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ANNOTAT ION

This book deals with methods for evaluating th-e surface
guidance and hominig of interceptors and rock~ets, calculat~ion of
interception lines and approac-h trajectories of an interceptor
and a target, a~nd determination of the zones of 'possible attacks
and launches, the combat efficiency, and the combat readiness of ~-
a single interceptor as ýwell' as a group of -plantes. The author
uses modern math'ematlc-al metho~ds for. solving ~prqbl~ems of,the
combat use of fighbter-iiceptor:. nAroreWni,

The book i nedd-o -eilst . i Fr~ n-s
AAaviation, for students at aviat-i-on schools, -tlnd a1s~o for
worersin the aviation industry.
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a. _____

INTRODUCTION :.,_

The combat use of fighter-interceptors involves various branches
"of science and engineering. For successful use of armament, pilots -,

study the design of vehicles and armament, flight dynamics, the
theory of combat efficiency, air tactics, and other disciplines.
As a survey of the open foreign literature (some of which is given
at the end of the book) shows, general principles of operation of
aircraft and rockets have been described in greatest detail up to
the present time. Much less study has been devoted to quantitative

methods of evaluating the combat use of aviation; these are given
individually in various sources.

The dynamics of fighter maneuvering in aerial combat have been

examined thoroughly in the familiar book by V. A. Bulinskiy [1].
However, in this book he does not examine the next stage in the inter- •. Z'•i
ception of an aerial target - guiding the rccket to the target - or
questions of the effectiveness of interception. General assumptions
and methods for calculatIng the combat effectiveness of weapons are

des3ribed in [3, 4, 8], while questions of the combat effectiveness
of airborne vehicles are described in [3, 14, 15]. In the literature

[9-21) there are described principles of control, rocket flight kine-
matics and dynamics, and methods of guiding vehicles to aerial tar-
gets. Many questions of the combat use of fighter-interceptors are
presented in the form of articles in the open Soviet [22-24] and ..

particularly the foreign [25-28] press, although most of this mater-
ial is of a descriptive nature and quantitative relationshins are
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reduc~ed to sim.ple calculation formulas. Thus, although the combatf. .

use 'of righter-interceptors has beeiA the object of study in many
sources, nonetheless at the present time there are no books rrom

which one could get a suf'ficiently complete picture of' the use of'

analytical methods when studying the combat use or righter-inter-SI

ceptors.

This book will attempt to aý- least partially fill this gap.

In this book we have generalized, to some extent, the mathe-

matical methods and pi-ocedures so th~ t they can be used tc solve

problems of the combat use and organization of' combat operations, ror
quantitative dete-Aý.ination of' combat capabilities and the combat

effectiveness of' ,-;,,hter-4L-iutý.ceptors under various conditions.

The concept o'L ;3m>bz-- 'lities ii~cludes all properti-es

which define the abL,-,i-ty of IL ~nterceptor to fulfill various com-

*bat missions. Depending on ,h conditions of combat use, the
fighter-interceptor can have various missions:W

*- to intercept a target on a given line or in a given belt;

- to intercept a target from a state of' hairf'ield readiness"

or f'lying alert patrols in a zone remote from the airfield at a

given distance;

-to destroy the maximum possible number or targets;

-to destroy the leading target with maximum probability;

-to enter into combat with the target within the m1.ninAuff

possible length of' time; etc.

If' there are definite combat operations, the follc~tiing types of

questions always arise: in what area of' space?, how rapidly in

time, and with what quality can these missions be f'ulf'illed?

The spatial capabilities in carrying out combat missions are

quantitatiAvely characterized by the areas of combat employment

FTD-MT-214-1158-7.2 iv W
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(interception line, altitudes and speeds of the targets to be inter-

cepted, maneuvering altitudes and speeds of the interceptor in aerial

combat), by areas of possible attacks, and by areas of possible

"rocket firings. The time capabilities in carrying out combat opera-
tions are quantitatively characterized by the combat-readiness fac-
tors: the time for going from one state of readiness to another,
the time for takeoff on comitiand from the command point, and the time
for reaching the given line. The quality and degree or level with
which the inter-! cor carries out the functions or missions for which
it is intended are characterized by its combat effectiveness. For a
quantitative evaluation of the effectiveness in carrying out oombat
operations we use various criteria, the numerical combat-effective- ".

ness factors.

The selection and basis for a specific combat-effectivess factor

is a logic problem, and is determined entirely by the combat mission
at hand or by the aim of the conducted investigation.

A clear classification of combat-effectivness factors was first 1 -
given by Academician A. N. Kolmogorov, who examined two limiting 4-

cases of combat operations [37]. The first case was characterized
by the fact that it was necessary to solve a quite definite problem '---

or attain a quite definite result (e.g., hit a target, destroy all.

targets in a raid). In this case the result can either be achieved
or not achieved. Success is evaluated by a "yes-no" scheme. There-
fore, the t.;fectiveness of a combat operation against the enemy in
this case is evaluated by the probability of carrying out the combat -- ,"
operation: the probability of hitting the target, the probability
of destroying all targets in the raid. The second case is character-

0ized by the fact that quantitatively a specific problem is not posed,:_.

but all operations are directed toward inflicting maximum possible
damage on the enemy according to the principle "the more the better"
(e.g., destroy the maximum possible number of targets, maximum possi- .
bie damage prevention). In this case the combat effectiveness against
the enemy is evaluated by the mathematical expectation of damage in- -'.-"

flicted on the enemy: the mathematical expectation of the number of -.

FTD-MT-241158-72 v
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targets destroyed, the mathematical expectation of preventing damage. 4'

For a fighter-interceptor we can give the following typical .rjý.

examples of combat conditions, the combat mission arising from them, onN-
• ".t3Y

and their corresponding combat-effectiveness factors:

Combat conditions Combat pro. .em Effectiveness factor

Stngle aerial targe' Shoot down target . Probability of downing
penetrates AA system target • -

Group of aerial tar- Shoot down maximum Mathematical expectation
gets penetrates AA number of targets of the number of downed
system targets

Shoot down all tar- Probability of downing
get~s all targets

Shoot down at least a Probability of downing
given number of tar- at least a given num- %
gets ber of targets

A raid in the form or Mathematical expeota- Mathematical expectation
a random number of tion of the number of of the number of downed
aerial targets pene- dowrned targets on the targets on the givenr
trates the AA line given line (area) line (area) %
(area) defended by an Probability that all n.V: .
n-channel system channels are occupied

and the next target pene-
trates the line (area)
unintercepted

The effectiveness of interceptor group operations is influenced

not only by the effectiveness and tactical-technical characteristics

of single interceptors but also by the quality of the organization

and control of combat operations anOd also tactical ways and means

for solving the posed problems. It is also possible to indirectly

increase the effectiveness of ccmbat operations by decreasing the
expenditures of forces and equipment for carrying out combat cpera- -

tions. Thus it becomes necessary to investigate ways of optimizing

compbat operations, seeking methods for assuring a given level of

effectiveness at minimu;m cost.

When the commander selects a solution, it is usually a matter

of rationru l utilization of the equipment available to him.

Identical combat problems can be solved in terms of effectiveness,

the sphe--e of combat utilization, and time, in identical ways by using

": ~~~~~vi , . • .:
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various inte-ceptors, differing in their tactical-technical charac-

teristics and their economic factors. Therefore it becomes possible

to introduce, for estimating the combat operations of interceptors,

the criterion of specific effectiveness, which is equal to the ratio

of the total output (the combat effectiveness when carrying out the .

stated in-ssion) to the total expenditures to accomplish it. Such a

complex erfectiveness criterion characterizes the maximum possible

damage inflicted on an enemy with consideration of restrictive con- a

ditions, e.g., minimum forces and equipment used to complete the * 4-b•

mission. Therefore, an evaluation of combat effectiveness should

always be associated with an estimate of the cost or expenditure of

forces and equipment to complete a combat mission.

The basis of the combat use of fighter-interceptors, as we know, k,

is to intercept an aerial target. By interception of an aerial target

we mean the method of operation of a fighter-interceptor to destroy

the enemy's means of an air strike, consisting of establishing contact

with the target and subsequently destroying it. The interception

process can arbitrarily be divided into two basic steps:
IT.°

1) surface guidance, i.e., guiding an interceptor to an aerial

target using ground equipment situated so as to assure detection and

attack of the target;

2) target attack (aerial combat), consisting of independent

approach of the interceptor to the target after detection or lock-on

by airborne radar, assuming a position favorable for rocket firing,

firing the rockets, assuring control of the rockets enroute to the '

target, triggering of the proximity fuse, and withdrawal of the

interceptor from the attack.

The interceptor's success in destroying the enemy's air attack

equipment is characterized by the combat effectiveness of inter- i.

ception, which is determined primarily by the tactical-technical

characteristics of the aircraft, the airborne radar, the air-air

rockets, and the accuracy of the surface guidance system.

F '
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A basic quantitative criterion of the combat effectiveness of

interception of a single interceptor in operation against a single

aerial target is the probability of interception, which is determined ,

by the probability of successful surface guidance, the probability

that a rocket will destroy a target, and the reliability of the inter- NX

ceptor.

With group combat operations of fighter-interceptors against .

group targets, the criteria for combat effectiveness are the mathe-
matical expectation of the number of downed targets, the probabi"-ty
of downing all targets in a raid, and the probability of downing at
least a given number of targets. These factors depend on the balance •... "
of forces (the number of interceptors and targets), the effectiveness

of a single operation, the quality of combat control, the organization

and guaranteeing of combat operations, the serviceability of the
aircraft fleet, combat readiness, etc. i :•-.A

On the basis of what has been said, problems in the study of

the combat use of fighter-interceptors can be arbitrarily divided
into the following areas: surface guidance, interception lines,

interceptor homing, target attack, air-air rocket homing, the combat

effectiveness of a single interceptor, the combat effectiveness of
interceptor group combat operations, combat readiness, and inter-

ceptor reliability. The book is divided into chapters based on this
breakdown. To make the book more useful for direct practical appli-
cation, it is presented in the form of the posing of individual

problems and discussion of their solutions.

The solutions are presented, as a rule, first in general form

and then numerical data are substituted. This makes it possible to
use the derived formulas directly in tactical and operational cal- .
culations. The solution of complex problems involving unwieldy cal- L-
ulations is given in the form of graphs and nomograms, many of which

...e valid for the entire range of examined characteristics. Such
solutions include:

- dependences between interceptor and target characteristics,

FTD-MT-24-1158-72 viii
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which determine the areas of possible target attacks;

-- dependences among interceptor, target, and rocket character- fr?[
istics, serving to construct the zones of possible firings;

-- dependences which determine the range (areas) of combat use

of the interceptor; - .

"* - a nomogram connecting the basic tactical-technical character-

istics of the interceptor;

- dependences of the probability of surface guidance on random

R4 and permissible guidance errors, and dependences of guidance errors
* on the tactical-technical characteristics of the aircraft, the

armament system, and the accuracy of the radar field of surface

guidance;

- dependences of the mathematical expectation of the number of .
downed targets on the quantity of targets, the designated duty of

the interceptors, the probability of downing a single target, the

probability of an interceptor's being destroyed, the quality of $'rV" -.
target distribution;

- dependences of the throughput of a multichannel surface -- 1

guidance system on the number of guidance channels, the guidance
time, the intensity of the target raid, the width of the target

intercept area;

- dependences of the coeffizient of combat readiness of a group

of interceptors on the reliability, the recoverability of aviation
equipment, and the number of service personnel.

A brief description of the problems and results of their

solutions will be found at the beginning of each chapter.

I would like to thank at this time V. G. Nevzorova, Candidate

of Technical Sciences, who critiqued the manuscript for thts book.

I realize that my attempt to present basic analytical methods

for studying the combat use of fighter-interceptors in a book of

limited size has its drawbacks. I would therefore appreciate all

comments.
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CHAPTER 1
SURFACE GUIDANCE. INTERCEPTION LINE. TARGET APPROACH•-r•r

: ~~The bases for solving problems on the surface guidance of a • g

fighter-interceptor to an aerial target are the analytical relation-.-, ••_.

ships between the parameters of motion of the interceptor and the •i,.,i

target; these determine the guidance method selected. Therefore, }]".,•';

at the outset let us examine the familiar methods of surface guidance•''--,:._,,:

and give the basic kinematic dependences between the parameters of _

motion of the interceptor and the target during the guidanoe process,,- ',:-,o

(Problem 1.1)."•""•*

We then have a group of problems (Problems 1.2-1.8) involving { T.:

the calculation of the removal of the interception lines. Solution ••-,T =

of these problems allows us to determine how the distance of the •.:;.:

interception lines changes: •;,•

-ith a change in speeds of the interceptor and the target, ••:•-:--
w 

O

the recognition range, and the passive time; :..,;--•

-Z depending on the direction of attack of the target; -- ,-.:

-depending on the surface guidance method used; r .. ,

-with a change in target flight relative to the airfield from

{.: ~which the interceptor takes off; -.. ,;""".

•. -~~~depending on the fuel supply and consumption, the aerodynamic ,.,.b .

SFTD-MT-24-1158-72 -•,



flight characteristics, and the flight regimes.

Another group of problems (Problems 1.9-1.23) is devoted to the

process of interceptor homing, i.e., interceptor approach to an 177

serial target from the moment of detection (or lock-on) by the air-

borne radar to the moment of rocket firing. Solution of these

problems allows us to determine:

the interceptor maneuvering required to arrive at the rocket-

firing point;

-the characteristics of the interceptor and airborne radar L -d'...

required to assure realization of the required target-approach tra- V -

jectories;

- satisfaction of the necessary rocket-firing conaitionz;

- the zones of possible attacks as a function of the conditions

of combat use;

-the interceptor target-approach trajectories; -

- the trajectories of the interceptor as it withdraws f:-m the

attack.

The areas of possible attacks form the basis for analyzing the

possibility of establishing interceptcr contact with the target.

When estimating the comtbat capabilities of interceptors and studying ,- -

rational methods for combat use it is important to be able to deter-
mine the proposed position of the int, _etov relative to the target

when transferring from surface-guidance to homing corn.ttions. To

assure successful target interception, the interceptor at the moment

of transfer from surface guidance to homing sho-uld be .

limits of the zone of possible attacas, whose dimensizrns a.e tetor-

lmined Dy the tactical-technical characteristics of the aircraft, the .-.-.--.

airborne radar, the weapons syZteiil, a.i the target flight character- ..-

istics. The zone of possible attacks is a region in space from which

homing of the -interceptor with subsequent successful rocket firing is

!-, 3ssible. Analysis of the zones of possible attacks and the zones of

possible firings allows us to present optimum methods for attacking

an aerial taoget.

FTD-4IT-24-1158-72 2-
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The possibility of interceptor flight along a homing trajectory

is determined by the relationship between the angular velocity re-
quired for this flight w n.ncp and that available w n.pac. By

*npacn we mean the available angular velocity of a 3600 steady i.. JA

turn of the interceptor. If > flight along an

attack curve is possible. Otherwise, the interceptor goes into a

flight trajectory with constant angular velocity w which
causes guidance errors. Therefore, to give the initial attack con-

ditions which assure error-free interceptor homing during the entire

attack it becomes necessary to determine those zones around the

target in which an interceptor will not be able to perform its re-

quired flight. These zones are called zones with w n.

i.e., zones for which the available angular velocity of the intercep- *

tor is not greater than that required for the given homing method. ""-.,.

The dimensions of these zones are determined by the combat use con-

ditions (speeds and relative bearings of the interceptor and the

target) and depend on the interceptor homing method. In the problems

of this chapter we examine two interceptor homing methods: "pur-

suit" and "pursuit with a lead."

PROBLEM 1.1. To derive the basic kinematic equations which ,_

characterize the familiar guidance methods: "constant-bearing
approach," "interception," "direct approach," "pursuit," "line-of-

sight," and "maneuvering.",-.-

Solution. To obtain the desired equations let us examine the
"" kinematics of motion o0- the target and the interceptor.

1. The method of "constant-bearing approach" (Fig. 1.1). With

guidance by this method the interceptor flies in a straight line to
the target-intercept point, and the angular velocity of the sight

line is zero: .- "

As can be seen from Fig. 1.1, the method is described by the

equation

FTD-MT-24-1158-72 3

.a,_



IImpact point sin Vu sin' (2)

S__ where Vnand V are the

4-1. speeds and (pand (pare

x the relative bearings of

Fig.1.1.the interceptor and the
Fig.1.1.target.

The in~terceptor flight time to the point of impact with the

target.

D (7)
r.4

2.The "intercept" method (Fig. 1.2). This method differs from

the "constantL.-bearing approach" method in that the finite range to

the target Al is given as a function of the characteristics of t-1he

interceptor's armament system. Analytically, the method is de-
scribed by the following equations:

3. The method of "direct approach" (Fig. 1.3). in this method W'__
the intercepter flies directly to the lead point of impact of the ~

qf1W

Firin
poin

V414

Fi -. 1-
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rocket with the target. The analytical dependences of the method

are obvious from Fig. 1.-3:

L
sinl~ rt,~ (6)

The interceptor flight time *; ~~

D-ALcosq,(7
3VUCos To+ V, Cos~'

where

where t is the flight time of the rocket to its impact with the ~* ..-

P
target; AL is the distance "interceptor-target" at the moment the

rocket impacts with the target; V P is the absolute velocity of the

rocket

V -P sthe natural velocity of the rocket, avrgdover the (1m)

4.* The "pursuit" method (Fig. 1.4). This method is character-.

ized by the fact that the interceptor's velocity vector at each

moment of tm isdirected toward the target. As can be seeii from

Fig. 1 4., the interceptor heading

Q~arctg.!.L(11
Y. Yn

Thus, to determine the inter-

4 ceptor heading we need not know
the motion parameters of the target;

we need only know its coordinates.

This Is an advantage of the method.

IA disadvantage ofthe method is
Xft4 j~ that target attack is possible only

Fig. 1.4. from the aft hemisphere which, with ::~L

0~~~ ~ ~ ~ ~ tI 1W 1 W W W W _

5 %



y ~~a low approach velocity, leads to t.,

a considerable loss in the inter-

ception line.

od (Fig. 1.5). This method Is

characterized by the fact that

in the guidance process the inter-

ceptor, target, and ground guid-

ance station are on one line.
The interceptor azimuth is equalIAl

Fig.1.5.to that of the target:

(12)

To satisfy this condition it is necessary that the angular
velocities of the interceptor and target be equal to each other:

Since

V, sin t lh.

VU sin Ta

equating the right sides of Eqs. (14i) and (15) we obtain the fol-
lowing expression for ieterminine the rc-azive bearing of the inter-
cept-or q

Paving determined T, let us find the 'Interceptor heading:

Q ) rsi ±-I sin*pJ (7
V.** D.

All of the above methods of surface guidance bring the inter-

captor into an arbitrary position relative to the target.

61



•° The limited capabilities of the interceptor's armament system L.'oif}-•":•..;--•.,,

li ~make it necessary to lead the interceptor, at the end of surface ";-"':->

I guidance, into a quite specific zone from which the airborne radar "<:::;¢;'

detects and locks on to the target and the rocket is fired. The *.-

i! ~"maneuvering" method of surface guidance satisfies this requirement.t-••:-.

_A -.11,

i'. ~~6. The "maneuvering" method (Fig. 1.6). The target and the .';-;

,• ~interceptor are in one horizontal plane, their velocities are con- • O

:,-'; , stant and equal to V• and V~, respectively. Points 0 and A in Fig. :~ll''

N1 44 IrA

4•" •J ..-.-- ¢ 1.6 are the positions of the interce.po-,srmn yt

make itnecessarytoead theitarget and interceptor at the
guidae imoment of time at which the r

Ginterceptor begins to be homed .-' ..- '
detctsan(o+Clk) onto the target. Point C isTh

the proposed intercept point.e

interceptor are in onehorizoLet us introduce the fol-

s ,aneqatoVand lowing designations: D0 is Fig.
4'.-. -:- .,

Rn l~~the "interceptor-target" range . :---.-,

1 at the start of surface guid- K.
t ance; t is the given intercept

mFig. 1.6. angle; Rf is the turn radius
of the interceptor for exiting to be-,omed

to the line of motion of the target at the given angle 0; A2 C = is.'- ".

is the segment of given length after the turn, intended for correc-
7;-f -- T- "

i[1 ~ceptor trajectory prior~ to turning; q'f is the relative bearing of --.. ,•
the interceptor at the start of surface guidance; is the relative ._
bearing of the target at the start of surface guidance; D is the

04

path covered by the target from the start of surface guidance to the

intercept point; t is the balanced guidance time..gi..,ntecep

F Since we assume that intercept point C exists, the figure inradi

S~Fig. 1.6 is a closed polygon, which can be represented in the form
Sof a vector polygon. Projecting the vector polygon OAArOIA2 CO onto .--

t axis x and then o'to line OC we obtain two basic equations for the given .l0A

"" '~~~.". 'i:% -.'-:=

"" •'~ %.4-- - .-.-.
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maneuvering" guidance method:

VYJCWE% L cos p+ sR, hn (st + ) - sin P.+ 1COS(?+ 0) Do; (18)

VJ.'=Docoso?,-Lcos('pk +?.) +IcosO +sR.fsin (,M.+rp.) -Sin Oj. (19)

The path traversed by the interceptor in the balanced guidance

time can be expressed as follows:

V~t-L +s(Q-O)R3 +I, (20)

where

S=Sg(-)=sg 10- -JO (21) .

characterizes the sign of the expression Q - (signature): when .

2 ~Q > 8, in place of s in Formulas (18) and (19) we place the

sign; when Q < 0, we place the i'"sign.

Let us substitute into (18) and (19) the express-ion, obtained

from (20), for the phase of the interceptor trajectory before the

turn:

L- Vt-s(Q-O)R,-I4 (22)

the velocity ratio
VP (23) L.JOP

andthepat o th tagetupto the intercejc point. We then get

D.C(Y+a (241)

-(cC~fu+cos'~) . (25)

Equations (214) and (25) connect eight variables

six of whbich can be taken as independent variables; then System (214) :

N and (25) can be solved unambiguously for the two remaining unknowns.
For example, if we know the mutual position and velocities of the

8
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interceptor and target (Do, q, p) and we are given the radius of

turn of the interceptor Rn, the required relative bearing of the
L interceptor 9., and the interception line D , System (2 4) and (25)

allows us to determine the intercept angle 6 and the length of the V'

last phase of the interceptor trajectory I for which target inter-
"ception is possible.

S~If we equate the right sides of (2-4) and (25), the relative • @

-Z obearing of the interceptor and, consequently, the interceptor heading

can be determined from the known or given values D1 , DO, c, Rn, ,

e, and p.

PROBLEM 1.2. To determine the withdrawal of the line of inter-

ception of an aerial target moving on a straight line in the direc-

tion of the airfield at which the interceptors are based with

velocity V = 900 km/h, if the warning range D = 1000 kim, the inter-

ceptor velocity V = 1000 km/h, and it takes off in the so-called

passive time tn = 2 min after the first target fix. The target

Ettacks strictly from the forward hemisphere. How does withdrawal

of the target-intercept line change if, under these same conditions,

the velocities of the interceptor and the target increase bý a fac-

tor of 2 and if t doubles? "
nacc

Solution. The condition of time balance to the moment the

interceptor meets the target gives us the following relationship:

(V.1)+)+V.

where t is the interceptor flight time until it meets the target.

Withdrawal of the intercept line from the interceptor takeoff

field is equal to ,

Dp=n= Vnt..(2)

Let us find t from (1) and insert it into (2). Then

9
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tA -VVal

km r (3)
.D.. w-",,510 kmn. X* ;: -•<•

,t---With a d.'ubling of the velocities, D s 495 km. If tp.n- naICC 0
doubles, D 463 km.

Thus, with constant warning range and constant passive time,

withdrawal of the target intercept line- is determined basically not P
by the absolute values of the interceptor and target velocities but #4

by their ratio.

PROBLEM 1.3. For the conditions of Problem 1.2, datermine how
close the target intercept line approaches the takeoff field if the
interceptor attacks the target from the aft hemisphere, making a
1800 turn with radius RH 20 km. Compare two cases: :7-

1) the interceptor, after pulling out of the turn, is precisely
at the firing range D. = 20 km;

2) after the turn the range to the target is 30 km. ' '

Solution. Withdrawal of the intercept line is defined by the
formula

D r. - ( (" .¶

wnere t is the interceptor flight time to the start of the turn;
ihis is found from the relationship obtained from the titqe balance:

".(2o + Do V1% (),, + t + 1,W) + V.t, (2)

where t 1 8 00 is the time for the interceptor to turn 180'. T"hus,

Do + Da- V11 (tnec + t,W) .-.-. .:
Dp.* uDa; (3) P .

*0.. ' -_ - --. .
R t20

t,, =-~-=3.i6 min; (4) -E -
Vc 1..7

km.-- -47 k

1-.--0' .
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For the second case, the line moves toward the takeoff field by .

the distance covered by the target as the interceptor pursues it

up to the rocket-firing range. Since the approach speed is 1.67

km/min, the pursuit time is 6 min and the target covers a distance

of 90 km. Consequently, D 362 km. .
p.rl

PROBLEM 1.4. A target flying in a straight line can be inter--

cepted by an interceptor by two methods: constant-bearing approach

and pursuit. We must determine the difference in withdrawal of the

intercept lines if the mutual positions of the interceptor and the

target at the moment of the start of approach are characterized by

the following parameters: "interceptor-target" range DO0  100 km,

interceptor speed V = 1000 km/h, target speed V 900 km/h, target - '

relative bearing 9L= 900. The relative bearing of the interceptor "-

during constant-bearing approach (p1 = 20', while with pursuit n = 0".

Solution. The difference in withdrawal of the intercept lines

can be estimated from the difference in distances traversed by the

"target when it is intercepted by the two methods given above.

For the constant-bearing-approach method (Fig. 1.1), according

to the law of sines we have

sin iG DR,

where D is the distance covered by the target from the start of

approach to the moment of encounter with the interceptor; 0 is the
aspect angle.

Thus, when the target is intercepted by the constant-bearing • 0

method we have -

Do sinF 100 sin 200 _.. - .,."
Dlo 70 --- 36,4 km. (2)

When the pursuit method is used the target covers the distance

Sthe.

%%... . .

. . . . . . . . . . . . . . . . . . . . . . . . . . ..,

" • -- ',•" • •÷ v "qP- - •" 1• M" • PV
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where t is the interceptor flight time along the pursuit curve,
L nor

V Consequently,

D4 Do 100 (-1 , -1465 !n
eOV _ 0(11 coP 0

Solution of' the analyzed problem shows graphically how sharply the
withdrawal of' the intercept line decreases with the "pursuit" guid-

ance method.L

PROBLEM 1.5. An interceptor is directed toward a target flying

at a constant heading over an a~rf'ield with x =250 km. The inter-

The interceptor is guided by the direct-intercept method (with con-

stand heading). The armament system allows an attack from the fo~r-

ward hemisphere at a targ et relative bearing V, ýi40 Detern--ane9 LI-
* whether the target can be intercepted on the given line if the inter-

ceptor takes off' at the first fix of' the target by the surface radar

-* whose detection range D 500 km. The target and interceptor :

* speeds are constant; V,, 1300 kmr/h, V1 = 1500 km/h. The inter-
ceptor guidance time (the tIme from takeoff' to the intercept line)

t = 15 min. Determine the maximum possible flight x f'vr which

target interception is possible (Fiz. 1-7).

Solution. Accordino to ~
V4 the stipulations ,.f Lhe probioni

the aspect angie F liould satk-s-

fy the relationship

O( Dp*n '
0 <arcos 1

where D is the distance of
p.n

the intercept line from the
* Fig. 1.7. airfield line.

12
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Since

then
O< rccos (3)-' t., ,( )(3 '''•••

When the conditions of the problem are adhered to, the aspect angle

e, with x = 250 km, is, according to Formula (3), 77.20.

Thus, the conditions for target Intercept are not met with re-
spect to angle 8. Here the distance of the intercept line from the -
airfield line is 107 km. In order that angle 8 be no more than 400 ..- .-. "

it is necessary to increase DodH (e.g., increase the warning range
by using radar data from neighboring radars). From the inequality -

Cos 400 3Z •

we find that with

D.6. > 550 kcm, 0(<400.

According to (3), target interception with the maximum possible

pass can be achieved with 8 = 901. Then
-o i- a- - .. .:• -*

YD,',OH X2 - V"

%.- -.

and we find x from the relationship
'D o. - x, V t.."'-:'•.:,

If Do6 H =550 km, then x = 445 km with Vt = 325 km. L
o6HLAH

PROBLEM 1.6. The interceptor is in the forward hemisphere of *

the target. We must determine the maximum distance of the intercept
line from the standpoint of fuel, if the fuel supply GT 10 tons,
while the intercept flight profile consists of segments (Fig. 1.8)

characterized by corresponding lengths in the horizontal plane and
by per-kilometer Ck or total fuel consumptions (Table 1.1).

*• 13
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Table 1. 1

Route leg Leg length Fuel consumptionNClimb and accelerate to Vu. mosc In. P = 40 km a'. ~,~1000 kg
HIorizontal flight at V.. wage fr. n, 4o. r. ,V = IC .
Correct errors of surface In =m 60 km On 500 kg

guidance, and attack
1800 turn /P OP 100kg A
Return to airfield under 1, C~.2 kg/km0

cruise conditions
Dlescent and airfield maneuver It* .50 kn Gceg 2 00 kg

During the calculation it is
- necessary to consider the emer-

I gency fuel supply G 800 kg.

Solution. The fuel dis-

tance off the intercept line is
Lg~ft L determined by selection of the

Fig. 1.8. horizontal flight leg I_~ and a-

the return leg I.. Let us-
designate the difference of these legs by 4%

According to Fig. 1.8 we have ,

+(2) ____

while With consideration of (1) -

+& +

from which-

The total fuel balance

The fuel expended on legs 4 and Z is, respectively, a

r~n B

14 *.-.
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G'.~~~ ~ ~ ~ a4 .9. r. U r 1a p s 6

The total fuel expended on these two legs, considering (3), is

0..~~~~~. + .C. .. 1.4

from which the length of the horizontal path at Vi

I... Gr~t+Gac~s*(8)

Having determined the value of I r ,n let us find the maximum

fuel distance of the inte~rcept line:

P + +(9)

Substituting the numerical values for our problem into(I)

(5) (),and (9), we get

1.=50 km; G,..+Gg. 7400 kg;1.., 609 km; 1,,,,=709 km.

Thus, tne maximum fuel distance of the intercept line is 709 km.

Similarly, let us determine Z when attacking the target from
MaKC4

* the aft hemisphere. In this case, as a rule, after completing the

turn there is still one short leg of horizontal flight at V

The fuel distance of the intercept line during cruising flight

is defined by the formula

3,6KV, Gil
In0~ (10)

C1

where G H and G K are the weights of the aircraft at the beginning and

end of the cruise leg, K is the lift-to-drag [LID) ratio, C is the

specific fuel consumption [s.f.c].

PROBLEM 1.7. Warning of a raid by aerial targets allows reali-

zation of the maximum possible fuel distance of the intercept lines.

Target interception takes place in the horizontal plane and with a 4..

*constant speed of the fighter-intlerceptor. Let us show how the-

15
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distance of the intercept lines changes for the F-14C "Phantom" :
fighter as a function of' horizontal-flight altitude and speed, if

we know the aerodynamic characteristics (Fig. 1.9), the fuel supply0

for horizontal flight GT the s.f.c. as a function of the flight
T'4

condttions and the degree of throttling of the engine (Figs. 1.10 .

and 1.11), the average flight weight G =17,600 kg, and the wing

area S 49.2 m ADdsaneo heitr

L ~~~solution. The *--'

-~ -- - cept lines with a con-

.04 stant supply of f~uel
0,03'intended for level flight .

is unambiguously deter-

0,2-- - - - mined by the per-kilo- ,.

0,4 0,8 1,2 1,56 2,0 2,4 M meter fuel consumption,4
Fig.1.9.which in turn depends

on the flight mode and

the degree of throttling of the engine. The optimum mccie, a.saur>'ý;,

maximum flight range, occurs with minimum per-kilometer fuel con-4

_________sumption. Turbojet aircraft, as

tie 0a rule, have two flight modes
kcg-h

that are optimum from the stand-

* -* point of fuel consumption - sub--

sonic and supersonic. To deter-
min-- which of these modes is
best we must consider the thrust-

No afterburner Power

0

1- -

O's~~ ~ ~ 0, ' O /M

Fig. 1. 10. Fig. 1. 11
*~~~V 0, A/P-

16
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to-weight ratio, the fuel load ratio, and the L/D ratio in these

modes. For comparative estimates of the distance of the intercept

lines it is convenient to introduce into the examination a value

which is the reciprocal of the per-kilometer fuel consumption C0 -rK
the distance !.n kilometers covered by the interceptor with the ex-

penditure of one kilogram of fuel:

L = 1/C. (1)I. K

Let us express the per-kilometer fuel consumption C in terms

of the hourly fuel consumption and the true air speed of the inter-

L ceptor:

C' == (2)

Since
c, ---pcv,,,(3)

where P is thrust and C is s.f.c. (kg of fuel/kg of thrust'hour), a:
YA

then

- V, aM AK(4)

Here C is the s.f.c. by a throttled engine during level flight at
YA

constant speed when the condition of equality of drag Q and thrust P .

is satisfied:

Q= P = (5) ," -

* G is the weight of the aircraft; K is the L/D ratio; a is the speed

"of sound.

To take into account the influence of the aerodynamic charac-

teristics and the velocity head, let us determine the value of Q.

Considering the parabolic dependence for the aircraft drag

polar (Fig. 1.9)

c.= c,, + Acyl- (6)

17'
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and the conditions of the equilibrium of forces for level flight

Y=G=KQ (7) "-5

we get

Q==(c. + Ac.) qS. ()15S

Now let us calculate the dependence of the relative fuel con-

sumption (r.f.c.) on the degree of' throttling of the engine (Fig.

* ~1.11). Substituting (7) and (8) into (4) we get a formula for the -

interpolated relative level-flight range:

(CIO + AC~ qSC- I

The results of calculation using this formula are conveniently
represented in the form of the graph H = f(M) for fixed values of

Lrn We then obtain a combination of flight modes M4, H for which >..

the interceptor flight range at constant speed and altitude hao

identical value with the fuel supply given for level fl:!ght-.

The calculation algorithm for these graphs is as follows:4

- we are given the Mach number 14 and the altitude H of level - -

flight;

- from Fig. 1.9 we determine the aerodynamic coefficients c 0
and A for the given M4;

- we calculate the value oi the veiocity head

q -'.~(10)

where p is air density (found from ISA [International Stanalar,. -

Atmosphere] tables);

-we calculate the weight coefficient

-from Figs. 1.10 and 1.11 we determine the values of C and

18
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j, -o35  
-from Formula (9) we

find the relative level- I

15 I

Optimum2 Since the graph HI V; '

II . . I f(M) for =const

was obtained for a cer-

tain set of whole num-

bers of L (e g.,A

0.10, 0.15, 0.20, 0.25,

7'~~ 0.30, 0.35, 0.140, 0.415,
Afterburner 0.50), this sequence of A4

liltI~ ,/ / o aferbuner calculations is repeated
-- powerby the iteration method

until the given whole
number of L is ob- AW

Fig. 1.12. r~n
r. ~tamned.-

The results of the calculation for the given conditions of theff:ilr
problem are shown in Fig. 1.12.

PROBLEM 1.8. To determine the width of possible action against

*aerial targets in the direction of the airfield, if the target
* ~speed is in the range V1 = 900-1800 km/h, the target-detection

range by ground radar D = 300 kin, the speed of departure of the ~
interceptor from the airfield is within the limits v~ = 11450 t 150

*km/h, the time from the moment of target detection to interceptor

takeoff t 2-41 min, and the minimum permissible line of targetr *nacc
action with respect to the object is at distance DMH 100 km from ~ .C4

the airfield. Let us assume that the ground radar is located at the
airfield.

Solution. For a clear representation, let us represent the

solution graphically (Fig. 1.13). In the coordinate system "range
D (kin) -time t (min)" let us draw, from point 0, straight lines

19 .
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J.-

L7
corresponding to target speeds

""_- = 900 and 1800 km/h. The

slope of these lines is calcu-

v• •/ lated numerically from the re- .

to0 co lationship D". 002m.(irfeld
r.9 ri arctg (V.). (1i) "a- -".,-

n c ,S / ed milarly, from points with o
/ "<'•"/------]"coordinates D =300 km (airfield) • ":•'

i ~ ~~~~and t =2-4 min, at angle 0 '•-•'..'.
/ ~~~~~naocc•,•.- • .

enact / ~~we draw lines corresponding to "•...

Vn= 1450 t 150 km/h. Then at

0 Ao riel a given distance from the air-

field DMiH we draw a line for
Fig. 1.13.Fig. 1.13. ~~the minimum permissible line of -',o;?-i

target action against an object.

Obviously, the shaded area in Fig. 1.13 characterizes the desired

width of the action zone as a function of V , Vn, D, D and

t In our example the width of this zone does not exceed 73 ka,.

while target interception with V = 1800 km/h is possible only within

a band of -14 kin, ifV = 1600 km/h and t 2 min.
n nacc

Graphic solution of such problems is particularly simple and

clear when the target and interceptor velocities change with time,,
and then the corresponding slopes calculated from Formula (1) are
constructed from segments of the flight profiles where V and V,.

are constant or can assume equal mean values.

PROBLEM 1.9. The interceptor is guided to the targe. *y tht F

mathod of constant-bearing approach. V- interceptor speed is con-

stant, V = 1800 km/h, the maximum value of the angle of view of

the airborne radar (p = 1200, the maximum interceptor aspect angle

0 = 400 (0 is the angle between vectors Vn and V at the moment of

rccket firing). The interceptor flies with these parameters up to

the moment of target lock-on by the homing head. The angle for auto- ;-. -. ,.. -, ,.,.

mat!c tracking of the target by the head is also •n = 1200. We are

20
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to determine the limiting velocity V of the target to be intercepted.
LL

What should the target-detection range by the airborne radar Do6 H be,: ..'- _

if the target lock-on distance by the homing head Dr * 20 km, if the

time required by the pilot to operate the airborne radar from the

moment of target detection to its lock-on by the head t a 60 s?

Solution. On the basis of the law of sines (Fig. 1.1) we have _ __

V (1)

Substituting the given values of¶'n, e, and Vn, we obtained the de- -, -

sired limiting speed of the intercepted target:
1800 = 4580 1cm/h.

sin 1200
V~~~~~k~~ .- 180w _46 mh

Then from the condition of proportionality we have

D .6 1 t + s ( 2 )

from which

Segment

Ma (3)

Substituting Expression (3) into Formula (2) we find that the re-

quired target-detection range by the airborne radar

Do Dt+ 5 ,og--_ 0 ) (4)

For the given numerical values of our problem we get Do• 76 km.

Thus, this problem allows us to draw an important conclusion:

to intercept a target whose speed exceeds that of the interceptor,

with the method of constant-bearing approach the airborne radar

should have a long detection range and should allow measurement of

large azimuth angles, i.e., have high values of the limiting angles

of automatic target tracking.

21
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PROBLEM 1.10. An interceptor at a speed V1 = 2000 km/h attacks,
from the aft hemisphere, an aerial target flying at a speed V=

Lk

=1600 km/h. At the moment of target acquisition the mutual position

of the interceptor and target is described by targut relative bearing

k 4 1400o and interceptor relative bearing 9, 200. The target

acquisition range DO6  40' km. From the moment of acquisition, r

in time t - 1 min the pilot identifies the target, locks on to it,
and then fires the rocket. The method'of interceptor guidance is
direct interception; the rocket is homed by the pursuit method. For
certain target destruction the firing range should be no more than

n = 35km, while the angular firing error shudnot excee .

We must verify if these rocket firing conditions are satisfied.

Solution. The kinematic relationships given in Fig. 1.l14 allow

us to obtain calculation formulas for the current range D and the
current relative bearing of the interceptor T~: ~

arctg(2)

P ~where A § I tc ;~ 1

A =Dusin tcos,?,, 4FoWO);(3):-

B - .0 os I 8 - .0)+ V - t cs (800(4i)

Here T> 0 when the lead point is to the left of vector Vn n< 0
when it is to the right.

Substituting the numerical values of the problem for the firing

tcinis 29.8 kmn, which is less than the maximum distan-ce for per.- :

mittd fiing 35 km. Consequently, firing conditions are satis-

fie asfaras ang isconcerned. Now let us find the Interceptor

22 ~
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a, relative bearing q which, at the moment of firing, should

rnot exceed the permissible angular error in rocket

? I !• firing. For our data we have n= -- 8045'$ '
,a Pno i.e., the firing conditions are satis- k- 71.

fied as far as the angle is con-

cerned.

•'4 PROBLEM 1.11. The '

interce~Dtor attacks a
__*** - .-.-. .....

, ) .. . .. , high-speed aerial target ..*.

,- whose speed considerably

Fig. . .14. exceeds that of the inter-

ceptor. The attack is
carried out such that at the moment of target acquisition the inter- '-.'.'..

ceptor is in a turn, somewhat ahead of the target; as the target
overtakes the interceptor the interceptor pilot carries out all re-

quired recognition and lock-on operations. Here t- -ghting angle
should not exceed the limiting angle of automatic target tracking

by the airborne radar. When, after overtaking the interceptor, the -.

target is ahead of the interceptor and the rocket-firing conditions

relative to range and azimuth are satisfied, the pilot fires the

S.-rocket.

"We must verify whether firing conditions are satisfied one

minute after target acquisition, if:

- acquisition range Do6H = 35 km;

- interceptor relative bearing qnO = 450; ""

- target relative bearing p = 125'" ," .

t- arget speed V = 2000 km/h;

- interceptor speed V = 1600 km/h;

-interceptor turn radius R = 30 km;n-

- maximum range of permissible fire Dn = 15 km;

- maximur. angle of automatic target tracking Tn= 1000.

23 -
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We are to determine how many minutes after target acquisition

the range "interceptor-target" will be minimum and what the target

sighting angle will be in this case.V

K, Sonelut sn The problem can be solved graphicklly by constructing

kinmatc lnesof flight for the target and the interceptor. How-

eve, hesolution accuracy in this case is low. To increase it we

must derive formulas for the current values of the distance "inter-
Vceptor-target" and the target sighting angle. For this, the radiusC.Z

V ~of turn of the interceptor R~
T14 0 VAand the range "interceptor-

AFIGOtarget" at the moment of de-Ptection Dod are projected onto
the target flight line and onto -**

the perpendicular to this line.
The trigonometric ratios in FIWý
Fig. 1.15 allow us to obtain

the following ca:..culation for-
mulas:

Fig. 1.15. -the current range "1inter-

ce the cutrgent target sighting angle()

JBI-

3 9T - (to4PO) +W~t + arctg -A (2)

Formula (2) is valid for the case when the sighting line is to the
right of perpendicular line A. When the sighting line is to the
left of A, ,.1**

-P, 0P N-Poo + tnt I~tg(3)

Here = 8~-?00i..
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Z4!

W is the angular velocity of the Interceptor turn;

Vt,

in radians per second. s 7

In time t = 1 min the angle of turn for the interceptor, ex-

pressed in degrees, is

57.3V~t

Substituting the numerical values into (4) ard (5), we get A = 7.63

km, B =_1.67 km.

The distanrýe "interceptor-target" 60 seconds after target

acquisition is, according to (1), D = 7.8 km, i.e., the range con- ..

ditions for firing are satisfied.

The target sighting angle 60 seconds after detection is, ac-

cording to Formula (2), Pn= 73°20', i.e., q), < MaKc 1000, and

the azimuth firing conditions are also satisfied. To determine the
moment of time for which the distance "interceptor-target" will be

minimum we must differentiate function D with respect to t, set the

derivative equal to zero, and solve this equation.

The minimum of function D = f(t) is at t 90 s.

The desired sighting angle qVn according to (3) is 68.50, which

is less than the maximum angle for automatic target tracking by the

airborne radar.

0Mr'__ I-vI.- _

PROBLEM 1.12. At the moment of detection of a high-speed

aerial target the position of the interceptor relative to the tar-

get is characterized by acquisition range D 23 km, target rela-
06H

tive bearing =LO 830, and interceptor relative bearing qnO = 7 6 0. __--""

From the moment of detection the target, in time tI 30 s, carries

out avoiding action with radius R = 15 km toward the interceptor,

and then continues its flight at a constant heading. Here the "
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interceptor continues to make its turn with radius Rf 20 km. We

are to determine the distance "interceptor-target" and the target

sighting angle 80 seconds after acquisition, if the interceptor

speed V = 660 km/h while the target speed V, 1650 km/h. We are

to see whether the rocket-firing conditions are satisfied in this

case if the maximum range of permitted fire should not exceed Z"it

D* m 10 km and the maximum permissible target sighting angle

during firing 9q should be no more than 300. wAIn
Solution. The cal- N

culation formulas, by

I analogy with Problem 1.11,

are obtained from the kine-

matic relationships shown

in Fig. 1.16. The dis-
tance "interceptor-tar-

I get" at the moment of de-
tection DodH and the radii

Sof turn of the interceptor
and the target Rn, R,4 are pro-

Jected onto the vertical and horn-

A 4 zontal axes. The horizontal axis

8 corresponds to the direction of vector
"V at moment t = 0. The current range

' "interceptor-target" according to Fig.

"./ 1.16 is determined from the formula

D=VA-'+ B;.()

The current value of the target sighting angle ___

is determined from the formula

Fig. 1.16. (2 -

where .,-4-=

N> (.3)
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Here

ve is the angle by which, during maneuvering time tl, the target L

"6: veers from its previous heading;

A = Da0. cos (t - 900) + R. Icos (o -- %o) - coS (F --- -)

-R. (I cos wtl) -V (I -- 1) sin %1;.

r~tp, V- ýN 1-TS= Do•.cos (1800- %) +/Rsinp., + V•(t--€0cos €•,---- _ .:_•-
- ,R [sin (to -°no) -sin (-.

The angular turning speed of the target

57,3V, (°=Wi °/s. (6) [,

The angular turning speed of the interceptor

Wn TR,• l (7)

Let us substitute numerical data for the problem. Then w

= 1.75 0/s while = 0.526 0/s.

With 1 =80 c w.I =42,080, a.,, = 1400, % 970 •, = 52,50,

A =--1,13 km, B 8,9 km, D =8,98 kIn, fp. =140.'

Since D and q are less than the given values, the firing con-

ditions are sauisfied.

PROBLEM 1.13. The interc-eptor is guided to an unmaneuvering .
target from the aft hemisphere at an aspect angle 0/4 by the method. -

of direct iiterception (direct approach). The mutual positions at

the start of surface guidance are described by the following param-
eters: distance "interceptor-target" DoGH = 150 km, target rela-
tive bearing "0= 1000, interceptor relative bearing qniO = 500.

The interceptor and target speeds are constant and equal to the

following: V = 2200 km/h, V = 2000 km/h. Determine how long itn LA.--:,<-
will take for the interceptor to reach the firing distance D=

= 20 km.
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Solution. As we know, unlike the method of constant-bearing '- .•-

approach, with direct interception the fighter is guided not to-K2;-
the point of target encounter but to the rocket-firing point.--

Therefore we have •

(1) + 1), *t

sin quo yn

from which

I=, .M .n.;,," 3,2 min. ( 2 ) "'- "-
V. sin quo - V. "sin ."

Thus the interceptor arrives at the firing distance in 3.2 minutes.

