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ANNOTATION

This book deals with methods for evaluating the surface
guidance and homing of interceptors and rockets, calculation of
interception 1ines and approach trajectories of an interceptor
and a target, and determination of the zones of-possible attacks
and launches, the combat efficiency, and the combat readiness of
a single interceptor as well .as a group of planes. The author
uses modern mathematical methods farfsolving:pnqblems of .the

combat use of fighter-inceptors.

The book is intended Tor specialists 4n Air Force units,

AA aviation, for students at aviatiton schools, and also for
workers in the aviation industry.
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INTRODUCTION

The combat use of fighter-interceptors involves various branches
of sclence and engineering. For successful use of armament, pilots
study the design of vehicles and armament, flight dynamics, the
theory of combat efficiency, air tactics, and other disciplines.

As a survey of the open foreign literature (some of which is given
at the end of the book) shows, general principles of operation of
ailreraft and rockets have been described in greatest detall up to
the present time. Much less study has been devoted to quantitative
methods of evaluating the combat use of aviation; these are given
individually in various sources.

The dynamics of fighter maneuvering in aerial combat have been
examined thoroughly in the familiar book by V. A. Bulinskiy [1].

However, in this hook he does not examine the next stage in the inter-

ception of an aerial target — guiding the rccket to the target — or
questions of the efrectiveness of interception. General assumptions
and methods for calculating the combat effectiveness of weapons are
described in [3, 4, 8], while questions of the combat effectiveness
of airborne vehicles are described in [3, 14, 15]. 1In the literature
[9-21] there are described principles of control, rocket flight kine-
matics and dynamics, and methods of guiding vehicles to aerial tar-
gets. Many questions of the combat use of fighter-interceptors are
presented in the form of articles 1n the open Soviet [22-24] and
particularly the foreign [25-28] press, although most of this mater-
ial is of a descriptive nature and quantitative relationshins are
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reduced to sizple calculation formulas. Thus, although the combat
use of fighter-interceptors has beein the object of study in many
sources, nonetheless at the present time there are no books from
whicéh one could get a sufficlently complete picture of the use of
analytical methods when studylng the combat use of fighter-inter-
ceptors.

This book will attempt to & Xeast‘partially £111 this gap.

In this book we have generalized, to some extent, the mathe-
matical methods and procedures so th .t they can be used tc solve
problems of the combat use and organization of combat operations, for
quantitative deteriination of combab capabilities and the combat
effectiveness of 7ivhter~ivitevceptors under vacious conditions.,

The concept ci combe: ¢.pan’ Lities licludes all properties
which define the aLllity of tiz Intercepfor vo fulfill various com-
bat missions. Depending on ohe conditions of combat use, the
fighter-interceptor can have various missions: )

— to intercept a target on a given line or in a given belt;

— to intercept a target from a state of "airfield readiness”

or flying alert patrols in a zone remote from the airfield at a
given distance;

— to destroy the maximum possible number of targets;
— to destroy the leading target with maximum probabliity;

— to enter into combat with the target within the minimum
possible length or time; etc.
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If there are definite combat operations, the following types of
questions always arise: in what area of spac2, how rapidly in
time, and with what quality can these missions be fulfilled?

The spatial capabilities in carrying out combat missions are
gquantitatively characterized by the areas of combat employment
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{(interception line, altlitudes and spgeds of the targets to be inter-
cepted, maneuvering altitudes and speeds of the lnterceptor in aerial
combat), by areas of possible attacks, and by areas of possible
rocket flrings. The time capabilities in carrying out combat opera-
tione are quantitatively characterized by the combat-readiness fac-
tors: the time for going from one state of readiness to another,

the tlme for takeoff on command from the command point, and the time
for reaching the given line. The quality and degree or level with
whlch the inter~ ' cor carries out the functions or missions for which
it is intended are characterized by 1ts combat effectiveness. TFor a
quantitative evaluation of the effectiveness in carryling out combat
operations we use various criteria, the numerical combat-effective-
ness factors. fii

. N
S
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The selection and basis for a specifiic combat-effectlivess factor
is a logic problem, and is determined entlrely by the combat mission
at hand or by the aim of the conducted investigation.

A clear classification of combat-effectivness factors was first
given by Academician A. N. Kolmogorov, who examined two limiting
cases of combat operations [37]. The first case was characterized
by the fact that it was necessary to solve a quite definite problen
or attain a guite definite result (e.g., hit a target, destroy all
targets In a raid). In this case the result can either be achieved
or not achleved. Success is evaluated by a "yes-no" scheme. There=-
fore, the vifectiveness of a combat operation against the enemy in
this case is evaluated by the probability of carrying out the combat
operation: the probability of hitting the target, the probability
of destroying all targets 1n the raid. The second case is character-
ized by the fact that quantitatively a specific problem is not posed,
but all operations are directed toward Inflicting maximum possible
damage on the enemy according to the principle "the more the better"
(e.g., destroy the maximum possible number of targets, maximum possil-
bie damage prevention). In this case the combat effectiveness against
the enemy 1is evaluated by the mathematical expectation of damage in-
flicted on the enemy: the mathematical expectation of the number of

FTD-MT=24-1158-72 v
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targets destroyed, the mathematical expectation of preventing damage.

For a fighter-interceptor we can glve the followlng typlcal
examples of combat conditions, the combat mission arising from them,
and their corresponding combat-effectliveness factors:

Combat conditiuns Combat prel .em Effectiveness factor
Single aerial tavrge’ Shoot down target . Probability of downing
penetrates AA system target
Group of aerisl tar. Shoot down maximum Mathematical expectation
gets penetrates AA number of targets of the number of downed
system targets
Shoot dewn all tar- Probability of downing
gets all targets
Shoot down at least a Probability of downing
given number of tar- at least a given nume
gets ber of targets
A rald in the form of Mathematical expecia- Mathematical expectation
a random numbey of tion of the number of of the number of downed
aerial targe*s pene- downied targets op the targets on the given
trates the AA line given line {avea) 1line {area)
{area) defended by an . Probability that ailn
n-channel system channels are occupled
and the next target penew.
trates the line (area)
unintercepted

The effectiveness of interceptor group operations is influenced
not only by the effectlveness and tactical-technical characteristics
of single interceptors but also by the quality of the organization
and control of combat operaticns and aiso tactical ways and means
for solving the posed problems. It is also possitle to indirectly
increase the effectiveness of ccmbat cperations by decreasing the
expenditures of forces and eguipment for carrying out combat c¢pera-
tions. Thus it becomes necessary te investigate ways of optimizing
combat operations, seeking methods for assuring a given level of
effectiveness at minimum cost,.

When the commander selects a solution, it iz usually a matter
of rationel utiilzatlon of the equirment avallable to him,

Identical combat probhlems can be solved, in terms of effectiveness,
the sphere of comba%_utilization, and time, in identical ways by using

FTD-MT-24-1158-72 vt
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various interceptors, differing in their tactical-technical charac-
teristics and their economic factors. Therefore it becomes possible
to introduce, for estimating the combat operations of interceptors,
the criterion of specific effectiveness, which is equal to the ratio
of the total output (the combat effectiveness when carrying out the
stated m’ssion) to the total expenditures to accomplish it. Such a
complex effectiveness criterion characterizes the maximum possible
damage inflicted on an enemy with consideration of restrictive con-
ditions, e.g., minimum forces and equipment used to complete the
mission. Therefore, an evaluation of combat effectiveness should
always be assoclated with an estimate of the cost or expenditure of
forces and equipment to complete a combat mission.

The basis of the combat use of fighter-interceptors, as we knrow,
is to intercept an aerial target. By interception of an aerial target
we mean the method of operation of a fighter-interceptor to destroy
the enemy's means of an air strike, consisting of establishing contact
with the target and subsequently destroying it. The interception
process can arbitrarily be divided into two basic steps:

1) surface guidance, 1.e., guiding an interceptor to an aerial
target using ground equipment situated so as to assure detection and
attack of the target;

2) target attack (aerial combat), consisting of independent
approach of the interceptor to the target after detection or lock-on
by airbcrne radar, assuming a position favorable for rocket firing,
firing the rockets, assuring control of the rockets enroute to the
target, triggering of the proximity fuse, and withdrawal of the
interceptor from the attack.

The interceptor's success in destroying the enemy's air attack
equipment is characterized by the combat effectiveness of inter-
ception, which is determined primarily by the tactical-technical
characteristics of the aircraft, the airborne radar, the air-air
rockets, and the accuracy of the surface guldance system.

FTD-MT-24-1158-72 vii




A basic quantitative eriterion of the combat effectiveness of
interéeption of a single interceptor in operation against a single
aerial target is the probability of interception, which 1s determined
by the probablility of successful surface guidance, the probability

that a rocket will destroy a target, and the reliability of the inter-
ceptor.

With group combat operations of fighter-interceptors against
group targets, the criteria for combat effectiveness are the mathe-
matical expectation of the number of downed targets, the probabi’ _ty
of downing all targets in a raid, and the probability of downing at
least a given number of targets. These factors depend on the balance
of forces (the number of interceptors and targets), the effectiveness
of a single operation, the quality of combat control, the organization
and guaranteelng of combat operations, the serviceability of the
aircraft fleet, combat readiness, ete.

On the basis of what has bzen said, problems in the study of
the combat use of fighter-interceptors can be arbltrarily divided
into the following areas: surface guidance, interception lines,
interceptor homing, target attack, air-air rocket homing, the combat
effectiveness of a single interceptor, the combat effectiveness of
interceptor group combat operations, combat readiness, and inter-
ceptor reliability. The book 1s divided intn chapters based on this
breakdown. To make the book more useful for direct practical appli-
catlon, it 1s presented in the form of the posing of individual
problems and discussion of thelr solutions.

The solutions are presented, as a rule, rirst in generai form
and then numerical data are substituted. This makes it possible to
use the derived Tormulas directly in tactical and operational cal-
culations. The solution of complex problems involving unwleldy cal-

ulations is given in the form of graphs and nomograms, many of which
.re valid for the entire range of examined characteristics. Such
solutions include:

— dependences between interceptor and target characteristics,

FTD-MT-24-1158-72 viii
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which determine the areas of possible target attacks;

— dependences among interceptor, target, and rocket character-
istics, serving to construct the zones of pcssible firings;

— dependences which determine the range (areas) of combat use
of the interceptor;

— a nomogram connecting the basic¢ tactical-technical character-~
istles of the interceptor; ‘

—~ dependences of the probablility of surface guidance on random

[ A

and permissible guldance errors, and dependences of guidance errors
on the tactical-technical characteristics of the aircraft, the
armament system, and the accuracy of the radar field of surface
guldance;

oo

v
L
S st

— dependences of the mathematical expectation of the number of
downed targets on the quantity of targets, the designated duty of
the Interceptors, the probabillity of downing a single target, the
probability of an interceptor's being destroyed, the quality of
target distribution;

— dependences of the throughput of a multichannel surface
guldance system on the number of guldance channels, the guidance
time, the irtensity of the target raid, the width of the target
intercept area;

~— dependences of the coefficzient of combat readiness of a2 group
of interceptors on the reliability, the recoverability of aviation
equlipment, and the number of service personnel.
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A brief description of the problems and results of their
solutions will be found at the beginning of each chapter.

I would like to thank at this time V. G. Nevzorova, Candidate
of Technlcal Sciences, who critiqued the manuscript for thils book.

I realize that my attempt to present basic analytical methods TR
for studying the combat use of fighter-interceptors in a book of éﬁ;gé%%
limited size has .ts drawbacks. I would therefore appreclate all 53?;;§53
comments. Ein
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CHAPTER 1

SURFACE GUIDANCE. INTERCEPTION LINE. TARGET APPROACH

The bases for solving problems on the surface guldance of a
fighter-interceptor to an aerial target are the analytical relation-
ships between the parameters of motion of the interceptor and the
target; these determine the guldance method selected. Therefore,
at the outset let us examine the familiar methods of surface guldance
and give the basic kinematic dependences between the parameters of
motion of the interceptor and the target during the guldance process
(Probiem 1.1).
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We then have a group of problems (Problems 1.2-1.8) involving
the calculation of the removal of the interception lines. Solution
of these problems allows us to determine how the distance of the
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interception lines changes:

— with a change in speeds of the interceptor and the target,
the recognition range, and the passive time;

— depending on the direction of attack of the target;

- depending on the surface guidance method used;

— with a change in target flight relative to the airfield from g_w_!;;
which the interceptor takes off; :

%

“

e

ok,
‘.

-t

Wt
5

¥
¥

.

.
.

]

— depending on the fuel supply and consumption, the aerodynamic
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flight characteristics, and the flight regimes.

Another group of problems (Problems 1.9-1.23) 1s devoted to the
‘process of interceptor homing, i.e., interceptor approach to an
serial target from the moment of detection (or lock-on) by the air-
borne radar to the moment of rocket firing. Solution of these
problems allows us Lo determine:

- the interceptor maneuvering required to arrive at the rocket-
firing point;

— the characteristics of the interceptor and airbcrne radar

required to assure realization of the required target-approach tra-

Jectories;
— satisfaction of the necessary rocket-iring conaitiuvic;

— the zones of possible attacks as a function of the conditions
of combat use;

— the interceptor target-approach trajectories;

— the trajectories of the interceptor as it withdraws from the
attack.

The areas of possible attacks form the basis for analyzing the
possibility of establishing interceptcr zontact with the target.
/hen estimating the comhat capabilities of interceptors and studying
rational methods for combat use it l1s important to be able to deter-
mine the proposed position of the inte..eptcr relative to the target
wnen transferring from surface-guidance to homing cor?itions. To
assure successful target interceptlon, the interceptor at the moment

Tw

4 [P S

{2
b

of transfer from surface guldance to homing shnuld b
limits of the zone of possible attacks, whose dimensicns ars zeter-
minad by the tacticzl-technical characteriztics of the aircraft, the
airborne radar, the weapons sy:ztem, and the target flight character-

ORISRl i L i i

istics. The zcne of possible attacks 1s a region in space from which
homing of the interceptor with subsequent successful rocket firing is

1)

n35ibl Analysis of the uunes of possible attacks and the zones of
i

o

v1le flrings allcws us to present cptimum methods for attacking
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The possibllity of interceptor flight alcng a homing trajectory

is determined by the relationship between the angular velocity re- P
quired for this flight wn.norp and that available wn‘pacn. By
g, pacn we mean the avallable angular velo:ity of a 360° steady

turn of the interceptor. If wn.pacn > mn.norp’ flight along an
attack curve is possible. Otherwlse, the interceptor goes into a 2
flight trajectory wlith constant angular‘velocity mn.pacn’ which
causes guidance errors. Therefore, to give the initial attack con-
ditions which assure error-free interceptor homing during the entire
attack it becomes necessary to determine those zones around the
target in which an interceptor will not be able to perform its re-
quired flight. These zones are called zones with wn.pacn < wn.nOTp’
i.e., zones for which the available angular veloclity of the intzrcep-
tor is not greater than that required for the given homing method.
The dimensions of these zones are determined by the combat use con-
ditions (speeds and relative bearings of the interceptor and the
target) and depend on the interceptor homing method. 1In the problems
of this chapter we examine two interceptor homing methods: "pur-
suit" and "pursuit with a lead." )

Ay
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2,
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PROBLEM 1.l1. To derive the basic kinematic equations which
characterize the familiar guldance methods: "constant-bearing
approach," "interception," "direct approach," "pursuit," "line-of-
sight," and "maneuvering."

Solution. To obtailn the desired equations let us examine the
kinematies of motlon o. the target and the lnterceptor.

1. The method of "constant-bearing approach"™ (Fig. 1.1). With
guidance by this method the interceptor flies in a stralght line to
the target-intercept point, and the angular velocity of the sight
line is zero:

ds
@ =" (1)

As can be seen from Fig. 1.1, the method 1s described by the
equation

s

FTD-MT-24-1158-72
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Impact point sin ¢y = - $i0 9y, (2)

where V_ and V_ are the
24, ds and g and
: re
51 éﬁf:ih. speeds and @  an Qu a
5 Dyt % the relative bearings of
§ the interceptor and the .

target. .

X X
e
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The interceptor flight time to the point of impact with the
target

ey
v
[
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S

D (3)

b= )
27 Vacosgnt Vycosgy

ar

pr ot e oy by Ny

[ 3%
2. The "intercept" method (Pig. 1.2). This method differs from L e
the "constant-bearing aprroach" method in that the finite range to o ey

the target Al 1s given as a functlon of the characteristics of the

§ interceptor's armament system. Analytically, the method is de-

4 scribed by the following equations:

4 . Vit sin o,

i sin g = T )

1 _ D—-é.lcns&:,,

B YR €05 9y + Vg COs 9y (5)

5 3. The method of "direct approach" (Fig. 1.3). 1In thils method
the interceptcr flies directly to the iead point of impact of the
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rocket with the target. The analytical dependences of the method

g

are obvious from Flg. 1.3:

. " Vptgsin
sxn?,=7“:,{";+—ﬁ-. (6)
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The interceptor flight time S

Nl LA

D—ALcosy
. b= Vgeos ¢ + V,,_cgsqu’ (7
where
AL=(V, o+ Vo) ts (8)
D
tP = Vacosog + Vg gosncpu + Vo, pe0S g * (9)

where tp is the flight time of the rocket to its impact with the
target; AL is the distance "interceptor-target" at the moment the
rocket lmpacts with the targel; Vp is the absolute velocity of the
rocket

Vp=vy.cp+vn; ) (10)

-

Vp cp is the natural velocity of the rocket, averaged over the time
of controlled flight.
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4., The "pursuit" method (Fig. 1l.4). This method is character-
ized by the fact that the interceptor's velocity vector at each
moment of time is directed toward the target. As can be seen from
Fig. 1 4, the interceptor heading

. R

i
i

Q=arctg-$—;“§§i‘—. (11,

v,
- Thus, to determine the inter~
ceptor heading we need not know

the motion parameters of the target;
we need only know its coordlnates.
This is an advantage of the method.
A disadvantage of the method is

that target attack is possible only
Fig. 1.4. from the aft hemisphere which, with
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a conslderable loss in the inter-
ception line.
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5. The "line-of-gight" meth-
od (Fig. 1.5). This method is
characterized by the fact that
in the guidance process the inter-
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ceptor, target, and ground guid-
ance station are on one line.
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The interceptor azimuth is equal
Fig. 1.5. to that of the target:

pu=pu‘=ﬁo (12)

To satisfy this condition it 1s necessary that the angular
velocities of the interceptor and target be equal to each other:

g = Wy, (13)
Since
Vns;n?u. [
oy = Lot (14)
Vasing
Wy =S, (15)

equating the right sides of Eqs. (14) and (15) we obtain the foi-
lowing expression for Jetermining the rziatvive bearing of the inter-
ceptor P,

Vy (L=Dy N
¢, == arcsin [-'V?,'(”T) qu?n]. (6]
. Having determined P let us find the interceptor heading:
= Ve [L—=DY....
- Q==$+<P..==B+arcsm[-;,§( D )smvu]- (17)

b o B,

All of the above methods of surface guldance bring the inter-

ceptor into an arbitrary position relative to the target.
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The 1imited capabilities of the interceptor's armament system

Ly
8"

»

make it necessary to lead the interceptor, at the end of surface
guldance, into a quite specific zone from which the airborne radar
detects and locks on to the target and the rocket is fired. The
"maneuvering" method of surface guidance satisfies this requirement.

6. The "maneuvering" method (Fig. 1.6). The target and the
interceptor are in one horizontal plane, their velocities are con-

stant and equal to Vu and Vn, respectively. Points O and A in Fig.
1.6 are the positions of the

p 09y target and interceptor at the
moment of time at which the -
6 interceptor begins to be homzd Eﬁg
. "/Rnsm(h?u’ onto the target. Point C is i.:‘;
the proposed intercept point. R
ﬂ: Al KAy c03(0+ @) :
Rn““ef?q){g %Jonnan(a’?“) Let us introduce the fol-
)" Ancosgn lowing designations: D, 1s 5
D yy R:“"?ﬂ the "interceptor-target" range %
0y ™ ' at the start of surface guld- L%
[ Do A x ance; 0 is the glven intercept
Fig. 1.6. - angle; Rn is the turn radius

of the interceptor for exiting
to the line of motion of the target at the given angle 6; A2C =1
is the segment of given length after the turn, intended for correc-
ting surface-guidance errors; AAl = L is that segment of the inter-
ceptor trajectory prioe to turning; ?n is the relative bearing of
the interceptor at the start of surface guldance; ¢u 1s the relative
bearing of the target at the start of surface guidance; Du is the
path covered by the target from the start of surface guldance to the
intercept point; t is the balanced guidance time.
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Since we assume that intercept point C exists, the figure in
Flg. 1.6 is a closed polygon, which can be represented in the form
of a vector polygon. Projecting the vector polygon OAAlolAch onto
axis x and then o-to line OC we obtain two basic equations for the

o S e ¥ 5 "o ie Tix ‘~‘ X
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‘"maneuvering" guidance method:

- Vit €08 ¢, == L €08 ¢ + 5Ry [8in (9, + 8) — 8in 9] + Lc08 (g + 0) ~ D5 (18)
Vot = D, co8 9, — L co8 (9, + 9a) + £ €080 + SRy [8in: (9¢ -+ 92) —8in 0]. (19)

The path traversed by the interceptor in the balanced guldance -
time can be expressed as follows:

"

V=L +s(Q—O) R, +1, (29)

where

5= sign (Q—0) == sign (180° — ¢y — 9 —0) (21)

characterizes the sign of the expression Q - 6 (signature): when
Q > 0, in place of s in Formulas (18) and (19) we place the "+"
sign; when Q < 8, we place the "-" sign.

Let us substitute into (18) and (19) the expression, obtained
from (20), for the phase of the interceptor trajectory before the

turn: :
L=Vst—sQ—-0R,—/ (22) 2
3 the velocity ratio
N v
n r=v, (23)
:3 and the path of the target up to the intercer¢ point. We then get
D, = Ralinin,t,)-siah 1805~y ¢, ~cortyy +y,Hlcomcontry tog)l£Dicosm, (21)
- . T 708 (0t %) : :
Do SRulsin (54 +8)—singa—(180°~g,—p,—b)cosgyl ~I[cosipa + 8) +cOs@p}D, (25) -
‘ —{cos ¢q + peos gy '

Equations (24#) and (25) connect eight variables
Dm Do; Pry Rm to 0' o P
six of which can be taken as independent variables; then System (24)

and (25) can be solved unambiguously for the two remaining unknowns.
For example, if we know the muvual position and velocltles of the
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interceptor and target (DO, vu, p) and we are glven the radius of
turn of the interceptor Rn, the requlired relatlive bearing of the
interceptor 9,» and the interception line Du’ System (24) and (25)
allows us to determine the intercept angle 8 and the length of the
last phase of the interceptor trajectory 7 for which target inter-
ception is possible.,
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If we equate the right sides of (2%) and (25), the relative
bearing of the interceptor and, consequently, the interceptor heading

BRI Ot L

can be determined from the known or given values Du, DO’ wu, Rn, 1,
9, and p.

e R
‘- “

PROBLEM 1l.2. To determine the withdrawal of the l1line of inter-
ception of an aerial target moving on a straight line in the direc-
tion of the alrfield at which the interceptors are based with
velcelity Vu = 900 km/h, if the warning range DO = 1000 km, the inter-
ceptor velocity Vn = 1000 km/h, and it takes off in the so-called
passive time tnacc = 2 min after the first target fix. The target
ettacks strictly from the forward hemisphere. How does withdrawal
of the target-intercept lire change if, under these same conditions,

e - A

the velocitles of the interceptor and the target lncrease by a fac-
tor of 2 and 1if tnacc doubles?

Solution. The condition of time balance to the moment the
interceptor meets the target gives us the following relationship:

D, =V, (tasce + 1) + Vi, (1)

where t 1s the intercepteor flight time until iL neets the target.

Withdrawal of the intercept line from the lnterceptor takeoff
field is equal to

Dp.u‘_‘vut- (2)

Let us find t from (1) and insert it into (2). Then

A5y
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v
>
o D, . = 2= Yalne 510 km. (3)
2 pa 14Ys
e + Va
: ' -—With a doubling of the velocities, Dp ne 495 km. If tace

doubles, Dp.n = 463 xm.

Thus, with constant warning range and constant passive time,
withdrawal of the target intercept line- is determined basically not
by the absolute values of the interceptor and target velocities but
by their ratio.

PROBLEM 1.3, For the conditions of Problem 1.2, dztermine how
close the target intercept line approaches the takeoff field if the
interceptor attacks the target from the aft hemisphere, making a
180° turn with radius Rn = 20 km. Comparg two cases:

1) the interceptor, after pulling out of the turn, is precisely
at the firing range Dn = 20 km;

2) after the turn the range to the target is 30 knm.

Solution. Withdrawal of the intercept 1line is defined by the
formula

C i e
PRALI

Dy o == Vot += D, (1)

wnere t is the intercepteor flight time to the start of the turn;
this 1s found from the relatlonsnip obtzined from the ti.e balance:

T

Do+ D=V (trace + £+ Lyo) + Vi, (2)

e ey
2

where t180° is the time for the interceptor to turn 180°,

Dy 4 Dy=Vy (’mcc + f1800
Dp a= 7 -)_..Du;
1+ 'VA'
n

g
jng
[
[¢]
-

P I S ]

N R 20 ,
¢ tie =2 =57 =376 min; (&)
D, =472 km.
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For the second case, the line moves toward the takeoff fileld b
the distance covered by the target as the interceptor pursues it
up to the rocket-firing range. Since the approach speed is 1.67
km/min, the pursuit time 1s 6 min and the target covers a distance
of 90 km. Consequently, Dp.n = 362 km.

PROBLEM 1.4. A target flying in a/straight line can be inter-
cepted by an interceptor by two methods} constant-bearing approach
and pursuit. We must determlne the difference in withdrawal of the
intercept lines if the mutual positions of the interceptor and the
target at the moment of the start of approach are characterized by
the following parameters: "interceptor-target" range Dy = 100 km,
interceptor speed Vn = 1000 lm/h, target speed Vu = 900 km/h, targe
relative bearing P = 90°. The relative bearing of the interceptor
during constant-bearing approach 9, = 20°, while with pursuit 9, =

Solution. The difference in withdrawal of the intercept lines
can be estimated from the difference in dlstances traversed by the
target when 1t is intercepted by the two methods giéen above.,

For the constant-bearing-approach method (Fig. 1.1), according
to the law of sines we have

sin 0 D,
Ty = Dy (1)

where Dq is the distance covered by the target from the start cof
approach to the moment of encounter with the interceptor; 6 is the
aspect angle.

Thus, when the target is intercepted by the constant-bearing
method we have

Dysing 100 sin 20°
D=2t = M2 354 scn. (@)

When the pursuit method is used the target covers the distance

Du = Vntnon ( 3)
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where tnor is the interceptor flight time along the pursult curve,
Do 'g-n"—coﬁ'“)
Vn(’T""' )
Va
Consequently,

4
n

—

Vy 5% P uhm~@mw_ .
DR=DO L.)g-_l - 3‘2“—‘ '-'-'465 K.
(+
Solution of the analyzed problem shows graphically how sharply the

withdrawal of the intercept line decreases with the "pursuit" guid-
ance method.

PROBLEM 1.5. An interceptor ls directed toward a target flylng
at a constant heading over an airfield with x = 250 km. The inter-
cept line 1s set at a distance Dp‘ = 100 km from the airfleld line.
The interceptor is gulded by the direct-intercept method (with con-
stand heading). The armament system allows an attack from the for-
ward hemisphere at a target relative bearing vu < 40°. Deteraine
whether the target can be intercepted on the given line if the inter-
ceptor takes off at the first fix of the target by the surface radar
whose detection range DOGH = 500 km. The target and interceptor
speeds are constant; Vu = 1300 km/h, Vn = 1500 km/h. The inter-
ceptor guldance time (the time from takeoff to the intercept line)
tH = 15 min. Determine the maximum possible flight x for which
target interception is possible (Fig. 1.7).

] Solution. According to

the stipulatiens «f the probiem
the aspect angle ¢ ‘"ould satis-
fy the relationship

p <8 l 0<arccos(f’}"). (1)
M k) o'

0 n - where Dp_n 1s the distance of

the intercept line from the
airfield line.

Fig. 1.7.
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(3)

When the conditions of the problem are adhered to, the aspect angle
8, with x = 250 km, is, according to Formula (3), 77.2°.

Thus, the condlitions for target intercept are not met with re-~
spect to angle 6. Here the distance of the intercept line from the
airfield line is 107 km. In order that angle ® be no more than 40°

it is necessary to incrzase D (e.g., increase the warning range

o0H
by using radar data from neighboring radars). From the inequality

c0s40°> VD?”’"};SW -

we find that with
Dy =550 km, 0<40°

According to (3), target interception with the maximum possible
pass can be achieved with 6 = 90°, Then

VDfmu — X Vil
Valn

=0
and we find x from the relationship
‘." Dgﬁﬂ b x’ == vutﬂ'

If D

06w = 550 km, then x = 445 km with V t = 325 lm.

PROBLEM 1.6. The Ilnterceptor is in the forward hemisphere of
the target. We nmust determine the maximum distance of the intercept
line from the standpoint of fuel, if the fuel supply GT = 10 tons,
while the intercept flight profile consists of segments (Fig. 1.8)
characterized by correspcnding lengths in the horizontal plane and
by per-kilometer Ck or total fuel consumptions (Table 1.1).

P e s

- e L Y
o, ‘..‘ 'rl‘.-.’l‘

TN

4




Table 1.1

Route leg Leg length Fuel consumption

.,

Climb and accelerate to Vi, wexc ly,p =40 km Gy, p == 1000 kg
Horizontal £light at V. waxe by Crrg=17 kg a

Correct errors of surface Iy =60 1om 0y =500 xg
guidance, and attack

180° turn & ép = 100 kg

Return to airfield under [/ Cr.a=2 km
eruise conditions » xs kg/!

Descent and airfield maneuver lew 3= 50 yon Gex = 200 kg

ot

A,
- g

During the calculation 1t is

e

necessary to consider the emer-
gency fuel supply GT = 800 kg.

«a
ty

Solution. The fuel dis-

t tance of the intercept line is
]
UM T l t
=" — . determined by selection of the

ben

Fig. 1.8. horizontal flight leg I_ n and
the return leg ZB. Let us
designate the difference of these legs by

l=l—
According to Fig. 1.8 we have
lath=b,+h+ho
while with consideration of (1)
h=bi+i o+l y~ty=l+1,,
from which
=l o+ G~
The total fuel balance
Gy =Gy.p+ G;.o+ Gy + Gp+ Gy + Geu + Gy .

The fuel expended on legs Zr.n and ZB is, respectively,

1y




(6)

Gr. a= Cx. rn lr. w Gl = Cl- » lr

The total fuel expended on these two legs, considering (3), is

Or.a+6¢=c.r.nlr.n“*'c.n(l'l"l.u): (7)

from which the length of the horizontal path at Vn.Mch is

_Gr.n“’oa_cx.nl 8
lr'u—- Creont+Cun ' (8)
Having determined the value of 1 let us find the maximum

fuel distance of the intercept line:

r.n?

[muc= n.p+lt.u+ll- (9)

Substituting the numerical values for our problem into (n),
(5), (8), and (9), we get

[=50 km}G, ,+ O, = 7400 K3 [, , =609 ki 3 [, =709 km.

Thus, tne maximum fuel distance of the intercept line is 708 km.

Similarly, let us determine ZMaKC when attacking the target from
the aft hemisphere. In this case, as a rule, after completing the
turn there is still one short leg of horizontal flight at Vn maKo

The fuel distance of the intercept line during crulsing flight
is defined by the formula

36KVy o Gy
[==F"lng", (10)

whers GH and Gu are the weights of the aircraft at the beginning and
end of the crulse leg, K is the l1lift-to-drag [L/D] ratio, C 1is the
specific fuel consumption [s.f.c].

PROBLEM 1.7. Warning of a raid by aerial targets allows reali-
zation of the maximum possible fuel distance of the intercept lines.
Target interception takes place in the horlizontal plane and wlth a
constant speed of the fighter-interceptor. Let us show how th

15
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distance of the intercept lines changes for the F-4C "Phantom"
fighter as a function of horizontal-flight altitude and speed, if
we know the aerodynamic characteristices (Fig. 1.9), the fuel supply
for horizontal flight Grs the s.f.¢. as a function of the flight
conditions and the degree of throttling of the engine (Figs. 1.10

v

and 1.11), the average flight weight Gc 17,600 kg, and the wing gﬁ@ﬁé?;#
2 P . S A
area S = 49.2 m“. . -

7

. |

L Z;ZA . //Z Solution. The . g_

3 lg6 )4 distance of the inter- o aE
L 405 ’,g’, cept lines with a con- 5
E g4 . stant supply of fuel

5 : //;h""“ | ¥ intended for level flight

N o6 A{> B is unambiguously deter-

- 42 = mined by the per-kilo-

5 (/1 A 9 08 12 16 20 24 M meter fuel consumption,

E Fig. 1.9. which In turn depends

. on the flight mode and
< the degree of throttling of the engine. The optimum mcde, assuri:g
maximum flight range, occurs with minimum per-kilometer fuel con-

Qﬁ . sumption. Turbojet aircraft, as
}f_; #=0 a ruie, have two flight modes
) ,.a—"’ that are optimum from the stand-

1KY
%0,/’11// AJT""—‘ point of fuel consumption — sub--
"')<:;f sonic and supersonic. Tc¢ deter-

terburner power

mine which of these modes is

best we must consider the thrust-

\\

1

45

Ho afterburner power

ﬁL_
9%

ke | AL bty SN

Fig. 1.10. Fig. 1.11
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to-weight ratio, the fuel load ratio, and the L/D ratio in these
modes. For comparative estimates of the distance of the intercept
lines 1t is convenlent to introduce into the examlnation a value
which 1is the reciprocal of the per-kilometer fuel consumption C“ -
the distance in kilometers covered by the interceptor with fthe ex-
penditure of one kilogram of fuel:

4
;
e
3
5
3
;i
2
;
"
a

f'r.n = 1/C.. (1)

Let us express the per-kilometer fuel consumption CK in terms
of the hourly fuel consumption and the true air speed of the inter-
ceptor:

c,=%:. (2)
Since
Cy==PC,,, ‘ (3)

where P is thrust and Cyn is s.f.c. (kg of fuel/kg of thrust-+hour),
then

- vV, aM __ aMK
Lr'n=PCyg=QC,‘=GC,.‘ (“)

Here Cyg is the s.f.¢. by a throttled englne during level flight at
constant speed when the condition of equality of drag Q and thrust P
is satisfied:

Q=P=F; (5)

G is the weight of the aircraft; K is the L/D ratio; a is the spzaed
of sound.

To take lnto account the influence of the aerodynamic charac-
teristics and the velocity head, let us determine the value of Q.

Considering the pzarabolic dependence for the aircraft drag
polar (Fig. 1.9)

Ce=C,9+ Ac? (6)
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and the conditions of the equilibrium of forces for level flight

.

v

I

we get

Q= (C,0+ Ach)qS. (8)

Now let us calculate the dependence of the relative fuel con-
sumption (r.f.c.) on the degree of throttling of the engine (Fig.
1.11). Substituting (7) and (8) into (4) we get a formula for the
interpolated relative level-flight range:

-
]
IS

]
ety

-

v

‘u

_ M

I .- a - [.Km.] . (2)
o kg ]

‘ (‘-’x@ + AC%) 98Cya. usxe (—C-;;.y:ax:)

P The results of calculation using this formula are conveniently
- represented in the form of the graph H = f(M} for fixed values of

ir n* We then obtain a combinatlion of flight modes M, H for which
the interceptor flight range at constant speed and altitude has
identical value with the fuel supply given for level flight.

The calculation algorithm for these graphs is as follows:

— we are given the Mach number M and the altitude H of level
flight;

— from Fig. 1.9 we determine the aerodynamlc ccefficlents ¢
and A for the given M;

x0

— we calculate the value ci the veloclty head

2
g=5¢, {10)

kL U M e

where p is air density (found from ISA {International Stanaarc
Atmosphere] tables);

ok

il

— we calculate the welght coefficient

‘70=‘g§; (11)

— from Figs. 1.10 and 1.11 we determine the values of CyA and

18
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problem are shown in Fig. 1.12.

nacc

airfield.

19

The results of the calculation for the given conditions of the

PROBLEM 1.8. To determine the width of possible action against
aerial targets in the direction of the airfield, if the target
speed 1s in the range Vu = 900~-1800 km/h, the target-detection
range by ground radar D = 300 km, the speed of departure of the
interceptor from the airfield is within the 1limits Vn = 1450 + 150
km/h, the time from the moment of target detection to interceptor
takeoff ¢ = 2-4 min, and the minimum permissible line of target
action with respect to the object 1s at distance DMHH = 100 km from
the airfield. Let us assume that the ground radar 1s located at the

Solution. For a clear representation, let us represent the
solution graphically (Fig. 1.13). In the coordinate system "range
D (km) — time t (min)" let us draw, from point O, straight lines

Cyg/cyn.manc;

- from Formuia (9) we

find the relative level~- e S
flight range. IR

-

¥

e
oI RN 1

g1
‘}:Y’

A1

Since the graph H =
= (M) for E}.n = const
was obtained for a cer-
tain set of whole num-
bers of Ef.n (e.g.,
0.10, 0.15, 0.20, 0.2t,
0.30, 0.35, 0.40, 0.45,
0.50), this sequence of

calculations 1is repeaved
by the iteration method
until the given whols
number of L‘_.n is ob-~
tained [




'-‘,‘n‘n

T T

LML §

Pt

b EEr e Ty T R T ST WS R A VTR NI ) "l WY WS W T T A T L oy Ty e o,
VA T W TSI AT AR LIS A e INALIC S R PRI e L‘;\—:_}u.: -:.: -,::n—-fu-a-&i.'::‘&» %&g—;&s&a‘—l\ﬁ%y\—;‘-é PR

0 — corresponding to target speeds
Vu = 900 and 1800 km/h., The
slope of these lines is calcu-

< / lated numerlcally from the re-

100 lationship

a =arclg (-45?-) =arctg (V). (1)

Width of

Similarly, from points with

200 P P coordinates D = 300 km (airfield)
/ & and t = 2-4 min, at angle B
/ s \&, 2 nace
thace  / // & Hun we draw lines corresponding to
A 7 3 V_ = 1450 ¢ 150 km/h. Then at
A
300 HTeTiela a given distance from the air-
f Bl
! field D, . we draw a line for
Fig. 1.13.

the minimum permissible line of
target action agalnst an object.
Obviously, the shaded area in Fig. 1.13 characterizes the desired
width of the actlon zone as a function of Vu’ Vn’ D, DM”H, and

tnacc. In our example the width of this zone does not exceed 73 km,
while target interception with Vﬁ = 1800 km/h is possible only within
a band of ~14 km, if vV, = 1600 km/h and toace = 2 min.

Graphic solution of such problems 1s particularly simple and
clear when the target and interceptor velocitlies change wlth time,
and then the corresponding slopes calculated from Formula (1) are
constructed from segments of the flight profiles where Vu and Vn
are constant or can assume equal mean values,

PROBLEM 1.9. The interceptor 1is guided to the targe! ty the
nethod of constant-bearing approach. T 1interceptor speed is con-
stant, Vn = 1800 km/h, the maximum value of the angle of view of
the airborre radar @n = 120°, the maximum interceptor aspect angle
9 = U40° (0 is the angle between vectors Vn and Vu at the moment of
riccket firing). The interceptor flies with these parameters up to
the moment of target lock-on by the homing head. The angle for auto-
matic tracking of the target by the head 1is also 9, = 120°, We are
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to determine the limiting velocity Vu of the target to be intercepted.
What should the target-detection range by the alrborne radar DDcH be
if the target lock-on distance by the homing head Dr = 20 km, if the
time required by the pllot to operate the alrborne radar from the
moment of target detection to its lock-on by the head t = 60 s¢?

4%
.

W
i

L

o]

Solution. On the basis of the law of sines (Fig. 1.1) we have

. Vh==”%a;ﬁﬁ§%§%;:1y- (1)

Substituting the given values ofqh, 6, and Vn’ we obtalned the de-
sired limiting speed of the intercepted target:

V= 18002212 _ 4560 xm/h.

Then from the condition of proportionality we have

P R, S R R A N T T TS R TR T R

£%§L==Jﬁgggl, (2)
N from which
e Dysy =D V"‘:+’ .
Segment
. Dyein (180°~9 —¢
Tt . (3)

Substituting Expression (3) into Formula (2) we find that the re-
quired target-detection range by the airborne radar

Vot sin §
Doon=D: + s —s—53- (4)

For the given numerlical values of our problem we get D°6H = 76 km.

Thus, this problem allows us to draw an important conclusion:
to intercept a target whose speed exceeds that of the interceptor,
with the method of constant-bearing approach the airborne radar
should have a long detection range and should allow measurement of
large azimuth angles, i.e., have hlgh values of the limiting angles
of automatic target tracking.
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PROBLEM 1.10. An interceptor at a speed Vn = 2000 km/h attacks,
from the aft hemisphere, an aerial target flylng at a speed Vu =

= 1600 km/h. At the moment of target acquisition the mutual position
of the interceptor and target is described by targ.t relative bearing
9, = 140° and interceptor relative bearing 9, = 20°. The target
acquisition range D . = 4C km. From the moment of acquisition,

in time t = 1 min the pilot identifies the target, locks on to it,
and then fires the rocket. The method of interceptor guldance is
direct 1lnterception; the rocket i1s homed by the pursult method. For
certain target destruction the firing range should be no more than

D, = 35 km, while the angular firing error should not exceed 15°.

We must verify 1f these rocket firing conditions are satisfled.

Solution. The kinematic relationships given in Fig. 1.14 allow
us to obtain calculation formulas for the current range D and the
current relatlive bearing of the interceptor ?,:

D=VATP, (1)
==t (180°—-9..—v-~amts-}%}). (2)
where
A= D, sin (180° — @) — Vot €08 (o + Fu0—~90°); (3)
B = D54 €03 (180° — 9q0) + Vit — V£ €08 (180° — 9,0 — 9yo). (4)

Here ? > 0 when the lead point is tc the left of vector Vn; 9, < 0
when 1t 1s to the right.

Substituting the numerical values of the problem for the firiag
moment we get:

A=14.3 kmy B = 26.1 km, D = 29.8 km.

Thus the distance "interceptor-target" 60 seconds after de~
tection is 29.8 km, which is less than the maximum distance for per-
mitted firing Dn = 35 km. Consequently, firing conditions are satis-
fied as far as range 1is concerned. Now let us find the interceptor

22
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relative bearing ?, which, at the moment of firing, should

=~
%f ] Yn not exceed the permissible angular error in rocket
%’ | ome firing. For our data we have ¢ = -8°45',
g’ ‘ i.e., the firing conditions are satis-
= 'i = a2 fied as far as the angle is con-
| ¢ Vo ~_2 cerned.
qho A
:Ilojfs{tw!%;q, L > n %‘Lr— PROBLEM 1.11. The
- ' e Kﬁ_’ ' interceptor attacks a
'Vtwﬂwmg o) high-speed aerial target
ft nePye whose speed considerabiy
Pig. 1.14. exceeds that of the inter-

ceptor. The attack is
carried out such that at the moment of target acquisition the inter-
ceptor is in a turn, somewhat ahead of the target; as the target
overtakes the interceptor the interceptor pllot carries out all re-
quired recognition and lock-on operations. Here . -ghting angle
should not exceed the limiting angle of automatlc target tracking

by the airborne radar. When, after overtaking the interceptor, the
target is ahead of the interceptor and the rocket-firing conditions
relative to range and azimuth are satisfied, the pllot fires the

- rocket.

We must verify whether firing condltlons are satisfied one
minute after target acquisition, if:

MG -
1'-'.‘. ‘l'

— acquisition range DOGH = 35 km;

L
]
v

— interceptor relative bearing ¢, = 45°;

iy

o [

— target relative bearing ?u0 = 125%:

— target speed Yu = 2000 km/h;

AV

L

— interceptor speed V_ = 1600 km/h;

i ﬂ'

-~ interceptor turn radius Rn = 30 km;

— maximum range of permissible fire Dn = 15 km;

— maximur angle of automatic target tracking 9, = 100°.

b TR R T S T

e e Tt T T
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We are to determine how many minutes after target acquisition
the range "interceptor-target" will be minimum and what the target

W T
"

oS

) sighting angle will be in this case.

% Solution. The problem can be solved graphically by constructing

g@ kinematic lines of flight for the target and the interceptor. How-

! ever, the solution accuracy in this case is low. To increase it we T
must derive formulas for the current values of the distance "inter- '

ceptor-target" and the target sighting angle. For this, the radius -
of turn of the interceptor R,
and the range "interceptor-
target" at the moment of de-
tection D06H are projected onto
the target flight line and onto
the perpendicular to this line.
The trigonometric ratios in
Fig. 1.15 allow us to obtain
the following calculation for-
mulas:

L
L

”
e

i
LR LW
LR Y

[t
[}
o,

L

2
L'y
e

Fig. 1.15. — the current range "inter-

ceptor~target"

D=VATB; (1)

— the current target sighting angle
'7n=90°"‘(eo-’?no)+°’nt+al’ctg—{%l-. (2)

Formula (2) is valid for the case when the sighting line is to the
right of perpendicular line A. When the sighting line i3 to the
left of A,

9“==90°—(E°—-9,°)+m.t——-arctg-i%. (3)

Here & =180° —gup
A = Dygy i 9y + Ra [0S (&~ Pao) — €08 (b — 90— 0f)]; C ()

B = Vot Dygg €08 $as — Ry [5in {§g - 9p0) — 8int (& — 900 — 0 ) (5)
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W, is the angular veloclty of the interceptor turn;
Vv,
Wua-R—:-
in radians per second.

In time t = 1 min the angle of turn for the interceptor, ex-
pressed 1n degrees, is

o

PRt

573Vt
wnt o= T ? 510.

N
by
i
s

Substituting the numerical values into (4) ard (5), we get A = 7,63
km, B = 1.67 knm.

The distan-e "interceptor-target" 60 seconds after target
acquisition is, according to (1), D = 7.8 km, i.e., the range con-
ditions for firing are satisfled.

The target sighting angle 60 seconds after detection is, ac-
cording to Formula (2), o, = 73°20t, i.e., ?q < Puane = 100°, agd
the azimuth firing conditions are also satisfied. To determine the g%a&ﬁﬁﬁﬁ
moment of time for which the distance "interceptor-target" will be E5§§§¥E§§
minimum we must differentiate functlon D with respect to t, set the
derlvative equal to zero, and solve this equation.

The minimum of function D = £(t) is at t = 90 s.

The desired sighting angle g@_ according to (3) is 68.5°, which
is less than the maximum angle for automatic target tracking by the
airborne radar.

PROBLEM 1.12. At the moment of detection of a high-speed
aerial target the position of the interceptor relative to the tar-
get 1s characterized by acquisition range D06H = 23 km, target rela-
tive bearing Pu0 = 83°, and interceptor relative bearing P00 = 76°.
From the moment of detection the target, in time tl = 30 s, carriles
out avolding action with radius Ru = 15 km toward the interceptor,
and then continues its flight at a constant heading. Here the
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interceptor continues to make its turn with radius Rn = 20 km., We
are to determine the distance "interceptor-target'" and the target
sighting angle 80 seconds after acquisition, if the interceptor
speed V_ = 669 km/h while the target speed Vu = 1650 km/h. We are
to see whether the rocket~-firing conditions are satisfled 1in this
case if the maximum range of permltted fire should not exceed
Dn.Mch = 10 km and the maxlmum permiss;ble target sighting angle
during firing ¢_ should be no more than 30°,

Solution. The cal~
culation formulas, by
analogy with Problem 1.11,
are obtained from the kine-
matic relationshlips shown
in Fig. 1.16. The dis-
tance "interceptor-tar-
get" at the moment of de-

tection Doﬁu and the radil
of turn of the interceptor
and the target Rn, Ru are pro-
Jected conto the vertical and hori-
zontal axes. The horizontal axis
corregponds to the direction of vector
V .at moment t = 0., The current range
"interceptor-target" according to Fig.
1.16 is determined from the formula

D=VA+5&, (1)

The current value of the target sightling angle
1s determined from the formule

4{

A
Fig. 1.16. fos= —b+ 0o+ 04 + arctg fgh, (2)

h_d
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B =D, cos (180° — &) + R, sln ¢, -+ Vi (§ — ;) cOS 9y — 5)
— R, [5in (& ~ Gao) ~ Sin (8 — Pgo — wf) ]

-

% Here

: b= 180° — 9,

! ¢u1 is the angle by which, during maneuvering time tl, the target
E veers from its previous heading;

; A== Dygy €08 (8 — 90°) + Ry [c08 (B — 9g0) — €08 (b — Poo — wgf)] — (4)
i : — Ry (1 coswyty) — Vi (¢ — ) sin 9y

)

2

2

2

The angular turning speed of the target

n___57.3vu °/s. (6)

I ]

w

e

The angular turning speed of the interceptor

I it
M el af

o= Fa 07, (n)
n

Let us substitute numerlical data for the problem. Then wu =
= 1.75 °/s while w, = 0.526 °/s.

With (=280 c v, =4208° of=140°, & =97°, ¢,,=52,5°,
A=--113 km,B=89km, D=_898 km, ¢, == 14°
Since D and mn are less than the given values, the firing con-

ditions are sacisfied.

PROBLEM 1.13. The interceptor is gulded to an unmaneuvering
target from the aft hemisphere at an aspect angle 0/4 by the method
of direct iuterception (direct approach). The mutual positions at
the start of surface guidance are described by the following param-

eters: distance "interceptor-target" D06H = 150 km, target rela-
tive bearing ¢u0 = 100°, interceptor relative bearing 0 = 50°.

The interceptor and target speeds are constant and equal to the
following: Vn = 2200 km/h, Vu = 2000 km/h. Determine how long it
will take for the interceptor to reach the firing distance bn =

20 km,




o T~ S, =S e Wt Y P e "~ e W 55

L
-, LN *-h'-

L]
v b

RN N

W
o e "

™

JUBLG kil s D

N ™
A LTRA RANGUGEARGER TN T Ol PR SR,
M ) ‘.\" .'- “-\' n: n}‘t{:; i“‘i{‘;\. ‘\‘-:’ E N ﬁ..V_"-‘ ) \-.“.

Solution,
approach, with direct interception the fighter is guided not to
the point of target encounter but to the rocket-firing point.

As we know, unlike the method of constant-bearing

Therefore we have

Vot + Dy Vit
silgus  SiN¥no’ (1)

from which

t= Dll sin $no
Vy 8in guo — Vi sin g9

=32min. (2)

Thus the interceptor arrives at the firlng distance in 3.2 minutes.

PROBLEM 1.14.
ceptor and target at the start of the approach are described by the
range DOGH = 500 km, interceptor relative bearing Poo = k5o, and tar-
get relative bearing wuo = 90°, To arrive at the attack curve the
interceptor must decrease its relative bearing to P, = 5° by turning
toward the target (Fig. 1.14). Determine the time and the distance
from the target at which the interceptor should begin its turn.

v, = 30 km/min, Vu = 25 km/min.

The mutual positions of a linearly moving inter-

Solution. The projection of the desired dlstance D onto the
axls coinciding with the initial distance DoGH is

D 05 (90~ $a) = Doty — (Vs €OS Pyg + V COS Pg0) £, (1)
The projection of D onto the perpendicular to D°6H is
Dsin (g — P0) =V, Sin 9o — Vi Singgo) 4. (2)
Dividing (2) by (1) we get
tg (9o ) = T L (s:":s:‘:-'r;:l‘i‘,}:&:%m) 7 (3)

Substituting into (3) the numerical values of our problem, we find
from the equation .

o__ro (25 sin $0° — 30 sin45% ¢ |
fg(45 5 )500--(25cos‘.!0°+ *1cos 45°) ¢

f=~18 min.
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Thus the turn must be started 1.8 min from the moment of the
start of the approach. Here, according to (2), the distance "inter-
ceptor-target" is

D==107 km.

