1344-72 14•4
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change in temperature, and therefore such an assumption is justified.

Further, using the theoilem of the mean, let us represent integral

(40) in the form

t wl'-- l'l.(41)

where n* is an intermediate value for viscosity in the interval

Cno), n]; no and n, are the viscosities of the fluid at the channel
inlet and outlet, respectively.

Let us rewrite equation (37) considering (41):

- Cc di (42)

Dimensionless viscosity n/n* is a temperature function, equal
to one within the temperature range [t 0 , tz]. In linear approxima-

ti on

"1 - ((43)

coefficient x is selected such that at point t =, t* linear function

(43) has a general derivative with function n/n* (see the figure):

4(44)

Substituting expression (43) into (42) we get

Cedt (45)
F , i O_ ,+ ., P

t . , e "L' t.

Integrating the obtained equation, we
arrive at the following expression for the flow temperature field:

-I C.:(I :!
-us.., -, '* I ÷

L u, ' I, L Mi -Z _L_ L (146)

When z = 4 expression (46) is the equation for determining the
temperature of the fluid at the channel outlet (tI). However, so-

lution of this equation is possible if we know the values of n* and

FTD-HT-23-1344-72 1145 Odue from
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x. These parameters can be determined by the method of suocessive

approximations. In first approximation we can set nt- no ndu1-

- -1. After this, from equation (46) we determine t z and dz/dtl

then, using equations (40) and (41), knowing the temperature depen-

dence of viscosity n(t), we find the second approximation for n

S 1 , di. (47)

Solving the equation n - n(t) for t (or graphically), let us

determine the temperature t• corresponding to.viscosity n1. Sub-

stituting this temperature into equation (43), we find the second

approximation for coefficient U:
S,: (48)

' I."- - . . . (•8

The values of n1 and X2 are substituted into equation (46) and

when z - I we find the second approximation for the flow temperature

at the channel outlet. t 2 . To determine the third approximation,

the entire calculation process is repeated.

The method described allows us to construct the temperature field

of a flow of fluid as it moves in narrow channels, with consideration

of the temperature dependence of viscosity and the dissipation energy.
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