PROBLEM 1.14. The mutual positions of a linearly moving inter- - --

ceptor and target at the start of the approach are described by the

range D = 500 km, interceptor relative bearing •n0 1450, and tar-

get relative bearing 0 900. To arrive at the attack curve the

interceptor must decrease its relative bearing to qPn = 50 by turning

toward the target (Fig. 1.14). Determine the time and the distance

from the target at which the interceptor should begin its turn.

Vn= 30 km/min, V = 25 km/min.

Solution. The projection of the desired distance D onto the

axis coinciding with the initial distance D is

D cos (?,, T.) ==Do. - (V cos'. 0 + V. cos p)t. (%1)

The projection of D onto the perpendicular to Do6 H is .. 4-..

D sin(!p , -,0 ) = (V, sinp , -- V. sin'p 0)t. (2) %

Dividing (2) by (1) we get

(V sin fit* V. sinq ,,o) ( f-' -t 0 x ( ) -4 (VU CU,,Tim + V" COS ,) t".

Substituting into (3) the numerical values of our problem, we find

from the equation

tr (45o -- 5o) -- (25 ,si WO - 3o sin 450) t

t• 1,8 min. .. - -
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Thus the turn must be started 1.8 min from the moment of the

start of the approach. Here, according to (2), the distance "inter- -

ceptor-target" is

PROBLEM 1.15. An interceptor, speed V. 2000 km/h, attacks a ,L['':"L :,i.

target, speed VL= 1700 km/h, from the aft hemisphere at an aspect ______-_

angle 0/4. After firing a heat-seeking"I rocet the interceptor with-

draws from the attack with maximum permissible g-load. The firing

distance Dn= 30 km. The rocket

flight time to impact with the target

tp = 60 s. Determine the bank angle

required to withdraw from the attack

if the turn is made in one plane at

constant speed, while the minimum

permissible distance of the intercep-

tor from the explosion point, for •. ... --

safety purposes, DMHH = 10 km. *.= .,

Solution. The kinematic diagram -- -

Fig. 1.17. of withdrawal from the attack (Fig.

1.17 allows us to express the minimum" -
possible radius of banked turn Rn, which assures safe departure of

the interceptor relative to the explosion point:

R= (R. + Dz..,) - (D0 + tpVn)2, (1)

from which

R_-(D, + t4Vu)2 (2 D~j

Substituting the numerical values we get Rn = 12.85 km. This radius l. -

corresponds to bank angle y, which is defined by the familiar re-

lationship -

V
2

W_

tgl= 2,46; (3)

T = 670501. -,-. -
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PROBLEM 1.16. Show how the value of the region of possible
attacks of an aerial target depends on the available load factor ny
of the interceptor, and on the speeds of the interceptor and target. '

Solution. The centripetal force which distorts the trajectory

of the interceptor in the horizontal plane is directed along the- ,

normal to this trajectory, and is numerically equal to

F,, - man M V.,1,(1
where m is the mass, a the acceleration, and w the angular velocity -

n n-.

of the interceptor.

On the other hand,

F.I,, - ig -• =,,m g-- 1, (2)

where Y is the lift, G is the weight of the interceptor, and g is

the acceleration of gravity.

From (1), considering (2), we get a formula for calculating the

available angular velocity of an attacking interceptor:

Fn g -4Y..on. Pam a~V V 3 M V.- ..ý.3.

The required angular velocity for the interceptor for flight along

the attack curve (pursuit curve) in the horizontal plane is

V,. sin • ; T '.••
In VtVn. ar- •-*"° 4%•

Equating the required and available interceptor angular velozities,-

we find an equation for the boundary of the region of po:--ible

attacks in the horizontal plane: .

D V, V,, sinf u; ~D (5), ' ::":'-

According to (5), the boundary for the region of possible

attacks is a circle which is tangent to the target velocity vector,

with a change in target relative bearing Tn from 0 to 1800, while
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with a change from 180 to 3600 we get a second circle, symmetric to

the first.

The equation for the boundary of the region of possible attacks ?.-'>. '', *-

in the vertical plane is obtained analogously. When the attack curve

lies in the vertical plane, the available angular velocity of the -

interceptor

g"Y-Cos 4?4)

I ~* ~ = (6) * .

The angular velocity required for the interceptor to fly along the

attack curve in the vertical p]ane is

Equating the available and required angular velocities of the
interceptor, we find a formula for determining the boundary of the"•';

region of possible attacks of the interceptor in the vertical plane:

D ± VV sit ? (8)g (,. + Cos Y")

Obviously, Eq. (8) is also a pair of circles, but asymmetric rela-

tive to the target velocity vector. In Formula (8) we must use the
"+" when the interceptor attacks from above, and " when it attacks

from below.

PROBLEM 1.17. Determine the conditions which define the

position of the point of tangency of the attack curve with the

boundary of the region of possible attacks. Show on what the po-

sition of the attack curve depends relative to the boundary of the r .

region of possible attacks.

Solution. The attack curve is defined by the equation -. ... ,

drqt Va sin yi

di D -'*a Olt.

The closing speed -- -
dD(2- -- -V cos. (2)
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Dividing (1) by (2) we find the dependence between increments of D

and (p along the attack curve:

dl) V44 V4Cos Ta

On the other hand, we have
OD V,, Cos 4..? U'•+ •-

which is obtained by differentiating the equation
SD = ..n , ( 5 ) ;;-.:%,z

-'" •~~~~~n. Pic" ,:; ,+.-

At the point of tangency of the attack curve with the boundary

of the region of possible attacks the following condition should be
fulfi lled: '•'\•'

-•D-= au '(6)

i.e.,

wn- con
VR + V. Cos, 4 V " Cos To

Solving (7) we find that for the point of tangency the following

condition should be fulfilled: ,.-..-

COS ' (8).

where

With w= 0, when the target flies in a straight line, we have

COS = -?0% p (95)

From (9) we can draw the following important practical con-

clusions: 1) the point of tangency of the attack curve with the

boundary of the region of possible attacks can be only in the aft

hemisphere of the target; 2) with p > 2 there is generally no tan-

gency of the attack curve, i.e., all attack curves begin within the

regions of possible attacks and terminate at its boundaries.

32

_ ........ .- ". --"¶ -- + * I 1 ... .. "*". . ..-- ,- * .'" . . .

X-C -%'-N* % -~. ~'--*
S ::T.. ,-.- . . ."'.+'.'% .+,- -"•-", ,I"+-"•"-• '. • k, ,-,• ..- - ,. .• .,-,, % - .,, '.• ,.•... . . . .', + . . .- . .- ,, . +,-.-



The attack curve tangent to the boundary of the region of

possible attacks is called the limiting attack curve. The region -

Lf possible attacks is defined by the boundary of this region. The

boundaries of the regions of possible attacks when the interceptor 7A

flies along the pursuit curve are defined unambiguously by the

available limiting load factors. From the load factors we calculate

the corresponding limiting angular velocities.

For the horizontal plane
g j/r •2 •i

_________(10)

For the vertical plane:

-- with attack from above

Wn. open. . f-- '(ynpea.-- 1) ; ( 11 ) • ;•

-- with attack from below

g (n pex + 1) (12)- 0n . n V I L | " n " " ` " - - -

Further, from Formula (8), given the maneuvering of the target

(W), we find the point of tangency of the pursuit curve with the Q .-

boundary of the region of possible attacks with respect to the

limiting load factors. "

PROBLEM 1.18. Determine the regions of possible attacks and

the trajectory of interceptor homing by the "pursuit" method. We

assume that the target does not maneuver, the target and interceptor ... :..-

velocities are constant, and motion is in the plane defined by the

velocity vectors V n and V . Given: Vn =930 km/h, V4 =800 km/h,

= 10, 15, and 20 km. L -

Solution. According to Fig. 1.4, which shows the mutual posi- L,.
tion of the interceptor and the target during the "pursuit" method,

for attack of the target from the aft hemisphere we have the fol-

lowing equations:

'44-- . . .4 . -
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LIZ
closing speed

I - angular velocity of the sighting line

Dt (2)

From Eq. (2) we obtain the equation'for the region w<
n.pacfl

-~D (3)lop

where w with respect to interceptor load forces is defined
by the failar relationship~

_______ _(14)

Now let us derive an equation for the interceptor homing trajectory.

We Q~ivide. (1) by (2); then
dD

dt (5)

After integrating (5) we get

D c (W ?J (6)

where C is the integration constant, determined from the initial

homing conditions characterized by the parameters DOS C an cal
culated from the formula

c=Do(I+ cos~aP(

Substituting (7) Into (6), we obtain a calculation formula for the ...

trajectory of interceptor homing by the "pursuit" method:

DO (I + Cos vu.)P (sit] fft)P31
0) ( + CUS lio (sin :,t)P1j A"(8

-ýA

3e Y* -fi *%ý~i *.'



To construct the regions of possible attacks it is important.,

to be able to determine the target relative bearings qA and Bp

for which the interceptor homing trajectory is tangent to and inter- I •

sects the region < p at the given distance, e.g., at

the maximum allowed rocket-firing distance. The coordinates of these ,%- .

points are calculated from the formulas '. •

COS A %A
Don. pcat "•

silp., 
VU

For attack of the target from the forward hemisphere the kinematic

relationships change somewhat. In this case we have (10)

dD v,,COS (1 )5

dD

*=- , m, + ctg?) .(12)

After integration we get the following homing equation for collision-

course attacks:

Do (sin ?,.)P+l (I + cos (i3) -

D = (I + cos fpjP (sin .)p+' 13

Constructing Eqs. (3), (8), (9), and (13) in a polar system of coor-

dinates D, t we get a graphic representation of the regions of

possible attacks. Figure 1.18 shows the solution for the numerical

conditions of the problem.

PROBLEM 1.19. Determine the regions of possible attacks and

the trajectory of interceptor homing by the "pursuit with lead" r.::.-.
method, using the assumptions and conditions of Problem 1.18. The

lead angle s is 10 and 400.

Solution. interceptor homing by the "pursuit with lead" method

is illustrated by Fig. 1.19, according to which we have the following
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120' to 0. D o T'0 A,4- , 0

. - - F~

n 
.700

L;~

15K~

2$ 2Q. is J0 $ a t4S to Is 20 2S 30 D,'cNNII Fig. 1.18.
equations: 0

-for closing speed

d) COS?, co .-VCos. ()

-for angular velocity of the line

of sighting (available interceptor angular .-

velocity)
(p V14  Line of tar- v

get flight(2

dDD

-V - sin r,,+ V"sin' a
'On Pun-

Thenwe dvide(1)by (); w 3e

* d'.f

dt os FU os

~w---w-- 1w--- (4)~U - w W

-D ýsfn 4p + ..W t .d

.~. .-. 36

%.*. . . . %~A ¶



Let us integrate Eq. (14):

VVU

(-sisq, PnP' sin pSif#ff~

sin -,' sin: (5

+ ~ip~sn~'In -p~m sin t+ scinJi- 2 s~'af

With p 2sin2 e < 1, which is practically always true, we get the fol- -

lowing equation for calculating the trajectory of interceptor homing

by the "pursuit with lead" method:

Do0 (-C sin if uo -A cos ;.o (sin %j - 0-

(11 - Csin Tu-A cos I,:)"(sinyug- C)u 6

where Dand D are the distances of the beginning and end of' homing;

*and (pare the target relative bearings at the beginning and end -

of hon~ing;

Cz=psins; (7)

V- e is the constant lead angle;

A _-C2,(8)

B8= pcoss (9)

The target relative bearings corresponding to the points of

*tangency and intersection of region w < W with the homing

trajectory at the given distance are defined by the formulas

COSTUA- 21 (10)

Dwo D ~f,0  + I'n sine
V1 if11

From Eqs. (3) and (6) we construct the regioi.j of possible attacks

in polar coordinates D, q). Quite often enough we have regions of

* possible attacks in a relative coordinate system associated with the

target, as shown in Figs. 1.20 and 1.21. To construct the homing

trajectory in absolute coordinates we must express time t in terms ..

of Dand. We can show that
14
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tercecs(,,, )ID ptr at spee yr.,J) (12).

930 km/h, using the pur-

10 50 suit method attacks, in the
horizontal plane, a target

- which is on a constant -

heading at speed V, = 800

5~ km/h. The mutual position
of the interceptor and tar-
get at the beginning of in- . 7

0'te-3.eptor homning is de-

%Pq4 scribed by the initial range

Fig. 1.20. Do - 20 km and the initial 1
target relative bearing

110 100 9 u 70 d~ =800. The minii-
LA .x.

mum radius or turn

19 or the interceptor
Rn =l10 km. The re-

gion or allowed

9rocket firing from

840, the art hemisphere
7 is limited by the

6 angles 6 < ±500 and
5ranges or 5-15 km .

4 (we assume that the

rirI~ng distance does

toa not depend orn the
attack aspect angle).

~u~ 7 9 8 4 3 8 1 Vi 2 .1 4 6 6 7 Amu~ The target's deren-

Fig. .21.sive weapons do not
allow an approach

nearer than 5 km. Determine ir, under these conditions, a success-
rul attack on the target is possible. At what range and at what

target relative bearing !s rocket firing possible? How do the
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Sattack possibilities change if the interceptor's radius of turn is

at least 20 km?

Solution. Let us use the graph calculated when solving Problem

1.18 (Fig. 1.18).

The homing trajectory corresponding to our initial data (D.-"S20 km , 9L0 = 800) (point A in the figure) does not intersect the- . -*

boundary of the region of possible attacks for R = 10 km. Con- " 'i

sequently, from the available interceptor load factor, attack on the

target by the pursuit method is possible under the given circum-

stances. Closing with the target along the homing trajectory, the

interceptor is at the maximum allowed firing distance D - 15 km

when the target relative bearing is 940 (point B). Since 0 > 500,

firing is impossible. As we see from the figure, rocket firing •.-2

will become possible at distance D = 8.75 km, when B = 500 (point

C). At point G firing will again become impossible due to the

enemy's defensive fire. If the region of possible attacks is

limited to a circle corresponding to the interceptor turn radius

R = 20 km, as we see from Fig. 1.18 the homing trajectory beginning

at point A will intersect this circle. Consequently, interceptor SI .;..,. • - .

homing by the pursuit method is impossible in this case. L"

PROBLEM 1.21. At what target relative bearing 9 must the in-

terceptor be guided by the surface guidance system if, from the

moment of target acquisition by the airborne radar, the interceptor V-.•,.•-

realizes a pursuit trajectory which will assure arrival at the

allowed firing range D = 10 km in the minimum time? The interceptor

speed is 930 km/h, the target speed is 800 km/h. The target acqui-

- sition range by the airborne radar Do06 H = 40 km. Rocket firing is

possible only with the angles B = ±-400 from the aft hemisphere of -. , .....

the ta±'get. The available interceptor load factor is n 2. We .

disregard surface-guidance heading errors, i.e., we consider that . " -

the guidance system guides the interceptor such that at the moment

of target acquisition the velocity vector of the interceptor is di-

recti.d strictly toward the target.
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Solution. As was shown in Problem 1.17, the limiting pursuit
trajectory is tangent to a circle corresponding to the available
interceptor load factor. Consequently, on this homing curve it is

also necessary to find the point where the interceptor must be .. -
guided by the surface system to the range of target acquisition by .

the airborne radar. This point is point E in Fig. 1.18. Itscorresponding target relative bearing tpý 66*. Then, as the inter- '--[f

ceptor closes with the target it is at point F, at which the con-

ditions of allowed rocket firing are satisfied: D = 10 km, 0 = 300.
The azimuth firing conditions had been satisfied prior to this

(0 <0°), but the range firing conditions were not, since D - 10 km.

PROBLEM 1.22. What should the lead angle c be so as to assure

interceptor homing by the "pursuit with lead" method from the point

of the end of surface guidance characterized by an initial range

D = 10 km and target relative bearing (p 900? The interceptor
should arrive at the allowed rocket firing range D = 5 km with tar-
get relative bearing pq = 700. The minimum interceptor turn radius

Rn = 10 km. How do the conditions change for carrying out an attack
by the "pursuit with lead" method if the interceptor turn radius is

20 km?

Solution. Let us use the solution of Problem 1.19. With lead

angle e = 100 (Fig. 1.20) attack is not assured: the homing trajec-
tory intersects the boundary of the region of possible attacks cor-

responding to the value R = 10 km. With c = 200 the interceptor
arrives, from the point of the start of homing, at the allowed firing
range D = 5 km with a arget relative bearing 9 = 640. Attack under

these conditions is also possible with a minimum intercepto:r turn
radius R = 20 km. In this case we need only increase lead aagle c

n

to o0°.

PROBLEM 1.23. An interceptor attacks, at low altitude, a non-

maneuvering target using the pursuit method. Given: V = 600 km/h,
V 800 km/h, available interceptor load force n 1pac 1.41, in-
terceptor load force limited by low-altitude maneuvering-safety

-- "• ! 'r" •' " ' . . --" ' -'. -. ' *''' - .- 4,1.- - . *.h.-.'% . . . s".• .'.".".• . 4. ' -4 \... - . " * ..-. ," .,'-,' .--



Ide lID a conditions n1.15
L v Show if attack on a target

is possiblJe if at the start '

wof homing the distance
"interceptor-target!' is 6
kw~, while the target rela-

tive bearing 9- al150.____

4How should the interceptor£

maneuver in order to reach

the rocket-firing range of b.7
6 4 0 e* 4Solution. Constructed

Fig. 1.22.boundaries of the regions

of' possible attacks (pursuit-method homing tra~jectory) show (Fig.

1.22) that with a g-force of 1.15 the interceptor intersects the

boundary of wn~rp 1 to rtflf~lT i.,e. errorless flight along the pur- ;4. .

suit curve is impossible. To reach the rocket-firing range the -

load factor must be increased: closing with the tar'get along the

pursuit curve for arrival at Dn 3.1 km is already possible with

nn 1.25.
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-CHAPTER 2 -_7 -

In this chapter we derive relationships among the characteris-

tics of the interceptor, the rocket, and the target, calculation for- ''""'

mulas for required load factors ana the time of controlled rocket .-- ,.

: flight; these form the basis for constr'ucting the regions of possible .._:.---#

rocket firings, which allow us to graphically study the combat -- "-

capabilities and optimum conditions for attack against an aerial tar- 7

!-: ~In solving the problems we limit ourselves to the kinematics of • ,.•

i rc-,ket homing, i.e., the rocket, interceptor, and target are examined

'- as geometric points coinciding with the centera of mass of these_ .bodies.

Naturally, an actual rocket trajectory differs froin a kinemati.c @

;-. one: we must consider the inertia of the rocket and of the automatic - "-••:.•'.• -

S rocket-flight control system, perturbing influences on the motion of- i•il:•••

the rocket and the tVarget, instrument errors in the elements of the ,..

elosed control system, etc. Sriution of problems of the combat uie ..-.. t.

of "air-to-air" rockets with consideration of the above factors

necessitates the use of mathematical models which can be realized on ..-..... ,

digital computers. These research methods are outside the scope of "--:'"

• this book. :'--.-.:•

*.5.-. , .':..:
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A rocket closes with a target along trajectories which are de-

termined by the horming method used. Therefore, problems devoted to

attack on an aerial target begin with the derivation, in general -

form, of equations which describe rocket-to-target approach (Prob- --. *.

lems 2.1, 2.2). Then we compare various methods of rocket homing, ...-.

and determine the dependences for the load factors required for

carrying out a given homing method; the time of controlled rocket
flight vs target, interceptor, and rocket velocity; and the target,_____'

relative bearing at the moment of firing. We examine the following

methods of rocket homiig: "line-of-sight" (Problems 2.3-2.9),
"pursuit" (Problems 2.10 and 2.11), "constant-bearing approach" .... '-

(Problems 2.12-2.17), and "proportional approach" (Problems 2.18- L L
2.20). The dependences obtained allow us to analyze the intercep- ,.
torts capabilities to attack an aerial target under various combat- r
use conditions, determine the optimum ranges and aspect angles for r

firing, and construct the regions of possible firings for given

characteristics of the rocket, interceptor, target, and conditions * "

of combat use (Problems 2.6-2.10). By region of possible firings
we mean the geometric positioning of the interceptor relative to the ,-"' .

target (with respect to range and aspect angle), from which we can

* assure successful guidance of the rocket to the target.

Of definite practical interest in this chapter are other

problems, solution ep hich allows us to determine: .

- tre optimum asp. .- angles of attacks on a maneuvering target

. and the required load factors for the rocket and interceptor (Prob-
lems 2.13, 2.16, and 2.20); .' •

-the firing range, with consideration of errors in guiding •
the rocket to the lead point at the moment of firing (Problem 2.14); - 0

- restrictions under which an examined homing method cannot be
carried out (Problems 2.11, 2.12, 2.14, and 2.19);

- a miss by the rocket as a function of conditions of combat

use and firing (Problem 2.17).

"43
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PROBLEM 2.1. To derive, in general form, kinematic equations ,- -

which characterize rocket-to-target approach in the horizontal plane.

Solution. The mutual positions of the target and rocket (Fig.- -

2.1) at any moment of time after firing are characterized by dis-

tance D, target relative bearing q, and rocket relative bearing qp ,*

VV A wý Rocket-to* -target approach is com-

"pletely described by the rate of * .--•

change of D and of the target p and

rocket T relative bearings with

time. Obviously, a decrease iln D by

W5 AD in tine interval At is equal to
the sum of the projections of veloc-

Fig. .l1. ities V and V onto the sighting .

line, multiplied by At:

-D(V,,cos rr, + V,4 cos ?~ t

Passing to the limit, we get a differential equation for rocket-to-

target approach:

2==-(V, coss . + vcos). (1o)

Since between the angular and linear velocities there exists the

familiar dependenc--

where R is the radius of rotation, the angular velocity of the line

of sighting is defined by the equation ."-'-*- ..

-Vt 1 sin 7.1 + Vp sin li,

For the case when the target maneuvers with angular velocity

W., the angular velocity of the rocket relative to the target is

equal to the sum of w and the rate of change of the target relative

bearing T with time:

+- 1. sin ? . I' l sin (p3

+i (3).":

.0 Ia IS. -.. .:... .

- _ .::::..':-,'.=;:.-.:.i.'.

.*.*'* •.. 'O'"
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Equations (1), (2), and (3) are general equations for any method of

rocket guidance. "

Naturally, to integrate these equations of motion with specific

"guidance methods and for given initial condit.ons we must know the
laws of the change in speeds V and V and relative bearings q and

"with time.
V.-PL PROBLEM 2.2. For a nonmaneuvering target and with constant

rocket and target speeds, let us compare two methods, based on the - -

"required rocket-homing time t "constant-bearing approach" and
p"pursuit." Let us show how time t depends on the velocity ratio

p
V /V and the attack aspect angle.

Solution. Using Formula (1) of Problem 2.1, and considering

that with constant-bearing approach
•-.. :~- .-.-- .. ._* .

const and c. const,

by integrating we get

"~~d (1/ cos -, + V,, cos% ( dtLe ..

from which the flight time for a rocket from the moment of firing to

the moment of impact with the target

tP. ,= VCCSyp+ VaCos Y (2)

where D is the firing distance.

For the "pursuit" method, during the entire rocket homing time

"the rocket relative bearing (pp = 0, since the rocket's velocity

vector is always directed toward the target. Thus, on the basis of

Formulas (1) and (3) of Problem 2.1, the equations of motion of a

rocket using the "pursuit" method, for the case of a nonmaneuvering

target, assume the following form:

"dD-. (Vp + V. cos,.); (3)"-

145 . . .
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-dt- (4)

Multiplying Eq. (3) by the value aCosnd- . V,,an Eq. (4) by sin q)

and subtracting one result from the other, we get

I' dl) d-1
cO s d--t -. VU' - (5 )

Let us introduce the designation

VP--- (6) _

then
no - 4

(cos% -- b) dD-- D sin c dq= V, (b2 1) dl (7)

Let us integrate Eq. (7) by parts:

D Ira

UI (c vMbdD- DcsindVb,1t (8)I sn?.y
0~D '- *-.

D'(cos • - b) - D (cos dP ) +(UJ

u :cos • -- b; du=: - sin ?•d•M;
d = dD =Jbdt; vs= D;"•'-

I W.

Let us substitute the obtained result into (8). We then get --- 4

D (cos p. -- I) -- D .(cos +• - 1') + .4- ... -...... •

S D sin dT, -S[ D sin ?u dre, - D- - (b - -cos %)+ ( f: -¢;"' • ---1•

+ D. (P-- cos . Vq (b-- 1) t.

From Eq. (9) we get a calculation formula for rocket flight time ,.

from distance D to distance D: ..-.--

P, ( - u 9,1o) -- D-co) (1 0 )cob
VU (61 -- 1) :- .'."o

46L • .: ._. *4 --
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The rocket flight time from firing to impact with the target, when

D 0, is defined by the formula

-n .(

To compare the "pursuit" and "constant-bearing approach" h~.i.g i,.o

methods it is best to construct the ratio . 'Y

and the dimensionless time difference

B = (p. nor t- p. nap)

as functions of the target relative bearing ( at the moment of
firing for various velocity ratios b = V /V . After simple trans-

p LA
formations we get

( . b• - coS , (cob y, + V b2-- s;n ,).A (12)
tp, uap=-- bt-1 ] a

B , (t,. nor - . nap) = v--_(13)"" -

Graphs of these functions are ien in Fig. 2.2. For practical . ,

purposes it is important to note ti . che difference in rocket flight

times and, consequently, the difference

- - in covered distances and in the corres- -.

... 5 ! . - ponding distances of the target inter-

-I I cept lines are maximum when firing

SI occurs with Tu = 900. Time ratio A,

4J. L/! \---- however, has its maximum when the tar-

,3 2 get relative bearing at the moment of

firing is 600. As the rocket speed :. -

21,2 / --2\ approaches that of the target, the2 1I ! :..
difference and ratio of the rocket-
flight times sharply increase. The

0 20 40 5 80100 120 140 1&0 larger the velocity ratio b = V .....

Fthe less difference there is betweenFig. 2.2
the homing methods. When b > 1.7

there is practically no difference whatsoever.

47.-

V0 or- _ w-- -w IV W V V _V V a V S
S- %.

-. ,*.. , .. '' . ' . ' ." ."

"* ' '.'." "•~~~ ~~~~~~~~~~~~~~'**. ' .,.,,; *."* -- ' - "'" -, ' ' ' '' " " . * ' " " ' ' '' ' ' ' " " ' ' " ' ' ' " ' ' '



PROBLEM 2.3. The interceptor attacks a nonmaneuvering target
flying at the same altitude as the interceptor and at a constant

speed., The speed of the interceptor is also constant. After the r ._

airborne radar locks on to the target the air-to-air rocket is .- .. -.

fired. The rocket is guided to the target by the line-of-sight

method, i.e., at any given moment the interceptor, rocket, and tar-

get are in a straight line, in the equisignal zone of the airborne

radar. Let us assume that during rocket guidance the interceptor

,• heading does not change, while the target is destroyed only by a

direct hit by the rocket. The automatic tracking angle for the

airborne radar imposes no restrictions on the attack. We are re- --

quired to show how the rocket load factor, required to carry out

the homing procedure, and the rocket flight time from the moment of &.

firing to encounter with the target depend on the speeds of the

target, interceptor, and rocket (V,, Vn, V ) and on the target rela-
n P

4 tive bearing TA (pt = T0 - for simplicity we drop the "0" in this

example). We are given the following:

.. 90- 180; ,,= 1; - 1-3; 0- 50." 77,'

The natural speed of the rocket V is considered to be con-

stant and equal to the average value during controlled flight:

VP~ VPCP 
----

Solution. Figure 2.3 shows the kinematic relationships for

rocket guidance using the line-of-sight method for the conditions of

our problem. Let us introduce the designations Dn - the distance

"interceptor-target" at the moment of firing; d - the current dis-
P

tance "interceptor-rockett; d - the current distance "interceptor-

target." -- S

Then, according to Fig. 2.3 we have the following equations:
x .. d. $in.. .. .. .. .. . ... .. . ......

y d,,cos T. + y.; (2) -

ctg' Y .Oo -* ((3)

48-. -
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1" -mpao t YO VA1t (6) -~~

Y. VIi Co's ?.+ D.. (8)

P Differentiating the speed

terocket:

a. (9)

/For solving the problem in the
Lmost general form it is con-

venient to introduce dimension-
K less, relative characteristics.

VftTo do this, let us divide all
Firing point -

X dsacsby the value of the - ..-

Fig. 2.3. firing range D~ and all speedsK by the interceptor speed V

and multiply time t Pby the value V n/D n Then Eqs. (1)-(9) bcm

dimensionless. For example, for the dimensionless coordinates of
6 the rocket we have

X= ill nDp sin?,,-' (10)
V

Y 4Cos 0(+ =-iD. Cos +a()[where T is dimensionless time.
Tedimnensionless rocket speed is expressed as follows: (2

%PP + f (-C)

Differentiating Function (12) with respect to T we get ::

149
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-sin% +P~ D, cos~I 4%... +

+ __Cos Dsin ?
dg, d-c

+2P o1+.p i (13)

Solution of' the quadratic equation

fd dL) *

-2D. sin dp pý+I (114)

gives us, for the dimensionless current distance "interceptor-

rocket" Dthe following nonlinear first-order differential equa-

tion:

dO,,

+ JIcost ff- (D,,) + 2.?,, l-~ sin? ta I.(1)V

The dimensionless side acceleration of the rocket is calculated from
the formula

A 1dX d'Y d3X d Y
dV'di (16)

wnere X and Y are the relative coordinates of' the rocket-

2. !!L dD -d3?n dc d-c
-D (17)

Here

and

From (9) and (12) we have, for the relative acceleration of the

50
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rocket,

We can obtain numerical values for the acceleration A and time

T required to satisfy the homning law if we solve Eqs. (16) and (12) .Y.

with initial condition D(0) = 0 and vary the in-Atial given values

(PL V P, and V .A Diff~eren'Cial Eq. (15) is solved by numerical inte-

gration (naturally, it is best to use a computer for this purpose).

The ~sults of calculations, with attack from the aft hemi-

sphere, are shown in Figs. 2.14 and 2.5.

V -- - - - - -- A

21010

'00__ 
__

'a -

-. --00

90 Li .

1. , , ,6 18 20 22 A 26 V/a1,0 R, 4 16 4 , , , , , ~/ 1

Fig. 2.0.Fi.0.5

The reutCfcluain Lo n o tac rmtefr ~

and. 0.64adV/ -3aegvni Figs .52.6 n . np 2

PROBLEM 2.4. How does the required rocket load factor change

under the target-attack conditions given in Problem 2.3, if the --. :

velocity ratio V L/Vnchanges within limits 0.5-1l.2, Vp/Vn, changes

from 1 to 3, and the target relative bearing Tp changes from 150 to

1800 at the moment of firing? We determine, for given target speed

th vlct ratios V /V for which the required rocket load

51
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factor ias minimum. Under these combat conditions, how does the rel-

• V..,'. :,., ative rocket flight time T to impact with the target change if the

rocket is fired when the target relative bearing 9L 1600?

Solution. Using the formulas obtained in Problem 2.3, let us
calculate the functions A = f((, 4 V/V ,Vn). The results of the

calculations are given in Figs. 2.8-2.10. An interesting fact is
that at low target speeds V4 = (0.5-0.6)Vn there is, throughout the

entire range of target relative bearings from 150 to 1800, an optimum

value for the rocket speed at which the required rocket load factor

4::-!: is minimum. Beginning at V = 0.7Vn and higher, the required load :...*.

factor is minimum with minimum rocket speed.

0

Figure 2.11 shows the results of calculations of relative time '

- as a function of V /V and V/V with p 1600,
-'.-%..

PROBLEM 2.5. For the target-attack conditions described in

* IProblem 2.3 we are given the absolute average speed of the rocket

Vp 900 m/s, interceptor speed Vn 400 m/s, target speed V 400

m/s, target relative bearing at the mrment of rocket firing T 1200,

53
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and the available rocket load factor np 5. We are required to do
the following:

t . Determine the distance from which the rocket can be ired. d

2. Verify whether or not the rocket can be fired at distance

Dn= 15 km with target relative bearing = a 1200, if the available

time of controlled rocket flight tp = 20 s, Vp = 800 m/s, Vn = 100h nm/s, and V = 300 m/s. If firing is impossible, determine the tar-

get relative bearing or firing distance for = = 1200 for which the 2

available rocket flight time is equal to the time from firing to -- ,

rocket impact with the target.

3. Determine the minimum distance from which the rocket can ,f-. .

be fired, if the target relative bearing at the moment of firing

( = 1500, V = 250 m/s, V- 250 m/s, Vp = 500 m/s, and the avail-
L4'n

able rocket load factor np= 10. How does the minimum rocket-firing

distance change if the interceptcr speed increases to 500 m/s?

Solution. 1. In Fig. 2.4, for V /Vn 2.25 and V ,/Vn 1 >*

with = 1200 let us determine the relative acceleration A = 3.4,

and then from Eq. (19) of Problem 2.3 we find the firing range:

D, -- 11,3km. k

2. With V /V 1, V /V = 2.66, and q - 1200, according to
'4 nl P nl1

Fig. 2.5 =p 0.49. The absolute value of the required rocket-flight

time to target impact from Eq. (12) of Problem 2.3 is !* '"

P= 24, s . S0
Since this required time is more than is available, fir-,ig at -"

a distance of 15 km with l= 1200 is impossible. The required time
can be decreased in this case, if firing occurs at lower target rela-

tive bearings. We can easily see that when 4 = 900 the required

time t = 18.5 s, i.e., shorter than the available time. Conse-
p

quently, attack must take place from the forward hemisphere of the

target, at small target relative bearings, or the rocket must be •--.

fired from a shorter range if the target relative bearing cannot be

54,
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decreasel. Withn = 1200 the permitted firing range

3. According to Rig. 2.4, with cq = 1500, V /V 1, andVp/n =ap /V..,• ,.-
= 2, we have a D /V= 1.1 whence D = 1.75 km, while with

P n

a doubling of V , D = 6.1 km.

PROBLEM 2.6. Construct the zones of possible firing for the

case of rocket homing described in Problem 2.3, if the available

rocket load factor np = 7, the available time of controllec "light

tp = 20 s, target speed V, = 1500 m/h, interceptor speed Vn '1500

km/h, and the average natural speed of the rocket V = 500 m/s. '.

Solution. Let us determine, for V /V = 1 and V /V
(500 + 1417)/4117 = 2.2 for varl.'us target relative bearings

the relative values T = t V /D and A = apDn/V (FigsD 2.4-2.7)an then, from7)Eqs.(12)2 and vru tage (Flaigs. 2.ea -2.7) -,.. ..

and then, from Eqs. (12) and (19) of Problem 2.3, the corresponding

maximum -nd min--mum firing ranges. The zones of possible firings,

constructed with re-
spect toD and

Vf n.maKC

13& D , are given in

10 •Fig. 2.12.

PROBLEM 2.7. The
- . "-interceptor attacks a

o .-/.---• -O"nonmaneuvering target,

firing its rocket with

* / constant target relative

7 • 27 bearing cp,= 1500. The

230. rocket is homed to the

250o target by the line-of-

Fig. 2.1 sight method. The given
target V interceptor

Vn, anC *- V velocities are assumed constant. Let us show how
n P

the ran6 ing distances D -Dn changes if, with the

55 ..,. , '
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other characteristics unchanged, we increase: 1) Vn from 200 to

600 m/s, and 2) Vp/V-, from 1.3 to 2.4.

2
Solution. Using graphs to determine A a D /V and T =

= V /D for given values of Vp/Vn, V/V , and (Figs. 2.4 and .-. ,•

2.5), let us calculate, for each fixed value of V/V and V /V from

the values of A and T the corresponding minimum and maximumi firing

distances: :____

D.., A a II o ag.m. :
ap tIM K C .

Varying V /V and Vn within these ranges, let us construct a

generalized graph of the c!.ange in range of the firing distances

with given values of " "
tv , D, and VuiV. The graph ;>.-,:-

Vfig 1 isA U shown in Fig. =

4" 2.13. This graph shows

:•40__I /•/-•. ,:. " •'• • tht~acharacteristic~ice se~t •hinthnchanged. •

aila increase in V reduces9'° 1 2 4 5 8 7 8 8 10 It 12 D4,,o Vn
Fg 2 1 the zone of possible

firings with respect to

distance, while an increase in V p/V expands this zcne. With an.

increase in Vn from 200 to 600 m/s the range of firing distances -''

decreases from 600 m to 0 when Vp/Vn = 1.3. With an increase of

V /V from 1.3 to 2.4 the range of firing distances increases from

600 to 2800 m with V =200 m/s..:...-:-.'

PRO3LEM 2.8. A rocket is homed to i nonmaneuvering tar,-e* by

the line-of-sight method (see Problem 2.3). Show how the required

rocket load force at the point of target contact depends on th .,

target relative bearing ( and the ratio of rocket to target speed .p/V . ... -"

V /V Determine the limits within which the minimum rocket firing

distance, determined by the available rocket load force, changes.

Assume that the rocket and target speeds are constant. Given: V =
1000 m/s, V 500 m/s, a = 49 m/s 2 , = 600. ... *s

56
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Solution. To carry out the line-of-sight method the required -

normal (side) acceleration of the rocket (the acceleration directed

perpendicular to the kinematic trajectory) at the point of target

impact is defined by the formula

V-- - s "in (1) -9,.
a4(2 VP- $in,?,.w

The angle p is defined by the relationship .

sin(?• "E'XT a'- ,, ( 2 ) ;-"',; .*=. -. '-.• .

since

sin Tp Vt dn•,.•,,W •.'(3) •

where d is the distance covered by the rocket from the time of

firing, D is the firing distance.

When homing occurs under ideal conditions, the acceleration

required for accomplishing the kinematic trajectory is exactly equal

to (1). Actually, the required acceleration is greater, since move-
CpVn•yq2 ment of the rocket as

8000" fluctuating pc'rturbations -1

"act on it is of a vari-

ational nature, and in
/_V /attempting to comply

/ with the given law the %

///4 ~\ \ \ actual accelerations

should exceed those

necessary for precise ",-'
180' motion along the kine-

'Pq omatic trajectory, not

Fig. 2.14. considering these

variational processes.

To determine D we use Fig. 2.1~4, which gives the relative
IF *MHH

(dimensionless) required rocket acceleration a D /V at the point .:....
pI n L
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i. of impact with the target as a fun•;ion of the taget relative r..""."•V . ". -,
bearing T for various ratios V /V Knowing the target speed V

and the available normal acceleration a , we determine the value of
a -p
a D from the graph in Fig. 2.14 for the given combat conditions,,

"and ihen calculate the minimum rocket firing distance For

the conditions of our problem we have

VP_
ao=49/s/', ,=600, -- 2.

From the graph in Fig. 2.14

Let us multiply this by

Then the minimum rocket firing distance D = 22.4 km. •..4.'H Z.

Calculations show that witn a velocity ratio V /V < 1.2,

attack is limited to a target relative bearing value of the order i.2 "'..*

of T z 600. This is explained by the fact that when V Np 1.2

according to Eq. (2) there are large angles between the rocket's

velocit:y vector and the line of sighting, particularly on the phase

of the trajectory before impact with the target, when dn/Dn 1.

Thus the graph in Fig. 2.14 in first approximation gives the minimum

rocket firing distances for a broad range of combat conditions.

Using these data, and having determined the maximum firing distance
from the available controlled-flight time, we construct the zones of ,'.-*-.--'...

possible firings. ].

PROBLEM 2.9. A rocket is homed on a nonmaneuvering target by

the line-of-sight method. We are given the target speed V. = 500

m/s, the interceptor speed V = 500 m/s, and the natural speed of

the rocket V 500 m/s, the available rocket load factor np = 5,

and the available rocket controlled-flight time t = 20 s. Deter-
mine, for these starting data, the zones of possible firings and

show how they change if, with the other characteristics unchanged,

the target speed is halved, the rocket speed is doubled, and the
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interceptor speed is doubled.

Solution. By analogy with Problem 2.7, let us determine the -

appropriate values A = a D /V~ and T = t V /D using the graphs inp n ni pn n
Figs. 2.~4-2.11 for given target relative bearings (pand then, using

Eqs. (12) and (19) of Problem 21.3, calculate the minimum and maximum N

firing distances (in kin):

The zones of possible firings are showii in Fig. 2.15.
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Solution. The mutual positions of the interceptor, target,

"and rocket after firing are illustrated in Fig. 2.16. At any current

moment of time the rocket is on the line "interceptor-target."

According to Fig. 2.16 we can

write the following kinematic

equations for the angular .-..- ,

velocity of the line of Fight-

r.', _(o--• 1)-","•"-"-
S Sl (,2

Do.V( )

(the " indicates that the

angle qs decreases).
Fig. 2.16.

The rate of departure of the rocket from the interceptor

b =Vcos,-,)- V. (3)

Let us differentiate Eq. (1) with respect to t. Then
-' + os (T ' + 1'P sin (7 ( )";; •I)_+ + V(4) --.- :.-

Considering that, for all practical purposes, the. difference s- 9 ' "

is slight and, consequently,

Cos (-,q•,1 • !

sil (. -- ) , (5)
D =Vp-- V,,..-.. .:.

we get

Vp," - D + 2..D b V ' ± l @( -- ). (6) ..-.. ,-. -"

Rocket acceleration perpendicular to D is, on the one hand, equal".-

to -•eD; on the other hand it is equal to the change in tangential
velocity

V. sin ')
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with time, i.e.,

dVp i
dt sin T).

Thus, since
,p(cs,-- ?) - •,,(7),N•-':;..j. ;:,

Vp (7)I

then

The kinematic load factor of the rocket is defined by the formula

vp9 - (9) V I "
Sg

Substituting (8) into (9) we get

lip (29-~ (10)

Solving (10) simultaneously with (2), we get a formula for deter-

mining the polar coordinates q, D of the interceptor:

% Vp -' .V.).

With target maneuvering with angular velocity w Relationship
(em

(11) assumes the following form: I,-

sin -- D It- ,, (12), tL

-. Then the zones of possible firings are determined in the fol- "-.-.---

" lowing sequence. We are given several values of rocket flight time

t and, from the characteristics of the rocket, we determine the

appropriate values of rocket speed V available load factor n , 4_

and distance D Then from (11) we calculate the corresponding

angles q8 which characterize the angular position of the interceptor .

at the moment the rocket meets the target: points 1, 2, 3, ... in

Fig. 2.17. From points i, 2, 3, ... we construct pursuit curves

1-1', 2-2', 3-3', ... for each time t . Obviously, points 1', 2',

3', ... define the position of the interceptor at the moment of

rocket firing. Connecting these points and considering the required

NbJ.- % S5• ,5 , .' 5 . * - -..- - -5 . :- ....--
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limitations (e.g., with re-

spect to minimum and maximum

2 ' distances), we obtain the

zone of possible rocket
• k., firings.,,'.. ..- .z¢/.. \ ,.. ..- ....

"PROBLEM 2.11. The

interceptor and target are . _--_

at the same altitude and

close with constant speeds. ".

After the airborne radar Jocks

on the target the inter- t B

ceptor fires a rocket which

is guided to the target by

Fig. 2.17. the pursuit method. The

mutual positions of the inter-

ceptor and target at the moment of firing are described by the firing

distance Ds = 0.9 km and the target relative bearing 1, = 1550. T- .

speed of the rocket as it flies toward the target is a_::-uume to be ... "- . - --

constant: Vp = 1500 km/h. Determine if the rocket can score a

direct hit on the target if the target speed V, = 1000 km/h, the

available rocket load factor n = 10, and the available rocket con-

trolled-flight time t = 20 s. Can the rocket hit the target if,

under these conditions of rocket firing, the target speed is half

as much?

Solution. In the pursuit method, as we know, the rocket's

velocity vector is constantly directed toward the target, and the

rocket relative bearing is zero. The genera) formulas -r 'f- Jne

pursuit method were obtained in Problems 2.1 and 2.2,

To determine the possibility of the rocket's hitting the target .-.

we must calculate the rocket load factors, required for this method

to be carried out, as it closes with the target, and compare them

with the available factor np 10. Then we must calculate the .

target pursuit time along the pursuit curve, and also compare this . o>>.,-:.

%%%,

,7 ..- .,,." 1* .-,. S-.,
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Swith the available rocket controlled-flight tir.+ t 20 s. Ac-
p

cording to Eq. (3) of Problem 2.1, the angular velocity of the

rocket required to carry out the pursuit method •-.-.g
• o~~~p --•. ~V. sin y,, --".' .: ,+

Knowing wp, we can easily determine the corresponding rocket load

factor np. Since the normal rocket acceleration ap is defined,

in terms of angular and linear velocity of the rocket, by the familiar

formula

a, =W V9, (2)

while the centripetal acceleration is connected with load factor n

by the relationship

4 ~~~~~ap=gll n-.()'.-._•;

then __ __

from which the rocket load factor required for the pursuit methcd-

"=1 + V (5) +

SFor the conditions of our problem, in the first case when V = -00

km/h = 278 m/s and Vp = 2500 km/h = 416 m/s, for the firing moment

"we have wp = 0.131 rad/s and np 5.5. !*

='The rocket flight time along the pursuit curve, according to

Eq. (11) of Problem 2.2, is

. 1". , OS 900 (1,5 - cos 155)'

* -- t=w = w - =w ,---

In this time the target covers a path equal to 6.4.278 :1780 m, ,•,[.••

while the rocket travels 6.4.416 = 2680 m. Constructing, for th.e
" ~~starting data of the problem, the mutual positions of the intercept-r ,•2..'

" -. -. .I N



and tage at temoment of'~*.
yK.4Efiring, and then constructing,

Impact point
as stan;ards, the rocket load

2, factors along its flight tra-

jectory (required for carrying
2,0 ou'. the pursuit method), we ob-

~#:V prob~lem (for clarity the axes

2,5 P to the lef tdifrn
inFi .2.1 have difeen
sca~e).The construction in

40 Fig. 2.18 shows that in the ex-
'4 amined case the roc2ket meets

the target -3 km from the firing
Up VP point, while the rocket load

fp"tor, required to carry out

U 0)110,2 0,3 4,4 x, -AI 0, 0,120 jO .A the pursuit method, is maximum
Firig pint Firig pintat the start of the trajectory

Fig. 2.18. but less than that availableZ.-A,
n = 10, and then, as pursuit

begins at target rel~ative bearing 9 1800 it smoothly decreases
to zero at the moment the rocket meets the target.

Inthe second case, when the target speed is half that given

*above, V LA= 500 km/h 13 J m/ lus, b V /Vt 3 ., w 0 .0655 rad/s,

i n = 2.55) and tro 3.2 s.
P nor

In this time the target covers a distance of 3.2-139 =4145 m,
while the rocket travels 3.2-416 = 1330 in.

Further calculations show that in this case tne requ.4red rocket
load factor at the moment of firing is minimum, but with time it
constantly increases and at point A reaches an infinitely high value.
For example, after 2.5 s the distance "rocket-target" D 100 mn, r

z 7Q0',w = 0.24 rad/s, and nP = 10.3.

Since the available rocket load factor is limited to the value

64
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np= 10, in this case the rocket passes to the left of the target.

The solution to this problem is interesting in that it shows
the required boundary conditions for carrying Q.ut the pursuit method.
It seems that this method is accomplished only when the following N -

condition, necessary for realizing the method, is satisfied: the
ratio of absolute rocket velocity to target speed should be within
limits from 1 to 2 (it must be greater than 1 in order to overtake . *
the target, and less than 2 so that the load factor not exceed that

available).

PROBLEM 2.12. The rocket is guided to a target in the same
plane, using the constant-bearing approach method. Given: the r.-.

4J target relative bearing t, the ratio of
4 44 ý the average absolute velocity of the rocket

to the target speed V /V . Determine the
rocket relative bearing T for which the

homing method is carried out. What velocity -:.-'.<.