PROBLEM 1.15. An interceptor, speed Vn = 2000 km/h, attacks a > ;

target, speed Vu = 1700 km/h, from the ?ft hemisphere at an aspect ‘th;agié

angle 0/4., After firing a heat-seeking rocket the interceptor with-

draws from the attack with maximum permissible g-load. The firing
distance Dn = 30 km. The rocket
flight time to impact with the target
tp = 60 s. Determine the bank angle
required to withdraw from the attack
if the turn is made 1ln one plane at
constant speed, while the minimum
permissible distance of the intercep-

Vo \ tor from the explosion point, for
Dn

n = 10 km.

safety purposes, D

MU

Solution. The kinematic dlagram
Fig. 1.17. of withdrawal from the attack (Fig.
1.17 allows us to express the minimum
possible radius of banked turn Rn, which assures safe departure of
the interceptor relative to the explosion polnt:

R,z, = (Rn + D.mu)2 - (D, + tpvn)’o ( 1l )

from which

_ (Dn + tpvu)’ - D:uu ( 2 )

R = 2D,n ‘

Substituting the numerical values we get Rn = 12.85 km. This radius
corresponds to bank angle y, which is defined by the familiar re-
lationship

_Va 246; (3)
tg’f—m‘” y ¥

1 = 67950,

29
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PROBLEM 1.16. Shtuow how the value of the reglon of possible
attacks of an aerial target depends on the avallable load factor ny
of the interceptor, and on the speeds of the interceptor and target.

Solution. The centripetal force which distorts the trajectory
of the interceptor in fthe horilzontal plane is directed along the
normal to this trajectory, and is numerically equal to

Fy=ma,=mVy,, (1)

where m 1s the mass, a the acceleration, and W the angular velocity
of the interceptor.

On the other hand,
Fo=VY Gi=mgVni—1, (2)

where Y is the 1ift, G 1s the weight of the interceptor, and g is
the acceleration of gravity.

From (1), considering (2), we get a formula for calculating the
available angular veloclty of an attacking interceptor:

F, gV nia1
@g, paca = mgfn = V: . (3)

The reauired angular velocity for the intercepter for flight along
the attack curve (pursuit curve) in the horizontal plane is

V. si
wn.narpa_—"‘—usl??n. (14)

Equating the required and avallable interceptor angular velocities,
we find an equation for the boundary of the region of posaibie
attacks in the horlzontal plane:

D = Vl‘l Vn sin Tu

S'V".f-pun"‘ ) (5)

According to (5), the boundary for the region of possible
attacks 1s a circle whlch is tangent to the target velocity vector,
with a change in target relative bearing ®q from 0 to 180°, while
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with a change from 180 to 360° we get a second circle, symmetric to
the first.

The equation for the boundary of the region of possible attacks
in the vertical plane 1s obtained analogously. When the attack curve
lies in the vertlcal plane, the available angular veloclty of the
interceptor ‘

& {1y~ c0s ¢y)
- .

(6)

@, paen ==
The angular velocity requlred for the Interceptor to fly along the
attack curve in the vertical plane is

Vysing,
D, norp = nu - (7)

Equating the available and required angular velocities of the
interceptor, we find a formula for determining the boundary of the
region of possible attacks of the interceptor in the vertical plane:

ViV sint gy
D=t v (8)

Obviously, Eq. (8) is also a pair of circles, but asymmetric rela-
tive to the target velocity vector. In Formula (8) we must use the
"+" when the interceptor attacks from above, snd "-" when it attacks

from below.

PROBLEM 1.17. Determine the conditilons which define the
position of the point of tangency of the attack curve with the
boundary of the region of possible attacks. Show on what the po-
sition of the attack curve depends relative to the boundary of the

region of possible attacks.

Solution. The attack curve is defined by the equation

d Vo sin
___;‘a “D?“ — w0y = 0y — 0y, (1)

e closing speed

LD e Vo=V, co8 2, (2)
31
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Dividing (1) by (2) we find the dependence between increments of D
and ¢u along the attack curve:

-~

A9y ___ ___ Wp—ug
dD = Vg4 Vacosgq’ (3)

On the other hand, we have

oD Vi €08 94
A = Wy, psca | (4 )

which is obtained by differentiating the equation

Den Yo% (5)

At the point of tangency of the attack curve with the boundary
of the region of possible attacks the following condition should be

MU,
PLA "

1
[
fulfilled: RN
RISk
. dyy o e
aD =AD" (6) -
i.e.,
— G = Oy @n i
Vo + Vacos g Vacosga" (n

Solving (7) we find that for the point of tangency the following
condition should be fulfilled:

CRR

Ty

o8¢, = uu” , (8)
g

3 L
;

where

Vy
P=-y -

With w, = 0, when the target flles in a stralight line, we have

cosg, , = —0,5p. (9) -

From (9) we can draw the following important practical con-
clusions: 1) the point of tangency of the attack curve with the
boundary of the reglon of possible attacks can be only in the aft
hemisphere of the target; 2) with p > 2 there is generally no tan-
gency of the attack curve, l.e., all attack curves begin within the
regions of possible attacks and terminate at 1ts boundaries.

PP —
e e
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The attack curve tangent to the boundary of the region of
possible attacks is called the limiting attack curve. The region
«f possible attacks is defined by the boundary of this region. The
boundaries of the regions of possible attacks when the interceptor
flies along the pursuit curve are defined unambiguously by the
available limiting load factors. From the load factors we calculate
the corresponding limiting angular velocitles.

H
"
4

Tt a R R ¥

-

- For the horizontal plane

PLEI.

2 -1
Dy, npex = LA L1 i Vﬂ,;n" . (10)

For the vertical plane:
— with attack from above

£Cymn=D (11)

Wy, pes = 78

— with attack from below

8("ynp’ex+n ) (12)

Dy, nper = Va

Further, from Formula (8), given the maneuvering of the target
(wu), we find the point of tangency of the pursuit curve with the
boundary of the region of possible attacks with respect to the
limiting load factors.

PROBLEM 1.18. Determine the regions of possible attacks and
the trajectory of interceptor homing by the "pursuit" method. We
assume that the target does not maneuver, the target and interceptor
velocities are constant, and motion is in the plane defined by the
velocity vectors V_ and Vu‘ Given: V_ = 930 km/h, Vu = 800 km/h,
R, = 10, 15, and 20 km.

Solution. According to Fig. 1.4, which shows the mutual posi-
tion of the interceptor and the target during the "pursuit" method,
for attack of the target from the aft hemisphere we have the fol-

lowing equations:




- gloslng speed

G =Vacosg,— Vi (1)

— angular velocity of the sighting line

d\ Vq sin
‘Zn U uD\?n‘ (2)

From Eq. (2) we obtain the equation for the region 5, pacn <
< Y% notp’
D= Vi sin ¢ (3)
Da. pacn !
where Wy, pacn with respect to interceptor load forces is defined
by the familiar relationship
J 8’ ”:.p:cn"'l (l{)
Oy, paen =" -

Now let us derive an equation for the interceptor homing trajectory.
We aivide (1) by (2); then

dD
“dr d
o= {aby —cten) G (5)
After integrating (5) we get
= C_ g™ 6
D= e ()
1%
P=7&".

where C 1s the integration constant, determined from the initial
homing conditions characterized by the parameters DO’ ¢u0, and cal-
culated from the formula

Ce Dy (1 + cos ¢y, )?
(Siﬂ ?“')P—l

(7)

Substituting (7) into (6), we obtain a calculation formula for the
trajectory of interceptor homing by the "pursuit" method:

Dy (1 + cos g, Y7 (sin pp)P—! ) ( 8)

D= U+ Cos P (Sns, )p=1
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To construct the regions of possible attacks it is important
to be able to determine the target relative bearings qu and P.B

for which the interceptor homing trajectory is tangent to and inter-

sects the region wn.pacn < wn.nofp at the glven distance, e.g., at

the maximum allowed rocket-firing distance. The cnordinates of these N AR

R T

points are calculated from the formulas

Vo ..
COS?“A==‘— 2‘2"
. (9)

Doy, paca
sin Pup = ———'Vu——".

For attack of the target from the forward hemisphere the kinematic
relationships change somewhat. In this case we have

4D — — Vycosgy— Vi (10)

d Vasing
"%zmn.p&cu="‘"’u'u_—q- (11)

Mo el )

Dividing (10) by (11l) we get

W
oM
W

daD 5
dt . p dgy N
T __(‘in?n+ctg9n - (12}

After integration we get the following homing equation for collision-

course attacks:

D, (sin g, )P+1 (1 + €03 9u)P
(1 +cos g )P (sln )P+ ?

D= (13)

Constructing Eqs. (3), (8), (9), and (13) in a polar system of coor-
dinates D, wu we get a graphic representation of the regions of
possible attacks. Figure 1.18 shows the solution for the numerical

conditions of the problem.

PROBLEM 1.19. Determine the reglions of possible attacks and
the trajectory of interceptor homing by the "pursuit with lead"
method, using the assumptions and conditions of Problem 1.18. The

lead angle € is 10 and 40°.

Solution. Interceptor homing by the "pursuit with lead" method
is illustrated by Pig. 1.19, according to which we have the following
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equations:

— for closing speed

dD
ar = Vacosg, — Vycosy (1)
— for angular veloclty of the 1line
of sighting (avallable interceptor angular
velocity)

Line of tar- ds Vu i
¥n _ - _ —Vgsing, + Vgsine
get flight at- = On. pacn = nD = . (2)

FPig. 1.19.
From (2) we get the equation for the

regions w < H
gi n n.pacn - wn.ﬂDTp

Da‘—VnS!ﬂ?n'*-Vnﬂﬂl. (3)

©q. pacn

Then we divide (1) by (2); we get

D
dt___f cosgy—pcoss ) deq (%)
b ( —~singg + psine dt *
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Let us integrate Eq. (4):

7
LA

D

M

-

¢ "

a0 Sn €08 ¢y dgn +p (‘ €05 ¢ dipy .

D 3 (—singn+ psins) § pinedsingg) ’
e

. e

. D sin ¢, — psine
> g = me—me (5

v

A

1 LI 1 — psine sin ¢q + cos 9q Y T—p  sinis | ™n
. Vo =pant s "

et )

With p2sin23 < 1, which is practically always true, we get the fol-
- lowing equation for calculating the trajectory of interceptor homing
by the "pursuit with lead" method:

D= Dy (1 — C sIn o ~— A €05 §30)? (8in g4 — €)8~1 6)
(1~ C sin gy Acos t;“)u (sin o= C)B—l '

where D0 and D are the distances of the beginning and end of homing;

Quo and ¢q are the target relative bearings at the beginning and end
of horing;

C=psing 1)

e 1s the constant lead angle;
A=y T=C% (8)

The target relative bearings corresponding to the points of

tangency and intersection of region wn.pacn < wn.norp with the homing

trajectory at the given distance are defined by the formulas

Vi e
CO8 g, =—fp; (10)
e Doy, Vg sin e
s_m?“=_‘”z.9_“3‘%n_:. (11) =

From Eqs. (3) and (6) we construct the regiows of possible attacks
in polar coordinates D, ¢u. Quite often enough we have regions of
- possible attacks in a relative coordinate system associated with the
target, as shown in Figs. 1.20 and 1.21. To construct the homing
trajectory in absolute coordinates we must express time t in terms
of D and ¢u. We can show that
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t=ﬁm¢3mmUMp+mﬂ%ﬁun-0w+wﬂm+dn (12)
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120° P L L L 70° 0* PROBLEM 1.20. An in-
~ terceptor, at speed Vn =

= 930 km/h, using the pur-

sg* 8Sult method attacks, in the
" horizontal plane, a target

which 1s on a constant

heading at speed Vu = 800

km/h. The mutual position

of the interceptor and tar-
get at the beglinning of in-

10*  te.zeptor homing is de-

P4 scribed by the initial range
D0 = 20 km and the lnitial
target relative bearing

1no* 100° a0’ 70° 6o® %40 80°. The mini-
mum radius of turn
of the interceptor

s¢¢ R, = 10 km. The re-

40*

Fig. 1.20.

gion of allowed
rocket firing from
40° the aft hemisphere
is limited by the
angles 6 < +50° and
ranges of 5-15 km
(we assume that the
firing disvance does

160°

170% 1ge not depend on the

vh attack aspect angle).

W' 2 ¢ 35 6 3 2 ¢ 7 #pm The target's defen~
Fig. 1.21. sive weapons do not
allow an approach
nearer than 5 km. Determine 1f, under these conditions, a success-
ful attack on the target is possible. At what range and at what
target relative bearing is rocket firing possible? How do the
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attack possibilities change 1f the interceptor's radius of turn is
at least 20 km? '

Solution. Let us use the graph calculated when solving Problem
1.18 (Fig. 1.18).

The homing trajectory corresponding to our initial data (D0 =
= 20 km, Py0 = 80°) (point A in the figure) does not intersect the
i boundary of the region of possible attacks for Rn = 10 km. Con-
sequently, from the avalilable interceptor load factor, attack on the
target by the pursuit method is possible under the given circum-
stances. Closing with the target along the homing trajectory, the
interceptor is at the maximum allowed firing distance D = 15 km
when the target relative bearing is 94° (point B). Since 8 > 50°,
firing is impossible. A4is we see from the f{igure, rocket firing
will become possible at distance D = 8.75 km, when 6 = 50° (point
C). At point G firing will again become impossible due to the
enemy's defensive fire. If the region of posslible attacks is
limited to a circle corresponding to the interceptor turn radius
R, = 20 km, as we see from Fig. 1.18 the homing trajectory beginning
at point A will intersect this circle. Consequently, lnterceptor
homing by the pursult method is impossible in this case.
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PROBLEM 1.21. At what target relatlive bearing P, must the in-
terceptor be gulded by the surface guidance system if, from the
moment of target acquisition by the airborne radar, the interceptor

realizes a pursult trajectory which will assure arrlval at the i
allowed firing range D_ = 10 km in the minimum time? The interceptor ﬁgﬂﬁﬁﬁﬁf
nee ‘\-!ﬁ“‘-,? A
. speed is 930 km/h, the target speed is 800 km/h. The target acqui- gﬁﬁﬁﬁﬂgg
e rrem—

sition range by the alrborne radar DoGH = 40 km. Rocket firing is
possible only with the angles 86 = *40° from the aft hemisphere of
the target. The avallable lnterceptor load factor is n, = 2. We
disregard surface-guidance heading errors, i.e., we consider that
the guidance system guides the interceptor such that at the moment
of target acquisition the veloclty vector of the Interceptor is di-
rected strictly toward the target.
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Solution. As was shcwn in Problem 1.17, the limiting pursuit
trajectory 1s tangent to a circle corresponding to the available
interceptor load factor. Conséquently, on this homing curve it is
also necessary to find the point where the interceptor must be
guided by the surface system to the range of target acquisitioﬂ by
the airborne radar. This point is point E in Fig. 1.18. Its
corresponding target relatlive bearing @u = 66°, Then, as the inter-
ceptor closes with the target it is at polnt F, at which the con-
ditions of allowed rocket firing are satisfied: D = 10 km, 6 = 30°.
The azimuth firing conditions had been satisfied prior to this
(6 < 40°), but the range firing conditions were not, since D > 10 km.

WP

PROBLEM 1.22. What should the lead angle ¢ be so as tc assure
interceptor homing by the "pursuit with lead" method from the point
of the end of surface guldance characterized by an initial range
D0 = 10 km and target relatlve bearing ¢u0 = 90°? The interceptor
should arrive at the allowed rocket firing range D = 5 km with tar-
get relative bearing wu = 70°, The minimum interceptor turn radius

Rn = 10 km. How do the conditions change for carrying out an attack
by the "pursuit with lead" method if the interceptor turn radius is
20 km?

Solution. Let us use the sclution of Problem 1.19. With lead
angle € = 10° (Fig. 1.20) attack is not assured: the homing trajec-
tory intersects the boundary of the reglion of possible attacks cor-
responding to the value Rn = 10 km. With e = 20° the interceptor
arrives, from the point of the start of heming, at the allowed firing
range D = 5 km with a arget relative bearing ?, = 64°, Attack under
these conditions is also possible with & minimum interceptosr tura

radius Rn = 20 km. In this case we need only increase lead angle ¢
to 40°.

PROBLEM 1.23. An interceptor attacks, at low altitude, a non-
maneuvering target using the pursuit method. Given: Vu = 600 km/h,
V_ = 800 km/h, available interceptor load force n = 1,41, in-

n n.pacn
terceptor load force limited by low-altitude maneuvering-safety
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conditions nn.orp = 1.15.
Show if attack on a target
is possible if at the start
of homing the distance
"interceptor-target® is 6
km, while the target rela-
tive bearing P - 115°,

goe  How should the interceptor
maneuver in order to reach
the rocket-firing range of

Cgaet tigt *'xqa‘ 90" 80° 70°  &s0°

140° p ‘ 40°

150*

1609

170" ] 10° 3.1 km?
1w ' ‘ : %
§ } 4 ')
. 4 4 N o Solution. Constructed
Fig. 1.22.

boundaries of the regions
of possible attacks (pursuit-method homing trajectory) show (Fig.
1.22) that with a g~force of 1.15 the interceptor intersects the
boundary of mn.orp‘i mn.norp’ i.e., errorless flight along the pur-
sult curve is impossible., To reach the rocket-firing range the
load factor must be lncreased: closling with the target along the
pursuit curve for arrival at Dn = 3,1 km 18 already possible with

n. = 1.25,
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CHAPTER 2

ATTACK ON A TARGET. ROCKET HOMfNG

In thls chapter we derlve relationships among the characteris-
tics of the interceptor, the rocket, and the target, calculation for-
mulas for required load factors ana the time of controlled rocket
flight; these form the basis for constructing the regions of possible
rocket firings, which allow us to graphlcally study the combat
capabllitles and optimum condltions for attack against an aerlal tar-
get.

In solving the problems we limit ourselves to the kinematics cf
rccket homing, i.e., the rocket, interceptor, and target are examined
as geometric points coincliding with the centeres of mass of these
bodies.

Naturally, an actual rocket trajectory differs from a kinamatic
one: we must consider the inertia of the rocket and of the automatic
rocket-fllght control system, perturbing influences on the motion of
the rocket and the Lavget, instrument errors in the elements of the
closed control system, etc. Sc.ution of problems of the combat use
of "alr~to~air™ rockets with cconsideration of the above factors
necessitates the use of mathematical models which can be realized on

digital computers. Thece research methods are outside the scope of
this book.
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A rocket closes with a target along tralectories which are de-
termined by the homing method used. Therefore, problems devoted to
attack on an aerial targcet beglin with the derivation, in general
form, of equations which describe rocket-to-target approach (Prob-
lems 2.1, 2.2)., Then we compare various methods of rocket homing,
and determine the dependences for the load factors required for
carrying out a giver nhoming method; the time of controlied rocket
flight vs target, interceptor, and rocket velocity; and the target
relative bearing at the moment of firing. We examlne the following
methods of rocket homing: "line-of-sight" (Problems 2.3-2.9),
"pursuit" (Problems 2.10 and 2.11), "constant-bearing approach"
(Problems 2.12-2,17), and "proportional approach" (Problems 2.18-
2.20). The dependences obtained allow us to analyze the intercep-
tor's capabilities to attack an aerial target under various combat-
use conditions, determine the optimum ranges and aspect angles for
firing, and construct the regions of possible firings for given
characteristics of the rocket, interceptor, target, and conditions
of combat use (Problems 2.6-2.10). By region of possible firings
we mean the geometric positioning of the interceptor relative to the
target (with respect to range and aspect angle), from which we can
assure successful guidance of the rocket to the target.

T

W,
L
o

Of definite practical interest in this chapter are other
problems, sclution c¢“ ‘hich allows us to determine:

~ the optimum asp.-.t¢ angles of attacks on a maneuvering target
and the required load factors for the rocket and interceptor (Prob-
lems 2,13, 2.16, and 2.20);

- the firing range, with consideration of errors in gulding
the rocket to the lead point at the moment of firing (Problem 2.14);

— restrictions under which an examined homing method cannot be
carried out (Problems 2.11, 2,12, 2.14, and 2.19);

— a miss by the rocket as a function of conditions of combat
use end firing (Problem 2.17).
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PROBLEM 2.1. To derive, in general form, kinematic equations
which characterize rocket-to-target approach in the horizontal plane.

Solution. The mutual pesitions of the target and rocket (Fig.
2.1) at any moment of time after firing are characterized by dis-
tance D, target relative bearing ¢u, and rocket relative bearing wp.
Wy Rocket-~to~target approach is com-
pletely described by the rate of
change of D and of the target Py and -

rocket wp relative bearings with
time. Obviously, a decrease in D by
AD in time Interval At is equal to
the sum of the projections of veloc-
Fig. 2.1. ities Vu and Vp onto the sighting
line, multiplied by At:

—3D == (V,cos 5+ V, cosg,) AL,

Passing to the limit, we get a differential equation for rocket-to-
target approach:

.%?.=—(Vpc059,+ V, cosy). (1)

N

o< .

Since between the angular and linear velocities there exlists the
familiar dependenc.

k]

b
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where R 1s the radius of rotatlon, the angular veloclity of the line
of slighting is defined by the equation

—V,ysing, + V, sing
L (2)

For the case when the target maneuvers with angular velocity
Wy the angular veloclty of the rocket relative to the target 1s
equal to the sum of wu and the rate of change of the target relative
bearing mu with time:

dy —Vysingg + Vpsingy

wp=wﬂ+ T == T (3)

Ly




Equations (1), (2), and (3) are general equations for any method of
rocket guldance.

Naturally, to integrate these equations of motion with specific
guidance metheds and for given initial conditions we must know the
laws of the change'in speeds Vu and Vp and relatlive bearings mu and
¢p with time.

PROBLEM 2.2. For a nonmaneuvering target and with constant
rocket and target speeds, let us ccmpare two methods, based on the
required rocket-homing time tp: "constant-bearing approach" and
"pursuit." Let us show how time tp depends on the velocity ratio
Vp/vu and the attack aspect angle.

Solution. Using Formula (1) of Problem 2.1, and considering
that with constant-bearing approach

z,==const and ¢, ==const,

by integrating we get

————

Jo
dD a—-—é (Vycos 3, + Vi cosz,) df, (1)

o

n

feom which the flight time for a rocket from the moment of firing to
the moment of impact with the target

_ D,
£ponap = Vpcosyp + Vpcos gy ? (2)

where Dn is the firing distance.

For the "pursuit" method, during the entire rocket homing time
the rocket relative bearing Qp = 0, since the rocket's velocity
vector 1s always directed toward the target. Thus, on the basis of
Formulas (1) and (3) of Problem 2.1, the equations of motion of a
rocket using the "pursuit" method, for the case of a nonmaneuvering
target, assume the following form:

.%‘2-_— — (Vo + V, cosey); (3
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Multiplying Eq. (3) by the value éms¢u—-1£).and Eq. (4) by sin L o

L1 ) .

i
? and subtracting one result from the other, we get
3 o\ dD . d 1%
? (COS?u—-r:—)T-Dsm?uTﬂﬁ—' Vi (5) -

Let us introduce the designation

l
Y

e
e Vp
g b=y (6)
' then
(cos 9, — b)Y dD — Dsin ¢, do, =V, (8 — 1) dt. (7)

Let us integrate Eq. (7) by parts:

D u
2{) (cosgy—8)dD— | Dsing,deg=V, (B —1)4 (8)

( fuo .

0 -

f (cosgy —b)dD =uv— j vdu;
b

& = cOs by di=—sin9de
dv=dD=Ddt; v=2D;

D L0
uy— _f vdu = (cose, —6) D ' + ( Dsingdo,.

Dy vy

Let us substitute the obtained result into (8). We then get

D(cos ¢y~ b) — Dy (c08 349 — ) +
: . %u
+,stin9..ds=u—,Y Dsing, dy, =—D (b —cosg,) + (9 e
a0 Fuc 3 ]

= + Dy (b —cosg,) =V (FF—1) 4 R ENRRRKEAY
: From Eq. (9) we get a calculation formula for rocket flight time " 3
; from distance D_ to distance D: § ST
f = L2 (b= 20 Suo) — D (b —cos ¢q) (10) F pa :.-,')-l; -
Va(2==1) ) NI
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The rocket flight time from firing to impact with the target, when
D = 0, is defined by the formula
Dp (b =~ €05 ¢uo)
tp. "0f=-—-V-u(bTT)}£- (11)
To compare the "pursuit" and "constant-bearing approach" huini.g
methods it is best to construct the ratio

l‘l. nor

and the dimensionless time difference

vV

B= ‘D—:l (tp. nor T tp- ntp)
as functions of the target relative bearing ¢u at the moment of
firing for various velocity ratios b = Vp/vu' After simple trans-
formations we get

A= Ip.wor __ (b~ cos gu) (cos g + VP — s 34)

= ; 12
o, uap =1 ! (12)

Yy b=ty 1
B= D, (tp. nor""’tp. nap)"“ Y= COS?E+Vm-

(13)

Graphs of these functions are “ven in Fig. 2.2. For practical
purposes it is important to note ti . che difference in rocket flight
times and, consequently, the difference

A

in covered distances and in the corres-

i
3&-@A\ ponding distances of the target inter-
-A
i

cept lines are maximum when firing

occurs with ¢u = 90°. Time ratio A,

however, has 1ts maximum when the tar-

get relative bearing at the moment of
flring is 60°. As the rocket speed
approaches that of the target, the
difference and ratio of the rocket-

flight times sharply increase. The

! = 8;ﬁ3;?§“§0,&7%7 larger the velocity ratio b = V /V,,
the less difference there is between
the homing methods. When b > 1.7
there is practically no difference whatsoever.

Fig. 2.2
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PROBLEM 2.3. The interceptor attacks a nonmaneuvering target
fiving at the same altitude as the interceptor and at a constant
speed, The speed of the interceptor is also constant. After the

airborne radar locks on to the target the alr-to-air rocket is
fired. The rocket is guided to the target by the line~of-sight
method, i.e., at any glven moment the interceptor, rocket, and tar-
get are 1in a stralght line, in the equisignal zone of the airborne
radar. Let us assume that during rockeﬁ'guidance the Interceptor
headling does not change, while the target 1s destroyed only by a
direct hit by the rocket. The automatic tracking angle for the
airborne radar imposes no restrictions on the attack.
quired to show how the rocket load factor, required to carry out

it the homing procedure, and the rocket flight time from the moment of
firing to encounter with the target depend on the speeds of the
target, interceptor, and rocket (Vu, Vo Vp) and on the target rela-
tive bearing ¢u (¢u = ¢u0 — for simplicity we drop the "0" in this
example). We are given the following:

We are re-

V Vo .
T,':—-==1; W:l—“& 9“"—:0—- 150

79 = 90 — 180°;
The natural speed of the rocket Vp c 1s considered to be con-

stant and equal to the average value during controlled flight:

vp = Vp op -+ Vn-

Solution. PFigure 2.3 shows the kinematic relationships for
rocket guldance using the line-of-sight method for the conditions of
our problem., Let us introduce the designations Dn — the distance
"interceptor-target" at the moment of firing; d_ — the current dis-
tance "interceptor~-rocket"; d — the current distance "interceptor-

target."

Then, according to Flg. 2.3 we have the following equations:

x=d,sin g (1)
y=d, 05+ Vi (2)
otg fu= ""’:n-"" ; (3)

@ =% + (Ya— Yo¥ ()
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E:- _ Vi‘“‘(Te‘) + ("5?‘) ' (5) R
Ei J U N~ Tnpact Yo= V!,f; (6) :3
E 2 point Xae= Vydsineg (7) ~
N Yo = Vit 052 + Dy (8)
N
0 Differentiating the speed
Vp with respect to t, we get a
formula for calculating the
v side (normal) acceleration of iy
n S At
the rocket: e
ﬂz . "“ '; '.:*-';‘:-'-'
—y o i ’3
Dy =T (9) et
,-' - : B ey
/ For solving the problem in the ‘ -
, most general form it is con- i
venient to introduce dimension- =
r less, relative characteristics. :,
Va To do this, let us divide all i
[11 Piring point

= distances by the value of the

Fig. 2.3. firing range Dn and all speeds
by the interceptor speed Vn’

and multiply time tp by the value V_ /D . Then Egs. (1)-(9) become

" .
-

.
e
S
-

kg

% dimensionless. Tor example, for the dimensionless coordinates of
X the rocket we have
N x—_—-lj";sixxt,s.,=0psin?n:‘ (10)

d Vot
y-_-.-b‘:—' 08 9+ I, =Dy C05%a+ %,

. S

(11)

where T is dimensicnless time.

v e Y
LA P

The dimensionless rocket speed is expressed as follows:

v,

7’3:/?2’*‘ }.’2=f(‘)b
Vatp
T (12)

’

o e
"

Differentiating Function (12) with respect to T we get




Py S

word o

b,

o

-

A St

an, din
ﬂ;a(-—d—;’—Siﬂ ?u‘*‘Dpcos?n d;n) +
dD,
. +( ==~ cos g + Dy sin g +1)
D, \? d3y
=( d"'cp) +(Dv a ) +2 o c°57"+20 Sines g5 dt".'*' L (13)

Solution of the quadratic equation

dD,\2 ab dy, \3 .
() +2 cos et (D, ) -

. dy .
—2D,sm<p,,—d-}—-v§+l=0 (11
gives us, for the dimensionless current distance "interceptor-

Dp, the followlng nonlinear first-order differentlal equa-
tion: ;?%'l

rocket"

.
[
»
Lt

.Y

dD,

- == COS 9y +

+V costo,— (D, e} v 20, G2 smv.,+zﬂ—x (15)

The dimenslonless side acceleration of the rockzt is calculated from
the formula

1 1dX a3 diX dY
Ama- (=T w) (16)

wnere X and Y are the relative coordinates of the rocket;

dog Sinen,
v T TplE !
He 4D
d*%a dr dtv
ae D . (17)
Here
|4
P‘“jﬁf
and
d
D-T’ (18)

From (9) and (12) we have, for the relative acceleration of the
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rocket,

A e

-

A= 20 (19)

72
‘n

We can obtain numerical values for the acceleration A and time

3
.
]
1
1

1 required to satisfy the homing law if we solve Egs. (16) and (12) ;‘-xkg ;
R

with initlal condition D(0) = 0 and vary the initial given values MQ&?ﬁS%s
R AT R

¢u’ Vp, and Vu' Differencial Eq. (15) is solved by numerical inte-
gration (naturally, it is best to use a computer for this purpose).

The -sults of calculations, with attack from the aft hemi-
sphere, are shown in Figs. 2.4 and 2.5.

0 25
9 Yuo 1o
v ?
8 s / 20
7 < %
6 < PV 15 :
o d / 4 5
¥ LN AN . %
< W e L
s gdsaa S
(=%
© 3 A A A A \ﬂ -
L7 :>/i;’(
A o W s
| et
oéﬁéf’ 1T | \
10 12 46 16 18 20 23 34 46 Vp/Va 10 42 L4 46 1,8 30 22 2% 20 28 Vil
Fig. 2.4. Fig. 2.5.

The results of calculations of A and T for attack from the for-

ward hemisphere with target relative bearings wu = 0-15°, Vu/Vn =1
and 0.6, and Vp/Vn = 1-3 are given in Figs. 2.6 and 2.7 on p. 52.

PROBLEM 2.4. How does the required rocket load factor change
under the target-attack conditions given in Problem 2.3, if the
velocity ratio Vu/vn changes within limits 0.5-1.2, Vp/Vn changes
from 1 to 3, and the target relative bearing Py changes from 150 to
180° at the moment of firing? We determine, for given target speed
Vu’ the velocity ratios Vp/Vn for which the required rocket load
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factor is minimum. Under these combat conditicns, how does the rel-
ative rocket flight time T to impact with the target change 1f the
rocket is Zired when the target relative bearing ?y = 160°%

Solution. Using the formulas obtained in Problem 2.3, let us
calculate the functions A = f(wu, Vp/Vn, Vu/Vn). The results of the
calculations are given in PFigs. 2.8-2.10. An interesting fact is
that at low target speeds vu = (0.5—0.6)Vn there is, throughout the
entire range of target relative bearings from 150 to 180°, an optimum
value for the rocket speed at which the required rocket locad factor
is minimum. Beginning at Vu = 0.7Vn and higher, the required load
factor is minimum with minimum rocket speed.

" s o
ol
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»
ey

.

¢

'-
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v

Figure 2.11 shows the results of calculations of relative time
< = s0°
T as a function of Vp/Vn and Vu/vn with Py 160°,

o

) K
ot TR RIS 1+~

PROBLEM 2.5. For the target-attack conditlons described in
Problem 2.3 we are given the absolute average speed of the rocket
Vp = 900 m/s, interceptor speed Vn = 400 m/s, target speed Vu = 400
m/s, target relative bearing at the moment of rocket filring ?y, = 120°
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and the available rocket load factor np = 5, We are required to do

the folilowing:

1. Determine the distance from which the rocket can be .ired.

2. Verify whether or not the rocket can be fired at distaace
D, = 15 km with target relative bearing P, = 120°, if the available
time of controlled rocket flight tp = 20 s, Vp = 800 m/s, v, = 200
m/s, and Vu = 300 m/s. If firing is impossible, determine the tar-
get relatlive bearing or firing distance for ¢u = 120° for which the
availabie rocket flight time is squal to the time from firing to

rocket impact with the target.

3. Determine the minimum distance from which the rocket can
be fired, if the target relative bearing at the moment of firing
¢u = 150°, Vu = 250 m/s, Vn = 250 m/s, Vp = 500 m/s, and the avail-
able rocket load factor np = 10. How does the minimum rocket-firing
distance change if the interceptcr speed increases to 500 m/s?

Solution. 1. In Fig. 2.4, for vp/vn = 2,25 and Vu/Vn = 1
with ¢u = 120° let us determine the relative acceleration A = 3.4,
and then from Eq. (19) of Problem 2.3 we find the firing range:

AV,

. = 11,3 km.

ﬂ=

2. With Vu/vn =1, Vp/Vn = 2,66, and 9, = 120°, according to
Fig. 2.5 rp = 0.49. The absolute value of the required rocket-flight
time to target impact from Eqg. (12) of Problem 2.3 is

— 1[)" —. 04
fp—--—l-,—n—-—-..'l',-) $.

Since this required time is more than is avallable, firing at -
a distance of 15 km with @u = 120° is impossible. The required time
can be decreased in this case, 1f firing occurs at lower target rela-
tive bearings. We can easily see that when P = 90° the required
time tp = 18.5 s, i.e., shorter than the available time. Conse-
quently, attack must take place from the forward hemisphere of the
target, at small target relative bearings, or the rocket must be
fired from a shorter range 1f the target relative bearing cannot be
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decreasec. With‘mLl = 120° the permitted firing range

W T T T W‘"ﬁmhw’.mr.ww’r.

5 3. According to rfig. 2.4, with Py = 150°, Vu/vn = 1, and
. Vp/Vn = 2, we have apDn/Vg = 1.1 whence D_ = 1.75 km, while with
: = 6,1 km.

i a doubling of Vn, Drl
. PROBLEM 2.6. Construct the zones of posslble firing for the
case of rocket homing described in Problem 2.3, if the available
rocket load factor np = 7, the available time of controllec “:ight
tp = 20 s, target speed Vu = 1500 m/h, interceptor speed Vn = 1500
km/h, and the average natural spced of the rocket Vp.cp = 500 m/s.
Solution. Let us determine, for Vu/vn = 1 and Vp/Vn =
= (500 + 417)/417 = 2.2 for vari~us target relative bearings u?
the relative values t = tan/Dr and A = apDn/Vg (Figs. 2.4-2.7)
and then, from Egqs. (12) and (19) of Problem 2.3, the corresponding
maximum ~and min.mum firing ranges. The zones of possible firings,

e constructed with re-
~ 7y

. ' spect to D and >
‘!“'“ 1 D[;"‘lsh'ﬂ 1 p nN.Mayc
Dn mun? are given in

P
Fig. 2.12.

~

PROBLEM 2.7. The
interceptor attacks a

nonmaneuvering target,
firing its rocket with
constant target relatilve
bearing Py = 150°. The
rocket is homed to the
target by the line-of-
sight method. The given

Fig, 2.1
target Vu, interceptor
. Vn’ anc ¢ Vp velocities are assumed constant. Let us show how
. the rang "r.oing distances DH.MHH-DH.MaKC changes if, with the
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other characteristics unchanged, we increase: 1) Vn from 200 to
600 m/s, and 2) VD/VH from 1.3 to 2.4.
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Solution. Using graphs to determine 3 = apDn/Vg and T =
= tan/Dn for given values of Vp/Vn, Vu/Vn, and 4 (Pigs. 2.4 and
2.5), let us calculate, for each fixed value of Vp/Vn and Vu/’Vq from
the values of A and 1 the corresponding minimum and maxinum firing -

distances:

2 t,Va
Dy =A -‘a;'; Dy, waxe =~ P

Varying Vp/Vn and Vn within these ranges, let us construct a
generalized graph of the ctange in range of the firing distances

with given values of ¢
806 — u

Voly o mas0f and V. /V_. 7The graph
b T - va" q - ”"mm D"MOKC' U/ n o S p
6%——-&“L3 16 18 ba 42 24 for wu = 150° and Vu/vn =
Vn ’ [ A AT = 1 is shown in Fig.

wZt
L~

/»
-\:é.
-

L~ 2.13. This graph shows
that, with the other
characteristics uachanged.
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Fig. 2.13.
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an increase in Vn reduces

the zone of possible
firings with respect to
distance, whilie an increase in Vp/Vn expands this zcne. With an
increase in Vn from 200 to 600 m/s the range of firing distances
decreases from 600 m to O when Vp/Vn = 1.3. With an increase of
Vp/Vn from 1.3 to 2.4 the range of flring dirstances increases from
600 to 2800 m with V. = 200 m/s.

PROBLEM 2.8, A rocket is homed to . nonmaneuvering ftarse= by
the line-of-sight method (see Problem 2.3). Show how the reguired
rocket load force at the point of target contact depsnds on the
target relative bearing ¢q and the ratio of rocket to target speed
Vp/Vu. Determine the limits within which the minimum rocket firing
distance, determined by the avallable rocket load force, changes.
Assume that the rocket and target speeds are ccnstant. Given: Vp =
= 1000 m/s, V, = 500 m/s, a, = 49 m/s2, 9, = 60°.

p
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Solution. To carry out the line-of-sight method the required
normal (side) acceleration of the rocket (the acceleration directed
perpendicular to the kinematic trajectory) at the point of target
impact 1s defined by the formula

V2 Vy . d, sin2g,
%=, \? 7 S0t D, sy, ) (1)

The angle ¢p is defined by the relétionship

; - d \'i :
sin 9p=—b-’:-l-v'-x;sm Gur (2)
since
sin vV, d
LA R (3)

T

where dn is the distance covered by the rocket from the time of
firing, Dn is the firing distance.

When homing occurs under ldeal conditions, the acceleration
required for accomplishing the kinematic trajectory 1s exactly equal
to (1). Actually, the required acceleration is greater, since move-
ment of the rocket as

e bt
*

fluctuating perturbations
act on it is of a vari~
ational nature, and in

b
o

r

attempting to comply

with the given law the AN,
.-‘_' ’-'_ "\7;\‘;
actual accelerations LI
Fmnr ey

should exceed those

")

&
A

coare I

LS
¢
of

)

-
o5 Lg%y
L)

necessary for precise
motion along the kine-
matic trajectory, unot
Fig. 2.14. considering these

%}5}
i
§
!

|

l‘ i.!

variational processes,

.= g~
Lyb =TT

To determine D we use Fig. 2.14, which gives the relative

M« MHH
(dimensionless) required rocket acceleration a Dn/vi at the pocint

p
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of impact with the target as a functlon of the target relative
bearing ¢u for various ratios Vp/vu' Knowing the target speed Vu
and the avallable normal acceleration ap, we determine the value of

"
w
'’

o

N

2 apDn/Vi from the graph in Fig. 2.14 for the given combat conditions, §5$§§%i}
. and then calculate the minimum rocket firing distance ™ .. For I IATA

H Ly

the conditions of our problem we have

P I A
ey
v’ s,
i ¥
)
iy
X
'
Fy
X
'ﬁ

4
a,=49m/s%, ¢, =60° 7—::—-:—-2.

et

From the graph in Fig. 2.14

apD,
— =44
Vi
Let us multiply this by
vz 500
N
Then the minimum rocket firing distance D = 22.4 km.

M.MHH

Calculations show that witn a velocity ratio Vp/Vu < 1.2,
attack is limited to a target relatlive bearing value of the order
of mu = 60°, This 1s explained by the fact that when Vp"Vu < 1.2
according to Eq. (2) there are large angles between the rocket's
velocityr vector and the line of sighting, particularly on the phase
of the trajectory before impact with the target, when dn/Dn = 1.
Thus the graph in Fig. 2.14 in first approximation gives the minimum
3 rocket firing distances for a broad range of combat condlitions.
' Using these data, and having determined the maximum firing distance
’ from the available controlled-flight time, we construct the zones of
possible firings.

PROBLEM 2.9. A rocket ls homed on a nonmaneuvering target by
the line-of-sight method. We are given the target speed Vu = 500
m/s, the interceptor speed Vn = 500 m/s, and the natural speed of
the rocket Vp.cp = 500 m/s, the available rocket load factor n_ = 5,
and the available rocket controlled-flight time t_ = 20 s. Deter-
P mine, for these starting data, the zones of possible firings and
show how they change if, with the other characteristics unchanged,
the target speed is halved, the rocket speed is doubled, and the
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interceptor speed is doubled.

Solution. By analogy with Problem 2.7, let us determine the
appropriate values A = apDn/V: and 1 = tan/Dn using the graphs in
Figs. 2.4-2.11 for given target relative bearings 9, and then, using

Eqs. (12) and (19) of Problem 2.3, calculate the minimum and maximum
firing distances (in km):

£ tpVa 10
Dﬂ.uuu =4 ""1';"‘ == 5,144; Dn. sake = _D—n- ==,

The zones of possible firings are showit in Fig. 2.15.

bl i

"s Mt

g g

w
Ll l‘.lw

. LA
. 2o B

i
PR

O I B

™7r
LA

pd
D"’

V, ¥ . ¥, ¥
avmisn, et oy R Yy QSR vL VAL P s -—— ._..._V
Vn 0,5 Vn 2 Va a5, \7: 15 V:-" :g:-l

i i
Ve
I TR I

Fig. 2.15.

‘Emuul 4

T TSR o TT NRR RS R A M AR AN R AT A RIS

= - PROBLEM 2.10. Determine the zcne of possible rocket firings
fi for the case when, from the moment of rocket firing to lmpact of g
f the rocket with the target, the interceptor flies along a pursuit E.
’? curve, while the rocket is homed to the target using the equisignal @fu,_;;;
EE zone created by the airborne radar in the automatic target tracking s
- IR AR
- mode. R ".';-.
N F';;;;if
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Solution. The mutual positions of the interceptor, target,
and rocket after firing are illustrated in Fig. 2.16. At any current
moment of time the rocket is on the line "interceptor-target."
According to Fig. 2.16 we can
write the following kinematic
equations for the angular
veloclty of the line of right-

3 ‘ 0y = o, = e S (1)
" Vpsin (g~ 9) s D ’
) _ Vysing
o= g (2)
(the "-* indicates that the
angle @ decreases).
Fig. 2.16.
The rate of departure of the rocket from the interceptor
D=V,cos(3,—%)—V, (3)
Let us differentiate Eq. (1) with respect to t. Then
5al) 4§D + Veos (55— 4) 6, + Vi sin (99 =~ §) ()

1 o=
7

P s (= 4) ’

Considering that, for all practical purposes, the difference P, - @
is slight and, consequently,

b it i e

LA

-
f
R
R

cos(z—w)=1;
sin (5, —¢) =%, —¢ (5)
D = Vo—V,,

e d,

wd B e G
l“/\
1

-,

¥
.

Vp'.; == ""D + 2'?AD - '.;n Vi+ Vp (?s —9). (6)

Rocket acceleration perpendicular to D is, on the one hand, equal
to —$BD; on the other hand it 1s equal to the change in tangential

velocity
Vpsin (7, —¢)
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with time, i.e.,
d—},’} sin (2, — %)
Thus, since '
V,(gs—9) = ¢sD, (7
then
Voo =9, (2V, — VL. (8)

The kinematic load factor of the rocket is defined by the formula

Vp?
I

. (9)

ny=—

Substituting (8) into (9) we get

ey (2V, —
p==— gp { 2 ] . (10)

b

n

Solving (10) simultaneously with (2), we get a formula for deter-
mining the polar coordinates Py Du of the interceptor:

gnpliy

sin9,=7m., (11)

With target maneuvering with angular velocity mu Relationship
(11) assumes the following form:

. (¢np— g y)
sin '?u=mpp—“::‘?;)-0m (12)

Then the zones of possible firings are determined in the fol-
lowing sequence. We are given several values of rocket flight time
tp and, from the characteristics of the rocket, we determine the

appropriate values of rocket speed V_, available load factor np,

<
L

I

and distance Du. Then from (1l) we calculate the corresponding

Ty

.
(S0

angles ?. which characterize the angular position of the interceptor

VY
3

at the moment the rocket meets the target: points 1, 2, 3, ... in

REd
.

Fig. 2.17. From peolnts i, 2, 3, ... we construct pursult curves
1-1', 2-2', 3-3', ... for each time tp. Obviously, points 1', 2°',
3', ... define the position of the interceptor at the moment of
rocket firing. Connecting these polnts and considering the rejuired

bl
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v PROBLEM 2.11. The ) e
= ‘d? interceptor and target are
7 ) at the same altitude and .
Vl‘ 4![,-”-/

close with constant speeds.
2, After the airborne radar locks

on the target the inter-

certor fires a rocket which

is guided to the target by
Fig. 2.17. the pursuit method. The

mutual positions of the inter-

ceptor and target at the moment of firing are described by the firing
distance Dn = 0.9 km and the target relative bearing ¢u = 155°., The
speed of the rocket as 1t flies toward the target is asrumed to be
constant: Vp = 1500 km/h. Determine if the rocket can score a
direct hit on the target 1f the target speed Vu = 1000 km/h, the
available rocket load factor np = 10, and the available ro-ket con-
trolled-flight time tp = 20 s. {Can the rocket hit the target 1if,
under these conditions of rocket firing, the target speed 1s half
as much?

Solution. In the pursuilt method, as we know, the rocket's
velocity vector 1s constantly directed toward the target, and the
rocket relative bearing is zero. The zeneral fcermulaz for “he
pursuit method were obtained in Problems 2.1 and 2.2,

To determine the possibility of the rocket's hitting the target
we must calculate the rocket load factors, required for this method
to be carried out, as it closes with the target, and compare them
with the available factor np = 10. Then we must calculate the
target pursuit time along the pursult curve, and also compare this
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é with the available rocket controlled-flight tine tp = 20 s, Ac~
% cording tc Eq. (3) of Problem 2.1, the angular veloccity of the

E rocket required to carry out the pursuit method

E‘; w = Vusli)nﬂ"u . (1)
E

&i

Knowing wp, we can easily determine the corresponding rocket load
factor np. Since the normal rocket acceleration ap is defined,

'

in terms of angular and linear velocity of the rocket, by the familiar

. T
Rl

formula
Qp == Wy VY, (2)

while the centripetal acceleration is connected with load factor np
by the relationship

e, =gV =T, (3)
then
/2
oo £V =1 (4)

P Vp '
from which the rocket load factor required for the pursuit methcd

(4]

P VA 1 (5)

For the conditions of our problem, in the first case when Vu = 1200
km/h = 278 m/s and Vp = 1500 km/h = 416 m/s, for the firing moment
we have wp = 0,131 rad/s and np = 5.5.

The rocket flight time along the pursult curve, according tc
Eq. (11) of Problem 2.2, is

Y
p ”
‘e Dy (7 —cos *"°) _ 900015 —cos155) g 4o
= STUsir—n e
dvia)
il »
Va

In this time the target covers a path equal to 6.4-278 = 1780 m,
while the rocket travels 6.4+416 = 2680 m. Constructing, for the
starting data of the problem, the mutual positions of the intercept.r
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B
é and target at the moment of
oy { G uM v
ii Tupect point firing, and then constructing,
o as stan’ards, the rocket load
25 factors along its flight tra- : ;
% jectory (required for carrying §§g$:§§§
: 20} ou’ the pursuit method), we ob- :"';:*-"
% v tain a graphic solution to the . RN
D V9 problem (for clarity the axes
r o e e e et h Fig. 2.18 have different
gi %, scales). The construction in
- 10 Fig. 2.18 shows that in the ex-
! amined case the rozket meets
05 the target ~3 km from the firing ;3
point, while the rocket lcad !
fe~tor, required to carry out
001,752 03 Gdxm 0 41/02 03 04 x‘”; the pursuit method, is maximum
Firing point Firing point at the start of the trajectory R
- Fig. 2.18. but less than that available i} R
- n_ = 10, and then, as pursult & N
begins at target relative bearing ?, = 180° it smoothly decreases AR
i to zero at the moment the rocket meets the target.

In the second case, when the target speed is half that given
above, Vu = 500 km/h = 139 m/s, b = Vp/vu = 3, w_ = 0.0655 rad/s,

np = 2.55, and tnor = 3.2 8.

L S
P .

P

..
P
.Il"*.,‘l
AP

In this time the target covers a distance of 3.2:139 = 445 n,
while the rocket travels 3.2+416 = 1330 m.

Further calculations show that in this case tne required rocket
lcad factor at the moment of firing is minimum, but with time it
constantly increases and at point A reaches an infinitely high value.
For example, after 2.5 s the distance "rocket-target" D ~ 100 m,

9, * 170°, w, = 0.24 rad/s, and np = 10.3.

v e,y
ety A

~e

0 el et e el e LA

Since the available rocket load factor is limited to the value

e T T
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n. = 10, in thils case the rocket passes to the left of the target.

p
The solution to this problem is interesting in that it shows
the required boundary conditions for carrying .ut the pursuit method.
It seems that thls method is accomplished only when the following
condition, necessary for realizing the method, i1s satisfied: the
ratio of absolute rocket velocity to target speed should be within
limits from 1 to 2 (it must be greater than 1 in order to overtake
the target, and less than 2 so that the lcad factor not exceed that
available).

PROBLEM 2.12. The rocket is gulded to a target in the same
plane, using the constant-bearing approach method. Given: the
Ys target relative bearing Py the ratio of
s the average absolute velocity of the rocket
to the target speed Vp/vu' Determine the
rocket relative bearing Pp for which the
homing method is carried out. VWhat velocity
relationships should we have 1in order that the

homing method be carried out when the target performs
heading maneuvers?

Solution. For the constant-bearing approach method
(Fig. 2.19) it is necessary that the line of sighting
remain parallel, 1.e., the angular veloclty of rotation of the line
of sighting should be zero. Consequently, the projections of the
vectors of velocities VLl and Vp onto a perpendicular to the line of
slghting should equal one another. For the case of rocket homing
in a plane the following condition should be fulfllled:

. sin ¢y
,p==zwcsu1( Q;——).

Va

Fig. 2.19.

Obviously, for a nonmaneuvering target and constant target and rocket
velocitles the rocket relative bearing ¢p = const. As the target
changes heading and speed, the rocket can hit the target only when
the projections of rocket velocity onto the line of sighting and the
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pervendicular to it are greater than the corresponding projections
of target speed:

Vp sin ?p > Vll sin Py and Vp COS '?p > Vu l COS %, I .

PROBLEM 2.13. The rocket is guided to a target by the constant-
bearing approach method. Attack on the target is carried out frem
the forward hemisphere, at target relative bearing ¢u = 150°. The
mean absolute veloclity of the rocket Vp is 1.5-times greater than
that of the target Vu‘ The target maneuvers with lateral accelera-
tion a, = 40 m/sz. What should the available rocket lcad factor be
in order to counteract this maneuver? At what aspect angle 1s it
best to attack the target from the standpoint of countering this
maneuver? How will the required rocket load factor change if: 1)
the velocity ratio Vp/vu changes from 1 to v, and 2) the target
relative bearing changes from 0 to 180°?

Solution. Since in the constant-bearing approach method and
with target maneuvering the line of sighting is displaced in parallel,
at any moment of time the projections of velocity vectors V_ and Vu
onto the perpendicular to the line of sighting are equal to one
another:

V,sing,=V,sing, (1)

When condition (1) is satisfied, for the angular velocity of the line
of sighting to be equal to zero during target maneuvering we should
have yet another equality:

LA
1

LSS T oy W don v ol

@, COS @, == @, COS Ty, (2)

LG

where au 1s the target acceleration and ap is rocket acceleration.

From Eq. (2) we get the calculation formula for the rocket
acceleratlon required to carry out the c-ustant-bearing approach
method, when target maneuvering 1s described by acceleration a :

:
e -:.‘, LT ¥
AT TN
cos g AR LA LA
Ay = @, —2n. (3) NN

? U ocus g,
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Let us express the value of cos mp in terms of ? and the veloclty
ratio Vp/vu' According to Eq. (1) we have

. §in 5y
==afesin [ —7-
P ( 1"_ ) (%)
- \ V,
N .
e and, bearing in mind the properties of the inverse trigonometric
» functions, we get ) : "
— S
cosg,=q/ 1 — — T TSR
p ‘ (..KE_): : (%) :_.::_‘.::_".;_;5::;'&:
Va i \ '}.\:_":':\':'
LT
Substituting the given numerical values of mu and Vp/vu we get 51&;;%;
Eovee

cos g, = 0,943,
The required acceleration of the rocket, according to (3),

a, = 36.7 m/se,

while the corresponding rocket load factor
a,
o= — = L15.
Naturally, the rocket load factor avallable to counter the
maneuver, i.e., to carry out the method of constant-bearing approach
with consideration of target maneuvering, should be at least 4.,15.