" f l relationships should we have in order that the
homing method be carried out when the target performs

heading maneuvers?

Solution. For the constant-bearing approach method
Fig. 2.19. (Fig. 2.19) it is necessary that the line of sighting

remain parallel, i.e., the angular velocity of rotation of the line
of sighting should be zero. Consequently, the projections of the
vectors of velocities V and V onto a perpendicular to the line ofu, p
sighting should equal one another. For the case of rocket homing

in a plane the following condition should be fulfilled:

T /=arcsi n rk

Obviously, for a nonmaneuvering target and constant target and rocket
velocities the rocket relative bearing-•p = const. As the target
changes heading and speed, the rocket can hit the target only when
the projections of rocket velocity onto the line of sighting and the

S!~.. - .. * .65
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perpendicular to it are greater than the corresponding projections

of target speed:

VP sin % > Vl sin y,, and Vp cosf, > V, I cos , -.7."

PROBLEM 2.13. The rocket is guided to a target by the constant-

bearing approach method. Attack on the target is carried out from

the forward hemisphere, at target relative bearing (pL- = 500. The

mean absolute velocity of the rocket Vp is 1.5-times greater than

that of the target V . The target maneuvers with lateral accelera-

tion au = m0 r/s . What should the available rocket load factor be

in order to counteract this maneuver? At what aspect angle is it--

best to attack the target from the standpoint of countering this

maneuver? How will the required rocket load factor change if: 1)

the velocity ratio V /V changes from 1 to c, and 2) the target
relative bearing changes from 0 to 1800? "

Solution. Since in the constant-bearing approach method and

with target maneuveriýng the line of sighting is displaced in parallel,

at any moment of time the projections of velocity vectors V and V
P 4

onto the perpendicular to the line of sighting are equal to one

another: -

V., sin -p. = I, sin ,.(1):'--....-',•

When condition (1) is satisfied, for the angular velocity of the line

of sighting to be equal to zero during target maneuvering we should
have yet another equality: 

i%-.,,-,

ap cos 9p aa COS 'P, (2)

where a is the target acceleration and a is rocket acceleration.
4 p -.. -...

From Eq. (2) we get the calculation formula for the rocket

acceleration required to carry out the c.:istant-bearing approach

method, when target maneuvering is described by acceleration a :

'41°7 == a (3 ) ' " + ' ". .
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Let us express the value of cos cp in terms of ( and the velocity
F 14
ratio V /V. According to Eq. (1) we have"" s'.;

\ V*. /.. a* .

and, bearing in mind the properties of the inverse trigonometric --,'-.-z•.

functions, we get

cos"' 1 (5)

Substituting the given numerical values of (p and V /V we get

cosP = 0,943.

"The required acceleration of the rocket, according to (3),

a = 36.7 m/s,

- while the corresponding rocket load factor

Naturally, the rocket load factor available to counter the

[* maneuver, i.e., to carry out the method of constant-bearing approach

*: with consideration of target maneuvering, should be at least 4.15.

In order to select the most suitable aspect angle for attack

on a maneuvering target, i.e., determine the aspect angle for which

the required rocket load factor is minimunp, let us construct the"-.

dependence of the acceleration ratio a /a on the target relative
p14bearing T for the velccity ratio V /V = 1.5. Substituting (5)

into (2) we get p_ _

:' ••• ( 6) .'4':. ''":
-;~~~~ct t.:fli,.: .. .

A graph of this function is given in Fig. 2.20. Obviously, it is 0

"'. more suitable to attack a maneuvering target with target relative

- bearings clse- to 900; the load factor required of the rocket to

counter this maneuver and satisfy the homing requirement is minimum.
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p. -. -.-. • In Fig. 2.20 we see how the re-
quired rocket load factor changes

"".t• .•. P/'," with a change in the velocity

ratio Vp/V from l tow.

0,4 "T

0,2- PROBLEM 2.14. The rocket is

.. J fired from the forward hemisphere
0 7A 60 ,9 C,- IN /so • of the target. The homing method

Fig. 2.20. used is the constant-bearing

approach method. The angle of impact of the rocket with the target

q = 1500 (Fig. 2.21). Determine the minimum permissible firing

distance D if the permissible error in guiding the 4

rocket to the lead point at the moment of firing ... .

Ar 10°, the target speed V. 500 m/s, the -

mean absolute rocket speed Vp 1000 m/s,

and '-he maximum available rocket load y-impact

factor np= 20. point

Solution. The minimum firing dis-

tance according to the law of cosines is '•

,= (PY) -+ (Y/L. - 2 ('Y) (YU/) cos q. (!)

Let us determine the distance PY covered Fig. 2.21.

by the rocket from the time of firing to impact with the target.

Since the angle Al is small, the length of arc PY differs only

slightly from a straight line, and then, from the formula for deter-

mining the chord length we ha-

P'!214 , sin- My.

Angle a/2 is equal to angle Al, as angles with mutually perpendicular

sides. Replacing the sine of small angle a/2 with the same angle

expressed in radians, we get

PY 2RP, AF. (2)

Now let us determine the distance Y1 covered by the target from the -"". ".

moment of firing until it meets the rocket at the lead point. Since• .•~~'9. -4., . ' - •
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for the method of constant-bearing approach

Y11 Py ,, ,•. . .

the,

Y/L=V -V ,77P

while if we substitute the value for PY according to (2) we get

,•--•.~111 2- RPov,•.,,,•. (3) "•""

Further, let us determine the minimum radius of banked turn ..f the

rocket with respect to the given maximux. available load factor:

"Zubstituting (2) and (3) into (1) we get a calculation formula for

the unknown minimum permissible rocket firing distance

.MM 2Iop.iiAF I + (.)-2 cosq. (4)

For th• data in our problem we have D = 2.63 km..• FI~~~. MHH - ""--

PRODLEM 2.15. Rocket flight by the constant-bearing approach

method with constant target and rocket velocities is characterized

by the absence of lateral rocket load factor (np = 0). With a

change in rocket speed on the trajectory (with the other parameters
and cp constant) there arises the tangential rocket load

f Lctcr necessary for restoring the constant-bearing approach rethod.
We express the magnitude cf this load factor as a function of the

target and rocket speeds aid relative bearings. Calculate this load

factor if V4 = 375 m/s, V = 7`0 m/s, TL = 300, tangential accele--
'4 2 p '

ration a 100rs . How does load factor n change if the target

relative bearing changes from 0 to 900?

Solution. T' e value of the lateral load factor n is found ty
p

solving the following system of equatioizs 4hich describe the kine-
matic relationships among the parcmeters of t:.e rocket and the target

when rocket motion deviates )rom the constant-bearing app:,oach method:

69£

IV 4W IVV

77 ,,'_7. -7 7 r.• .-,_-- -'-..- -,.. .: -- . . . + ,. -. -._-.....-, -- . -- -.--.-.- , .. ,- v .....- . ..- . , . . .
m -:.--: .. .*....-..... . .,, **~...~ -..- -*................-.......-..--...... ..... .-.......-. -p .'. ." .'-.-,-.

-- *''- •< L**.,*p-"*", . * " / ; ,-''''''. .,':". -".,.'..--.' .. ., ,'.< -. ". .- '-",• ".--" '- ". -. . ." "..." ""''"



-- -. - o

%;:A %

Vsin (PP V, sii f , (s1 ) -? .-

[]• 3 =p+ •'a.(3) [Pdtgu (2)

Yp+ ?a F- -'

Let us differentiate Eq. (1) with respect to time:

' : '-27-~~d V I sin (? P + V P c o i y d - = V , o , + d V L sin % .( 4 )• " -. . z

For the constant-bearing approach method we have

Consequently, Eq. (4) assumes the following form:

dVP

-""sinmp+ Vpcos%ýP di

Now let us differentiate (3) with respect to time:

From Eq. (2) we have

1',, d3 , l.p=-. ,- - '-

while with consideration of (6)

'." ~ ~~n• g at ( )"";, •-

Let ,,s substitute into (8) the expression dp /dt as per (5).
p

Then

1 dVP sin r.
". g dt co sp (9 )

Let us designate acceleration of the rocket ao

dV. . . .

and the velocity ratio V /V by b. Then frc . 9q. (1) we have
P L"

sin (? Sin si Ta. (10)

Since

'w 7 0, -'.-, .. . ., - .'0

.. ::...: ..-...... . ...

:: ... .. "...:--
.. ..... .... .... .... .... .... .... ....

li- w -- •.. ...... ...... ..... .... .. . ... ......- ,.. .. ,.............-
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<- <:.•..•: ~ ~~~CO S % , 1 -sin ' sin ' . n • . - -

substituting (0)) and (11) into (9) we get a calculation formula for

the unknown tangential rocket load factor:

ap sin ia. ;
"(12)

-g Vb-sinl"Y.

For the numerical data in our problem we have b = 2, ap 1002 2
m/s ,I 30', and np =

Now let i = 600; then np = 4.9. When p= 90°, n = 5.9. ,-

Thus, with an increase in target relative bearing 9from 30
to 900 the lateral rocket load factor increases by a factor of
5.9/2.64 = 2.25.

Let us note that with rocket velocity characteristics V = f(t)
we can easily fin( the law of change of rocket acceleration a =

dV /dt and then, using Eq. (12), the law of change of the lateral
p

rocket load factor as a function of flight time.

PROBLEM 2.a6. A rocket is guided to a target using the constant-

bearing approach method. During the steady-state homing method the
target begins to maneuve:0 by banking, with a load factor n* 4.

In 10 seconds the target comes out of its bank and continues straight-
line flight. Determine the required rocket load factor to counter

this maneuver. Assumptions: V = const, Vp = cnst. Given the

following conditions: V = 400 m/s, Vp = 800 m/s, (P 3 0 c.
Q LAO.p7

Solution. Let us use Eqs. (1), (2), und (3) from Problem 2.15. r

Let us differentiate (1) aith respect to time t:

. -sin+ Vd ct-- sin -r + V• cos dli (c)

while considering V= const and V = const we getVp uL. . .

VCS dt l (2)
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The rate of change of the target relative bearing is equal to the

angular velocity of the target:

Considering (3) we get ,-.-'-.d -

fit VP cf..,

Further, let us differentiate (3) of Problem 2.15 with respect to
time t:

d; d*;. d1
7t_ __d (5)

From (2) of Problem 2.15 we get
--- • V •d (6)""""'""

while with substitution of (5),
(dip .- dya (7)
S - ,. ,, ." -'

S\t +T dT j

Then, with consideration of (3) we get

: - -- •,-• + "4 " (8) .,--.

Since

cos ?.. = 1i -7 sin (?+ Wt), (9)

the calculation formula for the unknown rocket load factor takes on
the following form: "+ +

flpw+ (10)

For tne numerical data of our problem we have

g. '4 -1 V,

g Va;.....,..V:--".:: ' ".
.= 1',• _,Z -,, [ -1- j -7 'L"- Z ""-• ]+ W"'"'J,--

+ o,'y)

n.=21f-16-1 I+ . + .,- =10,
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PROBLEM 2.17. Determine the amount by which the rocket will

miss the target if, in the final phase of controlled flight before

encountering the target, the rocket deviates from the kinematic .

trajectory of the constant-bearing approach method which it is per-

forming. We are given the values of target and rocket speeds and r
relative bearings: V = 500 m/s, V = 1000 m/s, P 30 ° q p 3P0'

14 14
and thp distance "rocket-target" at which the rocket does not satisfy

the '-? , of constant-bearing approach (continuing on linear flight)

D =00 m.

Solution. A necessary condit.. n to carry out the constant-

bearing approach homing method is that the angular velocity of the

line of sighting be equal to zero. When the method is disrupted %.%

h a, we have an angular velocity of the

line of sighting w # 0, and the ,-

.• Vrelative velocity vector V is
c6ni

v no longer directed along the line of
sighting, as when the method is

precisely carried out, but forms a

"..." certain angle v with it (Fig. 2.22). _______

- •P Disruption of the homing method in

"the phase before target impact also

leads to the appearance of miss r

Fig. 2.22. whose value equal.- the sh.rtest
F 2distance between the rocket and the

target. From Fig. 2.22 we see that miss r, perpendicular to the

closing velocity vector Vc.., is equal to

r = D sin;,. (.)" .

The closing speed in this case will be determined from the relation-

ship

V 6 ,. V , c o s ( ? p 1" ) + V . o s , ,, 0 . ,2

e component Vc6 sin p is the linear velocity, associated with the -

"angular velocity of the line of sighting by the familiar formula
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V a o , s ,i n 1 L ( -) ,D , ( 3 )L -: ; ' . : •

from which..

w

sin sin Vc (4);

while considering the fact that angle is small •-c"

Vai = V. cos ? -t V, cos ,?,, .(

Then •!i•[!!l

• _. ,.D J'-". "-.'*.;.":.
-" s,~~~~~~. ,. =--.(6)*_:,.:,

sin.1== (6)

Subst~ituting ()into (1), we get the following formula for the
rocket miss:

where

b= V.cos ,p + V,, cos ?,,; (8)
Va sin -i - V. SIn 9p - "

- (9) L ..

Thus the miss of a rocket when the method of constant-bearing

approach is not fulfilled is directly proportional to the square
of the distance "rocket-target" beginning with which the rocket S.
leaves the kinematic trajectory of the constant-bearing approach

method.

For the numerical values of the problem we have

500 sin 301 - 1000 sin 30•4
o---25 rad/s,

D=1000cos30o+500cos3O=I1297 m/s,

I (K)'.25r - ---- =19,3 m.

Let us examine a simplified method for calculating rocket miss .- "
with target maneuvering. In this case, when the distance "rocket- °. . ..

target" becomes commensurate with the miss value r, Eq. (7) cannot -" ..-.
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be used. The error of Eq. (7) can be estimated by assuming that,

beginning at this time, the rocket and target move with constant

normal load factors and with constant speeds V and V . If D is

not too large, D/D is, with sufficient accuracy, equal to the time

tAt remaining until the rocket encounters the target. Consequently,

the miss
Sr =' •t.'),,,, ,t. ". -

Further, let us estimate the rate of change of instantaneous .-. '

miss r(t) with time, assuming r = const. Let us differentiate (7)

with respect to t. We then get

r: '= (Dý. + 2b-,) -i a(v,,i-vzp (10)7117

If At is small, in this time the instantaneous miss r(t) during

"maneuvering of the target and rocket with constant load factors

changes by the value
" ~ ~ ~ ~ ~ A = =--• *v÷ v,,)(l) "

Thus, having estimated the rate of change, we can write a more

general formula for calculating the rocket miss, taking into account

rocket and target maneuvering:

PROBLEM 2.18. A rocket is guided to a target by the method of

proportional navigation. The navigation constant k = 4. Construct

the rocket flight trajectory for the case when the target flies - - - -

linearly and with constant speed V = 1500 km/h. The absolute - -averge .<.. .-.

average speed of the rocket Vp km/h. The mutual positions of

.. the interceptor and the target at the moment of firing are described

by the following parameters: distance "interceptor-target" Dn, -.-.--.-

* target relative bearing q= 900. Construct the rocket flight tra--

jectory for interceptor relative bearings at the moment of firing

"= 30 and 600. For each case show how the rocket load factor re-
quired to carry out the homing method changes as the rocket closes '.,-'--

with the target.•'." L' ~ -.'.'-"V .<

715J

•* ' ~. - .*A - ,'-. ** . - .' =- .' -'-
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Solution. Guidance by the proportional navigation method is

characterized by the fact that the rocket flies such that its angular .. .

Impaet point velocity is k-times greater

than the angular rate of dis-

0 placement of the line of sight-

7' ing, i.e., the control law has
the following form:

reference axis (it fit

Fig. 2.23.
In other words, the rate of

change of the rocket relative bearing is proportional to the rate

of change of the sighting angle. The coefficient of proportionality .

k is called the navigation constant. In the particular case when

k = 1 the method of proportional navigation becomes the pursuit

method. Figure 2.24 show the kinematic rocket flight trajectory

for the conditions of the problem. The nature of the change of the

rocket load factor required to carry out this homing method is shown

in Fig. 2.25 as a function of the distance "rocket-target" for various
relative bearings of the interceptor qn at the moment of firing. %

Solution of the problem illustrates the advantage of the proportional

navigation method over other homing methods: the required rocket load

factor has decreased by the end of controlled flight.

V4  Impact point P

Impa ct1" 3O0r 6 .--

* VP

Firei
reference axis

Fig. 2.24.

Fig. 2.25.
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PROBLEM 2.19. An interceptor attacks a nonmaneuvering target,

one which flies at constant velocity and at the same altitudý as the'-.

interceptor. At the moment of rocket firing the target relative

bearing 9 = 900, the interceptor relative bearing T, - 0, the dis-

tance "interceptor-target" Dn = 10 km, the interceptor speed Vn.

4= I00 km/h, the target speed V = 1960 km/h, and the natural
average rocket speed VP = 700 m/s. The rocket is guided by the LZ.

proportional navigation method. Construct graphically the rocket L -.

flight trajectories for cases when the navigation constant k changes

-" from 1 to 20. Show, for these values of k, the nature of the change

of the rocket load factor required to carry out this homing method - •

as a fui.ction of the time of controlled rocket flight. --1i

Solution. Obviously, the larger the navigation constant the

greater the curvature of the rocket's trajectory immediately after

firing and, consequently, the greater the rocket load factor re-

quired at this moment. As can be seen from the graphic construction

%4  Impact point VU Impact point. V, Impact point -

VP

22

P V4

T4.

r: '

Fig. 2.26. Fig. 2.27. Fig. 2.28.

of the rocket flight trajectories (Fig. 2.26), for any k, after

initial curvature of the trajectory, as the rocket closes on the .4.

target the trajectory straightens and the required load factor re-

duces to zero. Solution of the problem shows (Figs. 2.27 and 2.28)
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-that for all practical purposes k can be no higher than 10, since

"for all k from 10 to w the nat .re of the flight trajectory is the ..-.

same..

This and the next problem graphically show that the proportional

navigation method makes possible successful attacks on targets at

large aspect angles.

PROBLEM 2.20. A rocket is guided by the proportional navigation

method to a target which performs heading maneuvers. Show how the

relationship between the rocket load factor required to counter the

target maneuvering and the target load factor as a function of the

"* distance "rocket-target" changes for various navigation constants k.

Find the dependence of rocket miss on target maneuvering. Assump-

- tion.: the target and rocket speeds are constant.

Solution. According to Fig. 2.23 the equation of proportional

guidance is written as follows:

4 pt dt

The kinematic equations of motion of the rocket and target can be

* written in the form of. the projection of the closing speed on the

"line of sighting: ..- Ž -- •-
b" =V. Cos Q-- -a V, Cos ('?V--0 (2)

and the projection of the closing speed onto the perpendicular to

"* the line of sighting:

D = V. sin (-- o) -Vp sin (Ip). (3) 0

.. Differentiating (3) with respect to t, considering the given con-

- dition V const and Vp = const, we get

; L ) ' -C o s 9 p -) ( 4.-)

where a4 is the projection of target acceleration onto the perpen-
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TJY!

dicular to the sighting line: a = V cos ('t - a)o.

Equation (4), with consideration of (1), gives a first-order

differential equation relative to the angiular velocity of rotation

of line of sighting a.

Based on the condition Vp const we can assume that the closing

speed "1rocket-target" D and the projection of the rocket velocity onto

* the sighting line Vcos (C p -__) are constant. Then, integration of

differential Eq. (4) with a• const gives the following solution

relative to the angular velocity of banked turn for the rocket (the

rate of change of target relative bearing q9)

• -• • • D 7.-

1. -- -- . -.. '
+ (5)

T!1 V " o5;;-2

where

(6)

is the so-called effective navigation constant. According to (5), :" -

when X = 2 the acceleration of the rocket throughout the flight is

constant. r :-

With a decrease in X the rocket load factors required by the

end of the flight have increased, which can result in an increase

in the misses. When X > 3 the rocket load factors decrease with

closing on the target.

The second term in (5) describes the rocket load factor required

to counter the maneuvering of the target.

Figure 2.29 shows the dependences of the ratio .-f required
*, rocket load factor to target load factor on the relative distance_- .
* "rocket-target" for various values of X. These dependences show

*: that with X = 2, for interception or a maneuvering target the re-

quired load factor increases to infinity at the moment of impact

79
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Ip - with the target. Obviously, the optimum value

of X is within the limits of 4-8.

8 Now let us find how the rocket miss, with

I-: I homing by the proportional navigation method,

depndson argt mneuerig.Tah'e mankeuvera

on he asi of(5)canbewritten as follows:

Acorig oEq. (7) of Trbe 21he rocket msfoouexploe

For the inertialess rocket load factor control circuit the l~oad ..
factor required to carry out the proportional navigation method is

conce with the angular velocity of the line of sighting a and

'hecloingspeed Dby the dependence

Da. ~(9) 0
9'

* Substituting (9) into ()we get

npgD 2
r L52(10)

whie wthconsideration of (7) the formula for calculating miss as

afunction of target load factcrr assumes the following form:

bnL2 2) jA~

For very long firing distances (D + x)the required rr--ket load
n1

factor in the final homing stage, to counter the target maneuver, is

described by the load factor n, which is determined by the 'Limiting

LAA

(12)

while the miss
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CHAPTER 3

THE TACTTICAL-TECHNICAL CHARACTERISTICS OF A FIGHTER-INTERCEPTOR

In this chapter we pvesent problems whose solutions allow

quantitative determination of the combat capabilities and combat

characteristics of a bingle fighter-interceptor. First we derive

general equations for combat maneuvering and give methods for cal.-

culating the ranges (regions) of combat utilization with respect to

flight altitudes and speeds (Problems 3.1-3.5). We then establish

the interconnections among the basic tactical-technical character-

istics (Problems 3.6-3.13). The most important maneuver character-

istics (specific excess power, available load factors, turn radius
and time, and rate of climb) are calculated for the widely-known

F--LC "Phantom" fighter.

From the solutions of these problems we obtained general graphs

and nomograms of the dependences among the follo.'ng;

- the aerDdynamic and strength restrictions of the regions of

coabat maneuvering, flight speed, and flight altitude;

- flight range, takeoff weight, fuel weigbt, .ngine efficiency, .'.-..

ca.rif.ic va)ue of the fuel, and lift-to-drag ratio (!.DR);

'- light s-eed, fl]ght altitude, takeoff weight, thrust-to-

___h ratio (TWE), lift coefficient, drag coefficient, and wing area;
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- the basic tactical-technical characteristics of the airborne
radar, the armament system, and the aircraft.

PROBLEM 3.1. Compile, in general form, equations for the three-

dimensional maneuvering of a fighter-interceptor.

Assumptions:

- the fighter-interceptor is examined as a material point; _ _,_

-- thrust P coincides with the longitudinal axis of the plane
and with the wing chord (the component of thrust in the direction
perpendicular to the trajectory can be disregarded);

- the wing angle of attack is small and can be disregarded.

Let us examine the problem for two cases: I) without slip, and

2) with slip. 
.

Solution. Let us select the coordinate system associated with X-

the fighter-interceptor (Fig. 3.1): the coordinate origin 0 is

placed at the center of gravity of the aircraft, axis Ox is directed

along the velocity vector V axis
Oy is perpendicular to Ox in the

vertical plane passing through Ox,

and axis Oz is perpendicular to
plane xOy. Three-dimensional

U maneuvering of the fighter-inter-

horizon ceptor can be described by a
system of equations of the forces

acting along the axes of the selected -

selected coordinate system. The
sum of the projections of all ex-
ternal forces onto any of the axes

z is equal to the force of inertia -

Fig. 3.1. acting along the appropriate axis.

Let us examine, as per the conditions of the problem, the first

83

-.- %.

* -w- .- ~--~ -- %-j. - -• -. .



case, i.e., when the slip angle a (the angle between vector Vand

the aircraft plane of symmetry) is zero. Then~ the aerodynamic force

can be represented by two vector coinponents: lift Y and drag Q

(lateral force Z =0). For this case, considering the given ~*
assumptions, we get the following equations for force projections:

k....Gonto axis Ox

onto axis Qy

wher W~ti=='COT;GCSO;(2)

referencet dietin ednrt)

Heemis the sercnrase, mae, Gis the af we lipt (e is 0), wraechave
* anger fore anl between the caloeithe vecutiosor V n the forcesn'

y acinsal the bn axges ofi the selectied coordina the system Oetwear

wrthen asrifontlos pricno h eoiyvco nadteslce

in thesecondcase, sinTzh sip(a ), elav

systeml fof Z qs r. i5n7 deis cribe the mq-onstgenrl case fofrtre-s

ac "'''g' aln 'eaxso the figher-nte orciaessept m Byy ineratne___

write as..follows...:

- . -.. ~.,- - . -.. -(5).

M?.. . e= P Q ';.'siTY~.- css'T -i O (6.. . .

* . . . - .sn,3cos-; Q.. . . . . .T
. . . . ..-- .... -... ...---. -... . . . . . .-(7)-

* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ :i *..*..*.* * +...- Z Co 1, Co T...----..--

Systern~~ ~ ~ of*... .qs (5-7 decrbe th otgnrlcs*ftre



these_ sy.te.Tms .of differentiai equations of motion we can calculate

Saqy, parameters and. -hree-dimensional qoordinates for combat maneuver-

PROBLEM 3.2. Cohsidd-ifig -the- assumptions made in Problem 3.1, 1 ,__V.,
derive the basic equations that describe a combat turn, a change
in heading during level flight, and acceleration with straight level

flight.4

Solution. To calculate the parameters of a combat turn it is
necessary to express the nature of the change in flight speed V and

trajectory angle e with a change in heading 4. Let us use system of
Eqs. (M)-(3) of Problem 3.1. Dividing (1) and (2) by (3), we obtain
differential equations for the combat turn:

d?' =VC~OSOUn-;C SM

Ay (2)

Let us note that when integrating (1) and (2) we must be given

the dependence y = f(q)), i.e., the nature of the change in bank angle
as the combat turn is performed.

2. With a change in heading in level flight we have = 0.
Then system of Eqs. (l)-(3) of Problem 3.1 assume the following form:

ml)', = p-- •, ~~(3),."•.,, .

mg Y cos r; (14)
-mV,4= YsinT. (5)

3. For the characteristic of fighter-interceptor acceleration
with stral;ht level flight we must calculate the dependences

V.=(t) and x=Jt). I..

where x is the distance covered by the fighter-interceptor along

axis x. The current velocity value V is found by integrating Eq.

(1) of Problem 3.1:
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(P-Q) di; (6)

in aerial combat the movement of a fighter-interceptor is de-
scribed, as a rule., by a complex three-dimensional trajectory and
unstable -flight conditions with continuous changes in altitude,

speed, and heading. Ho-wever, the characteristics of steady motion5- -M

21in a single plane are of particularly important practical signifi-

cance. The following problems are devoted to a quantitative estlmate
of thise characterlscics.

*PIROBLEM 3. 3. Calculate the boundaries of the region of combat

mnaneuvering of a fight-er-interceptor, those determined by the avail- 7

able engizne thrust and by aerodynamic and strength limitations.
Construct the boundaries withi respec-t to levei-f±ight speeds and

* a.ltitudes, i.e.,"in coordinates H-H. Known: the average flight

P,~ k9~ weight G-, w ýing area S,
.1500-I jthe characteristics of

~ Iavail able thrusts as func-
I'T tionsj of lIM and H (Fig. 3.2),

and the dependence of the
I I -~ a ero dynamic coefficients 4

0r00cX and A on M (Fig. 1.9).

-I In addition to the family
12000~- A 'h oundaries of combat -

fl00 1 m-a--I neuerig, construct th e w

deedeIý of'! -1--J1t-
8000possible 'powerI altltude on-

P0 0 0
I}V IM for various loads on the

____ ___ wing.

-.,0 Solution. On the basis
0,4 08 1,2 ,6 2~2,4 ~ of the general equations of ..

Afterburner pcweT :

No afterburner rower motion (see Problem 3.1)
__ -'for level flight, from the
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-conditlinearity of the- trajecdtory- we have

From the condition of -equiilibrium, which keeps the flight speed con-

st Ant, we have'K

Q-Pco~=O.(2)

Since the angle of attack a Q00, for all practical purposes

Y=G.;Q.P. (3)

Let us introduce designations for the coefficients of l'Ift, drag,

U.; weight, and thrust:

c,-L = . CO 0 CP- 4

Here the veloci-ty head

q(5) -*

and the air density

P____4 (6)

We know that for flights at al~titudes from 0 to 11 km the thrust

at constant velocity depends somewhat less on altitude than on p.

Therefore, for altitudes H <z 11 km the thrust coefficient can be

calculated from the formula

(CPI..)a-pil..oO+ (7)

*For altitudes H > 11 km the thrust decreases almost in proportion to

p and, consequently, the thrust coefficient is practically ±Andepen-

dent of altitude and is only a function of velocity V. Thus, with

V =const

C =C const (8);

This allows us to conclude that for calculation of the region of ~ **---

* ~combat maneuavering it suff'ices to know the characteristics of the
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Lt tw ~t
available thrusts as functions cf M for two altitudes (H = 0 and

3=11 kmn), while Eqs. (7) and (8) are valid for the entire range of

altitudes. This assumption greatly simplifies the calculations and

has pract i-4ay no influence on the accuracy of the results.

The Pircraft draz polar "i represented by the parabolic depen-

c dence -

V A

w Aee a.a are given by a ai n i. 1•.9

nostitute cbtrc.: (9) into (4). We then get the fol-

for the velocity .head Li

__,_,, .(10)

U•sing Formula (10) let- us f -_ the bounaa-rUs of the region of combat

4--

-aneuver'_nc•,• with; res-et"-t -u av:-ble -,thn.-s••

The caIcu -1a t ion S eqau en-4ce is aý f o w s:

gie t',•,he !.,,;erp-epto-v f'liz spend in Mach rambers M;[

-- find t-hrust :;,m t- labia-thrust characteristics
:: ;. 3.2'.' r

- de.•e .ine the ,ol.fi ci:. ; 4  A and c:0 from the graph (Fig. 1.9);

3-.u±, e ,e ,- ei h <", :.c, :o . (10);

- a~i l e ; .r,_,"; .'.1- 'i,: C, ro Ea. a ;[{

-- fi.t f'o:I E- . me " .,ue of air densax •, -', ccr:"-z -

-- uet ,<, - 7. ••_for U> value of lp from ISA (In- r. -
"L-'-- LL• '. ",,•.-.1P - -_.'.. P -. tV :. ... p~-:-. v-;•- 4-:

2 -. •.G..-n to. " 'e-t...• J. .mtations, the region of corn-

-I-. m.,2FC.-.;:-_'<4 Is a`ks cc. 2 :vx :t.t-ions on stability and

- i7a S r t Ž reit "aracteristics of the plane.

e I0 -.. '-i-

copY ,;<::-.;s .
Rep."

Scap ....-. '
best av



The aerodynamic limitation for uniform level flight is defined "

by the limiting value of the lift coefficient cy npeA found from

the formula

For calculations in first approximation we can set c n.Y nPeA
Then, substituting this into (11), azd given the values of H, from

the ISA table we find the corresponding values of p and then H.

A

The restrictions due to aircraft design strength are expressed
by the maximum permissible velocity head qnp• and by the maximum• %---,----'

possible heating temperature TH. Knowing q, let us find the values

of H and M corresponding to the boundaries of the region of combat

maneuvering; we use the formula

=v= i/-- (12)

The limitatibns imposed by heating are defined by the formula

(13)

where T is the desired temperature with maximum velocity head; TO

is the temperature of the ambient medium.- ,

Figure 3.3 shows the results of calculations of the level-flight

altituc,.k and velocity limitations using Eqs. (12), (13), and (11)
2with q = 5000; 0,000; 15,000; 20,000; and 30,000 kg/in"- T,- -

100, 15D, 200, 250, and 3000c, Cy npeA 1 for G/S = 200, 400,
600, and 800 kg/in2.

The same figure gives the family of lines of constant power

altitudes:.,.,...

H. H_. V (14)-

Along line H the interceptor has a constant power level from

which we can Judge as to the power reserve, which is important when

estimating three-dimensional maneuvering when one form of energy
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.4'.

AIM4

200

is converted to another.

available thrust, can perform various maneuvers. Let us examine Wihnteeotieaein h fgtritretr sn ,~

quantitative estimate of the maneuvering capabilities within the

PROBEM 34. Fr afighter.-interceptor of the F-4C Phantom,

typeletus alcuatetherange of combat velocities and altituLIes

whih caraterzesitsmaneuvering capabilities in aerial combat.

Give: te aeodyamicandthrust characteristics (Figs. 1.9 and

3.2, te vergeflihtweight G = 17,600 kg, wing area S = 49.2 inm

Consdertheresricion onmaximum M (M npe 2.1), velocity head
(q900k/m) adstability (c 1).npeA y npeA

Solution. As the most general criterion characterizing quan-

titatively the maneuvering capabilities of a fighter-interceptor
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ulet us. use. the.'specific excess power"-N ,i.e., the ratio of the

rateA of chainge of' ý. resultant aPtth ower ofananleeaircraft0~a to its weiht.

maneuver the-enemy ony f he ha8 gr'eater specifi2 excess power under

ihe. thee scondihepoeniaiadns.___

whee us m riH e and qareth weigrhte massgy alevtude, and saeedroft

i~e, te tt~iene::,raeral oma the so lfutes poftHtia andE

Onhthe othe mHand) Eq (3arebaefo the contmsslttditiond ofee balnc

Mulf~ tiplying bepoth sides o±' (1) by V G mgwe get

The term*. Vr sie sth chng oiffealtiatue ()with tiespie., thet
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Consequently, we get 10

* Equating (7) and (3) we can write the specific excess power as

Further, let us use the following famihliar relationships:

drag 
-

Q= .. (9)

2'~ --

drag coefficient -

c,, c.;,+ Ac2. (10)

Considering (9) and (10) we get Z MPAi.A

V.~~ 1P + 4-

Let us find a calculation expression for the lift coefficient a ~~
a Since for flight along a trajectory with angle 6 to the horizon

Y =G0 os 0, (12)

then

C-c~cCos. (13

On the basis of (13) and (6) we have

COS2 0C2 i (14)

*Let us substitute Eq. (10) into the equation

P==Q+GsinO (15)

Then :.i:.
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from which ;

I"V [I -- a--4 ---15M--A Jzý ký, .ý-,!--,ý - ý I-7 "<--

Consequently, al osilevleso Hfr hc"tegie-vle

C- G14A•,2•,%o ) . (18)

On the basis of the relationships obtained we can propose the O ~k;
following algorithm for calculating the unknown dependences H = f(t4) ',_.*
ror various values Ny = const: .

- given the number M;

- from M find Cx0 and A (Fig. 1.9); r:

Ny = 0, 25, 50, 100, 150, •. kgm/s~kg are obtained from Eq. (1), • •=
for which -- $• :

- from H find the corresponding values of p and a using tables; -•:;<•

- from M and H find thrust P from the graph (Fig. 3.2); • ?
- cal culat e co - 0;

=V. -

-f using Eqs. (7) and (8) of Problem 3.3 calculate cw;

u 2 from (18) and having substituted all

obtained intermediate values into (11), find NyC n en,.. .. -,

If the obtained value of N p does not equal the given one then,
using the iteration method, repeat the above algorithm for calculating th n*on.-.n-.e. ,:
Ny -for other values of altitude H until the given integer Nyl is ,*-... . *.: o

- calculat.e ...-

", ' . " . " . -< :< 7: , • : - ."4,4 .. : .4 -* : 4,4' * "? ." ",- ' ". " : 4. 4. .- .. . .-" .-": " .- ' . . ".4 - " ., .
:.1. .' ... . .*, • ,•::,',*." j-,.4 ;• • - .-.. ,. '.,••,.-• .. - .:-. .- .= , .,_. •'-- - •



obtained; then note the 6-t-s
-" obtained pairs of numbers N

_____ NM and H for which Eq.

I (;l) gives the precise
given value of Ny. Re-

peat the oalculation..
algritn-for another -

100 value of M. Having ob-
,4 . -tamned all pairs of num-

bers N and H for the

gogiven value of N cal- ..

A10 culate the same group

, /: -of M and H for the next
S, -- No attel-urner power given value of N Re-

- peat the calculation algo-
S, 40 H rithm in this sequence

Fig. 3.4. for the entire range of
M and H for combat

maneuvering of the examined fighter-interceptor.

The results of the calculations for the starting data of our
problem are given in Fig. 3.4. The restrictions on qnpeA and

Cy npeA are taken from Fig. 3.3. Superimposing the graphs H = f(M) M
for identical values of N for two comparable fighters, we can
graphically show the regions M-H in which one fighter is more
maneuverable than the other in aerial combat.

PROBLEM 3.5. Calculate, in coordinates M-H, the regions of NZ,
combat maneuvering for various values of normal load factor n
longitudinal load factor nx, radius of banked turn R , the time re- -

quired to turn 1800 in the horizontal plane t18 00 , and the vertical -
rate of climb u with and without afterburner power. Use the data -....
of Problem 3.4 as the starting data.

Solution. Let us examine the banked turn of an interceptor
in the horizontal plane. The normal load factor ny is the ratio of " -

94
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lift-Y to-waikht G. It acts in the plane of symmetry of the air-
craft perpendicular to velocity vector Vand equals

For the available normal load factor we have

ypc Cy-PenqS C

where c ~ is the available lift coefficient, P~ is air pressure.

For supersonic fight er-interceptors, in first apuroximation

CY Pun 1 fj. (3)

Substituting (3) into (2) we get

From the aircraft drag polar

c. c,,A+ A01 (5) .

we find cy, which we substitute into (1). Then the calculation for-

mula for the available normal load factor with curved flight in the

horizontal plane assumes the following form:

fly (6)

It is just this load factor, created by engine thrust, which is one
of the basic characteristics of the maneuvering capabilities of an

interceptor.

The agrtmfrcalculating teboundaries ofthe rgosof

combat maneuvering in 14-H coordinates for various values of n~ is

* as follows:

~.f. - given the value of M4;

- from the graphs in Figs. 3.2 and 1.9 we find the corresponding

thruist P and coefficients c and A;

95
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from Eq. (14) of Problem 3.3,we calculat the thu! cot

ficient cp;

for a fixed value of load factor fly we calculate the weight

coefficient cG by the formula

C-C (7)

-knowing c GI we find the value of air density p from the ratio
-C-~-.G G/qS;

-from the table we find the flight altitude H corresponding to
densiJty p.

The boundaries of the regions of combat maneuvering of an F-14C
type aircraft, calculated by the described algorithm and corresponding

to various values of load -

factor cy, are given in
~Kh.U Fig. 3.5 for afterburner and

no afterburner engine opera-

By a similar method we
calculate the boundaries of

~~t~trnerthe regions of combat man-
power euvering for various values

No afterburner of the longitudinal load

0p o 1 factor nx, the radius of
Fig. 3.5. banked turn Rn,, the time re-

quired to turn 1800t
*and the rate of climb u. The results of these calculatic-as for the

F -4C are given in Figs. 3.6-3.9. The following quantitative rela- * '.* 4*

tionships form the basis for these calculations. By definition of
longitudinal load factor we have

till. (8) ;

Consequently,

Z- .
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4f.

V'.~~~ 7 N aferbrne

I / ~~power .. '

Fig. 3.6.

--- No~~ aferure powe

7_v 3 .

Fig. 3.7.

P
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or

ofbake trnR~ ad imn,80 requre to. tur 1).Le (10)

Each load-factor value nyhas its own corresponding specific radius

these relationships.usfn

The conditions for balance of forces with turning flight in the

horizontal plane are written as follows:

Z=Ysin7; G=Ycosy. (1

where J s the bank angle.

For centrifugal force, from mechanics we have the familiar re-

lationship

01,2 Z= (12)

from which the radius of banked turn i

g ..

Substituting the expressions for G and Z into (13) we get ____

gY sin y tift, i'=~

Here, according to (11) and (1) we have

cosy= ~=-,I-; sin 7 1'1 9 ,y-1 (15)

Then we find the time required to turn 1800:

va (16)

Having substituted the expression for load factor n~ according
to (6), we obtain the final calculation formulas:
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V _________

ell K.
K' =-....~j~*#~9

_________________~ RE

When constructing the boundaries of the regions of combat man-

euvering, for various values of nRand t8owe must take into -

-onidr byo the aerodynamic retitino which, by

Y Ao

is dfine bythe inequality

In this case the boundary of the region of combat maneuvering ~-
is calculated using the formula

-~ MA4.1/20)

Given the values of fly and M, from (20) we find the air density

* pand then, from the table, t-he corresponding flight altitude H.
4 4.

Examining the rate of climb u as a parameter for the region of
combat maneuvering, we can wri~u the following relationships:

A AI U U(21)sin 0 MO'

where u is the rate of climb, i.e., the projection of velocity Vil
onto the vertical axis; AP is the differenc:e between the TIhiust

'required to gain altitude and that required for level flight.

Since from (21)

U L r (22).

uwhile the normal load factor

100
tw'.

VA.



(23)

M-:
,.,% % &

for a 0 and P P we get

th fncio M1C a 2a " (241)

Using these relationships and Eq. (17) of Problem 3.4, we calculate
the function H =f(M) with u = const, using an iteration method
similar to that described above.

PROBLEM 3.6. Based on tactical requirements, the range of
level flight of a fighter-interceptor should be Lrn. Determine the
required relative weight of the fuel, if we know the powerplant
efficiency r = 0.4, the calorific value of the fuel 6 = 10,000
kcal/kg, and the LDR of the aircraft K. Show how the relative fuel
weight T depends on the LDR for three values of flight range Lr.n
= 1000, 2500, and 4500 km. How does the dependence tT = f(K) change
if the engine efficiency changes from 0.4 to 0.6? Assume that the
entire fuel supply is expended in level flight.

Solution. During level flight, work is accomplished equal to
the work of transporting an average flight weight G a distance ofcp
Lr.n* This work is numerically equal to GcpLr.n and is balanced by

the work of the powerplant with burning of GQT kilograms of fuel,
which in turn is equal to G KTrI. Thus we have

GCpLr, QKZ-q (1)

Since the average weight is associated with the takeoff weight by
the relationship

G A G (2) 7

the relative fuel weight is -

0 =, (3)
Go" +

But according to (l) .
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Consequently, the calculation

- - formula has the following form:

E, + 'z (5)

04- - - - where

-~ - (6)

I,,- Substituting into (6) the value

-_ __ of 6 we must first convert kcal into

LL.L1L - kgm, remembering that I kcal = 427

L_, 6 ! 7 . - ,kgm. Varying the value of K from 2

Fig. 3.10. to 9, we find the desired dependence

ýT = f(K) for the starting data of

the problem (the solid lines in Fig. 3.10). With n = 0.6 the solu-
tion is shown by the dashed line.

PROBLEM 3.7. Based on tactical requirements, for an inter-
ceptor the range of level cruising flight should be 2000 km. De-

termine the weight of the fuel if the interceptor takeoff weight
G = 20 tons, engine efficiency n = 0.4, the calorific value of
the fuel 6 = 10,000 kcal/kg, the lift and drag coefficients cy =

= 0.45 and cx = 0.1. By what value does the flight range decrease
if the relative fuel weight is halved? r-

Solution. Let us designate the range of level flight of the
interceptor as -r-n' Then the energy expended by the engine when
the intercept6r covers distance L is equal to the worA. required

r.fl
to transport the weight of the interceptor over this distance.
Since the weight of the interceptor changes within significant " .

limits during the flight, we will use the concept of average weight
Gcp, considering it to be constant and equal to

__ Gass. -
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isthe-weight of the fue1. - ~ ~
wVA i e u t

Codnsidering this quite permissible simplification, the work
accomplished when the interceptor flies the distanceLr

N
_ (2)

ICY

Te relative fuel weight,, according to (1), is defined by the rela-

tionship w aeI

From (2)wehv

where

(5)

Substituting the value of 0 from (1), we get
cp :~***~

(6)

+ gi(1+ " (1) *-*.. 4 * -

Thus the calculation formula for the relative fuel weight

S ~assumes the following form:

A&I~ (8)
+S4 Sh-

For the numerical values of our example we have F~-0.23.
T

We should bear in mind that in Eq. (8) we must insert L rnin
meters, while 6 is in kgmflhig, i.e., consider that

I kccal a 427 kgmu.

* ~Thus, having obtained the relative fuel weight, let us determine its

absoluti weight:

* ~103r



GT 4.6 tons.

Then let us ~determine how Lrai-changes if we decrease 4
T by a

factor of' two. i ý w-

From (8) we have

L K64(9)

If' we cut in half, L decreases by a factor of 2000/940o 2.13,

since ~

L,,=4,5.427-I0A-r)4 94 m

For all practical purposes, the flight range of a cruising inter-

ceptor will be somewhat less, since we must consider the additional

expenditure for takeoff, as well as the emergency fuel supply.

PROBLZM% 3.8. Determine the ýrequired relative thrust of' an inter-

ceptor during level flight at altitude H and speed V1,, if we know the

takeoff weight G..., the drag coefficient ex, the wing area S, and
the takeoff' TWR e.

Solution. The thrust required for level flight is defined byf

* the familiar f'oratula

-where p is the air density at the examined altitude. ~:~

Let us introduce the concept of relative thrust:

OUL 2 0
I3AE 2

where c P /G is tChe takeoff TWR. '*-

To graphically trace the interconnection among Pth.- takeoff'
weight, and the flight speed and altitude, let us construct a nomo-

* ~grami (Fig. 3.11) which covers practically the entire range of change

of' the examined characteristics.
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PROBLEM 3.9. Show 'I-- --

r ~~the limits of change of I-
interceptor thrust re- ~ ~

quired for level flight, - I
if the LDR of the air-

craft is doubled. De- N A_

termine the thrust re- ý 4j
r. ~quired for level flight - . z/i ~ i I

if we know the LDRK =5, 0I

the takeoff weight G - 0.IA

=20 tons, and the fuelI

weight G = 4.6 tons, V~r/ 00/~0/0

while the takeoff thrust is 0.8 of the 0,2t<

takeoff weight. .. ,

444

Solution. First let us derive, in q
general form, the formula for the depen- -'

* ~~dence among relative thrust *V, LDR K, and 08 1~019I:
relative fuel weight eT By analogy with .--

the concept of average takeoff weight G i. .1

introduced in Problem 3.7 we can, in first

*approximation, use the concept of average thrust required for leve'l -

* ~flight and the average LDR value K
op

Then

or, substituting the expression for G from Problem 3.7, we get

2r=,. -0G, (2) ~ -~:--

'2!OTP. .11 2. 
-

while introducing the concept of relative fuel weight

UT (3)

*we obtain the following formula for calculating the average thrust

required for level interceptor flight:

105
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(5) 15J;'t

- ~~et us dhaesignae thTWR a

Put,

doubled, the required average horizontal1 TWR is decreased by a faa- t I

tor of two.

PROBLEM 3.10. Ecstablish the bas4 relationshipos among the iJn-

terceptor -characteristics during takeoff. Show how týhe takeoff run

deýpends or. the takeoff wYeight, the TvP, the LDP. air density, and

coefficient; of' wheel- friction.

-Solution. The ran oj.run is the path covered during the

uniformly accelerated r.-overPaent of the interceptor, from speed V =0

to lift-off speed tT av tR eoft t t onsequently,

where a is the averag-e a ccele rat ic a value veasux-s2otat

Now let us exprc---ssV, and a in terms of the basic inter-

* ~centor-2a&~fr tc aurc f-orces actinig during takeoff.

qt the, ±mome nt of off, the li-ft is balanced by the takeoff

weIgh t 'G minus the projection of engine thrust P onto the ver- ~-

tica: ax-is: :':.~

10 6
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pV2

from which

-. vo 2 (3P)~ a)

where c is the coefficient of lift at the moment of lift-off,Y OTP
p is air density, S is wing area, and aT is the angle of' attack

-. ~at the moment of lift-off.