In order to select the most suitable aspect angle for attack
on a maneuvering target, i.e., determine the aspect angle for which
the required rocket load factor is minimum, let us construct the
dependence of the acceleration ratio ap/au on the target relative
bearing ?, for the velcclity ratio Vp/vu = 1,5, Substituting (5)
into (2) we get

a cos ¢
ag i
B e (6)
(+)
A graph of this function is glven in Fig. 2.20., Obviously, it is
more sultable to attack a maneuvering target with target relatlve :liﬁifiI
bearings clise to 90°; the load factor required of the rocket to T,
counter this maneuver and satisfy the homing requlrement is minimum. ?ﬂ}?ﬂbﬂ
hal ooy
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ap B r ; In Fig., 2.20 we see how the re- RN
TN Yoo ;.=’7”} Ry S
A AN vy Ay quired rocket load factor changes e Ly
va 9 NS L/ A h !
~ QN ,5‘(///' | with a change in the velocity
e R Nt M/ &9 ———i
: N v //J/ ratio V_./V from 1 to «,
04 ATA ;&'/ﬁ ~ P
W\ [# |
02 X7 PROBLEM 2.14. The rocket 1is
\d{ J firec from the forward hemisphere .
[/] an .14 $G IRY] 150 Py .
of the target. The homing method
Fig. 2.20.

used 1s the constant-bearing
approach method. The angle of lmpact of the rocket with the target
q = 150° (PFig. 2.21). Determine the minimum permissible firing
distance Dn.mnH if the permassible error in guiding the
rocket to the lead polnt at the moment of firing

AT = 10°, the target speed Vu 500 m/s, the
mean absolute rocket speed Vp 1000 m/s,
and *“he maximum available rocket load

factor np = 20,

S

LI}

tt

Solution. The minimum firing dis-
tance according to the law of cosines is

D =PV (VU —2(PY)(¥U)cosg. (1)

Let us determine the distance PY covered Fig. 2.21.

by the rocket from the time of firing to impact with the target.
Since the angle AT 1is small, the length of arc PY differs only
slightly from a stralght line, and then, from the formula for deter-
mining the chord length we ha-

¢ in g
Pyz:lep. uny S0 .

Angle a/2 is equal to angle AT', as angles with mutually perpendicular
sides. Replacing the sine of small arngle o/2 with the same angle
expressed in radians, wr get

PY = 2R, AT (2)

Now let us determine the distance YU covered by the target from the
moment of firing until it meets the rocket at the lead point. Since
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for the method of constant-bearing approach

yiy Py
Ve Vp '
the
Py
ya = V,‘ -T/;— N

while if we substitute the value for PY according to (2) we get

VU =2 2 Ry (3)
P
Further, let us determine the minimum radius of banked turn of the
rocket with respect to the given maximun. avallable load factor:

Vﬂ
Rp. ugn = —_p‘zs,l km,

£y

cubstituting (2) and (3) into (1) we get a calculation formula for
the unknown minimum permissible rocket firing distance

Dn. manRp.nuH ar ]/1 ~+ (\Tl.'i-)z -2 (-!;&) cosq. (14)

For the data in our problem we have D_ = 2.63 km.
PROBLEM 2.15.
method with constant target and rocket velocities is characterized
With a
change in rocket speed on the trajectory (with the other parameters

Rocket flight by the constant-bearing approach

by the absence of lateral rocket load factor (np = 0).

Vu’ ¢u, and Qp constant) there arises the tangential rocket load
ficter necessary for restoring the constant-bearing approach method.
We expresa the magnitude cof this load factor as a function of the
target and rocket speeds ard relative bearings. Calculate this load
factor if Vu = 375 més, Vp = 750 m/s, P, = 30°, tangential accele-
ration apT = 100 m/s“. Hcw does load factor np change if the target
relative bearing changes from 0 to 90°°

Solution. T e value of the lateral load factor np is found ty
solving the following system of equatloi.s wshich describe the kine~
matic relationships among the parcmeters of t..e rocket and the target
when rocket motion deviates i1rom the constant-bearing app:*ocach method:
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V,sin ¢, ==V slii 7,
V.4 ._gV n?,— 1 = —gn,

? dt
?=?p+‘?u-

Let us differentiate Eq. (1) with respect to time:

av, . dia dsq \ aVy
-d—"- sin g+ V05 g, == = V, cos 2y — + — sin G,

For the constant-bearing approach method we have

iy
— = 0.

Consequently, Eq. (4) assumes the following form:

de . : d?p
—singy + Vpcos g — = G,

Now let us differentiate (3) with respect to time:

2 i
ar = Tar e
From Eq. (2) we have
V, a3

M= @

while with consideration of (6)

Vo dgy
Rp=—<"% "ar -

(1)
(2)
(3)

(%)

(51

(6)

(1)

(8)

Let «s substitute into (8) the expression dwp/dt as per (5).

Then

1 dV, sing,
”P=? dt  cosep ©

Let us designate acceleration of the rocket as

3/
_ dav,

Qy =

and the velocity ratio Vp/VU by b. Then frc. ®g. (1) we have

P v,
sin g, == vy S 9q.

(9)
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COSQP=V1—Sin’?9=]/'l--%,-sin’%. (11)

substituting (19) and (11) into (9) we get a calculation fcrmula for
the unknown tangential rocket load factor:

a, sin ¢y

o= ViE—smiyg

(12)
For {he numerical data in our problem we have b = 2, ap = 100
m/s2, ?, = 30¢, and n, = 2.64.

Now let ¢ = 60°; then n_ = 4.9, When ¢ = 90°, n_ = 5.9,
u P u p
Thus, with an increase in target relative bearing Wﬁ from 30
to 90° the lateral rocket load factor increases by a factor of
5.9/2.64 = 2.25.

Let us note *hat wlth rocket velocity characteristics Vp = f(t)
we can easlly find the law of change of rocket acceleration ap =
= de/dt and then, using Eq. (12), the law of change of the lateral
rocket load factor as a function of flight time.

PROBLEM 2.16. A rocket is gulded to a target using the constant-
bearing approach method. During the steady-state homing method the
target begins to maneuver by banking, with a load factor ny = U,

In 10 seconds the target comes out of its bank and continues straight-
line flight. Determine the requlred rocket load factor to counter
this maneuver. Assumptlons: Vu = const, V_ = cocnst. Glven the
following conditions: Vu = 400 m/s, Vp = 800 m/s, Pu0 = 30°.

Solution. Let us use Egs. (1), (2), wnd (3) from Problem 2.15.
Let us differentiate (1) sith respect to time t:

av, dip avy . Ay
"Tsm‘?p'i' VpCOS?pT=TSm?n+V,,COS?n—aT—, (1)

while considering Vp = const and Vu = const we get

a3, dsy
Vp COs 2 = Vn COS©q ~g7 -+ ( 2 )
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The rate of change of the target relative bearing 1s equal to the

angular velocity of the target:

0 =L (3) RS
SRS
Considering (3) we get e y
a5 Va cong ) s d
o -V—;- I gl:, m‘." ( 4 ) ;;.
Further, let us differentiate (3) of Problem 2.15 with respect to ;ﬁ
time t: ﬁ
ds d":. de, ~'_— .
=+t (5)

From (2) of Problem 2.15 we get

Ve ap
Ry G (6)

while with substitution of (5),

Then, with consideration of (3) wé get

Vg [ d3 \
u,,=—-—é’-(—a-',i+w.,). (8)

Vi
cosr?n=1’l“sin’?p=‘/1——1;.‘f-.-sm-('.=uu+%‘). (9)
) ?

the calczulation formula for the unknown rocket load factor takes on
the following form:

Va €08 (20 + wyf)
noe==wye |1 et T
P “x [ + l/b= — S %y  @yl) (10 )

For tne numerical data of our problem we have

roer
n,= g_‘ gy —1 ﬁ'_[l e . SUsiine + oud) =
v Vu 4 © VB s (g + o)
e Cry [ 3ya 4 wyt)
=m]/n7—1[1+ kel ]; (11)
y V=50 Gy + v s

n, = 9 1/1—6—_"——1" {1 + cos {30° + 0,033-10) ] =109,

VR e F o,
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PROBLEM 2.17. Determine the amount by which the rocket will
miss the target if, in the final phase of controlled flight before
encountering the target, the rocket deviates from the kinematic
trajectory of the constant-bearing approach method which it is per-
forming. We are given the values of target and rocket speeds and
relative bearings: Vu = 500 m/s, Vp = 1000 m/s, ?, = 30°, o, = 30°,
and the distance "rocket-target" at which the rocket does not satisfy
the >z of constant-bearing approach (continuing on linear flight)

D = 100 m.

Solution. A necessary condit. :n to carry out the constant-
bearing approach homing method is that the angular velocity of the
line of sighting be equal to zero. When the method is disrupted

i, we have an angular velocity of the

) line of sighting w, # 0, and the
relative velocity vector vcﬁn is
no longer directed along the line of
sighting, as when the method is

precisely carried out, but forms a
certain angle W with it (Fig. 2.22).
Disruption of the homing method in
the phase before target impact also

I
svaT 10

.
'

leads to the appearance of miss r

Y
1y ¥ A
"

whose value equal. the sh.rtest
distuance between the rocket and the
target. From Fig. 2.22 we see that miss r, perpendicular to the
closing velocity vector Vcén’ is equal to

r=Dsinp. (1)

The closing speed in this case will be determined from the relation-
ship

o~~~
N
~—r

Veoa = Vp cos (?p"‘" #)+ Vi cos (94 + 1)

e component Vcﬁnsin U is the linear velocity, associated with the
angular velocity of the line of sighting by the familiar Zormula
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Veoa Sinp = 0,0, (3)
from which
sinp=—"—&'§%—, (4)
while considering the fact that angle u is small

Vesa== Vycos 9, + V, cos g, =D, (5)

. (l"D
smp.-—-—b—-. (6)
Substituting (6) into (1), we get the following formula for the
rocket miss:

D, .

rem—=rt (7)

D=V,cosg,+ V,cos g, (8)
Vn sin 9y — ‘;P sin p

Wy = D . (9)

Thus the miss of a rocket when the method of constant-bearing
approach 1s not fulfilled is directly proportional to the square
of the distance "rocket-target" beginning with which the rocket

leaves the kinematic trajectory of the constant-bearing approach
method.

For the numerical values of the problem we have

500 sin 30° — 1600 sin 30°
o, = — — =25 rad/s,
D = 1000 cos 30° 4+ 500 cos 30° = 1297 m/s,
100°.25
r= Ty = 193 m.

Let us examine a simplified method for calculating rocket miss
with target maneuvering. In this case, wren the distance "rocket-
target" becomes commensurate with the miss value r, Eq. (7) cannot
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be used. The error of Eq. (7) can be estimated by assuming that,
beginning at this time, the rocket and target move with constant
normal load facto?s and with constant speeds Vp and Vu. If D is
not too large, D/D is, #ith sufficient accuracy, equal to the time
At remaining untll the rocket encounters the target. Consequently,
the miss F
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Further, let us estimate the rate of change of instantaneous
" miss r(t) with time, assuming r = const. Let us differentiate (7)
with respect to t. We then get

,.M% (D, + 2Duy) =— A (Vg — Vi2,). (10)

If At is small, in this time the instantaneous miss r(t) during
maneuvering of the target and rocket with constant load factors
changes by the value

A . .
Ar= —'T (Vp?p - Vu?n)- ( ]l)

Thus, having estimated the rate of change, we can write a more
general formula for calculating the rocket miss, taking into account
rocket and target maneuvering:

r+ Ar=[bw,+-;—(vn{:“~ %) |8 (12)

PROBLEM 2.18. A rocket 1s gulded to a target by the method of
proportional navigation. The navigation constant k = 4., Construct
the rocket flight trajectory for the case when the target flies
linearly and with constant speed V = 1500 km/h. The absolute
average speed of the rocket Vﬁ = 3000 km/h. The mutual positions of
the interceptor and the target at the moment of firing are described
by the following parameters: distance "interceptor-target" Dp»
target relative bearing Qu = 90°. Construct the rocket flight tra-
Jectory for interceptor relative bearings at the moment of firing
?, = 30 and 60°. For each case show how the rocket load factor re-
quired to carry out the homing method changes as the rocket closes
wlth the target.
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Solution. Guidance by the proportional navigation method is
characterized hy the fact that the rocket flies such that its angular
veloclity is k-times greater

L
LS

T
¥

) - 3-SR

3

Impact_point

than the angular rate of dis-

v

o

EAAN

placement of the line of sight-

ing, i.e., the control law has

g the following form:
- a3, da
- reference axis 77 Ta
F: Fig. 2.23.
g In other words, the rate of
¢

change of the rocket relative bearing is proportional to the rate

of change of the sighting angle. The coefficient of proportionality
k is called the navigation constant. In the particular case when

k = 1 the method of proportional navigation becomes the pursuit 'Z?
method. PFigure 2.24 show the kinematic rocket flight trajectory '5;:f .
for the conditions of the problem. The nature of the change of the g“*fhrfi
rocket load factor required to carry out this homing method is shown : .
in Fig. 2.25 as a function of the distance "rocket-target" for various
relative bearings of the interceptor ?n at the moment of firing.
Solution of the problem illustrates the advantage of the proportional
navigation method over other homing methods: the required rocket load
factor has decreased by the end of controlled flight.
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PROBLEM 2.19. An interceptor attacks a nonmaneuvering target,
one which flies at constant velocity and at the same altitud> as the
interceptor. At the moment of rocket firing the target relative
bearing wu = 90°, the interceptor relative bearing ¢, = 0, the dis-
tance "interceptor-target" Dn = 10 km, the interceptor speed Vn =
= 1400 km/h, the target speed Vu = 1960 km/h, and the‘natural
average rocket speed Vp = 700 m/s. The rocket is gulded by the
"y proportional navigation method. Construct graphically the rocket
‘ flight trajectories for cases when the navigation constant k changes
from 1 to 20. Show, for these values of k, the nature of the change
of the rocket load factor required to carry out this homing mefhod
as a fu..ction of the time of controlled rocket flight.
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Solution. Obviously, the larger the navigation constant the
greater the curvature of the rocket!s trajectory immediately after
firing and, consequently, the greater the rocket load factor re-
quired at this moment. As can be seen from the graphic construction

Yy Impact point Impact point, p.

Impact point
0

v

M e .
R RERL A A

s

e
¢

- I’J“"A"‘W

Fig. 2.26. Fig. 2.27. Fig. 2.28.

of the rocket flight trajectories (Fig. 2.26), for any k, after
initial curvature of the trajectory, as the rocket closes on the
target the trajectory straigntens and the required load factor re-
duces to zero. Solution of the problem shows (Figs. 2.27 and 2.28)
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that for all practical purposes k can be no higher than 10, since
for all k from 10 to « the nat .re of the fiight trajectory is the
same.
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E\ This and the next problem graphically show that the proportional
navigation method makes possible successful attacks on targets at
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large aspect angles.

PROBLEM 2.20. A rocket 1s guided by the proportional navigation .
method to a target which performs heading maneuvers. Show how the
relationship between the rocket load factor required to counter the
target maneuvering and the target load factor as a function of the
distance "rocket-target" changes for various navigation constants k.
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Find the dependence of rocket miss on target maneuvering. Assump- ’

P

tion: the target and rocket speeds are constant. P

Solution. According to Fig. 2.23 the equation of precportional
guidance 1is written as follows:

d?p ds
a =*ar (1)

The kinematic equations of motion of the rocket and target can be
written in the form of. the projection of the closing speed on the
line of sighting:

r

D=V, cos(®—0a)— V,cos(9,—0) (2)

and the projection of the closing speed onto the perpendlicular to
the line of slighting:

Da=V,sin (9 —o)—V,sin(g,—2) (3)

Differentiating (3) with respect to t, conslidering the given con-
dition Vu = const and Vp = const, we get

im0 Do o o (4)

where a, is the projection of target acceleration onto the perpen-
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dicular to the sighting line: a =V cos (¢ - g)d.

Equation (4), with consideration of (1), gives a first-order
differential equation relative to the angnrlar velocity of rotation
of line of sighting o.

Based on the cond?tion Vp = const we can assume that the closing N N
speed "rocket-target" D and the projection of the rocket velocity onto
the sighting line Vpcos (wp - @) are constant. Then, integration of
differential Eq. (4) with au = const gives the following solution
relative to the angular velocity of banked turn for the rocket (the
rate of change of target relative bearing ¢u):

kéa{,’gk&o (_l_?;)h-z+
. 1

+2z(t~ (&) v (5)

where

Vpeos (§p—0)
n )

A== R (6)

.
.
a
.
.
4

R A
A AR AR KRS R F

is the so-called effective navigation constant. According to (5),
when A = 2 the acceleration of the rocket throughout the flight 1s
constant.

With a decrease in A the rocket load factors required by the
end of the flight have increased, which can result in an increase
in the misses. When X > 3 the rocket load factors decrease with
closing on the target.

The second term in (5) describes the rocket load factor required
to counter the maneuvering of the target.

Figure 2.29 shows the dependences of the ratio -f required
rocket lecad factor to target load factor on the relative distance
"rocket-target" for varlious values of A. These dependences show
that with A = 2, for interceptlion or a maneuverlng target the re-
quired load factor increases to infinity at the moment of impact

79

"4
«
A
1

Y
<

'-."“:“-';‘5‘}4!

e N




=
> A = - » - =
A PSRN RE 220, W L SR L L S, Y PR Y

p 3 with the target. Obviously, the optimum value

B An2 | of A is within the limits of 4-8. o
2 S |
_3:::55 l Now let us find how the rocket miss, with o ‘l;
§:§\ |  homing by the proportional navigation method, I
! QN |  depends on target maneuvering. The rocket load i ’
| factor required to counter a target maneuver
0 L ww! on the basis of (5) can be written as follows:
) n .
Fig. 2.29. np=n,l-l-_’;_7_,-[1-(—%)"2]. (7)

According to Eg. (7) of Problem 2.17 the rocket miss for our example
is expressed by the formula

oDt

For the inertialess rocket load factor control circuif the load
factor required to carry out the proportional navigation method is
connected with the angular velocity of the line of sighting ¢ and
the closing speed D by the dependence

y e - 5 (9)

Substituting (9) into (8) we get

n.gb?
”%%5-. (10)

r ==

i S S

while with consideration of (7) the formula for calculating miss as

et

a funection of target load factor asswres the following form:

e WU

== (£)7) o

For very long firing distances (Dn + ®) the required r<cket lcad
factor in the final homing stage, to counter the target maneuver, 1is
described by the load factor nu, which is determined by the limiting

value

A
Ry yanc = Ny A ( 12 )

LR AR SR
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while the miss
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where tp is the time of rocket homing.
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CHAPTER 3

THE TACTICAL-TECHNICAL CHARACTERISTICS OF A FIGHTER-INTERCEPTOR

In this chapter we present problems whose s>lutions allow
quantitative determination or the combat capahilities and combat
characteristics of a single fighter-lintercaptor. Firsi we derive
general equations for combat maneuvering and give methods for cz2al-
culating the ranges (regions) of combat utilization with respect to
flight altitudes and speeds (Problems 3.1-3.5). We then establish
the interconnections among the basic tactical-~technlcal character~
X istics (Problems 3.6~3.13). The most important maneuver character-
istics (specific excess power, available load factors, turn radius
and time, and rate of climb) are calculated for the widely-known
F-LC "Phantom" fighter.

et e L A

From the solutions of these problems we obtained general graphs
and nomograms of the dependences among the follo- ag:

— the aerosdynamlic and strength restrictions of the regions of
combat maneuvering, flight speed, and flight altitude;

— flight range, takeofi weight, fuel weight, .ngine efficilency,
¢ value of the fuel, and lift-to-drag ratio (7DR);

~ {1light sr=ed, flixht asititude, takeoff weight, thrust-to-
wzizht ratio (TWR), 1lift ccefficlent, drag coefficient, and wing area;

L
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— the basic tactical-technical characteristics of the airborne
radar, the armament system, and the aircraft.

PROBLEM 3.1. Compile, in gerneral form, equations for the three- ;Qg;%ﬁ%%

dimensiovnal maneuvering of a fighter-interceptor.

h

Ty ¥

P LR

w
Aol

Assumptions:
— the fighter-interceptor 1is examined as a material point;

— thrust P coincides with the longitudinal axis of the plane
and with the wing chord (the component of thrust in the direction
perpendicular to the trajectory can be disregarded);

— the wing angle of attack is small and can be disregarded.

Let us examine the problem for two cases: 1) without slip, and
2) with slip.

Solution. Let us select the coordinate system associated with
the fighter-interceptor (Fig. 3.1): the 2c0ordinate origin O is
placed at the center of gravity of the aircraft, axis Ox is directed
along the veloeity vector Vn’ axis
Oy 1s perpendicular to Ox in the
vertical plane passing through 0x,
L) and axis 0z is perpendicular to
plane x0y. Three-dimensional
maneuvering of the righter-inter-

-~ horizon ceptor can be described by a
“;’//// system of equations of the forces
v o - acting along the axes of the selected
selected coordinate system. The

..;. l.:v'l
&=
-

Pl el I
i I

e ofra”is” el

f«.mm.n‘.mn.‘.- %! .

8

6 sum of the projections of all ex-
ternal forces onto any of the axes
1s equal to the force of irertia

Fig. 3.1. acting along the appropriate axis,

2

Let us examine, as per the condltions of the problem, the first
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3%
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g% case, i.e., when the slip augie B {(the angle between vecter Vn and
v .
i the aircraft plane of symmetry) is zero. Then the aerodynamic force
¥ .
L can be represented by two vector components: 1lift Y and drag Q
-, (lateral force Z2 = 0). For this case, considering the given
b )
b assumptions, we get the followlng equations for force projections:
") onto axis Ox .
" mVy == P—Q—Gsinb, (1)
e .
~ onto axis Oy
b2
F\
X mV,0==Ycosy—Gcosb (2)
ont: axis Oz
—mV,gcosb="¥Ysinq, (3)
where
; aV, ho 4y . ~j_'f‘ (h
Vn= ar C—-——dﬂ‘—' dnd ?-— dat ° _4)

Here m is the alrcraft mass, G is the welght, & is the trajectory

angle (the angle between the velocity vector Vn and the horizon),

Yy is the bank angle, ¢ is the relative bearing {(the angle hetween
the horizontal prcjection of the veloclity vector Vn and the selected
reference direction, e.g., north).

b=
o3
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eceraft 3lip (B # 0), we have

. LY

-~

c

laterzl force Z # %, 1In this case the equations- for the forces
acting along the axes of the selected coordinate system Oxyz are
written as follows:

mV, = (P—Gjcost 4 Zsin3—Gsin§ (5)
mi b= (P—Q singsiny + ¥cosy—Zcosdsiny—~Gcosh, (6) :
E
—mV,cos 83 = — Psin 3 cos 1+ Qsinjcost+ (1)
i 4 Ysiny+4 ZcosgcosT.

System of Eqs. (5)-(7) describes the mocst general case of three-

rf

al maneuvering ¢f the fighfter-interceptor. By integrating

84




n§§e§§;§ys§gm§*cf‘§i£fér§gtggl equations of motion we can calculate

gfsfagégghfee-éiméns;qgéiiQoordinates for combat maneuver-

N

Sumptions made in Problem 3.1,
derive the hasic equations that describe a combat turn, a change
in heading during level flight, and acceleration with straight level
flight. )

Solution. To calculate the parameters of a combat turn it is
necessary to express the nature of the change in flight speed Vn and
trajectory angle 6 with a change in heading ¢. Let us use system of
Egs. (1)-(3) of Problem 3.1. Dividing (1) and (2) by (3), we obtain
differential equations for the combat turn:

.d_‘{'.'.;-_:_. V,cos

7 9 P—=Q—Gsin0, (1)
dg G

n,sm’ !

a0 1y, €087 08 § — cos*d
= Hy sy . (2)

.

Let us note that when integrating (1) and (2) we must be given
the dependence y = f(v), i.e., the nature of the change in bank angle
as the combat turn is performed.

2. With a change in heading in level flight we have 8 = 0,
Then system of Eqs. (1)-(3) of Problem 3.1 assume the following form:

mg=Ycosy; (%)
—mV,3=Ysiny. (5)

3. For the characteristic of fighter-interceptor acceleration
with strai sht level flight we must calculate the dependences

Va=f(f) and x=f{(¢),

where x is the distance covered by the fighter-interceptor along
axis x. The current velocity value Vn is found by integrating Eq.
(1) of Problem 3.1:
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Vn=‘7,,~§ (P—Q)df;

x—-—-—j V. () d.l.

(6)

(7)

In aerial combat the mevement of a fighter-interceptor is de-

scribed, 3s a rule, by a complex three-dimensional trajectory and

unstable flight conditions with continuous changes in altitude,

speed, and heading. However, the characteristics of steady motion

in a single plane are of particularly important practical signifi-

nee. The following problems are devoted to a quantltative estimate

PROBLEM 3.3, C(Calculate the boundaries of the region of combat

abl2 engine thrust and

maneuvering of a fighter-interceptor,

y aerodynamic

o
Construct the boundaries wiil: respect
r

altitudes, i.e., in coordinates M-H.

Known:

12000
i

—

maneuvering,

10009
f

[

dependencs of <h

Solution.

-mwwen  ASterburner powver
o === No aiterburner power

'2 ~y
2.2,

04 08 12 16 3¢

24 M

86

those determined by the avail-
and strength limitations.

to level-fiight speeds and
the average flight
wing area S,
the char;Zteristics of
available thrusts as func-
tions of M and H (Fig. 3.2),
and the dependence of the
aerodynamic coefficients
and A on M (Fig. 1.9).
in addition to the family
cf touncdaries of combat

construci the
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t
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sible power 3ltiftude on
or varicus loads on the

On the basis
of the general equations of
motion (see Problem 3.1)

for level flight, from the
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From the coﬁdipiéh of,equiliﬁigg@i,wﬁichrkeeps the flight speed con-~
stant, we have' T

- Q—~Pcosa=0, - (2)
Since the angle of attack o = 0°, for all practical purposes
Y=G; Q=P. (3)

Let us introduce designations for the coefficients of 1ift, drag,
welight, and thrust:

Y G P
C’==-77-s—; Cx-_—--a%:—; ca==—é-3.-; 0p=‘3§-. (14)
Here the velocity head
W
q:.-a-g-f“-, (5)
and the air density
2
Py (6)

We know that for flights at altitudes from 0 to 11 km the thrust
at constant velocity depends somewhat less on altitude than on p.
Therefore, for altitudes H < 11 km the thrust coefficient can be
calculated from the formula

(CpHa1n—CpHw0) £
Crn<n="Cpgaot iy . (7)

For altitudes H > 11 km the thrust decreases almost in proportion to
p and, consequently, the thrust coefficient is practically indepen-

dent of altitude and is only a function of velocity Vn’ Thus, with

Vn = const

i
3
i
H

ar ket

Cors 11 == Cppran = CONSL ) (8)

This allows us to conclude that for calculation of the region of
combat maneuvering it suffices to know the characteristics of the
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The aerodynamic limitation for uniform level flight is defined
by the limiting value of the 1lift coéfficient c found from
the formula

y npea’

V== A (11)
%gwrwd
For calculations in first approximation we can set cy npes = 1.
Then, substituting this into (11), aud given the values of H, from
the ISA table we find the corresponding values of p and then H.

The restrictions due to aircraft design strength are expressed
by the maximum permissible veloecity head qnpen and by the maximum
possible heating temperature TH. Knowing q, let us find the values
of H and M corresponding to the boundaries of the region of combat
maneuvering; we use the formula

'lnpel-
Ma=Vn”—'l/-72"'- (12)
The limitations imposed by heating are defined by the formula

v, Tu—1Ts .
Me—t= Y 51, (13)

where TH is the desired temperature with maximum velocity head; To
is the temperature of the amblent medium.

Figure 3.3 shows the results of calculatlons of the level-flight
altitucs and velocity limitations using Egs. (12), (13), and (11)
with qnp, = 5000; 10,000; 15,0003 20,000; and 30,000 kg/me, T, =

H
= 100, 155, 200, 250, and 300°C, c = 1 for G/S = 200, 400,
600, and 800 kg/mz.

y npej

The same figure gives the family of lines of constant power
altitudes:

Ho=H+~. (14)

Along line H3 the interceptor has a constant power level from

which we can judge as to the power reserve, which is Important when
estimating three—dimensional'maneuvering when one form of energy
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is converted to another.
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Within these obtained regions the fighter-interceptor, using
. available thrust, can perform various maneuvers. Let us examine a
3 quantitative estimate of the maneuvering capabilities within the

F regions of combtat maneuvering in the next problems.

PROBLEM 3.4. For a fighter-interceptor of the F-U4C Phantom
type let us calculate the range of combat velocities and altitudes
which characterizes 1ts maneuvering capabilities in aerial combat.
Given: the aerodynamic and thrust characteristics (Figs. 1.9 and
3.2), the average flight welight G = 17,600 kg, wing area S = 49.2 me.

Consider the restrictions on maximum M (M = 2,1), velocity head

2 npeg
(qnpe‘q = 9800 kg/m“), and stability (cy npea = 1).

Solution. As the most general criterion characterizing quan-
titatively the maneuvering capabilities of a fighter-interceptor
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1et us. usenthe specific excess powe\_Nya, 1.e., the ratio of the

A fighter~interceptor at a given alti%ude and velocity will out-
maneuver the enemy only if he has greater specifiz excess power under
the given conditions.

Let us write an eguati.n for the energy level of an aircraft,
i.e., the total ener:y, equal to the sSum of the potential and
kinetic energies:

Eﬂ:GH—}-ﬂz- (1)
where G, m, H, and V are the welght, mass, altltude, and speed of
the f.ﬁhter-interceptor. Dividing (1) by G = mg we get

R A

E n
Tty

Wil maucoserier in gerial combat the values of H, Vn, and E
constant.y char:>. Let us differeritiate (2) with respect to t.
Then, by definition, the specific excess power 1ls expressed by the
formula

Npm e (£) =i+ Yol (3)

On the other hand, Eq. (3) is obtained from the condition of balance
of forces with flight at angle 6 to the horizon:

p_Q.-Gsin6=me (4)

where P is the thrust of the powerplant and Q 1s drag.

Multiplying both sides of (4) by Vn/G we get

!a&%ﬂ...v,,smoa.‘.’%‘_’s., (5)

The term V sin 6 is the change of altitude with time, i.e., the
rate of climb:

u==I'I=VnSi!'IO. (6)
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ValP—Q _ g VaVa
G— . .
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(7

Equating (7) and (3) we can write the specific excess power as

Vo (P—
N"‘:-—.io_o!-.

(8)

Further, let us use the following familiar relationships:

drag

drag coefficient

Cx == ‘:10 + AC;.

Considering (9) and (10) we get

Va P (cf:;. Ac}) qS}'

(9)

(10)

(11)

Let us find a czlculation expression for the 1ift coefficient
c.,. Since for flight along a trajectory with angle 6 to the horizon

y

then

Y==GtosH,

¢y =¢€qcosh,

On the basis of (13) and (6) we have

y

€2 =c% cos? = (1 -—-sin’&):c';’)( .....‘.‘.’_).
a8

Let us substitute Eq. (10) into the equation

P=Q- Gsint

(12)

(13)

(14)

(15)

er,

i

o

o
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(16)

Wt Ny

¢+ A —cp+cgsinbea0;
2 fy_ 8 - v
‘.«H‘AGO(I 'V?,') Cpt Co - =0,

Ach ¢
'--v-;."-l- Ilz-—-v:u+ Cp-'cxo—Ac%=o;

from which

u=-§7‘%-[1—V1—4A(c,*c,o~aAc}3)]. (17}
Consequently,
1
d=c 1—W[I—Vl-—4A(c,,—c‘o-Ac§)]2}. (18)

On the basis of the relationships obtained we can propose the
following algorithm for calculating the unknown dependences H = f(M)

for various values NyA = const:

— given the number M;

—~ from M find 0 and A (Fig. 1.9);

— collect all possible values of H for which the given values

Nya = 0, 25, 50, 100, 150, ... kgm/s<kg are obtained from Eq. (1),
for which

- from H find the corresponding values of p and a using tables;

— from M and H find thrust P from the graph (Fig. 3.2);

- calculate

2
v G
g=—g"i ta==gi Va=Ma;

— using Eqs. (7) and (8) of Problem 3.3 calculate ¢y

— having calculated cs from (18) and having substituted all

obtained intermediate values into (11), find Nyn'

If the obtained value of Ny’q does not equal the given one then,
using the iteration method, repeat the above algorithm for calculating

NyA for other values of altitude H until the glven lnteger Nyn is
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obtained; then note the 2
obtained péirs of numbers

M and H for which Eq.

(11) gives the precise

given value of NyA' Re-

peat the ocalculation
algorithm for another .
value of M. Having ob-

tained all pairs of num-

bers M and H for the

given value of NyA’ cal-

culate the same group

of M and H for the next

given value of Nyg' Re-

peat the calculation algo-

M rithm in this sequence

for the entire range of

M .and H for combat
maneuvering of the examined fighter-interceptor.

- "

——
L

——
Lk

gy g

The results of the calculations for the starting data of our
problem are given in Fig. 3.4. The restrictions on qm:'e‘q and
cy npes are taken from Fig. 3.3. Superimposing the graphs H = £(M)
for identical values of NYA for two comparable fighters, we can
graphically show the regions M-H in which one fighter is more

maneuverable than the other in serial combat.

e
4 .-‘.,t »

PROBLEM 3.5. Calculate, in coordinates M-H, the regions of
combat maneuvering for various values of normal load factor n_,
longitudinal load factor n,, radius of banked turn Rn, the time re-
quired to turn 180° in the horizontal plane t,800s and the vertical
rate of climb u with and without afterburner power. Use the data
of Problem 3.4 as the starting data.

Solution. Let us examine the banked turn of an interceptor
in the horizontal plane. The normal load factor ny 1s the ratio of
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1ift Y to wéight G. It acts in the plane of symmetry of the air-
craft pefpéndicular to velocity vector Vﬁ and equals

Y &y
”v‘_""é'“'?;‘ (1)

For the avallable normal load factor we have

Y. Cynaends n, .
By pacn = me = ”’-\Urq =0’763’P““M2-_‘6£' (2)
where cy pacn is the available 1ift coefficient, PB is air pressure.

For supersonic fighter-interceptors, in first aporoximation

€, paen = V“’“l (3)
Substituting (3) into (2) we get

- Mp, S
n”m=0,7 ‘6-}'/'»“—"_‘;-—"1". (14)

From the aircraft drag polar
cx=Cy+ Ay (5)

we find Cys which we substitute into (1). Then the calculation for-
mula for the available normal load factor with curved flight in the
horizontal plane assumes the following form:

==———1/‘P“"°. (6)

It is just this load factor, created by englne thrust, which 18 one
of the basic characteristics of the maneuvering capabilities of an

interceptor.

The algorithm for calculating the boundaries of the regions of
combat maneuvering in M-H coordinates for various values of ny is
as follows:

— given the value of M;

— from the graphs in Flgs. 3.2 and 1.9 we find the corresponding

thrust P and coefficlents ¢ and A;

x0

95

.l
ol BE
P

s
#

g e
DA

)
4

e

\:-'1.-&

N "z“;f!-‘_%}\ "‘ﬁ'-*.\' o e
"\‘“‘. ‘-}‘{,&‘;ﬁ"ng‘
"i-;‘-é, I k.:’- %
i“ 'si‘ et -
A

3
A}



el
LRV i

1r1v

it gl

Y
o

!

s

»

VG i i
41 R RTINS

¥
Ly

bt i
LA

v
I

L A

"

! SRR

]
k

)
LI RN

'
s

AN

.— from Eq. (4) of Problem 3.3 we calculate the thrust coef-
ficient Cps

— for a fixed value of load factor ny we calculate the weight
coefficient Cq by the formula

1 / c‘ ;—C
CO=-'—,;- PA"; (7)

— knowing Cg, We find the value of air density p from the ratio

cg = G/aS;

— from the table we find the flight altitude H corresponding to
dencity p.

The boundaries of the regions of combat maneuvering of an F-4C
type airecraft, calculated by the described algorithm and corresponding
to various values of load

K & gl ]
20 / Yrped L~ ""!\ factor ¢ , are given in
!Hwﬂ Fig. 3.5 for afterburner and
qé,,—}, ; 1‘_ = no afterburner engine opera-
{” \ H tion.
[V Y 4___,_-...+_
il ,’_f} gf;t : ], ‘ B imil thod
' NS 77 Ja y a similar method we
,/ ixﬁJ—~.__~-._f3‘JV$ calculate the boundaries of
S
/{/ 7#\. ;:’< _ the regions of combat man-
l/ v /-"‘““;o’:ﬁ:“" . euvering for various values
/ / /'-s-—-- No a;g:::umer of the longitudinal load .
o ) ~ 20 factor n_, the radius of
) 2, H X
Fig. 3.5. banked turn Rn, the time re-

quired to turn 180° t1800>
and the rate of climb u. The results of these calculaticas for the
F-4C are given in Figs. 3.6-3.9. The following quantitative rela-
tionships form the basis for these calculations. By definition of
longitudinal load factor we have

n“'—--!:". (8)

Consequently,
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5 epmt
R == — 4e,
or
= Acq(n}—1). (10)

- Each load-factor value ny has its own corresponding specific radius
of banked turn R, and time t;g,0 required to turn 180°. Let us find
these relationships.

NI

LA S

The conditions for balance of forces with turning flight in the
horizontal plane are written as follows:

Z=Ysiny, G=Ycosy, (11)

where y i3s the bank angle.

For centrifugal force, from mechanics we have the famillar re-
lationship

Gv?
Z = (12)

from which the radius of banked fturn

o,
Rn'—_‘ "'g_;'['- {(13)

Substituting the expressions for G and Z into (13) we get

V;‘: Ycusy _ V';: ____{Map (ll&)

Ro=ram =T~ Yot

Here, according to (11) and (1) we have

RIS B Tl

G 1. & v =ViE—1
. cQsT=—)—,-==-E-, sm'{m-,;;-l'”,“' * th"Vny L (15)

(Wi,

IR YEY T

Then we find the time required to turn 180°:

v

"

-

=ZR, (16)

g"u

Having substituted the expression for load factor ny according
to (6), we obtain the final calculation formulas:
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Ma)?
Ry= —~ ; (17)
/ p Cxo —1
gl Ach

=Ma

. (18)

t.. ==
e p /m_y
l/ Ach
When constructing the boundaries of the regions of combat man-
and t180° we must take into

which, by

n’

euvering, for various values of ny, R
consideration the aerodynamic restriction on ¢
definition

¥y Aon

is defined by the inequality
n,ito < Cy gon (19)

In this case the boundary of the region of combat maneuvering
is calculated using the formula

Glven the values of ny and M, from (20) we find the alr density
p and then, from the table, %he corresponding flight altitude H.

Examining the rate of c¢limb u as a parameter for the region of
combat maneuverling, we can writce the following relationships:

, Ap u u
S!n0=—a-==-7:-=-;;{;-. (21)

where u is the rate of c¢limb, i.e., the projection of velocity V

L]
onto the vertical axis; AP is the difference between the thiust .

required to gain altitude and that required for level flight.
Since from (21)

APV,
u=—6"$ . (22)

while the normal load factor

M Swa
oA
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n,=%-==coso, (23)

Wt

W
hatfa Y,

for a ~ 0 and P = PNaHC we get

~

u=Ma-’-’—"ﬁ‘-5—:-o-. (24)

. Using these relationships and Eq. (17) of Problem 3.4, we calculate
the function H = f(M) with u = const, using an iteration method
similar to that described above.

PROBLEM 3.6. Based on tactical requirements, the range of
level flight of a fighter~interceptor should be Lr.n' Petermine the
required relative weight of the fuel, if we know the powerplant
effielency n = 0.4, the calorific value of the fuel 6§ = 10,000
kcal/kg, and the LDR of the aircraft K. Show how the relative fuel
welight gT depends on the LDR for three values of flight range L'_.n =
= 1000, 2500, and 4500 km. How does the dependence gT = f(K) change
if the engine efficiency changes from 0.4 to 0.6? Assume that the

entire fuel supply is expended in level flight.

Solution. During level flight, work is accomplished equal to
the work of transporting an average flight weilght ch a distance of
Lr.n‘ This work is numerically equal to chLr.n and is balanced by
the work of the powerplant with burning of GT kilograms of fuel,
which in turn 1s equal to GTKGn. Thus we have

it Sl
POALNENTHS:

o

P R I

chLr. o =0:Kin. (1)

Pl e i
. e n
IR RANE X

Al

Since the average weight is associated with the takeoff welght by
the relationship

I‘r!. it )

F G,
.;*‘2 GCP == Gn.'l ha ;_2!' ' (2 )
N the relative fuel weight is
)
% . O Gi (3)
. = =2 . A
2 O

But according to (1)
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oy, v v G A
.—._....a Lr ——.L = ""‘—f 2 .
5‘&:,: "Teasd i %TFE A (4)
. 8042710 xgn/ke
\\ Consequently, the calculation
QS\ - oy formula has the following form:
\ —— -'q-o',s
a5 - b= (5)
\ ”&/’,
04 kI \\\\ where
\ \ \.;'"00 \
03 \“\ ™ \: oS ] & == Lra (6)
N }’o ™~ L - B Kbn
02 > S
“K <\\\“\ZZ\\\‘* T = Substituting into (6) the value
~ (& T -~
~ ™= of 8§ we must first convert kcal into
ol o _.6'@ I i .
' T = e T kgm, remembering that 1 kcal = 427

; 3 < s i 7 ¢ & kgm. Varying the value of X from 2
to 9, we find the desired dependence

Fig. 3.10.
gT = {{K) for the starting data of

the problem (the solid lines in Fig. 3.10). With n = 0.6 the solu-
tion 1is shown by the dashed line.

PROBLEM 3.7. Based on tactical requirements, for an inter-
ceptor the range of level cruvising flight should be 2000 km. De-
termine the weight of the fuel if the interceptor takeoff welght
G = 20 tons, engine efficiency n = 0.4, the calorific value of

830

the fuel § = 10,000 kcal/kg, the 1lift and drag coefficients e, =

= 0.45 and ey = 0.1. By what value does the flight range decrease
if the relative fuel welght is halved?

Solution. Let us designate the range of level flight of the

interceptor as L Then the energy expended by +he engine when

r.n’
the interceptdr covers distance Lr f is =gual fto the worxk reguired

to transport the weight of the interceptor over this distance.
Since the weight of the interceptor changes within significant
limits during the flight, we will use the concept of average weight

ch, considering 1t to be constant and equal to

ch=6,“-—-%l-, (1)

x)

TeTIEY

ey
.
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4 ghéﬁéAqf,is the weight of the. fuel.
3 R I -
i; . -
ﬁ 7 "~~566§§féeﬁing this quite permissible simplification, the work
§ acéomplished when the interceptor flies the distance L. _ 1s
i Gegle.n
2 o 2
. Cx .
The relative fuel weight, according to (1), is defined by the rela-
tionship
. . b
b g =2(1— 7). (3)
From. (2) we have o
. Lea@ E
a;...f%;z, (1) R
where ‘ A
B KmZ, (5)
: . £

i Substituting the value of G, from (1), we get

o s (6
Gu(1+ gy ) =T %)

Thus the calculation formula for the relative fuel weight
assumes the following form:

S,n-‘——z;:—. (8)

For the numerical values of our example we have ET = 0,23.

We should bear in mind that in Eq. (8) we must insert Lopin
meters, while § 1s in kgm/mg, i.e., consider that

1 kcal = 427 kgm.

Thus, having obtained the relative fuel weight, let us determine its
absolut » welght:




G, = 4.6 tons.

Then let us .determine how Lriﬁ.changes if we decrease ET by a
factor of twc.

From (8) we have

(9)

If we cut £_ in half, L_  decreases by a factor of 2000/940 = 2.13,
since

= A7 o5
Lia=435-427. 10‘.0’4—;::‘—0,_17-5——- 940 1m.
b
For all practical purposes, the flight range of a cruising inter-
ceptor will be somewhat less, since we must consider the additional

expenditure for takeoff, as well as the emergency fuel supply.

PROBL.M 3.8. Determine the required relative thrust of an inter-
ceptor durling level flight at altitude H and speed Vn, if we know the
takeoff weight Gsan’
the takeoff TWR e¢.

the drag coefficient Cys the wing area S, and

Solution. The thrust required for level flight is defined by
the familiar formula

oVa S
Pno'rp= x5 (1)

‘where p is the alr density at the c¢xamined altitude.

Let us introduce the concept of relative thrust:

where € = Paan/Gaan is the takeoff THWR.

To graphically trace the interconnection among ¢, th: takeoff
welght, and the flight speed and altitude, let us construct a nomo-
gram (Fig. 3.11) which covers practically the entire range of change
of the examined characteristics.
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PROBLEM 3.9. Show [~ \ \ \
the limits of change of AL\
interceptor thrust re- \ \,NJ\.
quired for level flight, \ \\ Y \
if the LDR of the air- N \\ \
craft is doubled. De- L L \ |
termine the thrust re- , \’\%.\f‘a
quired for level flight ) ﬁ;séé
if we know the LDR K = 5, :Jo 2
the takeoff weight G__ = :ﬁ‘izfz:
= 20 tons, and the fuel X [

Vokm/h 2000 1500

weight G_ = 4.6 tons,
while the takeoff thrust is 0.8 of the
takeoff weight.

Solution. First let us derive, in as “ﬁ§§SSC¢éb:: <
general form, the formula for the depen- 07 Vﬁ&&}k& NN
dence among relative thrust ¥, LDR K, and Zj AN \\‘\\\\‘\
relative fuel weight e_. By analogy with ol ] \ _\Ck\L NS,

the concept of average takeoff welght ch Fig. 3.11.

introduced in Problem 3.7 we can, in first

approximation, use the concept of average thrust required for level
flight and the average LDR value ch.

Then

G
Pno‘rp. o= K:: (1)

or, substituting the expression for ch from Problem 3.7, we get

Prgtpocp= EQEI‘K':_G.L (2)
. ¢p

e
M
+eo,
Y
3

-y -

while introducing the concept of relative fuel weight

o
[y

£ =il (3)

Gass '
we obtain the following formula for calculating the average thrust
required for ievel interceptor flight:
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! - Gm-. (2 il sr)
‘)no'rp. ep == Ko . ()

b

g

Let us designate the TWR as

PB".‘\
& == —r—
! Tor (5)
A
then
Wi .
Pu'n (2-‘:1)
rd P P.':oz;. = Inegt . (6)

Thus the average TWR

‘”norn ip 23 4
. $ . &=~ Sy ( 7 )
Y= Fyss = ‘2:’(”‘ )

pendence v = f{z_, K g. 3.12. For the numerical
nd ¢

- K) i
H
data of our problem, with K =5, &_ = 0.23, and ¢ = 0.8, the required
3 )

horizontal thrust ¢ = {2 - 0.23,/( = 9,22, If ch is
i

~

s decreased by a fac-

* PROBLEM 3.10. Establish the basi: relationships among the in-
3 terceptor characteristics during takeoff. Show how the takeoff run

depends on the takeoff weight, the TWE. the LDR, air density, and
coefficient of wheel friction.

Solution.

T run L_ 1s the path covered durilng the

ik A R LA

0 r
uniformly accelerated wmovement of the interceptor, from speed V = 0
to lift-off

2 L. cConseguently,

I, the Iift is balanced by the takeoff
projection of engine thrust P onto the ver-
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. v
Gpus =~ Psin gy ==y orp ""Q?EL S,

from which
2 (G.,. — P dofp)
otp = Cy otpPS ' (3)
. where cy oTp is the coefficient of 1ift at the moment of lift-off,

p 1s air density, S is wing area, and o, is the angle of atteack

TP
at the moment of 1lift-off.

Acceleration a, is determined from the equation of motieon of
the interceptor durlng the take-off run:

m =2, (5)

where m is the mass of the interceptor, Q is drag force, and FTp is
wheel friction.

From (4), considering (5), we get

g(P—Q—"Try)

dgaa

(6)

ep =

Since forces P, Q, and FTp change durlng the takeoff run, we must
substitute their average values into (6).

We know that the average takeoff thrust iz of the order of 0.65
of static thrust PCT (when V = 0), considering the losses in the
engine inlet ducts:

Pcp = ongspr.r' ( 7 )

-
Ls 1

A RN

The average total resistance of the interceptor is

i ol il

(Q + Ftp)cp = f’G.sm ( 8 )

L
)
e %

where f' is the total coefflcient of resistance to motion of the
interceptor during the takeoff run,
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We know that

£1=08 (f+ 7=, (9)

where f is the coefficlient of wheel friztlon and KOTp is the LDR of
the interceptor during lift-off.

o Xl
y X

"

Substituting (7)-(9) into (6) we get

g(095Per — fGyva) gle—1, (10)

CP G!Sﬂ

where g = 0.95(PCT/GBSH) is tre average effective TWR of the inter-
ceptor during the takeoff run.

Considering (3) and (10) we get the calculatiocn formula for the
length of the takeoff run:

Gpyz = Psinagy”

gy T2 e et | (
: P CrorpsSE (6 —f') (11)

These formulas allow us to: calculate the speed of lift-off as a
function of ambient temperature and pressure (having determined p),
takeoff welght, and thrust; determine the length of the takeoff run
as a function of these values and also of the runway slope and wind
speed and direction.

In the calculations we can use the following values of f':
0.065-~0.07 for concrete, 0.075-0.08 for hard ground, and 0.2-0.26
for dry viscous soil.

PROBLEM 3.11. 3ubstantiate the tactical-technical rzsquirements
on the basic characteristics of the airborne radar of the interczeptor
and sighting, if the followlng are known: 1nu. *ceptor speed Vn =
= 2000 km/h; target speed Vu = 1800 km/h; range of possible rocket
firings D'_!_MEW:-D”_MHH = 50-15 km; maximum altitude of target above
interceptor AH_ = 5 km; total time to accomplish all operations of
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target acquisition and interception, interceptor homing, and pre-
paration of the rockets for firing t2 = 30 s; interceptor-target
homing method — constant-bearing approach.
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_ Solution. The basic tactical-technical characteristics of the
airborne radar of the interceptor are the maximum detection range,
azimuth and elevation view angle, the accuracy in measuring the tar-
get'é coordinates, and the range and azimuth resolutions.

Since there must be at least 30 seconds from the moment of tar-
get acquisltion by the airborne radar to the moment the rockets are
fired, while the closure speed is maximum with attack strictly on
& head-on course, the maximum target detection range should meet the
requirement

Doﬁu. maxl .}/ Du. [TH {4 ‘+ (Vu + Vn) t:- ( l)

The required azimuth view angle wn is determined by the maximum
angle of target sighting with the given interceptor homing method.
Since for constant-bearing approach the interceptor relative bearing

?.‘=afcshl'%ﬁ"8in Pus ( 2)

- h
PR A,

b

wnile for all-aspect weapons the target relative bearing @u = 0-180°,
consldering that mn reaches its maximum when Qu = 90° we get

i gl
»
LR

"
Y ot

woa s

Pa, uaxe == AIC Sin "‘V/:'f‘ (3)

This is the required target sighting angle which, naturally, should
be symmetric about the longltudinal axls of the airecraft. Con-
sequently,

$a>>2arcsin . (4)

N.MaKkc
= arc sin 0.9 = 64°, azimuth view angle should meet the requirement

wn > 128°. Let us note that when the target speed decreases or the
interceptor speed increases, l.e., with a decrease in Vu/Vn, the
required azimuth vliew angle decreases, For example, when Vu/Vn =
= 0.7, Yo 2 2-44,5 = 89°, The maximum view angle required from the

For the data in our problem we have: Vu/vn =0.9, 9 =

A standpoint of elevatlon 1is determined from the conditions of inter- AR
< Rk R ULy
3 ception of the target with maximum vertical separation AHp, assuring ??é%gg%gi
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destruction of the target by a rocket whén fired from minimum range.
For lgvel interceptor flight th;s,elevation is arc sin (AHp/Dn.M”H).
Considering the elevation view angle to be symmetric about the longi-
tudinal axis of the aircraft, and écnsidering *1e error in determining
the target altitude AHu, we find that the elevation view angle should
satisfy the requirement

AHp + AHy

, .
$a=>2arcsin o

(5)

For the numerical data of the problem and with AHu = 1 km we
get

¢y 2> 2arcsin 5;';‘ =470

The required target coordinate measurement accuracy can be sub-
stantlated by calculating the lead angle ¥ when ibckets are fired
from distance Dn to the lead po4n§ of target impgct. For constant-
bearing approach

sin g = 378, (6)

’

where W is the angular rate of gigglgggmgpg of the target sighting
ling and Vp is the average rocket velocity.

Let us differentiate Eq. (6). Then

Vpcus 3%

AD, = . (7

- -
b

1. If

we allow an error Ay = 1° in calculating the lead angle and assume
that w =5 °/s, then AD_ < 167 m when Vp = 3000 km/h and AD_ < 16.7
meters when w, = 50 °/s. To substantiate the required resolution of
the airborne radar, let us examlne the occurrence, in the acquisition
sector, of two targets flying at range D from the interceptor with
distance d and interval 1. Then, obviously, the range resolution
should meet the requirement AD < d, while the azimuth resolution
should satisfy the relationship

The maximum error in range measurement occurs when cos ¥

A‘*’»S’:T (8)
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PROBLEM 3.12. The interceptor is guided, by the direct-intercept
method, to a ronmaneuvering target at the same altitude (Fig. 3.13).
The interceptor and target speeds are constant. Deter-
mine the required angle of automatic target
tracking by the airborne radar (azimuth)
if the attack should be guaranteed for
any aspect angle, while the speed
# >~ of the intercepted targets

-

B(fire)

4 Y ¢ changes within the range from
Fig. 3.13. 1000 to 3000 km/h. Given:
1700 km/h, rocket speed Vp = 500 m/s, range
for target lock-on by airborne radar DBaxa = 70 km, rocket firing
range Dn = 20-50 km.

interceptor speed Vn

Solution. According to the kinematic scheme for interception
(rig. 3.13) we have

AF_._QE= Vﬂo
FCTE™ V!

EC =D, %;

.‘f!'..—_. singp
Vo g (1)

The path covered by the rocket to encounter with the target

/

b,
BE=D,=msinq,. (2)

The path covered by the target from the moment of firing to its en-
counter with the rocket is defined by the formula

D, ..
DE‘Duﬂzmsln?p. (3)

The target relative bearing at the moment of radar lock-on of .he
target

?u=7+33'

sin{gp + %), (4)

B=arcty 7
cos {gp + 5p) +—¢:
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y=arncsing— (D,-‘-,—"f --.D“) . (5)

" In Fig. 3.13 the tdréet”ﬁrééﬁing or sighting angle 1s the angle
between thz interceptor relative veloclty vector Vn and the in-

terceptor absolute velocity vector V late”

«OTH

The required angle for automdtic target azimuth tracking is,
naturally, a function of the attaék aspect angle. For the given
value of target relative bearing‘"cpLt we have

?n=180°~¢-4§;=:?,+'qp-—?“. (6)

Thus, to answer the- questior posed in the problem we must be
given, in the range from 0 to ;80°, various values of wu gnd calcu~
late the unknown’ang’le-wn from'knéwn valueg of Yu’.Déaxa’ Dn’ Vn,A
and Vp using Egs. (l)f(6). The'ﬁeéuits of the calculations for the
- o coriditions stated 1n our problem are

80 ~V = 3000 kasn ;g—i\ién in Fig. 3.14.
50 4

Vil !
40

« A L.

. shows (Fig. 3. th rel
/, 17 ST 1 8 ‘( g. 3.14), wi h relatively
“ i/, ::" ‘ <t<§ * slow gpeed§ of the targets to be inter-
0 {P;; N cepted the required azimuth angle of

“As the¥§épendgﬁée v, = £(gq,) .

automatic tracking 1s maximum with a
target relative bearing v, = 90°. With
target speeds Vh > 2000 ?m/h, angle ¥
continuously increases with an increase
‘ in ta?gep relative bearing; if b, 1s
restricted by the design of the antenna system or the interceptor
fuselage, target attack is limlted to a specific small range of
target relatlive bearings from the forward hemisphere.

T
0 20 40 60 80 100 120 140 160 qu

Dn'SDKH
e D™ 2000

Fig. 3.14.

PROBLEM 3.13. Determine the required elevation angle of auto-

matic target tracking by the airborne radar, if the target must be
intercepted from the forward hemisphere with vertical separation. We
consider that the rocket should be "illuminated" from the moment of

firing to its lmpact with the téréét. Given: interceptor speed

et

o e o
Y
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vertical separation of target over interceptor at the moment of air-

borne radar bgrgaﬁ 1éck49nrAH = 8 km, the speed of the intercepted

targets varies within the range Vu = 1000~3000 km/h. How does the

elevation angle of automatic target tracking change if the inter-

ceptor "zooms" before firing? Here we know the loss in interceptor
. speed in the "zoom" AV = 500 km/h. '

Impact point V“ \Vs
. r 1 7 Y
9 V i ’ q,od“
0 Ll 60" e
W (P; /VV i 504 A b Dy=50nm _ |
1 3 P AN 8 xu
€ D, g
" 44— Pl ¢ [T
:’ . Fire " 0 ! 31 “wg“.‘/
X o n 2" ]
g 2 n 1
L. - 1 ') 1000 2000 Vy, ke/n
Fig. 3.15. Fig. 3.16.

elevation angle of automatic target tracking without "zooming" is

e = arcty 47, (1)

AL=L—(D,+ D,);
D=Vt (5
D,= Vs €))

t is the time from rocket firing to encounter with the target.

Considering the slope of the interceptor trajectory during the
"zoom" we have (position 2 in Fig. 3.15)

(5)

where o 1s the pitch-up angle of the interceptor.

v, = 1700 km/h, rocket speed Vp = 500 m/s, firing distance D_ = 50 km,

Solution. According to 1 in Fig. 3.15 we see that the required
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The gain in altitude during the "zoom" is defined by the rela-
tionship between kinetic and potential energles:

B V!
-ﬂ§5==WQdi (6)
Let us differentiate (6); then ’
VAV, )
ALK .
Thus, the altitude of the "zoom" is directly proportional to the in- -

terceptor speed Vﬁ and the loss in speed during the "zoom" AVE.

The firing distance is deflned by the relatlonship

Dym Vit cos o+ (Vg + Vy) casy, (8)
from which
D
b= V,cos?c-!-—ﬂ;n-!- Vy)coss” (9)
Then we have

, . Oy
cpnnarcsm-ﬁ;-. {(10)
. Vn . i3
s=arc51nmsxn Pa- (ll) RS DR
ANUSE ARy
A AN Y
Formulas (1), (2), (5), (8), and (9) allow us to calculate the ;Qét}ﬁgya;
Rty Ty

unknown angle wa as a function of target speed V and the glven
values of Vn’ Vp, AH, and D . Figure 3.16 shows the results of
the calculations. The graph y = f(Vu) shows that a "zoom" makes
it possible to significantly reduce the requirements on target
tracking elevation by the alrborne radar.
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CHAPTER 4

EVALUATING COMBAT EFFECTIVENESS USING BASIC THEOREMS OF THE
PROBABILITY THEORY

Since the outcome of combat between a fighter-interceptor and
a target depends on a number of factors and generally is a random
event, the quality of carrying out a combat problem can be evaluated
quantitatively most completely by probability factors, e.g., the
probability that a target will be destroyed (shot down).

In this chapter we give problems which illustrate the possible
ways of using the basic theorems and laws of probabllity theory to
evaluate variovrs aspects of the combat efficiency of an interceptor
when engaging in aerial combat.

™

e
LU R A,

The events of "hitting a target" and "destroying (shooting down)
a target" are considered as equivalent in all the problems of this
. chapter.

o
.

T

RO Bk

If necessary, before examining the problems brush up on the
basic assumptions and definitions of probability theory using [2].

R

T

PROBLEM 4.1, As a result of inaccurate surface guidance the
interceptor finds itself either in the region of permissible rocket
firing or in the region of cannon operation. Determine the

by ’
Yot T
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probability that an aerial target will be downed, if the interceptor
attacks once using either a rocket or cannon fire. The probability
of downing the target when the interceptor is in the region of per-
mitted rocket firing is 0.5, while that in the cannon-fire region

is 0.3.

Solution. Event A — "interceptor entered the region of per- )
mitted rocket firing" — and event B — "interceptor entered the region
of permitted cannon fire" — are mutually exclusive (entering one

regilorn excludes entry into the other). Therefore let us use the
theorem of the additlon of probabilities: the probability that
one of two (o{ several) mutually exclusive events will occur is
equal to the sum of the probabilities of the examined events. The
unknown probability

P(A+ By = P(A) + P(B) =05 + 03 =08,

PROBLEM 4.2. An interceptor armed with two rockets having
semiactive homing heads 1s guided to an aerial target. With re~
liable functioning of the surface and alrborne guidunce systems the
interceptor reaches the zone of permitted firing with a probability
of 0.9, Provided there is fallure-free operation of the firing
system and the systems of rocket homing and destruction, one fired
rocket will destroy a target with probability Pl = 0.8. The inter-
ceptor fires both rockets at the target; each rocket is gulded in-
dependently. The reliability of the surface guidance system P2 =
= 0.9, that of the airborne radar during rocket control P3 = 0.95,
that of the rocket firing and homing system Pu = 0.8, and that of
explosion of the rocket warhead P5 = 0.9. Determlne the probability
of downing a target, considering these reliability indicators.

Solution. The probability of downing a target is equal to the
product of three independent probabilities: that of entering the
zone of permitted firing, that of fallure-free operation of the sur-
face guidance system PE’ and that of destroying the target with two
rockets. This latter probabllity, considering the given reliability
indicators, is
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1_‘(1 ~P1P3P‘Ps)2=0.794n

Consequently, the probability of downing the target is 0.643.

PROBLEM 4.3. With surface guldance to a high-speed bomber, the
interceptor finds itself at a certain random distance and random
aspect angle relative to the target, resulting in random detection
of the bomber. The probabllity Pl of' detectling the bomber at a dis-
tance of more than 100 km is 0.6; the probability P, of detecting it
at a distance of less than 100 km is 0.4, If the target is detected
at a distance of less than 100 km, the interceptor enters the aft
hemisphere with probability P3 = 0.9 and downs the bomber with proba-
bility P, = 0.8. If the bomber is detected at a distance of more
than 100 km, the interceptor enters the forward hemlsphere with
probability P5 = 0.8 and downs the bomber with probability P6 = "7,
Determine the probability of destroying the bomber.

Solution. Using the theorems of addition and multiplication of
probabilities, we obtaln the probability of destroying the bomber:

P=PPP;+ P,P,P, =024,

PROBLEM 4.4. Determine the probability of destroying a target
if the interceptor fires its rockets from one of three distances:
Dl’ D2, and D3. The probability of destroying the target with rocket
firing at range D1 is 0.4, at range D2 ~ 0.5, and at range D3 - 0.3,

Solution. Event A; - "firing the rocket at distance Dl" - is
equlvalent to the event Bl = A1A2A3 (the rocket is fired at range
Dl and not fired at ranges D2 and D3). Similarly, event A2 -
"firing the rocket at range D," — is equivalent to B, = A2K1K3'
Finally, event B3 = A3A1A2. The probability of destroying the target
is equal to the probability of destruction with firing from only one
of the three ranges, i.e., the probability P(Bl + B, + B3) of the
occurrence of one of the three events Bl’ B2, or B3. Since events
Bl’ B2, and B

AT
d

-,
.

are mutually exclusive, the theorem of addition of

3

AT
k)
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probabilities is applicable:

P(B,+ B, + By) = P(B,) -- P(B,) + P(By).

e Hr
RN, . LA

Now let us find the probabilities of each of the events Bl’ B,,
and By, Events Ay, Ay, and Aj, and their opposite events Kl’ Ké, and

K3 are independent. Consequently, the theorem of multiplication cf
probabilities is applicable to them:

' pCh

w

T T
e o8

P(8)=P(A474:4,) =P(A) P(A) P(Z;) =0,4 (1 —05) (1--03) = b
N . =04
- P(B))=P(4A4A;) = P(4,) P(4,) P(E;) =

=05 (1 —04) (1 —0,3) =021;

P (Bs) =P (Aa.alzz) =P (Aa) P (21) P (Zz) =
=03 (1 — 04) (1 —0,5) = 0,09,

Thus, the probability of target destruction

P (B, + B, + By) =0,14 0,21 - 0,09 = 0,44,

)
RN

)
"L K

PROBLEM 4.5. As the interceptor closes with the target it
fires three rockets, one each firing, at three different ranges. The
probability of destroying the target with firing at range D is

Mmaxc
P, = 0.7; at range Dcp - P, = 0.8; at range Dy ~ P3 = 0.6. To

L.
Py

é destroy the target it suffices at that least one rocket hit be scored.
- Determine the probability of destroying the target.
il Solution. Event Al — "a hit by a rocket fired from range ;;

oy

Jﬁ#

- ™

» “Mauc’" event A2 — "a hit by a rocket fired from range Dcp," and

: event A3 — "a hit by a rocket fired from range DMHH“ are independent
in the aggregate. On the basis of the corollaries ¢f the theorems

of addition and multiplication of probabilities we find that the

probability of at least one of events Al’ A2, or A3 is equal to the

difference between one and the product of the probabilities of the

opposite events. The probabilities of events opposite to events

Ay, Ay, and A3 (the probability of misses) are, respectively,

£y Y

.
»
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O
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T

4
Gl

g=1—=P=1-07=03
N @=1—P,=1—-08=02
gy=1—Py=1-06=04
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Consequently, the probability of target destruction

P, nop = 1 — 4]y == 0,976,

T )
2. PR 8

[k T ) 1 W

PROBLEM 4.6. In order to shorten the intercept line, an aerial
target is attacked simultaneously, but independently, by several
. interceptors. The probability that one interceptor will hit the
target Pl = 0.4. How many interceptors are required in order that
the target be destroyed with a probability of at least 0.97

Solution., Let us designate by A the following event: 1n an
attack by n interceptors, at least one hits the target. Since the
events consisting of hits by the first, second, third, etc. inter-
ceptors are independent in the aggregate and have identical pro-

bability Pl’ then

PA)y=1=u'
where
q=1—Px=1’_o,4=0,6-

By stipulation in the problem, P(A) > 0.9. Consequently, 0.9 <
<1~ 0.6", or 0.1 > 0.6". Taking the logarithm of this latter in-

equality we get

Thus, at least 5 interceptors are requaired to destroy a target with
a probability of at least 0.9 with Pl = 0.4.

PROBLEM 4.7. When attacking a single aerial target the inter-
ceptor downs it with a probability P1 = 0.9. The interceptor attacks
three separate targets once each. What is the probability that all

three targets will be downed?

Solution. Since all three attacks are independent, the desired
probability will be

0,9% =072,
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PROBLEM 4.8. An aerial target is attacked by twe interceptors.
The probabllity that the target will be destroyed by the first inter-
cepﬁor Py = 0.8, and by the second -— P, = 0.6. What 1s the probability
that the target will be destroyed by only one interceptor?

Solution. Destruction of a target by only one interceptor means
that either the first interceptor successfully attacks the target
while the attack of the second interceptor is unsuccessful, or vice
versa. The probability of such.an,evenf is as follows:

P =08 (1 —06)+ 0,6 (1 ~ 08) =044,

PROBLEM 4.9. There are two interceptors of different types.
The probability of destruction of an aeri~l target by the first
interceptor Py = 0.7, by the second — P, = 0.8. What is the pro-
bability that the target will be destroyed with simultaneous attack
by both interceptors?

Solution. The desired probability 1s equal to the probability
P(A + B) of destruction of the target by at least one of the inter-
ceptors. The probability of destruction by each interceptor does
not depend on. the results of attack by the other, and therefore
event A ("destruction of the target by the first interceptor") and
event B ("destruction of the target by the second interceptor") are
independent. According to tht theorem of the addition of proba- .
bilities of compatible events, the probability P(A + B) is equal to
the sum of the probabllities of events A and B minus that of their
combined occurrence:

P(A4+B)=P(A)+ P(B)y—P(4B)= 07+08—07.08=094. )
This problem can also be solved by using the formula

PA+B)y=1—-q(A)¢(B)=1~(1—P)(1—P)=
=1—(1—-07)(1—08)=094. ~

Ot
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PROBLEM 4.10. The intercepton fires four rockets at an aerial
target in sequence at various ranges and independently (e.g., with
four 1ndependent successive attacks). The success in homing the

[
RO
f“:'r: L/
WO

£,

oY)
2y ey
R Sl ]

WY
P
v

120

. I AN, SANA, S, CAN. S, LR s

" O o .t =

ro—y ey T tm Y . =
CRE .l“l?’ Pyl {\,}‘r‘"“\‘i‘%“ "‘f"‘n‘:&'\"‘: .-i\_‘ ::'\ AL SRRl S R
LN .

Y o™ - », i ] [¥ o] L P20 ) LN L R K
B O A i A NS TR - :
- = ~ ™ . - - e | - .
P ITR TR R Tt ' 5‘%:; R C T, DTN X LR .
4-‘-'-":“"-- 3 ;""."‘. AN Y ",\‘ '&-‘r}:‘,‘i‘y\_ LA L AP & 0 e

A
S
; N A

A 1Y % 3
ST S ,,q&»\ A A A LRI TN :
SR A Ll “f:hs_ﬂ'_";‘:;\-‘f \"'s%'.{\"x_'. AR ORI X ¥ T T 12 .4




rockets 1s characterized by the probabilities 0.3, 0.4, 0.5, and
0.3, while the probabilities of target destruction with explosion
of the warheads of one, two, three, or four rockets in thls case

are 0.4, 0.7, 0.8, and 0.9, respectively. Determine the probability
of destruction of the target.

Solution. For the solution we must use the formula for total
probability. If a certaln event A begins with a number of events
Hi’ called hypotheses and comprising a complete group of mutually
exclusive events, the probability that event A will begin is equal
to the sum of the products of the probabllity of each hypothesis
times the probabllity of the onset of event A for the given hypo-
thesis:

Puy= e (4).

t=]

Let us examine the followlng five mutually exclusive hypotheses
comprising the total group: Ho — none of the four rockets explodes
at the target, H1 — one rocket explodes at the target, H2 - two
rockets explode at the target, H3 — three rockets explode at the

target, and Hu — all four rockets explode at the target.

Using the theorems of addltion and multiplication of prchabil-
ities, we defina the probabllities of these hypotheses:

P (o) = (1 ~03) (1 —04) (1 —05) (1 —u;3) = 0,147;
P(H) =03 (1 —04) (1— 05) (1 —0,3) +
+ (1—03) (1—0.4) (1 —05) 03 =0351;
P(H:) =03-034(1 —05) (1 — 03) -+ 03 (1 —04) 05 (1 — 0,3) +
+03(1 —0,4) (1 —0,5) 03 + (1 —0,3) 04-05 (1 —03) +
+ (1—03)04 (1 —05) 03 4 (1 —0,3) (1 —~0,4) 0,5.0,3 =0,335;
P (Hy) = 03-04-05 (1 — 03) +
+03.04(1—05)03 4 03 (1 — 04) 05-03 +
' + (' —03)04-0,5-0,3=0,129;
P(H)=03.0,4.05-0,3=0018,

The conditional probabilities of event A (target destruction)
with realization of the examined hypotheses are as follows:
P(AIH,) =0; P(A/H,)=04; P(A/H,) =07; P(A/H,)=08; P(A/H,)=09.
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Having determined the probabilities of the hypotheses and the corres-
ponding conditional probabilitles of target destruction under these
hypotheses, let us find, from the total-probability formula, the
desired probability of target destruction:

P(A)=P(H,) P(AlH,) + P(H,) P(AH)) +
+ P(H,) P(AJH3) + P (H;) P (AlH,) +
+ P(H,) PAJH,) =0,147.0 +:0351 04 +
+ 0,335:0,7 + 0,129-0,8 -4 0,018-0,9 = 0,4943.

PROBLEM 4.'.1. Two interceptors independently fire one rocket
each at an aerial target. The probability that the target will be
destroyed by the rdcket from the first interceptor is 0.9, by the
rocket from the second — 0.6. As & result of the attack by the
interceptors, one rocket hits the target. What is the probability
that the target will be downed by the first interceptor?

Solution. The problem is soivéd using the Bayes formula (the
theorem of hypotheses). If A can begin with any of n hypotheses
Hi ébmprising a complete group of mutually exclusive events, and as
a result of the experiment event A begins, the probability that
event A will begin with the given hypothesis H, (1=1,2, ..., n)
is

. A
P(HyjA) = £

wnere P(Hi/A) is the so-called a posteriori probability (probability
after the fact), 1.e., the probability that hypothesis Hi occurs
provided that event A begins; P(Hi) is the probablility of hypothesis
Hy before the fact (a priori probability); P(A/Hi) is the probability
that event A will begin provided that hypothesis Hi obtains; and )
P(A) 1s tre probability that event A will begin, calculated from the
formula fu1" total probabllity.

Before target destruction (before the fact) we have the fol-
lowing mutually gxclusive hypotheses comprising the total group of
events: H; — neither rocket hits the target; H, — the rocket from
the first interceptor hits the target, the second misses; H3 — the

122

~
- ~

‘:ﬁ -a-v’-k~. At m?
. - " O™
e e AT



S el e T Vel JOS Et R Bpi S SN St WA WA TN SN 5 SENIE B SRR S, ARV S e BT LSS St S M L S

rocket from the second 1néerceptor hits the target, the first misses;
and Hy — both rockets hit the target.

The probabllities of these hypothéses are:

P(H)=(1—09)(1—06)=00% P(H,)=09(1 —06)=036;
P (H !) = 0,6 (1 - 0,9) = 0006; P (Hg) == 0,9'0,6 = 0,54_

The conditional probabilities of the observed event A (one rocket
hits the target) with these hypotheses are

P(AJH) =0, P(A/H)=1; P(AlH)=1; P(A/H)=0.

After event A has occurred (after the fact), hypotheses Hl and Hu
become impossible. Consequently, the desired probability of hypo-
thesis H2 according to Bayes' formula 1s
P (H) P{A/Hy)
P(He|A) = By p ity + Py POATH =
= oy =2 0,857.
0,36°1 4 008.T — o0
The probability of hypothesis H3 is

P(H) P(AlHy)
PH:|A) = PRy T P @ P =

. 0,06-1
= 0061 F 0,36-1 =043,

u..vn,‘_.u..,.
Pl 7 2
I 4 H

0y ""' § -

- gy

PROBLEM 4.12. Entering the region of posslble rocket fire, an
interceptor fires a rocket which downs a target. Tba extent of the
region of possible firing 1s 2-10 km. The probability that firing
occurs in the range 2-4 km is 0.2; 4-6 km — 0.3; 6-8 km ~ 0.4; and
8-10 km — 0.1. The probability that the carget will be destroyed
when the rocket is fired from 2-4 km is 0.3; 4-6 ¥m -- 0.7; 6-8 km —
C.8; and 8-10 km — 0.5. Determine the probabllity trat firing will

occur in the range of distances 6-8 km. T

Solution. First let us determine the probabilities of the
possible hypotheses and the conditional probabilitles of target

t This probability 1is of practical interest when the pilot does not
remember the firing range and the shot must be analyzed after the
flight.
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destructicn under these hypothegés. Before destruction of the tar-
get (before the fact) four hypotheses are possible: Hy, H2, H3, and
Hy, i.e., the rockets are fired from distances of 2-4, 4-6, 6-8, and
8-10 km, respectively.

The probabilities of these hypotheses are, respectively:

P{H)=02 P(H)=03
P(Hy =04 PH)=0,1.

A
K '2' W

o

After target destruction (after the fact, resulting in observance
of event A), the conditional protabilities of target destruction under
the examined hypotheses are

2

';':'”

Al
- PN

P(A[H) =03; P(AlH,) =0]; P(AJH;)=08; P(A/H)=05.

Now, using Bayes' formula, let us calculate the desired pro-
bability of hypothesls H3:

. 04-08 -
PUH:4) = grogsoaor + 0408 70108 = 0%

AT

PROBLEM 4.13. The interceptor fires four rockets independently
at a maneuvering aerial target. The probabllity that each rocket will
reach the region of reliable operation of the radio fuse is 0.6. De-
termine the probability that the radio fuses operate equally for two
rockets at the target, while the other two rockets pass_by without
exploding.

pe g LWL S

it
*

Solution. Let us designate the events "operation of the radio
fuse of the first, second, third, and fourih rockets" by A,, A,, A3,

bl At
HARARE A

and A,, respectively, and the opposite events by i, Kz, Kz,-and Ku. )
Taen event 52 — "the radio fuses of exactly two rockets operate at

the target" — can occur in the following six ways:

. Ah Az: 23' ZA; 7‘1' A:y ASv —:4(0
Alo zb As. /_'14; Zb Ato 23- A(;
Ay A, Ay Ag A, Ay A A,

Since these events are mutually exclusive, while events
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Alo Ato A:h Ait :‘h 713‘ :’-la :ig
are statistically independent, then

SR T W A
o W WP R 90 b WL

B,= _'_11/1':2‘32( + Zli‘z_Aazc + flEZAzl-il +
+ A A4, 4+ AAAA 4+ AdAA,

P(A) = P(dg) = P(Ay) = P(4,) = P(A) =0;
P(Ax) = P(Az) =P(A:l) =P(Z¢) = P(Z) ==
=] — P{A)=1~—0,6=04,

P(B) =6 [P (A [P(A)] =6-0,6:-042=0,346. ,

Here we used only the theorems of addition and multiplication of
probabilities. However, it 1s more convenient to find the solution
using the Bernoulli formula (the theorem of the repetition of
trials), according to which the probability that event B will occur
exactly m times, if n independent trlals are reallzed, in each of
which event B appears with probability P, is

Pp, o =Co2P" (1 —py*==,
where Cﬁ is the number of combinations of n from m:

al -
Cf"nﬁ&-—mﬁ’

For our example
P(B,) = C}-06* (1 —08)/~* = grg=g;; 06 (1 — 06)? =~ 0,346.

Let us remember that the set of probabililities Pm,n is called
the binomial probability distribution, since numerically the pro-
babilities Pm,n are equal to the coefflcients of x® in expansion
of the binomial

(94 Px)*

in powers of x, where q = 1 - P.

The binomial coefficlents Cﬁ can be obtained from the Pascal
triangle:
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In the Pascalﬁtrianéle, ea¢h number is equal to the sum of the
two numbers diagonally above it (e.g., 10 = 4 + 6). -

PROBLEM 4.14. Two interceptors fire cn the same target. The
first fires 9 times per second and hits the target with a probability
_ of 0.8; the second fires 10 times @ second and hits the target with
- a probability of 0.7. The ‘target 1s downed by the fire. Determine
the probability thZ it will be downed by the second ihterceptor.+

'w“ ' i
e [
el [

Solution. Let ug designate by A, and A, the events when the
first and second interceptors, respectively, fire a round. Since
the ratio of the rates of fire 9/10 = 0.9, then

i
e,

E o P(A) =09P(4,).

Let us designate by B the evéht "hit during firing." Then, by
I3 —

3 the stipulation of the problem, weé have

it

P(B]A;) =08
and

P(B[4;) =0].

The desired probability is found from Bayes' formula:

_ P P (BIAy)
P(4,]B) = P(A,)P(I'IT.-X',’)'-I-P(A:)P(B/A,) =

0IP(A) o7

e

=GP 08 + TP Ay = T4z — 0493,

PROBLEM 4.15. The probability of an interceptor's intercepting
an aerial target in one sortie 2, = 0.45. For interception, n = 100
sorties are flown. What is the probability P that interception will

T This probability is of practical interest when analyzing aerial
gunnery from carnons having differént rates of fire.
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5 oceur less than 51 times but more than 29 times, and less than 51
but more than 39 times?

Solution. Using the Bernoulll formula we find the deslired
probability @
P= Y CaPr(1—P)" " =
” med)

1 . " . ¥
= 2,',‘,""(1&?0—:-0:)‘ 045" (1—045)'*~" , (1)
M

Direct calculation of this expression 1s very unwieldy. There-
fore, let us use the approximation, familiar for large n, of the
binomial distribution by normal distribution, with the same mathe-
matical expectations and dispersions:

M{[m] =nP, = 100.045 =45
=P, (1 — P,) = 100-045 (1 — 045) =+ 24,75.

Then, using integration in place of summation we get

o im=M [mip {m~43)8

] 50
1 m—d (g @5
P—"—-—-cl T‘le am Wji’ dm, (2)

Introducing the new integration varlable

45
x=‘]71=-49:5-. (3)

we find s

VoS

1 ) -t
P= Vs X e~ dx. (1)
7x

Vos .
Using tables for the Laplace function &(x) for the argument

X¥Y2 and m/oc = 0 we finally obtain

P=tfolpig)+o{p] 0w

. For the second condition of the problem, analogously, we get

RO ST
LR b

PR

5
yai
S e~  dxna @ (0,71) =068,

-
yai

. 1
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This problem is instructive mainly from a methodological stand-
point. It shows that with a large number of independent events (with
large n) it is advisable, in place of unwieldy calculations using
the Bernoulll formula, to approximate Eq. (1) by the probability
integral and solve using tables. This solution is also valid for
other practical problems, e.g.:?

1. 100 missiles are fired at a target. The probability of one
round's hitting the target P, = 0.45. Determine the probability that
the target will receive less than 51, but more than 29, hits.

2. 100 rockeiz are stored in a warehouse for one year. During
this period the parameters of each rocket will exceed the tolerance
limits with probability P, = 0.45. Determine the probability that
during this time it will be necessary to adjust the parameters of
less than 51 but more than 29 rockets.

PROBLEM 4.16. An interceptoer is armed with two rockets. The
rockets can be fired within the limits from DMch to DMHH;
mum probability of destruction ls somewhere between the two, at some
optimum range DonT' The interceptor can select cne of two tactices:

1) fire the rockets successively at Dmanc and DDnT;

2) fire a salvo at DDnT.

In the second case the target performs an evasive maneuver to
break off the attack. Determine the most favorable rocket firing —
salvo or successlve — if the probabllity of carrying out the second
attack PaT2 is 0.5, the probability of target destructlon with
firing from DMaKc is Pl = 0.2, and the probability of target de-
struction with firing at D___ 1is P, = 0.6.

Solution. An answer to the problem requires that we solve the
inequalities

P+ (1—=P)P+PP=1—U—R) - (1)
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Py 4-PpaPy(1 = P) + PP Py 55 1 — (1 — PPy, (2)

Inequalities (1) and (2) are written based on use of the theorems of
addition and multiplication of probabilities. The resulting prob-
ability of target destruction with successive firing of two rockets
and provided that the probabllity of carrylng out a second attack

PaT2 = 1 is equal to the sum of the probabllities of three mutually
exclusive events:

5 o
I

LA LR

1) the probability P1 that the target will be destroyed by the
first rocket;

2) the probability (1 - Pl)P2 that the target will not be de-
stroyed by the first rocket but willl be destroyed with probabllity
P2 by the second rocket;

3) the probability PlP2 that the target will be destroyed by a
combined hit by both rockets.

The resulting probability of target destructlon with salvo fire
of both rockets, considering the hits as lndependent events, is

1- (1 - P2)2. When the probability of carrying out a second attack
P.;o # 1, by analogous reasoning we get Inequallty (2).

For the numerical data in our problem we have

08< 084,

i.e., when PaT2 = 1 the most favorable fire 1s salvo fire at optimum
range.

When PaT2 = 0,5 we have

02 4 05-0,6 (1 —02) + 0,2:0,6:95 > [1 — (1 —0,6)*] 05,

i.e., 0.5 > 0.42 and, consequently, sequential fire is more favor-
able.

129

T e T e e T e T T T T e e

T - g -~ - oy T - r—r v —
AR . . =t . N A o A L A S ORI

ey . Y S et e T !‘ “',1*‘\ " q",_v“*'

AN ,\\‘\;-». A AL AN

A Y, \“ .*' \Wx‘ q.’h '-" ."
. v - - *

o

g A,
1]
v,



DR SR R TS

T, et Tt s B o e o _ER

AT TN N TG N TR

sLet us note that Inequalities (1) and (2) are also valid when
there 1s more than one target. Then the resulting probabilities,
i.e., both sides of the inequalities, represent the mathematical
expectations of the number of downed targets, and solution of the
apprdpriate inequality answers the question of which 1is more favor-
able: to fire all rockets at the first target or to attack both
targets.

PROBLEM 4.17. The interceptor fires four rockets in succession.

Each succeeding rocket is fired without analysls of the results of
the preceding one; therefore, the target can be destroyed by any of
the rockets. The probability of a rocket's hitting the target de~
pends on the firing distance, and is Pl, P2, P3, and Pu, respectively,
for the first, second, third, and fourth rockets. Determine the
resulting probabllity of destroying the tgrget qu, if one hit is
enough to destroy it. Generallze the solution for n rockets.

Assumptions: the firings are statistically independent; ac~
cumulation of damage is disregarded.

Solution. By stipulation of the problem, the probablility of
target destruction is none other than the probability that at least
one rocket will hit the target, which is defined as the sum of the
probabilities that any of the four rockets will hit the target whille
the other three do not, any two of the four will hit while the thers
will not, any three of the four will hit while the other will not,
and, finally, that all four rockets will hit the target. To explaln
the specific regularity in the calculation formulas, let us first
write expressions for the probabilities P22 and P23 of target de-
struction with firing of two and three rockets:

Po=P(1—=P)+ (1 —=P) P+ PPy= P+ P,— P,P; (1)
Puy=P(1=P)(1—P)+ P (1—=P)(1—P) +
+P (1 —=P)(1—P) + PP, (1 =P + PPy (1 —Py) +

+ PPy (1 = P) + BP,P = P+ P, + P,— PP, — PP, —
= PyPy + P PP, (2)
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Obviously, by analogy with the structure of Egqs. (1) and (2) we can
write a formula to define the probabllity of target destructlion by
firing four rockets in succession:

Py=P,+ P+ Py P,— PP, — PPy — PP — PPy —
~ PP, = P,P, + P\P,P, + P\P,P, + P\P,P +
+ PyPP,— P\P,P\P,. (3)

For any number of successive firings, when the probabilities of a )
hit are different for each firing, by comparing (1)-(3) we get the
following general formula for calculating the probabillity of target
destruction:

Ty

k3

2y o,
)

K]

L e

Pyy=P,+Py+...4+ Py—PP,—PP,—...—P, P, +
+ PP P+ PP+ ...+ (— 1) PPP,... Py, (%)

where P1P2,‘P1P3, ete. are the probabilities of double hits; P1P2P3,
PlPaPu, etc. are the probabilities of triple hits; P1P2...Pn are the
probabilities that all n rockets will hit.

We can easily see that when the probabilities of each rocket's
hitting are equal

Px=P2=P‘=’...=P.
we get the familiar formula

P,=1—(1-P)" (5)

i

2

PROBLEM 4.18. An interceptor designed for two attacks, closing
with a bomber at the maximum range of possible firing, downs it with
one rocket with the probability P1 = 0.4, During the rocket-homing
process the interceptor comes into the bomber's zone of defensive
fire and can be downed by thls fire with a probability Pn = 0,1. If
the interceptor 1s not damaged, in the second attack 1t goes to the
-optimum firing distance and downs the bomber with probability P2 = 0.,7.
What are the probabilities for downing the target and the interceptor?
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Solution. The bomber 1s destroyed in elther the first or the
second attack. The probability of the second event 1s defined as
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the‘produét of three simultaneous events:

1) the bomber remains undamaged after the first attack; this
probability is 1 - P, = 0.6

1

2) the interceptor remains uadamaged after counterfire by the
bomber; this probability is 1 - Pn = 0.9; .

3) the bomber 1s destroyed in the second attack.

Thus the probability of the interceptor's downing the bomber is

Py=04+06:09-07=0778.

The probability Pn of the bomber's downing the interceptor 1is
equal to the probabilitie of two simultaneous events:

Whas A

o Xy St

1) the bomber remalns undamaged after the first attack;

i

2) the interceptor is downed by bomber counterfire.

Consequently,

MR et

P, =06-0,1 =0,06.

utw ]

PROBLEM 4.19. One rocket hit 1s enough to destroy a target.
Successlive attacks are made on the target, with each succeeding
rocket being fired only after analysis of the result of the previous
one. Determine the average number Nn of interceptors required to
destroy a target if the probabilify of destruction by a hit from any
of the fired rockets is P and each interceptor has mp rockets.

WL
o

Solution. The number of firings N needed to get one hit is a -
random number, having tne values N =1, 2, 3, ..., 1, etc., to =,
As the complete characteristic of this random number we have the
distribution density whose ordinate Pi is equal to the probability
of hitting a target during the i-th firing provided there were no
o hits in previous firings. Let us use the following designations:
5 P1 — the probability that the first rocket willl hit the target; P2 -
A the probability that the second rocket will hit the target and that

oy
v
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the first will not; P3 the probability that the third rocket will
hit the target and the first and second will not; etec.

Y i LM g 2

U
o«

The required number of interceptors, by definition of mathe-

? matical expectation, is

3

”;“s

N . >y

f MIN) =M 2] = \ Py (1P + 2P, 3P ), (1)
S 1-1

b : The probabllity Pi is equal to the probability (1 - P)~ "~ that

in (1 - 1) firings there are no hits multiplied by the probability
that the rocket hits the target in the i-th firing, i.e.,

Il

Py=P(1 =Py, (2)

According to (2)

P,=P, P,=P(1—P);, P,=P(1—P),,,

S 1

Consequently,

T
H

T i
L e

e
o5t

Tan
(RS

M[Ng] —-—~{P+2P(1—-P) + 3P(l—P)'+..‘]=.
=P 1 (3)
=y T _T':'(T:I_J)F' mP
PROBLEM 4.20. A low-altitude target, covered with intense radio
interference, must be intercepted. For the interception we have a
formation of three interceptors; one of these, flying ahead of the
other two, serves to relay guldance commands to the palr flying at
the same altitude as the target. The target, wlth probability of
0.3, can cut off the posslbility of attack by each of the inter-
ceptors with interference jamming either of the airborne radar or
the guldance-command radio transmission lines. If any of the inter-
ceptors reaches the firing distance 1t downs the target with prob-
abllity of 0.5. What is the probability that the target wlll be

™
PRI

£

bR ]
Brdy f Sy by

=y
T
:

L
-

- downed?

P
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Solution., The probability of downing the target is calculated
using the total-probabllity formula. Downing of the target can occur
only in conjunction with one of three events (hypctheses) which form
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the total group of mutually exclusive events:
1) the targe% is attacked by all three interceptors;

2) the target 1s attacked by the relay plane and either of the
other two;

3) the target is attacked only by the relay plaﬁe.

.nﬂ ﬂ’r‘"‘

If the relay plane is jJjammed with interference, attacks by all
three interceptors are cut off.

¥,

Wy
L

L I

The probabllities of these favorable (relative to the event
"target downing") hypotheses ase as follows:

P, =0,78=0343; P,=2.07-0,3==0294;
) B, ==07-03 = 0,063,

The conditional probabilities of target downing under these
hypotheses are

A Bopt = 1— 015' = 9;8753 Pnop: =] 0’51 = 0,73;
P, liop! = 0|50

The probability of target downing

»
LA M

» -‘q

3
Puop= 2 PiProp; =0343-0875 + 0,294.0,75 4 0,063-0,5 = 0,54.

[ .

YT
LA )
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PROBLEM 4.21. The interceptor 1s gulded to an aerial target
which may or may not use interference agalinst the airborne radar,
"jamming" its range channel. The command "Fire" is given to the
pilot only if, for calculating the lead angle up to the mcment of
rocket firing, there 1s determination of the distance to the target
at least once every n cycles of three-dimensional scanning of the
airborne radar beam. If the target does not use interference, in
one cycle the range is determined with probability P, = 0.6; if
interference is used the probability P2 = 0,1. The probability that
the target wlll use interference 1s constant for any cycle, and equal
to Pn = 0.4, What is thé probability that, in n = 3 cycles of air-
borne radar scan, the command "Fire" will be given?
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Solution. The total probability of determining the distance to
the target in one radar scan cycle 1s

v
[

Pyy= (1~ P;) P+ PuPy=(1—04)06 + 0,4.0,1 =04,

The desired probability for generating the command "Fire" is
the probability that the distance to the target 1s determined at
least once every n cycles of alrborne radar scan. This probability
is

Ay - F
‘:;Q"Cﬂ:.“{‘ WY

~ Pop=1—(l =Py =1 (1 = 04) m0,784,

PROBLEM 4.22. &2 group of interceptors "combs" a region of
probable target location. Each interceptor has a flight path which
it maintalns with rms error o = 5 km.
The sector of scan for the airborne
radar of each interceptor allows it
to detect a frontal target in a
28 sector of width 2b = 50 km (Fig. 4.1).
To reduce the probability that a
target will penetrate the region where
the scan sectors of two adjacent
interceptors join, there must be a
specific overlap. Determine the
necessary slze of the overslap of

N
%)"

28

t
P

adJacent scan sectors, if the per-
mitted probabllity of separation due
to inaccurate holding of the flight
path should not exceed Pp < 0.04.

’

0
»
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o
20s
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.
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»
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Solution. According to Fig.
4,1, a break between two adjacent
sectors occurs in two cases: 1)
point A of the sector of the left-
hand interceptor is in regilon 1 while
point B of the sector of the right-
hand interceptor remalns within

N mm'n

Fig. 4.1.

region 23 and 2) point A is in region 4 while point B is in region 3.
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Theﬁﬁrobability that there will be a break at the places where the
sectors join is equal to the probability of two simultaneous inde-
pendent events characterizing the two cases above, which in turn
are mutually exclusive. Consequently, using the theorem of multi-
plication and addition of probablilities, we get

Py=2[05—®()]05=05— b (),

where I 1s the width of the scan sector overlap.

Since by stipulation Pp < 0.4, then ¢(2) > 0.46. From tables
of the Laplace functions we find that (1) = 0.46 with 1 = 20.

Thus, is the overlap of the airborne radar scan sectors is
10 km, the Qrobability of a break and, consequently, the probability
of target penetration does not exceed 0.04.
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CHAPTER 5

THE EFFECTIVENESS OF SURFACE GUIDANCE AND TARGET SEARCH AND
DESTRUCTI1ON

For operational-tactical calculations 1t is particularly im-
portant to have such quantitative indlcators of combat efficiency
for fighter-interceptors as the probability of surface guldance,
the probability of target acquisition during search, and the
probablility of destroylng the attacked targev. This chapter is
devoted to methods for calculating these probabilities.

To evaluate the effectiveness of surface guldance we establish
the dependence between the probability of successful surface guidance,
the tactical-technical characteristics of the lnterceptor, and the
accaracy of the radar field of the ground system (Problems 5.1-5.7).

By the term probability of surface guidance we mean the prob-
ability that errors in the position of the interceptor velocity
vector at the end of surface guldance relative to the direction
toward the calculated lead point of target impact does not exceed
permissible val -. Thus, the probability of surface guldance 1is
defined by the relatlonships between permitted and random guidance

errors. Therefore, in a number of problems we show how to calculate e -~
e AN
the permitted errors in heading surface guidance and random heading ﬁi;g--.zi
PRI X oy

errors in surface guldance that arise due to errors in determining

. ;".:.lr..
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target and interceptor coordina.es, sreeds, and heading by the ground
system.

.In Problem 5.8 we show how to convert two-dimensional heading
and altitude guldance errors into an equivalent one-dimensional
guldance error.

In Problem 5.9 we show the functional change in the probability
cf surface guldance with a change in target-detection range by the
airborne radar and a change in interceptor speed. The proposed
solution method can be extrapolated to determining the dependences
between relative changes in any parameter that influences the
effectiveness and relative changes in the guidance probabllity.

In Problem 5.10 we obtaln calculation formulas for determining
the probability of detecting a target when searching a given region.

We show possible methods for calculating combat effectiveness
if the deciding factor for the quality with which a combat problem
is solved by an intercepter is minimum target penetration within
the air defense area (Problem 5.11).

In Problem 5.12 we show how to determine the reglon of probhable
location of a target if no data are availlable on it, and the search
region during independent combat operations by lnterceptors.

The dependence of the probablility of destroying an attacked
target on its dimensions and rocket miss is establishad by solving
Problem 5.13.

PROBLEM 5.1. <Curface guldance of an interceptor to a target 1s
accomplished in the orizontal and vertical planes by transmission
of heading and climbing commands. Altitude guldance 1s when, at
detectlon distance DoOH, the target 1s in the elevation scan sector ; . -
of the airborne radar taa. For heading guidance 1t must be in the : ;

region bounded by permissible heading errors iAQnorl which the
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. interceptor and rocket can correct during homing. The ground system
guides the intercsntor with random errors having normal distribution
A and characterized by rms heading and altitude errors % and Oy

As a result of target headling maneuvers, during guidince there
arises a certain dynamic errors in the interceptor heading mQ, which
is the mathematical expectation of the law of heading guidance error
distribution. Express in general form the probability of surface
guidance of an interceptor in terms of these errors.

Ve

T e

N
Oex
-~y s
g
”

Solution. The surface guldance probabllity is the probatility
that the resulting guidance error, consisting of random and dynamic

3T
v

|

errors, does not exceed the permitted error. Since guildance 1s per-
formed independently in two planes, the guidance probability can be

represented as the product of the conditional guldance probabilities
in the horizontal and vertical planes:

pu.u=Prpa' (l)

On the other hand, surface guldance can be interpreted as the entry
of a random point (the interceptor), distributed by the normal law
in the plane Q-H (heading-altitude), into a rectangle bounded by
permitted heading and altitude errors (Fig. 5.1).

H
i
a4, In the general case the
normal density distribution
Al in plane Q-H is written as
™u follows [2]:
- {Q~-my): _ (H—~myp)s
fem=gte T
R ’ —".Z:-:Qq”': (2)
where oq, oy are the rms
Fig. 5.1. heading and altitude guildance

errors; mQ, my are the dynamic
errors (constants) as a result of target heading and altitude
maneuveving.




TS T
SR e RS A S AR T

LI )
L

Errors Mg and My define the shift in the center of the normal
law relative to the center of the rectangle formed by the permitted
guidance errors. These permitted guldance errors, measured in
d~grees, are the permitted deviations of the true interceptor tra-
jectories from the calculated one in positive and negative directlons
of coordinate axes Q,H. In our example the target performs only
heading maneuvers, and my = 0. To obtain the formula for calculating
the guldance probability PH y ve must integrate the distribution

density function within limits of the permitted errors:

Ayt
s ot

w
PRl

v
b
'

+3Qa0n +3430,

Pue= | | 1@ HaQat=
":’Quon ';'A aon "
-1, )3
= L emmrenea—1= —t— q
) wvEe @Q i R T dH. (3)
~4Qron —8H 400

2 .
The indefini*e integral fé't dt is not expressed in terms of elemental

functions, and is calculated using tables. Tables for this function
- (called the Laplace function or the probability integral) are given,
;f e.g., in the literature [2, 3]. Thus, in the general case the formula
ii for calculating surface guldance probability assumes the following
2 © form:
::. n 1 AQ_,O,,-{-mg __ g ~—8Qz0n AHyon + my, _
S Pen=7 [4’( 7o I e e ( V3
" m,, — AH,
) Il 200
F ( oV ’ ()
- where
_ X
2 —t
¢(x)_—7:-§e i, (5)
In cur example my = 0; tAHAon = :uBDoﬁH. Then
1 AQron + M Mo — 3Qxo 2, D),
P z.,-.fcp(--—,.:&)_q:(—t-—;’—‘l)}cb(-' """.), (6)
mRT2 sl 2 5, V2 5, V2

where DeGH is the airborne radar detection range.

Wanen calculating PH.H it is convenient to use the graph in
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PROBLEM 5.2.
rive a formula for

De-

calculating the rms interceptor relative bearing error arising due

interceptor and target coordinates.

Solution. The error in interceptor
relative bearing due to errors in deter-
mining the interceptor and target coor-
dinates, as shown in Fig. 5.3, can be
found from the following obvious re-
lationship:

AV,

Ay, = Vs (1)

Squaring A¢n and takinrg the mathematical
expectation of the square of this value

we get
'AV§ . ﬁQ
M[v:}”'-"‘v?' (2)

The interceptor velocity vector with re-
spect to coordinates X, s X, of the be-
ginning and end of the segment covered
by the interceptor in time TH is de-

X —Xu
Vn=_'—'-7-"i.'- (3)

L v %
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The error in speed due to errors in determining the coordlnates of
the beginning and end of the segment covered in Tn is

AV =it 0

Let us square this error and take the mathematical expectation from
the result. This will be the dispersion in determining the inter-
ceptor's speed: -

BV =d), =M [ 20+ A‘-‘;;‘ 284y dx, ] = :
n

f

T; ' (5)

Since, because of the independence of errors AxH and AxH, the cor-

= = = + 5
relation moment Rx 0, while Oy Oy Oys then

H H H

PR S (6)

Va Tf, ‘

X
H

Substituting (6) into (2), we get the desired calculation formula
for the rms error in the interceptor relative bearing:

EN%) (7

Having determined ccp and knowlng the permitted headlng guidance
n

errors we can, using Eq. (6) of
Problem 5.1, caleculate the prob-
ability of heading surface guildance
of the interceptor. The results
of calculations by Eq. (7) for

Op = 0.5-5 km, TH = 5-20 s, and
V_ = 500-3000 km/h are given in

n
Fig. 5.4,

PROBLEM 5.3. Determine how
the rms error in determining the
required interceptor heading de-
pends on the error in deter-

1060 2000 ‘g,kn/n  mining target speed V,, inter-
Fig. 5.4, ceptor speed V,, target relative
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bearing 9u, and locations of the interceptor and target. The inter-
ceptor is guided to a nonmaneuvering target by the constant-bearing
approach method.

Solution. As the kinematic relationships show (Fig. 5.3), the
lead angle, or interceptor relative bearing, uniquely defined the
required interceptor heading which must be developed when solving
the problem of interceptor contact with the target, and which must
be transmitted aboard in the form of a guldance command. According

to the method of constant-bearing approach guidance we have

sin ?na%':; sin Pu- (1)

The calculated values of Vu, V_, and Qu which are used to de-

n
termine the lead angle are random values, and differ from the true
values of these parameters by values of the corresponding random
In addition, the error in

determining the interceptor heading introduces inaccurate deter-

measurement errors Avu’ AVn, and Awu.

mination of the locations of the interceptor and target. Considering
these errors AVu, AVn, amA A¢u we have

. Va+4Vy ..

sin (9, + A2a) = 3 gy Sin (9a + A7), (2)

Assuming the errors A to be small values, and disregarding values of
the second order of smallness, after transformations of the trigono-
metric expressions in (2) we get

Vi sin g i on
b= P — 8Py - AVt
i ¢y Vucos
+ Vacosyg aV.+ ' CO8 ¥y Ate. (3)

Since when generating the heading guidance command we use Eq.
(1), the error in determining the interceptor relative bearing is
determined only by those terms in (3) which contain errors AV and
AVu in determining interceptor and target speeds and error Avu in

determining target relative bearing. Consequently,

$in Va tos { .
A?n=mﬁvu+v‘;—cm§ﬁ4%—i\;j-AV: (%)
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Here the error in determining the velocity

AV = Ax-}-/i . (5)

F 2%
[N 3 1
LA i
o

=
o TCI L R |

while the error in determining the target relative bearing Ka A ROR)

Agy = A?ﬂ-Qu + do, ., ' (6) .

where Ax is the error in coordinate determination, T i1s the obser-
vation time during which the speed 1s determined (discreteness of -
coordinate measurement), Awu Q is the error in determining the

"y

target relative bearing as a result of target heading error Qu, and
A@u X is the error in determining target relative bearing due to
error in determining target coordinates.