Acceleration a is determined from the equation of motion ofcpY
the interceptor during the take-off run:

MaQP P- Q -'P'P'(

where m is the mass of the interceptor, Q is drag force, and FT Is

wheel friction. ...

From (),considering (5), we get

g (P -Q-FP
acp(6)

Since forces P, ~,and F change during the takeoff run, we must

substitute their average values into ()

We know that the average takeoff thrust is of the order of 0.95
of static thrust P (when V =0), considering the losses in the

CT
* engine inlet ducts.

=' 0,95P..'. (7)

* The average total resistance of the interceptor is

A(Q + PF ), . (8)

where ff is the total coefficient of resistance to motion of the

interceptor during the takeoff run. -:.
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N •-. ft-

We know that

=0,8 ( J+ (9)

where f is the coefficient of wheel friction and K is the LDR of
OTP

the interceptor during lift-off.
X".

Substituting' (7)-(9) into (6) we get 0

a09 == g((0.95PET -'G,1,,) - o (10)
Gs.,(O

where E = 0.95(P c/G ) is the average effective TWR of the inter- 'n-

CT B3fl
ceptor during the takeoff run.

Considering (3) and (10) we get the calculation formula for the

length of the takeoff run:

0
.1! -P $in ac, -

1. , . (I1)i.... f)

These formulas allow us to: calculate the speed of lift-off as a *

function of ambient temperature and pressure (having determined p), -

takeoff weight, and thrust; determine the length of the takeoff run

as a function of these values and also of the runway slope and wind

speed and direction.

In the calculations we can use the following values of f':

0.065-0.07 for concrete, 0.075-0.08 for hard ground, and 0.2-0.26

for dry viscous soil.

PROBLEM 3.11. Substantiate the tactical-technical requirements -

on the basic characteristics of the airborne radar of the interceptor

and sighting, if the following are known: inu..ceptor speed V -

= 2000 km/h; target speed V = 1800 km/h; range of possible rocket

firings Dn Maac-DnMHP = 50-15 km; maximum altitude of target above S4

interceptor AHp = 5 km; total time to accomplish all operations of

target acquisition and interception, interceptor homing, and pre- *. -'.

paration of the rockets for firing t. 30 s; interceptor-target .....

= homing method-- constant-bearing approach.

... 108
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Solution. The basic tactical-technical characteristics of the r

airborne radar of the interceptor are the maximum detection range,

azimuth and elevation view angle, the accuracy in measuring the tar-

get's coordinates, and the-range and azimuth resolutions.

Since there must be at least 30 seconds from the moment of tar- t-:

get acquisition by the airborne radar to the moment the rockets are
fired while the closure speed is maximum with attack strictly on

a head-on course, the maximum target detection range should meet the
requirement &

D.611. .2.• W.... + (V. + v.).4 (1)

The required azimuth view angle n is determined by the maximum
angle of target sighting with the given interceptor homing method. 12 -'Wl

Since for constant-bearing approach the interceptor relative bearing 3,

a rc Sin -ý- Sin 4P., (2)

nhile for all-aspect weapons the target relative bearing q= 0-180°,

considering that qp reaches its maximum when q= 900 we get

•,,,,- acsi (3)k-'_

This is the required target sighting angle which, naturally, should
be symmetric about the longitudinal axis of the aircraft. Con-

sequently,

4'a> 2 arcsin1l. ( t, '-I<

For the data in our problem we have: V /V 0.9, qfnMa - -

- arc sin 0.9 = 6I40, azimuth view angle should meet the requirement
n> 1280. Let us note that when the target speed decreases or the

interceptor speed increases, i.e., with a decrease in V /Vn, the
required azimuth view angle decreases. For example, when V /V. .

= 0.7, V n - 2-44.5 = 890. The maximum view angle required from the

standpoint of elevation is determined from the conditions of inter- S -

ception of the target with maximum vertical separation AHp, assuring L.

109
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destruction of the target by a rocket when fired from minimum range.
For ipvel interceptor flight this elevation is arc sin (AHp/D _____...

Considering the elevation view angle to be symmetric about the longi- P

tudinal axis of the aircraft, and considering ÷ie error in determining N .-

the target altitude AH , we find that the elevation view angle should

satisfy the requirement

'.>2ars ll9+ H (5)

For the numerical data of the problem and with AH = 1 km we

'~2 arc sin +.40
4.- I•. • .- •-

The required target coordinate measurement accuracy can be sub-

stantiated by calculating the lead angle * when rockets are fired
from distance D to the lead point of target impact. For constant-

bearing approach
*P4

sina m-- (6)

wheis the angular rate of splacement of the target sighting

ling and V is the average rocket velocity, ,- v•----

Let us differentiate Eq. (6). Then -

VPCS

The maximum error in range measurement occurs when cos 1 = 1. If

we allow an error A* = 10 in calculating the lead angle and assume

that =5 O/s, then AD < 167 m when V = 3000 km/h and AD < 16.7tht• /s hnAn _ n - •

meters when w = 50 O/s. To substantiate the required resolution of.0

the airborne radar, let us examine the occurrence, in the acquisition

sector, of two targets flying at range D from the interceptor with -. , ..

distance d and interval Z. Then, obviously, the range resolution

should meet the requirement AD < d, while the azimuth resolution
should satisfy the relationship

ii0~ " " ....(8)
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"PROBLEM 3.12. The interceptor is guided, by the direct-intercept

method, to a nonmaneuvering target at the same altitude (Fig. 3.13).

The interceptor and target speeds are constant. Deter--
A

mine the required angle of automatic target -.... .

V,,• tracking by the airborne radar (azimuth)

l if the attack should be guaranteed for
qp• any aspect angle, while the speed ------- "

r -I I of the intercepted targets -
.- , .V changes within the range from

,Fig. 3.13. 1000 to 3000 km/h. Given:

interceptor speed V n 1700 km/h, rocket speed V = 500 m/s, range

for target lock-on by airborne radar Daaxe 70 km, rocket firing 9..
range Dn 20-50 km.

Solution. According to the kinematic scheme for interception ...

(Fig. 3.13) we have

A. .BE V,, .

, ,;.

V, sin qp r - -• . .-

"- !%I *.. -... '-

The path covered by the rocket to encounter with the target

sin (q sinq• (2)

The path covered by the target from the moment of firing to its en-

counter with the rocket is defined by the formula

DE D. i + (3)

The target relative bearing at the moment of radar lock-on of .-he

target *- . .:. :

where
sin (qp + yp) (4)

cob (Wp + 7p) +

. .. .'-. . . . . . . . . . . ..

:o, -. "-.".•. " . -:_ , .,•, 7.
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In Fig. 3.13 the target -tradcking or sighting angle is the angle%
between tha interceptor relative Velocity vector Vand the in-

terceptor absolute velocity vector - ** T

The required angle for-autoniatic target azimuth tracking is,

naturally, a function -of the a~tack aspect angle. For the given

value of target relative bearing-q we have ~-

18P+(6)

Thus to nswe thequstlo 'Poed i th prolem e mut b

given, in the range from 0 to 1800, various value's of and calcu-

late the unknown'angle-ip from-kn6wn values of V1 ~ D- Dr.

and V using Eqs. (l)-(6). The-i'e8-uits of the calculations for the

conditions stated in our problem are
0i o~ 300'Ch-given in Fig. 3.1~4.

40- As the dependence *, = f A
30 shows (Fig.- 3.14), with relatively

10 cptedtherequired azimuth angle of

20 40 50i tracking is maximum with a
t~tet elaivebeaing(pL = 00.With

-- 0A agtspesV>20 km/h, angle jr

Fig. 3.14. continu-ously increases with an increase

restricted by the design of the antenna system or the interceptor

fuselage, target attack is limited to a specific small range of

target relative bearings from the forward hemisphere.

PROBEM 313.Determine the required elevation angle of auto-

intercepted from the forward hemiiphere with vertical separation. We .....

consider that the rocket should be "illuminated" from the moment of

77. -. 7*- - w-
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. 70kin/h, rocket speed V =500 m/s, firing distance D 50 kin,
vertical separation of target over interceptor at the moment of air-

borne r -adar target lock-on All 8 km, the speed of the intercepted

targets v aries within the range V, = 1000-3000 km/h. How does the

elevation angle of automatic target tracking change if the inter-
ceptor "zooms" before firing? Here we know the loss in interceptor

speed in the "zoom" AV 500 km/h.

Impact point ¶

Vft D',50

30

L~ JU

£I 1000 1000 Yjkm/h

Fig. 3.15. Fig. 3.16.

Solution. According to 1 in Fig.-1.15 we see that the required

elevation angle of automatic target tracking without "zooming" is

=arctg ~'().. 4

where . v.

ALL -(D,;, + D.);(2
= 1at;(3) ýJ

D= Vet; (14)

t is the time from rocket firing to encounter with the target.

Considering the slope of the interceptor trajectory during the

zoom~ we have (position 2 in Fig. 3.15)-

= .. ~~~~(5) i****..

where a is the pitch-up angle of the interceptor. V
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The gain in altitude during, the "zoom" is defined by the rela-
tionship between kinetic and potential energies:

iL~ngll. (6)
2

Let us differe:ntiate (6): then __ 7

Thus th alitud ofthe"zoom" is directly proportional to the in-

terceptor speed V and the loss in speed during the "zoom" AV
n n

The firing distance is defined by the relationshipIDj Vit cos?,+ (V + VS) tcos (8)
from which

Then we have

?is arc sin-- (10) -M.

sarc Sin V~~ 7 sinflpa.
P M-,..

Formulas (1), (2), (5), (8), and (9) allow us to calculate the
unknown angle *~ as a function of target speed V1 and the given
values of V I VP , H, and D .Figure 3.16 shows the results of

n P n
the calculations. The graph p6 =f(V ) shows that a "zoom" makes

LA
it possible to significantly reduce the requirements on target *

tracking elevation by the airborne radar.
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CHAPTER 4

EVALUATING COMBAT EFFECTIVENESS USING BASIC THEOREMS OF THE
PROBABILITY THEORY

Since the outcome of combat between a fighter-interceptor and

a target depends on a number of factors and generally is a random
event, the quality of carrying out a combat problem can be evaluated o-.
quantitatively most completely by probability factors, e.g., the

probability that a target will be destroyed (shot down).

In this chapter we give problems which illustrate the possible -•

ways of using the basic theorems and laws of probability theory to

evaluate vario•s aspects of the combat efficiency of an interceptor

when engaging in aerial combat.

The events of "hitting a target" and "destroying (shooting down)

a target" are considered as equivalent in all the problems of this

chapter.

If necessary, before examining the problems brush up on the
basic assumptions and definitions of probability theory using [2].

PROBLEM 4.1. As a result of inaccurate surface guidance the
interceptor finds itself either in the region of permissible rocket
firing or in the region of cannon operation. Determine the *.4~
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probability that an aerial target will be downed, if the interceptor

attacks once using either a rocket or cannon fire. The probability
of downing the target when the ihterceptor is in the region of per-

Imitted rocket firing is 0.5, while that in the cannon-fire region <. .

is 0.3.

Solution. Event A "interceptor entered the region of per-
mitted rocket firing" - and event B - "interceptor entered the region .

of permitted cannon fire" - are mutually exclusive (entering one

region excludes entry into the other). Therefore let us use the
theorem of the addition of probabilities: the probability that ... .

one of two ,or several) mutually exclusive events will occur is
equal to the sum of the probabilities of the examined events. The
unknown probability

P(A + B) P (A) + P (B) 0,5 + 0,3 0,8. 4

PROBLEM 4.2. An interceptor armed with two rockets having
semiactive homing heads is guided to an aerial target. With re-
liable functioning of the surface and airborne guidance systems the
interceptor reaches the zone of permitted firing with a probability .

of 0.9. Provided there is failure-free operation of the firing

system and the systems of rocket homing and destruction, one fired-.
rocket will destroy a target with probability P1 = 0.8. The inter-

ceptor fires both rockets at the target; each rocket is guided in-

dependently. The reliability of the surface guidance system P2 =

= 0.9, that of the airborne radar during rocket control P = 0.95,3
that of the rocket firing and homing system P = 0.8, and that of
explosion of the rocket warhead P5 = 0.9. Determine the probability S

of downing a target, considering these reliability indicators.

Solution. The probability of downing a target is equal to the
product of three independent probabilities: that of entering the .. "...
zone of permitted firing, that of failure-free operation of the sur-
face guidance system P , and that of destroying the target with two .,-..

rockets. This latter probability, considering the given reliability
indicators, is
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:!M - -V-6 -: I

1- (I - =PIP•Pt)- 0,794.

Consequently, the probability of downing the target is 0.643.

PROBLEM 4.3. With surface guidance to a high-speed bomber, the '..

interceptor finds itself at a certain random distance and random

aspect angle relative to the target, resulting in random detection

of the bomber. The probability P1 of detecting the bomber at a dis-

tance of more than 100 km is 0.6; the probability P2 of detecting it

at a distance of less than 100 km is 0.4. If the target is detected U

at a distance of less than 100 km, the interceptor enters the aft

hemisphere with probability P3 = 0.9 and downs the bomber with proba-

bility P 4 = 0.8. If the bomber is detected at a distance of more
I4

than 100 km, the interceptor enters the forward hemisphere with

probability P5 = 0.8 and downs the bomber with probability P6 = 7.
5 6.

Determine the probability of destroying the bomber.

Solution. Using the theorems of addition and multiplication of

probabilities, we obtain the probability of destroying the bomber:

P= P,PsP,, + P.P P, =0,624.

PROBLEM 4.4. Determine the probability of destroying a target

if the interceptor fires its rockets from one of three distances:

D1 , D2 , and D The probability of destroying the target with rocket I

firing at range D1 is 0.4, at range D2 - 0.5, and at range D- 0.3.

Solution. Event A1  "firing the rocket at distance Dl" is

equivalent to the event B1  A AIA2 A3 (the rocket is fired at range

D and not fired at ranges D2 and D3 ). Similarly, event A2 -2 3 2
"firing the rocket at range D2  - is equivalent to B2 = A :A,,::.* *..;.

Finally, event B3  A 3A1 A2 * The probability of destroying the target

is equal to the probability of destruction with firing from only one

of the three ranges, i.e., the probability P(B 1 + B2 + B3 ) of the

occurrence of one of the three events B1 , B2 , or B Since events

B1 B2 , and B3  are mutually exclusive, the theorem of addition of .
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probabilities is applicable:

P (BI + B, + B,) P (BI) -- P (B2) + P (Bt). L

Now let us find the probabilities of e'ach of the events B1 , B2 ,

and B 3 * Events AI, A2 , and A3 , and their opposite events AI, A2, and

A 3 are independent. Consequently, the theorem of multiplication of 'k

probabilities is applicable to them: --

P (BI) P (AA,713 ) P (A,) P P (3) 0,4 (1 - 0,5) (1 0,3)
S0,14; o .-. , ,.,

PCB2)= P(A2'A•71) == P(A2) P(•4,) P(;i3) =.. ._-:.G:..

= 0,5 (1 -- 0,4) (1 -- 0,3) = 0,21; •"I•"

P(B,)= P (ASýP1)- P (A3) P(•, ,(;I0 P ,,G.i--:.. -.:' .:.
- 0,3 (1 0,4) (1 -- 0,5) o ,0o9. """ ...

Thus, the probability of target destruction

P (BI + B2 + B3) =0,14 + 0,21 + 009 =0,44.

PROBLEM 4.5. As the interceptor closes with the target it .

fires three rockets, one each firing, at three different ranges. The _

probability of destroying the target with firing at range DMaKc is
0.7; at range D -- P = 0.8; at range D -P = 0.6. To

destroy the target it suffices at that least one rocket hit be scored.

Determine the probability of destroying the target.

Solution. Event A1 - "a hit by a rocket fired from range ,
m- D " event A2 - "a hit by a rocket fired from range D 5" and

.' event A "a hit by a rocket fired from range D are independent
3 MIHH

in the aggregate. On the basis of the corollaries of the theorems
-

of addition and multiplication of probabilities we find that the

probability of at least one of events A!, A2 , or A3 is equal to the

difference between one and the product of the probabilities of the

opposite events. The probabilities of events opposite to events

* A1 , A2 , and A3 (the probability of misses) are, respectively,

,q=1-P, = - 0,7 = 0,3;
"q - P, I - 0,8 = 0,2;

q1= -P- 1-0,6=0,4.
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Consequently, the probability of target destruction

S I - qlq~q, 0.976.

PROBLEM 4.6. In order to shorten the intercept line, an aerial

target is attacked simultaneously, but independently, by several

interceptors. The probability that one interceptor will hit the

target P1 = 0.4. How many interceptors are required in order that

k" -the target be destroyed with a probability of at least 0.9? 2.

Solution. Let us designate by A the following event: in an

attack by n interceptors, at least one hits the target. Since the

events consisting of hits by the first, second, third, etc. inter-

ceptors are independent in the aggregate and have identical pro- .

bability PI, then

P(A) =I---.

where " -

== q -P 1 =-1-0,4= 06J" '

By stipulation in the problem, P(A) > 0.9. Consequently, 0.9 <

< 1 - 0 . 6 n, or 0.1 > 0 . 6n Taking the logarithm of this latter in-

equality we get at t a cking
.>. =4,5 ....... ..

Thus, at least 5 interceptors are required to destroy a target with

a probability of at least 0.9 with P1 = 0..4.

PROBLEM 4.7. When attacking a single aerial target the inter-

ceptor downs it with a probability PI = 0.9. The interceptor attacks

three separate targets once each. What is the probability that all

"- . three targets will be downed?

Solution. Since all three attacks are independent, the desired

probability will be

S~~~~~0,93 -- 0,7.29. '"""••
, 'h - ;... - .;.

119

J,...." ,.



PROBLEM 4.8. An aerial target is attacked by tw;•o interceptors. '-

The probability that the target will be destroyed by the first inter-

ceptor Pi = .0.8, and by the second. - P2 = 0.6. What is the probability
that the target will be destroyed..by only one interceptor?

Solution. Destruction of a target1 by only one interceptor means
that either the first interceptor succe~sfully attacks the target

while the attack of the second interceptor is unsuccessful, or vice K- -- =J--.

versa. The probability of such.. an event is as follows: -

P 0,8 (1 -- 0,6).+ 0,6 (1 - 0,8).= 0,44.

jL
PROBLEM 4.9. There are two interceptors of different types.

The probability of destruction of an aeri'-I target by the first . . -
interceptor PI = 0.7, by, the sepond. - = 0.8. What is the pro- ¶- :
bability that the target will be destroyed with simultaneous attack
by both interceptors? • ,

Solution. The desired proqba iIity is equal to the probability :
P(A +. B) of destruction of the• tarpet by. at. least one of the inter-

ceptors. The probability of destruction by each interceptor does ".

not depend on. the results of attack by the other, and therefore
event A ("destruction of the target by the first interceptor") and

event B ("destruction of the targezt by the second interceptor") are

independent. According to th• theorem of the addition of proba- -.

bilities of compatible events, the probability P(A +-B) is equal to '•',

the sum of the probabilities of events A and B minus that of their

combined occurrence:

P(A+ B)==P(A) + P(B)--P(.4B)= 0,7 + 0,8 -0,7.0,8=0,94. 0.9: -, . . • ' -. j 1. r I-• . ' ,

This problem can also be solved by using the formula

P(A + B)=I - q (A) q (B).= 1 -(1 -P,) (I -P 2 )= __"____

1- (I - 0,7) (1.- 0,8) -= 0,94.

PROBLEM 4.10. The interceptor, fires four rockets at an aerial
target in sequence at various ranges and independently (e.g., with
four independent successive attacks). The success in homing the"-
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rockets is characterized by the probabilities 0.3, 0.4, 0.5, and

0.3, while the probabilities of target destruction with explosion

of the warheads of one, two, three, or four rockets in this case

are 0.4, 0.7, 0.8, and 0.9, respectively. Determine the probability

of destruction of the target. k

Solution. For the solution we must use the formula for total

probability. If a certain event A begins with a number of events

Hi, called hypotheses and comprising a complete group of mutually
exclusive events, the probability that event A will begin is equal " -- '

to the sum of the products of the probability of each hypothesis

times the probability of the onset of event A for the given hypo-

thesis:

Let us examine the following five mutually exclusive hypotheses

comprising the total group: H0 - none of the four rockets explodes

at the target, H1 -- one rocket explodes at the target, H2 -two

rockets explode at the target, H -three rockets explode at the '4.
3

target, and H4 - all four rockets explode at the target.
14.

Using the theorems of addition and multiplication of probabil-
ities, we define the probabilities of these hypotheses:

PQ(/4o) = (1 - 0,3) (1 - 0,4) (1 - 0,5) (1 - 0,3) = 0,147;
P (HI) = 0,3 (1 - 0,4) (1 - 0,5) (1 - 0,3) +

+ (1-0,3)0,4(1 -- 0,5) (1 -- 0,3) + (I -- 0,3) (1 -- 0,4)0,5(1 --:0,3) +
+ (1-0,3) (1-0,4) (1 -0,5)0,3= 0,351;

P (H2) =0,3.0,4 (1 - 0,5) (1 - 0,3) + 0,3 (1 - 0.4) 0,5 (1 - 0,3) +
+ 0,3 (1 - 0,4) (1 - 0,5) 0,3 + (I - 0,3) 0,4.0,5 (1 - 0,3) + •

-+ (1--0,3)0,4(1 - 0,5) 0,3 + (1 - 0,3) (1 - 0,4)0,5.0,3 =0,335;
P (H0 ) = 0,3.0,4.0,5 (1 - 0,3) +

+ 0,3.0,4 (1 - 0,5) 0,3 + 0,3 (1 - 0,4) 0,5,0,3 + .

+ (I -0,3) 0,4- 0,5.0,3 = 0,129; -.. -. -
P (H4) = 0,3.0,4.0,5.0,3 = 0,018.

The conditional probabilities of event A (target destruction) * - .*
with realization of the examined hypotheses are as follows:

P(AIHo) =0; P(AIH) =0,4; P(AIH) =0,7; P(AIH) =0,8; P (AIH4) 0,9.
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Having determined the probabilities of the hypotheses and the corres- :

pon ding conditional probabilities of target destruction under these

hypotheses, let us find, from the total-probability formula, the

desired probability of target destruction:

P (A) = P (Ifo) P (A/Ho) + P (H,) P (A/ 1•) +
+ P (H2) P (AH ,) + P (Hj) P (AlH) +

+ P(IH)P(A1/o) -----0,147.0 +O,351.0,4 +
+ 0,335.0,7 + 0,129- 0,8 + 0,018.0,9 = 0,4943. • _• N

PROBLEM 4C.1. Two interceptors independently fire one rocket

each at an aerial target. The probability that the target will be

destroyed by the r6cket from the first interceptor is 0.9, by the -•

rocket from the second - 0.6. As a result of the attack by the

interceptors, one rocket hits the target. What is the probability

that the target will be downed by the first interceptor?

Solution. The problem is solved using the Bayes formula (the

theorem of hypotheses). If A can begin with any of n hypotheses

Hi comprising a complete group of mutually exclusive events, and as

a result of the experiment event A begins, the probability that

event A will begin with the given hypothesis Hi (i = 1, 2, ... , n)

is
( P (HI,) P (A/Hj)

P (HIA) P(A)

where P(H /A) is the so-called a poeteriori probability (probability
after the fact), i.e., the probability that hypothesis Hi occurs

provided that event A begins; P(Hi) is the probability of hypothesis

H1 before the fact (a priori probability); P(A/Hi) is the probability

that event A will begin provided that hypothesis Hi obtains; and . ,

P(A) is tne probability that event A will begin, calculated from the :-i :

formula f(::', total probability.

Before targct destruction (before the fact) we have the fol-
lowing mutually exclusive hypotheses comprising the total group of -

events: HI - neither rocket hits the target; H2 - the rocket from

the first interceptor hits the target, the second misses; H - the _,
3

122 .*

•-2.':. • .. 4



rocket from the second interceptor hits the target, the first misses; -

ardt4 -both rockets hit the target.

The probabilities of these hypotheses are:

P(H,) = (1 -0,9) (1 -0,6) =0,04-; P(H,) =0,9(1 -0,6) =0,36;
P0V,) 0,6 (10,9) =0,o06 P(H4) =0,9.0,6 = 0,54.

The conditional probabilities of the observed event A (one rocket

hits the target) with these hypotheses are

P(A/IH) =Q; P(AIH/) = 1; P(AIHk) 1 1; P(A/Ht) 0. 0. ...

After event A has occurred (after the fact), hypotheses HI and H4

become impossible. Consequently, the desired probability of hypo- •7T[.;1

thesis H2 according to Bayes' formula is

= (A ,) P (H2) ,) P"- ":-I

T eP(I-4IA) (I= ' P =' (Ha)R) P (A/H,) o ". ...

P (.- P X/I I +P (H) P (A/r,

0,36.1 =0,4857.
Ua target.lit -1 hypoe t Uf t

rgnofpsilfiigi2-0k.The probability tha hyirings i

P AH) P (Aln=)

occur�sithr�ang2 ki 0.2; 4P 6km-0.3; (68k P (0.1;0an

. 0143=0(.1+ 0,36. 1

PROBLEM 4.12. Entering the region of poss0bl6 rocket fire, an 07 68k
interceptor fires a rocket which downs a target. T"e extent of the •o.'-

region of possible firing is 2-10 km. The probability that firing w

occurs in the range 2-4 km is 0.2; 4-6 km - 0.3; 6-8 km - 0.4; and
8-10 km - 0.1. The probability that the ,arget will be destroyed.'--",-.-... ::..

when the rocket is fired from 2-4 km is 0.3; 4-6 km -- 0.7; 6-8 km-"",":

G. 8; and 8-10 km - 0.5. Determine the probability t• at firing will "'•

I- -O,
occur in th~e range of distances 6-8 km.

Solution. First let us determine the probabilities of the

possible hypotheses and the conditional probabilities of target

This probability is of practical interest when the pilot does not

remember the firing range and the shot must be analyzed after the
flight.
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destm esetiey

Teprobabilities of these hypotheses are, respectively: t.

I'(I: =04; P(11) =0A1

Atrtarget destruction (after the fact, resulting in observance

of event, A), the conditional probabilities of target destruction under
the examined hypotheses areJ!

P (A/,) = 0,,3; P(A/H2) =0,7; P (A/I-I) =0,8; P (A/Ha) 0.5.

Now, using Bayes' formula, let us calculate che desired pro-

bability of hypothesis H13

0,2-0,3 + 0,4 -0,8 .', *'* -. p .-

PROBLEM 4.13. The interceptor fires four rockets independent~lyAN

at a maneuvering aerial target. The probability that each rocket will
reach the region of reliable operation of the radio fuse is 0.6. De-

-: ~termine the probability that the radio fuses operate equally for two 4.,,.

rockets at the tagt while the other two rockets pass by without
exploding.

Solution. Let us designate the events "operation of the radio

fuse of the first, second, third, and fourth rockets" by A1., A2, A 3,

an A, respectively, and the opposite events by Al, A2, A -and All.
T'ien event B2 - "the radio fuses of exactly two rockets operate at

the target" - can Occur in the following six ways:

Al, A21, ý1,, ýi4 ý1 A21 A3, , A4
A1, A,, A,, ;A4; Aj, A,, A3, At;
A& , , A4; A,, A, A 3, A4.

Since these events are mutually exclusive, while events

1214
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-17;
Al 4.12 A& Aj 21 A1 '13 ;7

are statistically independent, then

B3 u A1A" ij44 + 1,lA 2A4:4 + AtA2AA.i + L

P(B2) =6 P(A)I2 IP(7i)1 3 = 6.0,62.0,42=0,346.

Here we used only the theorems of addition and multiplication of

probabilities. However, it is more convenient to find the solution

using the Bernoulli formula (the theorem of the repetition of

trials), according to which the probability that event B will occur

exactly m, times, if n independent, trials are realized, in each of

which event B appears with probability P. is

where Cis the number of combinations of n from m:

For our example - .1'4-

Let us remember that the set of probabilities Pm~ is called " '

the binomial probability distribution, since numerically the pro- --..

babilities P are equal to the coefficients of xm in expansion
m,n

of the binomial

(q + Px)"

in powers of x. where q 1- P.

m~
The binomial coeffic-ients Cm can be obtai.ned from the Pascal

triangle:n
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'2~ 1

1 -3 - 3 1
1 4 - 6 4 r

1 5 10 10 5 1

etc.

In the Pascal.-triangle, each-number is equal toithe sum of the

2two numbers diagonally above it 'e.g., 10 4 + 6).

PROBLEM 4.14. Two interceptrors fii'e on the same target. The

first fires 9 times per second and hits the target with a probability
* of oA.8 the second fires 10 times-a second and hits the target with

a probabilitý of 0.7-. fte taikit is downed by the fire. Determine
the probdbility tht it will be downed by the second interceptor.t -

t Slution. Let us design~ate-by A. anid A. the events when the
* first and second Interceptors, respectively, fire a round. Since

the ratio of the rates or fire 91-10 =0.9, then

Let us designate by B the e'v6iit "hit duritig fir'ing." Then, by

the stipulation of the problem, we-have ~

P (B/Aj) =0.8

and

P (Bj;42) =0,7.

The desired probability is foUnd fr~om Bayes' foi'mula:

P (4/8)P (Ad) P (11/4,1) + P (A12) P (B/AT

T.'gP(A.) 0,3 + QJ7P (A) 1,42 '

PROBLEM 4.15. The probability of an interceptor's intercepting

an aerial target in one sortie 2.= 0.45. For interception, n = 100

sorties are flown. What is the probability P that interception will
* -d'-".

This probability is of pradfical interest when analyziiig aerial
* ~gunnery from cannons having dif'ferednt rates of fire. ~:4.-
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occur less than 51 times but more than 29 times, and less than 51

but more than 39 times?

Solution. Using the Bernoulli formula we find the desired
Nprobability N

1 C10 (1- 1)'~
im-30

80
100!

ii.N1m!(10-r)!0,45- (1-0,45)100-x(1

M! OW - W)

Dinrect calculation of this expression is very unwieldy. There-
fore, let us use the approximation, familiar for large n, of the
bioildistribution by nomldistribution, with th aemathe-

matcalexpectations and dispersions:

M [m] -nP1= 100. 0,45=45;
'nP,'(I .- PI) =1000.,45(1 -0j45) mms24,75.

Then, using integration in place of summation we get

80 (no-At IM!)' 50 fm-4S)

P= dm a din. (2)

Introducing the new integration variable

we find

Using tables for the Laplace function O(x for the argument

x jr2 and in/a =0 we finally obtain

r £5 ~ 15\
P= ) Ib I =3) -_ =0,8388.-2 (70 +~U5 (F149,J ,*.,.. -

For the second condition of the problem, analogously, we get

PC=#= CO x -0 (0,71) 0,68.
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This problem is instructive mainly from a methodological stand-.

point. It shows that with a large number of independent events (with

large n) it is advisable, in place of unwieldy calculations using .

the Bernoulli formula, to approximate Eq. (1) by the probability

integral and solve using tables. This solution is also valid for

other practical problems, e.g.:

1. 100 missiles are fired at a target. The probability of one

round's hitting the target PI* 0.45. Determine the probability that

the target will receive less than 51, but more than 29, hits.

2. 100 rockets are stored in a warehouse for one year. During

this period the parameters of each rocket will exceed the tolerance i

limits with probability PI = 0.45. Determine the probability that ' -

during this time it will be necessary to adjust the parameters of

less than 51 but more than 29 rockets.

PROBLEM 4.16. An interceptQr is armed with two rockets. The

rockets can be fired within the limits from D to DMHH; the maxi-maKC MHH

mum probability of destruction is somewhere between the two, at some

optimum range DonT* The interceptor can select one of two tactics:

1) fire the rockets successively at DMaKC and DfonT;

2) fire a salvo at DoT.

In the second case the target performs an evasive maneuver to

break off the attack. Determine the most favorable rocket firing -

salvo or successive - if the probability of carrying out the second

attack Par2 is 0.5, the probability of target destruction with

firing from DMac is PI = 0.2, and the probability of target de- .

struction with firing at DCnT is P2 0.6. ".

Solution. An answer to the problem requires that we solve the

inequalities

P,+0-P)P -+1 -1- , (1), -.
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or

PI +P8 ,2P2,•l PI) + P, P1 ,0- i -f - P2)P.=. (2)

Inequalities (1) and (2) are written based on use of the theorems of,,•%:o
addition and multiplication of probabilities. The resulting prob-

ability of target destruction with successive firing of two rockets

and provided that the probability of carrying out a second attack .

P = 1 is equal to the sum of the probabilities of three mutually

exclusive events: '-'-

1) the probability PI that the target will be destroyed by the

first rocket;

2) the probability (1 - P1 )P 2 that the target will not be de-

stroyed by the first rocket but will be destroyed with probability V
P2 by the second rocket;

3) the probability PIP that the target will be destroyed by a

combined hit by both rockets.

The resulting probability of target destruction with salvo fire

of both rockets, considering the hits as independent events, is

1 - (I - P )2 When the probability of carrying out a second attack

PaT2 1, by analogous reasoning we get Inequality (2).

For the numerical data in our problem we have .
0,2 + (I -- 0,2) 0,6 + 0,2.0,6 < - (1 -0,6)t

0,8<0,84,

i.e., when PaT2 = 1 the most favorable fire is salvo fire at optimum Ez.

range.

When PaT 0.5 we have
* 8T 2

0,2 +I 0,5.0,6 (1 -- 0,2) +- 0,2.0,6.-0,5 >. [I (11- 0.6)210.5,@ '--;

i.e., 0.5 > 0.42 and, consequently, sequential fire is more favor-

able. ......
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':Let us note that Inequalities (1) and (2) are also valid when -.

there is more than one target. Then the resulting probabilities,

i.e., both sides of the inequalities, represent the mathematical

expectations of the number of downed targets, and solution of the

appropriate inequality answeýs the question of which is more favor-

able: to fire all rockets at the first target or to attack both

targets.

PROBLEM 4.17. The interceptor fires four rockets in succession. [•
Each succeeding rocket is fired without analysis of the results of

the preceding one; therefore, the target can be destroyed by any of

the rockets. The probability of a rocket's hitting the target de-

pends on the firing distance, and is PI' P2' P3, and P•, respectively,

for the first, second, third, and fourth rockets. Determine the

resulting probability of destroying the target PZ, if one hit is *

enough to destroy it. Generalize the solution for n rockets.

Assumptions; the firings are §s$tistically independent; ac-

cumulation of damage is disregarded.

Solution. By stipulation of the problem, the probability of
target destruction is none other than the probability that at least
one rocket will hit the target, which is defined as the sum of the

probabilities that any of the four rockets will hit the target while

the other three do not, any two of the four will hit while the thers

will not, any three of the four will hit while the other will not, L

and, finally, that all four rockets will hit the target. To explain K.+,.',
the specific regularity in the calculation formulas, let us first -

write expressions for the probabilities P.2 and PE3 of target de-

struction with firing of two and three rockets:

P" - --(1 -).'+e1+2P.P , (1-P,)+(1-P1 )+P2 1-&+P, P2 =P,+p2 ,- (1)

p+=P8 (1-P,) (I -P,) + t(1 --PS) (1 - P,) + +

+ PP, (I P) + PAP , =FPA+ A + P ( +.p.P. --
•-Pa, + PaPap,. (2)
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Obviously, by analogy with the structure of Eqs. (1) and (2) we can -

write a formula to define the probability of target destruction by

firing four rockets in succession:

PZ4~~~~~ pP1p + pPp + PS 4-PP ISP~ AP
PSP4 PA~ +1AS+ 34A+ P

For any number of successive firings, when the probabilities of a
; ~~hit are different for each firing, by comparing (l)-(3) we get the -'"••

following general formula for calculating the probability of target
destruction: -"-- - '

PZ,, =P,+'P, +... +P,,- PiPs-- PIP--..---Pi,_tP,,+ ••,

+PAP+P,"PP++ (-... )(--) PA ... P, (4)

where PIP2, PIP3, etc. are the probabilities of double hits; PIP2P, -3

P1 P2 P4, etc. are the probabilities of triple hits; P1P2. .. Pn are the"
probabilities that all n rockets will hit.

We can easily see that when the probabilities of each rocket's

hitting are equal AQ..

P1 --- P2 --PS " ""= D P,•- -f _V_ý.X ,",;-

we get the familiar formula

PZ.=1_0 pir.(5)

PROBLEM 4.18. An interceptor designed for two attacks, closing
with a bomber at the maximum range of possible firing, downs it with

one rocket with the probability P1 = 0.4. During the rocket-homing I..._ r
process the interceptor comes into the bomber's zone of defensive
fire and can be downed by this fire with a probability PF = 0.1. If-'.;

the interceptor is not damaged, in the second attack it goes to the

optimum firing distance and downs the bomber with probability P2 = 0.7.

What are the probabilities for downing the target and the interceptor?

Solution. The bomber is destroyed in either the first or the
second attack. The probability of the second event is defined as
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the product of three simultaneous events:

1) the bomber remains undaMgd after the first attack; this

probability is 1 - P = 0o.6;

2) the interceptor remains undamaged after counterfire by the

bomber; this probability is 1 - P = 0.9;

3) the bomber is destroyed in the second attack.

Thus the probability of the interceptor's downing the bomber is

P6 =0,4 + 0,6.0,9.0,7= 0,778.

The probability P of the bomber's downing the interceptor is

equal to the probabilitie of two simultaneous events:

1) the bomber remains undamaged after the first attack;

2) the interceptor is downed by bomber counterfire.

Consequently, ';•'':•

P. ;0,6.o,1 =0,06.

PROBLEM 4.19. One rocket hit is enough to destroy a target. -

Successive attacks are made on the target, with each succeeding

rocket being fired only after analysis of the result of the previous _______

one. Determine the average number N• of interceptors required to

destroy a target if the probability of destruction by a hit from any

of the fired rockets is P and each interceptor has m rockets.

Solution. The number of firings N needed to get one hit is a

random number, having tne values N 1, 2, 3, 3 i, etc., to.

As the complete characteristic of this random number we have the

distribution density whose ordinate P is equal to the probability

of hitting a target during the i-th firing provided there were no

hits in previous firings. Let us use the following designations:

P-- the probability that the first rocket will hit the target; P2 - .
the probability that the second rocket will hit the target and that
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the first will not; P 3  the probability that the third rocket will

hit the target and the first and second will not; etc.

The required number of interceptors, by definition of mathe-

matical expectation, is • -

A[N]M -L'P- (J-(lP1 +2P,+3P3 +..). 1

The probability Pi is equal to the probability (1- P) that -

in (i - 1) firings there are no hits multiplied by the probability

that the rocket hits the target in the i-th firing, i.e.,

,_ (I -- P)1. ((2)

According to (2)

PI-A; P---P(I--P);A-,P(I--P)3...

Consequently,

.:[MNI = [P + 2P (I- P) + 3P (I-P), +. ..1
n P" (3)

PROBLEM 4.20. A low-altitude target, covered with intense radio .:-

interference, must be intercepted. For the interception we have a

formation of three interceptors; one of these, flying ahead of the

other two, serves to relay guidance commands to the pair flying at

the same altitude as the target. The target, with probability of

0.3, can cut off the possibility of attack by each of the inter-

ceptors with interference jamming either of the airborne radar or -

the guidance-command radio transmission lines. If any of the inter-

ceptors reaches the firing distance it downs the target with prob-

ability of 0.5. What is the probability that the target will be

downed?

Solution. The probability of downing the target is calculated

using the total-probability formula. Downing of the target can occur

only in conjunction with one of three events (hypotheses) which form .,
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the total group of mutually exclusive events:

1) the target is attacked by all three interceptors;

2) the target is attacked by the relay plane and either of the

other two;

3) the target is attacked only by the relay plane. z;@"

If the relay plane is Jammed urith interference, attacks by all

three interceptors are cut off. :;-

The probabilities of these favorable (relative to the event
"target downing") hypotheses a&.e as follows: -:

P,.0,7=0,343; P2=2.0,71.C0,3-=0,294;
"P, =O'T7 0,3• = 0,063.

The conditional probabilities of target downing under these

hypotheses are

P,..P 1 - 0,5 = 0,875; .. = - 0,5 =0,75; 7
P.Ps - 0A"

The probability of target downing

P=OO ---- P Ppo 1 0,343-9,875 + 0,294.0,75 + 0,063.0,5 0,54.

PROBLEM 4.21. The interceptor Is guided to an aerial target
which may or may not use interference against the airborne radar,
"Jamming" its range channel. The command "Fire" is given to the

pilot only if, for calculating the lead angle up to the moment of
rocket firing, there is determination of the distance to the target
at least once every n cycles of three-dimensional scanning of the
airborne radar beam. If the target does not use interference, in

one cycle the range is determined with probability PI 0.6; if
interference is used the probability P2 = 0.1. The probability that
the target will use interference is constant for any cycle, and equal

to P 0.4. What is the probability that, in n = 3 cycles of air-
n

borne radar scan, the command "Fire" will be given?

1314 -
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"Solution. The total probability of determining the distance to -.. }

the target in one radar scan cycle is ',.-

PA-=(I -PI) P, + P.P = ( -0,4)0, + 0,4.0,1 0,4.

The desired probability for generating the command "Fire" is

the probability that the distance to the target is determined at

least once every n cycles of airborne radar scan. This probability '

•. •,~~P.p At I-u •,"- -(I - 014),- O,&Mi . .?%

PROBLEM 4.22. A group of interceptors "combs" a region of
probable target location. Each interceptor has a flight path which ,'••-"•

it maintains with rms error a .5 km

The sector of scan for the airborne
radar of each interceptor allows it "'. -,. -.

Sto detect a frontal target in a -0
;A • •sector of width 2b = 50 km (Fig. •Il).

To reduce the probability that a
target will penetrate the region where-:,•..;

interceptors join, there must be a
specific overlap. Determine the i •

necessary size of the oveýlap of Cy

adjacent scan sectors, if the per-

mitted probability of separation due
Sto inaccurate holding of the flight ,, .

28 path should not exceed P < 0,.04.<-. •A 12P - ' ' "-

Solution. According to Fig.

41.1, a break between two adjacent

sectors occurs in two cases: 1)
point A of the sector of the left- ......
hand interceptor is in region 1 while

point B of the sector of the right-
F g 4 1. -; ,,..; -. ;

-ig. "i~l. hand interceptor remains within
region 2; and 2) point A is in region 4 while point B is in region 3.
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r The 'probability that there will be a break at the places where the
6N4 sectors join is equal to the probability of' two simultaneous inde-

pendent events characterizing the two cases above, which in turn
are mutually exclusive. Consequently, using the theorem of' multi-
plication and addition of' probabilities, we get

Pp~~~~~~-~ 210,5 - N)05 0, P()

where I is the width of' the scan sector overlap.

Since by stipulation P < 0.14, then 0?(1) > 0.146. From tables
of' the Laplace functions we find that $ý(l) =0.46 with I 2a.

Thus, is the overlap of' the airborne radar scan sectors is ~ .

10 kin, the probability of' a break and, consequently, the probability_
of' target penetration does not exceed 0.014.
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CHAPTER 5

THE EFFECTIVENESS OF SURFACE GUIDANCE AND TARGET SEARCH AND -•
DESTRUCTION-. -

For operational-tactical calculations it is particularly im-,• •- •••

portlant to have such quantitative indicators of combat efficiency •••.•¢•.

for fighter-interceptors as the probability of surface guidance, '"°-•
probability of destroying the attacked target. This chapter is

th*rbblt5o agtaqiitoSuigsarh n h :.,...•.

devoted to methods for calculating these probabilities. I%-..•.,

To evaluate the effectiveness of surface guidance we establish -- \--'--

the dependence between the probability of successful surface guidance, -"---"-

the tactical-technical characteristics of the interceptor, and the .- :...:

accuracy of the radar field of the ground system (Problems 5.1-5.7) .••-:•:

By the term probability of surface guidance we mean the prob-L'' •"";.-;,,'.
ability that errors in the position of the interceptor velocity •

vector at the end of su,-face guidance relative to the direction.,,.:

toward the calculated lead point of target impact does not exceed"-::"<

permissible val -. Thus, the probability of surface guidance is ... ,.

defined by the relationships between permitted and random guidance =--"-'•

errors. Therefore, in a number of problems we show how to calculate .... :.z•

the permitted errors in heading surface guidance and random heading•"- -•

errors in surface guidance that arise due to errors in determining •-,_.7••
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target and interceptor coordina.es, speeds, and heading by the ground

system. _____

In Problem 5.8 we show how to convert two-dimensional heading

and altitude guidance errors Into an equivalent one-dimensional

guidance error.

In Problem 5.9 we show the funct..onal change in the probability

cf surface guidance with a change in target-detection range by the

airborne radar and a change in interceptor speed. The proposed

solution method can be extrapolated to determining the dependences

between relative changes in any parameter that influences the

effectiveness and relative changes in the guidance probability.

In Problem 5.10 we obtain calculation formulas for determining

the probability of detecting a target when searching a given region.

We show possible methods for calculating combat effectiveness

if the deciding factor for the quality with which a combat problem

is solved by an inter,-eptor is minimum target penetration within

the air defense area (Problem 5.11).

In Problem 5.12 we show how to determine the region of probable-...

location of a target if no data are available on it, and the search __-__-_

region during independent combat operations by interceptors.

The dependence of the probability of destroying an attacked -z :
target on its dimensions and rocket miss is established by solving

Problem 5.13.

PRORLEM 5.1. Surface guidance of an interceptor to a target is .......................................... ..-..-.....*

accomplished in the :-orizontal and vertical planes by transmission

of heading and climbing commands. Altitude guidance is when, at

detection distance D , the target is in the elevation scan sector

of th• airborne radar ±ae. For heading guidance it must be in the

region bounded by permissible heading errorn ±AQ which the
Aofl
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interceptor and rocket can correct during homing. The ground system ,

guides the interc,-zptor wit') random errors having normal distribution

and character!;ed bsy rms heading and altitude errors a and aH.

As a re.sult of target heading maneuvers, during guidance there

arises a certain dynamic errors in the interceptor heading mQ, which

is the mathematical expectation of the law of heading guidance error

distribution. Express in general form the probability of surfaoe

guidance of an interceptor in terms of these errors. S-,

Solution. The surface guidance probability is the probability

that the resulting guidance error, consisting of random and dynamic

errors, does not exceed the permitted error. Since guidance is per-

formed independently in two planes, the guidance probability can be " -'

represented as the product of the conditional guidance probabilities ..-

in the horizontal and vertical planes:

P..= 6'.(1) ' ' •••

On the other hand, surface guidance can be interpreted as the entry *.. •

of a random point (the interceptor), distributed by the normal law

in the plane Q-H (heading-altitude), into a rectangle bounded by .

permitted heading and altitude errors (Fig. 5.1). ....