To determine the dispersion of interceptor relative bearing it
is necessary to square both sides of Eq. (l) and find the mathe-
matical expectation from the result, using familiar laws [2]. Having
performed these operations we get

1
2 ==
%% Vst v,
+ sin? q,na%,n + 2V, cos ¢, sin ?uRvuVu =
~ 2V, cos¢, sineR, y + Vicosted |. (7)

[sin? ¢us}, -~ 2sin 9, Sin9aRy v +

Ty LT

ot

Now let ur determine the rms errors Oy » Oy > and 0¢ in Eq. (7).
: u n u

R

1. The rms error ln determining target speed - Oy -
u

As can be seen from Fig. 5.5, the error in target speed is due

L e S

to errors in determining the coordinates of two target blips from
which the value of Vu is
determined. Let us desig-

nate the distance between
points ”1 and u2 by d, the
observation time by T, and

Fig. 5.5. the random errors in coordi-
nate determination by Ax1
and Ax.. Then the measured value of target speed
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Vi AV, s 20430, (8)

while the absolute error in determining target speed

Ax, + A,
Avnzac-‘t—rn!'

e
\O
v

) To find the dispersion of this error we must square (9) and
take the mathematical expectation of the result. Then

o?/un%(ai"*'ﬁ'-!-mx‘&). (10)

-
%.
;e
E!

o

Because of the statlistical independence of errors Axl and Ax2,

correlation moment RK X 1s equal to zero. The random errors in
172
coordinate measurement are constant:

8, =0, =0, (11)

Consequently, for the dispersion in determining target speed
we get the following calculation formula:

22

&) =k (12)

.
n

2. The dispersion in determining interceptor speed 1s similarly

determined, i.e.,
2%
V=T (13)

3. The dispersion in determining target relative bearing is

2 = 2
% c:uou + K + QR%Q,,"M ' (1h)

w T

since, on the basis of (6), the error in determining the target rela-
: tive bearing 1s composed of the error in target relatlve bearing as
a result of error in target heading Aqu and the error of the target
y

relative bearing due to error in measuring the target coordinates
A¢u x° Let us define the calculation expressions for the terms in
(14). According to Fig. 5.6 the error in determining the target
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relative bearing due to inaccurate measurement of target heading

89,0, =2 (15)

Consequently, the dispersion of this error

2
'Q
c:ﬂan 14 ' (16)

3

T

v -
LARE b

Substituting the value 03 according to (12), we get

(27)

According to Fig. 5.7, the error in determining target relative

bearing due to errors 1in target coordinate measurement

By = -, (18)

while the dispersion of this error

o =2g., (19)

L1

The correlation moment becween the values qu and Pux
y

2
— Sk
R'no.,'u =M [A?uouA?u:] =TV, (20)

Thus, after substitution of (17), (19), and (20) into .(14) we
get the following calculation formula for dispersion in determining
the target relative bearing:

'.-"
R

A oY Y R P
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By similar methods we determine the correlation moment between
target relative bearing and target speed:

R’uVuI’?O?' (1;7-’*‘7517;) . . (22)

and the correlation moment between target relative bearing and inter-
ceptor speed:
| 2
RvuVua"'DT" (23)

Since speeds Vn and Vu are statistically independent, the cor-
relation moment between these values 1s zero:

Ry

v.“"'°° (24)

Substituting (12), (13), (21), (22), and (23) into (7), we get
the following calculation formula for the dispersion of the heading
error of interceptor surface guldance:

i 2¢in’ e
» R— -—7TJL
onmx c"2?n= V2 costyy [ +
-+ sin? %c'f,n + 2V, cosg.sing, ( T

+ 'f:VI) o + 2V, €08 ¢, Sin 9, 7% +

+ VZcos?e '35—+2a'2'+ ) :
u % V;‘:T’ DFTVID) ) (25)

Let us stress that Eq. (25) was obtained under the assumption
that the error in determining the required heading is equal to 'he
error in determining the lead angle, whlle we can disregard tb ror
in determining the position of the sighting line "intercepuior-.arget."

We can show that Eq. (25) is also valid for the case when the
interceptor is guided to the target by the direct-intercept method.
The results of calculations performed using Eq. (25) for a wide
range of initial data are given in Figs. 5.8-5.10. ’
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The calculated values of the rms errors in interceptor heading
are the initial values for determining the probability of surface
guldance, if for the given conditions of combat operation we know
the permitted errors in interceptor heading guldance.

The methods for determining the permitted guldance errors are

presented in the following problems.
¢

PROBLEM 5.4. Show how the permlitted headlng guidance errors
depend on the interceptor and rocket characteristlics. Assumptions:
the interceptor is gulided on head=-on or pursult courses at small
aspect angles. The heading error 1s corrected by turning the inter-
ceptor and the rocket with constant radii. The delay of the rocket
and interceptor in processing the guldance commands is disregarded.
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Solution. Let us designate by Ax the linear permitted error
in guidance, and by D the distance from the interceptor at thé moment
of lock-on to the point at which the rocket meets the target. Then
when the interceptor is guided, at small aspect angles, to the for-
ward and aft hemispheres, the permitted heading guidance error

AQ,,,,,==—"‘§ in radians. (1)

N
A NEAT

The linear permitted error Ax should equal the sum of the pro-
Jections of the distances covered by the interceptor, rocket, and
target during the closing process onto a perpendicular to the direc-
tion "interceptor-target" at the moment of lock-on. As the inter-
ceptor turns, lateral acceleratlon occurs, directed toward a de-
crease in Ax. The interceptor moves with uniform acceleration in
this direction, and the distance covered is antg/z. Similarly, the
distance covered in thés direction by the rocket is apt§/2, and by
the target au(tn + tp) /2. Consequently,

Ax =

aut;‘-: a:/: ay (8, + 1p)?
Tt g (2)

where

¢, = -Lus =D,
a ch.;. n--n

S a= (3)

Y .
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tn is the time of interceptor

ki ¥y 2000 eam homing up to the time of
s0b— Vp* 2000 kn/h ' rocket flring; tp is the
:P””o n/s Vp=700 n/s 7 / rocket f..ght time to target
=50 kM = Hat .
20— gf? éﬁM ", N )55 // - Impact D3a<a’ Dn are the
=102
' Ry = 15Km ' /// ,/(“ et lock-on and firing ranges; .
Ryg= § au
10 D 4 ’,,/? 'Vcﬁn.n~u’ vccn.p-u are the
;:5;ﬁi-"’ corresponding closlng speeds;
a 3 R is the radius of turn.
10 20 30 Dp,au
Fig. 5.11.

The results of calcu-
lations for several values of the characteristics are given in
Fig. 5.11.

PROBLEM 5.5. The 1lnterceptor is guided to an aerial target
by the pursuit method. The rocket 1s also homed by the pursuit
method. Find the dependence of the permitted surface-guidance

heading errors AQ on the target, interceptor, and rocket speeds,

the lock-on and f?ggng ranges, and the turn radil for the inter-
ceptor and rocket. We examine two cases: 1) the firing error is
zero, and the entire permitted surface-guidance error is corrected
by the interceptor itself: 2) surface-guidance errors are corrected

by the interceptor and the rocket.

Assumptions: 1) the speeds and turn radii are constant; 2)
inertia and lag are disregarded.

Solution. For the case when the surface-guidance errors are
corrected only by the interceptor, at the moment of flring the error

is zero and the interceptor strictly carries out the pursult method,
while the rocket during the stage of homing until impact with ttre
target also does not deviate from the pursult method.

According to Fig. 5.12, which shows a kinematic scheme for cor-
recting surface-guidance errors, the interceptor flight time from

the lock-on rarge D to firing of the rocket is

3axse
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where ¢u is the target re-
LU va lative bearing at the moment
U] . =
. /3}/ sy . of rocket firing; wg Vn/Rn
(] %y i N} _ is the angular velocity of
Ny X
a 4 ' ‘% ® .he interceptor.
o/
Ju Let us write the pro-
jections onto axes x and y:
Fig. 5.12.
D, c08 ¢g == Dy — Vity — Ry 8in 8Qen - R sin gy (2)
D, sin 9, = R, €05 95 — Ry €08 4Qy0n. (3)
Substituting the time t  into Eq. (2) we gev
Rn sin Aonn R T et '%2' (Aonu + ?u) - Ru sing, ~ Du €08 P ( 4 )
, R, €05 AQ;n = Ry €05 23 == Dy $i0 9y (5)
where
.V
p=-y:-

Let us introduce the designations
-4=Duxu"“&p"'"?n“‘Rnsm?n"'Dncos?ri: (6)
B=R,c089; — D,sing,. (7
Then Eqs. (4) and (5) are written as follows:

R,8in 4Qyen=A —ﬁp& AQuen (8)

Rycos Q=48 (9)

Tet us square these last two equations and combine them. Then
e obtain the following quadratic equation for the permitted surface-

. idance heading error:

R
2= 0 — 2480 10, + 5 QG+ B (10)
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AQi-’n.' —24 75: '\Q;nn -+
Solution of quadratic FEq. (11) gives the desired dependence
AQun =4~ [z VEE=T]. (12)

It remains to express angle Qu in terms of the given values., For
the pursuit method, when the target does not maneuver, we have the
following expression for the angular velocity of turn of the rocket,
which in this case is equal to the angular velocity of the sighting
line:

Vi sin 5y Y -
._....7.;;..._.- Py u)ﬂ =~ .n.,, wrz -‘,é-’\- s ( 1 3 )

ﬁeproduﬁed ¥
best ava!

BN N L T % T AT Y b T P Ll AT i N T MR ol . WA Tl ol

where the rocket's radius of turn is defined from the familiar re-
lationship

v?

T .
Rp g;/'”;_‘ ’ . (lu)

Vs
§q 7= 7€ Sin—= Da,
R; Va

(15)
In the particular case of V_ =
9n==arcsh1—zg—.

Now let us examine the case when part of the surface-guidance
heading error is corrected by the rocket. In this case the inter-
ceptor turns, as shown in Flg. 5.13, by the angle

AQAon + ?u. - -“Qp- ( 16 )

The angular velocity of turn of the rocket is written in this
case as follows:

Vi sing,y Vp s 3Qp Vo
wp == Dn + Dn = .;?—;' ( 17 )

The maximum possible target relative hearing at the moment of
firing of the rocket




. g ™ »- o, &, ¥ v
S It B e T e S LA AT

T e x Y a® TR T a BN W LT L = W L
- - e teaheanh s, i LRI A Wt aairdek Ay

- [ DO SRC\ S, JRRE SN Shit'

. Vp Dy
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The target relative
bearing at the moment of
rocket firing, considerirg
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-
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&
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the error corrected by the

ey 4
'y

-

B e i
AN

rocket, 1is

Py

- i 1
E Fu = . wake — 4Qp (15 Ve N *,-_
g The interceptor flight SRR 4
- time from the moment of LT
F Fig. 5.13. lock-on to the moment the

rocket is fired is

ln’:";lgri'(AQAon"l‘?n_AQp)' (20)

Substituting (19) into (17) we get

Vi sin (Fu, seace — 20p) + VpsindC, — Vy (21)
0y, TR
For small angles AQAon’ as given in the problem, we get
D,V
;( A Vi sint ¢a. vaxe
8Q= = (22)

¢ Vo= V1 €08 94, saxc

PROBLEM 5.6. The interceptor is guided tc a nonmaneuvering
target strictly from the forward hemisphere. The interceptor and
target speeds are constant, and Vn = 1200 km/h and Vu = 1900 km/h,
respectively. The ground system assures interceptor guldance accu-
racy with a heading rms of cQ = 5%, Determine the guldance prob-
ability, if the interceptor begins to correct the guidance errors
3axs 35 km,
maneavering with constant radius of turn Rn = 10 km to the firing

at target lock-on (by the airborne radar) distance D

range Dn = 12 km. We assume that the firing error is zero, 1i.e.,
the interceptor itself corrects all surface-guldance errors. We
also assume that surface-guldance errors Angn are small and Vpps Vn'
Under these conditions of surface guidance we are given the probabil-

ity of target destruction by the rocket of 0.9.

D x
e %
PR

’

n"‘,'“ *y %
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Solution. According to the kinematic scheme for correcting

'"7"":&

surface~guidance errors (Fig. 5.12) we have

]

ey

Diyeg X —~_
Vea . Vac0s zon - Vg ' (1)
b
L= Projecting onto the x axis we get
i
' o — Vn,)'m:n ) . R H . ind (
" X =TV == [, cosy, -+ Ry sing, -+ Ry sin QAom 2)
L Let us square (2). Then
Y \2 ' : a . 22 31N -
( Vc:.1 /l D:.‘.\‘s o bl-l €OS* 2y + 1‘:: SIN% 7y -+
A R, 5in? AQ,un + 2D, R, €S ¢, Sin %, -+ 2D, Ry €08 ¢ Sin 3Qy0n + (3)

+ 2R sin ¢, Sin AQ

For the case when the firing error is zero we have

sing, = cos =il (1)

Then, conslidering that

Sill AQJQ“ = AQ)OQ!
cos AQ:on ==,

while sinZAQAO is an infinlitely small second-order term, we get

n

( \y" Y D, = szx T QD,,R" : AQ.:\,n- ( 5 )

ba / 3axn

from which we find the deslired dependence of permitted surface-

guidance heading error on speeds Vu’ Vn’ and Vp, lock~on and firing

ranges D3 and Dn’ and interceptor turn radius Rn:

axa
Vp N2 oo Y
QU LR A § N
AQ — ( Veta ) 3.0 Un (6)
Aeh QDan .

For the data in our problem we have Angn = 9.8°, Thus, the

guidance probability P = 0.85.

TR 5, L,

Ay

PROBLEM 5.7. The calculated interceptor heading which assures
encounter with an aerial target at zero aspect angle is 70°, As a

result of random perturbations in the guidance circuit and pilot
errors the interceptor holds the calculated heading with an rms of
UQ = §°, The guldance errors have normal distribution. Determine
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the permitted maximum interceptor headings that guarantee a guidance
probability of at least PH = 0.95.

Solution. The probability of guiding an interceptor to a target
is defined numerically as the probability of hitting a random heading
Q distributed normally with mathematical expectation mQ = 70° and an
rms of oQ = 5°, in an angular range of permitted heading guildance
errors positioned symmetrically relative to the calculated heading m%:

A ao0n
Pu= P {1ig = AQun Q< g+ Aun) =& (2522), (1)

where ¢ is the Laplace function.

By stipulation in the problem we have

¢ (-A-%?) =095. £z)

From tables of the Laplace function we find the value of the

argument which satisfies (2):
AQ‘loﬂ = 1,96,
Q
from which the permitted heading guldance errors

Qo0 ==1,96-5=98°.

Thus the desired maximum interceptor headings are within the
limits of 60.2-79.8°.

PROBLEM 5.8. From known permiftted heading AQAon and altitude
AHAon guidance errors find the equivalent one-dimensional permitted
guldance error which defines the boundary of the region, the prob-
ability of guidance into which is equal to the probability that the
interceptor will be within a rectangle bounded by the values Angn

ang AHaon'

Solution. As can be seen from Fig. 5.14, the equivalent one-
dimensional guidance error Xnon 1s a certain average of segments

Angn and AHAon‘ The probability of guiding the interceptor into

Ol
o

LR I
A ]
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g basic sector dp, is proportional to N !
g the square of this sector. Therefore §§§§§%?§§
F the average value of the one-dimensional §“ .“ LRiE
R permitted guidance error xgon is found &

F from the relationship :

“'—'l:l E

b

) rgfig t 3 diy
6H

Q
3 ' (1)

Here we divide by n/2 since averaging was done from concepts of

3
~

Figl 5. 1&0 Xnnnﬂ

symmetry only in the first quadrant.

¥

o

0 K
TWaen | -
07 g @) :
5H.on :
Py 03
then = .
2 ¢dy, I
v, =2, H s
“Taan = AQA“" R sin ? + AHAU“ '\ sin ?ll ' ‘\ 3 )
() s

- oy p
: (e )
. Thus, the desired value -

* E‘l
eafa
-

i i 2 e iY 2,1
:.: /\Amx = AQ;mn Iﬂ ty _:0 ! -+ A'f‘!nan Iniy _2-’.’_1 ==
8 ch KL (5)
- 2 ot .
» Further, we have

AO.’XOH

Fop = Aty =3 -
aon ( 6 )
Moy v

Gy == MC t;{

AQ\o.l ! ‘.:'
t 5. I'—CUE.E.—- (l-—Cnb\'-)l/rr(‘;;—'-‘; _ ) Ny
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Having substituted (7) into

Xaon . //
7 — A ’/,#‘ (5), and considering that tan w/4 =
6 53@53" = 1, after simple transformations
y /f{ 3 /z"""’" we get
4 e = =11 —_—
3 “z/’/ —T_ l/ R
! 9 SH:
2 f/jﬁ - 0.5 Xloﬂ e o- ';- AQIO‘_‘ ln AQJO 4o +
3 n
1 7 / = ¥} LY

— 1./1+-A—H-§2"——1

4 H 2 3 4 b} & 7 8 8 A”agn,'fu Jnt a
VAU
Fig. 5.15. + Moot 57 =
-\Q.mu

A(\)Jﬁﬂ
i b oy e
' “‘C,:‘;Oﬂ + 'Vlion — AI,‘OH

LY 7 .
+ AH I = sz et ) (8)
4 Q300 + 8oy — 3Qp0n

a
= AQ:mnl

Figure 5.15 shows a graph of the dependence of xnan on AQAon
and AH . Using the described method we can also show that Eq. (8)

aon
is valid for both systematic and rms guldance errors.

PROBLEM 5.9. Show how the surface-guidance probability P
changes with a change in target-acquisition distance D06H by the
airborne radar, if we know that the permitted and system guidance
errors are directly proportional, while the random surface~guidance
errors are inversely proportional, to acquisition distance D06H.
Find the dependence between changes in PH.H and interceptor speed
Vn under the same conditions, but with the permitted errors inversely

proportional to Vn'

Solution. To decrease the number of arguments, in the general
formula for calculating surface-guidance probability (Problem 5.1)
let us convert from heading and altitude errors to the corresponding
equivalent errors calculated by Eq. (8) of Problem 5.8. Considering
this, and on the basis of Eq. (6) of Problem 5.1, the surface-guldance
probability can be written as follows:

1 Nion Nion + &m [’ Non— Y00
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s X 5, and ¢ are the corresponding equivalent permltted,

on
system, and random surface-=guldance errors.

where X
a

From the stipulations of the problem we have

A','mn = A'\Duﬁll;
‘Xm = /".'D.,Cu; . ( 2 )

where kl, k2, and k3 are the proportionality coefficlents.

Substituting (2) into (1) we get the dependence of the absolute
value of surface~guildance probability on the absolute value of the
range of target acquisition by the alrborne radar:

/-':‘l’.-.‘:)u_‘ ! sk Ak A N

l ’
P, (Des) = ) P '\"' e @ —N wor ) T

(3)
o ) u ) -
— ( (k- = ) D, i
To find the dependence between relative values of APH H/PH " LA
and AD_. /D _. 1t 1s necessary t6 diff¢ 'entiate Eq. (3) with respect i

to D06H and divide the result by PH.H. However, this differentiation
leads to very unwieldy expressions due to the presence of the prob-
ability integral ¢(x) in (3). To obtain simpler calculation formulas
we must approximate the Laplace integral function ®(x) by functions
which are more convenlent for differentiation. Possible approxima-
tions of ¢(x) are given in Fig. 5.16, where ¢(x) is replaced, at the
ends of the range of change of x, by a Maclaurin series; throughout
the range of x it is replaced by the hyperbolic tangent [th] tanh x.
Using the approximation

b (v) = ihy,

we get

P D = 0 (252) [ (380 13, ) |
—th (L g Y] ()

A comparison of Formulas (1)'and (4) is shown in Fig. 5.17.
Then let us differentiate (4) with respect to D06H. Then ~
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Fig. 5.17.

[

APy v (Dyen) = kDuen (ks + kz) 2
3Dogy b it (k D.On) [th ( D°°")
- ’ c

k.
\ Dyse k, + k.
—th (BB py ) i th(klk;'”" ) {ch L"fk,g,.j‘”ij—

Dy (.ﬁ-”_'l‘___’ll.) l
ch-L ‘k“ u:.u:“ (5)

Dividing derivative (5) by the absolute probability value
H(DoGH) and using, in Intermediate transformations, the dependences
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] sh2x==2shxch.g
—thy == (6)
thy—thy = hixehy?
we get
5 T{ky—hy) o
P . - J 2 ) ks k ! -
u N N 5112-5'—1"—61- l 2k, ch [-L’T‘._’.). [)g(m_‘, .
3

(ks — &;)ch l—&;‘:ﬁ‘)‘ f)ﬁo,,] A AD. .
_— = ...._‘20_".=f(Da)._-_“.“.'L (7)
e, chh (k:: k) Dga J [ RS Dogy
: B "

A graph of function f(Dodn) for various values of coefficients

kl, k2, and k3 is gii:n in Fig. 5.18. As can be seen from the graph,
the following inequallity is always satisfied:

A

T (Do) <4 (8)

-

NN ~
* rT\\\ xi-g05
. \\\\\

- Ka'300
3 'a
\ \< Ky=0d
K,=005
fcp(”N >Qz-3=ggg
- 2 !

X

\‘\
=\
N
- ~
g 7] 50 Dyggy il -

Fig. 5.18.

With short target acquisition ranges, changes in DOGH have a
strong influence of effectiveness: with a 10% change in Doon’ P” " .
decreases by 40%. <

For interceptor speed Vn’ from the stipulations of the problem
we have
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Let us differentlate PH. with respect to Vn; then

H
3Py, VIRV (@b

AV,
Py i = kabe Ve ?

by kY2
=3 —-—_n— . 11
N Ch( WVZ ) b

ko4 kV2
bach(‘—;;%-fi‘z_-'-‘-); (12)

cush(Kf%). (13)

PROBLEM 5.10. The target is located at some random point of
a reglion vwhose area is Su. The interceptor independently seeks the
target in this region. Determine how the acquisition probability
depends on the width 2b of the sector scanned by the airborne radar,
the interceptor speed Vn’ and search time tn, if we assume that
during the search time the area Su remains constant and the targe?
can appear several times at each point in the reglion, i.e., the
target maneuvers such that during the entire search time it has
equally probable distribution in area Su'

Solution. Let us designate by Q the probability that the target
is not detected up to moment t. The probability of target acquisition
in elemental time span At immediately before or after moment t is
defined by the ratio of area ASu scanned in At to the entire area Su.
Thus, the probability of target detection in At provided that the
target is not detected prior to this 1is

SPPENCLY, Y
A‘, ot T *

Sy

A1—-Q =5




The solution to this first-order differential equation when the
initial condition Q = 1 is satisfied, when t = 0, 1s expressed by
the obvlous equation

Eﬁzxﬁggﬁ;gzzzzuﬁaxﬁzzyxgxuzgzzgaxgh§s:zz;uf?ﬁ*??

n

Q=exp(—gr). (3).

Consequently, the probability of target acquisition

201040

Pyyim 1 —exp (=g ), (¥)

where Vn is interceptor speed and tn 1s search time.

PROBLEM 5.11. A target passing through the air-defense zone
photographs objects; during this 1t undergoes damage which is directly
proportional to the time the target remains unchallenged in the air-
defense zone. An interceptor carries out n attacks in order to down
the target. The probability of target downing in one attack P, = 0.4,
The time required for the interceptor to climb and for guidance is
tH = 15 min. The time between successive attacks ta = 1 min. The
dimensions of the air-defense zone are 100 x 300 km. Target speed
Vu = 1000 km/h. The width of the strip photographed by the target
is 25 km. As the indicator of effective interceptor action we select
the relative length of time the target is in the air-defense zone.
Determine the law of change of this effectiveness indicator as a
function of time ¢.

Solution. The time of unchallenged target operation in the air-
defense zone 1s a random magnitude, whose mathematical expectation is

T= Y (Pn—=Pu-) tn+1—=P)T, (1)

where Pm - Pm-l is the probabillity that the target will be downed in
the m~-th attack; 1 - Pn is the probability that the target will be

downed in n attacks; T is the maximum time the target remains in the
air-defense zone.

Carrying the constant T to the left side and introducing the
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term PnT «ider the summation sign, we get

T—-T'BE(!,,,.”—-I,,,)P. (2)

The effectiveness indicator assumes the following form:

I

Tl Np Imey—t .
Il =¥ pyloaisin, (3)

it

The time interval between successlve attacks

=t
= 22T ()
and then
ta =1,
Pz =Ty (5)

Thus, the formula for calculating the effectiveness indicator
assumes the following form:

‘| — ‘In-‘-l|) ("n"‘Pg) _(T-"I") (l“Pn)
T 2T (n—1) T

' (6)

where P1 is the probability of downing the target in one attack; tl
is the minimum time of unchallenged target operation in the air-

defense zone, equal to the time required for the first interceptor
to take off and for its flight to farget encounter; tn - tl is the
time required to carry out n successive attacks; T - tn 1s the time

reserve before the next attack.

Formula (6) shows that even with P1 = 1 the elfectliveness 1is
always less than 1, i.e.,

T—¢
=9’

For the conditions of our problem, the total length of the target's
flight path for complete photography of the entire alir-defense zone
is (100/25)300 = 1200 km, and the maximum time the target remains
unchallenged in the air-defense zone is T = 1200/1000 = 1.2 hours.
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Consequently, the effectiveness (T - T')/T depends on time as
follows:

T—7 025 (0,25 4 4-0,0167 - 025) (1 —04) __
A ] 04 1,2:3 =0,764,

when n = 4 attacks are carried out, with analysis of the results o-
each previous attack, and Pn = 1, If in thils case n = 2, then Pn x

~ 0.8 and the effectiveness is
.- 025 (625 + 200167 —025)

A
025 — 20,0167} (1 — - -
__(12--025 21% 157 (L =08 _ 057,

PROBLEM 5.12. Determine the depth of the region 7 in which the
aerial target appears with probability 0.96, and the distance of the
line of start of search DH.n’ if 50 minutes pass from the time that
information appears regarding the target.

Gilven:

— distance of the warning line DOrl = 2000 km;

— accuracy in measuring target coordinates O, = 30 km;
— target speed Vu = 900 km/h;

— limits of target maneuvering, with respect to veloecity, AVu =
= 2150 km/h; )

— limits of target maneuvering, with respect to heading, AQu =
= +0-30°.

Let us assume that the coordinates of target position due te
speed and heading maneuvers are distributed triang .larly (Simpson
rule) as shown in Fig. 5.19.

Solution. 1. Let us determine the limits of probable deviation
of target-position coordinate due to velocity maneuvering: -

g s AV 4= - 127 Km. (1)

o

2. Let us determine the limits of probable deviation of target-
position coordinate due to heading maneuvering:
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=V — V,bcos Qg (2)

.

(x) -
f =0, ;=100 km.

g W

3. Let us determine the rms
deviation and the mathematical ex-
pectation of the total law of dis-

' ply) tribution of the target-pesition

coordinate due to combined speed
"and headins maneuvers. The combLi-
nation of two 3impson rules [2]
glives the total distribution law
0 y close to normal. The rms deviation
frx+g4) 4 of this law is

\\

Gua&gi’ (

(84
LN

| while the mathematical expectation

P

©

“(atr ) m dtf gexey 1s determined by solving the quad-
Fig. 5.19. ratic equation

m + 2m, B + - =0, ()

For our example we have Gul = 42 km, °u2 = 58 km; solution of Eq.
(4) gives mu = 171 km.

. 4, Let us determine the rms deviation of the resulting law of
distribution of the target-position coordinate due to speed and
heading maneuvers and due to imprecise measurement of the target
coordinates:

o= Vit \5)

3,y = 52 km;

3,65 km.

5. 1If the target performs no spezd and heading maneuvers, in
time t = 50 min it will bte at a dlstance

.
3
2

-
B
o
2
9
E
.

D, V.t -1950 km

from the airfield.
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6. If the target makes no heading maneuvers, but increases its
speed, in t = 50 min it will be ‘

Dyy— Vot — 25, = 1145 km

from the airfield.

7. If the target increases its speed and performs heading
maneuvers to its limiting value, in 50 min it will be

.

Doy —= Vb +my+ 25, = 1551 km

from the airfield. This is the maximum possible rear boundary of
the region of probable location of the target by the time the infor-
matiosn is 50 min old, and is thus the terminal search line T' .

Consequently, the depth of the region of probablie targe. loucation
{=Dy gD, ,=405 km.

Therefore, in our example, target search should begin at a distance

DH _— 1146 km. The depth of the region of probable “crget location
L at the moment search begin. is 405 km.
) MM T v+
707A{5:Q25% Zﬁ // The target is located within these
Q=350 / E§/ limits with a probability ot 0.96.
600 a/ T
560 AW/ .
]\é 0?3/ The dependence of the depth of the

1 the age of the information is shown in

p ! ;
4w ] amyd region of probable target location I on
/ v
Jés b i Sy Uy 300 km/n
N

o ;/J/i/
AT Ve ratomn|  Fig. 5.20.
i Y
zoo»~/:’,r Ar
ATl - 3 i
0TI 30z 0 86 & 70smtn PROBLEM 5.13. An aerlal target® 1is
7 ir-
Fig. 5.20. destroyed by an air-alr rocket after

the radio fuze has operated at the
moment the rocket reaches any point .. the target plane not more than
R =7 m from the center of gravity of .ne target. Errec=s in rocket
heming are described as a miss — the distance of random coordinates
of rocket flight in the target plane from the target's centar of

166




pie)

T T T R TI AR T AMT R LT AN BL WL FUY ¥ E RO T e L FiE gy T — e — —
Eoe .y P> AIETEIS ElS AT A S B 5. W ARCH- TIPS Jhvn - ey v

E“ X S TuR ‘_" LR X ¥ N ',‘;q;‘:‘
=3

-
E
=
5

gravity. In trying to bfeak off attack by the interceptor the target
uses, with equal probabllity, six various types of maneuvers, in which
rocket miss 1is described by the following values for the average and
rms homing errors:

Numerical miss character- Types of target maneuver
istics, m HEEENEEENE
Mathematical expectation 2 35126137 02]38
RMS deviation , 47159161 1}1431331]49

Show how the probability of target destruction depends on its
dimensions and on the values of the gystematic and random rocket
homing errors. Determine the probability of target destruction for
the gliven conditions, and show how we can calculate the destructicn
probability for the case when a miss has no systematic componeut
but dc.c have a random one.

Sosution. According to the conditions of the problem the
destructlion zone is a circle of radius R = 7 m whose plane ig per-

pendicular to the direction of rocket flight and whose center coin-
cides with the target's center of gravity. The probability of tar-
get dzstruction can be interpreted as the probabllity of hitting
within this cirecle.

The process of rocket flight to the target involves continuous

correction of rocket homing errors arising for various reasons.

When the target maneuvers, the rocket's automatic control system,

because of lnertia of the system elements, correc’s the errors with

a slight delay, as a result of which we have a systvematic homing

error and a systematic rocket miss. Random external perturbations

(noise, fluctu-~ting processes in the system elements, random changes

in flight conditions) are the causes for these random homing errors
and random miss. Dispersion of the rocket 1s caused by the action

of a number of independent factors, and therefore the miss is a
random magnitude, distributed normally, while in light of the

symmetry of the control system the miss distributicn in first approxi-

mation 1s circular. However, when dispersiocn along coordinates axes
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X,y is characterized by rms errors which are not identical but which
are of the same order (0x e cy), the equivalent circular rms error
is defined by the fornmula

qx_".l”-.;;;). (l)

Derivation of a precise formula for calculating the equivalent -
cirecular rms error from known values of rms errors Oy and oy is
given in the solution to Problem 5.8. Thus, the miss of a rocket
relative to the target's center of gravity can be described by circu-
lar normal distribution of the random radius-vector modulus, whose
average value 1s equal to the distance of the dispersion center from
the coordinate origin, coincident with the target's center of gravity
(with the center of the circle).” Consequently, the probability of
target destruction is numerically equal to the probabllity that the
rocket, whose coordinates in the target plane are statistically in-
dependent and distributed by a circular normal law, falls within a
circle of radius R whce : center colncides with the target's center

of gravity.

If the coordinate origin coincides with the center of the cir-
cle, the direction of the axes of the Cartesian coordinates can
always be selected such that one of the miss components wlll not
contain a systematic error. Then, assuming that the rocket homing
errors are statistically independent and distributed with a circular
normal law with mathematlcal expectation m and rms error ¢, the two-
dimensional distribution density of coordinates x and y of rocket
miss can be represented in the following form: ¢

L ldmmy 4yt e
o ymogare L (2) :

PoA
rad)

gﬂ:-.:

Tc find the miss distribution as the distribution of the
radius-vector modulus, let us cenvert the Cartesian coordinates
X,y into polar coordinates p,¢ using the equations
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where p is the modulus Of the .random miss radius-vector.

Let us find the J3Cpplan of the transform when converting from
variable Cartesian cooydinates to variable polar coordinates:

A
2
-

oL a5 .
e W) | WP 07 ccsg —ping o il el e
—-—-—},‘(, A s 2w v 1= s <08 | a= ¢ (cos*¢ + Sin*g) =». (4)
P ¥) SAUAS sie  p k2

Since the two~dimehgional distribution density 1ln the polar
coordinate system is qefyved in terms of the two-dimensional distri-
bution density in Cartesian coordinates by the relationship

fo @) =2/ (%, y)==of (pcosz peing), (5)

where p > 0 and 0 < ¢ £ 2w, the one~dimensional distribution density
of a miss — the ragdiug~-vector modulus — is found from the formula

2 W P=2mpcosatm?

Je)=p f(?cosv.?sin?)_d?wy&sée

oetm 2"‘ me Coy @

Q_Q_‘%e 2D )é 3 ds,

The integral in Eq. (g) reduces to a zero-order Bessel function of
an imaginary argument, since in general form an n-th order Bessel
function is represented py the integral

212

1o (x) =L | e*"** cos no de, (1)
0
while when n = 0 we get 2 zero-order Bessel function:
R 1 ¢ A cus @ .
l(xy==[e"**do. (8
v

Consequently, Eq. (6) Can be rewritten as follows:

gafem?

f(;-)a—}e—j'?—lo (L:;’—) (9)

The integral distripution function F(p) of miss p also gives us
the desired probability of a rocket's hitting within a2 circle of
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radius R when the center of dispersf%n of the circular normal law is
displaced by the value m from the center of the circle. Thus we have

LN

® i )
Pug= (:«)==£)—‘.-e B, () dy (10)

ci
Let us introduce new variables — the relative values

R=2 ana m=2. (11)

Then the formula for calculating the probabllity of destruction is
expressed as follows:

R
. ? _ B
g ernp:_lt Ee N 2 1.) (E, R)dﬁ (12)
o o
The results of the calculation by Eq. (12) are shown in Fig. 5.21.
Prcr
i When m < 1 (small
08 systematlic rocket hom-
67 ing error), the prob-
) g ability of destruction
01 can be calculated quite
03 accurately from the
92 formula
0
0 ; . -
10 X 30 W B Pry=1—c MU (33
Flg. 5.21.

When the rocket homing systematic error is zero, while random
errors are distributed by the circular normal law with rms dev.ation
o, the probability of destruction, like the probability of the rocket's
hitting in a cirecle of radius R, is

oo R
4 2"d"-=1‘—e 29 (lu)

D =
TAer T ) 63 .
v

This is the so~called Rayleigh law. In this case Pnop is defined
»
from the curve m/¢ = 0 from the gr~prh in Pig. 5.21.

For the conditions of the problem, using Eq. (12) or the graph
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E} in the figure, we obtain the following probabilities of the rocket's i&s%:gﬂ%
S hitting within a circle of radius R = 7 m: 0.64, 0.46, 0.57, 0.60, B

0.89, and 0.54, respectively, for target maneuvers of types 1-6.

%‘j
ﬁ The resulting probabillity of target destruction is defined from
i ) the formula for total probability:
Pnap:'mip(ﬁl) P::.-p (HI)- (15)
et

e

o BN - Forwlk,

where P(Hi) is the probability that the target selects the i-th type
of maneuver (hypothesis H1)5 Pnop(Hi) is the conditional probability
of target destruction under hypothesis Hi'

> e
28

Since by stipulation in the problem all six types of target man-
euver are equally probable,

P(il)=P(H,) =...=P(H,) =

and the resulting probability of target destruction Pnopz = 0.617.
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CHAPTER 6

THE COMBAT EFFECTIVENESS OF GROUP OPERATIONS OF FIGHTER-INTERCEPTORS

Indicators of the combat effectiveness during operation of a
group of interceptors against a group of targets can be calculated
only from the known indicator of a single operation against a single
target. Therefore, before analyzing the oroblems of this chapter
it would be advisable to become familiar with the problems of
Chapter 3.

In addition, we assume that the reader is famlllar with the
principles of the general efficlency theory, game theory, and the
queueing theory. If not, we recommend that the baslc postulates
and methods of these disciplines be studied in the available litera-
ture [3-8, 29-32, 39].

Since the basic purpose of an interceptor 1s to destroy aerial
targets, the basic criterion for the combat effectiveness during
group combat operations of interceptors 1s the number of destroyed

(downed) targets. This number is a random one and, consequently,

its most complete characteristic is the law of the distribution of

this random number. The basic quantitative indicators of the combat
effectiveness of interceptor group operations, and the ones most

often used in practlice, are the numerical characteristics of the law

of distribution of the number of downed targets, viz.: 1ts mathematical
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expectation (that of the number of downed targets), the probability

of downing all targets in flight, and the probability of downing at
least a glven number of targets. Most of the problems in this chapter
are devoted to determining these characterlstics.

e el G
P

LA

In Problem 6.1 we determine the distribution law of the prob-
abilities of destroying a group target with a group of interceptors.
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The most general problems are 6.2, 6.3, and 6.4, whose solution

WA :‘!- M

gives us the dependences of the mathematlecal expectation of the rela-
tive number of downed targets on the number of operations against
each target, the probability of destroying a target with a single
operation against it and with a given quality of solution of the
problem of combat control. This latter is taken into account by
examining three models of group aerial combat, which define the
limits of combat effectiveness.

1. A model of combat in which there 1s no target distribution,
l.e., when each interceptor can attack any target in the sortie,
resulting in intermingling of the targets and nonuniform distrlbution
of targets among the interceptors (Problem 6.3).

2. A model of combat with ideal target distribution 1i.e., when
the targets are uniformly distributed among the interceptor and

operations against each target are carried out independently of one
another without analyzing the results of the previous attacks
(Problem 6.2).

3. A model of combat with ildeal target distributicn, analysis
of the results of each attack, and reaiming to another target if the
previous one is downed (Problem 6.4).

Obviously, any case of group combat operations which 1s possible
in practice can be evaluated by one of these models. This is 1llus-
trated by the solution of a rumber of problems (6.5-6.7).
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Those problems whose solutions give us the dependence of the

Lo
»

relative carrying capacity of a multichannel surface-guldance system
on the number of guidance channels, the average time for guidance of
a single interceptor, the intensity of the t-rget sortie, and the

™,
]

depth of the belt in which lnterceptlon takes place, are character-
ized by great generality. Using queueing theory, we examine two
models of interceptor combat operations:

TR

-

1. Interception of targets on a given line, or the Erlang
model (Problems 6.8-6.10);

v
.

:

2. Interception of targets in a given belt, or the Barrer
model (Problem 6.11).

Classical queueing theory gives analytical formulas for calcu-
lating the carrying capacity of multichannel systems only for the
case when the intensity of the flow of targets 1s constant. To
expand these conditions we examine Problems 6.13 and 6.14, which
show ways for possible calculation of the effectiveness indicators
for the most general case when the intensity cf the flow of targets
changes randomly with time and 1s characterized by a given distri-
bution law.

A number of problems are devoted to determining the combat
effectiveness during independent combat operations, when a group
of interceptors independently seeks out a group target and subse-
guently destroys it, znd to determining the required number of inter-
ceptors to assure a gilven effectiveness (Problems 6.15-6.18).

Vit Rt o e e s I S

PROBLEM 6.1. Nn interceptors are guided to Nu targets. Each *
target is attacked by one interceptor, resulting in each target's

being downed with a probabllity cof Pl‘ Naturally, the number of .

'3

M O &

i A
N
.

downed targets 1s a random number. We must give the complete char-
acteristic of this random number. Given: N_ = 10, Nu = 10, P, = 0.7.

n 1

¢

Solution. As the all-inclusive cheracteristic of the .mber of
downed targets NC " we have the distribution law for the probabillities

T yrease;
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of this random magnitude. If one interceptor is guided to each of

Nu targets, and the interceptor downs the target with probability Pl’
the density Pci of the distributlion of the number of downed targets

is defined by the coefficlents of the expansion of Newton's binomial.
Let us designate by Ql the probabllity opposite to Pl' Then the
desired ordinates of the distribution law are defined by the following
type of expansion:

i

b o Km0 o W W Rl

{;" -} Ql)\.n = jJ;":x -+ i\',lp}'.lll"tQ! -4 J\_'.‘.L.\:J!"__.._l)_ p;":i"“Qi‘ + ...

. N N
Here Plu is the probability of the downing of all Nu targets; Plu +

N -1
+ N P 4 0, is the probability of downing at least N, - 1; the

first three terms are the probabllity of downing at least Nu - 23
ete.

Using this method we find th.. when each of 10 targets 1s
attacked by an interceptor and Pl = 0.7, the probabllities that at
least 10, 9, 8, ..., 1, 0 targets will be downed are, respectively,
0.03, 0.15, 0.39, 0.63, 0.85, 0.96, 0.99, 0.995, 0.997, 0.998, and
0.999. Using the formula for determining the mathematical expecta-
tion, let us not calculate the mathematical expectation of the number

of downed targets:
10
. ﬂ L)
AN, o] ”’2‘

a2l
where Pci is the probabllity that exactly i targets will be downed;
i = 0-10 .

cls

bty
_'!_l

‘,‘.
A, 0,

MN, o) =10-003F 90,12 4 8-0,24 4 7.024 + 6.092 +
4+ 5-0,11 444003 4 3.0005 -+ 2.0,002 4+ 1.0,001 =7,

L oy
aE b

.

2 which coincides with the obvious calculation using the formula
) 0.7+10 = 7. Unlike the distribution function, which gives the prob-
ability that at least a glven number of targets will be downed, the
distribution density gives the probability that exactly a certain
number of targets will be downed. For our example, the probabilities
that exactly 10, 9, 8, ..., 1, 0 targets will be downed are, respec-
tively, 0.03, 0.12, 0.24, 0.24, 0.22, 0.11, 0.03, 0.005, 0.002, and
0.001.
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PROBLEM 6.2. Nu targets participate in a raid on an object.
A flight of Nn interceptors is sent to intercept these targets. At
the command point all interceptors are uniformly distributed against
all targets, since all targets are of equal value. Each interceptor
has mp rockets which are fired independently at the targets. There
is no damage accumulation; each rocket destroys a target with iden-
tical probability P,. Show how the expectation of the number of
downed targets M[Nc:u] depends un the number of attacks against
each target and the probability P1 of downing a single target with .
the firing of one ro:ket.

Solution. The resulting probability P2 of destroying each tar-
get after mpNn/Nu operations is equal to the probability of the event
consisting of the faect that each target is destroyed after any of
mpNn/Nu rocket firings against it. Either it is destroyed by the
first rocket, or the first rocket does not destroy it but the second
one does; the first two rockets do not destroy it but the third one
does; ete. Consequently,

"V ¥
”’-_ST‘—.-I 1 n"i:__
P, =P+ QP + QP +...=P‘>_ Qr =P, _._l._‘._.’a_!...z
' mezhs
mpNn
=1-(1=P) ™, (3)

where 2:1§; 1s the sum of the geometric progression whose first term
m

is 1 and whose denominator is Ql‘ In practice, it is convenilent to
use, Instead of the absolute value of the expectation of the number
of downed targets, the relative value:

o,
O]

AN & N
S —1—q—p) ™ (2)

®

The graph of this function is given in Fig. 6.1.
Wher it 1is impossible to uniformly spread all operations against

ail targets, against a certain rumber of the targets there is one
cperation more than against all the others. 1In this case,
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nlpA'“J
M[Ne, [ N
et =li—a=p T 0 —apy, (3)
E where
> m N
3 a=~fN—n1~[a]==0—-1, (4)

. [a] is the integral quotient of mpNn divided by Nu'

We can also use the following formula:

MUl o 1 (1= PY] 45 {1 = (1 = PRI, (5

N, n

but calculations are simpler using Eq. (3).

i . RO ) i

A
.

PROBLEM 6.3. A group of Nn interceptors conducts aerial combat
with Nu bombers. The mutual positions of the interceptors and targets
are such that each intercepter can attack any target and down it with
identical probability Pl‘ Show the maximum lincrease in effectiveness
if we turn from free aerial combat, i.e., from tactics under con-
ditions of the complete absence of target distribution, to tactics
under conditions of ildeal target distribution, when all targets are
Ei uniformly distributed among the interceptors. The expectation of
N the number of downed targets is the criterion of combat effective-
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Suiution., Since with ideal target distribution Nn/Nu operations
are carried out against each target, the probability of downing each
target, as shown in Problem 6.2, is

=y Tk,
L

g

2y

w;b-‘ét
s i
'_p.‘,“; ’
I

L~ (=P, (1)

,..
bt
;vl»a
s
%y
e

'
v
L]
ry
Te ™

v et
P
IR,
'~
H

.

5

¥
X

N,

i.e., the expectation of the relative number of downed targets

>

LZL_'::

Hesd oy o (1= P, )

When there is no target distribution whatsoever, the probability
that a certain interceptor will operate against a specific target is
I/Nu' The probability that v interceptors of all Nu willl operate
against a specific target 1s calculated frcem the formula for the

tert of the Yewton binomial expansion:
Py = Cy, ! ) - )"“"- (3)
)=y (w) (1—w) "
Ch e !
By = W= T
The probability that the s :cted target will be undamaged
afver vy attacks 1is

P =AY

However, the target neel not be attacked v times; it can bhe
attacked 0 times, 1 time, 2 times, ..., or Nn times. Consequently,
the resulting probability that a target will be undamaged 1s equal
to the sum of the probabiiities of all Favorable events:
s, v/ P, \Y
N Pe) =Py ={1—F) "

v ()

(%)

The expectation ¢f the relative nuwiber of downed targeats with
nc target distribution whatscever is equal to the probability of the

oprosite eveat:

1atles of Punction (5) are given in Appendix 1. Thus, the gain

in effessiveness is expressed by the Tcrmula
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Function (6) depends on P,, N_; and N , and in general form it
is unnecessary to construct it as a function of the argument Nn/Nu,
since Nu must be specified. However, for large values of Nu,

N,

- — . N‘n—- .u
(1 —"‘A‘u') e U, (7)
since by definition of the Euler number

¢ == lim 1+-.‘;;-)‘

r &2 4

we have

Ny(=P3 N,
) ("Fﬂ T“-
t ]

LooPy Y . 1
Jim (- 5t) ‘f',ég}‘.(‘«“’“»'wr
- - % H ) ) e, ‘)

. P

(8)

Calcul=tions from
Formula (5) for P, =
= 0.2-0.95 are given in
Fig. 6.2. Using the
graphs in Figs. 6.1 and
6.2 we can construct,

R A A

for any Pl’ the effect-

iveness gain function.
For values Pl = 0.2-0.95
this function is as shown
in Fig. 6.3. With small
values of NLl and Nn’ to
construct the function
A(Mth.u]/Nu) we must ase Eq. (6) directly. Calculations given in
the tables of Appendix 1 allow us to Judge the rapid convergence of
(5) to (8), and determine the limits of vallidity for constructing
the gain function A(M[Nc.uj/ﬂu) from Eq. (6). The effectiveness in
the absence of target distribution can also be estimated by another

& myNy [y
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method. In this case,

1::5;
!
|

the number of operations

Nn/Nu carried out against

each target 1s a random

number, subject to the

Poisson prineiple. The

probability that exactly
k operations will be
carried out against each

target 1s calculated by
the formula

Poom =2 e (9)

Using the formula for the total probability, we get the probability
¢f the downling of each target:

hj
..i_'gp.

P Pl —(1—PY|=1—e ™ |

k.0

PROBLEM 6.4. Determine the gain ih combat effectiveness (the
difference in the expectétion of the number of downed targets) when
turning from tactics under conditions of the lack of any organized
target distributicn to tactics wdar conditions of ideal (uniform)
target distribution, and then to tactiecs with reaiming, when each
subsequent attack is carried out only after the results of the pre-
vious one have been analyzed. Show hcw the desired difference de-
pends on the probability of interception of a single target when
the interceptor fires one rocket.

Solution. Since the number of destroyed (damaged) targets is
2 random number, the most genceral characteristic of this number is

£

its distribution law. Conseguently, the general method of deter-
m g the effectiveness of groupr interceptor operations against a

e

@

n
group of targets is to determine the distribution law for the number

~f damaged targets, from which we can then calculate such character-

b
m
<t
e
el
7]
0

s the exrectation of the number of damaged targets, the
probability of damaging ail targets, and the probebility of damaging
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at least a given number of targets. The ordinate of the density dis-
tribution funcfign for the number of damaged targets is the probabil-
ity Pi of destro&iﬁg exactly 1 targets. When i < Nu, the probability
Pi is defined by the binomia; distribution law:

Ny—i

Nyt [
Py=Cl P = Py il P (L= Y™ (1)

1V o'l o Mt W ST e s e

Thus, for this case the prqbability of damaging all targets is
defined by the formula

N,—t

Pﬂlal—zph (2)
[

since the probability of the oppositve event — the probability of
destroying at least one target — is

W=l
i.e., equal to the probability of damaging one, two, three, etc., up

to Nu -~ 1 targets, but not all Nu targets. Using the theorem of the
separation of sums (integral), Eq. (2) can be written as follows:

iy Nyt
\ N h A ] 1 "
P = },JCN,.P'! (1 = P)¥n~ — };‘ Cy, Py(1 — P),
2=y R ey

Since

Nﬂ
}j!cfvnpi Q "'pl)”‘.‘-l =1,

(2

as the sum of the probabilitles of a complete group of events, the
formula for calculating the probability of damage to all targets as-
sumes the following form:

.V"
Py Y G P~ PY" (3)
-y ’

Analogously, for the probability of damaging at least the given
number of targets we have the following formula:

.
P..=20.'v,,”4 =Py, (4)

1=m
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where m is the given number of targets which must be destroyed, i.e.
& 3

Ll
the number of damaged targets 1s obtalned by using the formula for

calculuting the exp=

€3

o damaged vargetls multiplied by the probability of the cccurrence
of these numbersz. For this we must multliply each random number of
damaged targets 1 by the ordinate of distribution density (1) and

sunt these derivatives from 1 tO—Nu:
X,
RYic pr(1— Vet (5)
7 j ‘ n .
=1

Mooy, oo sum (5) we must add the sum which takes into zccount
the (ussiblility thst the votal number of operations Nn carried out

by <11 infterceptors can be greater than the number of targets Nu.
]

targets then assumes the following form:

Nﬂ
M[Ne o= Ezc',vnpl, (1 =Py +

(=l

Nn
+ N, }:‘ c, PL(1— P)N. 6)

l-x\'"-{-!

Graphs of functicns (3) and (6) are given in Figs. 6.4 and 6.5.

i

=5 » o N T 3
The gain in effectiveness with

eaiming is shown in Fig. 6.6.

Qe 2 B J.' = p
asnces M[Nc.q] f(-l, Nu

e s Nn) shows
tribution, the absence of target dis-
g

reatest differences in M N. 1 occur
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with P, » €.5 and &_/N = 1-2. The dependences AM[E:C uj can be
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he number of damaged targets can be m or more. The expectation of
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tation as the sum of all possibie random numbers

ating the expectation of the number of damaged
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and also the nomogram for defining EN are all-purpose when a flight
u
of interceptors is used, if we are given quantitatively the effect-

ivegess level. Using these wWe égn,also solve the opposite problem:
to determine the effectiveness uguc.u], Py 1if we know the number of
u

-
It
2l
o
A
1y

targets Nu’ the designated flight of interceptors Nn’ and the prob-
ability of target destruction in a single operation P

-

ot

lc

e o N
o .

We should remember that in Problems 6.2-6.4, when deriving the
calculation formulas we assumed that the interceptor carried out
one attack. When each interceptor can carry out mp single attacks,
everywhere in the formulas for these problems we must replace Nn by
mpNn. We must keep in mind a similar substitution when using the
graphs in Figs. 6.1, 6.2, and 6.4, and the nomogram of Fig. 6.6.

P )

e h e
Tt

S K

L bl el
LML

In addition, we should add that calculations by Eq. (6) of this
problem as a function of the values of Nu and Nn become less un-
wieldy if we use the formulas

.}
| LUMELUSS S (=N € P —PY (7
. “i;A
MIN,, o} =Ny~ }J(N,—QC&"P{ (1= R)%™, (8)

Appendix 2 contains the table for function (6).

PROBLEM 6.5. Determine the average percentage of downed targets
as a function of the ratio Nn/Nu between the number of interceptors
and the number of targets in the raid, if aerial combat consists of
individual battles in which the targets are downed independently of
one another with probability Pl, while the intergeptors are downed
with probability P2. Let us assume that we have ideal target dis-
tribution for both opponents.

Given: Pl = 0.3, 0.5, 0.7; P2 =0.1, 0.3, 0.5, 0.7, 0.9;
Nn/Nu = 0-5.
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? Solution. The expectation of the relative number of downed

S targets is def'iued by the formula

’ M{N o} .
/ """(W‘C‘L‘“Pn(l"Pu}.l)o (1}
* where Pu is the probability of downing each target; Pnop.n 1s the

) probability of damaging each interceptor.

Let us use Eq. (2) of Problem 6.2 to calculate these probabili-
ties. For our model of aerial combat with ideal target distribution

L g

LT

we have

‘I
3
v
:
i
v

IV’"

Po=1—(1—p) Ny (2)
Nﬂ

Pppn=1—=(1=P) ", (3)

Consequently, the desired effectiveness 1is found from the for-

muls

Ny Ny
M Nc.:l' ?"—u. ; -‘—x-
—L,\,.,,—‘—=[x—(1—m J—py, (1)

The results of the calculations for the initial data of the problem
are given in Fig. 6.7.
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PROBLEM 6.6. In group aerial combat the number of targets Nu
18 equal to the number aof interceptdrs Nn' Each interceptor 1s”’
armed with mp rockets and can oarry out several attacks, destroyling
in each attack a single target with probability P,. 1In turn, due
to enemy fire, the interceptors in each attack are damaged with
constant probabllity P2. Deterniine the expectation of the relative
number of downed targets M{Nc.q]/ﬂu for three combat models: no
target distribution, ideal target distribution, and ideal reaiming.
Determine the optimum number of &ttacks which each interceptor should -
carry out to assure maximum effedtiveness, remaining undamaged with
maximum probability.

Given: Pl = 007; P2 = 001’ 0‘.2’ 0.3.

Solution. By analogy with Problem. 6.5 we have

HiFesl P (1 = Pig. ) (1)

where Pu is the probability of downing each target which, in accor-
dance with the combat model, i3 calculated by Eq. (2) of Problem
6.2, (5) of Problem 6.3, and {6) of Problem 6.4} Pﬁop.n is the prob-
ability of damage to each interceptor.

g
E
]

Since Nu = Nn’ the possible ntimber of attacks on each target
with uniform target distribution is

n,,a%um, (2)

and, consequently,
Pog.aw= 11 = P)™], (3)

Thus, the formula for calculating the effectiveness under the examined
conditions assumes the following form:

of(Ne. ol
SRl =P (L= Py (4)

The results of the calculations for the initial data of the
problem and P, = 0.7 are given in Fig. 6.8. Analysis of the graphs
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- _.-,;odégﬁgg‘gﬁgisn e lncreasing number of attacks
" tribution on a target the increased

prcbability of downing each

Fig. 6.8.

target decreases, while

the probabilicty ol lumage tu @ach interceptor increases in chis case.

PROBLEM 6.7. & group targel -.onsistiig of NLl alrcraft cen be
attacked by a group o. NP inler>wptors Iin the following two ways:

1. The target 1is attacked by all Nn interceptors in turn; sub-
sequent attacks are carried out after analysis of the results of

previous ones; each single interceptor downs any enemy aircraft with

probability Pl’ and the interceptor in this case ls damaged bv each

enemy aircraft with probability P2.

2. All intercep*ors attack a target simultaneously; the prob-
abilities of target and interceptor damage with a single operation

against either are also P1 and P2.

Determine the dependence of the expectation of the number cof
downed targets M[Nc u] on the values of P , P, Nu’ and N . Con-
sidering that the effectiveness depends on the force ratio Nn/N

U’
determine the optimum quantitative composition of the group target

for which, when attacked by a given number of interceptors, the
effectiveness M[NC uJ is maximum. Show how the effectiveness can
be increased if we turn from single to group operaticns.
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Given: P, = 0.5; P, = 0.5 dnd 0.1; Nu = 1-5; N = 1-5; combat
model with ideal target distributien.

3olution. Using Eg. (4) of Problem 6.5 we find the dependence
of M[N_ ] on the given values of’P,. P,, Nu; and N_ (Fig. 6.9).

&th This dependence shows that we

=T always have optimum quantita-
Y tive composition of the group
| st S
s pe target for which the effec~
- tiveness, considering counter~-

o L
{  ememvi—— P'.o'sipzﬂoil

wittintre Py 0,5 Pyw 0§

3

o

fire, is maximum with opera-

tions by the given number of

o AL

intarceptors. For example,

when Pl = ¢.5 and P2 = 0,5 1t

“J

is ratioual to use a group of
‘five interceptors against 3-4
enemy aircraft, but not against two or five: in the first case the
effectiveness 1s low becauge of the small number of targets, in the
second case — because of the high ‘probability of damage to each in-
terceptor. Using this fexmulas however, we find the difference in
effectiveness for the two given attack methods.

PROBLEM 6.8. The enenmy carriﬁs out an air raid with an inten-
sity of A = 10 targets/hour. The targets ecross the line of respon-
sibility of the ailr-defense reglon at random moments of time, forming
in this case a simple flow. Twc guldance stations are set up to
organize the interception; each of these stations simultaneously
guldes a single interceptor to a single target, spending TH = 5 min
per guidance. If, at the moment the target crosses the air-detense
line, both stations are busy guidiﬁs interceptors to previous tar-
gets, the given target is unintercepted. How many targets will pass
unintercepted if the enemy raid lasts for 1C hours? Let us assume .
that there are enough interceptors, and only the fact that the
stations are busy with guidance results in partial enemy penetration.
Determine the expectation of the number of downed targets for A = 10
targets/hour, TH = 5 min, if the probability of target downing with
the occurring guldance is Pl = 0,9,
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Solution. Let us determine the probability Pn that a target,
selected at random from the flow, finds both guidance stations busy
as it crosses the air-defense boundary. For this let us use the
Erlang formula [3, 39]

BR
!
o - Py=— .
E%§W~'EE v 8
I 5= =

N
\

Calculations made by

the Erlang formula are
shown in Figs. 6.10 and
6.11 for a great many con~
b ditions; the probability
Pn that all n dannels

are occupied is derived as
a function of the number

o b LM Mt

P
o

Fig. 6.10.
. 5

ug

0

N 47 of channels and the re-
- a8 duced density:
k. 0¢ A

For our example we have

4

0'; ,1!/./4(/% ]
1 20 30 40 $0 §0 70 80 9 B %\
X Fig. 6.11. 2',,2_',’,(

v

e |"!;{3
t

E T 7
5 \2
"0 Py= ﬁT) =016,

5_h
6)
t

»

. Since under these condltions 1t is shown that a target, finding both
guidance stations occupled, remains unintercepted, Pn = 0.16 expresses

the percent of unintercepted targets. 1In all, in a 10~-hour raid there
are 10\ = 100 targets; of them, 100¢0.16 = 16 targets are uninter-
cepted.

This problem is interesting in that 1t shows how much the random
nature of target appearance can reduce the effectiveness cf an air-~

defense system. Actually, if the targets were to cross the air-ae-

fense bouncary in various time intervals with the same intensity A =

= 10 targets/hour, i.e., 1 target each 6 minutes, with a guidance

189
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time tH = 5 min all targets would be intercepted even when using only
one guidance station. When B = 5/6 and n = 2, from the Erlang formula
the probabllity that all channels are busy P, = P, = 0.16. Conse-
quently, the probability that at least one channel is free is 1 - Pn =
= 0,84,

The probabllity that there will be guldance against each target,
and the target Is in this case downed, is

(1—P,)P,=084.09=0756,

while the expectation of the number of downed targets

(1 — P,) P, N, =084-09.100 = 75§,

For our example, when the relative carrying capacity of the
system is one (i.e., we have a regular flow with 6-minute intecsvals
between targets, and the guldance time is constant, equal to 5 min),
the number of downed targets 1s 100-0.9 = 90. Thus the random nature
cf the flow of targets and the random guldance time decrease the
effectiveness by 16%.

PROBLEM 6.9. The raid is a simple flow of single targets. All
targets are Intercepted on one given line. The time that the inter-
ceptor gulidance channels are busy is a random magnitude, with ex-
ponential distribution. The averesge time between successive targets
is 5 min; the average time the channels are busy is also 5 min. There
are 5 guidance channels.

What are the probability that exactly 0, 1, 2, 3, 4., or 5 charnels
will be occupied? How do these probabilities change if the avesrage
time the channels are busy lncreases to 10 minutes?

Solution. The answer 1s obtained using the Erlang formula. The :
results of the calculations are given in Table 6.1.

The table shows that the probability that all 5 channels will
be occupied with 8 = 2 is ~0.04, 1.e., each 25-th target crosses the
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Table 6.1 intercept line unchallenged;
' when B8 = 1, only each 300-th
target is not intercepted.

k

{ e

w
~

0 0,56810 0.13761

] 0,26810 0,27523

2 0,185 0,27523 PROBLEM 6.10. The raid is

3 .06135 08349 a simple flow of targets with

4 9,015 0,003 74 =

5 0 Uind 0,570 intensity A = 10 targets/hour.
The air group has the prcblem

of intercepting at least 90% of
the targets. To exclude mutual interference and assure safety among
the attacking interceptors, we designate several lines for simul-
taneous operations against the targets. The number of simultaneous
operations does not exceed the number of indicated lines. If there
are more targets than lines, they pass unchallenged through the air-
defense region. The average time of target intercept on any line
tH = 5 min. The probabllity of target damage Pnop = 0,96. How many
intercept lines should be designated so that the probability of tar-
get passage does not exceed 0.1? Let us assume that the required
number of combat-ready interceptors does not 1limit the percentage of
downed targets, and that the duration of the combat operatvions is
sufficiently long (at least no less than lOtH), and that the Erlang

formulas are applicable for such a steady-state process.
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Solution. Let us designate the desired number of intercept

S

Since the number of simultancous guldances is equal

lines by np_n.
to the number of designated lines, when using the Erlang formulas
the number of channels is the number of lines. Consequently, the
probability that all guidance channels are busy 1s equal to the
probability of unchallenged target passage:

g,”p. n
My, ol

: =l B, (1)

p. '

. LY
S

ke

P

=/ )npon

he probability that exactly k channels are busy, i.e., the prob-
ability that target interception occurs on exactly k lines

-X
o= P
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when

- 0<k<"p.ﬂ; (2)
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L1

L
g

bﬁ
Pr= 1 " 0 Po
np. n ”P' "

when

k> Ny ' (3)

The probability that no channel is used, i.e., the probability that
there are no targets at any of the designated lines, is

Po= ’ : (4)

P

E .‘f.-{- f‘n""’( flp. n )
[]] ftonl \Rp q—§

n=y

Using Formulas (1), (2), and (4), let us calculate the probabilities
PG, Pl’ P2, P3, ... that there are no targets at any of the designated
lines, there are targets at one line, two lines, three lines, etc.,

and then find the sum

Fon

sz=Po+Px+Pz+Pg+.., (5)

k=0

equal to the probabiliity that operations against targets occur on

lines whose number does not exceed np n*

The results of the calculations are summarized in Table 5.2.

Table 6.2

. ftn g1
o n e %o.n
fon | P pn :S i R S ') nl e
fpaul(lpn=F) | i & i=0

1 S i 0,167 ]0,139¢ v 0 6.306
2 0,595 1.83 0412j0343i0113] O 0,874

3 0,134 2,18 0,132 | 0,360 j 0,150} 0,010 ] 0,942

Thus, if we designate 3 lines, 0.942+0.96 = 0.905 targets will
be intercepted, and the interceptors' mission will be completed.
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PROBLEM 6.11. For the conditions of Problem 6.8, determine the
expectation of the number of downed targets if the targets are inter-
cepted not on a line but in a band of width D. The target speed is

e e

constant, and equal to Vu,

\\‘yl’l

T 3

L

Solution. Direct solution of this problem is given by the
Barrer formula [40], from which we can calculate the probability
that all channels of a multichannel system are busy for the case of
. "impatient" requests distributed by the Poisson law. By an "impatient"
target in this case we mean one which, finding all guldance channels
busy, waits in the air-defense belt for time tom = D/Vu’ after which
it leaves the’queueing system. If, however, the target 1s on queue,

vi'y

o

¥

LM

s
Ll T

+ G iy

1t remzins in the system until there 1ls no queuveing.

For our example, when

a::).fm“ :'.:—"—Il

Vo ?

LN

A
=t =,

according to the Barrer formulé we have

Po= b (1)

a
N
(3= n) n! }: _%_ 4 gnet [,,e(;)-n)_ 1]
kool

Analysis of the Erlang and Barrer formulas (Figs. 6.10-6.14)
shows that a difference from the simple formulas for regular flow
cccurs when B = A/u = n, 1.e., when the reduced target denslty B is

approximately equal to the number of guidance channels. When B =
= (2-3)n, there is saturation in the system and P = ng, while when
B > 3n we can always use the regular-flow formulas:

Po=lm—g=1— (2)

e

which coincide numerically with the Erlang and Barrer formulas. The

Barrer formula must be used when B » n and n < 10~15; in other cases
it coincides with Eq. (2).
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PROBLEM 6.12. An air rald consists of a random flow of single

targets, the intervals T between whilch are subject to the Polsson law

ith expectation Tu = 5 min. The time during which the guidance
channels are busy is a random number, distributed exponentially with
expectation TH = 10 min. The guidance system operates such that a.y
target enters on "queue" (interceptor guidance to it begins) on any
free guidance channel. The combat mission to destroy targets on a
ziven line is set up such that a target arriving at the line at a
moment when all n_ channels are busy can "wait" nc more than two

rrnw

£
.

o 3 790 T e
L T TR TE

talaa
v

-

minutes for any channel to become free.

line unintercepted. We must determine the required number of guldance

channels n, which wlll assure an average
more than two minutes. What will be, in
number of targets in the system, and the

Otherwise it crosses the

"expectation'" time T, °f no
this case, the general average
average number of targets

awaliting the start of queueling? Compare the described guidance system
with one operating under ccnditions when Tu and TH are constants and
equal to Tu = 5 min, TH = 10 min.

Solution. The total number of targets in the system is equal to

the sum of the number of targets N awaiting the start of guidance

1. OH
to which the interceptors ars being

and the number of targets Nu-
guided:

H

Ny=Ny on + Nun D)

From queueing theory we know that for the described multi-
channel guldance system the probability that there are Nu targets
in the system is calculated from the formulas

e
A

s

Py =g Pa (2)
when
0 < “Vu < n,,
and
"
e g
P‘\.u - g n' Pl W Po’ R ( 3 )

)

Bulelala
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Here

From the conditlon

Ve, = (5)

we find that the probability that none of the guldance channels is
busy 1s
F ' ':E\: 6V -
I)o=l——“(llx“l)m!("t_§) ~|‘AH WJ . (6)

Ny=?

By definition of expectation, the average number of targets in the
system is

M[N,) =-N2.0N.,P . (7)

The expectation of the number of targets awailting the start o
guidance is

MNood= Y, (Nu—m)Py, (8)
Ny=n At
On the other hand,
T,
Ny, on =R, (9)
from which
Tow= Ny, on Ta (10)

Using the formulas derlved we can show that

' T, P,
Ton = =i (11)

The ratio TOH/‘I‘H 1s determined from the given values of n , T
and T, from Fig. 6.15. We also know that for normal functioning o

satisfied:
ne>> 8. (12)

f

H?
f

the system, when the targets appear at random time intervals and the
guldance time is also a random value the followlng condition must be

>
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wp STt t
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Otherwise, when the number of channels is less than the reduced den-

sity B, the line in the system increases endlessly. Consequently, in
our example we must examine n, > 2, since

w__ T _ 10
[3

"=~—=-—-=

= 0.13. Correspondingly, from (11) we get for

in}
)
==
-
o

Let n_ = 3; then for B = 2 according to (6) we have Py = 0.11. When
0

. T,
T,," \ ¢'>’, n‘as T“‘:so,tl,s; T!=4'5 mj_n,
101 NG % -
4] _
g N ~ and for
EAN
- < 1
u z, | Mym4 To=0073 T,=073 min.
h o
0 \0@& y \l| Thus, to satisfy the condition
\\ Tom < 2 min we must have at leasw

four guidance channels.

8
v
v

1

Jou s =

L3
PS4
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1

lé \ \ J Now let us determine how
ém - \ \\ many targets Nu’ on the average,
0 \\ \ will be in the system and how
463t \ \ many targets Nu.om, on the

\\ ] average, will awalt the start
i S 42;06§In, of guidance. To use Egs. (7)

and (8) we must first calculate,
using Egs. (2) and (3), the
that there will be 1, 2, 3, ..., 10, etc. targets

Fig. 6.15.

probabilities PN
y
in the system. These probabilities are, respectively,
P, =026, P,=026; 2, =017% P,=0087; P, =0,M4
Py=0022; P,==0011; /,=0005 F£,=0003; P,=0001; =0,

The average number of targets in the system, according to (7,
is M[Nu] = 2.16.

The average number of targets awailting the start of guidance,

according to (8), is M[Nu.om] = 0.162.
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During regular flow, when the targets come at equal intervals
Tq = 5 min and the guidance time is also constant and equal to TH =
= 10 min, two guldance channels assure a relative carrying capacity
of one, i.e., in this case all targets will be intercepted, while
both channels are continuously occupied. With the random appearance
of targets and random guidance time we must have four guidance
channels, although the average values of Tu and TH remain hnchanged.
In this case, on the average, 1.65 guidance channels will be busy,
while the pfobability that all four channels will be busy is 0.348,

i.e., there are free channels for almost 65% of the total system

operating time. During this time the targets, on the average, await

the start of guidance for 0.73 min. The reasons for this are the
random clustering and scattering of targets in the total flow.

PRCBLEM 6.13. Show how the indicators of the effectiveness of
a multichannel guidance system, cal:ulated by the Erlang and Barrer
formulas, can be extended to the case when the intensity A of the
incoming flow of targets durlng a counter-air operation changes by
a random law characterized by the distribution function G(A).

Solution. The probabilities calculated by the Erlang and Barrer
formulas for the case when there is the simplest target flow (A =

= COor ‘¢ none other than the average relative time that the
guilda:,. _.ystem remains in a certain state Ek' For example, the
formula
(24"
]
D, (h=const) = — 1L ; (1)
" 11, {24y)* "
1-+—ﬂL+ B+ et

defines the average relative time when all n channels are busy with
a given target-rald Intensity A and average guidance time tH.

Obviously, during the counter-air operation the raid intensity
A can change at random. Since it 1s basically impossible to describe
the change in A by a determinate time function, dlstribution function
G{i1) is the most complete characteristic of intensity as a random
value within the examined counter-alr operation time T. Now let us
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designate by F(XA), for target flow with intensity A, the average
relative time during which the guldance system is in the state Ek.
Since by definition of the distributlon function the intensity assumes y
the value of A in interval T for time T*AG(A), during this time the E“““!“"‘

guidance system 1s in the state E,, on the average, for the time AR
k NN I

SRR

FOYT3G (). : (2) b ]

During the entire counter-air operation, state Ek ocecurs, on the
average, in the time

7§ PeYIOM). (3)

Dividing (3) by T, we get the probability that the guidance system
is in state Ek‘

Thus, to calculate the probability that all channels are busy
and the target passes unimpeded across the line, when the target-
flow intensity is a random value with distribution function G(A),
we must use, in place of Eq. (1), the followlng relationship:

i

-—-—-(M';'!)n dG @)

PJ[G(A)]= Y] YU YL ('-l)
Jorege e SR e S
The Barrer formula in thls case assumes the form
AI
® My, (M, =n)
. My—n) )" e U™ g0 01
P,,[G(A)]a (Hy—~—n) (M,)%e 7 (V) (5)

r .
(M= n) at }: _(“L'_:)k. + (M, )50 ( e"'°"‘ M-n) 1]

b2 Boall

“

PROBLEM 6.14. Propose a general-purpose exprecsion for the dis-
tribution density of the intensity of the incoming target flow g(i)
which describes the random value of intenslity X durlng a counter-air
operation., Determine the unlversality such that the simplest target
flow, for which A = const, should be a particular case of the general-
purpose law introduced, while thelr mean values should coincide.

Solution. The followlng expression corresponds to the univer-
sality criteria given in the conditions of the problem:
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[ 4

where Acp and § are parameters of the law, while I' is the gamma-
function. Actually, ’ .

1) the area beneath the curve described by Function (1), is
equal to one, i.e., the expression g(A) corresponds to the property
of standardization, as requlred for density distribution:

S'g(l)dl=l; (2)

2) the expectation of target-raid intensity is

:5 Ag (1) dh=2) g (3)

3) dispersion of Law (1) is

2)' (A —Aep)? g () dh =2 8. ()

When § - 0 the raid intensity dispersion vanishes, a2s shown by
Eq. (4). This indicates that the probability of any value of X other
than Ac is zero. Consequently, when § + 0 we get the distribution
density of the intensity of the simplest flow: g(A) is the delta-
function with A = Acp. Thus, the parameter § o. Law (1) is a char-
acteristic of nonsteady target flow. So, if it 1is necessary to
determine the indicators of effectiveness and carrying zapacity of
the guidance system with a random change in target-ralild intensity,
we must first determine these indicators for simplest target {low,
when the Intensity is constant and equal to Acp, then assign the
proposed level of nonstatlonarity, and, using general-purpose Eq.
(1), calculate the desired indlcators.

PROBLEM 6.15. 4n air group consisting of Nn interceptors de-
fends an air-defense line of width B = 1000 km. From the warning
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band information is received of an air rald consisting of Nh = 20
targets. This allows us to arrange the takeoff of the intevrcéptors.
Then, because of the lack of a radar field between the warning baand
and the object to be defended, the interceptor organizes independent
target search, loitering in a band of wldth BE. Because o7 velocity
and heading maneuvers in band B, the targets are distributed randomly
by the equal-probability law. How many targets, on the average, will
be destroyed on the defense line of width B if the width of target
detection by the airborne radar 2b = 50 km, while the probability of
target destruction when detected by one interceptor Pl = 0.87

g s A

o

Solution. The probability of target detection on the defense
line is defined by the relationship between the sectors scanned by
the airborne radars and the total line wildth B. Let there be an
elemental increment of the scanned sector Ab at some random moment
of time t on line B. The probability that a target will be detected
by sector Ab is Ab/B. Let us designate by Q(0,b) the probability
that up to moment t there are no detected targets. Then the Prob-
ability that up to moment t there are no detections 1s

dQ(0, b) = —5-Q(0, 8). (1)

This first-order differential equation satisfies the following
initial condition: the probability that there are no detections
with Ab = 0 is 1. Considering this condition, the solution, 1.e.,
the probability of no detections, is defined by the formula

QO 6) =" (2)
Consequently, the probability of target detection by one inter-

ceptor is

1— e—-i.‘alB. (

(PR}
S

Tne probability of target detection by Nn interceptors 1s
1— e-h'nﬁbIB. ( u )
The probability of target destruction by Nn interceptors is
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The expectation of the number of downed targets
3 M|N, ] =N, [l - e—:vazas.la)]_ (6)

Substituting the numerical values of our problem we get v

MM ) =20[1— gAY ] 11,

Thus, of 20 targets, only 11 will be downed, on the average.
Because ¢f the random nature of destruction of a detected target,
an average of 20+0.8 = 16 targets could be destroyed. However, the
limited search capablllities of the airborne radars and the great
expanse of the line to be defended reduce the expectatlion of the
number of downed targets from 16 to 11.

T

PROBLEM 6.16. Determine the increase 1n expectation of the
number of downed targets due to optimum flight assignment with in-
E dependent interceptor combat operations, when it 1s first necessary
to search out the targets in a certain alrspace Su and then, after

I3y

&
~

T Sraniaiiis She S
Y

detection, organize attacks to destroy these targets. Let us examine
the cuase when the targets, throughout the entire search time tn,

are distributed with equal probability within a reglon of area Su'

To determine this increase we must compare two tacties: 1) each
interceptor individually searches out and independently attacks a
decvected target; 2) targets are sought out by a specially selected
searcn group; after target detectlion they are destroyed by the search
interceptors together with attack interceptors sent to the region of
the detected targets. In this case, an optimum flizht is designated,
determined from the required effectiveness — the probability of
downing each target with a given level.

Estimcte the increase for the case when bands B = 200 and 400
km are defended; 2b = 50 km.

Solution. For the first tactlics, the expectation of the number
of downed targets, according to Problem 6.15, is
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(1)
for the second tactics
& Ny
: . . _ BV, { 1 n-.p,)“’u]
. M[N.u]rp":‘Nu l—e . » ' . (2)
since the probability of downing each target is
N
Py=1—(1—p)", (3)
The relatlonship .
o
WY 1N, [x- ey Ma ]
A= Ml&,c.nlrp v Su
M [Nc. IJI - - "'°Vn‘n~nl" ‘ ( Li )
l-—e n

gives the desired increase in effectiveness due to cptimum flight
assignment., Function A vs. flight Nn has a maximum which determines
the optimum solution. Calculations show that the tactics of inde-
pendent search with subsequent call-up of the attack group to the
region where the group target 1ls detected allow us to obtain a sig-
nificant increase in effectiveness. When the ratio of the area
scanned by one interceptor to the area of the probable location of
the targets n = 0.2-0.05, increase A reaches values of 1.5-2 com-
pared with the case when each lnterceptor searches and attacks in-
dependently with equal probability throughout region Su.

Figure 6.16 shows Dependence (4) for 2b = 50 km, width of the
defense belt B = 200 and 400 km, for various values of Py,

1

et

PROBLEM 6.17. A group of Nu = 10 targets enter the air-defense
zone one after the other. Determine the interceptor flight required =
to destroy all targets with probability PN = 0.9, 1f the interceptors

LT —

te)

J;uhw,' Wy

u
attack the same target from the aft hemisphere is sequence, observing
the minimum possible safe distances. The depth of target penetration
should not exceed an = 150 km. The probabllity of target interception
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3 ﬁe % J “TITITTTTI] vv a siagle interceptor
/ s VO B e is P; = 0.5. Target
R

< 20+ 50nm speed VU. = 1000 km/h,
D ‘\\\‘ interceptor speed Vn =
: K 1200 km/h.
E:: - ‘\ )

Séiution. With

‘:~:\::_\ | successive operations

~1<l)7| against targets, when )
h\;~d=:=;=- i for safety reasons it
= is necessary to keep

!
{
|

15 : y, Minimum distance be-
tween the attacking
interceptors 4

6e3on*® PN
while the depth of target penetration should not exceed an, the S

maximum number of successive attacks

l/“p (Vu + Vﬂ) ( 1)

Ny =2 —
ar Vu Aiuron '

when attack is made from the forward hemisphere, and

_ D (Vy—Vy)
Par= TV u doe30n + 1’ : 2)

whe: the attack comes from the aft hemisphere.

In first approximation we can consider that

dgpn=Vytn (3)

where Vp 1s the average speed of the rocket, tp is the maximum time
uf controlled rocket flight. Let us assume that 4 = 30 km;

the = 2,
then n 2

6eazon

To assure that M[N u}/Nu = 0.95 it 1s necessary, according to
#gz. 6.4, that when P1 0.5 we have mpNn/Nu ¥ 2.3. Thus, to solve
zhe problem the required interceptor flight N = 2,3-30 = 69.

o

If the rms error in determining the coordinates of the target
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and interceptor is Oys to increase the assurance of safety during
successive attacks by several interceptors the value ddeaon should
be increased by 30,. E.g., let o, = 3 km. Thendg, . = 30+ 9 =
= 39 km, and when Vu = 1000 km/h, Vn = 1200 km/h, and an = 150 km,
n,. = 1.77. Then M[Nc-u]/Nu = 0.83, 1.e., the interceptors cannot
carry out thelr mission.

PROBLEM 6.18. A nonmaneuvering target, consisting of a dense

- formaticn of 5-8 alrcraft unresolved by the radar station, 1s attacked
in a belt of width B = 160 km. The flight trajectory of this group
target forms angle 6 with the perpendiculur to the belt. To analyze
the result of a target-hit by the rockets fired by the interceptors,
each subsequent attack occurs after a time equal to the sum of tle
times of the attack itself (correction of surface-guldance errors,
and aiming, firing, and flight of the rocket to impact with the tar-
get) and the length of time the damaged target remains in the inter-
ceptor's field of view.

(et Lo
]
)

-,
%!

,,.,,,,.
by Gty

Determine the number of successlve attacks that can be carried
out 1f the target speed Vu = 900 km/h,;the average time for carrying
out a single attack taT = 2 min, the average target lifetime tcym =
= 0.5 min, and angle 0 varies within limits of 0 to 80°. How does
the desired possible number of attacks change if, with no change in
other parameters, the target speed increases to 1500 and 1800 km/h,
leading to a corresponding reduction in the operations belt to 120
and 100 km?

s

Also determine the required number of interceptors to destroy
90% of the targets and a ratlonal rocket-firing regime, if each
interceptor carries four rockets, and the probability of damaging a
single target with simultaneous firing of two rockets as a function
of target speed is as shown in Table 6.3 (p. 206).

Solution. The time the target 1s located in the belt is

B
Vgcosd *
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Table 6.3. The time of one interval between
Vg kn/h W two successive rocket firings is
2 t + ¢ . Consequently, the
- art cyu
£ 0.85 number of successive attacks

which can be carried out against

a target in belt S is

Vocoig Hlom

n
= tﬂ‘ + £ cyw

The results of calculations using thils formula are shown in
Fig. 6.17. As can be seen from the graph, the number of possible
attacks within limits ¢ = 0-50° changes only slightly; with a further
increase to 6 > 50° the value of
n o sharply increases.
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To determine the rational L salvo fire (/y=8) )
rocket-firing regime let us compare T e e SR R /

. JLJ 0wl
three combat tactics: =8 Ve T 4

»
. o
wolla Yo Lo ta et al

¥

4

e
»

e
.

P

r_0

3Y

Lo, Ay
L'—'.?.I PRiret-ranaogl ear e P ‘{:‘,"i:j/"-.:}:g ot 4
1) the rockets are fired in L Lod g by o 1500 ] ] fets v

Sl pae s | walpais o |
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Fig. 6.17.

{ <ty + beyus

2) the rockets are fired in salvos of two each with the inter-

{> t:r + IC)I:L;

3) only single rockets are fired, with analysis of the results
of each firing.

oo
watratete

.

In the first tactics there is nonuniform distribution of the
operations against the targets. Consequently, to calculate the
expectation of the relative number of downed targets M[Nc.u]/Nu we
must use Eq. (5) of Froblem 6.3. For salvos with time delav t >
Tar + tcym and for single firings it becomes possible to distri-
tute the rockets uniformly against the targets and, after analysis

PR - L B A
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of the result of the previous attack, reaim to the undestroyed tar-
gets. Consequently, M[Nc u]/Nu 18 calculated from Eq. (6) of Problem
6.4, The results of the calculations are shown in Table 6.4.

Table 6.4.
Combat tastics
Combat 1
1. Independent 2. 3alvos of two 3. Single firings
conditions 8a1vos, two rockets] FOUkets exch intine yipn analysis of the

each [ ‘st deyu results

Vi, km/h 900 | 1500 ] 1800 ] 900 115300 | tsts; G0 | IS0 | 1SW

Py 085{ 08 07109509 )041}0,60]05 0,145
Required number 2,7 3 3,109 106410935 1,4811,7 |22
of operations

against each
target

Required flight of1 6,70} 7.8 851490 14,7 4.9 1.8512,2212,75
;.‘ntergeptors with

—
[ 14
X
(=)
-2
to
-
o
-~
o
(&)

Required flight of: 10,8
interceptors with
”u -8

2,96 13,4 {44

Comparison of the graphs Dor.notp - f(Vu) and n, . oo, = £(98)
shows that to assure an effectiveness M[NC u]/Nu = 0.9 1t 1s advisable
to use the tactic of single firings with analysis of the result of
each attack. Waen Vu > 1500 km/h, two-rocket salvo fire with inter-

o
vals t > t__ + tcym is advisable only when 6 > 60°.
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CHAPTER 7

"I

COMBAT READINESS AND RELIABILITY

LEe
L

n addition to combat use, intercept lines, and combat effect-
iveness, the capabilities of fighter-interceptors are also character-
ized by combat readiness, l1.e., the probability that, by a given
time, the interceptor will be ready to carry out its combat mission.
In this chapter we examine various quantitative criteria of combat
readiness and methods for calculating them.

L '*-m.’ PRI SN

AU

The most general indicators of the combat readiness of a single
interceptor are the coefficients of combat readiness for first and
subsequent missions; methods for calculating these are presented in
Problems 7.1 and 7.2.

(]

DA

sy

s

The combat readiness of a group of interceptors (squadron,
regiment) 1s characterized by the probability that at lzast a given
number of available interceptors will be combat ready. This indicator
is calculated considering the reliability, the restorability of the
aviation materiel, and the number of service personnel and the method
of servicing (Problems 7.3-7.6). Problems 7.7-7.10 examine the
gquestion of how to take into account the possible failure of aviation
materiel when designating a flight of interceptors to carry out a
mission and for duty performance.
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Problem 7.1l1 is devoted to methods of figuring the amount of
logistices support for combat operations which will guarantee a gilven
level of combat readiness.

Problems 7.12 and 7.13 establish the dependence between the
probability of survival and combat readiness during continuous and-
intense combat operations and the expectatlion of the number of missions
each interceptor can perform under conditions of enemy action. The
dependences obtained make it possible to plan the replenishment of
the air fleet in time, and determine the combat capabllitles of ailr
units based on the number of missions per unit time.

Problem 7.14 establishes the dependence between equipment pre-
paration time and effectiveness.

In Problem 7.15 we determine the dependence between the prob-

ability of damage to the enemy du~ing enemy action against an alr-
base, the damage radius, and the probable deviation and radius of
dispersion of the interceptors relative to the enemy's aiming point
(explosion epicenter). The nomogram obtained makes it possible to
determine, from the permitted excess pressure at the shock-wave
front (which the air material undergoes during an explosion) and the

TNT equivalent of the explosion, to determine the corresponding
radius of damage, and then, from the known probable deviation, to
determine unambiguously the radius of dispersicn which assures that

the probablility of interceptor damage will not te above the permitted
level.

Problem 7.16 is devoted to estimating the survival probability,
while Problem 7.17 discusses monitoring of the combat readiness of
the rockets (or other aircraft elements).

TR TN YT T

P

(X

P e

PROBLEM 7.1. Combat readiness when carrying out pre-flight o
preparation is characterized by the probability that all checking of
aircraft equipment and systems will be completed by a given time on
the interceptor. We call this probability the coefficient of combat
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readiness for the first mission and designate it by Pﬁ.rl' Proba-
bility P6.r1 is a function of time: at first, when preparation of
the interceptor is just under way, it is zero; after all operations
have been completed and if there are no failures during the pre-
flight preparation, P6.r1 = 1. Since the time for carrying out each

- operation depends on many random factors (training of the specialists,
climatic conditions), the total time t_ _ for preparing the inter-
ceptor for the first mission is also a random value. Function
PG.rl(tn.n) characterizes this random time, i.e., Pﬁ.rl(tn.n) is the -
distribution function for the random time of interceptor pre-~flight
preparation. Our problem is to express Pﬁ.rl(tn.n) in terms of:

1) the probability PT - that all required pre-flight preparaticn
will be finished within the speciflied time;

2) the probability PO(tn n) that no failures will occur during
the preparation;

3) the probability Ps(tn n) that, if a failure is detected, it
will be eliminated in the time specified for pre-flight preparation.

Solution. Probabllity Pg rl(tn n) is defined by the probabilities
of two favorable and mutually exclusive events:

sy epprmery -

SO0 TR

1) either the interceptor has no faillures during preparation
time tn n and all operations are completed;

2) or the interceptor turns out to have something wrong with it
during prevaration, but 1t 1is repaired in the allotted time and all
operations on it are completed.

Consequently,

Pa.ct (bn.x) = Polta.n) Prs (fan) + (1= Py (t0)] Patas) Prs (fas). (1)

If we know the average times of fallure-free operation TO and re~
cavery Ts’ then

‘ﬂ‘ﬂ

Pty y=e O
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and

1"'

‘n."
pl(tn.n)=’1"‘e--7;—' (3)

PROBLEM 7.2. As the criterion of combat readiness of an inter-
ceptor for repeated and subsequent missions we have the probability

that the interceptor will be serviced and prepared for a combat
mission in the allotted time t. Let us call this probability the
coefficient of combat readiness for subsequent missions, and desig-

nate it by P6 r2(t). Find the dependu.nce of P6 r2(t) on the prob-
abilities that determine the success in carrying out all required
operations for mission preparation. Also take into account in this

case the possibillity of fallure occurrence and elimination.

Solution. The probability Pg r2(t) is defined by the sum of
the probabilities of three favorable and mutually excluslve events:

1) the interceptor returned in good condition from a flight,
and was not rejected

A
0

T
[t T 1)

was prepared for the next mission in time tn
during thils time;

osT?

2) the interceptor returned in good condition from a flight,
but was rejected during preparation for a mission; However it was

repaired in time tn and during this time was serviced and pre-

0BT
pared for the mission;

3) the interceptor returned in poor condition from a flight, but
in time tn

0BT it was repalred and prepared for the next mission.

o ..
Atf:.f

If. .

Consequently,

Pa.:? (t) = Po (tno,-x) P'r. r (tnonr) Po (tnou'r) +
+ PO (tno:x) !1 - Po (tnonr)] PD (tﬂot‘r) PT.Z‘ (tnonr) +
+ [l - Po (tnon)l P» (“nosr) P':. r (tnoat)-
The probabillities P0 and PB are calculated from Egs. (2) and (3)
of Problem 7.1, except that in place of time tn n we substitute either

tﬂDBT or flight time tnon'

PROBLEM 7.3. A squadron of Nn = 12 interceptors participates
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in continuous intense combat operations. At any moment of time, each
interceptor can be in only three possible conditions: 1) the inter-
ceptor is combat-ready; 2) the interceptor is not combat-ready, but
is repaired; 3) the interceptor is not combat-ready and is not re-
paired, but is awaiting its turn for repair.

Qut-of-action interceptors are repaired by special repair crews
containing speciallsts from all services. Repairs are performed in
turn; those planes with the oldest damage are repaired first, using
i any of the free crews. The time of failure-free operation and the
: repair time for the interceptors are random values subject to exponen-
E tial distribution law. As criteria for the combat readiness of the
squadron we have the prcbability that at any moment all 12 inter-
ceptors are combat ready and the probability that at any moment at
least 11 of the 12 are ready (i.e., only 1 or 0 are not combat readyz.

Show how these criteria changé for ratios of repair time TB to
the average time between fallures Ta'of 0.01, 0.025, 0.5, and 0.1,

R
e "

-

-

if the number of repair crews varies from 1 to 10. What additional
gquantitative indlcators charactérize the combat readiness of an air

fleet and the degree to which the specialists are occupied? Solve
the problem for N_ = 4o.

s 25
i SR

Solution. Since the number of noncombat-ready aircraft is a
random value, the most complete characteristic of combat readiness
is given by the distribution law for this random number. Knowing the
distributrion law for the number of noncombat-ready interceptors we
2 can determine any combat-readiness indicator. Our desired criterion
for combat readiness in general form 1s defined as the probability
Pé.r that of Nn interceptors of the squadrca, at least k are combat-
ready (in this particular case, at léast 12). In other words, we

must first determine the probabilities Py (k) that of N, exactly k
n
are not combat-ready (k = 0, 1, 2, «.., Nn - k), and then sum these

probabilities to the glven value of Nn - k (in our case, to 12 = 1 =
= 11). The probabilities Py (k) are the ordinates of the distribution
n

T

A
o Ly TRFREE

»

W I

law of the number of noncombat-ready interceptors. Thus,
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Pooml~ 3y Py (B). (1)

In queueing theory we know the classical problem of using several
instruments to service a limited source of requests, which can serve
as the basis for solving our problem. According to queueing theory,
to determine the probability that of Nn,interceptors exactly k will,
at any moment of time, be out of order and in the process of repair,
we can use the followlng formulas:

Nyt L \¥
Py, ) =gy () Py, ©. (2)
when 1 < k < r, and
Ngd AL
Pa, 0= G () P4, O, (3)

when k > r; here r 1s the number of repair crews; A and u are the
intensities of failures and repairs.

For exponential time-distribution laws we have

1
A==-ﬁr; p::-{-. (4)

Obviously, before calculating the probabilities PN (k) from Egs.
n
(2) and (3), we must determine the value Py (0). We find that
n

Py, O =5 (5)

;-J-o PNn (6)

because

N, N
Ny Py, &) 1 y 1
A PNn (0) = P‘vu (0) L PNH (k) = —Pﬂ-u (0) ] ( 6 )

Rea)) Rey

since

3 £y (=1

k~0

1

as a certain event (the sum of the probabilities of all possible

190 % 1,
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states of combat readiness is 1), while the probability PN (0) in
n

(6) is removed from the summation sign as a constant.

~

Thus, the probabllity PN (0), necessary for calculating the prob-

a
abilities Py (k), is determined using Eqs. (2) and (3) by calculating
n

the sums ’

N N.

NN v WY P O
Yes (v) =Y (7)
kmy K=

and then taking, as per (5), the reciprocal. Having determined the
probability Py (0) let us rind, for all values of k from 1 to r the
a

probability ratios

Py @
1'1.'u o (8)

and then, by multiplying these ratios by the value Py (0), the de-
n

sired probabilities Py (k) for all k = 1l-r. Having obtained the
n

values of PN (k), let us calculate the coefficient of combat readiness
n

— __ Pﬁ.r from Eq. (1).
0”1 Z - LT
q‘%k@/' /’ The results of the calculations for
“fap / ","' the data in our problem are shown in
::;2’7 // _Tf;umo Fig. 7.1. The dependences P, _ =
452&7/ / = f(r, Ty/T,) show that for our data
04’Q' // it 1s advisable to have no more than
R iy 70| three repair crews, since when r > 3
Zi}/ ;Y - the value Pﬁ.r is determined completely
Qli» A L : only by the ratio of TO Lo Ta’ i.e.,
u;// % : : L1 there are only two way: of increasing
Np=40 the combat readiness in this case: in-
—=—Piro ~ = =Py

crease the reliability T0 or decrease
the repair time Ta' Increasing the
number of repair crews above Tont does not make it possible to in-
crease the combet readiness.

= i .
" SRSEL PRI
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On the basis of Eqs. (2) and (3), which represent the most
complete characteristic — the distribution density of the number cf
repaired interceptors — we obtaln other particular quantitative in-
dicators of the combat readiness of an alr fleet and the degree to
which the repair crews are occupied.

o'y

Ko Y o
vEfal

Tl

The probabllity that all r repalr teams are free

: if | LA, J'/"'.‘;
X, ‘i"w-
et

’ Nﬂ 1t :
2) W N (LY v Nt (Y b
“’“[;ﬂo TN, =B ( Y ) +k_%l r*-'(N,,-I:)m( m ) . (9) E

T

The average number of interceptors awailting the start of repairs

”ﬂ .
_ (k—r) N 2 wk
M‘“k:?g, P 71 (N = B (+) P (10)

The average number of interceptors belng repaired

r N -
My=| D e (LY Nt (A 11
: L_,, RNy — )T ( zx) +,,_:§, A~ (Ng &) ( m ) j’ . (11)

The average relative number of noncombat-ready interceptors

M + M,y

Nq

(12)

S i
PRI

L

The average number of free repair teams

r
(r—RYN, /L \*
M= 2 sweeiy () P (13)

i
§ SO

The lost-time coefflclent of the repair crews is M3/r. The
probability that the number of interceptors awaiting the start of
répairs 1s greater than some number N (N > r)

i

A ) Y N A
Poy= X Py )=1=3 P, (&) (14) ::;:
=Nl kwy +

v

PROBLEM 7.4. Determine the combat readiness of the squadron
fleet 1if there are three repair crews, the average time between the
moments of interceptor breakdown is TO = 33 hours, while the average

":I'T-"‘_-”z':"

T X
L

Q repair time TB = 4,5 hours. For the rest, the conditions of Problem
N
: 7.3 are satisfied. Determine the average number Nn . of comba.-
215 -
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ready interceptors and the probability that at least 11 of the 12
interceptors will be combat-ready at any random moment of time. How

do the desired combat-readiness indicators change 1f the numbeyr of
repair crews increases or decreases?
of Interceptors Nn to 207

What 1f we increase the number

Solution. Let us use the calculation formulas in Problem 7.3.

By definition of expectation we have, from the density-distribution
function PN (k) for r = 3,
n

12
M= X kP, (=18,

k=0

This is the average number of noncombat-ready interceptors.
The average number of combat-ready interceptors Nn_c.r = 16.5.

The probability that at least 11 of the 12 interceptors wiil be
combat-ready is equal to the probability that either 1 or 0 will not
be combat-ready. Using this law, we find that the probabllity Pé.r
that at least 11 of 12 interceptors wlll be combat-ready i1s equal to
the sum of the ordinates with k = 0 or k = 1, 1.e., 0.54.

PROBLEM 7.5. We must compare two methods of maintalning the
combat readiness of a group of interceptors. In the first method,
each aircraft has 1ts own specialist for repairs, and who does not
particlpate in the repair of the other planes.
a group of specialists services a

In the second method,

group o. interceptors without being
assigned one specific axrcraft, i.e., at the moment one interceptor

breaks down, if there is at least one free speclalist he immediately

begins to repair the aircraft. Otherwise, the inoperativs= inter-

ceptor waits until any of r specialists is free. We are given the

fact that the reliability and repairability of the interceptors are
characterized by the ratio A/u = Ta/TO = 0.1. In the first case,

1 specialist services Nn = 6 aircraft; in the second case, 3 special-

ists service NrI = 20 aircraft. Sho. which service method is better.

Solution. Let us use the calculation formulas of Problem 7.3.
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When one specialist services n interceptors (instead of r specialists
servicing Nn interceptcrs), where n > N /r, then

Py ()= —(,—:‘?'_L:;)“.' (-A-)k A,

~~
]
e

‘-L
where
U 1 :
Po= %\ Pr=r, : (2)
kel ‘5‘1 :\’n' (_’_)k
‘ﬁ Ny w

The expectation of the number of interceptors awaiting repairs is
My=N,—2EE (1P, (3)
When one specisa.ist services 6 aircraft, according to (1) when

Ay = 0.1, PO = 0.48.

The expectation of the number of noncombat-ready interceptors
N

is ZkPN (k) = 0.85, while the expectation of the number of combat-
0 n

ready planes is

6 - 0.85 = 5.15.

The relative lost-time of one intercepvor

0.85/6 = 0,14,

The relative lost-time for a specialist with r = 1 is Py = 0.48.
Now, when three specialists service 20 interceptors, while A/W as

20
before is 0.1, :E:kPk = 2,74, while the number of combat-ready inter-
k=1

ceptors is 17.26.

The relative lost-time for one interceptor is

S =0.135, Py, =0865.
The relative lost-time for one speclalist is

Ty
-T"- == 0,401,
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Thus, the solution shows the advantage of the group servicing
method as opposed to the one-speclalist-to-one-ailrcraft method.

A
:

|3

Avi
ol
o

Because of the more rational use of specialists at identical
strengths, the group servicing method assures a higher level of combat
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readiness.

PROBLEM 7.6. To repalr interceptors which have been put out of
commission in combat it 1s necessary to create a repair team. The -
delivery of unusable interceptors for repair is in the nature of a
random flow with an average interval between successive deliveries
TO = 2 hours. The repailr time is also a random value, subject to
exponential law, with expectation TB = 5 hours. We must determine
how many repalr crews r are requlred so that the average noncombat-

~eady time of the interceptors, l.e., the sum of the times spent
awaiting the start of repairs T and the actual repair times Ta’

not exceed T = 6 hours. The duration of the planned combat

operations i:egérdays. For round-the-clock functlioning of the repailr
system there must be, al each working site, two crews, each working
12 hours. The repair of damaged interceptors is set up as follows.
Any free team begins to repair any on-line interceptor. When the
number of interceptors Nn in the repalr system 1s less than the
number of teams, all interceptors are repaired simultaneously, and

not all t.ams are busy. If the number of interceptors Nn is greater

than or equal to r, all teams are simultaneously busy and some of
the damaged interceptors awailt the start of repairs.

Solution. The probability of having exactly N interceptors,
under steady-state conditions, in the service system (awalting repair
and being repalred) is calculated from the formulas

: M
K == 19 ol
e qu O NG (1)
- was€h
EE TNy < 1y
N
3 N
N P, =B, (2)
3 Nn A\ {“’Nu—l

.,

’
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The average number of Interceptors in line for repailrs is

et

Nn.:ua.r=mpo« ()

The result of dividing the average number of interceptors in the

service system Nn by the average number of repairs per unit

«Heb.r
time r/TB gives us the interceptor repair and waiting time:

5T,
;

rs ('.-

Tmo. r ==

\'.?Pa- (5/

~N I'tt‘

The average relative time the interceptors are in the service
system while awaiting the start of servicling is calculated from the

formula

Tneﬁ r—Tn To;-.- —— ::"’Po
Ts == T "'r-r:(!_”_g__)-z- (5)
r

’

Calculating from (3) the value Py, and knowing TO, T, > and r,
let us find Tom/Ta from (6) and then, multiplying by Ta’ we obtain
the absolute time of interceptor noncombat-readiness mae6.r’ For our
data 8 = Ta/TO = §/2 = 2.5, Since when B > r the line increases
endlessly (thr waiting time is finite only when B < r), let us set

- r = 3. Then, according to the graph in Fig. 6.15, Tom/Ta = 1.4,
Further, Tueﬁ.r 1.45 + 5 = 12 hours. When r = 4, B8/r = 2.5/4 =
0.625, Tom/Ts =0.2; T, o =0.25+5= 6 hours. Thus, there
should be at least 4 teams.
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Let us estimate the degree of occupation of the crews. In
10 days (10+24)/2 = 120 interceptors arrive for repairs. Their re-
pair takes 1205 = 6C° hours, i.e., each crew works 600/(4-10) = 15
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hours per day.

PROBLEM 7.7. To carry out a combat mission we must designate
a flight ol Nn 6r
tors take off without pre~flight preparation the probability of arma-~

10 interceptors. We know that if the intercep-

ment-system failure PDTH = 0.1l. How many interceptors should be
sent up to carry out the mission even in the case of possible failures

of certain parts of the interceptors?

Solution. Let us designate by Nn the number of interceptors
available for scramble. If the probability of failure of each inter-
ceptor is POTH, the probability of fallure cccurring in precisely k
of’ the Nn interceptors is

- N, -~
Py (k) S=Ch P (1= Py, (1)
where C§ is the number of combinations of Nn’ k at a time:
n
_ N (
CE"MQ&—@V (2)

For guaranteed completion of the combat mission it 1s necessary
that the probability of air fallure greater than Nn - Nn.ﬁr (in our
example Nn = 10) be sufficiently small, e.g., 0.05. Then, with a
prooability of 0.95 we can state that at least Nn.ﬁr = 10 inter-
ceptors will complete the mission. Expression (1) 1s none other
than the ordinate of the distribution density function of a random
number of falled interceptors. Obviously, in practice there may be
k¥ = 0 fallures, ork =1, 2, 3, ..., up to k = Nn failures. We are
interested in the probability P (k < N, - Nn.ﬁr) that theve will be
no more than Nn - Nn.ﬁr failed interceptors. Consequently, to find
this probability we musc summ all ordinates of the distribution den- .

sity (1) fromk = 0 to k = Nn - Nn.ﬁr:

Ny—=Ny

.6
p (k < Nﬂ = A’n-dr) = 2 ' Cf;}nPk (l —_— PO“)N,,—):. ( 3)

oTK
B oett

Equating this probabllity to 0.95 we can, for known values of

Kn.ﬁr and Poru’ using Eq. (3), calculated the desired number L
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For the data in our problem, when P0 = 0.1 the required number of

TH
interceptors avallable for scramble is 14. Then, with a probability

of 0.95 the mission will be completed by at least 10 interceptors.

PROBLEM 7.8. At a forward dispersal airfield, 5 intercepvors
are on round-the-clock combat alert. From the conditlons for com-
pleting a combat mission it is required that at least 4 of the 5
interceptors be combat-ready at any given time. If one of the inter-

ceptors is out of actlon it is replaced with a ready one from the

main airbase. How many replacements should be planned for the monthly
alert of these 5 planes if the reliability of each of them is char-
acterized by an average time T0 = 75 hours between successive fallures?
We assume the fallure flow to be simple.

Solution. T¥rom reliability theory we know that for simple flow
the probability of failures is subject to Polisson's law, for which
the expectation of the number of failures occurring in time t is cal-
culated from the formula

H
M{Nowe) =7

In our example TO = 75 hours and, in the course of one month,
the average number of expected failures per interceptor 1is M[Norx] =
= 9.6.

Then, from the distributlon function of Poisson's law let us
calculate the maximum possible number of fallures per interceptor
in one month provided that the expesctation of this distribution law
M[NDTH] = 9.6. With a guarantee of 83% the maximum number of fallures
per alert interceptor is 12 per month. Thus, for each interceptor at
the dispersal airfield we should plan on 12 replacements, while for
5 interceptors — 12+5 = 60. Since with the requirement of having
at least U4 combat-ready interceptors of the 5 it is not necessary to
replace each failed plane, with a planned 60 replacements the guar-

antee increases to 909%.