15 - -- in the general case the

normal density distribution

in plane Q-H is written as
-,I follows [2]:

.I,• aI I.( t) •
14GA 1 f (Q. H )= -,' a -(2

where aQS aH are the rms . -

Fig. 5.1. heading and altitude guidance --..-
errors; mQ, mH are the dynamic

errors (constants) as a result of target heading and altitude

maneuvering.
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Errors mQ and m11 define the shift in the center of the normal

* law relative to the center of the rectangle formed by the permitted

guidance errors. These permitted guidance errors, measured in

* d-grees, are the permitted deviations of the true interceptor tra-

jectories from the calculated one in positive and negative directions

of' coordinate axes Q,H. In our example the target performs only C C

heading maneuvers., and mH = 0. To obtain the formula for calculating

the guidance probability P we must integrate the distribution

H-.H
density -function within limits of the permitted errors:

+LQA011 +51lJAon

S1 X ~ Al f (Q,-H) dQ dtf=

-eQ
~~Aoz 2;0??O

The~ ineinQ inega je

Theindfin4-eintgra fet2dt is- not expressed in terms of elemental

functions, and is calculated using tables. Tables for this function

(called the Laplace function or the probability integral) are giv.an,

e.g., in the literature [2, 3). Thus, in the general case the formula

fur calculating surface guidance probability assumes the following

form:

I_______, [(AH.~on + m
4 OQ 1/ CQ f2

(m itHon (4)

where

4)(x) - 5

In crur example mH 0; ±AH ±aD Te

AQA aD 0. ThenQ101

P- 21/ (6)

* where DC6  i3 the airborne radar detection range.
- 4 4 '06H

*When calculating P H*H it is convenient to use the graph in
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jFAmI~t1Fig. 5.2., which shows -t;4N

1"o, the dependence for the ; P

probability P that a
random point, dis-

07~ ~
_ _ - tributed normally

0.5--- with rms error a and 6
014 system error m, will

5.2. fall in linear segmenti

calculating the rms interceptor relative bearing error arising due

to errors in determining the interceptor and target coordinates.-
Calculated

Ssiution

relative bearing due to errors in deter-

mining the interceptor and target coor-

dinates, as shown in Fig. 5.3, can be :

found from the following obvious re-

Impactlationship:

errors impact Aa~:;

Va

Squaring AT n and takirg the mathematical * ~

expectation of the square of this value

we get

lAVVl

The Interceptor velocity vector with re-

spect to coordinates x1 , x Kof the be-

Fig 53ginning and end of the segment covered
by the interceptor in time TN Is de-

termined by the relationship

(3) ;>~
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The error in speed due to errors in determining the coordinates of

the beginning and end of the segment covered in T is 'n

a~f V (4)

Let us square this error and take the mathematical expectation from

the result. This will be the dispersion in determining the inter-_____

ceptor's speed:

~+ + 2R,,,, K~

T-' (5)

Since, because of the independence of errors Ax and Ax ,the cor-
H R 7

relation moment R 0, while ar =Y a +', en
HH H

02= a(6) ~ r-

Substituting (6) into (2), we get the desired calculation formula

for the rms error in the interceptor relative bearing: .

iA V (7)

Having determined a and knowing the permitted heading guidance

errors we can., using Eq. (6) of
-' - -Problem 5.1, calculate the prob-

,~ .~. ability of heading surface guidance

of the interceptor. The results ,-..*

-T~t~sof calculations by Eq. (7) for -

-4Ca 0.5-5 kin, T =5-20 s, and
x H_

Vn 500-3000 km/h are given in

I NPROBLEM 5.3. Determine how

-K the rms error in determining the

pends on the error in deter-
1000 2000 V,.,km/h mining target speed V , inter-

Fig. 5.14. ceptor speed V n target relative

1142 .
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bearing q4, and locations of the interceptor and target. The inter-

ceptor is guided to a nonmaneuvering target by the constant-bearing

approach method.

Solution. As the kinematic relationships show (Fig. 5.3), the

lead angle, or interceptor relative bearing, uniquely defined the

required interceptor heading which must be developed when solving

the problem of interceptor contact with the target, and which must

*• be transmitted aboard in the form of a guidance command. According

- to the method of constant-bearing approach guidance we have

Sil Tl). (1" )%f.

The calculated values of V 4, Vn, andq), which are used to de-

termine the lead angle are random values, and differ from the true

values of these parameters by values of the corresponding random

measurement errors AV , AVn, and Aqy In addition, the error in

". determining the interceptor heading introduces inaccurate deter-

mination of the locations of the interceptor and target. Considering -

these errors AV, AVn, AT we have.r-.

V+Ahsin((% + A%)?J+An i (2)
V. + AVn

Assuming the errors A to be small values, and disregarding values of

the second order of smallness, after transformations of the trigono-

metric expressions in (2) we get

'61 v. Cos P. t 9 AV. + r''':5 %-

V4coy. &V V o
+V , Co+sCos ,#.. ! (3)Vm •o': Yu =%" -. 4.. -;_:'.-

Since when generating the heading guidance command we use Eq.

(1), the error in determining the interceptor relative bearing is

determined only by those terms in (3) which contain errors AVn and

AV in determining interceptor and target speeds and error Aq) in f .
'4 14

determining target relative bearing. Consequently,

•== "~Vz. +- • =U -- 2In A'V'. (14 )'-"""--.-=Sin.-:. .Co- -. t
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Here the error in determining the velocity

while the error in determining the target relative bearing

(6)

where Ax is the error in coordinate determination, T is the obser-

vation time during which the speed is determined (discreteness of -

coordinate measurement), A~ is the error in determining the .,.

U.QL
target relative bearing as a result of target heading error Q , and

A is the error in determini~ng target relative bearing due toL4.I x
error in determining target coordinates. z:

To determine the dispersion of interceptor relative bearing it

is necessary to square both sides of Eq. (4) and find the mathe-

matical expectation from the result, using familiar laws [2]. Having

performed these operations we get

2 - ,[sin' T.,12LO - 2 sin %~sin c?,R +

+ sin2 ya 2 +2 V, cos t? sin %R?-
-2V,, cos y sin ?.R5,, + V.2cos2%aolJ (7) .- *..

Now let ul- determine the rms errors a n ~i Eq. (7).-

1. The rms error in debermining target speed - a
VA

14~

As can be seen from Fig. 5.5, the error in target speed is due

to errors in determining the coordinates of two target blips from

which the value of V is
LA

determined. Let us desig-

nate the distance between

*~ ~ 9 points QA and QA by d, the --- *-

observation time by T, and

the random errors in coordi-Fig. 5 eemiain y5'-4.. ..

nate deemnto yAx

and Axe Then the measured value of target speed

* **

-%.* '



Via +VA 6-F +-r-S(8)

while the absolute error in determining target speed

To find the dispersion of this error we must square (9) and

Itake the mathematical expectation of the result. Then

I.+ 

( 0

Because of the statistical independence of errors Ax1 and Ax,1 2 -r
correlation moment R is equal to zero. The random errors in

L coordinate measurement are constant:

Consequently, for the dispersion in determining target speed

we get the following calculation formula:

02 (12)

,. 
,

2. The dispersion in determining interceptor speed is similarly

determined, i.e.,

P.- ' (13)

3. The dispersion in determining target relative bearing is

since, on the basis of (6), the error in determining the target rela- ~
tive bearing is composed of the error in target relative bearing as

a result of error in target heading Aq), and the error of the target
LA:..

relative bearing due to error in measuring the target coordinates
Alp . Let us define the calculation expressions for Vie terms in

14. x
(114). According to Fig. 5.6 the error in determining the target
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4.r

Fig.~ 5.6. Fig.5.7

(15)

Consequently, the dispersion of' this error ,.~r

- ~(16)
V-.

Substituting the value aVaccodn to (12), we get jL

07 ___ (17)

According to Fig. 5.7, the error in determining target relative

bearing due to errors In target coordinate measurement

Ax

while the dispersion of' this error

02 2=- x(19)

The correlation moment becween the values q) and (

RMAILL TVD- (20)

Thus, af'ter substitution or (17), (19), and (20) into,(114) we

get the f'ollowi~ng calculation formula f'or dispersion in determining

the target relative bearing:

146

V *-' 9



By similar methods we determine the correlation moment between FO0 ..

target relative bearing and target speed: -. ,:

and the correlation moment between target relative bearing and inter- , •

Sceptor speed: •' .. .

- i4

(23)

% 
L*-'•" -:, 0%,4J/

Since speeds Vn, and V• are statistically independent, the cor-..:0-,

2V

relation moment between these values is zero:

R O.(241)...... .

Substituting (12), (13), (21), (22), and (23) into (7), we get

Sthe following calculation formula for the dispersion of the heading

error of interceptor surface guidance:

+ s,. (25)

Let us stress that Eq. (25) was obtained upenr the assumption

that the error in determining the required heading is equal to oe:

error in determining the lead angle, while we can disregard th 'roweg

in determining the position of the sighting line "interc heor •arget

We can show that Eq. (25) is also valid for the case when the,.•'-,•....
"" interceptor is guided to the target by the direct-intercept method.

The results of' calculations perfosmed using Eq. (25) for a wide

range of initial data are given in Figs. 5.8-5.10.

S..~*.. ,.,. q<.

j.- . <•. •<*.-
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The calculated values of the rms errors in interceptor heading

are the initial values for determining the probability of surface
guidance, if for the given conditions of combat operation we know

the permitted errors in interceptor heading guidance.

The methods for determining the permitted guidance errors are '.':- *f5

presented in the following problems.

PROBLEM 5.4. Show how the permitted heading guidance errors

depend on the interceptor and rocket characteristics. Assumptions:
the interceptor is guided on head-on or pursuit courses at small .

aspect angles. The heading error is corrected by turning the inter-

ceptor and the rocket with constant radii. The delay of the rocket
and interceptor in processing the guidance commands is disregarded. v',•-]'

Solution. Let us designate by Ax the linear permitted error

in guidance, and by D the distance from the interceptor at the moment

of lock-on to the point at which the rocket meets the target. Then

when the interceptor is guided, at small aspect angles, to the for-
ward and aft hemispheres, the permitted heading guidance error

in radians.()

The linear permitted error Ax should equal the sum of the pro-

jections of the distances covered by the interceptor, rocket, and .. -

target during the closing process onto a perpendicular to the direc-

tion "interceptor-target" at the moment of lock-on. As the inter-

ceptor turns, lateral acceleration occurs, directed toward a de-

crease in Ax. The interceptor moves with uniform acceleration in

this direction, and the distance covered is a t /2. Similarly, the •

distance covered in this direction by the rocket is a t /2, and by

the target a (t + t )2/2. Consequently,
tAI n p

2 2 T 2 (2

where

D Dtl
=. .DP - D D "a= V* (3)
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t is the time of interceptor

S -23fl0kmA, homing up to the time of,

Vn 2O000km/h I rocket firing; t is the
pvp.50, M's in,, M'/3 rocket f.L...ght time to targetDjaxa, So ,,rAl 4-z 20,., •".• "•,•-t'

n -1 HAI Jf----• -[ impact; D a<B Dn are the

S!5•KM , lock-or and firing ranges;
to I..i" .-L. - - Vc6Ahn.-LA-, V odn.p- are the

7 I Icorresponding closing speeds,

"a L........ .. R is the radius of turn.

Fig. 5.11. 2L 150..
The results of calcu-

lations for several values of the characteristics are given in ....

Fig. 5.11.

PROBLEM 5.5. The interceptor is guided to an aerial target E

by the pursuit method. The rocket is also homed by the pursuit

method. Find the dependence of the permitted surface-guidanze ' .-- -

heading errors AQ on the target, interceptor, and rocket speeds, -. •
Aofl

the lock-on and firing ranges, and the turn radii for the inter-

ceptor and rocket. We examine two cases: 1) the firing error is '

zero, and the entire permitted surface-guidance error is corrected

by the interceptor itself; 2) surface-guidance errors are corrected *•. '

by the interceptor and the rocket.

Assumptions: 1) the speeds and turn radii are constant; 2)

inertia and lag are disregarded. -
A

Solution. For the case when the surface-guidance errors are

corrected only by the interceptor, at the moment of firing the error

is zero and the interceptor strictly carries out the pursuit method,

while the rocket during the stage of homing until impact with t~e

target also does not deviate from the pursuit method.

According to Fig. 5.12, which shows a kinematic scheme for cor-

recting surface-guidance errors, the interceptor flight time from

the lock-on range Daaxs to firing of the rocket is

7z_.- 
___
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[4 
A(.~~~~~~)Annl + Ink~~~ .,~- -

where is the target re-

lative bearing at the moment

17 of rocket firing; wn = Vn/I .n**

V% is the angular velocity of

U, the interceptor.

Let us write the pro-

jections onto axes x and y:

Fig. 5.12.

Do cos T. Del - - R, sin AQAan -R. sin yo;(2
Do sin R. cos - R, COS AQx,,. )-:KC.<''

Substituting the time tinto S~q. (2) we get
n *.

R, COS AQxon RCSunl r (5)

where

Irn 
A�

.4. ~~Let us introduce the designations ,* ..

R.pDCO (6) ..

.4 = - Rn DR sin? - pnO,.

~R C0R 3 cs?, -D i (7)

Then Eqs. (14) and (5) are written as follows:-.

R. sin AQ,.i = A ..... Afl. ,Q. (8)

RoCs IQ;,A-fl- 0A (9)

Tet us square these last two equations and combine them. Then

.e obtain the following quadratic equation for the permitted surface-

tdance heading error:
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or

Solution of quadratic Eq. (11) gives the desired dependence

.trmains to express angle T in terms of the given values. For

the pursuit method, when the target does not maneuver, we havu the

following expression for the angular velocity of turn of the rocket,

which in this case is equal to the angular velocity of the sighting
KS.

line:

IW_:O:1 (13)
Iest avaualefromI;S.

where the rocketts radius of turn is defined from the familiar re-

lationship

Thus,

In the particular (15)f P

?j=z ~sin ~..-

Now let us examine the case when part of the surface-guidance

heading error is corrected by the rocket. In this case the inter-

ceptor turns, as shown in Fig. 5.13, by the angle

'1QAO'1 + it 4PAQ. (16)

The angular velocity of turn of the rocket is written in this

case as follows:

V% ML Taf Pg $~!*I lo4 VP

- D, + , (17) L Z
The maximum possible target relative bearing at the moment of :

firin- of the rocket
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Vp D,. are sin (18)

The target relative
S/ bearing at the moment of i .

rocket firind,, considerirg

the error corrected by the ,--

rocket, is

The interceptor flight

time from the moment of

Fig. 5.13. lock-on to the moment the
rocket is fired is loc-ontothemomntthe."

t -(-q, , Aq). (20)

Substituting (19) into (17) we get

11 sit' (7,1. ••AC -- :()) + Vp, sin AV Vp ( 21) .. ..:
,,p

For small angles AQ~on, as given in the problem, we get -. . .

DJVp - lil sin Ill.____(

"% V -v C o . . , ( 2 2 ). . " "

PROBLEM 5.6. The interceptor is guided to a nonmaneuvering

target strictly from the forward hemisphere. The interceptor and

target speeds are constant, and Vn = 1200 km/h and V = 1900 km/h,

respectively. The ground system assures interceptor guidance accu-

racy with a heading rms of CQ = 50. Determine the guidance prob-

ability, if the interceptor begins to correct the guidance errors I S

at target locX-on (by the airborne radar) distance Dax8 = 35 km,

maneuvering with constant radius of turn R = 10 km to the firing

Srange D= 12 km. We assume that the firing error is zero, i.e.,r ng

the interceptor itself corrects all surface-guidance errors. We

also assume that surface-guidance errors AQ are small and Vpp Vn. .

Under these conditions of surface guidance we are given the probabil- --

ity of target destruction by the rocket of 0.9.
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Solution. According to the kinematic scheme for correcting

surface-guidance errors (Fig. 5.12) we have

VC61 YCaSIQAon 11(1

Projecting onto the x axis we get

x--- Cos ' ~Sf + Ri, sin AQAsn. (2)

Let us square (2). Then

I 9-)D:.~ -b-L'cos 2 !-j A!.-;sin2
',; +

+ R,, sin2  2D.R o,,snA~. I., + 2D111?, cos (f, Sill ý-, .- 2D.R C k -i -f %'+e(3
+ 2R2 sill f, sin AQ,,ý-.3

For the case when the firing error is zero we have

Then, considering that

sill =QI011 =

Cos A%"" 1

2
-while sin AQ is an infinitely small second-order term, we get

17nl D!% ==D21 + 2011k,, .,n. ~ (5)

* ~from which we find the desired dependence of permitted surface- .-. 5.-

guidance heading error on speeds V 4, Vn , and V lock-on and firing

ranges D and D and interceptor turn radius R,
3aXB n n

2D~k~(6)

For the data in our problem we have AQ =9.80. Thus, the

guidance probability PH= 0.85.
H.H-

PROBLEM 5.7. The calculated interceptor heading which assures

encounter with an aerial target at zero aspect angle is 700. As a

result of random perturbations in the guidance circuit and pilot

errors the interceptor holds the calculated heading with an rms of

aQ 5% The guidance errors have normal distributio~n. Determine

1514
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r

"the permitted maximum interceptor headings that guarantee a guidance

probability of at least P= 0.95.

Solution. The probability of guiding an interceptor to a target O
is defined numerically as the probability of hitting a random heading

Q distributed normally with mathematical expectation mQ = 700 and an

rms of a = 50, in an angular range of permitted heading guidance
errors positioned symmetrically relative to the calculated heading r,,

P.= P 1,,o AO..,. < Q < Ing+ AQ,., - ).l : : "i"

where ¢ is the Laplace function.

By stipulation in the problem we have of

AQzon) -0,95. (2)

From tables of the Laplace function we find the value of the

argument which satisfies (2): ............- *%.

Ox, 1,98, """""'. .. '

from which the permitted heading guidance errors

1,96".5 9,80.

Thus the desired maximum interceptor headings are within the -...... .

limits of 60.2-79.8o.

PROBLEM 5.8. From known permitted heading AQ and altitude
" AH oguidance errors find the equivalent one-dimensional permitted
guidance error which defines the boundary of the region, the prob- -. . -. -

"ability of guidance into which is equal to the probability that the

interceptor will be within a rectangle bounded by the values AQ

and AH
,--o, 

-

Solution. As can be seen from Fig. 5.14, the equivalent one-

dimensional guidance error X is a certain average of segmentsQ o".o. .
and AH . The probability of guiding the interceptor into

1551
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_______basic sector dqWQ is proportional to

the square of this sector. Therefore

the average value of the one-dimensional

permitted guidance error X is found
(V Aofl

from the relationship

Fig. 5.114. A,, ~ t 1

KHere we divide by 1r/2 since averaging was done from concepts of -

symmetry only in the first quadrant.

Since

G.O (2)

then .~

Solution (3) is obtainedusn th faiar abe neg l

Thus, the desired value

=In fig + ~ -J1,, nTL

+ iiuxg~2.L.
Further, we have '

arc to,~(6

tg7.

(6)

I.gg
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"Having substituted (7) into -

(5), and considering that tan n/4 =

q.- = 1, after simple transformations
S1/•-•- • I •_ we get • ,<;-

2 ,,=.- AQJL0V In- + -•-->:,,.-

- 2 ... . ...

1 2 34 4j 7 ?89 Af1an,KM~ 1i+.;.I
Fig. 5.15. + ST.o.t,

2 AQa,1li _ _ - + AHln- -, + (8)

Figure 5.15 shows a graph of the dependence of X on on AQAon

and AHo. Using the described method we can also show that Eq. (8)

is valid for both systematic and rms guidance errors.

PROBLEM 5.9. Show how the surface-guidance probability PN.H ... ,.

changes with a change in target-acquisition distance Do6 H by the

airborne radar, if we know that the permitted and system guidance

errors are directly proportional, while the random surface-guidance_ *-.1', *:

errors are inversely proportional, to acquisition distance Do6H. • ..

Find the dependence between changes in P and interceptor speed

V under the same conditions, but with the permitted errors inversely

proportional to V.-

Solution. To decrease the number of arguments, in the general

formula for calculating surface-guidance probability (Problem 5.1) -- 'i-

let us convert from heading and altitude errors to the corresponding ..7.-77:

equivalent errors calculated by Eq. (8) of Problem 5.8. Considering

this, and on the basis of Eq. (6) of Problem 5.1, the surface-guidance ,[.'•* .

probability can be written as follows:
X, C..

P'"=•~~ ~ ~ ~~~~~~ t! ,.1 -, - ''l)- :,7-."''
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W-4-

whee X and a are the corresponding equivalent permitted,

system, and random surface-aguidande errors.

From the stipulations of the problem we have V;

aop (2)

where kJ, kc2 and kc are the proportionality coefficients.

Substituting (2) into (1) we get the dependence of the absoluteD
value of surface-guidance probability on the absolute value of the

range of' target acquisition by the airborne radar: ~

P. 
J. ,. , .

To find the dependence between relative values of AP li.H/ .

and AD0  /D it is necessary to difff 'entiate Eq. (3) with respect
to D and divide the result by PHH However, this differentiation

001 HH

leads to very unwieldy expressions due to the presence of the prob-

ability integral iP(x) in (3). To obtain simpler calculation formulas

we must approximate the Laplace integral function (D(x) by functions

which are more convenient for differentiation. Possible approxima-

tions of $D(x) are given in Fig. 5.16, where CZx) is replaced, at the

ends of the range of change of x, by a Maclaurin series; throughout

the range of x it is replaced by the hyperbolic tangent [th] tanh x.
Using the approximation

we get

N.M GIG 2 k, L ( k, a .

A comparison of Formulas (l)'and (4) is shown in Fig. 5.17.

Then let us differentiate (4) with respect to DOH Then -
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_____ _____~W ~ .3:;

01.

0, . , ,
Fi .6

Fo la (1

.3r.1 X.0j 1 0 42' 5

'i-Li~7 --

Fig. 5.17. ah~k 6 Ja-i*#

.&P~~~,1 k CD6 , t 'u 11 ( k3

1~ ~~~k + k,.011f.-

((k: k:) k YOth %1 i ____

-+th

r(.k)(5)

*Dividing derivative (5) by the absolute probability value

* P (D~ and using, in intermediate transformations, the dependences :
H H 06OH

*159
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sh 2.V 2sh x clx;
Ih (x -yv) J(6) .,th x -thY y ica

we get

4k D2~6  (ki + kj)Ch ks .,

-R +i + L
ka sht 2 k 1 2k1 Ch L ~ -

(k i~~ ~ ~ -U kj c S i :

A~~~~ grphoffucto

A gaphof uncionf(DO) for varjious values of coefficients
kl, k , and kis giNn in Fig. 5.18. As can be seen from the graph,
the following inequality is always satisfied: *-.

'f(D.0 <M "4. (8)

- '

(DA 200

/0 20 3V 40

Fig. 5.18.

With short target acquisition ranges, changes in Do6 have a
strong influence of effectiveness: with a 10% change in D P-

O6H-' PH.H

decreases byi 40%.

For interceptor speed Vn., froip the stipulations of the problem - ~
we have

160
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Ltus differentiate P w~~ith U m* repet ,o ; then

where

a~ch 'i

b-ch (12)
k.1

Cmsi 511 4  (13)

PROBLEM 5.10. The target is located at some random point of

a region whose area is S *The interceptor independently seeks the

* target In this region. Determine how the acquisition probability

* depends on the width 2b of the sector scanned by the airborne radar,

* ~~the interceptor speed Vi, and search time t,, fw asm ha ',-
during the search time the area S remains constant and the target,

LA_
can appear several times at each point in the region, i.e., the -

* ~target maneuvers such that during the entire search time It has ~ *~

equally probable distribution in area S .~

Solution. Let us designate by Q the probability that the target
is not detected up to moment t. The probability of target acquisition

in elemental time span At immediately before or after moment t is

defined by the ratio of area AS scanned in At to the entire area S .~

LA LA-
Thus, the probability of target detection in At provided that the

target is not detected prior to this is

(I -Q)*.*f

dQ Q

161
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The solution to this first-order differential equation when the
initial condition Q = 1 is satisfied, when t = 0, is expressed by ,
the obvious equation.

Q x s(itn) (3).-

Consequently, the probabilit3 of target acquisition-,-:: ,..

Pa. s, , (4)

where V is interceptor speed and tn is search time.
n n-

PROBLEM 5.11. A target passing through the air-defense zone .'
photographs objects; during this it undergoes damage which is directly

proportional to the time the target remains unchallenged in the air-

defense zone. An interceptor carries out n attacks in order to down
the target. The probability of target downing in one attack PI 0..4.

The time required for the interceptor to climb and for guidance is

tH = 15 min. The time between successive attacks t = 1 mn. The ',-.'
Ha= 1 min Th

dimensions of the air-defense zone are 100 x 300 km. Target speed
VL = 1000 km/h. The width of the strip photographed by the target

is 25 km. As the indicator of effective interceptor action we select

the relative length of time the target is in the air-defense zone.
Determine the law of change of this effectiveness indicator as a

function of time t.

Solution. The time of unchallenged target operation in the air-

defense zone is a random magnitudp, whose mathematical expectation is

M--I

where Pm - Pm-l is the probability that the target will be downed in

the m-th attack; 1 - Pn is the probability that the target will be
downed in n attacks; T is the maximum time the target remains in the

air-defense zone.

Carrying the constant T to the left side and introducing the
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term P nT -nder the summation sign, we get

nn-

The effectiveness indicator assumes the following form: $~ ~..

V V

The time interval between successive attacks ~~T2

1Tnf (14)

and then

PM__ (5)

Thus, the formula for calculating the effectiveness indicator ~-
assumes the following form:

T T TI'T (it-1) T (6)t

where Pl is the probability of downing the target in one attack; t1
is the minimum time of unchallenged target operation in the air-

defense zone, equal to the time required for the first interceptor
* ~to take of f and for its flight to target encounter; tn t1 is the

time required to carry out n successive attacks; T -t nis the time

reserve before the next attack.

Formula (6) shows that even with P1  1 the ef'fectiveness is

always less than 1, I.e.,

For the conditions of our problem, the total length of the target's ;.*

flight path for complete photography of the entire air-defense zone

is (100/25)300 =1200 kmn, and the maximum time the target remains

unchallenged in the air-defense zone is T 1200/1000 =1.2 hours. ~ --
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Consequently, the effectiveness (T -Tt)/T depends on time as
follows: %

1 !L2. (0,25 + 4.0,0167 -0,25) (1 -0.4)=064
7'1,2 L"4.,J I s

when n = 4 attacks are carried out, with analysis of the results o' A
each previous attack, and Pn 1. If in this case n =2, then Pn

0.8 and the effectiveness is
2'. 7' T,, ((.2 + 2-0X!167 - A.25)

(17 -,~2007 II ILI - ,.7

1,2 .
N

PROBLEM 5.12. Determine the depth of the region I in which the
aerial target appears with probability 0.96, and the distance of the
line of start of search D ,if 50 minutes pass from the time that

H .fn
*information appears regarding the target.

Given:

-distance of the warning line D0 =200k;

-accuracy in measuring target coordinates =x 30 kin;

-target speed V= 900 km/h;

-limits of target maneuvering, with respect to velocity, AV =

= ±150 km/h;
) ,,.. -

-limits of target maneuvering, with respect to heading, AQ :-~-'

= ±0-300.

Let us assume that the coordinates of target position due to
speed and heading maneuvers are distributed triang- larly (Simpson
rule) as shown in Fig. 5.19. ___

Solution. 1. Let us determine the limits of probable deviation ':.-

of target-position coordinate due to velocity maneuvering:

I-- m

2. Let us determine the limits of probablt. deviation of target-
position coordinate due to heading maneuvering: .~
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[~V~ f-x - I - tCosQ~ (2)
0;.= ~100 km. ~

3. Let us determine the rms
deviation and the mathematical ex- '*.~

-~ pectation of the total law of dis-

tribution of the target-position

coordin ate due to combined speed

and headin,ýnmaneuvers. The comLl-. /T

nation of two 3impson rules [2]
givs te ttaldiatributiori law

toclose to normal. The rms deviation .

IX of this law is

2,z +

while the mathematical expectation

M G0+ Zc.X~ is determined by solving the quad-

*Fig. 5.1q. ratic equation

*For our example we have a4  42 k1m, LAI.q2 -58 kcm; solution of Eq.
(14) gives m 171 km.

14. Let us determine the rms deviation of the resulting law of
digtribution of the target-position coordinate due to speed and

heading maneuvers and due to imprecise measurement of the target

coordinates:

%i 5 2 kcm;

L265 km.

5. If the target performs no speid and heading maneuvers, in

time t 90 min it will be at a distance

D)., - ., 1~ 250 km

from the airfield.
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6. If the target makes no heading maneuvers, but increases its

speed, in t =50 min it will be

Pj, -Vti 2",=1146 km

from the airfield.

7. If the target increases its speed and performs heading

maneuvers to its limiting value,, in 50 min it will be

D.. - Vj, 2:.,, .~15. km

from the airfield. This is the maximum possible rear boundary of
the region of probablp location of the target by the time the infor.-

mati')r is 50 min old, and is thus the terminal search line P i
i, n**

Conseque~ntly, the depth of the region of probable targets 1ccation

I=D...,-D,1 .. =405 km. *

Therefore, in our example, target search should begin at, a distance . -.

D =~ 1146 km. The depth of the region of probabJle target location
H.Fi at the moment search begino is 405 km.

FVXL2511, The target is located within these
~~3Od limits with a. probability ot 0.96. '~

ZC The dependence of the depth of the

/1 ~ region of probable target location I on

V41Ck/h the age of the information is shown in

Fig. 5.20.i7 V4- IVT .
PROBLEM 5.13. An aerial target is

Fig 5.0.dest~royed by an air-air rocket after
the radio fuze has operated nt the

moment the. ricket reaches any point .. the target plane not more than

R = 7 mn from the center of gravity of .he target. Errn-s iii rocketA

hcming are described as a miss - the distance of random coordinates

of rocket flight in the target plane from the target's cent'ýr of
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gravity. In trying to break off attack by the interceptor the target .. .V % -7A'
uses, with equal probability, six various types of maneuvers, in which
rocket miss is described by the following values for the average and '.-' -

rms homing errors:

Numerical miss character- Types of target maneuver -". ' '

istics,m. 2 3 4 6.
I%

Mathematical expectation 2 3:5 2,6 3.7 0.2 3.8 1 .
RMS deviation 4 4,7 5.9 5.1 4,3 3,3 4.9-- •

Show how the probability of target destruction depends on its " ..

dimensions and on the values of the systematic and random rocket

homing errors. Determine the probability of target destruction for
the given conditions, and show how we can calculate the destruction

probability for the case when a miss has no systematic component
but doo.r have a random one.

Solution. According to the conditions of the problem the
destruction zone is a circle of radius R = 7 m whose plane is per-
pendicular to the direction of rocket flight and whose center coin--.

cides with the target's center of gravity. The probability of tar-
get dsstruction can be interpreted as the probabili.ty of hitting

within this circle.

The process of rocket flight to the target involves continuous

correction of rocket homing errors arising for various reasons. ,-A

When the target maneuvers, the rocket's automatic control system,
because of inertia of the system elements, correc'.s the errors with '

a slight delay, as a result of which we have a systematic homing
error and a systematic rocket miss. Random external perturbations
(noise, fluctup.ting prowesses in the system elements, random changes

in flight conditions) are the causes for these random homing errors 7."

and random miss. Dispersion of the rocket is caused by the action

of a number of independent factors, and therefore the miss is a
random magnitude, distributed normally, while in light of the .

symmetry of the control system the miss distribution in first approxi- ...

mation is circular. However, when dispersion along coordinates axes
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x,y is characterized by rms errors which are not identical but which

are of the same order (a x ay), the equivalent circular rms error . *

is defined by the formula _ 0

Derivation of a precise formula for calculating the equivalent -"". -"

circular rms error from known values of rms errors ax and a is 0.

given in the solution to Problem 5.8. Thus, the miss of a rocket

relative to the target's center of gravity can be described by circu- . -;

lar normal distribution of the random radius-vector modulus, whose .,. -.

average value is equal to the distance of the dispersion center from

the coordinate origin, coincident with the target's center of gravity

(with the center of the circle).' Consequently, the probability of

target destruction is numerically equal to the probability that the

rocket, whose coordinates in the target plane are statistically in-

dependent and distributed by a circular normal law, falls withina a

circle of radius R whc center coincides with the target's center

of gravity. *.* .A..

If the coordinate origin coincides with the center of the cir-

cle, the direction of the axes of the Cartesian coordinates can

always be selected such that one of the miss components will not

contain a systematic error. Then, assuming that the rocket homing

errors are statistically independent and distributed with a circular

normal law with mathematical expectation m and rms error a, the two-

dimensional distribution density of coordinates x and y of rocket

miss can be represented in the following form:

(x, (2)

Tc find the miss distribution as the distribution of the

radius-vector modulus, let us convert the Cartesian coordinates "'-....

x,y into polar coordinates p,p using the equations

X ,,COS*; :.•(3) .. '-' -:". "
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where p is the moduJt14 Or the .randoni miss radius-vector.

Let us find the 4ACOIaf of the transform when converting fromI -variable Cartesian co dirc1pates to variable polar coordinates:

-Fe.~ ''.

Since the two-dimraerisonaJ. distribution density in the polar

coordinate system Is~ qaefjved in terms of' the two-dimensional distri-

bution density in Oartel.4rm coordinates by the relationship

K .~-4

where P > 0 and 0 9 2~~ 1T, the one-dimensional distribution density

of a miss- the racj.4s-VeCtor modulus -is round from the formula I

etons)~- 2% Ms Co As
~'+fta'P' 0 -O

* dý. best ~ (6

*The integral in Eq. (6) reduces to a zero-order Bessel function of

an imaginary argumerit, aJrnce in general form an n-th order Bessel

function is represcmpted vy the integral

xo s
e cos n(? d?,

*while when n =0 we tet A zero-order Bessel function:

*Consequently, Eq. (6) ' b~e rewritten as follows: 0

The integral di411tOt~tion function F(p) of miss p also gives us

the desired probabiLljvY ot a rocket's hitting within a circle of
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radius R when the center of dispersion of the circular normal law is .ft.*t-.t.

displaced by the value m from the center of the circle. Thus we have ce.I

Let us introduce new variables -the relative values

an RR 1

Then the formula for calculating the probability of destruct-ion is

expressed as follows:

2 1"(,7)i (12) .f- *f.

The results of the calculation by Eq. (12) are shown in Fig. 5.21.

~ ' I When mn < 1 (small

08systomratic rocket horn-

ing error), the prob-

ability of destructiorn .-

0,can be calculated quite fff~-

0.3 accurately from the

0,2 formula

1.0 ,0 O RIO -"" 2 (10Gn (13)C

Fig. 5.21.

When the rocket homing systematic error is zero, while random

errors are distributed by the circular normal law with rms dev.Lation

a, the probability of destruction, like the probability of the rocket'ls

hitting in a circle )f radius R, is

1/3

U

This is the so-called Rayleigh law. In this case P is defined

from the curve rn/a = 0 from the gr'-ýh in Fig. 5.21. f%'

For the conditions of the problem, using Eq. (12) or the graph
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in the fi~gure, we obtain the following probabilities of the rocketts

hitting within a circle of radius R = 7 m: 0.64, 0.46, 0.57, 0.60,
0.89, and 0.54, respectively, for target maneuvers of types 1-6.

The resulting probability of target destruction is defined from

the formula for total probability:

P ~ (i I1:,p(3) (15)

where P(H) is the probability that the target selects the i-th type-

of maneuver (hypothesis H1i); P o (H i) is the conditional probability

of target destruction under hypothesis Hi

Since by stipulation in the problem all six types of' target man-

euver are equally probable,

and the resulting probability of target destruction P 0.617.
- -Z

q 'u-k
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CHAPTER 6." ""

THE COMBAT EFFECTIVENESS OF GROUP OPERATIONS OF FIGHTER-INTERCEPTORS """"":

Indicators of the combat effectiveness during operation of a

group of interceptors against a group of targets can be calculated

only from the known indicator of a single operation against a single :-'.'--.::.

target. Therefore, before analyzing the problems of this chapter .,:..--...,-.

..-.... h ?/

it would be advisable to become familiar with the pr-oblems of,,..__••Chapter 3. 1 -

• - T~~n addition, we assume that, the reader is familiar with the .,:--...-;-

:-" ~principles of the general efficiency theory, game theory, and the ,..•..,.=.
•='" queueing theory. If not, we recommend that the basic postulates

and methods of these disciplines be studied in the available litera-

ture [3-8, 29-32, 39]. ::i:."i:- i

Since the basic purpose of an interceptor is to destroy aerial @

targets, the basic criterion for the combat effectiveness during

group combat operations• of interceptors is the number of destroyed..'. .. ...

(downed) targets. This number is a random one and, consequently, ,,.,...:.

its most complete characteristic is the law of the distribution of ,'. ...

this random number. The basic quantitative indicators of the combat • •-
effe:!tiveness of interceptor group operations, and the ones most 2':-''•'•?

often used in practice, are the numerical characteristics of the law.:.. ':•".'";

of distribution of the number of downed targets, viz,.: its mathematical ,.. '...,'..,
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expectation (that of the number of downed targets), the probability

of downing all targets in flight, and the probability of downing at-I .

least a given number of targets. Most of the problems in this chapter •

are devoted to determining these characteristics. .

In Problem 6.1 we determine the distribution law of the prob-

"abilities of destroying a group target with a group of interceptors.

The most general problems are 6.2, 6.3, and 6.4, whose solution '_.__-_

gives us the dependences of the mathematical expectation of the rela-

tive number of downed targets on the number of operations against,________

each target, the probability of destroying a target with a single L 1 _

operation against it and with a given quality of solution of the

problem of combat control. This latter is taken into account by

examining three models of group aerial combat, which define the '-..

limits of combat effectiveness.

1. A model of combat in which there is no target distribution,

i.e., when each interceptor can attack any target in the sortie,

resulting in intermingling of the targets and nonuniform distribution

of targets among the interceptors (Proolem 6.3).

2. A model of combat with ideal target distribution i.e., when

the targets are uniformly distributed among the interceptor and

operations against each target are carried out independently of one

another without analyzing the results of the previous attacks

(Problem 6.2).

3. A model of combat with ideal target distribution, analysis r
of the results of each attack, and reaiming to another target if the

previous one is downed (Problem 6.4). H.
• •:•~~~-.-:-.:•

Obviously, any case of group combat operations which is possible

in practice can be evaluated by one of these models. This is illus-

trated by the solution of a number of problems (6.5-6.7).
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• -44 4--: .--.

Those problems whose solutions give us the dependence of the

relative carrying capdcity of a multichannel surface-guidance system

on the number of guidance channels, the average time for guidance of

a single interceptor, the intensity of the t-rget sortie, and the ....... "

depth of the belt in which interception takes place, are character-
ized by great generality. Using queueing theory, we examine two ..

models of interceptor combat operations:- b I- I

1. interceptibn of targets on a given line, or the Erlang '.o-"-°:-":...•.,
model (Problems 6.8-6.10); in.agive-bel,.o

2. Interception of targets in a given belt, or the Barrer

model (Problem 6.11).

Classical queueing theory gives analytical formulas for calcu- -. , -

lating the carrying capacity of multichannel systems only for the

case when the intensity of the flow of targets is constant. To

expand these conditions we examine Problems 6.13 and 6.14, which -

show ways for possible calculation of the effectiveness indicators

for the most general case when the intensity of the flow of targets

changes randomly with time and is characterized by a given distri-

* bution law.

A number of problems are devoted to determining the combat

effectiveness during independent combat operations, when a group

of interceptors independently seeks out a group target and subse-

quently destroys it, and to determining the required number of inter-

ceptors to assure a given effectiveness (Problems 6.15-6.18). " "

PROBLEM 6.1. N interceptors are guided to N targets. Each
nl LA

target is attacked by one interceptor, resulting in each target's ..
being downed with a probability of P1. Naturally, the number of -

downed targets is a random number. We must give the complete char- -' _-

acteristic of this random number. Given: N = 10, N = 10, P 1 = 0.7.

Solution. As the all-inclusive chs.ecteristic of the mber of

downed targets N we have the distribution law for the probabilities
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of this random magnitude. If one interceptor is guided to each of

N targets, and the interceptor downs the target with probability Pl-,

the density P c of the distribution of the number of downed targets

. is defined by the coefficients of the expansion of Newton's binomial.
Let us designate by QI the probability opposite to P Then the

desired ordinates of the distribution law are defined by the following
type of expansion:

N -. N
Here P1  is the probability of the downing of all N targets; P1, +

N -1
+NP l 0is the probability of downing at least N - 1; the

LA LA

. first three terms are the probability of downing at least N- 2;
LA

- etc.

Using this method we find th,., when each of 10 targets is
attacked by an interceptor and P1 - 0.7, the probabilities that at
least 10, 9, 8, ... , 1, 0 targets will be downed are, respectively,

0.03, 0.15, 0.39, 0.63, 0.85, 0.96, 0.99, 0.995, 0.997, 0.998, and
0.999. Using the formula for determining the mathematical expecta-
tion, let us not calculate the mathematical expectation of the number

"of downed targets:

I'-'~- :-• k-.

where Pci is the probability that exactly i targets will be downed;

i = 0-10.

.11 10.0,03 + 9.0,12 + 8.0,24+ 7.0,24 + o.0,22 +
+ 5.0,11 + 4.0,03 + 3,0,005 + 2.0,002 + 1, 0,001 --7,

which coincides with the obvious calculation using the formula
0.7-10 = 7. Unlike the distribution function, which gives the prob-

ability that at least a given number of targets will be downed, the
distribution density gives the probability that exactly a certain

number of targets will be downed. For our example, the probabilities
that exactly 10, 9, 8, ... , 1, 0 targets will be downed are, respec-

tively, 0.03, 0.12, 0.24, 0.24, 0.22, 0.11, 0.03, 0.005, 0.002, and

0.001.
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PROBLEM 6.2. N targets participate in a raid on an object. ..

A flight of Nn interceptors is sent to intercept these targets. At

the command point all interceptors are uniformly distributed against

all targets, since all targets are of equal value. Each interceptor

has m rockets which are fired independently at the targets. There
v is no damage accumulation; each rocket destroys a target with iden- •" "

"tical probability P,. Show how the expectation of the number of

Sdowned targets M[Nc.] depends -,n the number of attacks against

each target and the probability P1 of downing a single target with

the firing of one rocket.

Solution. The resulting probability PT of destroying each tar-

get after m N IN operations is equal to the probability of the event
p n 

."consisting of the fact that each target is destroyed after any of

"m N IN rocket firings against it. Either it is destroyed by the
p1 n L

first rocket, or the first rocket does not destroy it but the second

one does; the first two rockets do not destroy it but the third one

*. does; etc. Consequently,
-rV. i -- |-- 1 ** -l,'l

- .n------I •-,-'.u
Vt 1-0C

fit

;. =1 -(I P,)
where - is the gum of the geometric progression whose first term

m

is 1 and whose denominator is Qi In Practice, it is convenient to

use, instead of the absolute value of the expectation of the number

of downed targets, the relative value:

,___ = 1 --(1 -- 1,) '"' (2)

. -..... , -.., - *. ,, ,

The graph of thi.s function is given in Fig. 6.1.

Wher it is impossible to uniformly spread all operations against

all targets, against a certain number of the targets there is one ; , -

operation more than against all the others. In this case, K;
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Fig. 6.1. d''..'.

A1(V~.d -- . •- • . ' .

,•1% ,I t 1 - pl)' - (I apt), ( )¢-'''-:..-

where .. :-,:--.-

(4i)• = -- --. - f•] = o -- t (41. . . . .. ..

[a] is the integral quotient of mpN divided by Nq.

We can also use the following formula:

AI'e ,".- -1-(-.,J-r:1 
.. -1 .p;-:..(5

but calculations are simpler using Eq. (3).

PROBLEM 6.3. A group of N interceptors conducts aerial combatn
with N bombers. The mutual positions of the interceptors and targets

are such that each interceptor can attack any target and down it with

identical probability P1. Show the maximum increase in effectiveness '--

S
if we turn from free aerial combat, i.e., from tactics under con-
ditions of the complete absence of target distribution, to tactics 4

under conditions of ideal target distribution, when all targets are

uniformly distributed among the interceptors. The expectation of

the number of downed targets is the criterion of combat effective-

ness.
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SL..utiofl. Since with ideal target distribution N IN operations

are carried out against each target, the probability of downing each :*:

target, as shown in Problem 6.2, is

i.e., the expectation of the relative number of downed targets

When there is no target distribution whatroever, the probability

that a certain interceptor will operate against a specific target is

agansta specific target is calcul.ated from the formula for the

teryr of tVhe ý'ewton binomial expansion:

P() C (3)

*The probability that the s .--,ted target will be undamaged

after v attacks is

P~~~- (V ( -P."

* ~However, the target nec-i not be attacked v times; it can be

attacked 0 times, 1 time, 2 "times, ... , or N times. Consequently,
the resul~ting probability f"lat a target will be undamaged is equal

to the sum of' the probabiiities of all' favorable events:

NP (V)(It PI),=I(

The expectation of the relative ni,.iber of downed target's with _____

no target distribution whatsoever Is equal to the probability of the-

opp2,-.-,ite evejit:

F1_ (5)
L

ThLl-es of Function (5) are given inl Appendix 1. Thus, the gain

-Ln eff-cotiveness is expressed by the f'crmula
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Function (6) depends on PI, Nni and N4, and in general form it
is unnecessary to construct it as a function of the argument Nn/N, I

since N must be specified. However, for large values of N. .

_ P, \•'• ~~(7) •:;..

since by definition of the Euler number

a , -n -

we have

Calcul~tions from ... -•-•'

JJ'!Frmul ((5)L~ for P

4 = 0.2-0.95 are given in

7 • Fig. 6.2. Using the

graphs in Figs. 6.1 and
6.2 we can construct,

for any Pl. the effect-

iveness gain function. ,•

For values P1  0.2-0.95
this function is as shown •*- - .

in Fig. 6.3. With small/' i i
0 ,l values of N and N

LA n',to
Fig. 6.2. construct the function

A(M[N ]IN we must ase Eq. (6) directly. Calculations given in
C.4 4A L

the tables of Appendix 1 allow us to Judge the rapid convergence of

(5) to (8), and determine the limits of validity for constructing

the gain function A(M[N /N ) from Eq. (6). The effectiveness in
C.4A 4 !-

the absence of target distribution can also be estimated by another : -'
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- -r method. In this case, -
_nn -'

g the number of operations
__ ~N I/N carried out against

-n 1~ - - each target is a random
[I A'

number, subject to the

-~ ~ -- Poisson principle. The

probability that exactly

If-i ~ i ~ . k operations will be
.1carried out against each

1 2 rINh/ target is calculated by

Pig. 6.3. the formula

A .' (9) . -

Using the formula for the totali probability, we get the probability

of the downing of each target:

k .0

PROBLEM 6.4. Determine the gain in combat effectiveness (the

difference in the expectation of the number of downed targets) when

turning from tactics under conditions of the lack of any organized

target distribution to tactics urdar conditions of Ideal (uiniform)

* target distribution, and then t.o tactics with reaiming, when each

* subsequent attac:k is carried out only after the results of the pre-

vious one have been analyzed. Show hcw the desired difference de-

pends on the probabili~ty of interception of a single target when
the interceptor fires one rocket.

Solution. Since the number of destroyed (damaged) targets Is

a random number, the Tmost general c-har-acteristic of this number is K'

its di s t db ut ilon law. Conrseauent'%, the general method of deter-

* m'rning the effectivenesz of group interceptor operations against a

group of targets is to detenmiine 'the distribution law for the number

-)f damag-ed targets, from which we can then calculate such character-

* istics as the exnectatiLon of the number- of damaged targets, the
oirobability off damaging all targets, and the probability of damaging

~ N0
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at least a given number of targets. The ordinate of the density dis-

tribution function for the number of damaged targets is the probabil-

ity Pi of destroying exactly i targets. When i < N , the probability

P is defined by the binomial distribution law:

N (1)P,--C' P! (I -- P')'%-! . p, (I _ PI)•.'()!'->••••

Thus, for this case the probability of damaging all targets is L -

defined by the formula

N-IP1 (2)

since the probability of the oppositve event - the probability of
destroying at least one target -is

i.e., equal to the probability of damaging one, two, three, etc., up .-

to N - 1 targets, but not all N targets. Using the theorem of the

separation of sums (integral), Eq. (2) can be written as follows:

P,. = .Ci q. P, (I• - P,) "7- - V 0, P', (I - PI)II,-1. i•:

Since -C,( ,CP(PN

V% q. P, (I PI 1

as the sum of the probabilities of a complete group of events, the
formula for calculating the probability of damage to all targets as- ...

S~~~sumes the following form: •;]

Pa C..•- %-O..Pi (I -- P,)M".();v•' . .. :i-:,i•

: ~~~Analogously, for the probability of damaging at least the given "'""•":"

number of targets we have the following formula: '--,

,,= 2 1CIP (1 -P1)X-•, ( I ) :< ""•

181

- - - * . .. - 5- -. * . .-* 5* 55. ,. , - -. '. 1% . .'. •: "

:. -:. .•.:, . . , -. . - . . -.•--------. •.-• ;-•::--L;-;.: :, -.--- . -• .:--.. .'



;7-- 1- -7 -.-- ,-,.---.-------

where mn is teivnnbeofartswhich must be destroyed, i.e.,

the number of damaged targets is obtained by using the formula for

cal-Culating the exuectation as the sum of all possible random numbers
K )f damaged uarg<etZ multiplied by the probability of the occurrence

of these numbers. 2Por~ this we must multiply each random number of_

damuaged targ~ets i b1-y thne ordinate of distribution density (1) and

sum these derivatuxves f'romi I to -N

I' l:. (5) wve must add the sum which takes into account

th- ;xjssibll -ty thtthe total number of operati~ons N carried out

*b~ 1.1 Jnt~eiceptox'z- can be greater than the number of targets N

i Te formula for- calculat-Ing the expectation of the number of damaged

targets then assumIes t;he fo')ýlowing form: 9

+e J~ p, (I pl)N~... 6

N-II+

Graps o f~netens(3)and (6) are given in Figs. 6.4 and 6.5.
EP aqin in effct Ienesýý with reaiming is shown in Fig. 6.6.

As oma'i~' t.~depena±Qencas M[N ]=f(Pl, NLA, N ) shows

* Vo, cases of' if:u aPr'get- distribution, the absence of target dis-

tributlon, ~ -a"A I' i , he greatest differences in IMN_ ocr
it ,>0. 5 and 1-2. The dependences AM[11 can be

*wiý,ce-y useý to1- .. Influence of: the quality :,f co0m ba t ori-on-.

L ro~ n tire c. f target distribution and realiming on the ...
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and also the nomogram for definin•g P are all-purpose when a flightN
of interceptors is used, ,f we are given quantitatively the effect-

iveness level. Using these qgi c also solve the opposite problem:
to determine the effectiveneqs MEN, P if we know the number of...."-

targets N., the designated flight of interceptors Nn, and the prob-
ability of target destruction In a single operation Pl'

We should remember that in Problems 6.2-6.4, when deriving the
calculation formulas we assumed that the interceptor carried out
one attack. When each interceptor can carry out m single attacks,
everywhere in the formulas for these problems we must replace Nn bympN. We must keep in mind a simivlar substitution when using the

graphs in Figs. 6.1, 6.2. qnd 6,4,' and the nomogram of Fig. 6.6.

In addition, we sho4ld add that calculations by Eq. (6) of this
problem as a function of the values of N and N become less un- .
wieldy if we use the formulas

• IN , ul=. Nt- (i- ) C'P, (1 - ,}". (8)'''"-:',-

Appendix 2 contains the tablp for function (6).

PROBLEM 6.5. Determine the average percentage of downed targets
as a function of the ratio N IN between the number of interceptors
and the number of targets in th~e raid, If aerial combat consists of ---.--..-
individual battles in which the targets are downed independently of "

one another with probability PI, whjle the interqeptors are downed
with probability P2 Let us assume that we have ideal target dis-
trbuton for both opponents. :

Gven: PN1 =0.3, Q5, 0.7; P2= 0.1, 0.3, 0.5, 0.7, 0.9;Nn/NL 0-5.""

w~ ~ W W U.: % w - ".- •wt--w - 0
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solution. The expectation of the relative number of downed

targets is defiiued by the formula

At IN C. a l~

where P is the probability of downing each target; Pi is the

probability of damaging each interceptor.

Let us use Eq. (2) of Problem 6.2 to calculate these probabili-.

ties. For our model of aerial combat with Jdeal target distribution ..

we have

Nit

PuP2~)AU (2)

Consequently, the desired effectiveness is found from the for-

mula-

the INC.(P at f h

The results of th acltosfrteiiildt fteproblem

are given in Fig. 6.7.

C'II

11 4 NnI

Fig. 6-7

lb~
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I PROBLEM 6.6. In group aeol'a'l combat the number of targets N

Is equal to the number of lnte~fepl~rs N .Each Interceptor is'
P,

armed with m~ rockets and car, owny out several attacks, destroying
in each attack a single ~target %'itb probability P. In turn, due

to enemy fire, the interceptors iti each attack are damaged with

constant probability P. DetermIne the exp~ectation of~ the relative .

2*.

number of downed targets M[fg 3/N for three combat" models: no
C.4 q 4

target distribution, ideal tar'get distribution, and ideal reaiming.

Determine the optimum number of attacks which each interceptor should
carry out to assure maximum effettiveness, remaining undamaged with
maximum probability. 2 .102,.3 wehv

If
'-7

where P is the probability of doWaiting each target which, in Accor-
LA

6.2, (5) of Problem 6.3., and (6) of Problem~ 6;,4- Pb., is the pro~b-.

ability of damage to each Interceptor.

Since N N the possible n~mber of attacks on each target
14 n

with uniform target distr"ibution it

F (2)

and, consequently, 2

PS* 4 PS) (3

Thus, the formula for calculating the effectiveness under the examined

conditions assumes the following form;

I*U(1 "i)s.(4

The results of the calcul~ati.ons for the Initial data of the :~

problem and P~ =.7 are given in P~ig. 6.8. Analysis of the graphs

186 7
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- shcws that under the ex-

- - t amined conditions there is
/ -always a certain optimum Y

number of attacks in which

..........the effectiveness, i.e.,

the probability of downing .9-'

-, each target with no damage

Uo each interceptor, is -

* maximum. This is explained

a4 ,~by the fact that with a,
-Ideal target -Reaimrgiceaingnubroatcs

distribution icesn ubro tak
-- No target dis-.

trprobbtlit the dow.ning each

Fig. 6.8. target decreases, while.'*

the probability o" _,'%age tu each interceptor increases in chis case.

PROBLEM 6.7. el group tn:C.' -.. nsistizr.g of N aircraft cpn be

-. attacked by a group o., U1 . inL. ýr'.-qtors in the following two ways:

1. The target is attacked by all N interceptors in turn; sub-n
sequent attacks are carried out after analysis of the results of-

previous ones; each single interceptor downs any enemy aircraft withN

enemy aircraft withl probability P.
prbailtyP~ ad heinerepori tiscae s amge bi :'c2''

C2. All intercept.ors attack a target simultaneously; the prob-
abilities of target and interceptor damage with a single operation -*

against either are also Pand P.

1 2*

Determine the dependence of the expectation of the number of

downed targets MEN Ion the values of P1r 2 N14 and N .Con-

C.1 fl i3.P23.k .

sidering that the effectiveness depends on the force ratio N IN ~3.'~-

determine the optimum quantitative composition of the group target

for which, -when attacked by a given number of interceptors, the

effectiveness MEN I is maximum. Show how the effectiveness can
C.14*A *

be increased if we turn from single to group operations.
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iGiven: P~ 0.5; P2  0.5 ifhd 0.1; N =1-5; NA n 1-5; combat
model viith ideal target d~strib-ý~lQn.

3olution. Using Eq. (C4) of-Pvoblem 6.5- we find the dependence

alashave optimum quantita-

tiecomposition oftegroup z
tage for which the effec- ..

4 tiveness, considering counter-

3 fire, is maximum with opera- '.

* 2 tions by the given number of
I intxrce~tors. For example,

when P 0 .5 and P 0.5 it

is rational to use a group ofFig. 6.9. 4

-five interceptors against 3-14

enemy aircraft, but- not against two or five.: in the~ first case the -

effectivenes3 is low because of thL% small humber of targets, in the &~.

second case - because of the high ~probability of damage to each in- "t4,

terceptor. Using this foi-mula# however, we find the difference in

effectiveness for the two given attack matbods.

.4'PROBLEM 6.8. The enemy cazrr-40 out an air raid with an inten-
-sity of X = 10 targets/hour, The targets cross the line of respon-

sibility of the air-defense region at random moments of time, forming
in this case a simple flow, TwQ guidaneb stations are set up to
organize the interception; each of these stations simultaneously

*guides a single interceptor to a single target, spending T. = 5 min

per guidance. If, at the moment the target crosses the aitr-defense
line, both stations are busy guidifig interceptors to previous tar- ~

-. gets, the given target is unintercepted. How many targets will pass

4 ~unintercepted if the enemy raid l.asts for 10 hours? Let us assume

that there are enough interceptors', and only the fact that the
stations are busy with guidance results in partial enemy penetration.
Determine the expectation of the number of downed targets for X =10:--.*.

target~s/hour, T. 5 min, if' the probability of target downing with ,* .*

- the occurring guidance in P1  0.9.
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Solution. Let us determine the probability P~ that a target,

selected at random from the flow, finds both guidance stations busy

as it crosses the air-defense boundary. For this let us use the

7, Erlang formula [3, 39]

1Calculations made by L. Lýý
S~~the Erlang formula are S .~

shown in Figs. 6.10 and .'-

LLL .. L 6.11 dfor a getmany con-

Pthat all ndiannels

,F1are. occupied is derived as
a function of the number

*o channels and the re-

dcddensity:

-. -- -For our example we have

10 20 30 40 so 60 70 OP 900,6

Fig. 6.11. 'k6
A-0 w!~,

Since under these conditions it is shown that a target, finding both

guidance stations occupied, remains unintercepted, P~ = 0.16 expresses

the percent of unintercepted targets. In all, in a 10-hour raid there

*are lOX =100 targets; of them, 100-0.16 =16 targets are uninter-
* cepted.

This problem is interesting in that it shows how much the random

nature of target appearance can reduce the effectiveness of an air-

* defense system. Actually, if the targets were to cross the air-ae-
fense boundary in various time intervals with the same intensity X

-10 targets/hour, i.e., 1 target each 6 minutes, with a guidance

q
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time tH 5 min all targets would be intercepted even when using onlyi•2••)'-'''''

one guidance station. Whe-n 0 - 5/6- and n -2, from the Erlang formula 2,..,%
the probability that all channels- are busy Pn P2 0.16. Conse-
quently,0., the probability that at l~east one channel is free is 1 Pn•i!••!-: ..

o.84.

The probability tagthere will be guidance against each target,oy

and the target Is In this case downed, is 2E

(t -t P.) Pht a 0,84.0b = 00,76C.onse- _

while the expectation of the number of downed targets free.is 1.- •.

(I -- P.) P, Na 0184.0,9. 100 ---75,6. • :--

For our example, when the relative carrying capacity of the '"'

system is one (i.e., we have a regtular flow with 6-minute inteevale s,.between targets, and the guidthee wile idancet, equal to 5 min),

the number of downed targets is 100-0.9 =90. Thus the random nature'.•;-5.._+
ofa the tage o s ingts asthe rndo guidance time decrease thes

effectiveness by 16%."-'.:+-,

PROBLEM 6.9. The ratd is a simple flow of sne1e targets. Allt

targets alle intercepted on one given line. The time that the inter- ,+'
ceptor guidance channels are busy is a random magnitude, with ex-
ponenteal distribution. The averege time between successive targets
is 5 min; the average time tue channels are busy is also 5 min. There

S~~are 5 guidance channels.-.;,•... -

What are the probability that exactly 0, 1, 2, 3, 4+, or 5 ehannels.:'.•:.."°
will be occupied? How do these probabilities change if the average

time the channels are busy increases to d0 minutes?t

Solution. The answer is obtained using the Erlang formula. The
results of the calculations are given in Table 6.1. t

The table shows that the probability that all 5 channels willr

4 4",p ., - +

be occupied with 2 Is -0.0H, I.e., each 25-th target crosses the . -

' 190
7-,. .

Soltio. Te aswe isobtine usng he-rlag frmua. he- =%•+.:'+t

results ofthe clculations are gven in Table 6.1

+ •,•-. --.;+..'•,•-' •'<"•-'--+'-.'+-'.--"-.''..v -+.;vb; -'c+-----.: . -...- v-. % •_-+% -: .----% -,:-.+--•-. -.-.-.--. -.•-.". -. "- -:."-. +. -- .-.. 4•
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Table 6.1 intercept line unchallenged;
";I " , ~~~when 0 = 1, only each 300-th • '": :"

target is not intercepted.
00. 13761

I (O."~ 0', I. 27523 t;"- • •,':

2 0.1,:!,6 0.27:23 PROBLEM 6.10. The raid -'s-.-... .

3 j (0.13135 0,iR3.9 a simple flow of targets with
O.,)l.'W,3l 0i.;74 intensity X = 10 targets/hour.

IThe air group has the problem L

of intercepting at least 90% of

the targets. To exclude mutual interference and assure safety among

the attacking interceptors, we designate several lines for simul-

taneous operations against the targets. The number of simultaneous

operations does not exceed the number of indicated lines. If there

are more targets than lines, they pass unchallenged through the air-

defense region. The average time of target intercept on any line

t = 5 min. The probability of target damage P = 0.96. How many
Hflop

intercept lines should be designated so that the probability of tar-

get passage does not exceed 0.1? Let us assume that the required

number of combat-ready interceptors does not limit the percentage of -
downed targets, and that the duration of the combat operations Is

sufficiently long (at least no less than 10t ), and that the Erlang

formulas are applicable for such a steady-state process.

Solution. Let us designate the desired number of intercept ., *..' -i

lines by n Since the number of simultaneous guidances is equal

to the number of designated lines, when asing the Erlang formulas

the number of channels is the number of lines. Consequently, the

probability that all guidance channels are busy is equal to the .

probability of unchallenged target passage:

P -
"' N,•. f l.

"he probability that exactly k channels are busy, i.e., the prob-

ability that target interception occurs on exactly k lines,'-"."-- ...
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when Okn. 2

The probability that no channel is used, i.e., the probability that

there are no targets at any of the designated lines, is

f IP.nI k iP, a

* ~Using Formulas (1), (2), and (4), let us calculate the probabilities

-. ~ Po P''~'~2 3  . that there are no targets at any of the designated
lines, there are targets at one line,, two lines, three lines, etc.,

and then find the sum

PP ,+P 3+(5) ~ .

equal to the probability that operations against targets occur on

* lines whose number does not exceed n
p.n %

The results of the calculations are summarized in Table 6.2. *-

Table 6. 2

1 5 1 0.167 0.139 0 0 0.306
2 0.595 1,83 0.412 0.M4 0.113 0 0.874
3 0.134 2.18 0.13M 0.360 0.150 0.010 0.942

Thus, if we designate 3 lines, 0.9~42-0.96 =0.905 targets will

be intercepted, and the interceptors' mission will be completed.
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PROBLEbt 6.11. For the conditions of Problem 6.8, determine the

expectation of the number of downed targets if the targets are inter-

cepted not on a line but in a band of width D. The target speed is

constant, and equal to V.

Solution. Direct solution of this problem is given by the ~.-
Barrer formula [40], from which we can calculate the probability

that all channels of a multichannel system are busy for the case of
"impatient" requests distributed by the Poisson law. By an "impatient"

taret n tis asewe eanonewhihfinding all guidance channels
busy, waits in the air-defense belt for time t0  D/V,., after which

itleaves the queueing system. If, however, the target is on queue,

For our example, when

remarins in the system untula thee isnoquvene

-. 
41L

A codnglsi tof the El n Barrer formulas wegs have614

shows that a difference from the simple formulas for regular flow 7%

occurs when a = X/P :t n, i.e., when the reduced target density 8 is
* approximately equal to the number of guidance channels. When 8

-(2-3)n, there is saturation in the system and P = nO, while when /-

* 8 ~~> 3n we can always use the regular-flow formulas: ..- 4,.-

)p (2)

which coincide numerically with the Erlang and Barrer formulas. The

*Barrer formula must be used when a n and n < 10-15; in other cases
* ~~it coincides with Eq. (2). .t
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PROBLEM 6.12. An air raid consists of a random flow of single -

targets, the intervals T between which are subiect to the Poisson law

with expectation TL= 5 min. The time during which the guidance

channels are busy is a random number, distributed exponentially with

expectation T = 10 min. The guidance system operates such that a.iy -' ."- '-

target enters on "queue" (interceptor guidance to it begins) on any

free guidance channel. The combat mission to destroy targets on a

given line is set up such that a target arriving at the line at a • 0
moment when all n channels are busy can "wait" no more than two

minutes for any channel to become free. Otherwise it crosses the
line unintercepted. We must determine the required number of guidance

channels nK which will assure an average "expectation" time T of no .

more than two minutes. What will be, in this case, the general average .

number of targets in the system, and the average number of targets..

awaiting the start of queueing? Compare the described guidance system

with one operating under conditions when T and T are constants and
LA H

equal to T= 5 min, TN = 10 min.

Solution. The total number of targets in the system is equal to

the sum of the number of targets N awaiting the start of guidance
and the number of targets N1,H to which the interceptors are being

"guided:
N- N.. 0A NL t"N u ,,= N • oj•. + N ,, ( I ) " " " "

From queueing theory we know that for the described multi- 4-

channel guidance system the probability that there are N targets

in the system is calculated from the formulas

PNU 1! (2)f

P- @

when

and : : : ' ' '
p,' = n & gh (3)

11'when . . . ..
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Here

From the condition

V "(5)
N t

we find that the probability that none or the guidance channe2s is 9

busy is > 2

L. ~P 4v1o

By derinition or expectation, the average number or targets in the

system is,.- .*.

M[ NJ1 ~NtPv. (7)

The expectation or the number or targets awaiting the start or

guidance is

M N4. 0.I1 ft- Pf (8)

On the other hand, tjr.

rrom which

To~JV*O 7 (10)

Using the formulas derived we can show that

(fix~~ *. U!(a--V

The ratio T /TH is determined rrom the given values or nK TH
omaHaK M

and r rom Fig. 6.15. We also know that ror normal runctioning of
the system, when the targets appear at random time intervals and the

guidance time is also a random value the rollowing condition must be

satisfied:
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Otherwise, when the number of channels is less than the reduced den-

sity 0, the line in the system increases endlessly. Consequently, in

our example we must examine nK > 2. since

= T -~ 2.

Let n~ 3; then for 0 2 according to (6) we have P0  0.11. When

n, 4, P 0 0.13. Correspondingly, from (11) we get for

n,,=~=3 T0,,t=0,45; T,==4,5 min,to Ntf
and for

-~nx-4 r,. 0,073; 1'.- 0,73 min.

Thus, to satisfy the condition,

~:' ~Tom< 2 min we must have at leas-ý
? ou guidance channels.

N Now let us determine how 7`

oI - many targets N , on the average,
Ia~; I- any arges ~ n th

I.will be in the system and how

VTaverage, will await the start
2f of guidance. To use Eqs. (7)

3 4......'~ 20 384 0 50 69n
and (8) we must first calculate,

Fig. 6.15.
using Eqs. (2) and (3), the

probabilities PN that there will be 1., 2, 3, ... , 10, etc. targets
N4'.

in the system. These probabilities are, respectively, -.

P1 ==0,26; P2 =0,26; 1'.1=,171 P4 =O,087; I.~0,044; *

P4=0,022; P,==0,011; 11,,=0,00.3; AOO 3 P16=0,A00. 0

The average number of targets in the system, according to ()
is M[N I=2.16.

The average number of targets awaiting the start of guidance, 77

according to (8), is M[N LA =m 0.162.
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During regular flow, when the targets come at equal intervals

T4 5 min and the guidance time is also constant and equal to T "
= 10 min, two guidance channels assure a relative carrying capacity I..-• -

of one, i.e., in this case all targets will be intercepted, while

both channels are continuously occupied. With the random appearance .* ... oo

of targets and random guidance time we must have four guidance

channels, although the average values of T and T remain unchanged.
LAH

In this case, on the average, 1.65 guidance channels will be busy, .¶...

while the probability that all four channels will be busy is 0.348,
i.e., there are free channels for almost 65% of the total system , -

operating time. During this time the targets, on the average, await

the start of guidance for 0.73 min. The reasons for this are the

random clustering and scattering of targets in the total flow.

PROBLEM 6.13. Show how the indicators of the effectiveness of
a multichannel guidance system, calculated by the Erlang and Barrer
formulas, can be extended to the case when the intensity X of the

incoming flow of targets during a counter-air operation changes by

a random law characterized by the distribution function G(X).

Solution. The probabilities calculated by the Erlang and Barrer . .. • 5-.

formulas for the case when there is the simplest target flow (X =
= cor ,e none other than the average relative time that the

guida, system remains in a certain state Ek. For example, the

formula S

I",,{ Q..=.cons.) - (1)0,) •,,,• ,... ..

I + ; +- -- 102- + In

defines the average relative time when all n channels are busy with

a given target-raid intensity X and average guidance time tH

Obviously, during the counter-air operation the raid intensity

X can change at random. Since it is basically impossible to describe
the change in X by a determinate time function, distribution function

V(X) is the most complete characteristic of intensity as a random
value within the examined counter-air operation time T. Now let us
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designate by F(X), for target flow with intensity X, the average . .

relative time during which the guidance system is in the state Ek.
Since by definition of the distribution function the intensity assumes

the value of X in interval T for time T'AG(X), during this time the

guidance system is in the state Ek, on the average, for the time L

F T.AOQ) (2)

During the entire counter-air operation, state Ek occurs, on the 3-.

average, in the time

)A '.. 7",}~ F Q).) do (k). ( 3 ) " ....

Dividing (3) by T, we get the probability that the guidance system

is in state Ek.

Thus, to calculate the probability that all channels are busy

and the target passes unimpeded across the line, when the target-

flow intensity is a random value with distribution function G(X),

we must use, in place of Eq. (1), the following relationship:

P-t-=+ . _ .! (. ..... .)

A.., - . , ,.

The Barrer formula in this case assumes the form

~Ot, --n) ()I,,)ne ito-,(m(it-n) dri (k),

J -W k!

PROBLEM 6.14. Propose a general-purpose expression for the dis-

tribution density of the intensity of the incoming target flow g(X) -

which describes the random value of intensity X during a counter-air -

operation. Determine the universality such that the simplest target

flow, for which X = const, should be a particular case of the general-

purpose law introduced, while their mean values should coincide.

Solution. The following expression corresponds to the univer- *. * -.

sality criteria given in the conditions of the problem:
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where Ac and are parameters of the law, while r is the gamma-function. Actually, •"

1) the area beneath the curtre described by Function (1), is ;

equal to one, i.e., the expression g(A) corresponds to the property <'f•'"°

of standardization, as required for density distribution: -'-..-..

""g (X) dX 1; (2) ;

2) the expectation of target-raid intensity is

3) dispersion of Law (1) is :"7'

When 6 ÷ 0 the raid intensity dispersion vanishes, as shown by

Eq. (4). This indicates that the probability of any value of A other

4 than A is zero. Consequently, when 6 - 0 we get the distributioncp
density of the intensity of the simplest flow: g(X) is the delta-
function with A = Ap. Thus, the parameter 6 o- Law (1) is a char-

cp
acteristic of nonsteady target flow. So, if it is necessary to

determine the indicators of effectiveness and carrying 3apacity of

the guidance system with a random change in target-raid intensity,
we must first determine these indicators for simplest target flow,'"".

when the intensity is constant and equal to Xcp, then assign the

proposed level of nonstationarity, and, using general-purpose Eq.

(i), calculate the desired indicators.

PROBLEM 6.15. An air group consisting of N interceptors de-n
""-fnds an air-defense line of wtdth B = 1000 km. From the warning
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band information is received of an air raid consisting of N -0
LA'

targets. This allows us to arrange the takeoff of the Interc'eptors.

Then, because of the lack of a radar fie~ld between the warniing banid

and the object to be defended, the interceptor organizes inldepenident

target search, loitering in a band of width B. Because Of Velocity

and heading maneuvers in band B, the targets are distributed randomly I

by the equal-probability law. How many targets, on the average, wil3

be destroyed on the defense line of width B if the widtla of target

detection by the airborne radar 2b =50 kmn, while the probability of -

*target destruction when detected by one interceptor P 1

Solution. The probability of target detection on the defense L
line is defined by the relationship between the sectors scatnned by

* ~the airborne radars and the total line width B. Let there be anl
* elemental Increment of the scanned sector Ab at some randomn ~ioaent

of time t on line B. The probability that a tax-get will be detected%

by sector Ab is Ab/B. Let us designate by Q(0,b) the probabilJity c

that up to moment t there are no detected targets. Then the Prob-

* ~~ability that up to moment t there are no detections is *

AbdQ(0,b)=- g-Q(0,b).()

This first-o±'der differential equation satisfies the following

initial condition: the probability that there are no detecti-ons

with Ab = 0 is 1. Considering this condition, the solution, I.e., -..-

* ~the probability of no detections, is defined by the formula

Q/(0, b)(2

Consequently, the probability of t(-arget detection by one Inter-

ceptor is 0

1-eC' 8  3

Trie probability of target detection by N~ interceptors8 Is

The probability of target destruction by N interceptors ISe
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- e'~n' 0 " 8 .(5)

The expectation of the number of downed targets

Af jV.. , Ng 11 -- (6)

Substituting the numerical values of our problem we get
Al I M,. j} 20[ -e•'°°•• =1.•

Thus, of 20 targets, only 11 will be downed, on the average, ,

Because of the random nature of destruction of a detected target,

an average of 20"0.8 = 16 targets could be destroyed. However, the

limited search capabilities of the airborne radars and the great

expanse of the line to be defended reduce the expectation of the

number of downed targets from 16 to 11. :;-..,

PROBLEM 6.16. Determine the increase in expectation of the , -1v

number of downed targets due to optimum flight assignment with in-

dependent interceptor combat operations, when it is first necessary

to search out the targets in a certain airspace S and then, after- -

detection, organize attacks to destroy these targets. Let us examine

the c&se when the targets, throughout the entire search time t, n9

are distributed with equal probability within a region of area S :

To determine this increase we must compare two tactics: 1) each

interceptor individually searches out and independently attacks a

decected target; 2) targets are sought out by a specially selected

search group; after target detection they are destroyed by the search

interceptors together with attack interceptors sent to the region of ,.',

the detected targets. In this case, an optimum flight is designated,

determined from the required effectiveness - the probability of

downing each target with a given level.
t.-. ......

Estimate the increase for the case when bands B = 200 and 400.
kmr are defended; 2b =50 km. •.. ..

Solution. For the first tactics, the expectation of the number

of downed targets, according to Problem 6.15, is -. ,
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2bV, 1* e,NP*

for the second tactics .

MINea,•rp=NN1--e $" vJ (2)

since the probability of downing each target is -. -

Ni

PY. I (PI)N (3) -

The relationship r_____"__""____
2bV~, 0

A Al 9 l l, -- . . V.t,,, (N4 )

"gives the desired increase in effectiveness due to optimum flight

assignment. Function A vs. flight Nn has a maximum which determines

the optimum solution. Calculations show that the tactics of inde-
pendent search with subsequent call-up of the attack group to the

region where the group target is detected allow us to obtain a sig-

nificant increase in effectiveness. When the ratio of the area

scanned by one interceptor to the area of the probable location of -

the targets n = 0.2-0.05, increase A reaches values of 1.5-2 com- -.'"'

pared with the case when each interceptor searches and attacks in--

dependently with equal probability throughout region S -

Figure 6.16 shows Dependence (4) for 2b - 50 km, width of the i.

defense belt B = 200 and 400 kin, for various values of PI.

PROBLEM 6.17. A group of N = 10 targets enter the air-defense, .

zone one after the other. Determine the interceptor flight required -

to destroy all targets with probability PN = 0.9, if the interceptors , ..-

attack the same target from the aft hemisphere is sequence, observing

the minimum possible safe distances. The depth of target penetration

should not exceed Dri 150 km. The probability of target interception

"- .P. '. f . -• .
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- ~ by a single interceptor
~-84U~w is = 0.5. Target

speed V=10 mh
Xiii - 20LA/h

interceptor speedV

Solution. With

"' ~successive operations
L against targets, when

- for safety reasons it
is necessary to keep

1 to1 minimum distance be-

Fig. 6.16.tween the attacking -

interceptor's d 03~
while the depth of target penetration should not exceed D the

maximum number of successive attacks4

1_111P (V31 + V11) '.-

when attack is made from thtu forward hemisphere, and

whe;-z tne attack comes from the aft hemisphere.

In first approximation we can consider that

d63 V14 (3)
* where V~~~~ is the average speed of the rocket, t stemxmmtm

wher V s th maimumtim
of controlled rocket flight. Let us assume that d 6eaon 30 kin,;

* then na =2.
aT~

To assure that M[N 1/1N =0.95 it is necessary, according toc. LA 14-
Fig. 6.14, that when Pl 0.5 we have m N IN 2.3. Thus, to solvep n LA
rhe problem the required interceptor flight N =2.3-30 =6.9.

If the rms error in determining the coordinates of the target
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and interceptor is ax, to increase the assurance of safety during "
successive attacks by several interceptors the value d should

6eaon
be increased by 3ax. E.g., let ax = 3 km. Then deson 30 + 9
= 39 km, and when V =1000 km/h, Vn 1200 km/h, and D 150 kin,
naT = 1.77. Then M[N •/N 0.83, i.e., the interceptors cannot
carry out their mission. !

PROBLEM 6.18. A normaneuvering target, consisting of a dense

formaticn of 5-8 aircraft unresolved by the radar station, is attacked 4
in a belt of width B 160 km. The flight trajectory of this group

target forms angle 8 with the perpendicular to the belt. To analyze
the result of a target-hit by the rockets fired by the interceptors,

r 7:2 7ý.f•-
each subsequent attack occurs after a time equal to the sum of the

n'.-.-'
times of the attack itself (correction of surface-guidance errors,
and aiming, firing, and flight of the rocket to impact with the tar-
get) and the length of time the damaged target remains in the inter-

ceptor's field of view.

Determine the number of successive attacks that can be carried ..

out if the target speed VA =900 km/h, the average time for carrying

out a single attack tat 2 min, the average target lifetime tcy
- 0.5 min, and angle 0 varies within limits of 0 to 800. How does

the desired possible number of attacks change if, with no change in

other parameters, the target speed increases to 1500 and 1800 km/h,

leading to a corresponding reduction in the operations belt to 120

and 100 km?

Also determine the required number of interceptors to destroy .:...

90% of the targets and a rational rocket-firing regime, if each r---
interceptor carries four rockets, and the probability of damaging a
single target with simultaneous firing of two rockets as a function

of target speed is as shown in Table 6.3 (p. 206).

Solution. The time the target is located in the belt is
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Table 6 3. The time of one interval between ,-•:•-•--•-,:•
V•, k•/• ,•.(,• i 1500 i•C• I two successive rocket firings is •::•,•--:',•:a•

St + t . Consequently, the e••

• 0.,• O.S OJ number of successive attacks ':•'.)'-•:.?.],;.•

which can be carried out against '-,'. ..... .. ,.-•.o--•,,.

a target in belt S is ,-..-:•..;.%.•

/'4•, t.• + toy., •-'o:'•" .... ".'•.

The results of calculations using this formula are shown in L-:,.-.•.•-.•,

Fig. 6.17. As can be seen from the graph, the number of possible •"•:'"•:•°'&:"

attacks within limits e = 0-50° changes only slightly; with a further •
increase to O > 50° the value of i:,.:...•:,:.,

n sharply increases. "amn°•'•ti_] ..... i.f..-%-•, •..•,.. ... .

,oEFFl-r-l,:!-r .....
To determine the rational j.ols2•,/o n•; C¢/,¢.) gllt' I.I • •

rocket-flrlng regime let us compare ,.•,?•g•%•

three combat tactics : ••• L.•.•i'• "'

l) the rockets are fired in
salvos of two each with the inter-

val between salvos • 10 2o a'o 40 •o •o 7o • o :';•--:-•:•"
•" •..t ,..." =-Jt•

"€•.,,..; Fig. 6.17 .•,:•*-"'-•--"t,, .• ",=<-S+

2) the rockets are fired in salvos of two each with the inter- °•

val='"•>':'"•"•'•''--".-:•:. • •""--'- "i::
',-.'. ".1- .t. ;,.:

:> t•= ,4-/c>•; ,'.'-';--'. -:: •,-'•
h,:.•'::':..-;;•

3) only single rockets are fired, with analysis of the results • ....

of each firing.
2,. •'. ;.-. •-. •.,

in the first tactics there is nonuniform distribution of the :-':.-:: .... :'..-,

operations against the targets. Consequently, to calculate the ;.,'t,-:.-.-.-•-:
"o..-..-.,- %- -- .. ,

expectation of the relative number of downed targets M[Nc.•]/Nq we • •

must use Eq. (5) of Troblem 6.3. For salvos with time delay t > :•"i•'::";•)
;..f: .-. •:;.:':•

•av + tcy• and for single firings it becomes possible to dlstri- .'-;("'-";:':,.,. .....
-T

5ute the rockets uniformly against the targets and, after analysis:-.*'-....h.A.•-'";,

206 • .-. =...-. ,.
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of the result of the previous attack, reaim to the undestroyed tar-'

gets. Consequently, MEN ]/N is calculated from Eq. (6) of Problem
C.14 LA

6.14. The results of' the calculations are shown in Table 6.14. .

Table 6.14.
Combat tactics

Combat 1. Indepnet Sal55vos of two 3.single firings
conitins salvos, tw rokets j Okt aJ 0~ with analysis of the

each I y -± results *

Vu km/00 151)o I ý() 90CA I zoo0 1M.it 01)0 1 Iy0j 1: 1i.Aj

P1 " 0.85 0.33 0.7 0,98 0,90 0.91 0.61 0.53 0.45
Required number 2.7 3 3.4 0.91 0.0ý4 O.9S I.-IS 1.7 2.
of operations22

target

Recquired flight Of 6.-7- 7.5 8.5 4.5 4.7 4,9 1.85 2.22) 2.75
interceptor. with
Nt .5

Required Plight of. 10.8 12 3".6 7.2 7.5 7. b3 I2.06 3.4 4.4
interceptors wit

Comparison of the graphs nT lP= f(V )and n8 T 2 3  f(e)
*shows that to assure an effectiveness M[N 1/NL = 0.9 it is advisable

C. LA
to use the tactic of single firings with analysis of the result of ..

each attack. Wn'en V L4> 1500 km/h, two-rocket salvo fire with inter-

vals t > ta, + t is advisable only when > 600.

C~247
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CHAPTER 7

COMOAT READINESS AND RELIABILITY
, ..-- -,

_n addition to combat use, intercept lines, and combat effect-

iveness, the capabilities of fighter-interceptors are also character- •-- .

ized by combat readiness, i.e., the probability that, by a given
time, the interceptor will be ready to carry out its combat mission. -•-.-..+:

In this chapter we examine various quantitative criteria of combat
-eadiness and methods for calculating them.

The most general indicators of the combat readiness of a -single,-.). -',-,

interceptor are the coefficients of combat readiness for first and

subsequent missions; methods for calculating these are presented in
Problems 7.1 and 7.2.

The combat readiness of a group of interceptors (squadron,
regiment) is characterized by the probability that at least a given

number of available interceptors wtll be combat ready. This indicator
is calculated considering the reliability, the restorability of the
aviation materiel, and the number of service personnel and the method - .. *i
of servicing (Problems 7.3-7.6). Problems 7.7-7.10 examine the
question of how to take into account the possible failure of aviation

materiel when designating a flight of interceptors to carry out a
mission and for duty performance. --
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Is ....

Problem 7.11 is devoted to methods of figuring the amount of
logistics support for combat operations which will guarantee a given

level of combat readiness.
•% - Z

Problems 7.12 and 7.13 establish the dependence between the

probability of survival and combat readiness during continuous andý ,-...

intense combat operations and the expectation of the number of missions

each interceptor can perform under conditions of enemy action. The .

dependences obtained make it possible to plan the replenishment of

the air fleet in time, and determine the combat capabilities of air
units based on the number of missions per unit time. -.....-.

Problem 7.14 establishes the dependence between equipment pre-

paration time and effectiveness.

In Problem 7.15 we determine the dependence between the prob-
ability of damage to the enemy du-ing enemy action against an air-

base, the damage radius, and the probable deviation and radius of --

dispersion of the interceptors relative to the enemy's aiming point ..... .....
(explosion epicenter). The nomogram obtained makes it possible to
determine, from the permitted excess pressure at the shock-wave

front (which the air material undergoes during an explosion) and the
TNT equivalent of the explosion, to determine the corresponding
radius of damage, and then, from the known probable deviation, to '>' "
determine unambiguously the radius of dispersion which assures that

the probability of interceptor damage will not be above the permitted

level.

Problem 7.16 is devoted to estimating the survival probability,
while Problem 7.17 discusses monitoring of the combat readiness of

the rockets (or other aircraft elements). -..

PROBLEM 7.1. Combat readiness when carrying out pre-flight
preparation is characterized by the probability that all checking of

- aircraft equipment and systems will be completed by a given time on

the interceptor. We call this probability the coefficient of combat
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readiness for the first mission and designate it by P Proba-

bility P6.rl is a function of time: at first, when preparation of

the interceptor is just under way, it is zero; after all operations

have been completed and if there are no failures during the pre- . -

flight preparation, P6.rl 1 1. Since the time for carrying out each .-.• : :..

"-operation depends on many random factors (training of the specialists,

climatic conditions), the total time tn.n for preparing the inter- .

ceptor for the first mission is also a random value. Function

P .rl(tn~) characterizes this random time, i.e., P6.r (tn ) is the

distribution function for the random time of interceptor pre-flight

preparation. Our problem is to express P 6 . 1 (tn~) in terms of:

1) the probability PT r that all required pre-flight preparation -

will be finished within the specified time;.f

2) the probability P0(tn~) that no failures will occur during

the preparation;

3) the probability P (tnn) that, if a failure is detected, it

will be eliminated in the time specified for pre-flight preparation. ,*.- ,

Solution. Probability P 6 . 1 (tnn) is defined by the probabilities . -

of two favorable and mutually exclusive events: -;. -:

1) either the interceptor has no failures during preparation .- -

time t and all operations are completed;

2) or the interceptor turns out to have something wrong with it. , . ..

during preparation, but it is repaired in the allotted time and all -

operations on it are completed.

Consequently,,-. .

Pc. ,, (4•.:) =-P8 (4,. ) ir; (t3 .a) + (1•-Pc (• P] (1 U.•) P?., (&D (1l).-..--.--''-..-".

If we know the average times of failure-free operation TO and re-

cvery T8 , then

PO (2)
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P1(Q..)=1•-e T0  (3) ,.

PROBLEM 7.2. As the criterion of combat readiness of an inter-

ceptor for repeated and subsequent missions we have the probability ,...,.. ,,

that the interceptor will be serviced and prepared for a combat

mission in the allotted time t. Let us call this probability the

coefficient of combat readiness for subsequent missions, and desig-

nate it by P .2 (t). Find the dependince of P6 2 (t) on the prob-

abilities that determine the success in carrying out all required

operations for mission preparation. Also take into account in this

case the possibility of failure occurrence and elimination.

Solution. The probability Pr 2 (t) is defined by the sum of

the probabilities of three favorable and mutually exclusive events: "

1) the interceptor returned in good condition from a flight,

was prepared for the next mission in time tnoeT, and was not rejected

during this time;

2) the interceptor returned in good condition from a flight,

but was rejected during preparation for a mission; however it was .- -

repaired in time tnoET and during this time was serviced and pre-

pared for the mission;

3) the interceptor returned in poor condition from a flight, but

in time tlOT it was repaired and prepared for the next mission.

Consequently,

NO,1 (t) - Po (1.11) 1.o (IoM) PO (4,M) +
+ PO (.,) [1 - PO & 4.101 PS (t:,o,) N . (tnoy) + 7.77 -. 7,

+ 11 - P0 (t P.j) I ('.o..T) P. I

The probabilities P0 and P6 are calculated from Eqs. (2) and (3)

of Problem 7.1, except that in place of time t we substitute either

t nOBT or flight time tno---

PROBLEM 7.3. A squadron of N = 12 interaeptors participates
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in continuous intense combat operations. At any moment of time, each

interceptor can be in only three possible conditions: 1) the inter-
ceptor is combat-ready; 2) the Ihterceptor is not combat-ready, but • .-

is repaired; 3) the interceptor is not combat-ready and is not re-

paired, but is awaiting its turn for repair.",. .

Out-of-action interceptors are repaired by special repair crews [ -
containing specialists from all services. Repairs are performed in

turn; those planes with the oldest damage are repaired first, using

any of the free crews. The time of failure-free operation and the -

repair time for the interceptors are random values subject to exponen-
tial distribution law. As criteria for the combat readiness of the .."" ,,;..•::,•

squadron we have the probability that at any moment all 12 inter- -"

" ceptors are combat ready and the probability that at any moment at

" least 11 of the 12 are ready (i.e., only 1 or 0 are not combat ready).

"Show how these criteria change for ratios of repair time T to '--'A.

the average time between failures Td )of 0.01, 0.025, 0.5, and 0.1,

if the number of repair crews Vdries "from 1 to 10. What additional
quantitative indicators ch&ract~rize the combat readiness of an air

fleet and the degree to which the specialists are occupied? Solve .

the problem for N = 4o..

Solution. Since the number of noncombat-ready aircraft is a
random value, the most complete characteristic of combat readiness A..0.

is given by the distribution law for this random number. Knowing the

"distribution law for the number of noncombat-ready interceptors we
can determine any combat-readiness indicator. Our desired criterion .

for combat readiness in general form is defined as the probability

P that of N interceptors of the squadrn;i, at least k are combat-
ready (in this particular case, at least 12). In other words, we

, must first determine the probabilities PN (k) that of N., exactly k

are not combat-ready (k = 0, 1, 2,..., N - k), and then sum these
. probabilities to the given value of N - k (in our case, to 12 - 1 =

11). The probabilities PM (k) are the ordinates of the distribution ...

law of the number of noncombat-ready interceptors. Thus,
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P6. P, (k).(1

In queueing theory we know the classical problem of using several

instruments to service a limited source of requests, which can serve .

as the basis for solving our problem. According to queueing theory,

at any moment of time, be out of order and in the process of repair, S.

we can use the following formulas:

PNI(k) Al(PA) 0, (2)A

when1< k <r, and -

*when k > r; here r is the number of repair crews; X and are the
* intensities of failures and repairs.

For exponential time-distribution laws we have

Obviously, before calculating the probabilities PN (k) from Eqs.

(2) and (3,we must determine the value PN (0). We find that

P~~ (k)'

because 
--- -PN (!)wPN (k)

,A V(0) Pý (0)()~~, 6

since

aaceti evn (tesmof the probabilities of all possible ~ .:
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states of combat readiness is 1), while the probability P~ (0) in

()is removed from the summation sign as a constant.