PROBLEM 7.9. An interceptor is armed with two rockets having
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radar semi-active homing heads, fired in salvo at a target. The
probability of target destruction by one rocket is Pl' Besides P
the effectiveness of the attack is influenced by the reliability
of the armament system and the radio-control system PO and the re-
liability of the rockets Pp. Determine the decrease in the resulting
probability of target destruction, considering the reliability, com- .
pared with the case when the interceptor 1s absolutely reliable. Let

us assume PO = 0.9, Pp = 0.9. How does the difference in effective-

ness change, with and without consideration of reliability, if P1
varies from 0.2 to 0.99°%

1’

Solution. The effectiveness with consideration of reliability

l’-

Wwor
ke Il Ko

Py =Pl — (1 — PPl (1)

Lt
o

&~

without consideration of reliability

.1l
..

Pi=(l—-(1~ Y, (2)

while their ratio

P, 2 D,
= PPy (3)
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’.:‘:-' ;1“_3“ ‘%ﬁ":
When Py = P, = 0.9 we have (Table 7.1): NI
Table 7.1. :
Py 0.2 0.4 0,6 0.8 1,0
Py
- 0,819 0,830 |- 0845 0,864 0,891
z
0,9-7; 0,265 0,478 0,637 0,76 | 0,802

PROBLEM 7.10. Two interceptors perform independent target
search along an 180-km wide front. The target can, at any random
moment of time, be in any sector of the front with equal probability.
“he interceptors are located along the front such that the airborne
radar acquisition secters overlap: the first interceptor examines
a region 0-110 km along the front, the second — 70-180 km. The

éé
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effectiveness of search depends on the degree of overlap of the ra-

diation patterns. The probability of target detection by one intver-
.2

ceptor Py, = 0.9, while in the overlap region P, = 1 - (1 - Poy/ =

= 0.99.

O L e
oA

A I Y

o
S

Determine the resultant probability of target detection with the
described indepe.ident target search, if the probability of .failure-
free operation of both radar stations is P] = P2 = 0.95. The relia-
’ bility of all other systems in the interceptors is assumed to be 1.

Solution. The search effectiveness, i.e., the probabilivy of
target  detection, depends on the reliability of the complex detection
system consisting of two vn-board radars and which can be in one of
the following four states, comprising a complete group of mutually

exclusive events:

S0 — faillure-free operation of both stations;
N S, — the first station falls, the second operates;
? 82 — the second station falls, the first operates;
S;,, — both stations fail. '

oy
: -'n‘.j."-‘n s

Of these four states, only the first three are favorable.

DR e et el bk

Sk

According to the formula for total probability, the probability
of target detection is equal to the sum of the probabilities of all

favorable events:

Py=®H, 1 O H, + Dofy,

where o, (i =0, 1, 2) is the probability of targetv detection, pro~
vided that the target is located 1n the action zone of the i-th state
‘ of the system; Hi is the probability that the system is, at an arbi-~
trary moment of time, in one of these four states.

TS
b A B o AN | e ko
.

The probabilility that the system 1s in state S0

H,= PP, =09
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The conditiounal probability that the target will be detected
when both statious operate failure-free @0 = 0.92.

Muitiplying H0 by ¢
total probability: H

DR L
o

o We get the flrst term 1n the formula for
= 0.828.

.5 2t

0%

)

PR PN

For state Sl’ analogously, we have -

.!
%

Che]
A
r

J—

Hy= Py (1 = P) = 005; ' :
¢, =055 and P =0,028.

—yry

Since states Sl and 82 are identical,

by, = 0,026,

Thus the desired probability of target detectlon P, = 0.884,

This problem shows that possible failure of the airborne radars
operating, in this case, as a unified system, considerably reduce the
effectiveness of independent target search.

PROBLEM 7.11. Depending on the intensity of the combat action,'
one or two engines per month may be required to restore the combat
readiness of the squadron. The probability that one engine will be
required is 0.5; the probability that two will be required is 0.3;
the probability that no engines will be required is 0.2. One engine
a month is delivered to the squadron. Determine the probability of
the need arising for any number of engines, 1f we consider the
process of engine requesting and the process of sufficlently long
stockpiling (e.g., several months). The maximum possible number of
requests for engines dces not exceed four per month. )

Solution. The expectation of the number of engines required is .
Mn ] =1+0.5 + 2-0.3 = 1.1, i.e., greater than the monthly average.
Obvicusly, with prolonged combat operatlons characterized by the in-
dicated rates of required replacement and stockpiling, the .combat
readiness of the air fleet of the squadron can be described by the
probabilities that 0, 1, 2, 3, or U engines will be required. Let

3
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us designate by nAB the number of unsatisfled requests for engines,
and examine the state of the requests in any current k-th and (k+1)-th
montiis. The transition from the k-th to the (k+l)~th month is de-
scribed by the followlng matrix of probabilitles P for the required
number of engines (Table 7.2):

Table T7.2.

k-th
month —4 -3’ -2 -1 0

A (k+1)-th
:_ month
- —4 0.8 < 0.3 0 0 0"
" ~3 0,2 0.5 0.3 0 0
~2 0 0.2 .5 0.3 0
-1 0 0 0,2 0.5 0,3
0 0 0 0 0,2 0.5
1 0 0 ¢ 0 0.2

The matrix 1s filled on the basis of the followlng loglc con-
siderations. Let us assume, e.g., that up to the k-th month the
number of unsatisfled requests N = 0 (the last column in the matrix).
Since one englne 1is dellvered during the month, by the start of the
(k+1)-th month the number of unsatisfied requests can be either 1 or
0 (since there were 0, 1, or 2 requests); in addition, 1 engine may
be unnecessary (the engine arrived without being ordered). The
probabilities of these events are equal to 0.3, 0.5, and 0.2. In a
similar manner we fill the remaining matrix columns. From the matrix
it is easy to write formulas for calculating the desired probabilities
that immedlately before the k-th month the number of requests nAB =

= -4 (or there are Dpp = It unclaimed engines):

P_ (k+1)=08P_, (k) +03P_; (k) =~08-08 + 03-03 =073,

Y

]

For all nﬂa > =3 we have

P, (k4+1)=02P, _ (¥ +05P, (%)+03P, (k)
P, _o(k+1)=02-024+05.05+03-0,3=0.38.

el AN BT TIE
]
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PROBLEM 7.12, The combat operations of a fighter group have ﬁj
the following nature. Each interceptor can be in only one of two el
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1)
the interceptor completes its mission of intercepting an aerial tar-

get; 2) the interceptor is at the airfield and 1is being prepared for
subseguent missions. Both these states involve a certaln enemy
counteraction. 1In the first case, in aerial combat the interceptor

is ~ubject to enemy fire; in the second case, on the ground the in- .
terceptor can be damaged by enemy action against the airfield. Both
states are characterized by the specific probability of interceptor
survival after each enemy operation. The random nature of survival
nas the result that the number of missions of each interceptor during
zombat operations 1s & random value.

states comprising a complete group of mutually exclusive events:

We are required to determline the expectation of this random
maghitude, if we know that the probability of survival pefore the
Tlrst mission (the probability of intercepto, survival if the enemy
strike< the airfield before the first mission) is Pl’ the probability
! of survival in aerial combat is P2, and the probability of survival
and combat readiness on the ground between successive misslons is P3.
What is the expectation of the number of missions carried out by eaca
interceptor if the probablility of survival after any mission is con-
stant and equal to P_ = 0.95?

ST

BHH

A b e e SOl s AL Al

Solution. By definition of the expectation of a random number,
the number of missions carried out by each interceptor, we have

MIN, .= PP, -+ P\ PP, ...+ P PP, (1)

wnere n is the maximum possible number of missions which can generally
ve accomplished by one interceptor under the examined combat conditions.

i

The first term in (1) is the probability of survival after the first

wrisslon, the second term is the prcbability of survival after the

second mission, eftc., and the last term is the probability of sur-
vival after the n-th mission. Remcving PlP2 from the parentheses

we get

M{Nop] =Py (1 4 2405 + .+ Po1Pn), (2)
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The expression in parentheses in (2) is the sum of the geometric
progression with denominator P2P3 and a first term of 1.

Using the formula for the sum of a geometric progression we get

M [Nywr] = 7255, [1 = (BPoY), (3)

gy N O VY T

If we consider that each interceptor participates in combat
operations until it is destroyed, the probability of survival after
n missions is zero, and the expression

(1 —(PFy)) (&)

is identical with 1, as the sum of the probabilities of mutually
exclusive events forming a complete group.

Consequently,

P.p,
M{Nowal =155, - (5)

For the data in our example we are given that

PPy = P,P, =0,95.

Dl

If the survival probabllity up to each forthcoming mission is
constant, l.e., the conflict situation with continuous enemy counter-

v e o

I

action repeats cyclically,

N P\Py=P,P, = P,,, = const. (6)
E Then
2 Pay .

' M[Nw,] = T:pf‘;:. (7)

When P%"H = 0.95, each interceptor carries out, on the average,

MV, =""1—-g"%2§5' =3 {9 misstons ,

By solving the examined problem we can draw a very Iimportant
conclusion: with continuous enemy opposition, both in the alr and
on the ground, with high survivability between successive missions
E the expectation of the number of missions carried out by each inter-
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PROBLEM 7.13. The expectation M[NBHn] of the number of inter-

ceptor missions is defined by the combat-operation model described

dne x & 8

in Problem 7.12. Knowing the value of M[NBHHJ, determine the prob-

Lt Rt

ability that an interceptor will not be damaged and will be combat

P
'

ready after any random (given) number of missions.

Solution. From the conditions of the problem it is obvious

that before the start of combat operations, when M[NBHn] = 0, Peum =
= 1. The probability of interceptor damage during the accomplishment
of a cervaln number of missions ANeun is ANeun/M[Naun]' The prob-
Poser ability that the interceptor
PN ! ) . ! AN
‘ e 2] M Hwal will be damaged during AN
\\\"\R&P /"t'ﬁm‘./ie P"":‘/—'T'I—l‘!?i;] Buin

missions, provided that up to

)<\\\\ T~ [inm this moment its state is char-
AN J s Phune " T H o)
TN K T~ acterized by a certain survival
S —
AR \\\ N probability Peum’ is
U4 Ay \\
AN
- ™ AP A(l — U
" \\.,0 \\‘ nop = ¢! Poui) =Py M [Nyasl
\
g \\\ (1 )
M N'\-_,_H_
‘; g o Ld KY
5, | 5 missions per dBy'Jon alllaircf‘gl‘t 30 Hiwnl, e or
b ¢ 3 m1<éio's er-;:. —"“;? ai srt 7 He
N c ssions p y. on 2 rcz"'a - - E AP, =— ANgy:» P
>, 13 nissicns per day on combat-ready aircrafc et MNyg,.,) = su&
: ? s 10 13 v
Do — _p L 2)
=", F‘ig . 7 . 2 . d-\,m.m Lot Al (Nau“] '

from which the desired survival probability after any Nsun"th mission
is obtained as the solution of the latter first-order differential
egquation:

Ll Sl

N
. “tmus
—_ 2 HAY
'Dlu)h. V=R MYl

(3)

A graph of Dependence (3) is given in Fig. 7.2.

PROBLEM 7.14. With prolonged intense combat operations the
ombat effectiveness of a group of interceptors is determined not

~»ly by the probability of intercepting a single target by a single

228
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interceptor, but also by the number of missions which the interceptors
can carry out per unit time. Let us compare, from the criterion of
mission intensity, two air squadrons, each consisting of Nn = 12
interceptors of various types, characterized by the following times
that they are in various states (Table 7.3):

Table 7.3.
. Pirst type of 1in- Second type of in-
Combat-readiness time characteristics terceptor terceptor
t,, — averuge time the interceptors § hours each every § hours each every
P are in preliminary preparation § days days
th.n — average time the interceptors
* are 1in pre-flight training 1 hour every day 1 hour, 10 minutes
every day
Lhoar — Average time to prepare the 30 minutes 50 minutes
interceptors for subsequent
missions
toon — 8verage time of combat mission 1 hour 1 hour, 20 minutes

In addition, we are given the total duration of combat operations:
1;6..‘1 = 10 days. Let us assume that up to the start of combat opera-
tions, preliminary preparations have been made for all lnterceptors,
and that during 1:6“1 = 10 days all interceptors conduct missions on
a round-the-clock basis.

Compare the maximum combat capabili%ies of the squadrons based
on the expectation of the number of downed targets, if the probability
of intercepting one target by one interceptor is Pl = 0.7 for the
first type and P, = 0.8 for the second type.

Solution. The average time of the cycle between two successive
combat missioris is equal to the sum of the average flight times and
the times for preparing the plane for the next mission:

f:l=fnu.1+tnonr~ (1)

I P,
'-.l\

W T

e

If the total time during which the interceptors are not busy
with preparatory and pre-flight preparations is

[:=16.A-1np"tn.m (2)

division of tz by tu gives an expression for the average number of
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missions which each interceptor can carry out:

lo.n‘tnp~’n.nl (3)
tnoa + Lnoor

The average numbevr of squadron missions is

Yo 2=tnp—ty. n (4)

tnoa + tnoor o -

while the mission intensity, i.e., the number of missions per unit
time,

Yoa=tp—=lnn) Ny (5)
(tnos + tnonr) tdul )

A sguadron equlpped with the first type of interceptor can carry
out n, = 7.35 missions per hour, while one having the second type can
carry out n, = 5.4,

The expectatlions of the number of downed targets during combat
operations '

M N, = 1240
MIN,, n}z:" 1030.

Thus, although the second type cof interceptor is considerably
better than the flrst with regard to interceptlon probability, based
on the average number of downed targets during the entire combat
operation pefiod a squadron with the first type of interceptor has
1.2-times greater success than one having the second type, for which
the probability is considerably higher.

PROBLEM 7.15. The enemy uses nuclear weapons against an inter-
ceptor base. We must determine the dispersion radius Rpaccp’ it we
know the damage radlus of the weapon used Rn and the probable dis-
sipation deviation of this weapon E (or the dissipation radius Rp),
and we are given the permissible probabllity of interceptor destruc-
tion Pnop’ Let us assume that the interceptors are uniformly dis-

~ributed within a c¢l>»cle with radius Rpaccp and the center of this

circle serves as the enemy's aiming point.
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Solution. Using the methodology of estimating the effective-
ness of damage to an area target, we can write the following formula
for calculating the probability of damage, up to a given level, to
interceptors located at distance R from the epicenter of the ex-~

paccp
plosion:

3
Fiap

(1)

Pnap":

inop + R'{: + R;';ac:p '

- The destruction radlus, as we know, is either determined by
instructions or calculated from the given values of the TNT equiva-
lent q of the weapon used and the excess pressure AP¢ at the shock-
wave front which an aircraft of the examlned design can withstand:

3
Ruop [kml = | (Ille'

Having determined, from q and AP¢ the destruction radius Rn and
given the various values of probable deviations E = 0.477Rp, let us
calculate from Eq. (1) the destruction probability. The results of
the calculations for a broad range of initial data are given in Fig.
7.3 (p. 232). Using this nomogram we can also determine the required
dispersion radius for any specific conditions.

'n‘ '.w1

If the dispersion area is rectangular, it is convenient to
determine, from the known sides of the rectangle, the equivalent
radius of the circle, using Eq. (8) of Problem 5.8, and then deter-
. mine the damage probability from the nomogram in Fig. 7.3.

L A '
oA A,

-‘-

(‘l

; With complex configuration of the disperslion area we must use
. a scatter grid [2].

PROBLEM 7.16. There are 18 interceptors at the airfield. To
assure high combat readiness and survivabillity with enemy action
against the base alirfield, all interceptors are dispersed uniformly
throughout the airfield and, in addition, there are 18 dummy inter-
ceptors. The enemy raids the airfield and bombards, at random, half
of the aircraft (18 »f the total of 36 real and dummy airplanes).
During the bombardment, each bombarded interceptor is damaged with
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; a probability of 0.2.

ETS

L4
Determine the expectation of the number of damaged interceptors. @Eusa&éﬂﬁ
How does this number decrease if we double the number of dummles? E._

- R R C P
A" 0t ey 3
DY 'i‘:- v

Solution. The enemy selects, with equal probability, any 18 Tl
. o
of the 36 targets for bombardment. The number of such cases is
equal to the number of combinations of 36, 18 at a time:

36
Ci=w @@B=18)i ° (1)

Here there can b2 0, 1, 2, ..., 18 real interceptors. To calculate
the desired expectation of the number of damaged interceptors we
must know the probability Pm that among the selected 18 there are
exactly m real interceptors. Probability Pm 1s defined by the racvio
cf the number of cases favorable to the enemy to the total number of

cases, C%?. The number of favorable cases 1s
e CRth (2)

since when selecting m of 18 interceptors, dummies can be selected

in Cig"m various ways. Consequently,

CRELTI
Py == T T (3)
*

Having calculated the values of probabilitiles Prn for m = 1-18,
let us find the expectation of the number of bombarded interceptors
from the formulc

18
A”Nu.o_dl=>_.mpm- ()-‘)
nt=1
and, multiplying this number by 0.2, we find the expectation of the
number of damaged interceptors.

Here, when calculating = factorials of large numbers it 1s
convenient to use the Stirling asymptotic formula
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The results of the calculations are given in Table 7.4.

Table 7.4.

! m {031 4 ] 5 ! G 7 8 9 10| 11| 12] 13 14 |14-18

Pyt 0 0.001'0.008’ 0,038} 0,112} 0,211{ 0,260 0,211] 0,112] 0,038 0,008 0,00t 0 °
i

Thus, the average number of lost interceptors is

Zis
b A
TR PO FIVT N. A

-
b

13
0,2}‘ mP,=02(4-0001 +5.0008 + 6-0038 +7-0,112 +

ni=1

2a st

+-8:0,211 +-9.0,260 -+ 10-0,211 4 11.0,112 4~ 12.0,038 +
+13-0,008 4 14.0,001) = 1.8

IT the number c¢f dummy targets is doubled, we get the following re-
sults (Table 7.5):

Table T7.5.

mlolvloelalals{el7]a]loli!lulos

Py | 0 [0,002]0,012]6,047] 0,12 | 0,2C4] 1i.24 | 0,197{ 0,115, 0,047} 0,014] 0,002] 0O

The expectation of the number of damaged interceptors is

02(1-0,002+42-0,012 4 3:0,047 +-4-0,12 4 5.0,204 + 6-024 ++
+7:01974 8-0,11549-0047 + i6G-3014 4 11.0002) =12,

i.e., a decrease by a factor of 1.8/1.2 = 1.5,

PROBLEM 7.17.
a warehouse,

Verify the combat readiness of rocxets ztore
From experience in previous calculations we know
the probablility of rocket inoperzbility is 0.03.
oe cnecked we seiect 100 rockets ot random.

d in
nat
0f the group to

What is the probability
that exactly three vockets will be inoperable? What is the prob-

al:11ity that no more than three rockets will be inoperable?

~+

Solution. YUsing the binomial distributisn formula we have the

M. Jai. Jntaine. Seatdd. )
AN AR -
. e e e e
.
. s
F T OO A S
e e Baa e Y et I, L T L




A 3 T T e T T T ™ ™ T - —

a e ™. a A, N TR TR T Y TN TN — W —w— g mg = — - -

PSS P AR T A, e T S T PR P P TP T A A S USRS A NS I P Sl S LN ot 0 M, Sl Mo o3
= W, e T . s s — e P aa Raa o Yan - W= W -

I R N, A s Sl ol V)AL A S5 § N et ot~ B

following for the prcbability that of 100 rockets, exactly three will
be lnoperative:

Py, =3) = (§,003% (1 — 0,03)1903 == .. 100

T{i0—g) 1 0,03*-0,97%% =
== 161 700-0,03%. 0,979 = 0,227,

The probability that of 100 rockets no more than three will be
inoperative is

P(my, 3= }_: Py, y=k)y=Pmg,,=0) + Py, =1) +

R=n
+ P (”lp, g = 2) -+ P(In‘,. W= 3) = C'I'OOO'QBO (1 _0’03)100.-0 +
+ C1,0,03! (1—0,03)100~1 - C2,40,03* (1—0,03)108~2 -
-+ €3,,0,033 (1—0,03)1%0~3 = 0,0475 -+ 0,147 + 0,2251 +- 0,2274 =0,647.
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CHAPTER 8

PRCBLEMS OF OPTIMIZATION

!

Thz determination of combat capabilities and combat effective-~

r:ess 1s never an end in itself. but serves merely as a basis for

seeking optimum regimes. For example, when designing a fighter-inter-

ceptor we optimally synthesize its basic tactical-technical character-

isties, obtaining an aircraft of glven effectiveness at minimum cost.

Calculation of the effectiveness of a given fighter-interceptor under

various combat conditions, as a rule, has the aim of substantiating

cptimum tantics ard methods ol combat utilization.

The use ¢f a limited number of means to complete a specific com-

bat mission also makes 1t necessary to seek optimum solutions. Iden-

tical combat missions can be completed with the same effectiveness,

cut with various expénditures of forces and equipment. Therefore,

optimum solutlons are found by using methods empioying complsx cri-

veria of effectiveness, a combination of the qua’ ity of completion

of the mission and the cost of the fcreces and equipment nacessary to

carry 1t out.

As an example of a complex effectiveness criterion we have the

s.tio of the expactation oI the number of destroyed targets to the

“tzl ¢ost of the eguipment used in the given operation. This cri-

~zrion is called the specific czombat effectiveness. We can also
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use the reciprocal of the specific effectiveness — the cost of de-
stroying one target.

The criterion of the ratlo of effectiveness to cost makes it

“a
"

oL Ll

LX)

pessible to select the optimum of several types of fighter-lintercep-
This solution is

»e
A

tors designed to carry out identical missions.
given in Problem 8.1.

a4
g

At

»,
*s

¥
T

Problem 8.2 discusses selection of the optimum type of inter-
ceptor based on the criterion of the cost of target destruction.

Of practical interest are problems whose solutions allow us to
determine the reasonable makeup of a combination fire unit, the
cptimum regime and sequence of rocket firing, and distribution of
the units of fire by the ranges of firing and subsequent attacks
(Problems 8.3 and 8.4),

Problems 8.5 and 8.6 are devoted to a determination of the op-
timum makeup of an alr group consisting of various types of inter-
ceptors and assuring a given effectiveness at minimum cost.

Substantiation of optimum interceptor and target tactlcs is ex-
amined in Problems 8.7-8.9.

The method of designating an optimum flight when the quantita-
tive breakdown of a group target is unknown is shown in Problem 8.10.

in Problem 8.11 we determine the optimum type of interceptor
armament.

In Problem 8.12 we optimize the carrying capacity of a detection
and guidance system.

Problems 8,13-8.17 give optimum solutlons when determining the
composition of the air fleet of various types of alr groups, and its

location by zones of combat operations and base points. We estimate
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the galn in effectiveness due to optimum designation of a flight of

D
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various types of interceptors against various types of group targets.

Problem 8.18 shows how to determine the optimum dispersion
radiue, if an increase in radius decreases the damage to interceptors
from enemy action, but increases the mission time.

*
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Problem 8.19 allows us to substantiate the optimum supply of
rockets or any other units and parts, assuring a given level of inter- )
ceptor combat effectiveness.

PROBLEM 8.1. In model combat operations of interceptors with
fighter-bombers at low altitudes we have the characteristics Xy
which determine the combat effectiveness, and their importance coef-
ficients mi which show how the interceptor effectiveness changes if
the given characteristic L changes by Azi. As specifying character-

istics we have the following:

Vn — combat ground speed, Mach;

8M/AD ~ decrease in M by AM with a decrease in flight range
by AD, caused by installing cannons and radio counter-
measure devices aboard the interceptor;

Snop — effective area of interceptor damage with enemy fighter
counterfire;

{8 — area bounded by the graph of the dependence "velocity-
altitude" of interceptor flight with lcad iactor n = 1;

r — maximum interceptor load factor;

t_ ~ time to accelerate from cruising speed to maximum low-
level speed;

dl — relative change in ground flight range under maximum-
rarge conditions as compared with maximum ground speed
conditions;
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— relative change in flight range at reference altitude
under maximum range conditions as compared with maximum
ground speed conditions;

ds

EG — relative change in time of loitering under crulse con-
ditions at the ground as compared with minimum speed
conditions;

ALp/AG - relative change in takeoff run vs. takeoff welght.

Five types of interceptors have been developed, whose specifying
characteristics are shown in Table 8.1. All characteristics are given
in the form of relative values, with the appropriate characteristics
of interceptor No. 5 taken as unity. The table also shows the impor~
tance coefficients for each specifying characteristic.

Table 8.1.

&nter—' Characteristlcs R

ceptor " _ :

No. v, .3‘—',3- Snp | @ n 4 a % ‘:3%" t c |
106,087 1085105410,581}0¢ 0,67 | 0,85} 1,91 | 0,87

09310s0f1,0 [o,9}07 091 091}0,71}087]1,00/0.,80
0,99 10,6910,970,98}0,77 {091 {0,92{0,67 | 1.0 | 1,05}0,95
0941046311,28/092}(0,93}0,9711,1310,79}1,0 |1,00{0,98
10 1,0 1.0 J1,0 1,0 J10 J1,0 11,0 1,6 11,0 }1,0

(< R A

m 11,0 |10 Josfotr 1.0 |10 {0 Joas]ts los |10

]
.

T W TIY TN
. P N

We are required to determine, from the criterion of specific
effectiveness (the effectiveness/cost ratio), which of these inter-
ceptors is the best.

AR

+ K
e

Solution. Let us examine any one of these characteristics x.
If we compare two types of interceptors using this characteristic
and the corresponding effectiveness values Wy, We can write

S =(&). W
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sisg Lhe Newtonlan binomial formula we have

(4 252 ) = (14 a1 b e dn o+ 2O A 4

+ m(m——l;(m—?) AP (2)
where AXx 1s the difference between the characteristics x of these
interceptcrs, related to the value of characteristic x of one of

the comparable interceptors. In practice, greatest complexity in
comparison occurs when the comparable characteristics Xq and Xq dif- .
fer only slightly from one another. In this case the value of Ax is

small compared with Xq and Xos and in first approximation we can

limit curselves to the first two terms of the binomlial expansion.

Then

tl..l ]

_.._._:.—.:l+l’l'~3-\-» (3)

&"‘.‘

#hich immediately reflects the physical essence of the importance
coefficient: m shows how much effectiveness w changes if the speci-
i'yving characteristic x changes by Ax. For example, if m = 3, this
means that the effectiveness incfeases by 30% when x increases by 10%,
since

v, =1, (1-+ max) == W, (14-3-01)= I,Sw&.

Since an improvement of one characteristic of the lnterceptor
can be compensated, in the effectiveness indicator, by a deterior-
ation of another characteristic, comparison of interceptors with con-
sideration of all characteristics which specify the combat effective-~
ness can be done by the formula

p= B (X1 "‘*( )"y (_5,_)"',
W= e, ~(x2) ,\':) 23 v (u)

since the resulting effectiveness

oy M m
W= W W W, L NI (5)

Jomparison indicator w unambiguously shows how much one interceptor
is better or worse than another.
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The formula for specific useful output (the ratio of the resulting
effectiveness to the cest) for the characteristics given in this prob-

Jem has the following form: "ﬁ

gt . PaAts it

9 Rl 1 | £ ameyme [ S (Aﬁp)m"

Ef_; w = C (A’!_’_)'n' - ‘. l;’:' ]'dl ’(I-, t‘." T;" ]. (6) D

::, ) kY2 nop ] 3‘7 :

3 AT AT
Qualitatively, the nature of the influence of the characteristics MRS

on efficiency w 1s obvious, while the quantitative dependence is de-
termined by the values of the importance coefficlents My, found using
model combat operations and given in Table 8.1. The bracketed char-
acteristics can arbitrarily be called, respectively, the relative
survivability ¥, maneuverability B, and effectiveness R along tue
intercept lines. For example, the maneuverabillty of interceptor No.
1l is

n&wﬂnjs==UA4

1510

B, =

of that of interceptor No. 5, l.e., the maneuverability of the first
is 1/0.44 = 2,28 times poorer.

The results of the calculations are compiled in Table 8.2, from
which we can draw an unambiguous conclusion for the problem.

Table 8.2.

l"’(ﬁ l“‘!t LA B
lisad o catiodcd oo

Characteristics

AR

Interceptor
No. pyiTe

i n R § wnn

1 1,33 0,44 a0i | oeawr | o

2 1,16 0.69 0,70 ' 0,500 0,63

3 1,28 0,75 0,85 06,783 0.5 :
4 1,24 0,85 0,713 0,745 0.7 Le
5 1 1 1 | 1 E

¢ vt -"vv: «

'~

Thus, the best interceptor is No. 5, then No. 3, and, finaily,
the worst is No. 1.

50

PROBLEM 8.2. We must destroy each of 10 aerial targets with
probability PZ = 0.99, The commander has three types of interceptors

241




y * 3§
AN

a
ix

Vi e T o F g % LN ‘T TR m e omowo - T w e -
= by o o~ e F4 VoW IV TR IR SR E VR N A ym, oo er
” 4 w)r:'wf'%fék e - N N AR AT S T AL TP R Mol Y0, 4 N S

f R

e catu s

-
)
i

Y e R s IR e TN T T T TR s AR

o
ot

b

TR

L

capable of operating uander given conditions and characterized by
probability Pl of the downing of a target by one interceptor and
cost €, of one attack (Table 8.3).

™

e

Table 8.3.

Type of inter-

I
=
-
gl

certor ’
B 9.6 | 96
2 07 l 110
3 0,8 ; 175

#Ccst expressed in arbitrary units

Cost C.= includes the cost of cone mission and the cost of the

by

ocketrs fired. Determine which interceptor is best used from the
tendpoint of assuring the given probability of target destruction

LeH]

¥. at minimum expense. Let us assume that each interceptor in one
mission makes one attack against a single target.

I )

)

Solution. To destroy each target with a higher probability Pz

-
-

compared with Pl of downing a target with one attack by one inter-

i

e} "or, we must carry out n independent attacks agalnst each target.

Py=1-(l—P) (1)

king the logarithm of (1) we ge¢“ a formula for determining

K]
rey
<t
¢}
]
e RN <
[

ired number of missions with known Pl and Pz:

ig (1 — Py) ;o : 2

—_L 2) o SRRl

n= =7 ' Lo
xé: e et
b

fe

The resulting cost of destroying one target, if we know n an
rriul

. lg(l—p,
z=ﬁm=crqﬁ:ﬁ%. (3)

™ne results of the calculations are compiled in Table 8.4,
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Table 8.4,

Number of missions re-
Type of inter- | quired to destroy one | CO3% Cy of destroying Nuﬁ::dogomé::tggs §3-
csptor target with one target q targets v

probability 0.99 &

O i i e
L A
ML T I Ay iy

1 .5.025 482.4 50,25
2 3.83 422 38.3
2.8 490 28

n 1 Comparison of the results of the
4} calculations allows us to conclude that
a0 | under the given conditions the second
. | type of interceptor is most rational,
8 '—} although its P, is not the highest.
20 -
! In this problem it 1s interesting
PR __: that in the case when each higher value
|

of Pl has a correspondingly higher cost,

there 1is always a certain Pl which is

A
L

E‘ 0707 0z 03 04 03 08 07 08 09 Py optimum. With P; . the resulting prob-
tf } ability of target downing Pz is achieved
?i J. at minimum cost. This problem is solved
i _ ' in general form in Fig. 8.1, where the
55 ,; dependence between effectiveness and
N l | cost of one attack is expressed by the
\\ ;4 formula
\ Py=0,99 | R .
951——-\\ /']' Ci=a+ =3 + =y (4)
2?:\\ ~1 | where a, b, and ¢ are constants.
. _ 1
~ ‘\_‘// ;
\\TgT- R This formula graphically reflects
- |

007 02 03 41 05 65 07 G4 152 the posltion that even with P, = 0 we
5 Pig. 8.1. have a certain initlal cost Cys while
: ' with high values of PJ great expenses
are required in order to increase the effectiveness.

) ch
At R

TI

)
Ly
T

x?

T

[
L SERYR

PROBLEM 8.3. An interceptor armed with four rockets can attack
two targets in one mission. The probabllity that the first target
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will be at.acked is—Eal = 0.7. The probabllity of carrying out the
second attack is Pa2 = 0.3, The conditional probability of destroying
a target with one rocket during an attack is Pl = 0.6. If the first
target is not attacked, the interceptor expends 1ts entire unit of
fire against the second target. We must determine the optimum regime
for firing at a target, i.e., how many rockets there should be in the
salvo against the first target, so that the expectation of the number
of downed targets in two attacks will be maximum.

2ot

nre
1
wal%y

Solution. The probability of downing the first target is

e TR

/’,,==/’_,,|1-—(1—P|)‘|. (1)

Yhe conditional probability of downing the second target, pro-
vided the first target has been attacked, is

P?(mp—l) =Py ll -(1- Pl)m"-ll. (2)

g

: The conditional probability of downing the second target, pro-
vided the first target has not been attacked, is

Setvdy e
]

L
’
PN

5
‘0
* 0

p”'v == Py [T — (1= 2™, (3)

in Egs. (1), (2), and (3), m, is the number of rockets in the unit
of fire; 1 is the desired number of rockets fired ot the first target.
The expectation of the number of targets downed in two attacks
M= By 1= (1= B 4 PP U= (1= Py 4 (4)
+ (1= 8) P [ = (L= )™,
The maximum of function Mi is ashieved when
dMy
ar =0
wnile
azil
S <0
Let us find the first derivative
G pyin (1 = Py [— (1 = PY + P (1 = PY™s™] =0,
244
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from which
1 15 Py
t= [ Spy + m) (5)

The second derivative

E;-%:_‘ =—Pylln (1 = PYP[(1 = PY + Py (1 = P)™"]

1s negative; consequently, Eq. (5) corresponds to the maximwa expec-

tation Mi' Substituting the numerical values of the problem, ac~
cording to (5) we get

i= L Wos__ o 4 | =265,

Tg Ul —00)

Rounding off to the nearest whole number, we have 1 = 3, For
verification we can substitute the numerical values directly into
(4). 1In this case, for values of 1 = 1, 2, 3, and 4 we get M, =
= 0.704, M, = 0.853, My = 0.853, and M) = 0.77. '

Thus, in this case as well the maximum Mi is reached when 1 = 3.

PROBLEM 8.4. A unit of fire consisting of m rockets can include
mp rockets with radar homing heads (RHH) and m. rockets with heat-
seeking heads (HSH). 1In place of any rocket with an HSH we can use
a rocket with an RHH. The probability of target damage by a rocket
with an RHH is Pp; with an HSH it is PT. Rockets with RHH can always
be used, while those with HSH's can he used only with probability Pa.
The value of the probability Pa depends on the attack aspect angle,
the flight altitude, and meteorological conditions. We are required
to determine the optimum ratio of rockets with RHH's and HSH's for
which the probatility of target damage P by a combined unit of fire
would be maximum. Determine for what values of Pa the use of rockets
with HSH's becomes inadvisable. Iind the maximum ratio mT/mp for
two cases:

-y
.

1) =09 and /% =04 —03,
2) P,=07 and P,==03—04

Solution. The probability of target Jamage by a combination
unit of fire of rockets with independent filrings is
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Nl - - -
e

Consequently, the problem reduces to finding the maximum of Funct® a
(1) with observance of the following conditions

. LRy My =t

/
uh\U;n1>Ol (2)
Let us differentiate (1) with respect to mp and equate the
derivative to zero:
%?’”‘F%l—P)PP(V-PW”M”U~/)+ (3)
P [
+ (1= P+ P (1 = L)) (1 = P la (1 = Pp)} ==C.
From Eg..(3) we get i )
5 P (e S 1 _
_ lglf-__—lg(l I] lg( l)-{-m!g(l P} (14)
g YoM == RT=7

Analogously, we éet a formula for calculating the number of
rockets with HSH's:

BB Je ()

-5 (5)
From (4)7énd_§5) it'fol;qw§ that when the condition
Pt = (1= P (6

is satisfied, the use of rockets with HSH's becomes inadvisable,
i.e., in this case the effectlveness wlll be higher if only rockets
with RHH's are used.

e, oy

The solution is shown in Fig. 8.2 (p. 247).

0

@

PROBLEM 8.5. A regiment is assigned a band of responsibility
300 km wide slong the front. It must repel a raid by 30 targets
flying column fornation at the lowest possible altitude and with no
ground radar guidance field. The method for combat use of inter-
“optors is as follows: at the warning command a search group takes
¢ff which, after detection of the target, calls in an attack group

Tty

or joint target destruction (Fig. 8.3). There are two types of
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interceptors with the following chiracteristics (Table 8.5).

Pk
o 2"

[

Table 5.5.

e

Choiacteristics Type of interceptor
1 2
Number of rockets L] 2
Probat ity of destroying one target
with one rocket 0.5 0.3
Wid*h of band of possidble detection
and att.ck {2b), km 50 20
Expenditures for one mission, arbi-
trary units |«‘ 2.5 | 0.5

With interaction of both types of interceptors, when each inter-
ceptor of the second type 1s given a target indicatlon from the first-
type interceptor which detects the target, the effectiveness of the

. second-type interceptors increases to P, = 0.5.

1

. We are required to determine the optimum makeup of an alr-de-~
iense alr grown couoisting of type 1 and 2 interceptors and capable
of destroyi 20% of the targets in a rald at minimum cost. We must

compare tT. : . 3ible combat variants:
1) the -5 ars resolved by the alrborne radar, and the result
247 -
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destroyed targets;

2) search is conrnducted for dense enemy combat formations unre-
aolved by the airborne radar.

Let us assume that of the search group, only three type 1 inter-
ceptors or only five type 2 interceptors participate in the actack.
The remaining interceptcrs of the search group, because of thelr re-
noteness from the peint of detection of th2 targe: column and ber
cause of the short duration of the raid, cannct participate in the
attack.

Solution. The mission of the air group can be carried out with
sarious conbirations of both types of intercerters. If we use only
type 1 interceptors, to obtain the given level of effectiveness

M{NC u]/Nh'= 0.9 it is necessary, according to Fig. 6.4 of Problem

c. 6.4, %o have mpNn/Nu = 2 during reaiming,

70 | ] : A from which N = 15. To this number we

60P] must add three interceptors from the

50 \\.\\ ] search group; then the total cost is

7

40_22?2%1@&”3& | ] Cy = 18-2.5 = 45 arbitrary units. An-

sor Tt Op tmun - alogously, when using only type 2 inter-
reaiming - =

) R R NI e ceptors we have mpNn/Nu = 3.65, Nn 55.5,

2iz. 8.4 and the expenses Ty = (55.5 + 10)+0.5 =

= 32.75.

4 graph of the dependence C. = f{N is given in Fig. 8.4,
z nq

Tnvicusly, the optimum solution is to use type 1 interceptors in the
reh group and type 2 interceptors in the attack group. The optimum

f the number of interceptors is i:4, with reaiming after
analrsis of the results of each individual attack, and 1:10 in the
case ol combat with target intermingling, when a group target un-

r-:0lved by the alrborne radar 1s attacked.

.
l

PROBLEM 8.6, An air-defense group has the mission of destroying
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at least 75% of Nu = 100 targets in a massed raid. To solve this
problem we have two control systems with varyling warning and guidance
equipment and, consequently, varying control quality, in particular
the quality of target distribution.

The filrst system indicates to each interceptor its own target,
and all targets are identically and uniformly fired ubon, i.e., there
i1s ideal target distribution. In the second system, each interceptoer
selects its own target and there is no target distribution by the
system; it merely leads the interceptor to the region of target loca-
tion, allowing it to operate independently. When using the first
system the cost of one operation against a target is double that when
using the second system.

We must determine, from the criterion of ninimum cost of target
downing, which control system it 1s advisable to use. The prob-
abllity of one interceptor's intercepting a single target is Pl =
= 0,5 and 0.4 when using the first and second systems, respectively.

Solution. To assure an expectation of the relative number of
downed targets M[Nc.u]/Nu = 0.7/5, it 1s necessary, when using the
first control system, that when Pl = 0.5, Nn/Nu = 2, 1.e., the given
effectiveness is assured if Nn = 200 interceptors operate. Vhen
using the second control system the giver. effectiveness 1s assured
when Nn/Nu = 2, Consequently, the ratio of the number of actions
required to achieve a given level of effectiveness is 2/3, while
the cost ratio is 4/3.

Thus, it is more favorable to use the second system, although
it has less equipment for solving target-distributlon problems and
assures a lower effectiveness of the lnterceptors. In return, the
low cest of the second system allows a greater number of interceptors

at identical total cost, and assures lower cost of target downing.

PROBLEM 8.7. An interceptor searches for a target in a certain

The greater the search time tn’ the lower the survival

region.
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probability P_ of the interceptor (e.g., the probability of sur-
viving enemy action if search occurs over a territory which can be
reached by the enemy's destructive weapons). On the other hand, the
greater the search time, the greater the probablilty P06H that the

. interceptor will detect the target. Determine the optimuw. search

time, knowing that

{

on,
Plu.n« =P|“ )
while PodH depends on tn by the law obtained in Problem 5.12. :

Solution. The probability of successful completion of a combat
mission P is equal to the product of probabilities Peum and PoGH'
Nbvicusly, with optimum search time probability P should be maximum.

Having solved the equation

vy,
* L]
.
o

R e ]
PR P
W

d(Pu .«P n) B
e =0 (1) ~

relative to tn’ we get

¢ 1 1 Inf,—k
o = In (A : (2)
where
a1 .
E= "’3"", : (3)
or

o
I

1 %V,
)

(4)

The maximum effectiveness with tn.onT .

_ ke, onr\ ta.onr

Pmncm (l)qdnpngm)mzc == (x - € ) /] pl ¢ ( 5)

PROBTLEM 8.8. An interceptor carries out aerial combat with a
fighter-bomber using two possible ftactics: attack from the forward
nemisphere and attack from the aft hemlsphere (ml and n2). The

gnter-bomber uses three possipnle rountering tactics: 1t Jams the
g J

r e
)

r:f'

heorne radar, jams the rockets' homing heads, and conducts canncn
s and u3, respecvively). The effectiveness of the inter-

1
» 3

".3 d

Y
*, 5

' (3
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ceptor as a function of the tactics used is shown in Table 8.6 (in

arbitrary units).

- Table 8.6.

E’: 1y a
.3 ur s :
. .

. U, 3 B
. Uy 4 $
-t iy 8 2

i~ .

Il-‘p:

iy

Dete mine the optimum tactles of the interceptor and the optimum

counter-tactics of the fighter-bomber.

Pl
"

Yl e
* -

RO

-

Solution. We have a typical conflict situation examined in the

theory of games [29].

Vial]

gy

-y
.

The three possible fighter-bomber tactics have three corresponding
equations of straight lines in the coordinate system v, &, where v 1s
the value of the game and £ 1is the number which defines the probable

Ay

«

i

N ——
P

4" e
.

combination of pure interceptor tactics.

For fighter-bomber tactic uq

v=3t 4 10(1l —§) == 107§ (1)

for tactic Us

Rp—
L

AR

. for tactic U3

|

AR Laiv: TR
I e,

v 8t 2(1 —8) =246t (3)

Having constructed the straight lines (Fig. 8.5), we get the
region of possible solution to the game (cross-hatched in the fig-
ure). The solid line corresponds to minimum effectiveness. The
guaranteed effectiveness for the interceptor is determined by the

value of the maximum with & = 0.43.
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Vé;j Thus, the interceptor should
$;h§h=k. ) alternate its tactics at random with
8 'Eﬁﬁa? el the following freguencles: attack
N N 20k
7 NN ‘1j¥%€ from the forward hemisphere with
6 VT fre = 0.43, snd attack from
IR ENEN aueney & = 043, °
,..::r:t;;idfw:«;a 3 the aft hemisphere with frequency
TTZBT 11771 S &, = 0.57. Then the effectiveness
[N :
5 vl fﬁ for any fighter-bomber tactic will
2
;! 1 | be at least v = 4.57 arbitrary units.
P o A e S
-+ G102 03 45 05 46 G7 68§ 05§ Solving the system of equations
rig. 8.5,
3y + 4y - 8ty =457,
104, + S + 2y = 4,57, (5
Tt %t h=1
we find

f=0, 7,=086 and #;=0l4 (5)

i.e., the fighter-bomber can prevent an lncrease in interceptor
effectiveness 1f it randomly alternates its tactlcs with frequencles
(5). 'This fighter-bomber mixed tacti. (jamming of airborne radar of
zhe interceptor with frequency nq = (', Jamming the rocket homing
heads with frequency n, = 0.86, cannon fire with frequency ng = 0.14)
is optimum for it since it guarantees it damage of no more than v =
= 4,57.

PROBLEM 8.9. An interceptor intended for combat against
bombers using the three types of counteractlon can be armed wita
alr-to-air guided missiles, ungulded rocket projectiles, and cannons.

The expectation of the number of downed bombers in one mission
Ly one interceptor as a function of bomber counteractlion and the unit
of fire of the interceptor is given in Table 8.7.

Determine the best interceptor armament and the most favorable
rype of bomber counteraction.,
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Ej' Tab le 8 . 7 .

.
.- Interceptor armament

p Bomber counteraction air-toe-air unguided

guided ecannons rocket

- missiles projectlles
E. Long-range maneuver 2 0 1
T,
. Abrupt short-range 1 2 (]

- ) maneuver

. Radio jJamming of airborne 0 1 4

radar

Solution. We have a zero-sum game with two plsyers. For

brevity, let us designate the pure tactics of the interceptors by
My Mos and n3, and the pure tactics of the bombers by Uy Hoo and
: ug. Then the payoff matrix is written as follows (Table 8.8.):
- Table 8.8.
N‘ n n "
y 1y —_ ! : 2
. A = u, 2 0 1
- 1, ) 2 0
Iy 0 1 2

The selection of move Ny indicates selection of the i-th column,
while selection of move uy indicates selection of the i-th row in
matrix A. Solution of the game consists of the mixed tactics of each
player. We find the solution by the iteration method.

The method for determining the result of such a game 1s to play
a number of steps (iterations) with pure tactiecs. Each player notes
the tactics used by the enemy in the last step (enemy steps Nos. 1,
2, 3, ..., n - 1), and selects, at step No. n, that tactic which

would be best, considering all previous enemy moves.

The tactics of the first move can be selected at will. Let us
select, e.g., Ny and Uy~ Tn the second move the interceptor acts as
if the bomber were to reselect tactic Uy- Since the interceptor
strives to maximize the results of the game, he again selects tactic

P IS
[N
AR

Yy

T M A YRS
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Mqs since the largest number of the first row in matrix A is in the
first column. Correspondingly, the bomber selects tactic Uss since

the smallest number in the first column is in the last row.

To determine move No. 3 of the interceptor we calculate the

*E I

average value from rows 1 and 3 (corresponding to the last tactics N
uq and U3 selected by the bomber). The maximum of this average

. value 1is in column 3. Thus, n3 1s that tactic vrich is best for the
Interceptor in this case. The bomber correspondingly responds with

L A

tactic g

LA G L

Let us assume that the bomber in the first (n -~ 1) moves selected
tactics ugy (k =1, 2, 3, «v.y, n = 1), For the interceptor we then
calculate the average value from rows 1k’ select the largest of these
average values, and use the number of thils maximum for the next move.
The bomber then acts in a similar manner. Instead of the average
values of the rows (or columns) we can take thelr sums.

Table 8.9 gives 30 iterations (moves) of a game. The first
column in the table is the number of the iteration. The column

.
+
'

corresponding to the interceptor tacties 1s given as a three-digit

« .
y by "s
LR S

. number in the fourth column of the table. The fifth column shows

i i a !
v Sy nfe

the sum of all previous columns and indicates, by boldface numbers,

the minimum which determines the bomber's next tactic. The sixth E:ij:jii:i
column in the table shows the selected row, while the last (seventh) :

column gives the sum of all previous rows. The boldface numbers

e
PRI

are the maximum, showing the next interceptor tactic.

w

The value of the game v after n moves 1is lccated between the

minimun of the column sums and the maximum of the row sums:

018 < A7) < !:5;

2 =085 vy < 1,35 =

B o077y, <113 =3

a0

e T e e

.
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Table 8.9.
Tactics
Move "o'int:rcep-| bomber Column |Sum of columns| Row Sum of rows
or -
1 N 3 4 5 [
1 1 ] 210 2 1 o | 20 2 0 1
2 1 3 210 4 2 0 | o2 2 1 3
3 3 3 102 5 2 2 | o 2 2 3
4 3 3 102 6 2 4| o2 | 2 3 7
5 3 1 2 102 7 2 8 | 12 3 5 1
6 3 2. 102 8 210 | 1 4 7 7
7 3 2 102 9 2 12 120 5 9 1
8 2 2 21 9 4 13 12 611 7
g 2 2 021 9 6 14 | .120 713 7
10 2 2 021 9 815 120 815 7
n 2 2 021 9 10 16 120 g 17 7
12 2 1 021 9 12 17 | 20 nomos
13 2 1 021 9 1 1B | 2 1317 9
T 2 1 021 9 16 19 | 201 15 17 10
15 2 1 021 9 18 2 | 201 7 un
16 2 1 021 9 2 20 { 20 19 17 32
17 1 1 20 | 122 | o200 | 21713
- 18 1 1 210 | 13 22 21 | 20 2 17 14
=2 19 1 1 210 |.15 23 21 | 200 | 25 17 15
& 20 1 1 210 1724 20 | 200 | 2717 16
I
21 ! 1 210 | 19 2 21 | 20 | 29 17 17
22 1 1 20 | 2t % 2 201 3 17 B b
- 23 1 3 210 | 28 27 2 02 | 31 18 20 L
- 24 t 3 20 | 25 28 2 | o2 | 3t 19 2 X
N 25 1 3 200 | 27 2 21 | 012 | 3t 2 A "]
% 1 3 20 | 2 3 2t | o2 | 3 n % -
27 1 3 210 | 31 3 2a | o2 | 3t 2D i
28 1 3 210 | 33 3z 21 | o012 | 31.2 3
2 1 3 210 | 3 3B 2 | o2 | 3 2 R
30 3 3 102 | 3 3 28 | o2 | a B K
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The optimum tactics are determined by the frequencies with which
individual pure tactics are selected. For n = 10 iterations the opti-
mum interceptor tactics are defined by the frequencies £ = 0.1, 0.4,
0.5; the optimum bomber taccics - by frequencies n = 0, 0.7, 0.3;
for n =20: & =0.3, 0.45, 0.25; n = 0.5, 0.35, 0.15; for n = 30:
£ = 0.466, 0.3, 0.233; n = 0.4, 0.233, 0.366.

Thus, the best interceptor armament variant 1s one which uses
rockets, cannons, and unguided rocket projectiles with frequenciles
5,466, 0.3, and 0.233, respectively. The most suitable type of
tomber counteraction is a random al.ernation of the types of counter-
action {long-range maneuvering, abrupt maneuvering at short range, and
Jamming of the airborne radar) with f. 2quencies 0.4, 0.233, and 0.367,

T

PROBLEM 8.10. An enemy can use, in a raid, three types of bombers
at random; the commander of the air unit can oppose these targets with
two types of interceptors, each of which can successfully act against
each target. The effectiveness of the interceptors is characterized
by a matrix (Table 8.19), in which the letter Uy expresses the enemy
tactics and ny the alr-defense tactics.

Table 8.1C.
T T
0 \ } , I, 1, N
n u.l 0,3 0.5
1, 0.5 0.3 0.1

betermine the oprtimum varlant for assigning a flight of inter-
220tors to destrcy the beabers, and the optimum variant for bomber

Sclution. The alr-defense has two pure tactics (n1 and n2),
he en2=my has three (ql, o, and ”3)' Which tactiec 1s best
“up he air defense? If tvhe alp defmse knew in advance the enemy
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tactics, response would be very simple. However, the enemy tactics
are not know beforehand: the air defense does not know what type of
target will be used. Therefore, for the air defense 1t 1s more
suitable to use not pure but mixed tactles, which is the probabllity
distribution (probability mixture) cf pure tactics.

To determine the mixed tactics, the alr defense selects a cer-
tain number 51 (0 < 51 < 1), and pure tactles n, are selected with
probability 51 while pure tactlcs n, are selected with probability
1l - €. The gain in this case 1s determined from the formula for
calculating the expectation. If the enemy selects tactics Uy the
gain for the air defense is

v=0,1% + 05 (1 —5) =05~ 04%; (1)
if, however, the enemy selects tactics Uos then
v==03, - 03(1 --5)=03.
while with tactics us
v==05¢, -+ 0,1 (1 -- &) =0,1 - 0,45, (3)

Expressicns (1), (2), and (3) are straight-line equations (Fig.
8.6). The solid line shows how much the air defense gains in any
case with selected tactics gl, even if the enemy knows the value El.

When 51 = 0.5 we have maxinum air-defense gain (maximum expectation

of the number of downed targets): .

v-=03.