Thus, the probability PN (0), necessary for calculating the prob-

abilities P~ (k), is determined using Eqs. (2) and ()by calculating

the sums

- A P (k)

k! (N k . fix (0)

and then taking, as per (5), the reciprocal. Having determined the

probability PN (0) let us ±'ind, for all values of k from 1 to r the
n

probability ratios

and then, by multiplying these ratios by the value PN (0), the de-
n

sired probabilities PN (k) for all k 1-r. Having obtained the

vales f P N (k), let us calculate the coefficient of combat readiness v::-
n' P from Eq. (1). )0

- ~~~The results of the calculations for -4.4..* 0~~-~'it the data in our problem are shown in :i- -

_ too Fig. 7.1. The dependences P6r
20, f(r, T /T) show that for our data

1.it is advisable to have no more than 2%

40 three repair crews, since when r >3

the value P is determined completely
t200

_ ~only by the ratio of T0 to T , i.e.,.
there are only two way:; of increasing ~ -. ;.

2 4'~ the combat readiness in this case: in-
N,6 4oPi

g.- crease the reliability To or decrease
~'ig. ~ . the repair time T. Increasing the ~ ~ 2I

number of repair crews above rfl does not make it possible to in- 5.. --

onT-- ~
* crease the combit readiness.

2114
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On the basis of Eqs. (2) and (3), which represent the most

complete characteristic -the distribution density of the number of
repaired interceptors -we obtain other particular quantitative in-

dicators of the combat readiness of an air fleet and the degree to

which the repair crews are occupied.

LThe probability that all r repair teams are free w

The~~~~~~~N avrg0!(1 k) 9

Theaveagenumber of interceptors awaiting the start of repairs

TheAll~ h (10)

Theaveagenumber of interceptors being repaired

The average relative number of noncombat-ready interceptorsr - .

M± + M,(12)

The average number of free repair teams

V - k) N,,t k~ .'(41 P0. (3
k-I I(Nn.- k)I (3

The lost-time coefficient of the repair crews is M /r. The
probability that the number of interceptors awaiting the start of

V ~repairs is greater than some number N (N > r')

k-NI- k)

PROBLEM 7.4. Determine the combat readiness of the squadron

fleet if there are three repair crews, the average time between the

moments of interceptor breakdown is To = 33 hours, while the average e.*

repair time T. = 4I.5 hours. For the rest, the conditions of Problem

7.3 are satisfied. Determine the average number N , of combaL.-
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ready interceptors and the probability that at least 11 of the 12

interceptors will be combat-ready at any random moment of time. How

do the desired combat-readiness indicators change if the number of -

repair crews increases or decreases? What if we increase the number

of interceptors Nn to 20?

Solution. Let us use the calculation formulas in Problem 7.3. L...... :

By definition of expectation we have, from the density-distribution

function PN (k) for r =3,

12

11_ k (k) 1,5.
k -0)

This Is the average number of noncombat-ready interceptors.

-*i The average number of combat-ready interceptors Nn 6r 10.5.

The probability that at least 11 of the 12 interceptors will be

combat-ready is equal to the probabillty that either 1 or 0 will not

*.; be combat-ready. Using this law, we find that the probability P "- -

"that at least 11 of 12 interceptors will be combat-ready is equal to '.''*

the sum of the ordinates with k = 0 or k = 1, i.e., 0.54.
-, *..*..• * 4

PROBLEM 7.5. We must compare two methods of maintaining the - ..

combat readiness of a group of interceptors. In the first method, :.

each aircraft has its own specialist for repairs, and who does not

participate in the repair of the other pl.anes. In the second method,
a group of specialists services a group o,' interceptors without being

assigned one specific a.rcraft, i.e., at the moment one interceptor
*• breaks down, if there is at least one free specialist he immediately

begins to repair the aircraft. Otherwise, the inoperativ- inter- -

ceptor waits until any of r specialists is free. We are given the

fact that the reliability and repairability of the interceptors are

characterized by the ratio X/V.= T /T = 0.1. In the first case, ,.-.....,>.50
I specialist services Nn = 6 aircraft; in the second case, 3 special-

ists service N = 20 aircraft. Shoe, which service method is better. .-.

Solution. Let us use the calculation formulas of Problem 7.3.
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When one specialist services n interceptors (instead of r specialists

servicing N interceptors), where n > N /r, then

PNI, (k) n Pý

where

PO = Pk= (2) . ---

The expectation of the number of interceptors awaiting repairs is
V1Nn P").

When one specia-ist services 6 aircraft, according to (1) when

.= 0., P0 = o.:48.

The expectation of the number of noncombat-ready interceptors
Nns(k) = 0.85, while the expectation of the number of combat- .

is EkPN

ready planes is L.-- .. ' -_':
6 0.85 = 5.15.

The relative lost-time of one interceptor

0.85/6 = 0.14.

The relative lost-time for a specialist with r = 1 is P =0.8.

Now, when three specialists service 20 interceptors, while X/P as,-

"20 ; .'- .
"before is 0.1, EkPk = 2.74, while the number of combat-ready inter-

k=l -1
ceptors is 17.26. -

The relative lost-time for one interceptor is

-To- 0,135; P6 .,=0,865.

The relative lost-time for one specialist is
S. -.j.' - I:. ".

"= 0,401. --..- ,
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Thus, the solution shows the advantage of the group servicing .

method as opposed to the one-specialist-to-one-aircraft method.

Because of the more rational use of specialists at identical

strengths, the group servicing method assures a higher level of combat

L readiness.

PROBLEM 7.6. To repair interceptors which have been put out of

commission in combat it is neoessary to create a repair team. The
delivery of unusable interceptors for repair is in the nature of a

random flow with an average interval between successive deliveries
T 0 2 hours. The repair time is also a random value, subject to .O

exponential law, with expectation T = 5 hours. We must determine -

now many repair crews r are required so that the average noncombat-

,,eady time o'f the interceptors, i.e., the sum of the times spent

awaiting the start of repairs T and the actual repair times T.,

not exceed Tea. 6 hours. The duration of the planned combat

operations is 10 days. For' round-the-clock functioning of the repair

system there must be, at each working site, two crews, each working

12 hours. The repair of damaged interceptors is set up as follows.

Any free team begins to repair any on-line interceptor. When the

number of interceptors Ns in the repair system is less than the

number of teams, all interceptors are repaired simultaneously, and

not all tams are busy. if the number of interceptors Nn is greater

than or equal to r, all teams are simultaneously busy and some of

"the damaged interceptors await the start of repairs. :

Solution. The probability of having exactly N interceptors,

under steady-state cciditions, in the service system (awaiting repair

and being repaired) is calculated from the formulas

DV

_,i. .. no
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when

HereN 1  r.I;

(3) ' - .

-. Z M

The average number of' interceptors in line for repairs is

N..aa. r(14)

The result of dividing the average number of interceptors in the

service system N.er by the average number of' repairs per unit

-time r/T gives us the interceptor repair and waiting time:

PC (5;
r-r!(Zf

The average relative time the interceptors are in the service
sytmwhile awaiting the start of sevcn is......eAfomth

formula

To ! (6)- 1

Calculating from (3) the value PO, and knowing To., T , and r.
let us ft~nd T /T from (6) and then, multiplying by T., we obtain

0)w 6
the absolute time of interceptor noncombat-readine3s TFor our

*data T = /T0  5/2 =2.5. Since when a > r the line increases

endlessly (thr waiting time is finite only when < r), let us set

r =3. Then, according to the graph in Fig. 6.115, T0 /TB 1.14.
- ~ Further, T 6  1.145 + 5 = 12 hours. When r = 14, a/r =2-5/14

.....................................................................
o .625, T /T6  0.2; T~e = 0.2-5 + 5 =6 hours. Thus, there
should be at least 14 teams.*.

Let us estimate the degree of occupation of the crews. In

10 days (10.214)/2 =120 interceptors arrive for repairs. Their re-
pair takes 120.5 =6cr hours, i.e., each crew works 600/0(140) =15

219 I
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hours per day.

PROBLEM 7.7. To carry out a combat mission we must designate
a flight ol' Nn.r = 10 interceptors. We know that if the intercep-

tors take off without pre-flight preparation the probability of arma-, .

ment-system failure P = 0.1. How many interceptors should be

sent up to carry out the mission even in the case of possible failures 1 U-4_41.1-.

of certain parts of the Interceptors?

Solution. Let us designate by N the number of interceptors
n

available for scramble. If the probability of failure of each inter-

ceptor is P the probability of failure occurring in precisely k .-.

of the N interceptors is

P&, (k (1) P-'s i

where C is the number of combinations of Nn, k at a time:

9'-+ -

For guaranteed completion of the combat mission it is necessary "

that the probability of air failure greater than Nn - Nn.Or (in our

example N = 10) be sufficiently small, e.g., 0.05. Then, with a

probability of 0.95 we can state that at least Nn.r = 10 inter-

ceptors will complete the mission. Expression (1) is none other ,.-..:--.. .

than the ordinate of the distribution density function of a random

number of failed interceptors. Obviously, in practice there may be

k = 0 failures, or k = 1, 2, 3, • , up to k Nn failures. We are

interested in the probability P (k < Nn - Nn.r) that there will be

no more than N - N failed interceptors. Consequently, to find
n r

this probability we muse summ all ordinates of the distribution den-

sity (1) from k = 0 to k N - N rt. -. .'0",..
n n.Or

.v"- ° _ IV k . .

P(-(k<N0  A,,D - (< -- -OK) • (3) -

Equating this probability to 0.95 we can, for known values of

and Po.a, using Eq. (3), calculated the desired number N" -
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For the data in our problem, when P = 0.1 the required number of
0TK

interceptors available for scramble is 14. Then, with a probability

of 0.95 the mission will be completed by at least 10 interceptors.

PROBLEM 7.8. At a forward dispersal airfield, 5 interceptors

are on round-the-clock combat alert. From the conditions for com-

pleting a combat mission it is required that at least 4 of the 5

interceptors be combat-ready at any given time. If one of the inter-

ceptors is out of action it is replaced with a ready one from the

main airbase. How many replacements should be planned for the monthly

alert of these 5 planes if the reliability of each of them is char-

acterized by an average time TO = 75 hours between successive failures?

We assume the failure flow to be simple.

Solution. From reliability theory we know that for simple flow

the probability of failures is subject to Poisson's law, for which -

the expectation of the number of failures occurring in time t is cal- 0

culated from the formula .'.."'-:

In our example TO = 75 hours and, in the course of one month,

the average number of expected failures per interceptor is MEN ] I
0TK

9.6.

Then, from the distribution function of Poisson's law let us

calculate the maximum possible number of failures per interceptor
"in one month provided that the expectation of this distribution law

MEN I = 9.6. With a guarantee of 83% the maximum number of failures -• ~~~OT½ .. ""•";

per alert interceptor is 12 per month. Thus, for each interceptor at

the dispersal airfield we should plan on 12 replacements, while for

5 interceptors - 12-5 60. Since with the requirement of having

at least 4 combat-ready interceptors of the 5 it is not necessary to...........4..

replace each failed plane, with a planned 60 replacements the guar--

antee increases to 90%.

PROBLEM 7.9. An interceptor is armed with two rockets having 4..-*-.4*.-
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radar semi-active homing heads, fired in salvo at a target. The

probability of target destruction by one rocket is Pl" Besides P1 °,

the effectiveness of the attack is influenced by the reliability

of the armament system and the radio-control system P 0 and the re-

Sliability of the rockets P . Determine the decrease in the resultingi*---

probability of target destruction, considering the reliability, com-,-

-- pared with the case when the interceptor is absolutely reliable. Let

us assume P0 = 0.9, p = 0.9. How does the difference in effective- L

ness change, with and without consideration of reliability, if P1

varies from 0.2 to 0.99?

Solution. The effectiveness with consideration of reliability

without consideration of reliability

S - (2)

wile their ratio

= _2 - P(3)
-5P

~ P 2@' _-F,•7 ( 3) •""" :L•

When P Pp 0.9 we have (Table 7.1):

Table 7.1.

A 0,2 0.4 0.6 0.8 1.0

-0,810 0.830 0.845 0,864 0.891 q)... . ..

-09.P f 0.265 0,473 0.637 0.746 0.80-2

PROBLEM 7.10. Two interceptors perform independent target "

. search along an 180-km wide front. The target can, at any random

mmoment of time, be in any sector of the front with equal probability.

"" The interceptors are located along the front such that the atrborne

" radar acquisition sectcrs overlap: the first interceptor examines

a region 0-110 km along the front, the second - 70-180 km. The --:
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effectiveness of search depends on the degree of overlap of' the ra-"

diation patterns. The probability of target detection by one inrer-

ceptor P0 1  0.9, while in the overlap region P 0 2  01 (1 1 =

= 0.99.

Determine the resultant probability of target detection with the .. '; .- %

described independent target search, if the probability of .failure-

free operation of both radar stations is P. = P 2 = 0.95. The relia--O

bility of all other systems in the interceptors is assumed to be 1.

Solution. The search effectiveness, i.e., the probability of

target detection, depends on the reliability of the complex detection . . .

system consisting of two on-board radars and which can be in one of ..

the following four states, comprising a complete group of mutally

exclusive events:

S0 - failure-free operation of both stations;

S1- the first station fails, the second operates;

S the second station fails, the first operates;

SI, 2 -both stations fail.

Of these four states, only the first three are favorable.

According to the formula for total probability, the probability

of target detection is equal to the sum of the probabilities of all

favorable events:

P0 - ,I,.f,, + q Itd, , + 4),Hl +'42l-."...

where (D (i = 0, 1, 2) is the probability of target detection, pro- .

vided that the target is located in the action zone of the i-th state

of the system; Hi is the probability that the syotem is, at an arbi-

trary moment of time, in one of these four states.

The probability that the system is in state S"

•'",t..l~~b #.e •= --H = P1'P% 0,9' %""- .... ,.

-.-- 0
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The conditional probability that the ,trget will be detectpd

when both stations operate failure-free 0 0.92. - "0

Multiplying H0 by 0 we get the first term in the formula for
total probability: H0% = 0.828.

For state SI, analogously, we have

H~, P2 (I -PI)-0,05;-
(,= 0,55 anld (PIH1 0,028.

Since states Sl and S are identical,

D2F2 0,028.

Thus the desired probability of target detection P= 0.884-. .

This problem shows that possible failure of the airborne radars
operating, in this case, as a unified system, considerably reduce the

effectiveness of independent target search. .

PROBLEM 7.11. Depending on the intensity of the combat action,
one or two engines per month may be required to restore the combat

readiness of the squadron. The probability that one engine will be
required is 0.5; the probability that two will be required is 0.3;
the probability that no engines will be required is 0.2. One engine

a month is delivered to the squadron. Determine the probability of

the need arising for any number of engines, if we consider the
process of engine requesting and the process of sufficiently long
stockpiling (e.g., several months). The maximum possible number of-

requests for engines does not exceed four per month.

Solution. The expectation of the number of engines required is

M[nA] = 1.0.5 + 2.0.3 = 1.1, i.e., greater than the monthly average. .'-

Obviously, with prolonged combat operations characterized by the in-

dicated rates of required replacement and stockpiling, the combat

readiness of the air fleet of the squadron can be described by the ,,.--*
probabilities that 0, 1, 2, 3, or 4 engines will be required. Let
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Al ~k
us designate by n~ the number of unsatisfied requests for engines,

As 
j- .4and examine the state of the requests in any current k-ti- and (k+l)-th

monti&--s. The transition from the k-th to the (k+l)-th month is de-
scribed by the following matrix of probabilities P for the required

* number of engines (Table 7.2):

Table 7.2.

monhth -4 -3- -2 -
(k+)-ýthTV

.oth

I--4 0.8 0.3 0 00

The matrix is filled on the basis of the following logic con- .- *44*~

siderations. Let us assume, e.g., that up to the k-th month the .

number of unsatisfied requests n As 0 (the last column in the matrix). ". ...

Since one engine is delivered during the month, by the start of the
(k+l)-th month the number of unsatisfied requests can be either 1 or
0 (since there were 0, 1, or 2 requests); in addition, 1 engine may .

be unnecessary (the engine arrived without being ordered). The
probabilities of these events are equal to 0.3, 0.5, and 0.2. In a
similar manner we fill the remaining matrix columns. From the matrix
it is easy to write formulas for calculating the desired probabilities
that immediately before the k-th month the number of requests nA -- .4*

-4..1 (or there are n 4 1 unclaimed engines):

P-.. (k + 1) =0,8 P..4 (kc) + 0,3P..3 (k) =0,8.0,8 + 0,3.0,3=0,73. S

For all n > -3 we have

P, (kc + 1) =0,2 P0  ()+0P 0 k)+O3 0 1()
'AS "As k .P m() ,P n+(

P>, (k + 1) =0.2-0,2 + 0,5.0,5 + 0,3-0,3 = 038.

* ... 4.'V

*PROBLEM 7.12. The combat operations of a fighter group have
the following nature. Each interceptor can be in only one of two
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"states comprising a complete group of mutually exclusive events: i)

S•he interceptor completes its mission of intercepting an aerial tar-

get; 2) the interceptor is at the airfield and is being prepared for

subsequent missions. Both these states involve a certain enemy - * -. -

counteraction. ln the first case, in aerial combat the interceptor

is -ubject to enemy fire; in the second case, on the ground the in-

terceptor can be damaged by enemy action against the airfield. Both

states are characterized by the specific probability of interceptor..-

survival after each enemy operation. The random nature of survival

has the result that the number of missions of each interceptor during

combat operations is a random value.

We are required to determine the expectation of this random .- .!

magnitude, if we know that the probability of survival before the

first mission (the probability of interceptor survival if the enemy

strikev the airfield before the first mission) is PI, the probability

of survival in aerial combat is P2' and the probability of survival

and combat readiness on the ground between successive missions is P,.

What is the expectation of the number of missions carried out by eac.-

interceptor if the probability of survival after any mission is con-

stant and equal to P = 0.95?
BUM-.

Solution. By definition of the expectation of a random number,

the nmnber of missions carried out by each interceptor, we have

_4,1 [N.IV j J ý P1 2 +,P P + ... + PIP ap ti-1,(1

wuere n is the maximum possible number of missions which can generally

be accomplished by one interceptor under the examined combat conditions.

The first term in (1) is the probability of survival after the first
S ;Iission. the second term is the probability of survival after the

second mission, etc., and the last term is the probability of sur-
viral after the n-th mission. Removing PIP2 from the parentheses

we get '0

1~~~ IV. -'I -'2 1' 1 +f..pi).(2
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The expression in parentheses in (2) is the sum of thp geometric

K~r;- progression with denominator P2P and a first term of 1.
P2 3

Using the formula for the sum of a geometric progression we get

i N,.Iia = j' 1p -- (P2P)'i, ( 3) ..- -. .-*. oA,

If we consider that each interceptor participates in combat

operations until it is destroyed, the probability of survival after

n missions is zero, and the expression

is identical with 1, as the sum of the probabilities of mutually .-'. *-.,

exclusive events forming a complete group. ,.,.-...-

Consequently,

pIp2 )P.P.

For the data in our example we are given that

PP2 -- PA = 0,95._

"If the survival probability up to each forthcoming mission is
P%5constant, i.e., the conflict situation with continuous enemy counter-

action repeats cyclically,

P =P2 PA = P... ý=cnst. (6)

Then

When P = 0.95, each interceptor carries out, on the average,

[NS~J~ ~ ~. ~-~9nisjon - .- -•=,

By solving the examined problem we can draw a very important

conclusion: with continuous enemy opposition, both in the air and

*." on the ground, with high survivability between successive missions ... ,.

the expectation of the number of missions carried out by each inter-
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ceptor is relatively low.

PROBLEM 7.13. The expectation MEN Jof the number of inter-
8 un

ceptor missions is defined by the combat-operation model described

*in Problem 7.12. Knowing the value of MEN J~, determine the prob-

ability that an interceptor will not be damaged and will be combat . i~

ready after any random (given) number of missions. 0

Solution. From the conditions of the problem it is obvious

tuhat- before the start of combat operations, when MEN I] 0, P -

=1. The probability of interceptor damage during the accomplishment

of a -cert~ain number of missions ANa~ is AN /M[N ]. The prob-
a eI1 In BJI L'.4

_______ability that the interceptor
-:--- B~T

____ will be damaged during AN
~..~~AI~?OO '""'~& missions, provided that up to

0,8*
(M this moment its state is char-

OA ~ ' __ -~ acterized by a certain survival

probability P is

A P V, A (10 P a..) P SU IR N~

-ANA

prbblt afteron any Ny -oh misio aicrf

3s obtaion$erd as the soluarcatio ftelte is-re ee a

Aig 7.p2 fDpndne()i.~vni i.7..()- .

PROBLEMic 7.14 Weitprlne inescobtpraos themsso

re uvvlprobability offitercetn asnltargtbnasnl
* ;si obtiey ste ouino the late fis-odrdAf-et
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interceptor, but also by the number of missions which the interceptors

can carry out per unit time. Let us compare, from the criterion of

mission intensity, two air squadrons, each consisting of Nn = 12

interceptors of various types, characterized by the following times

that they are in various states (Table 7.3):

Table 7.3.
SFrast type of In- second type or in- t

combat-readiness time characteristic$ terceptor terceptor

t -verage time the interceptors 5 hours each every '4 Hours each every
are in preliminary preparation 4 days 3 days

It average timie the Interceptorsn'n are in pre-flight training 1 hour every dav I hour, 10 minutes

tro average time the interceptors 
3 

.6 -
3 

... . I-.

- average time to prepare the 30 minutes 4J0 minutes
LinoOT Interceptors for subsequentmissions
ton -average time of combat miosion 1 hour 1 hour, 20 minutes , t..

"In addition, we are given the total duration of combat operations:

t. 10 days. Let us assume that up to the start of combat opera-6A

tions, preliminary preparations have been made for all interceptors,

and that during t 10 days all interceptors conduct missions on

a round-the-clock basis. ..-.. "'-

I Compare the maximum combat capabilities of the squadrons based

"on the expectation of the number of downed targets, if the probability

of intercepting one target by one interceptor is PI= 0.7 for the .

first type and P2 = 0.8 for the second tgpe.

Solution. The average time of the cycle between two successive

combat missions is equal to the sum of the average flight times and

the times for preparing the plane for the next mission: -

t- = a., + tnosT (1)

If the total time during which the interceptors are not busy

with preparatory and pre-flight preparations is

,t t6. a tap -tn. n (2) "-

division of t. by t gives an expression for the average number of
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missions which each interceptor can carry out: -:

4*0.1 + 40a:_ 
(3

The average number of squadron missions is -. ' -

.2~~~ - -.ty

, 1, + N . , ( 4 )

while the mission intensity, i.e., the number of missions per unit', 0

n= (4,o A tn om In . , (5) " "

A squadron equipped with the first type of interceptor can carry

out n- 7.35 missions per hour, while one having the second type can

carry out n 2  5.4.

The expectations of the number of downed targets during combat

operations

Al tNt. j , . 1240;Al [ANe ,1],,= 1030. "•"'<:.'

Thus, although the second type of interIceptor is considerably -.

better than the first with regard to interception probability, based -- j
on the average number of downed targets during the entire combat .. *.

operation period a squadron with the first type of interceptor has

[.2-times greater success than one having the second type, for which

the probability is considerably higher.

PROBLEM 7.15. The enemy uses nuclear weapons against an inter- . ..

ceptor base. We must determine the dispersion radius Rpaccp' if we
know the damage radius of the weapon used R and the probable dis- 7 .

sipation deviation of this weapon E (or the dissipation radius Rp),
p

aný we are given the permissible probability of interceptor destruc-

-_on P Let us assume that the interceptors are uniformly dis- __-._-_

,ributed within a ci-cle with radius Rpaccp and the center of this

circle serves as the enemy's aiming point.

230 -

. .r ',i.. .%S .

a..- 4.'..' ..'. ... '..-.-.-..'..'. .--.. .... .....;" " ..."."--"."-"" ".%...."."• ." ". ". "..-.---'•.--



Solution. Using the methodology of estimating the effective- 4. -

ness of damage to an area target, we can write the following formula
for calculating the probability of damage, up to a given level, to

; interceptors located at distance R from the epicenter of the ex-
paccp

plosion: .

+ +

The destruction radius, as we know, is either determined by *--. ..

instructions or calculated from the given values of the TNT equiva-
lent q of the weapon used and the excess pressure AP at the shock- -. -"

wave front which an aircraft of the examined design can withstand: -- o

Having determined, from q and AP the destruction radius R and
given the various values of probable deviations E = 0.477Rp, let us
calculate from Eq. (1) the destruction probability. The results of
the calculations for a broad range of initial data are given in Fig.

7.3 (p. 232). Using this nomogram we can also determine the required 7--

dispersion radius for any specific conditions. 7

If the dispersion area is rectangular, it is convenient to
determine, from the known sides of the rectangle, the equivalent .. '-11
radius of the circle, using Eq. (8) of Problem 5.8, and then deter- "-

mine the damage probability from the nomogram in Fig. 7.3.

With complex configuration of the dispersion area we must use ,

a scatter grid [2]. -'-"".'"..

PROBLEM 7.16. There are 18 interceptors at the airfield. To
assure high combat readiness and survivability with enemy action
against the base airfield, all interceptors are dispersed uniformly
throughout the airfield and, in addition, there are 18 dummy inter-
ceptors. The enemy raids the airfield and bombards, at random, half - .

of the aircraft (18 of the total of 36 real and dummy airplanes).
During the bombardment, each bombarded interceptor is damaged with
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r~ .' .c.a probability of 0.2 .1---- . x vw r_ ' 4±zxsv

7.

tedetermiedth expectation of the number of damaged interceptors.w

Howt dnoes this numbberit deres ifa weodouble thlecnumer of dummies are

Sacluton Th ra nenemy .selcs wrbaiith eqa probabilit y) any 18~

of the 36mtargefcass for vombardment. the enumbe tof suhe totase isbeo

caequal to thTnmer ofbe combinationsbl ofse 36i8statie

Herce ther eectn ca of 018, .,18ra interceptors. Tomie cabsleculted

the desivredu execation Cofsethenutelfy aaeitreposw

exatlying realcuinteretohe Prlesobabilityilitiis deie byr th 1-18, ~.
lfeth nubrofcss favralet the enemyttoitheototal number of bmadditretr

nuases, of Thmaed intercofpfaorabesaesi

-Z -'

since when electingting of18inecetorsidumis calagenumber seete Is.

fromvnin theeth trlnsypoi formula.
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The results of the calculations are given in Table 7 .4. """.- ,..

Table 7.4. • •..
10--1 - 4 1 5 1 6 1 7 1 1 9 i 10 it 1 - 1 1 14 14-18

Thus, the average number of lost interceptors is o.,,..',,-,,

',-.--..- -.. ...

I °, , - .- •

0,2\"' m P,,--. =0,2 (4.0,001 + 5.0,003 + 6-0,038 + 7.0O,1I12 + -'-.-;-' : ;

8.0o,211 + 9.0,260 + 10.-0,211 + I1 .0, 11 + 12 0.0~3s + • : ;e
+ 13-0,008-4- 14.0,001) = 1.8.... .".'- .,

If the nutber of dummy targets is doubled, we get the following re-

sults (Table 7.5)

Table 7.5. .....

M 0 1 2' 3 4 D 10 810 12 2 1'- "'

PM 0 0,002 0,0121 0,0471 0,5! 0,2G41 6.24 0,197; 0,1151 0,47 01014 0,0021 0

The expectation of the number of damaged interceptors is,-0,2 (1-0,002 + 2.0,012 + 3.0,047 + 4.0,12 + 5.- 0,204--6.0,924+

+7.0,197 .ý 8- 0,113 + 9- 0,047 + 10 .+0,014 + 11.0,0023 1,2,

I.e., a decrease by a factor of 1.8/1.20= 1.5.

PROBLEM 7.17. Verify the combat readiness of rocxets ztored :in [ .. "-

a warehouse. From experience in previous calculations we know 1-nat .'-.---'-
the probability of rocket inoperability is0..0£hegopt .. o.:.',

be checked we select 100 rockets -t random. What is the probability '.'.-...-.-;
that exacnly three rockets will be inoperable? What is the poob-win

alsuits that no more than three rockets w7ll be inoperable?

Solutionh xe sing the binomial distribution formula we have the-

234.
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following for the prcbabi.1!ty that of' 100 rockets, exactly three will

be inoperative:

P (n:l , = 3)==C-' 0,033 (1 - 0,O3)100-3 -. .0,79

16 1700 -0,033 -0,9791 =0,227.

The probability that of 100 rockets no more than three will be

inoperative Is
I~hi~.'~.. 3 P (ni. k) = P ( . 0) + P (/n 1)

(II P -I )P(mP

+P(nip.N= 2 ) +P(inp ,,=3)-C =C0030 (1-0,03)106--0+ .

+ % 0,03' (1-0,03)IO0I + 0IOO032 (1-0,03)l002 +

+ C,3(0,033 (1-0,03)100-3= 0,0475 + 0,147 + 0,2251 + 0,2274 =0,647.

"6.1
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use the reciprocal of the specific effectiveness - the cost of de-

stroying one target.

The criterion of the ratio of effectiveness to cost makes it - -

possible to select the optimum of several types of fighter-intercep-

tors designed to carry out identical missions. This solution is

given in Problem 8.1.

Problem 8.2 discusses selection of the optimum type of inter- -

ceptor based on the criterion of the cost of target destruction.

Of practical interest are problems whose solutions allow us to •

determine the reasonable makeup of a combination fire unit, the

optimum regime and sequence of rocket firing, and distribution of

the units of fire by the ranges of firing and subsequent attacks

(Problems 8.3 and 8.4).

Problems 8.5 and 8.6 are devoted to a determination of the op--"
timum makeup of an air group consisting of various types of inter-

ceptors and assuring a given effectiveness at minimum cost.

Substantiation of optimum interceptor and target tactics is ex-

amined in Problems 8.7-8.9.

The method of designating an optimum flight when the quantita-

tive breakdown of a group target is unknown is shown in Problem 8.10.

in Problem 8.11 we determine the optimum type of interceptor " ""

armament. _: . 2

In Problem 8.12 we optimize the carrying capacity of a detection

"and guidance system.

Problems 8.13-8.17 give optimum solutions when determining the

composition of the air fleet of various types of air groups, and its .-.-.

location by zones of combat operations and base points. We estimate,.
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the gain in effectiveness due to optimum designation of a flight of
various types of interceptors against various types of group targets.

Problem 8.18 shows how to determine the optimum dispersion

radius, if an increase in radius decreases the damage to interceptors
from enemy action, but increases the mission time. r-.."."-

-- . .. . . . .

Problem 8.19 allows us to substantiate the optimum supply of
rockets or any other units and parts, assuring a given level of inter- :
ceptor combat effectiveness.

PROBLEM 8.1. In model combat operations of interceptors with
fighter-bombers at low altitudes we have the characteristics xi,

which determine the combat effectiveness, and their importance coef-
ficients m. which show how the interceptor effectiveness changes if
the given characteristic x. changes by Axi. As specifying character-
istics we have the following:

V - combat ground speed, Mach;

AM/AD - decrease in M by AM with a decrease in flight range .
by AD, caused by installing cannons and radio counter-

"measure devices aboard the interceptor;

"S - effective area of interceptor damage with enemy fighterflop counterfire; -

"- area bounded by the graph of the dependence "velocity-

altitude" of interceptor flight with load factor n = 1;

n- maximum interceptor load factor; -. *-.*.-..-

t - time to accelerate from cruising speed to maximum low-
p level speed;

di -relative change in ground flight range under maximum-
rarge condItions as compared with maximum ground speed

conditions;
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-Aa

d relative change in flight range at reference altitude

under maximum range conditions as compared with maximum

ground speed conditions;
4.3.

- relative change in time of loitering under cruise con-

ditions at the ground as compared with minimum speed

"conditions;

AL /AG - relative change in takeoff run vs. takeoff weight.

Five types of interceptors have been developed, whose specifying

characteristics are shown in Table 8.1. All characteristics are given

in the form of relative values, with the appropriate characteristics

of interceptor No. 5 taken as unity. The table also shows the impor- . ..

"tance coefficients for each specifying characteristic. V..

Table 8.1.

knteri Characterlstlas

Ito 1 d, 6
- ,. L u .__. _ , . . .r

--.- -.- -" --- - LPo. -

1 1.08 0.87 0.85 0.54 0.59 OA, 0.67 0.85 1.51 0.67 - -

2 0.93 0.80 1.0 0.79 0.74 0.91 0.94 0.71 0.87 1.09 0.89 -
3 0.99 0,69 0.97 0.98 0.77 0.91 0.92 0.67 1.0 1.05 0,95
4 0.94 0.63 1.28 0.92 0.03 0.97 1.13 0.79 1.0 1.09 0.98
5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ,

I I I I I I I I -..
ni 1.0 1,0 0.45 0.1 1.0 1.0 0.1 0.1"1 1.5 0.5 1.0

____ ~j ii. I,

We are required to determine, from the criterion of specific

effectiveness (the effectiveness/cost ratio), which of these inter-

ceptors is the best.

Solution. Let us examine any one of these characteristics x.

If we compare two types of interceptors using this characteristic

and the corresponding effectiveness values wx, we can write

WA, I, \ .. /•( '..'--''':• -

- =. .I- ",,,",
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'be Newton'an binomial formula we have .-

1nn-)(rn2)

3. (2).

where Ax is the difference between the characteristics x of these .

interceptor~s, related to the value of characteristic x of one of

the -,omparable interceptors. In practice, greatest complexity ~in

comparison occurs when the comparable characteristics x1 and x2 dif-
I'er only slightly from one another. In this case the value of A~x is

small compared with x1 and x, and in first approximation we can

limit ourselves to the first two terms of the binomial expansion.

Th enbwhich immediately reflects the phsclesneof the importance

coeficint:m sowsh~w ucheffctienes wchanges if the speci-

fyin chraceriticx chnge byAx.Forexample, if m =3, this
means that the effectiveness increases by 30% when x increases by 10%,

since

W 1 =w, ( + inlx) ~w, (I +I 3.0,1) 1,3w..

Since an improvement of one characteristic of the interceptor

can be compensated, in the effectiveness indicator, by a deterior-

ation of another characteristic, comparison of interceptors with con-

sideration of all characteristics which specify the combat effective-

ness can be done by the formula

since the resulting effectiveness

UP =-- ry1To let X

.:zmnparison indicator w unambiguously shows how much one interceptor

is better or worse than another. :

24o0
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The formula for specific useful output (the ratio of the resulting

effectiveness to the cost) for the characteristics given in this prob- .

l~em has the following form:

C.f d,'i, 6

Qualitatively, the nature of the influence of the characteristics ~ .~'

on efficiency wis obvious, while the quantitative dependence is de.-

termined by the values of the importance coefficients mi, found using

~ .model combat operations and given in Table 8.1. The bracketed char-

acteristics3 can arbitrarily be called, respectively, the relative

survivability M~, maneuverability B, and effectiveness R along the

*intercept lines. For example, the maneuverability of interceptor No.

1 is

0,5.10.1 0,58

*of that of interceptor No. 5, i.e., the maneuverability of the first w
is 1/o.~44 =2.28 times poorer. I-.-*-~

The results of the calculations are compiled in Table 8.2, from ..-. .

* which we can draw an unambiguous conclusion for the problem.

Table 8.2.

itretrCharacteristics _ ____I -z
No.

1 .33 0.44 0.17 0 0. 3!02 0.-('.5
21.16 0, 69 0,70 0

I.- 0.3 085 0.7.K. f -7.

4 1.241 0,83 0.71i 0.7415 0.76G

Thus, the best interceptor is No. 5, then No. 3, and, finally,
the worst is No. 1.

PROBLEM 8.2. We must destroy each of 10 aerial targets with

probability P~ 0.99. The commander has three types of interceptors

241'

4.. -.

S _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



I.%

capable of operating under given conditions and characteri-zed by
pr-obability P~ of the downing of a target by one intet-ceptor and - 7 ?

Table 8.3.

Type of inter--

10.6 96

2 0.7 110

3___ 0.8 175

*Ccst expressed In arbitrary units

Cost C. includes the cost of one mission and the cost of the

rock4ets fired. Determine which interceptor is best used from the

Standpoint of assuring the given probability of target destruction ,

~-at m~inimum expense. Let us assume that each interceptor in one
Mlission makes one attack against" a single target.

Solution. To destroy each tar-get with a higher probability P~

Pt.- I -(I -,) ( 7)

A.fter taking the logarithm of (1) wie gct a formula for determining

,.ne reauired number of missions with known Pl and P-.: -..

The esutingcos ofdestoyig oe taget ifwe kow an
C~~~~~,~~ isfhdb h oml

-, =

'-' (I -: P,
cf C. =C,.

.. ~~I 0 ~ -p!



Table 8.4.
N umier of missions re- Coso C1 of destroying Number of missions re-Type of inter- quired to destroy one Co Cqu, to destroy 10ceptor target with one target targets

S5.025 482.4 50.25

2 3.83 4122 38.3 . , .

3 2.8 490 28 -

[ -- -- 'Comparison of the results of the

(. I~ calculations allows us to conclude that ..

'I lunder the given conditions the second
I "type of interceptor is most rational,

S-although its P 1 is not the highest.

20' oI'I In this problem it is interesting

.:"--. _ that in the case when each higher value

~ "~K~ ~of P1 has a correspondingly higher cost,

1. q6!•'O'" J there is always a certain P1 which is
0 0,1 0,2 0,4 0,, 0,6 q7 08 0,9 PI optimum. With P the resulting prob-

ability.of lonT I-.-.

abltyo target downing P~ is achieved
:- - - J' at minimum cost. This problem is solved

- in general form in Fig. 8.1, where the
Sdependence between effectiveness and

- 1 cost of one attack is expressed by the

-6 -. formula
b C (")

20- % hr
where a, b, and c are constants.

This formula graphically reflects E:..

0 0O,1 0,20,3 0,; (O,¶ 6O,0,7 Old the position that even with PI = 0 we

Fig. 8.1. have a certain initial cost Cl, while
r.. with high values of P3 great expenses

are required in order to increase the effectiveness.

PROBLEM 8.3. An interceptor armed with four rockets can attack

two targets in one mission. The probability that the first target
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will be at.acked is P = 0.7. The probability of carrying out the -"':
3econd attack is Pa2 = 0.3. The conditional probability of destroying

a target with one rocket during an attack is P1  0.6. If the first .. , -'"A

target is not attacked, the interceptor expends its entire unit of .. '.

fire against the second target. We must determine the optimum regime ,

for firing at a target, i.e., how many rockets there should be in the

2alvo against the first target, so that the expectation of the number

of downed targets in two attacks will be maximum. .

Solution. The probability of downing the first target is

The conditional probability of downing the second target, pro-
vided the first target has been attacked, is,"-. ' -::

P2(,._, p =1) .P3[ - (I - P,)':'i1. (2) . ..

The conditional probability of downing the second target, pro- •-' --

vided the first target has not been attacked, is

"L , 1'I - (I -/,". (-.(3)

in Eqs. (1), (2), and (3), m is the number of rockets in the unit
p

of -fire; i is the desired number of rockets fired at the first target.

The expectation of the number of targets downed in two attacks

. P, ', I I -( -0 t' /-;1 P",•. I -- (I -- /'I)"-1 + ""'" " '

The maximum of function Mi is achieved when

dl--

wni le

Let us find the first derivative .

,A P ,n (P -IP,)- (1 - P,)' + P,, (0- PO,,P-' o.,
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I?.

from which - ,

r Ig , (5)

The second derivative

0-% -, [In (I -PJI[(l -PI)' + P2(1 -Pl)'P]

is negative; consequently, Eq. (5) corresponds to the maximuai expec-
tation Mi. Substituting the numerical values of the problem, ac-

cording to (5) we get

,go,:3 + 4j ,2,6,.

Rounding off to the nearest whole number, we have i 3. For
verification we can substitute the numerical values directly into

(4). In this case, for values of i a 1, 2, 3, and 4 we get MI ,

0.704, m2 = 0.853, M3 = 0.853, and M4 0.77.

Thus, in this case as well the maximum M i is reached when 1 3.

PROBLEM 8.4. A unit of fire consisting of m rockets can include

m rockets with radar homing heads (RHH) and mT rockets with heat-

seeking heads (HSH). In place of any rocket with an HSH we can use

a rocket with an RHH. The probability of target damage by a rocket

with an RHH is P ; with an HSH it is P Rockets with RHH can always

be used, while those with HSH's can be used only with probability Pa

The value of the probability P depends on the attack aspect angle,a
the flight altitude, and meteorological conditions. We are required

to determine the optimum ratio of rockets with RHH's and HSH's for .

which the probatility of target damage P by a combined unit of fire

would be maximum. Determine for what values of P the use of rocketsa
with HSH's becomes inadvisable. Find the maximum ratio mT/mp for

two cases:

1) 1-1 0,9 and /I - 0,4 - 0,i".

2) ]-a 0,7 and P. - 0,3 :- 0,.4.

Solution. The probability of target damage by a combination
unit of fire of rockets with independent firings is
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K"'; %. ".n•
S-- . - I.# , . • i •

P--- I - (I--Pv)'lpI -- P., I- I- ; ,( )' ' "''.-- -,

Consequently, the problem reduces to finding the maximum of Funct 4 ,a" .-- a
(1) with observance of the following conditions:

Let us differentiate (.) with respect to m and equate the

derivative to zero:

Ppn (j1 j)Iaf(1 - 1-I1)",
""'p ".(3)+ (10 - P.) •+ .(I - P,)'7-",P (I1 - PP)', Ill (I P - p))l 0 ."' " " '"

From Eq. (3).we get e -

I _., , -PP P a ,• ( & ,....: :-:.
; -rap = •~~~~g 0 -- e,)(4) ,..,, ... ,:

Analogously, we get a formula for calculating the number of
rockets with HSH's:

Jig I[ -l --P) i]+Ig', -1) -'" ,'"'°"'

M =(5) '" .- ""''"
/n) == ~Ig (0 -- N• :'"":,;-'.:

From (4) and (5) it'follows that when the condition"

0; P 1. r,) ' (6 )

is satisfied, the use of rockets with HSH's becomes inadvisable,

i.e., in this case the effectiveness will be higher if only rockets

with RHH's are used.

The solution is shown in Fig. 8.2 (p. 247).

PROBLEM 8.5. A regiment is assigned a band of responsibility
300 km wide along the front. It must repel a raid by 30 targets

flying column fornation at the lowest possible altitude and with no

ground radar guidance field. The method for combat use of inter-

-cptoru is as follows: at, the warning command a search group takes

cff' iwhich, after detection of the target, calls in an attack group

,or joint target destruction (Fig. 8.3). There are two types of
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ATJPr 01

W-rnin band ..':,,

0.; 0,8 -c Search group •
Attack group of first-

"; 0 type interceptors7/ .YYYYA
,., 1 1st case Sear~ Attack group of second-

; --- Pa 9--~ -P- -P"0,7 + A type Interceptors :•""""'=i

•"Table '.5. 7.° "::""
eType of Intterecppo

Number' of rockets 2" ..

wt one rocke 0,.5 0.3 ,
-Width of band or possile detection

and aAt.ck (2b), km 50 20scn

Expenditures for one mission, arbi- • .L.A.-:-
trary units •, 2.5. 0.5 " "' "

With interaction of both types of interceptors, when each inter-

ceptor of the second type is given a target indication from the first- •'---.-:

S-. ... "-.--:

type interceptor which detects the target, the effectiveness of the

second-type interceptors increases to P 0.5.

We are requi~red to determine the optimum makeup of an air-de- ":;.-'::-;
[.Nnse air gcui cober sting of type 1 and 2 interceptors and capable2

.of desaroyi 90% of the targets in a raid at minimum cost. We must

xcompare r pen diroble combat variants:

epro1) the seconare resolved by the airborne radar, and the result

:' ~~247 -'
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of firing each rocket is an~alyzed, with :ýubsequent reaiming to un-

destroyed targets; ~i~~

2) search is conducted for dense enemy combat formations unre-

Aoi~ved by the airborne radar.
.01N

Let us assume that of the search group, only three type 1 inter-

.eptors or only five type 2 interceptors participate in the a'-tack. .,.
Tihe remaining interceptors of the search group, because of their re-

!...:Lteness from the point of detection of thi targt-: column and be-
cause of 4h shr uaino he raid, cannot participate in the

attack.

Solution. The'mission of the air group can be carried out with

.:_-rirJous con'binations of both types of internep.tors. If we use only
type 1. interceptors, to obtain the given level o~f effectiveness
MvI[N ]IN 0.9 it is necessary, acco~rding to Fig. 6. of Problem

C. 14 LA

- .... ~ 6.~4 to have m N11 /'N1 = 2 during realming,

70... fromr which N = 15. To this nubFw

60 must add three int~ercept.ors from the

_11 search group; then the total cost is

401 __Coibat With target !:f C =18-2.5 = 145 arbitrary units. An-
i~ntermingling

all alogously, when using only type 2 inter-
2%24 -.- ceptors we have m N NIN = 3.65, N 5.,

24668 10 112 14 N,15 Nf) p Ln

Fig. .14.and the expenses C= (55.5 + 10) *0.5=
=32.75.

A4 graph of the dependence C~ f is given in Fig. 8.14.
n1 . .-

...iously, the optimum solution is to use type 2 interceptor-s in the

.earch group and type 2interceptors in the attackc group. The optimum

j-atio of the number of interceptors is 1:14, with reaiming after

-na--sis of the results of each individual attack, and 1:10 in the............

ease u' combat with target intermingling, when a group target un-

--rclved by the airborne radar is attacked.

PjRjOBLEM 8.6. An air-defense group has the mission of destroying

24I8
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at least 75% of N 100 targets in a massed raid. To solve this

problem we have two control systems with varying warning and guidance

equipment and, consequently, varying control quality, in particular
the quality of target distribution.

The first system indicates to each interceptor its own target,

and all targets are identically and uniformly fired upon, i.e., there

is ideal target distribution. In the second system, each interceptor _ 0

selects its own target and there is no target distribution by the

system; it merely leacis the interceptor to the region of target loca-

tior, allowing it to operate independently. When using the first
system the cost of one operation against a target is double that when

using the second system.