This meximum has the following properties: with no alr-defense
tactics can the gain be more than v = 0.3, while with any tactices
differing from gl = 0.5 the alr defense gains v < 0.2.

Now let us determine the optimum enemy tactics. Mixed enemy
tactics are determined by three numbers 51’ Nys and Nos where

G+ a+ne=1 and &, 1w, ==0
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% When using pure tactics n, we have the
' ?Jbl I%b following gain for the alr defense:
04 N x
N o
03 71\\ v=0,1§, 4 0,34, 4 0,50, = 0,13, + 0,35, + 0,5 (1 —§ —1n,) =
0'2 /,/ =-- A T = 0'5 - 0"‘:| - 0’2.01 ( u )
a1 : For pure tactics Nys respectively, - -
L !
0
02 05 06 08 1§, v=05% + 030, + 01 (1 —§ —n,) = 0,1 + 0,4¢, -+ 02, (5)
fig. 8.6.
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Expressions (4) and (5) are equations of
Let us find the
equation of the straight line along

planes, shown in Fig. 8.7.

which these planes intersecc. Let
us subtract (5) from (4). We get

Substituting (6) into (4) we
get
v=05—02 (2% + 1) =05 —02-1=03.

This is the_distance of 1line
(6) from plane El, ny. Any mixed
enemy tactics for which (6) is not
satisflied glve an enemy loss v >
> 0.3. Such a loss will occur when
the alr defense knows this tactic.

0.3.

Thus, the value of the game v =

Tactics gy = 0.5 are the optimum
air-defense tactics, while tactics

15> nys and n, when 2g, + ny =1

2re the optimum enemy tactices.

PRCBLEM 38.11.
s320rT Tighters we use two types of interceptors armed with air-to-

To repel a massed raid by bombers covered by

. Zuiced misciles, unguided rocket projectiles, and cannens. To
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carry out a comtat mission we require at least 40 missiles, 100 un-
guided rockets, and 1000 cannon rounds.

The unit of fire for one of the given types of interceptors is
characterized by Table 8.11.

Table 8.11.

Type of interceptor
1 2

Unit of fire

Cannon projectiles 200 50 |

Unguided rocket pro- 4 20
Jectiles N

Rockets 2 4

The cost of using the first type of linterceptor C1 = 2 arbitrary
units; that of the second type 02 = 5,

Determine the optimum number of both types of interceptors for
which the mission will be completed with minimum expense. Show how
the optimum solution changes with a change in the cost ratio Cl/Cz.

Solution. Let us designate the number of type 1 interceptors
by an, and the number of type 2 interceptors by Nn2' Then the
expenses for carrying out the mission

C == 2an ’*' 5Arn2. ( ] )

To carry out the mission, by stipulation of the problem the
following inequalities should be satisfled:

200N, 4 50N, > 1000;
4Ny + 20N, > 100;
N, + N> 40,

Thus, in terms of the theory of linear programming the problem
is formulated as follows: we must minimize the linear form of (1)
with satisfaction of restrictions (2) imposed on the desired variables

N4 and N_,, where N_, 2 0 and an > 0.
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Thanks to the small number of variables, the problem can be

solved graphically. All possible variants of combinations of an

and N_, are shown in Fig. 8.8., where the equations of lines (?) are
constructed. Line (1) for obtaining minimum expenditures must be
Shan located as far to the left and
1813 2 as far to the bottom zs possible
16 —‘-\"';,,':,3 in Fig. 8.8, but such that 1t has
1‘1--@;% at least one point in the region
12—\ %, of possible values of N_, and N_,.
qu;Qaﬁé - '(;:5T22%—~ The dashed line thus obtained at
”:jfﬁjzéfjfﬁmgp ?m‘hﬁ) — the point of intersection of lines
PR |
4 N“‘Q-:”i\‘\z._".‘i;{z:g:;., Yoo {4Nm+201‘iﬂ2=10‘)' (3)
2 ﬁ#‘% 2Ng; 4+ 4N = 40
0 2 < 6 & i0 12 15 Ilb' ;3 20 2’2,{"! gives the optimum solution to the
#ig. 8.8. problem: N_, = 16.75 and Noo =
= 1.6. The expenses here are

minimum: C = 216.75 + 5¢1.6 = 41.5 arbitrary units. Practically
speaking, N ; = 17 and ¥ _, = 2; C = 44 arbitrary units.

From Fig. 8.8 we can determine how the cost ratio C,/C, in-

fluences the optimum solution. If the steepness of line

& Na: + Ny ()

is greater than that of 1llne
4Ny + 2N, = 100, (5)
it is advisable to use one type 1 interceptor for the mission. If,

nowever, the steepness of (4) is within limlits between the steepness
of line (3) and that of the line

INgy + 4 ne =10,

we always have a certain optimum relationshlp between an and an.

For

4

2xample, the optimum occurs

"
+

O

b
FS
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%;%:;4 when Ny =0 and Ny=20;

S =1 when Ny=279 and Nuy=828;

|=

4>3>

B3| -

o]~
(¢]
anl~ R

>2>

- when [y ==16,5 and N,,=1,58; ¢

+>E>0 when Nyy=25anc Ny=0.

PROBLEM 8.12. A column of bombers, conducting a iow-level raild,
is covered by a coliumn oi escort fighters at hlgh altitude. The

raid is repelled by the operation of two ground radar stations for

target detection and two computers which solve the interceptor guld-

ot

ance problems. The radar stations are spaced apart in the direction
of the rald, and information on the aerial targ=ts 1is fed from the
first radar to the second; from the output of the second station

agrgny

U]

R
S )

the homber cocrdinates are fed to the first computer, while the coor-
dinates of the escort fighters are fed to the second computer.

The radar stations have scanning sectors which differ in the

verticel plane, and their fransmission capacitles depend on the ele-

vation of the axis of the antenna radiation pattern.

Depending on the elevation of the scan sector, the first radar

can simultaneously give cocrdinates of no more than 40 bombers or

- 20 escort fighters, or a certaln combinaticn of a number of bombers

and escort fighters. The second radar, Jepending on the e¢levation of .

the scan sector, can simultaneousiv give coordinates of no more than

20 bombers or 25 escort fighters, or some combination thereof.

The absolute trarsmission capacitiles o¢ the computers are also

limited: the first conputer can solve guidance probiems for no more

than 23 bombers; the sezond - f¢* no rcre than 18 escort fighters.
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The damage inflicted on the enemy by the downing of one bomber
is estimated at 2 arbitrary units; that due to the downing of one
ezcort fighter — 1 arbitrary unit.

We must determine the optimum absolute transmission crpacilty
of the detection and guidance system, assuring maximum enemy damage.
Let us assume that the probability of gulding the interceptors to
the aerial targets is 1.

Solution. Optimum absolufe transmission capacity of the de-
tectior and guidance system is assured by installing the radar an-
tenna such that Nul bombers and Nu2 gscort fighters will be handled
simultaneously 1~ the system, while the enemy loss, equal to

2Ny + Ny (1)

will be maximum. We are required to find the values of Nul ¢ d Nu2'
Since 1/40 of the transmission capacity of the first radar wii. be
occupled with determining the coordinates of one bomber, for Nul
bombers we require Nulluo of the transmission capaclty of the firs-
radar. Correspondingly, Nu2/20 of the transmission capacity of the
first radar 1ls required for Nu2 escort fighters. Since the relative
transmission capacity cannot be greater than one,

Nﬂ Nﬂ 2
0t <l

(2)
or

Ny + 2N, <40. (3)

L-alogously we find the following inequality for the transmission
capacity of the second radar:

<1 (1)

25N + 3N, <75.

(5)
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For the transmission capacity of the first computer, by stipu-
lation of the problem we have

Ny <23, (6)
for that of the second computer
N.< 18 ' (7)
We have the following typical problem of linear programming:

we must maximize the iinear form (target function)

L=y + Nug (8)

with the restrictions imposed on the desired wvariables Nul and Nu2
in the form
Ny + 2N <H0;
20N -+ N, 75,
Ny <23 (9)
N <18
N 20 Na2>0,
The problem 1s solved grephlcally. Let the solution be as
follows. In a plane 1n coordinates qu’ Nu2 we construct a region
- bounded by Inequality
g& . . (9) and f£ind in this
Z region those values of
% Nul and NM2 which deter-
mine the maximum of
linear form (8). The
Ny =23 construction is done
~ in Fig. 8.9. The cross-
~ N~ ~ hatched area in the
figure represents the
set of variants of the
N solution. The optimun
_ solution is found as
0 20 70 40 A follows. L2t us write
Fig. 8.9. linear form (8) in the

Iy

30

N
]
1/

20} <

/ 1/ Nyp=18
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Mo g M, (10)

This line intersects axis Nul at point L/2 and axis Nu2 at point L.

Let L = 60. Then the coordinates of the points of intersectiocn
of axes Nul and Nu2 are 30 and 60, respectively, i.e., line (10), as
can he seen from the figure, passes beyond the limits of the shaded
region and there is no unique solutien. When L = 40 the 1line passes
through the shaded area, but the optimallty requirements are not
satisfied. To find the optimum we must move line (10) in parallel
up and to the right until it touches the shaded region at one point
(point A in Fig. 8.9). This is the point that determines the cptimum

solution: values Nu = 23 and Nu = 5.83, for which (8) is maximum.

1 2

Thus, if the radar antenna is =et such that 23 hombers ani 5.83
escort fighters can be "serviced" multaneously, damage to the enemy
will be maximum, equal to 2+23 + 5.33 = 51.83 arbitrary units.

Here it is interesting that the transmission capacities are not
identically used. With the optlmum solutlion the transmission capa-
city of the first radar is

Nyi + 2Ny =23 4 2-583 = 34,67,

i.e., it 1s used only (34.67/40).10C = 86.8%.

For the second radar we have

25Ny + 3Ny = 2,5+23 4+ 5.583 =75

and it 1is occupied (75/75)+100 = 100%.

The first computer 1s used

wille the second is used

1"-‘.

e

o ams—a
D2ty




et
RAR AR

]
'3

)
LAY

1
o™

- N TN N TR LT wwr oy CWE TR WY W K S ol S ~ o w Tey — g e - -— -
e e R A e L T R N T R e O e T L L T o T Y S A S T R T TR R T AT A TR

T L T L P,

e N L -

PROBLEM 8.13. An enemy in a raid through an air-defense belt
can use four types of targets. The alr group defending the alr-
defense belt has four types of interceptors. The effectiveness ¢’
each interceptor against each target 1s characterized by an effect-
iveness matrix in which Uy designates the enemy tactles and ny the
alr-defense tactics (Table 8.12).

R

.
-
L

“»

Table 8.12.
\u‘
[ L0 Iy A
m -
2, 4 - . =1 -2
fia 0 ° 3 2
iy 3 0 0 1
n, 2 2 1 1

The payoff function is the expectation of the number of targets
downed by one interceptor in one mission. Negative numbers indicate
interceptor losses ("-2" 1s a total irrevocable loss, "-1" is a

temporary breakdown with subsequent recovery). We are required to
determine what types and how many interceptors there must be to

assure a maximum guaranteed effectiveness level for any enemy actics,
i.e., when the enemy uses the various ty=-s of target. in comuinations
whlch are random and arbitrary for the air defense.

.~y

Solution. Let us use the iteration method. On the basis of
the payoff matrix we play a game with a sufficiently large number of

TaTe

steps. In each iteraticn the enemies want to obtain maximum gain
under the conuition that the other side in its next move will try to
minimize its loss, countering the enemy with a move which is most
disadvantageous for it. The start of the iterations can be arbitrary.
For example, let us select row nys Let us rewrite this row downward
and indicate the first mirimum with boldface -2. Since this minimum
is in the second column, let us rewrite the second column to the
right of the matrix and also indicate the first maximum 2. Since
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this maximum is in the second row, let us combine the second row with
the row beneath the matrix and indicate the first minimum 0. Then,
since this minimum 1s located in the second column, let us combine
this column with the column written to the right in the matrix, and
indicate the maximum 4. This maximum tells us to combine the second
row with the resulting row written for the matrix. The iteration
process continues until there is a smooth convergence of the upper
and lower bounds of the value of the game p and q (p - q + 0).

To exclude ambiguity in selecting the next lteration when the
row or column contain several identical numbers we must establish
a specific rule o. choice. Let us stipulate that when identical
numbers appear in a row or column we select the first of them: in
a row — the first minimum; n a column — the first maximum. Our
example is solved by the described method as shown in Table 8.13.

Usually, to obtain sufficiently precise solutions, i.e., to
small differences between the lower and upper bounds, within which
the value of the game lles, we must perform 20-30 iterations.

After each k-th iteration the value, indicated by boldface, in
the row or column is divided by k, which gives the value of the upper
and lower bounds p and q of the value of the game, while division of
the number of indicated digits by k gives the corresponding statis-~
tical frequencies n and g, which are approximate values of the opti-~
mum tactics of the sides. Obviously, the greater the value of k,
the more precise the answer. After 10 steps in our example we find
that the value of the game lies within the limits 1.20 < v < 1.43.
Since the approximate solutlion for tactics ny and Usg gives zero fre-
quencies (gl = 0, n3 = 0), these tactics can be discarded. Then the
matrix becomes a 3x3 matrix and its sclution can be found by a pre-
cise method (Table 8.14)}.

Let us subtract the second and third rows from the first; then

Mo Y ¥
-3 9 1
~2 0 1
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Table 8.14
1Y}
1 1, i, 1,
E‘. : ng 0 2 2
.:;
i n, 3 0 1
i n, 2 2 )

Cancelling out in turn the columns of the next matrix, calcu-
lating the difference of the products of the numbers along the diago-
nal, and dividing this difference by the total sum, we get the de-
sired frequencies of the optimum tactics for the enemy: n, = 2/7,
ny = 1/7, and ng = 4/7.

Analogously we find the optimum alr-defense tactics: gl = 3/7,
52 2/7, and 53 = 2/7. Thus, if the alir defense maintains its opti-
mum mixed tactlics, attempting to maximize its minimum possible gain,
i.e., uses types of interceptors with frequenciles

51 = 0; Eg = 0,43; 23 = 0,285; E‘ = 0,285,

we are assured a guaranteed effectiveness which is numerically equal
to the value of thes game

Ve =143

regardless of what tactics the enemy prefers.

Thece optimum mixed tactlics are the solution to the problem:
they determine what type of intercep%or to use and with what fre- .
quency the available interceptors should be selected to obtaln max- . )
imum expectation of the minimum possible number of downed targets. ) .f’ fp*ff

The most suitable tactics for the enemy are optimum mixed tac-
i2s characterized by the following frequencies of random alternation .
f the four types of targets:

ct

Q

=2 0285 %, =0,143; v,==0, 5, =0,572.
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With these frequencies for alternation of types of targets the
enemy guarantees himself minimum damage according to the minimax
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theorem. When assigning a flight of interceptors we must begin from

T g

frequencies N5 Nas N3 and Ny-

o

A massed raid of air-to-surface missile carriers
Since alr-to-surface

PROBLEM 8.14.
is to be repulsed by an air-defense alr group.
missiles can be fired at distances of from 1000-2000 km from the
interceptor base, two types of interceptors (A and B) can be used.
Type A interceptors are used tu destroy the carriers on lines 1500~

.

MR IR

the position that the enemy uses his resources (bombers) with relative b

2000 km from the takeoff field; the probabllity of target destruction
in one action PAl = 0.835. Type B interceptors operate only 1000~

1500 km from the airfield, and the probabllity of destruction in z

MR e

——
o Tt}
e

vk

single action PBl = 0.75.

Each carrier can, with probability PL = 0.6, be in the action
zone of type A interceptors, and with probability Pir = 0.4 be in
2 the zone of type B interceptors.

Each interceptor carries out two actions against the targets;

R

£ type A interceptors carry these out statistlically independently,
g while type B interceptors carry them out after analysis of the re-
> sults of the previous attack. The cost of one type A interceptor

CA = 3 arbltrary units, while the required number of service per--
sonnel per interceptor ry, = 1.5. Tor type B interceptors we have

CB = 1 and rg = 1,

Determine the optimum composition of an air-aefense air group
consisting of types A and B interceptors, assuring destruction of
90% of a raid of Nu = 40 targets when the restrictions on total cost
and required number of service personnel C = 75 arbitrary units and

r = 65, respectively.

Solution. In general form the solution can be represented by
a graph in coordinates NA’ NB (Fig. 8.10), where NA is the number of




type A interceptors and
NB is the number of type
B interceptors.

First we construct
curves of the equal effect-
iveness of the group con-
sisting of various com-
binations of NA and NB.

The effectiveness of

Fig. 8.10.

single interceptors in
operations agalnst single
targets 1s characterized

by probabilities PA ard PB of destroying a target, provided it 1s in
cne cof the appropriate belts. From the conditions in the problem we

have

Py=0835-06=05 and Pp=075-04=03

Since by stipulation the relative expectation of the number of downed

targets M[NC u]/Nu = 0.9, we must determine those pairs of NA and NB
for which 36 of 40 targets will be destroyed, 18 of 20 targets, etc.

Having constructed the curves of equal effectiveness, we must

plot on the graph the restrictions on cost and number of service

personnel.

The cost of the Interceptors 1ls expressed by the equation

C=CyN + CalNp, (1)

while the number of servlce personnel

re=r,Ny A rpN,. (2)

By stipulation of the problem we have

3N, + N <. 75;
15N + Ny, < 63,

—~~
L= VN
s
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Inequalities (3) and (4) graphically represent the half-planes
passing through NA’ NB coordinate axes and bounded on the right by
the straight lines

ST
e

gl e

9

"

E»
;j,. N .\’
,h-.: ‘—-r"“ A +——-B =-.~1; (5)
b [H [
- L S
A A B
. N N
A /]
-..F...*...-—-..—L..—::L (6)
fA f”

Thus, writing (3) and (4) as equations of lines in segments,
we obtain the coordinates of the points of intersection of these
lines with NA, NB coordinate axes (considering the sign).

Moving lines (1) and (2) along the family or curves of equal
effectiveness until they intersect at one pel:t with the curve of
given effectiveness, we find the optimum solui’.., 1l.e., that pair
of NA and NB which assures the glven effectiveness level and for
which restrictions (3) and (4) on the cost and the number of service

personnel are satisfied.

PROBLEM 8.15. Two types of interceptors are uvsed against two
types of targets. Show the galin in effectiveness which can be
achleved when using optimum tactics compared with the equally-prob-
able alternation of all possible tactics. Determine the gain for
the followlng two effectiveness matrices:

™ “"T’_"M""m)"w,l:wmm
e d

.
O
« e Y

i i T L
LA
T

] 3 2 6]
A=|_4 3'; Ay = 2—1,'

Solution. Let the effectliveness matrix have the following

: generai: form:

v "
vy
.

ab
ca

Py

ay Qg
Qg Az

——
=

A= . (1)

¢y Ty v
. "
ot e -

For our example 817 T 855 T 8y 895 = b, ay; = ¢. As we know,
if there ls no saddle point, the value >f the game is

)

" Ay lgn = Q
o v= nuN n”:l. (2)
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where N = all + a22 - a12 - a21'

The optimum tactics for interceptor utilization are mixed tac-
tics g (gl, gz), where

a3~ ag; ,
El= e {

E;‘—_— Qyy == 013 :

tb=1 (3)

The optimum enemy tactics are also mixed tactics n (nl, ”2)’

PRRFR

. w -
1. )
.
.
- .
‘ W L.
* ' S
2 Vs A
L

where
E [ ]
——— Eog e =y
'ﬁx=‘a‘§‘ﬁﬂ!‘; RISk
RN
== ay — Qg : ‘ _:
PR ORI
! JIE B o WS
i +_ﬂ3=l. {4) E :
L If all tactics are equally probable, the expectation of the number ;
. of downed targets 1s equal to the average value of tne matrix cle- .
g ments: K
E Yep== au+anijg_+au. (5)

T

'

Now, assuming that the enemy will alternate his tactics in a
manner most unfavorable for us, lev us determine the gain in the
value of the game relative to the value vcp which we can guzrantee
by using our optimum tactics. Let us express this gain in terms of

SRS | ey

the relative difference

i

YV —_,
cp N
W = — 7
¢p )

Let us intrcduce the designations
a. )

[ R ——
! <

[

T T T T
<
LWRY
~ .
.

Substituting o and B8 into the general formula for the value of

the gam< we get

L il (7)

‘21-—-,1—-_1 *
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? lf% The average value of the matrix
5 ’“”A’“Fé is equal to
E o ————— " e—— : g
2 \ / " =B D, (8)
- !
" N\~ L/ For -
—— \ [- L2
; \&"*\ ’// A 3 2
= o . x--.-lnt-la‘_""z ) = __4 3
p
S
-1 b’/é we have
-2

Since vcp =1and v = 2.12, then
Fig. 8.11. w = 1,12, i.e., such a matrix 1is

unfavorable for an alr-defense enemy, since the use of optimum tactics
compared with equally-probable tactics gives a gain of 12%. 'The

matrix
) -1 6
B 3 .

is favorable for an alr-defense enemy since

¢=_.%—; Be=3;, v= 0,266 <0,

4

although the value of the game
v==1,1>0,

The deperdence of the gain in effectiveness on matrix parameters

o and B is given in Fig. 8.11.

PROBLEM 8.16. An aviation group consists of three types of
interceptors: ny, Ny, and n3. The enemy uses three types of ;- .
fighter-bombers in a raid: Uys Uns and u3- Each type of intercep-
tor can fight each type of fighter-bomber, damaging it with the
probability shown in the effectiveness matrix (Table 8.15).

Y

o
P O 4

-t

R

In turn, the fighter-bcmbers damage the interceptors, respect-
ively, with the probabilities shown in the interceptor-damage matrix

(Table 8.16).

Economic expenditures when using interceptors Nys MNos and nay
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Table §.15.

- oy g
AT A AR TR A

- A o i Sl TR TR T 0
S R T T T o e e R e e e S e s

Vo2 S RAIE IS S S A L

w
m iy ity .'(3
nl 0.8 0.3 004
1 0,5 6,7 0,6
U 004 0.3 0,9
Table 8.16.
n
n ! u. 1, Uy
n, 0,4 0,2 0.3
U=
u, 0,5 0.4 0.7
Ty 0,3 0,5 0,2
Table 8.17.
W 1w, i U,
nl " 2
1, 9

14

the most important one and vrequire that it become maximum.

n,

X w Ly

a®a

are characterized by the values
{regardless of the type of tar-
get) shown in Table R.17.

We must determlne the
most advisable ratio for the
use o' the Interceptors to
assure maximum effectiveness
(the maximum expectation of
the number of downed targets)
when the following conditions
are satisfied:

1) the probability of
damage to the interceptors
should not exceed 0.4;

2) the economic expenses
should ne. exceed 10 arbitrar:
units.

Solution. In the case
when the success of an oper-
ation is characterized not by
ore tut by several criteria,
Jrom all the criteria we select

The

auxiliary criteria in this case should satisfy the limiting cecn-

ditions.

to one of linear programming.

As a result of such a representation the pro*ier reduces

In our case we must maximize tne

expectation of the number of downed targets while simultanecusly

satisfying the lim.ting conditions with respect to damage to inter-

ceptors and costs.

Let us transform matrices U and C, subtracting from them U0 =
= 0.4 and C
interceptors assumes the following form (Table §.18):

0

= 10, respectively.
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Table 8.18.
-

W
m P 1] Uy u,
n T oo ~0,2 -0,1
U=
Ty 0,1 0 0,3
n -0,1 G, 1 —0,2

R

The cost matrix is glven in Table 8.19.

YAV IR T e e
AR

Table 8.19.

w
m My Wy 1y

n -1

Ty —6

The limiting condition relative to the criterion of damage to
interceptors can then be written in the form
0.4 0lxy — 0,1y — 11, =05

—0,2x, 4+ 0- %+ 0,1, — 21, =0
—0,1x, + 03x3 — 0,2x, — 1, =0,

(1)

The limiting condition relative to expenditures is represented
as follows:

.\‘1-—4.'(‘3+6x,+'0,==0. (2)

The conditlions relative to the expectation of the number of
downed targets 1s written thusly:
0,8x, + 05x, + 0,4x; — 2, == 1;

0,3X, + 0,7)(3 + 0,3x5 hamad 22 == 1;
0,4.:‘ + 0,64\" + O,Qx‘ - z'= l.

(3)
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Here 1t 1s necessary that the linear form L be minimized:

L=x,+x,+x,=-;,‘;—. (%)

Thus, the problem reduces to finding numbers X15 X5, and x3
that satisfy Eqs. (1), (2), and (3).

Omitting the rather unwieldy, but simple, calculations, let us
give the final result of solving the problem. The optimum tactics
for an air group, consisting of the optimum quantitative ratio
among the three types of interceptors, are mixed tactics — the inter-

ceptors snould be used with frequencies £, = 0.146, §, = 0.527, and

-

53 = 0.327. In other words, the group should contain 14.6% type 1
interceptors, 52.7% type 2 interceptors, and 32.7% type 3 intercep-
tors. When this condition is satlsfied, the value of the gsme (the
minimum guaranteed level of the probability of intercepting any
target during the raid) is v = 0.511. Thus, using mixed tactics
(El, 52, 63) we assure maxlimum combat effectiveness with observance

DR

T v B W e ¥

of the limiting conditions with respect to interceptor damage and

Cha B tg Ve

economic expenditures.

b AR

PROBLEM 8.17. To repel a massed rald at low, middle, and high
altitudes we must scramble simultaneously 50 type 1 interceptors,
30 type 2 interceptors, and 45 type 3 interceptors. For the re-

quired number of interceptors we use two alrfields, 1 and 2. The
average takeoff time, in seconds, for one interceptor of a glven
type from the respective airfields is given in Table 8.20.

Table 8.20.

Type of interceptor

Alrfield No.
H 2 3

1 4 0 10
2 6 8 20

:'7;1.,.»., L
%

o -
7

How should the interceptors be located, by alirfield, so that
the takeoff time of the entire flight required to carry out the
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mission is minimum?

Solution. Let us designate by NniJ the desired number of type 1
interceptors located at the j-th airfield.

T . W s R KT

. In our exanple, 1 =1, 2, and 3; J =1 and 2. Tpus, an,l is
the number of type 1 interceptors at airfileld 1, an’z is the number
of type 1 interceptors at ailrfield 2, Nn2,l is the number of type 2
interceptors at airfield 1, ete.

From the conéditions of the probliem we have

an.l -+ an.'z =50 l
Nn:,x + Ny 2= 30;
Npy s + Nm,: =45.

(»n

The takeoff time for interceptors at the first airfield is
3 t,== 4Ny + 10N + 10N, (2)
N while that for interceptors at the second airfield is

t3==6N,y2+ 8Ny 2 -+ 20N 3 5. (3)

Obviously, the minlmum resulting time for sequential takeoff
of all Interceptors cccurs when tl = tz. Thus, 1t 1s necessary to
find those values of NniJ > 0 for which the linear form

i R

X

ey
L

L =4N,, at IONu'.'.! + lo‘vn:.i =6Np 2+ 8Ny + 20Ny, 2 (4)

is minimized, with restrictions (1) imposed on the desired variables
N

i i

nij’

The problam is solved by methods of linear programming. The
solution is given by the optimum plan for interceptor location by
airfields (Table 8.21).

The takeoff time for all interceptors with optimum location by

airfields is
4.9-41.0410.45=6-41 -8-304+20.0:=456 s.
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Table 8.21.

Type of intercept:r
Afrfield No.
1 ] 2 3
F- 1 9 0 45
g 2 41 30 0
5
43

N,
I Y
]
<%,
-

Any other variants of infterceptor location by airfields increase

o

i~

the reaulting takeoff time required for the flight to carry out its
mission.

L

Bt b e b

PROBLEM 8$.18. When an enemy operates against an interceptor
airbase an increase ir the dispersion radius Rﬁaccp decreases, on
the one hand, the probability of damage to the interceptors

3
“nop?
and increases, on the other hand, the time t6 5 required for towing

from the dispersion zones and the mission.

Determine the optimum dispersion radius for maximum intensity
of a mission by undamaged and combat-ready interceptors. Intercep-

tor damage is determined by actlion of the enemy against the airfleld
by air-to-surface missiles carrying nuclear charges with TNT equi-
valents q = 100 kT. The probable deviation which characterizes the
scatter of the rocket is E = 1 km. After an enemy strike the inter-
ceptors are towed from the dispersion zones to the runway at a rate
VGch = 0.5 km/min.

Solution. The intensity of missions by undamaged interceptors
is defined by the expression

Nyll— P .
e ) (1)

where F and ¢ are functions of the dispersion radius R . -
ngp G.e paccp
To find the maximum of the function Hg = f(R aco ) let us first

Ad
construct, using the nomogram in Fig. 7.3, the dependence
{(L-?___.3 = f(R HPD) znd then, on this figure, draw lines for
for towing and takecoff of the interceptors as

m

p
the time reguired
a function of R . Then, lev us construct, using Eq. (1), the

pacco
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departure intensity as a function of R .
paccp
Calculatlions show that for the initial data the coptimum value of
R for which the departure intensity reaches its maximum value

paccp
is ~4 km.

PROSLEM 8.19. To assure combat readiness of airborne radars
for the sgquadron there must be a supply of modules A. Wlth a large
supply, some of these modules are excess. The cost of each excess
module C1 = 500 units. If the supply is low, if several modules
break down they must be replaced with emergency units flown in,
which raises the cost of each module to C2 = 10,0600 units.

We must determlne:

1) the optimum number of space modules A if, using the known
frequency of breakdowns, we calculate the probability P(r) that
exactly r modules A are required for the period of planned combat
operations (Table 8.22):

Table 8.22.

r. 0

S

P(r)

Pr<s)

2) what willl be the maximum cost of a module A with emergency
air shipment so that the supply of s = 3 modules will be optimum?

Solution., With a supply of s modules, when this supply is
greater than the actually required modules r, the expenses are
Cl(s - r). When there are not enough modules, i.e., r < s, the
expenses are Ce(r - 8). Although we do not actually xnow beforehand
exactly how m.ny modules A are required to repair the radars, the
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robabilities P(r) are known precisely from statistiéal data on the

%5 reliability of the radar coperation. Obviocusly, the resulting ex-
penses C(s) with a constant supply of modules equal to s is calcu- S
?i lated as the sum of the particular expenditures for each r multi- NS
- plied by the corresponding probabilities P(r):
::: s © . b
~ C(s)——.—C,:};_‘.P(r)(s——r)—{-Cz}P(r)(r-—-s}. (1)
70 reosi-l

The optimum supply s, of modules A for which the expected ex-

0
penses are minimum should satisfy the following ineqgualities [31]:

Plr s, = 1)< e < Pr <), (2)

For our example

C,+C, S0 to0c0 —

G ... 1000 0.952.

From Table 8.27? we f£ind that value 3f s which satisfies the con-
dition

Prs—DNK0I2 <P (rLs).
This value will be s = 2. Thus the expenses are minimum if the num-

ber of spare modules A i< two.

Let us determine what might be the ccst of a module with emer-~
f three modules is optimum. Let

i
gency shipment so that a supply
)

S

us substitute s, = 3 intc (2).

e,

e

7

el

0,97 < ":S_C'YT{-Z_CT <0,98.

The minimum cost C2 is
2 097, Gy = 15167
500 £ C, Wl = .
is

_3,.,93..,.. =098 C,=224500,

WK -i- Lz

It 3 v, Ay s
The maximam cost ©

)

Consequentliy, & suprly of three module. will be optimum if the

5

expeses for one module with emergency replacement are within limits
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APPENDIX 1

2

TABLES F"R DETERMINING THE RELATIVE EXPECTATION CF
DESTRCY!: TARGETS WITH RAIDOM TARGET DISTRIBUTION

Py

THE NUMBER OF

-

8838353@0&“’@0*&“»

™

v

0,1001 0,650

0,190
o2
0,344
0.410
0.46¢
0,522
0,570
0,613
0,651
0,794
0,878
0,958
0,99¢
0,998
1.0

0,098
0,143
0,185
0,226
0,265
0,302
0,337
0,370
0,401
0,537
0,642
0,785
0,923
0,954
0,994

(SN TUS—

08¢
0,000 ;

0,097
0,127
0,15
0.184
0,211
0,238
0,263
0,288
0,399
0,492
0,638
0,816
0,869
0,966

£ [ i 9 10 2 ] W |
0,0201 0,017 0,014 0,011} 0,010 0,006} 0,005 0,003 {0,002
0,039} 0,333} 0,028 0,022} 0,020 0,010{ 0,007 0,005 0,004
0,051 0,049{ 0,042 0,033§ 0,030 0,015§ 0,010} 0,007 0,006
0,078 0,085} 0,056 0,044} 0,039 0,020} 6,013} 0,010} 0,008
0,096 0,081 0,069 0,054) €, 0.025] 0,017 0,012} 0,010
0.114] 0,096} 0,083 0,0651 0,059 0,030 0,020} 0,015§0,012
0,1321 0,111} 0,096 0,075} 0,068 0,034§ 0,023 ¢,017{0,014
0,142} 0,1261 0,109 0,086 0,077 0,033} 0,026} 0,02040,016
0,166} 0,140} 0,121 0,09} 0,086 0,044} 0,030 0,022}0,018
0,183] 0,155 0,134 0,106} 0,006 0,049} 10,0831 0,32510,(20
0,261 0,223] 0,194 0,15¢] 0,140 0,072] 0,049§ 0,037}0,030
0,332} 0,285} 0,250 0,200} 0,182 0,095} 0,0651 0,049} 0,39
0,455{ 0,39} 0,350 0,285 0,260 0,140} 0,095 0.072]0,056
0,636} 0,568} 0,513 0,428} 0,395 0,222] 0,154] v.118{0,005
0,702} 0,635] 0,578 0,458} 0,433 0,260} 0,182} 0,1390,113
0,867} 0,814] 0,763 0,673} 0.634 0,394 0,284} 0.22119,181
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P =03
N2 ! ]
’ tl 213} 4l s 6| 7] 8 9]0
Ny
H
I 10,300,150 0,100] 0,075 0,060] 0,050 0,042{ 0,037 0,033} 0.93G| 0,020 0,015} 0.010} 5,005 0,006 0,008
2 10,510 0,278 0,190} 0,144 0,116 0,097 0,083} 0,074 | 0,066 | 0.059| 0.010{ 0,u30} 0,020§ 0,015}0,012) 0,06
3 10.657}0.386) 0,271] 0.209] 0,169 0,143 0,123} 0,105; 0,007 ] 0,087 0,059{ 0,611} 0,030] 0.022]0,018 0,0
4 |0.760] 0.478] 0.31s] 0.268] 0,219] 0,185] 0.161 | 0,142| 0.127] ©.115] 0,078 0.0z9, 0.039| 0,03010,024] 0,012
5 |o0.832]0.5%] 0.409 0.323] 0,266 0.226 0,197 0.174] 0.156] 0.141 | 0.096] 0,072 ! 0.049] 0.087}0,030] 0.015
6 10,882]0,68]0,469] 0,374} 0,310{ 0,264} 0,231] 0,205} 0.184] 0.167} 0,114} 087 0.055] 0,0440,035| 0,018
7 0918 0.679l 2] 0.,421] 0,352 0,302 0,264} 0,235] 0,211} 0.1921.0,132{ 0,190} 6,368 0,051 0,041 0,021
8 ]0,94210,7287 0,570} 0.464 0,390( 0,337{ 0.266 0,263| 0,238] 0,216 0,119{ 0,114} 0,477} 0,05810,047| 2,024
9 10,960 0,768 0,613| 0,504 0,427] 0,370 0,326} 0,291} 0,203 0.201 €165 ©.127] 0,056 0,065 0.053{ 0.027
10 ]0,972] 0.603} 0,651 0.541 0,461] 0,401 | 0.355] 0.318{ 0.288] 0.263 §,1831 0,140 0.095! ¢ 673/0.258] 0,030
15 }0,995] 0.913] 0.794] 0,689 0,605( 0,537| 0.482} 0,435| 0,30 6.367{ 0.2611 0,203] 0,130} 0,1070,085] 0.044
20 {0,999] 0,961} 0,878} 0,790} 0,710 0.642] 0,584 0.534‘0.49‘2 0.-156}().3‘:';I 0.261 0.182] 0,140)0,713] 0.038.
30 1,6 0,992} 0,958] 0.904} 0,844) 0,783} 0,731 0.58?3-.' £3é (’.599;0.55? 0,363} 0,260] 0.20210,165] 0.53%6
% {10 |0,99]0,995] 0.980] 0,955 0,923] 0,888/ 0,85%{ .3 j © ¥V »36{ £,530] 8,395 0,314]0,260 | 9,128
¢ |10 |10 0,998} 0,991]0,976] 0,954] 0,928] 0,809 0,863 ».632} 2.702] 0,506 6.4 I} 0,363]0,303) L.165
00 (10 110 11,0 [1.0 }0998]0,994}0,987{ 0,978} 0,966 0.9\.'_’}?.3:‘\7 0,779 0,634{ 0,529{0,452{ 0.260
1
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Py=05
N
1 2 3 4 ) 6 7 8 Y 10 15 20 3 40§ 50 ] 100
Ny : .
RN R : :
i {0,500} 0,250] 0,167 0,125 0,100} 0,083{ 0,071} 0,062} 0,055 8,850 0.233{ 0,025} 0.C17] 0,012{0.010} ¢.005
2 10,750} 0,437} 0,306} 02341 0,190 0,140] 0,138 0,121 0,108} 0.007; 0,066 0,02 0.¢32} 6,025/0.020{ 0.010
' 8 0,875 0,576} 0.421] 0.330] 0,271 0,221 | 0,199; 0,176 0,158] G,140] 5,097] 0,073) 0,043} 0,0370,030] 0,015
4 }0,938]0,684{ 0,518 0,414] 0,344} 0,201} 0,234 0.228] 0,204} 0,1851 0.127{ 0,096] 0,065| 0.04210,039] 0,020
5 10,959,760 0,508] 0,437} 0,409 0,333} 0,300} 0,2767 0,249} 0.2261 0,156 0,119] 0,081} 0,051 | 0.049 0,030
6 ]0,L0¢} 0,622] 0,665} 0.551} 0,4601 0,407} 0,360) 0,37 0,200 2 5] 0,383 01417 0,061 0.07310.059] 2,025
7 }0.992) 0,857} 0.721] 0.607} 0,522} 0,456] 0.4C5¢ 7. ¥3 1 L. &30} 4,302 0,211 €,1621 0, 111§ €.43410,068] 0,024
8 }0,96] 0,900} 0,767] 0,656] 0,570 0,508 | 0,347, 0,1} 0,357 6.3371 0,281 0,183] 0,151 5 060,077} 0.039
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1 1,0 ] 0,987} 0,935{ 0,863 0,704] 0,720 0,671} 0.60] 0,576 & 1371 4,300 0,046} 02731 ., *7 Lo 972
20 1,0 §0,907] 0,974} 0,931 0,378 1 0.8251 0.773] U, 7251 0,681} 6842 ] 6,32 b.097| 0,5 0120080 w005
30 1,0 } 1,0 }0,9961 0,582) 6,008 0,406] 0,592] N,856; 0.820] 9,785] 2,635 0,552] v 3051 0.311:6,760] 0,146
5 {10 11,0 L0 jO.96}0,95] 0,957} 0.975] €.939 09135 0025 G816 0718 o.z-'ﬁgn.xﬁio.s&z 9,222
€0 1.0 10 {10 |10 |0,98]0,995] 98¢ 0,579 (!.S;('-Sib.ﬁ;i 6,569 0,751 0,&55-5-5-.'3910_453 0,20
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t. 1 |90,700; 0,350] 0,223} 06,175] 0,140] 0.117} 0,100} 0,087] 0.073{ 0,0m] 0,047] 0,035} 0,023| 0,018]0,014] 0,507
2 | 0.3910] 0,517} 0,412} 0.319} 0,200] 0,220{ 0,190} 0,167} 0.150] 0,135} 0,091 0,659] 0.046} 0.0350.028} 0.0 ¢
3 {0,073} 0,725] 0,547} 0.438] 0.364] 0,311 0,271] 0,240} 0,216{ 0.196] 0,134] 0,101] 0,065} ©,052{n.041{ 0,071

= 4 }0.992]0,821] 0,655 0,537} 0,453} 0,501 0,323] 0.307] 0,277{ 0,252 0,174] €,133] 0,00} 0,068{0.055] 0,028

5 10,970,884 0,735) 0,618} 0,522 v,462] 0.410{ 0,367} 0.332] 0,324 0,213} 0,163} 0,111} 0,081 }0.068] 0,35
6 |0,999]90.925] 0,797} 0,635} 0,551 0.525) 0,469| 0,423 0.385] 0.353| v, 230} 0,192} 0,132| 0,101 {0.081| 9,01
7 | ne os52] 0.844) 0.7:0f v.652) 0,580} 0.522] 0.473] 0.433] v.398] 0,240} 0,221 0,132} 6,116]0.094] 0.013
8 1.0 Jooes}0.s81]0.785v.701]0.69] 0,570 0,519 0,471 0.410] 0,313] 0,248} 0,172] 6,132 {0,107} 0.055
9 | 1,0 |u979| 0,908 0.8951 0,743] 0.673] 0,613] 0,561] 0.517} 0,450} 0,35 ] 9,274 0,191] 0,147 0,119] 0,061
10 {10 }o0,987]0.929] 0,851} 0,779 0,711 ] 0,651 | 0,591 0.535{ 0.516] 0,350] 0,300} 0,219 0,1621 0,132} 0,068
15 11,0 |o,:8]0,081] 0,941 0,806] 0,844 0,794] 0,747] 0.703 | 0.665| 0,512} 0,414} 0,295] 0,233 0,191 | 0,100
20 {1,0 {1,060 ;0.995] 0,970] 0,951] 0,916} 0,878] 0,840} 0,302] 0.%65] 0.616] 0.509] 0.376] 0,207 0.245{ 0,131
30 j1o 1,0 1o |o0,997]0.983] 0.976{ 0.958] 0,936] 0.912] 0.857] 0,762 0.657] 0,508 0,411,345} 0.190
0 }10 {10 |10 |1.0 10999 0.998] 0,904 0,950} 0,983} 0.973] 0,981 0,831{ 0.693] 0.586}0.506} 0,206
6 110 [1,0 |1,0 |10 11,0 {0.999]0,998] 0,996} 0,992} 0,957 0,943} 0,852} 0,757} 0.653}0.571 | 0.344
1w {10 1,0 fr0-{10 1.0 {10 [1,0 |1,0 1,0 {0,950} 0,992]0.972{ 0905} 0,829{0.756] 0,505
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1 | 0.0} 0,450] 0,300] 0,225 0,150] 0,150| 0,129 0,112} 0,100 0.090| 0,060! 0,045 | 0.630] v.62}0.018 0,000 i
2 |0.9%)| 0,608 0510 0,390} 0,328 ¢.278| 0,201 | 0,212} 0,100} 0,172 0.116] 0.085] 0,050 0,044 {0.036 | 0,013 2
3 | 0.999]0,69] 0,657] 0,595 | 0.449] 0,356 0,338] 0,301 0.271| 0,246 0.160] 0,129] 0,067 0.066]0.053] 0.027 E
o |10 |o.908] 0,750 0,639 0,548 0.478| 0,423] 0,380] 0.344] 0,314] 0,219 0,108 0,115] 0,087 }0.070] 0,36 £
5 {10 {09:%0)]0.8%2] 0.720f 0,620] .56 v,497 0,449} 0,410{ 0,376] 0.26¢ | 0,205] 0.141] 0,168 {0,087 0,014
6 |10 |0972| 0852 0.23] 0,606 0,623] 0,562} 0,511 ] 0.469] 0.432] 0,310] 0,241} 0, 167] 0,128 0,108 0,020
7 {no |osss|o.as| 080205 0.6m] 0,618 0,566 0.522) 0.453] 0,252 0,276 0,192 0,147 0. 110} 0,081
8 |10 o902 000 0.570] 0.706] 0.728} 0,607 0,616} 0.570] ¢.530] 0,300] 0.308{ 0.216] 0.166/0.135 .00
o |1.0 |005] 0580|0809 0,532 0,763 0,710 0,652 0.613] 0,572 0,427| 0,339] 0,240] 0,135 ]0,151| 0,078
10 |10 |07 o6m2| 0.013] 0,563 0,503 0,747 0,697 0.651] 0,611 0.461] 0.369] 0.263] 0,204 0.16¢ ! 0,05
1% 1,6 }1,0 |0,95] 0,978} 0,940} v, 913} 0,673} 0,833 0,794} 0,757} 0,005 ] 0,499} 0,367] 0,260 0,235} 0,127
; 2 {10 {10 |0.99] 0.904] 0,981 0.561] 0,936] 0,c8] 0,875 v.845] 0.710| 0.602| 0,456 0.306{0,305 0.165
30 {10 |10 [10 |10 {osu]o.c02| o8] 0,072] 0.955 0,501 0,634 0.740] v, 50} 0,465]0.42¢| 0.3
80 {10 |10 |no |10 [1.0 |o.0m] 098] 0007|0205} 0.091] 0.955] 0.9%] 0,782 0,670 0.507 | 0.1
. 6 |10 {10 |10 |10 |10 {10 |09 0.90] 0.905] u.907] 0,975 0,957 0,830} 0.745]0.6041 0410
w {10 |10 |10 |10 10 |10 |10 |10 |10 |10 |ooms| o] 0,02] 0,697 |0.887) v.05
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APPERDIX 2

e
e

TABLES FOR DETERMINING THE RELATIVE EXPECTATION OF THE NUMBER OF
DESTROYED TARGETS WITH UNIFORM TARGET DISTRIBUTION AND SUBSEQUENT
ANALYSIS OF THE RESULT OF EACH ATTACK, AND REAIMING

[}
aliataliela

o

-r
Py= 0,1 - 3 "
Ny ;T'; E‘:g
1 2 3 4 5 6 7 8 9 10 15 1 20 ] 301} 4] =l ;:g:
Ny :T -i
1 }o.100 . i
2 |e.,19 /0,100
3 10.211{0,149] 0,100
4 {034]0,108{0.133] 0,100
5 |6.410]0,245] 0,167 | 0,125 ] 0,100 .
6 |[0.469 0,91 }0.200]}0.50 | 0,12 | 0,100
7 lo.s2]0,336)] 023210175 0,148 ] 0.117 | 0,100
s |o0.,570] 0,378 | 0.265 | 0,200 | 0,160 | 0,133 ] 0,114 ] 0,100
9 |o.613]0.410]0.20710225]0,180 0,50 | 0,129 | 0,112 | 6,100
o 10 10,651 | 0,459 | 0.328 | 0,250 | 9.200 | 0,167 | 0.143 | 0,125 | 0,111 | 0,100
- 15 |0.701]0.623]0.476 10,371 ] 0,209} 0.250 | 0,214 | 0,357 | 5,167 | 0,150 | 0,900
2 |0.878 0,743 1 0,603 | 0,486 | 0,597 | 0,333 { 0,256 { 0,250 | 0,222 { 0.200 | 0,133 | 0,100
20 |n958}o0.887 0,785 ] 0,57 | 0.578 | 0.404 | 0,427 | 0.375 | 0.333 | 0.300 | 0.200 | 0.150{ 0.100
N 5 | 0.995] 0,981 ] 0,950 ] 0,900 | 0,834 | 0,759 | 0,683 } 0.613 | 0.551 | 0,500 | 0.333 | 0.250{ 0,167] 0.100
6 |o0.98]0992]0.977]0,98]0,005! 0,880,783 06,716 | 0.652 | 0,534 | 0,400 | 0.300] 0.200} 0,151 = 100
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. ) Pi=03
T
tt1 ) 2ba ] a4l s e 2| 8] 9fw]|] 15| o) ] w
M N\
RS B X"
2 10,510} 0,300
3 10,657} 0.436 | 0,300
N 4 0,760 | 0,551 | 0,307 | 0,300
5 |0,832]0,652] 0,489 | 0,374 | 0,300
6 |o.882}0,701 0,673 ] 0,447 ] 0,360 | 0.300
. 7 10,918 0,704 { 0,647 | 0,517 | 0,419 | 0,350 | 0,300
& lo92]0,81¢}0,712] 0,582 | 0,477 | 0,400 | 0,343 | 0,300
9 0,900 | 0,852 10,767 | 0,643 | u.534 | 6,419 | 0,386 | 0,337 | 0,300
10 0,972 0,911 10,813 0,698 0,588 | 0,498 | 0,428 | 0,375 | 0,333 | 0,300 -
15 0,95 0980 | 0,944 | 0,834 | 0,804 | 0,717 | 0,633 { 0,560 | 0,500 | 0,450 | 0,300
v {0,999 0,905 { 0,985 | 0,962 | 0,922 | 0,866 | 0,798 { 0,77 | 0,639 | 0,508 | 0,400 | 0,300
30 |1,0 |0,99]0.99 (0,970,901 0,980|0.960] 0.0 0,80 | 0,842 | 0,59 | 0,400} 0,300
5 1.0 J10 J1o J1,0 J099}0,00]0.99]0.90 | 0,007 0903} 0914075 0,500] 0.2
60 J10 J1.0 |10 {10 |10 }1.0 }1.0 }o0.99)0,90]0909] 0,07 |0.86] 0,600] 0,450

Py=03

0,500
0,25 | 0.500
0,875 | 0.687 | 0,500
0.207 | 0,812 | 0.646 | 0,500
0,950 | 0,591 | 0.760 | 0,61, | 0,500
0.954 | 0.937 | 0,844 | 0,719 | 0,557 | 0,500
0,992 | 0,965 | 0.901 | 0,801 | 0,686 | 0.582 | 0,500
0996 | 0,950 | 0,09 | 0,863 | 0.763 | 0,680 ! 0,571 | 0.500 | - .
0,98 | 0,900 | 0.963 [ 0.909 | 2,827 | 0,731 { 0,610 | 0.562 | 0.500

/7
aaqamaun—/r‘z

10 |09 | 0,094 0978 | 0,940 0.877 | 0.794 | 0,702 | 0,624 | 0,855 | 0,500

15 [1.0 [o0.99 0.8 ]0.905]0.954]0.961 | 0,09 [ 0,870 0.808 | 0.732 | 0.500

20 {10 |10 |0.990.99]0.599]0.995] 0,080,973 0.9 |0.92]0.667 | 0.500

% (10 {10 |10 0,99 ]0.99 {090 0000,909]0.99|0.97 0. |07s{0.50

0 1.0 {10 |10 Juo 1o |10 Joo lwo |10 |10 |10 |o.04) 0.5 0.500

@ {10 |10 1o Jro Juo |10 bio J1o |10 J1o |10 1o |o.om o7
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B i
] 0,810 | 0,700 XIS
N 0

N 0.973 | 0,879 | 0,700 %)

i - ¥ X3

2 0,992 | 0,954 | 0,853 | 0,700 . y

& [

0,%8 | 0,933 | 0,935 § 0,833 { 0,700
0,999 | 0,91 { 0,973 | 0,916 { 0,816 0,700
1.0 | o,es 10,95 {0,960 { 0,898 | 0,803 | 0.700 ~
1,0 (1.6 ]0.99%6|0,982|0,047 | 0,881 | 0,792 | 0,700
1,0 |10 10,998 0,920,974 | 0,933 ] 0,866 | 0.782 | 0,700
1.0 |10 ]0.999]0.997]0.98810,95}0.919 0,853 }0,775 | 0,700 :
1,0 {10 J10 §10 }i10 {[0.999]0,97]0,901 09780952} 0,700
10 |10 J10 {10 10 (1,0 j1,0 |10 }0,99]098]0907;0700
1.0 |10 J1o Jro J1o Jio f1o fto }LO |10 |0.999|0SN]0700
1.0 J1,0 J1o fro f10 10 1o [10 J10 {10 J10 {10 |0997{0.700
10 j1.0 11,06 Jro j10 J1O Lo -f10 jLO Jle J10 (1,0 {LO 0,951} 0.79
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1 2 3 4 ] 6 7
Ny

1 o900
2 }o0,9%0 0900 ,
3 }0,99 0,983 0,90 .
4 |10 [o0,98 0,981 |090
5 110 |10 jo,097])0.977] 0,90
6 {10 |10 10 |0,96]0974]0,900
7 110 J10 1,0 {0,909 0,94 0,97 ]0.900
8 |10 J10 [1,0 |1,0 ]0.,991]0,99]0.97
9 110 J10 Ji1o0 |0 |10 {0,980,
10 j1,0 j10 j1e J10 1.0 |10 |oO.9%8
1 1.0 J10 110 |10 |10 |10 (1,0
20 |toe l1o fe J10 10 [0 {10
0 1.0 {10 |10 {10 jLOo |10 {10
& (10 {10 {10 |10 10 10 {10
©0 1o i.o 1.0 11,0 {10 |10 L0
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