We must determine, from the criterion of minimum cost of target

downing, which control system it is advisable to use. The prob- "- -A

ability of one interceptor's intercepting a single target is P

0.5 and 0.4 when using the first and second systems, respectively. F-

Solution. To assure an expectation of the relative number of

downed targets M[N I]/N = 0.-5, it is necessary, when using the

first control system, that when P1 = 0.5, N /N• N 2, i.e., the given -.Vn
effectiveness is assured if N = 200 interceptors operate. When
using the second control system the giver, effectiveness is assured " --

when NN =3. Consequently, the ratio of the number of actions
required to achieve a given level of effectiveness is 2/3, while

the cost ratio is 4/3. '. .

Thus, it is more favorable to use the second system, although .
it has less equipment for solving target-distribution problems and
assures a lower effectiveness of the interceptors. In return, the

low cost of the second system allows a greater number of interceptors ..

at identical total cost, and assures lower cost of target downing.

PROBLEM 8.7. An interceptor searches for a target in a certain ."-'.

region. The greater the search time ti, the lower the survival
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probability P9 of the inter-ceptor (e.g., the probability of sur-

viving enemy action if search occurs over a territory which can be

reached by the enemy's destructive weapons). On the other hand, the

greater the search time, the greater the probability P that the

'.4 06H

interceptor will detect the target. Determi~ne the optimuL.. search -time, knowing that ,.

in

while P6 depends on t, by the law obtained In Problem 5.12.

Solution. The probability of successful completion of a combat

mission P is equal to the product of probabilities P B W and P OOH'
Obviously, with optimum search time probability P should be maximum.

Having solved the equation .

d (A,,wP 0 (,1) J1

relative to ti, we get

k (3)n

The maximum effect-iveness with t Ol

PROBLEM 8.8. An interceptor carries out aerial combat with a

f-ghter.-bomiblar using two possible tacti-cs: attack from the forward
heispee n atck from the aft hemisphere In1 and n 2) The

Kgrnter-10orber uses three possiole ýountering tactics: it jams the

--K:-bo1rre radar, jams the rockets' homning heads, and conducts cannon -

: ýUF (, Li,,.and LA 3 , respect~ively). The effectiveness of the inter-

250



ceptor as a function of the tactics used is shown in Table 8.6 (in .,.

arbitrary units).

Table 8.6.

I: 3 IOI ,',." .

3 10

U3I 4 5
Us 8 2

Dete mine the optimum tactics of the interceptor and the optimum 5%"

counter-tactics of the fighter-bomber. ,.

Solution. We have a typical conflict situation examined in the

theory of games [29].

The three possible fighter-bomber tactics have three corresponding

equations of straight lines in the coordinate system v, •, where v is .. "

the value of the game and t is the number which defines the probable -

combination of pure interceptor tactics.

"For fighter-bomber tactic Q,

for tacti.c 2

"" ~~~~~~~~v=Q + 5 (1-- e),=5 _--•()".'""u" .. ..
-.. ....... -(2)

for tactic 143
Q(3V - 8t. 2 0.( - E) 2• + fit (3)

Having constructed the straight lines (Fig. 8.5), we get the

region of possible solution to the game (cross-hatched in the fig-

ure). The solid line corresponds to minimum effectiveness. The

guaranteed effectiveness for the interceptor is determined by the

value of the maximum with 04= 0-.
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m the fd hemisphere withf..... ..

0 .5?. TTn the effectivenesshould

for any fighter-bomber tactic will

i!be at least v 4.57 arbitrary units.

4 04q 7 ' ,

-- 0, 1 0, 2 0, •,T 0 '••o, ,, Solving the system of equations 4 " o

Fig. 8.5.
3r, + 4"11 + 8"tla 4.-7;.

lot,, +{ 5"-r, + 2 : =-14,,, 7 ( 4 ) "i::):?''

we findt f

freq u0,86 and Y,=,13 . (5)-ttckro-

i~e., the fighter-bomber can prevent an increase in interceptor ,-...effectiveness if it randomly alternates its tactics with frequencies

(5). This fighter-bomber mixed tactif (jamming of airborne radar of

,he interceptor with frequency ni ( jammin the. roke"omn
-heads with frequency n2 0 . 8 6, cannon fire with frequency n t.14)

is optimum for it since it guarantees it damag e st o e than tions
= 4+57. 4

-+
8

•ia=457

PROBLEM 8.9. An interceptor intended for combat against,.."": -..-. ,

bombers using the three types of counteraction can be armed wit,i.....",''
air-to-air guided missiles, unguided rocket projectiles, and cannons.[

The expectation of the number of downed bombers in one mission .. '-'•.
Lyone interceptor as a function of bomber counteraction and the unit,--".-'.•

of fire of the interceptor is given nn Table 8.7.

Detertine the best interceptor armament and the most favorable
type of bomber counteractiond atrts s-cis th eqne
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Table 8.7.
Interceptor' armament

Bomber counteraction air-to-ai- I unguided
guided cannons rocket

missiles projectIles _

Long-range maneuver 2 0

Abrupt short-range 12 0
maneuver

Radio Jamming of airborne 0 1 ,

radar

Solution. We have a zero-sum game with two players. For -

brevity, let us designate the pure tactics of the interceptors by

V. Jl, n 2 , and n 3 , and the pure tactics of the bombers by I'42' and2

13" Then the payoff matrix is written as follows (Table 8.8.):

Table 8.8. .;:.

2 0 1...

112 1 2 0

113 0 1 2

"The selection of move n indicates selection of the i-th column,

"while selection of move ui indicates selection of the i-th row in

matrix A. Solution of the game consists of the mixed tactics of each

player. We find the solution by the iteration method.

"The method for determining the result of such a game is to play

a number of steps (iterations) with pure tactics. Each player notes

"the tactics used by the enemy in the last step (enemy steps Nos. I, .

2, 3, , n - 1), and selects, at step No. n, that tactic which

"would be best, considering all previous enemy moves...

The tactics of the first move can be selected at will. Let us

select, e.g., nI and Li" In the second move the interceptor acts as

if the bomber were to reselect tactic 41. Since the interceptor

strives to maximize the results of the game, he again selects tactic
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n since the. largest number of the first row in matrix A is in the

first column. Correspondingly, the bomber selects tactic i3' since

the smallest number in the first column is in the last row. 0 *

To determine move No. 3 of the interceptor we calculate the -

average value from rows 1 and 3 (corresponding to the last tactics ,-<.,:-.

[Al and LA3 selected by the bomber). The maximum of this average L '''
value is in column 3. Thus, nis that tactic vrich is best for the

Interceptor in this case. The bomber correspondingly responds with

tactic " . ..

Let us assume that the bomber in the first (n -1) moves selected

tactics 1ik (k = 1, 2, 3, ... , n - 1). For the interceptor we then

calculate the average value from rows ik, select the largest of these .-- "-

average values, and use the number of this maximum for the next move. •.,- .

The bomber then acts in a similar manner. Instead of the average
values of the rows (or columns) we can take their sums.

Table 8.9 gives 30 iterations (moves) of a game. The first

column in the table is the number of the iteration. The column

corresponding to the interceptor tactics is given as a three-digit

nixuber in the fourth column of the table. The fifth column shows

the sum of all previous columns and indicates, by boldface numbers,

the minimum which determines the bomber's next tactic. The sixth

column in the table shows the selected row, while the last (seventh)

column gives the sum of all previous rows. The boldface numbers : .-

are the maximum, showing the next interceptor tactic. .,.

The value of the game v after n moves is located between the - 0

minimum of the column sums and the maximum of the row sums:

0,8<',°< < ,5; < JA"
="5"- 0,85 , < o" 1,35 -- 2 ;.-. - -7

23 3

................. *"o

. 0,77 <. v, 1,13 = a_. .-.-.-.-.-.

_ =--- -• ~~~~~~~.. ......... --- .... •.... •- U p • • • • • •
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Table8

Move No.I COI SUM Of COUn Ho Sm of.r-
1lntercep- obe oun u o coun o o o . . ... •

4 , .. ,s ¾.•

3 4 6.:~

I

2 o 3 210 4 2 0 012 o 1 3" "ows""

4 3 3 102 6 2 4 012 2 3 7

5 3 2 102 7 2 8 120 3 5 7

6 3 2.. 102 8 2 101 120 4 7 7 -

"7 3 2 102 9 2 12 120 59 ..- 7°:8 2 2 021 9 4 13 120 6 !1! 7 ";'k :''':

G 2 2 021 9 6 14 .120 7 13 702 4.10.1
"10 2 2 021 9 8 15 120 8 157 7

_11 2 2 021 9 10 10• 1.20 9 17 7,.-,,: ,• -',12 2 1 021 9 12 17 201 11 !7 8-"

13 2 1 021 9 14 18 201 13 179 9-........-

14 2 I 021 9 16 19 201 15 17 10
15 2 1 021 9 18 20 201 17 17 It
16 2 1 021 9 20 21 201 19 17 12

17 1 1 210 11 21 21 201 21 17 13 ,
18 1 1 210 13 22 21 201 23 17 14
19 1 1 210 15 23 21 201 25 17 15
20 1 1 210 17 24 21 20! 27 17 16

21 1 1 210 19 25 21 201 29 17 17
22 1 1 210 21 26 21 201 31 17 18
23 1 3 210 23 27 21 012 31 18 20 L
24 1 3 210 25 28 21 012 31 19 22
25 1 3 210 27 29 21 012 31 20 2.1
26 1 3 210 29 30 21 012 31 23 26

27 1 3 210 31 31 21 012 31 2220 r *
28 1 3 210 3332 21 012 31. 23 30
29 1 3 210 35 33 21 012 31 24 32
30 3 3 102 36 33 23 012 31 25 34
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Theý optimum tactics are determined by the frequencies with which

*Individual pure tactics are selected. For n = JO iterations the opti-

mu.m interceptor tactics are defined by the frequencies =0.1, 0.14,

0.5; the optimum bomber taccics - by frequencies ni = 0, 0.7, 0.3;
for n =20: =0.3, 0.45, 0.25; n = .5:, 0.35, 0.15; for n =30:

o.466, 0.3, 0.233; 0.4Q*1, 0.233, 0.366.

Thus, the best interceptor armament variant is one which uses

1rockets, cannons, and unguided rocket projectiles with frequencies

13.466, 0.3, and 0.233, respectively. The most suitable type of

bomber counteraction is a random al.ernation of the types of counter-

action (long-range maneuvering, abrupt maneuvering at short range, and

jairminbrz of the airborne radar) with f. squencies 0.14, 0.233, and 0.367,

respectively.

PROBLEM 8.10. An enemy can use, in a raid, three types of bombers

at random; the commander of the air unit can oppose these target3 with
two types of interceptors, each of which can successfully act against

each target. The effectiveness of the interceptors i!s characterizeCI

by a matrix (Table 8.10), in which the letter 41 expresses the enemy

tactics and n-i the air-defense tactics.

Table 8.10.

II. . I iýa 0.5

"2 j 0.5 J. 0.3 0.1

Detk'ermine the oprimnum variant for assigning a flight of inter-

,*cz.-.s to destroy the bocnbers, and the optimum variant for bomber

the enemy has three (~,Lý2 La
3

d Which tactic is best

:_)- ar al.-'efense? If dihe a.: ,o def~rise knew in advance the enemy
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tactics, response would be very simple. However, the enemy tactics

are not know beforehand: the air defense does not know what type of

target will be used. Therefore, for the air defense it is more

suitable to use not pure but mixed tactics, which is the probability ..

distribution (probability mixture) of pure tactics.

To determine the mixed tactics, the air defense selects a cer-

tain numberi (0 < ýl < 1), and pure tactics nare selected with

probability i while pure tactics n2 are selected with probability

1 E'l The gain in this case is determined from the formula for

calculating the expectation. If the enemy selects tactics L41 , the

gain for the air defense is

v =0,1'1 + 0,,5 (I -- PI.) = 0,5 -- 0,4,11;(1) '-" " "- ["

th n-.'. ..'.'2•

if, however, the enemy selects tactics then

v=0,3 + 0,3 ( -- )-0,3. (2) a.

while with tactics U3

4(3v--0-,R1, + 0,1 (1 -% =0,1 + 0,4-1,. (3)"

Expressions (1), (2), and (3) are straight-line equations (Fig.

8.6). The solid line shows how much the air defense gains in any

case with selected tactics •i' even if the enemy knows the value i-" "

When l 0.5 we have maxi:num air-defens~e gain (maximum expectation

of the number of downed targets):

This maximum has the following properties: with no air-defense r

tactics can the gain be more than v = 0.3, while with any tactics

differing from ýl = 0.5 the air defense gains v < 0.3.

Now let us determine the optimum enemy tactics. Mixed enemy Z, .

. tactics are determined by three numbers li' nl, and n2l where -71

•i+ 'h+ I ~ 1and 1, 42, >. '
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3. lyv

When using pure tactics nwe have the

V following gain for the air defense:

0,4 0=OH +0,&, 0-%0R ,-t, .( E

- ~ +0,5 -0,411 - 3~0,2-41 (4)m)

- -For pure tactics n, respectively,
- v=0,5~ + O,3~11-O,1(1-e2-%)OlO4 1 O2h 5

0.2 0,4 0,6 0.8 1~

iPig. 8.6.
Expressions (4I) and (5) are equations of

planes, shown in Fig. 8.7'. Let us find the

equation of the straight line along

- ~ 949which these planes intersecz.. Let
/ ~us subtract (5) from (14). We get

0.3- -~I/2 4~1-. 1  (6)
ZI"~~ / 'A

£7.2 //// ~' ~ ,Substituting (6) into (11) we .~....

0./ ~ '11 =0.5- 0,2 (2t, + r.) =0,5- 0,2. 1=03.

0 ,.This is the distance of line
/aý#0q (6) from plane El', r11  Any mixed

-J 0 enemy tactics fox, which (6) is not
Isatisfied give an enemy loss v >

05
I ~> 0.3. Such a loss will occur when MI.-

I the air defense knows this tactic.
Thus, the value of the game v =0.3.

Tactics ~l 0.5 are tthe optimum ______

air-defense tactics, while tactics

Big. 87. l T11, and ½when 2ý1 + 1)l 1

;ý'e the optimu-ým enemy tactics.

PPOBLEM 8.11. To repel a massed raid by bombers covered by

-Pfighters we use two types of interceptors armed with air-to-

-~ ~masciles, unguided rocket projectiles, and cannons. To
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carry out a combat mission we require at least 40 missiles, 100 un- .

guided rockets, and 1000 cannon rounds. ..

The unit of fire for one of the given types of interceptors is

characterized by Table 8.11.

Table 8.1i1.

~ of Type of Interceptor_

Cannon projectiles 200 50

Unguided rocket pro- 4 20
jectiles

Rockets 2 4

The cost of using the first type of interceptor C= 2 arbitrary

units; that of the second type C2 5. - .

2..

Determine the optimum number of both types of interceptors for

which the mission will be completed with minimum expense. Show how

the optimum solution changes with a change in the cost ratio C0/C2.
1 2.

Solution. Let us designate the number of type 1 interceptors

by N1 , and the number of type 2 interceptors by N 2 . Then the

expenses for carrying out the mission

C - 2N•i + M1A2.)

To carry out the mission, by stipulation of the problem the

following inequalities should be satisfied:

200NV~t + SON.12> 100A;
4N. 1+20N. 2> 100, (2)

2N,,, + 4Nn, > 40.

Thus, in terms of the theory of linear programming the problem

- is formulated as follows: we must minimize the linear form of (1)

"with satisfaction of restrictions (2) imposed on the desired variables ,.

"N and N where N > 0 and >0, ,N.n-.
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Thanks to the small number of variables, the problem can be

solved graphically. All possible variants of' combinations of' N,,

and N2 are shown in Fig. 8.8., where the equations of lines (2) are 0

constrticted. Line (1) for obtaining minimum expenditures must be

located as far to the left and

14--- at least one point in the region

122-- of' possible values of Nn and N,2
-3 _4_ optimum The dashed line thus obtained atI~ Nn ,(H ,: 157.

H 1 ) the point of intersection of lines

4Ž ~ -2 L...4N. + 20N.2 10CY (3)
' 4 fl20// 2N., + 4A', 2 -3 40

*C2 ~6' 8W 12 IP 4l 18 20 y2.,f gives the optimum solution to the

Fig. 8.8.problem: N,, 16.75 and N,,
=1.6. The expenses here are

minimum: C =2-16.75 + 5-1.6 4 1l.5 arbitrary units. Practically,..*.

speaking, N,, 7adN, 2; C 4 L4 arbitrary units.
nl n2

From Fig. 8.8 we can determine how the cost ratio C /C2 in-

fluences the optimum solution. If' the steepness of line

* ~is greater than that of line N 2

4N,1 + 20N.1 100oo (5)

it, is advisable to use one type 1 interceptor for the mi,1ssion. if,_____

h-owever, the steepness of (4i) is within limits between the steepness
* of line (3) and that of the line

2N, + 4N~. -0,

;ealways have a certain optimum relationship between N,, and N~2
For example, the optimum occurs

for
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21 00 Swhen N 1=-0 and N,2=20;

'• ~~for -- - •...

, ,.. 10 ! -1- " ,- '.
4 > =- when N 1=-,2,79 and N,,,8,28;,

for . .

> > when :.-1 16,,5 and ,58;

for

5 C, 0 when N 1, 25 anL N,,=0.

PROBLEM 8.12. A column of bombers, conducting a low-level raid,
is covered by a column of escort fighters at high altitude. The

raid is repelled by the operation of two ground radar stations for

. target detection and two computers which solve the interceptor guid- r

ance problems. The radar stations are spaced apart in the direction -

of the raid, and information on the aerial targets is fed from the '--- Si

first radar to the second; from the output of the second station

the bomber coordinates are fed to the first computer, while the coor-

dinates of tthe escort fighters are fed to the second computer.

The radar stations have scanning sectors which differ in the ' "

vertice] plane, and their transmission capacities depend on the ele-

vation of the axis of the antenna radiation pattern.

Depending on the elevation of the scan sector, the first radar

can simultaneously give coord-Ana'%es of no more than 40 bombers o. '

20 escort. fighters, or a certain combination of a number of bombers S

and escort fighters. The second radar, depending on the elevation of.

the scan sector, can simultaneously give coordinates of no more thaii -.--

30 bombers or 25 escort fighters, or some combination thereof.

TbA absolute traismission capacities of the computers are also
limited: the first computer can solve guidance problems for no more

than 23 bombers; the se..ond - ft, no mcre than 18 escort fighters.
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The damage inflicted on the enemy by the downing of one bomber

is estimated at 2 arbitrary units; that due to the downing of one

escort fighter - 1 arbitrary unit. .
We must determine the optimum absolute transmission crpacity.

of the detection and guidance system, assuring maximum enemy damage. -

Let us assume that the probability of guiding the interceptors to

the aerial targets is 1.

Solution. Optimum absolute transmission capacity of the de-

tectior and guidance system is assured by installing the radar an- 0

tenna such that Ni bombers and N2 scort fighters will be handled

simultaneously in the system, while the enemy loss, equal to

will be maximum, We are required to find the values of N i ,d Nu2 .

Since 1/40 of the transmission capaoity of the first radar wii± be

occupied with determining the coordinates of one bomber, for NT .

bombers we r.equire of the transmission capacity of the firs-,

radar. Correspondingly, N 2/20 of the transmission capacity of the

first radar is required for N escort fighters. Since the relative

transmission capacity cannot be greater than one, '-

4"--t" +r N0 
(2)

or

Na, + 2NU2 < 40. (3)

Analogously we find the following inequality for the transmission K 0

capacity of the second radar: - ".

oor

2.5N4 1 + 3N.2 <75. (5)
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For the transmission capacity of the first computer, by stipu-

lation of the problem we have

N., < 23, (6) __

for that of the second computer -. .*.

We have the following typical problem of linear programming:

we must maximize the linear form (target function)

L P&I + Nj (8)

with the restrictions imposed on the desired variables N andN

N., + 2A1,2 < 410
+8N .j 3N~t <7

N41< 23; (9)
NV.2< 18;

* NM j 0; NT

The problem is solved gr&phi~cally. Let the solution be as
F-follows. In a plane in coordinates N , N 2 we construct a region

- ~ l - A bounded by Inequality

. (9) and find in this

6 6 region those values of
____ --N 14  and N14 which deter-

- - mine the maximum of
r %%,% X-A linear form (8). The

N1. -27i ____ construction is done

t -~~ in Fig. 8.9. The cross-___

hatched area in the
N ~ - N. 4  figure represents the -

10 -~ ~, 'N 4  ~o~ set of variants of the-
4, * * 0 - solution. The optimurit

~- I-%..l solution is found as '0 to 40 At follows. Let us write

Fig. 8.9. linear for~m (8) In the
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form

"Nat+- =1. (10) .

This line intersects axis N 1 at point L/2 and axis N1 2 at point L...- ._ .

Let L = 60. Then the coordinates of the points of intersection

of axes N i and NL2 are 30 and 60, respectively, i.e., line (10), as

can be seen from the figure, passes beyond the limits of the shaded, - -

region and there is no unique solution. When L = 40 the line passes

through the shaded area, but the optimality requirements are not

satisfied. To find the optimum we must move line (10) in parallel

up and to the right until it touches the shaded region at one point

(point A in Fig. 8.9). This is the point that determines the optimum

solution: values N = 23 and N = 5.83, for which (8) is maximum.

Thus, if the radar antenna is met such that 23 bombers and 5.83 .

escort fighters can be "serviced" multaneously, damage to the enemy

will be maximum- equal to 2-23 + 5.33 = 51.83 arbitrary units.

Here it is interesting that the transmission capacities are not -" "

identically used. With the optimum solution the transmission capa-

city of the first radar is

Na + 2N 2 = 23 + 2.5,83 34,67,

i.e., it iE used only (34,67/40),l00 86.8%.

For the second radar we have

2,5NE1 + 3N.1 = 2,5.23 + 3.5,83 75

and it is occupied (75/75)-100 = 100%.

The first computer is used

23100•= 10o1,
10.1

.. et second is used - . -

100 32,40,1.
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PROBLEM 8.13. An enemy in a raid through an air-defense belt

can use four types of targets. The air group defending the air-

defense belt has four types of interceptors. The effectiveness of

each interceptor against each target is characterized by an effect- A%
iveness matrix in which qi designates the enemy tactics and ni the

"air-defense tactics (Table 8.12). . '"X

Table 8.12. 9

, ~ 4 --2 -1 --2

- "2  0 03 2 "

I__ __I_

= n~ j 2 J 2 1
The payoff function is the expectation of the number of targets

downed by one interceptor in one mission. Negative numbers indicate

interceptor losses ("1-2"1 is a total irrevocable loss, "-1" is a

temporary breakdown with subsequent recovery). We are required to

determine what types and how many intercepto'rs there must be to -.. N

assure a maximum guaranteed effectiveness level for any enemy actizs, .*•. -..

i.e., when the enemy uses the various tyr-s of target- in comoination,-

which are random and arbitrary for the air defense.

Solution. Let us use the iteration method. On the basis of
the payoff matrix we play a game with a sufficiently large number of

steps. In each iteration the enemies want to obtain maximum gain 0

under the conittion that the other side in its next move will try to

minimize its loss, countering the enemy with a move which is most
disadvantageous for it. The start of the iterations can be arbitrary.
For example, let us select row nI. Let us rewrite this row downward

and indicate the first mirimum with boldface -2. Since this minimum

"is in the second column, let us rewrite the second column to the - -.

right of the matrix and also indicate the first maximum 2. Since
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this maximum is in the second row, let us combine the second row with

the row beneath the matrix and indicate the first minimum 0. Then,

since this minimum is located in the second column, let us combine

this column with the column written to the right in the matrix, and"L 0

te• indicate the maximum 4. This maximum tells us to combine the second

row with the resulting row written for the matrix. The iteration -..... ..

process continues until there is a smooth convergence of the upper

and lower bounds of the value of the game p and q (p - q + 0). [

To exclude ambiguity in selecting the next iteration when the

row or column contain several identical numbers we must establish

a specific rule o2 choice. Let us stipulate that when identical •

numbers appear in a row or column we select the first of them: in -"- -

a row - the first minimum; f.n a column - the first maximum. Our

example is solved by the described method as shown in Table 8.13. ".

Usually, to obtain sufficiently precise solutions, i.e., to

small differences between the lower and upper bounds, within which

the value of the game lies, we must perform 20-30 iterations.

After each k-th iteration the value, indicated by boldface, in L

the row or column is divided by k, which gives the value of the upper

and lower bounds p and q of the value of the game, while division of

the number of indicated digits by k gives the corresponding statis-

tical frequencies n and C, which are approximate values of the opti-

mtum tactics of the sides. Obviously, the greater the value of k, -

the more precise the answer. After 10 steps in our example we find

that the value of the game lies within the limits 1.20 < v < 1.43.
Since the approximate solution for tactics n and gives zero fre-

quencies ( = 0, = 0), these tactics can be discarded. Then the

matrix becomes a 3x3 matrix and its sclution can be found by a pre- -...-.-.

cise method (Table 8.14). -. ".-.--.

Let us subtract the second and third rows from the first; then

YI Y2J Ya
-3 2 1
-2 0 1.
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Tab le 8.114

I JlII, li,

n0 2 0 2,

n3 3 0 1 " ,

Cancelling out in turn the columns of the next matrix, calcu-
lating the difference of the products of the numbers along the diago-
nal, and dividing this difference by the total sum, we get the de-

sired frequencies of the optimium tactics for the enemy: n, 2/7,

=1/7, and = 4/7.

Analogously we find the optimum air-defense tactics: El 3/7,
= 2/7, and t3 = 2/7. Thus, if the air defense maintains its opti-

mum mixed tactics, attempting to maximize its minimum possible gain, -.

i.e., uses types of interceptors with frequencies

-j=0; E2 =0,43; E3= -0.285; E, = 0,285,

we are assured a guaranteed effectiveness which is numerically equal .

to the value of the game

v L 1,43,
7

regardless of what tactics the enemy prefers.

Thece optimum mixed tactics are the solution to the problem:

they determine what type of interceptor to use and with what fre- 0

quency the available interceptors should be selected to obtain max-
imum expectation of the minimum possible number of downed targets. . "

The most suitable tactics for the enemy are optimum mixed tae-
tics characterized by the following frequencies of random alternation .
of the four types of targets:

-P, 0,285; 0143; 0; =0,572. 1
2 6
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r.: With these frequencies for alternation of types of targets the v'-'.., t

enemy guarantees himself minimum damage according to the minimax

theorem. When assigning a flight of interceptors we must begin from •

the position that the enemy uses his resources (bombers) with relative ."-..•

frequencies n,, n 2 , n 3 , and n4.

PROBLEM 8.14. A massed raid of air-to-surface missile carriers

F: is to be repulsed by an air-defense air group. Since air-to-surface ,.
Vj missiles can be fired at distances of from 1000-2000 km from the

interceptor base, two types of interceptors (A and B) can be used.

Type A interceptors are used to destroy the carriers on lines 1500- i" 0
•- P_~000 km fr.)m the takeoff field; the probability of target destruction [ .

in one action P Type B interceptors operate only 1000-

1500 km from the airfield, and the probability of destruction in a

single action PBI = 0.73.

Each carrier can, with probability P = 0.6, be in the action

zone of type A interceptors, and with probability P = 0.4 be in '.- -

the zone of type B interceptors.

Each interceptor carries out two actions against the targets; 0
type A interceptors carry these out statistically independently,,.

while type B interceptors carry them out after analysis of the re-

sults of the previous attack. The cost of one type A interceptor

; CA = 3 arbitrary units, while the required number of service per-

sonnel per interceptor rA = 1.5. For type B interceptors we have ""

B "1 and rB 1.

Determine the optimum composition of an air-aefense air group

consisting of types A and B interceptors, assuring destruction of 7" :

90% of a raid of N = 40 targets when the restrictions on total cost

and required number of service personnel C = 75 arbitrary units and

= 65, respectively.

"Solution. In general form the solution can be represented by,

a graph in coordinates NA, NB (Fig. 8.10), where NA is the number of
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* ~ . type A. interceptors and ...

L ~~NB is the number of type .-

400 B interceptors.

'-/4-. First we construct
R. S" restriction gn r curves of the equal effect- *-*

20 ...N .,,restrictionl on C< iveness of the group con-

sisting of various com-

binations of NA and NB

The effectiveness of

0 U40 ,,,I single interceptors in

Fig. .10.operations against single
targets is characterized

by probabilities PA and PB of destroying a target;, provided it is in

one of the appropriate belts. From the conditions in the problem we

have

PA 0,35 .0,6= 0,5 and Pa =0,75.0,4 0,3.

Since by stipulation the relative expectation of the number of downed

targets M[N ]/NL = 0.9, we must determine those pairs of N anN
c.1 L 4 A ndB 0

for which 36 of 40J targets will be destroyed, 18 of 20 targets, etc.

7 Having constructed the curves of equal effectiveness, we must

plot on the graph the restrictions on cost and number of service

personnel.

The cost of the Interceptors is expressed by the equation]

C =CANA + C,,z8 , (1l

while the number of service personnel

r rANA rtJ1- . (2)2

By stipulation of the problem we have

3M A + N1, < 75;(3
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Inequalities ()and (4i) graphically represent the half-planes ~:~

passing through N, NB coordinate axes and bounded on the right by

the straight lines

-:4(- +(5)

r r

Thus, writing (3) and (4I) as equations of lines in segments,

we obtain the coordinates of the points of intersection of these

lines with N, NB coordinate axes (considering the sign).
P B

KMoving lines (1) and (2) along the family or curves of equal

e ffectiveness until they intersect at one poj'.:, with the curve of

given effectiveness, we find the optimum solu't`,I, i.e., that pair ,

of N A and N B which assures the given effectiven~ss level and for

which restrictions (3) and (4i) on the cost and the number of service

personnel are satisfied.

PROBLEM 8.15. Two types of interceptors are used against two

types of targets. Show the gain in effectiveness which can be

achieved when using optimum tactics compared with the equally-prob--

able alternation of all possible tactics. Determine the gain for

the following two effectiveness matrices:

j 321 =1-1 61.%A=1-4. 3 1' A 2f 2

Solution. Let the effectiveness matrix have the following

general form:

A-0

ja~ GIIjI bJ.()a2
For our example a 1 . a a22 = a, a 12  b,a 21 =c. As we know,

if there is no saddle point, the value 3f the game is

(2
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where N a1  + a2 - a 2 -a 2 ..-...

The optimum tactics for interceptor utilization are mixed tac-

tics~ ~ 2~'where
% is (ElE)

a2l- am

The optimum enemy tactics are also mixed tactics n (n

where

41 22-= l

Is ~N

If all tactics are equally probable, the expectation of the number
of downed targets is equal to the average value of tne matrix ele-

IL ments:

all + an2 + as, + a22()

t ~ Now, assuming that the enemy will alternate his tactics in a.
manner most unfavorable for us., let.. us determine the gain in the --

value of the game relative to the value v which we can guarantee 14 S
by using our optimum tactics. Let us express this gain in terms of

Vthe relative difference

"IP
Let us introduce the designations

Subs tit.uting a and 8 into the general formula for the value of

the gameý we get,~- 7
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The average value of the matrix

ldl.,ýis equal to

I: -2 VR (2+ (8)

For

-. -we have

-221

- -Since vcp 1 and v 2.12, then

Fig. 8.11. w = 1.12, i.e., such a matrix is

unfavorable for an air-defense enemy, since the use of optimum tactics

"compared with equally-probable tactics gives a gain of 12%. The

matrix

is favorable for an air-defense enemy since -. * .'.,I , -. ,, _ • o - " " .

although the value of the game

>. 01.O.

The dependence of the gain in effectiveness on matrix parameters

and a is given in Fig. 8.11.

PROBLEM 8.16. An aviation group consists of three types of

interceptors: ni1, n2 , and n3 . The enemy uses three types of

fighter-bombers in a raid: 'I' '2' and '3. Each type of intercep-

tor can fight each type of fighter-bomber, damaging it with the

-' probability shown in the effectiveness matrix (Table 8.15).

In turn, the fighter-bombers damage the interceptors, respect-

ively, with the probabilities shown in the interceptor-damage matrix

(Table 8.16).

Economic expenditures when using interceptors nl, n2 , and n,
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Table 8.15. are characterized by the values

* I I ~ its (regardless of the type of tar-
get) shown in Table 8.17. L..

; j 0.8 0.3 0.A

0 .5 (%~7 0. G We must determine the
most advisable ratio f or the

03 0.4 [0.3 0,9 1 use of the interceptors to
assure maximum effectiveness
(the maximum expectation of

Table8.16. - - -the number of downed tairgets)

.1 ~ '~'when the following conditions

0,4 J ~are satisfied:L

______ 5 0.4 0.7 1)the probability of
________ -damage to the interceptors

03 0,5 0.2 should not exceed 0.4;

* 2) the economic ex;,enses
* ~Table 8.17. ______-should r exceed 10 arbitraryv

it.~, 112, Uý units.

1,-.Solution. In the case
14 hen the success of an oper- .

-ation is characterized not by[ ' I _________4

______ _______one Luu by several criteria,

'rom all the criteria we select

the most important one and require that it become maximum. The

auxiliary criteria in this case should satisfy the limiting con- j .
ditions. As a result of such a representation the pro'Ler- rc-duesrto one of linear programming. In our case we must maximize tne

* expectation of the number of downed targets while simultaneously L

satisfying the lim..ting conditions with respect to damage to inter-

ceptors and cos~tts.

Let s tansorm atrcesU ad Csubracing romth'n.Let s trnsfrm mtries UandC, sbtrctin fr~i tem 0 =.

=0.4 and C0 = 10, respectively. Then the matr~i'x for damage to

interceptors assumes the following form (Table 8.18):
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Table 8.18.- - -

~ j at Ut U3 ~

n, 0 ~-0.2 -,

0.1 0 0,3 ' a .

-0.1 -0.2

V The cost matrix is given in Table 8.19.

Table 8.19.

Its 12 1'I-

n, 4

Us -6

-OIx,~~' + '3,-02x -u.0

The lmtn conditions relative to the critetaion of danmager tof

iontercetorges caitenb writte n inhthsfor

OAXI~~~ + =1.+0,x -z

0,3x, + O,1x2 -+0,1xs- z=1;='

-0,4x, + 0,3xs + 0,9x, - zj=0

x-4x 2 +6x3 +'MI1=0. (2)



A'

Here it is necessary that the linear form L be minimized:

L --= x , + x 2 + x s -- -• ( 4 ) L . • "; J

Thus, the problem reduces o finding numbers x 2 , and x

that satisfy Eqs. (1), (2), and (3).

Omitting the rather unwieldy, but simple, calculations, let us

give the final result of solving the problem. The optimum tactics

for an air group, consisting of the optimum quantitative ratio -

among the three types of interceptors, are mixed tactics - the inter-
ceptors should be used with frequencies t = 0.146, •2 = 0.527, and

= 0.327. In other words, the group should contain 14.6% type 1
interceptors, 52.7% type 2 interceptors, and 32.7% type 3 intercep-

tors. When this condition is satisfied, the value of the game (the .

minimum guaranteed level of the probability of intercepting any

target during the raid) is v = 0.511. Thus, using mixed tactics . _.,-

(•l' •2' g3) we assure maximum combat effectiveness with observance
of the limiting conditions with respect to interceptor damage and

economic expenditures.

PROBLEM 8.17. To repel a massed raid at low, middle, and high

altitudes we must scramble simultaneously 50 type I interceptors,

30 type 2 interceptors, and 45 type 3 interceptors. For the re-

quired number of interceptors we use two airfields, 1 and 2. The

average takeoff time, in seconds, for one interceptor of a given •-

type from the respective airfields is given in Table 8.20. ,.:N

Table 8.20.
Type of interceptor Ir

Airfield No. "..,- - 4

1 4 . . 1•

5 AW

How should the interceptors be located, by airfield, so that
the takeoff time of the entire flight required to carry out the .
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mission is minimum?

Solution. Let us designate by Nnjthe desired number of type i

interceptors located at the J-.th airfield.

In our exan.ple, 1 1, 2, and 3; J =1 and 2. Thus, N, 1 1l isF
the number of type 1 interceptors at airfield 1, Nn1,2 is the number_____

of type 1 interceptors at airfield 2, N~2  is the number of type 2 tX !
- ~interceptors at airfield 1, etc. ~

From the conditions of the problem we have 7

N.11 + A'1 .2 =0.

NU2.1 + A 2 =0 l
No., +N., 4.5.I

The takeoff time for interceptors at the first airfield is

f, 4N. 1.1 + 10Nd*, + I ON,,3.1,(2

* while that for interceptors at the second airfield is

12 = 6Nul:+ 8Nn2. + 20N. 3.2.()

Obviously, the minimum resulting time for sequential takeoff ~ ~
of all interceptors occurs when t1  t2  Thus, it is necessary to
find those values of N > 0 for which the linear formriij

L 4ND1.1 + 1OjN:2.1 + I Ojnfl, WN1.2 + 8N.22 + 20,'V.;1(12

is minimized, with restrictions (1) imposed on the desired variables -

N nij.

The probl:!m is solved by methods of linear programming. The .7W S

solution is given by the optimum plan for interceptor location by .

airfields (Table 8.21). - -

The takeoff time for all interceptors with optimum location by

airfields is
4.9+ I- 10+ 10 -45 G .41 d8 30+ 20 -0:=48 s
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Table 8.21.

T ype or interoeptzr 1 A.~,~
Airfield No.

SI :0 45I r
I 04 ':*• '- -

2 41 30 0 *

Any other variants of interceptor location by airfields increase

the reaulting takeoff time required for the flight to carry out its
mission. E:•• :

PROBLEM 8.18. When an enemy operates against an interceptor

airbase an increase ir the dispersion radius R' decreases, onF peccp _V
the one hand, the probability of damage to the interceptors P flop'

and increases, on the other hand, the time t 6 . required for towing

from the dispersion zones and the mission.

Determine the optimum dispersion radius for maximun intensity

of a mission by undamaged and combat-ready interceptors. Intercep-

tor damage is determined by action of the enemy against the airfield

by air-to-surface missiles carrying nuclear charges with TNT equi-

valents q = 100 kT. The probable deviation which characterizes the

scatter of the rocket is E = 1 km. After an enemy strike the inter-

ceptors are towed from the dispersion zones to the runway at a rate

V r) Y 0.5 km/min.
6yi*c

Solution. The intensity of missions by undamaged interceptors -"

is defined by the expression

EN.

where P and t. are functions of the dispersion radius R
flop 62paccp

To find the xium of the function = f(R ) let us first13peccp . ... .....
construct, using the nomogram in Fig. 7.3, the dependence

(1 - P = f(Rp p and then, on this figure, draw lines for

the time required for towing and takeoff of the interceptors as

a .•u.cton of . Then, Rle us construct., using Eq. (1), the
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departure intensity as a function of R pcp,~
Pa-. *

Calculations show that for the initial data the optimum value ofr

R for which the departure intensity reaches its maximumr value

PROBLEM 8.19. To assure combat readiness of airborne radars

for the squadron there must be a supply of modules A. With a large

supply, some of these modules are excess. The cost of each excess
module Cl 500 units. If the supply is low, if several modules

which raises the cost of each module to 02C 10,000 units.

We must determine: .- '*.'

1) the optimum number of space modules A if, using the known4
frequency of breakdowns, we calculate the probability P(r) that
exactly r modules A are required for the period of planned combat

operations (Table 8.22): .V".t

Table 8.22.J

0____ 1..2. 1 2 J 3 >
P~) j 0.9 I 0.015 j 0.02 0.01 0j), 0,01 ) ______

J'(r < s) 0.9 0.91) 0.97 US~ 6.99 1.0) 1.0

2) what will be the maximum cost of a module A with emergency

air shipment so that the Supply of s =3 modules will be optimum?

Solution. With a supply of s modules, when this supply is

greater than the actually required modules r, the expenses are

C (s - r). When there are not enough modules, i.e., r < s, the

expenses are C (r - s). Although we do not actually icnow beforehand

exactly how many modules A are required to repair the radars, the
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probabilities P(r) are known precisely from statisti.6al data on the

reliability of the radar operation. Obviously, the resulting ex-

penses C(s) with a constant supply of modules equal to s is calcu-0

lated as the s~um of the particular expenditures for each r multi-

plied by the corresponding probabilities PCr) :(1

The optimum supply s0 of modules A for which the expected ex-
0.

penses are minimum should satisfy the following inequalities [31]:

P (r~s V < ( r2)

For our example

C, + 5W, + 10 .52 WO..

From Table 8.22 we find that \value Df s which satisfies the con-

dition

This value will be s -2. Thus the expenses are minimum if the num-

ber of spare modules A. two. ~:~

Let us determine what might be the cost of a module with emer-

gency shipment so that a supply of three modules is optimum. Let

us substitute s0  3 into (2). Then

C,

C!- C2

The minimium -cost C_ is 0

C 0,97; C2 16 167. ~2

The rmaxi:±mýun cost C., is

0,98; C2 24 300,

Consequently, a supplg% of' t hr-,;e module ý will be optimum if the

expe ises for one mioduie wiJth -emergency replacement are within limits

16 6~7 < C2<24 500.
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APPENDIX1

TABLES K"R DETERMINING THE RELATIVE EXPECTATION OF THE NUMBER OF
DESTROY!,, TARGETS WITH RAN~DOM TARGET DISTRIBUTION 1:-

2 I: 7g 9 10 15 20 30k 40 100

1 0.1A, 0,05 0.' OA . rf 0.020 0.017 0.0141 0.012 0.011 0.010 0.007 0.005 0.0015 0.003 0.002 0.003

2 0.190 0.0.48 0.(ju 0.q3~0 0.039 0,033 0.028 0,025 0.02 0.020 0.013 0.010 0.007 0.=0 0.004 0.002

3 0.2, 1 0.143 0,097 0.073 0.059 0.049 0.042 0.03? 0.033 0.030 0.020 0.015 0.010 0.007 u.006 0.003
4 0.344 0.183 0.127 0.096 0.078 0.065 0.056 0.049 0.044 0.039 0.026 0.020 0.013 0.010 0.V.MS 0.004

0.40 02260.56 .11 00960.01 .00 0.01 .06 .049 0.0633005 .1 0.012 0.010 0.005
6. 0.4607 0,265 0.184 0.141 0.114 0,096 0.083 0.073 0.065 0.059 0.09 0.030 0.020 0.015 0.012 0.005
7 0.522 0,302 0.2!1 0.162 0.132 0.111 0.066 0.084 0.075 0.068 0.046 0.034 0.W 0.017 0.014 0.00?
8 0.570 0,337 0.2381 4. 183 0.142 0.126 0.109 ,0.06 0.086 0.077 0.052 0.039 0.020 0.020 0.016 0.009
9 0.613 0.370 0.2631 0,204 0.166 0.140 0.121 0.107 0.096j 0.066 0.058 0.044, 0.(130 0.022 0.018 0.009 . I.-

10 0.651 0.401 0.288 0.224 0,183 0.155 0.134 0.118 0.106 0.096 0.005 0.049 4).033 0,02 0.020 U.~010 ': J

15 0.,794 0.537 0.39 0.316 0.261 0.223 0,194 0.172 0.154 0.140 0,095 0.072 0.049 0.037 0.030 0.015
20 0.878 0.642 0.492 0.397 0.332 0,285 0.250 0.222 0.20D 0.182 0.125 0.095 0.065 0.049 0.039 0.020

30 0,9W8 0,785 0.638 0.832 0.455 0.396 0.350 0.314 0.285 0.260 0.182 0.140 0,095 0.072 0.0581 0,030
50 0.99r, 0.923 0.816 0,713 0.616 0OA6 0,513 0.468 0.428 0,3951 0.2%4 0.222 0,154 0.118 0.095 0,049

60 0.998 0.9M4 0.89 0,781 0.702 0.=3 0.578 0.530 0.438 0.4531 0,331 0.260 0.182 0.139 0.133 0,058
100 1.0 0.9D4 0.066 0.92D 0,867 0.834 0.763 0.716 0.6731 0.634 - .488 0.394 0.284 0.221 9.181 0,095
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P, 0,3 "
\ ,I1 I jI

3: 300 4I 5S 6 7 8i9I30i15 20 30 '10 w too

1 01o.150 o.IM 0.075 0,060 0,050 0.0421 0.7 0.033 0.030 o 0.015 o ,01 0. " 00,

2 0.5•0 0.278 0.190 0.144 0.116 o.07 0.083 O.074 0.066 o.o9 0.010 0,0301 0.020 0.01o .1 , ) k..

3 0.657 0.,271 0.20W 0.169 0.143 0.123 0 IOS 0,097 0.087 0 0.090 0.030 o.A220. 0.0180,. _ -

4 0.760 0,478 0.344 0.2%8 0.219 0.18.5 0,60.14106173.1 0,0780.9 0.090030 00.W4 0,032 k
5 0.832 0.5&% 0.409 0.323 0.266 0.22 0,197 0.174 o0.15 0.141 0.096 o.o .4 0.0 a0.030 0.03 ,'-oo o5

6 0.8820 0.6231 0,409 0.374 0,310 0.264 0.231 0,2051 0.384 0.167 0,114 0.087 0.059 0.044 0,0m5 0.038

7 0.918 0.679 2 0.421 0.352 0.302 0.264 0.235 0.211 0.192 .0.132 0. 1 nO,06& 0,051 0.041 0.021

8 0.942 0.7-28' 0.5-10 0.464 0,390 0.337 Q0.96 0-263 0.238 0.236 0. 1191? 0,1114 O.G-7 10.05 0.047 ).024

9 0.960 0.768 0.613 0.504 0.427 0,370 0.32$ 0.291 0.2 .,3 0.2401 0:3161 0,127 0.056 0.066 0.03 0.027

10 0.972 0.603 0.651 0.541 0,461 0,Q1 0.355 0.318 0288 0.263 1%3 1 140 0 .091 00730. 510.030.

15 0.995 0.913 0.794 0.689 0.605 0.537 0.482 0.436 0. 300 0.367 0i ° 1 2W 0110 0 .•17 0..06 1- 0.03

20 0.999 0.961 0.878 0.790 0,710 0.642 0.54 0.&14 0.49,1 0.456 3 0.3•,. 0.126 0.182I 0.140 0.;13 0.08.

30 1.0 0.992 P.958 0.904 0.844 0.783 0.731 0.M-82, v i!2 0.5.99 ',1!; 0.363 0.%.0 0.20230.3•61 0 .0.,

0o 1 ,0 0.999 0.995 0.980 0,2 0. 852 o ,. 3j ,0,,, .,,• .m,0 o,• ,• ooo , 0.395 0-3V4.0.-.0'.0.139 -

60 1.0 1.0 0,998 0.993 0,976 0.954 0.928 0.899 a, l o• ,' • , .1021 0.sO 0.4 j 0 .3 0 ,.'."::

100 1.0 3.0 1.0 1.0 0,99 0.994 0.987 0.978 0.966 t.9.,2l - 0,779. 0.6M4o 0.529 0.452 0.0•60

.•; .- . *', . ,r

P,46 3.. .--.

\ -u 1 2 3115 7 8 10 13520 30 40 s0 300

I dw 0ýý .1r 0 12 0.0 003 0.0721 0,05O5 0O 0.0 0133 0.025 0.017, 0.032- 0.0301 0.005
2 0,760 0.437 0.300) 0.234 0.1901 0,140 0.138 0.121 0.130 0.097' 0.066 0,0.9 0.Ca33 0.025 0.020, 0.030

o0,75 0.576 0.421 0,330 0,271 0.221 0,99 0,176 o,358 .140 .007 0.073 0,09 0.037 0.030 0.015

S 0,38 0,684 0.,518 0.414 0.,344 0.2091 0,34 0.228 0.OW 0.185 0 1"2 0.096 0.06. 0.049 0.039 0.0-)0

0.95'1 C,760 0.598 0.487 0.409 0.3.53 0,300 0-276, 0.2491 0.2126 01,% 0.119 0, 081 0. Pl1 0.049 0,030 .--- ~-
o.,,it 0,822 0.6 0.551 0,469 0.407 0.360 0."X'"I 0.220 I OJ51 ..696 073 0059 0.0V-0.92 ..33 3.._i : , :.i
2 0920.867 0.721 0.60)7 0.522 0.4.% 0.405 -,. N3 ii.Wk .21 0,121 i" 0,131 0.084 0. 068 0.034

8 0.996 0.900 0.767 0.6i6 0.Si0 0.501 0.447 ,,0.3, A 083 0, 2 6 0o.300771 0.039.' -

10 ~ ~ ~ ~ ~ ~ ~ ~ .~ O. ,4 ,3 .3 ,5 051053046 ,3 ,401 0.2 ,1-31 90. , .'O' IOt/O.)

15 1.0 0.087 o. , 0.0 0 o,79,, 0.722 0.o71 o..':,!•l 0.5761 3',X,•oo . . .. !•
20 1,0 0.997 0.914 0.931 0.633 0.6.33 0.8773 V.7"-1 0. " OW Q 0 0 -5i11o2 0j.l7• " 0.-2 u. z2

60 ,,60 08, 0., 7 1 0. 3itG,7 0. 0.I .0

, ' *.'.-.'_..'> ,-

60 1.0 !.0 'Lo 1.0 0.998 0.,993 C. 0 .99,.WS1 1 .O0 S !:5043t

1 0 0 1 . 0 ! . 0 1 . 0 1 . 0 1. 0 1 .o 1, o 0. 9 4 , 3* 7 ,• U , '• ' : L. ., W 0, 8 1 4 1!.8 • 7 I 0.7 6 3 1 0. 3 0 4o ' - - o •• " : - " -- - •

*': € ....
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2~ 3 4 6 9 to10 5 2 30 40 w m

1 0. 1001 0. 350 0.233 0.173 0.140 0.117 0.100 0.087 0.07,8 0.071) 0,047 005o.O2 .0. 1 8 0.014 0.007 ''*".

2 0.910 0.577 0.41210.319 0.2M0 0.23D 0,190 0.167 010 0.13510.tV.)1 0.0 A9 ON 0.035 0.0ON- 0.011 ; '" b - "

3 0.973 0.725 0.547 0.438 0.364 0.311 0.271 0.240 0.216 0.196 0.134 0.101 0.061 :..052 0.041 0."21

4 0.992. 0,821 0.65 0.5,37 0.453 0.391 0.323 0.301 0.277 0.2•32 0.17.1 0.133 0.099 OG0.0 -55 O.0S2.
5 0.997 0.88t 0.7351 0,618 0.5,• 1 0.462 0.4101 0.3'07 0M 0.30.)1 0.2131 0.163 0.111• 0, 1.00t ),8, 0.035 1

6 0.999 0.9 n.5 0 ,7971 0.645 0,595 0 .525 ) 0,469 0.4 23 0.8 0.3531 0.2301 o.19 0. 0.132! 0. 10 1 0.081 0.a-1 n

7 1.0 0.SQ'2 0.M,14 0.7-0 0.652 0.`580j 0.522•l 0.473 0430.3981 0,2491 0.22•1 0.1,Y2• 0. 11-'61 oJ4 0.013 •:,•-'"'%,

8 1.0 OM0.988 1 O. ( ,S5 0.701 0.62'29 0.570 0.5191 0,4771 0.4101 0.3161 0.248 0.172 0.13,210.107 0.0,, W):•.•,

9 1.0 0979 0,908 o.,F23 0,743 0.673 0.613 0,5I 0.517 0.4Y) 0.3A)0 ,.*274 0.191 0.147 0.119 0.061e:• "'* --•'••'

10 1.0 0.987 0. "9 0. S&1 0.779 0.711 0061 0.599 0.5M5 0.56 1 ,0.380 0.300 0.210 0,162 0.,132 0.OGS,•,/,• ,,
15 1.0 0.998 0.OSi 0,941 0,806 0.84-1 0,794 0.747 0.703 0, M, P.5•12 0,414 O.,209S 0.233 0,191 0. 100 •••••

20 1.0 1,0 0.995 0.979 0.951 0.916 0.878 0.840 O.,02 0.7166 0.610 0.5W 0.376 0.297 0,246 0.131

30 1.0 1.0 1.6 0.997 0.989 0.976 0.958 0.936 0.912 0.8S7 0.7Q2 '0.657 0.508 0.41110.345 0.190

50 1.0 1.0 1.0 1.0 0.999 0.998 0.994 0.989 0.983 0.973 o.SM) 0.831 0.093 0.56610.506 0.296.

60 1.0 1.0 1.0 1.0 1.0 0.999 0.998 0.996 0.992 0.987 0.943 0882 0.757 o.65810.51 0.344 ' " z

100 1,0 1,0 1.0" 1.0 1,0 1.0 1,0 1,0 1.0 0.959 0.9902 0.972 0.906 1.u75 .

I Iv

L L-4 5 10 Is 20 0 0 w t o

1 0.900 0.450 0.300 0.225 0.180 0.150 0.12 0.112 0.100 0.090 0.060 e.045 0,030 0.022 0.018 o.x . .....

2 0.990 0.698 0.;510 0.399 0.328 6.278 0.241 0.212 0.190 0.172 0.116 0.088 0.050 0.044 0.036 0.01S . '.-

S3 0.999 0. 0. &M 0.6535 0.449 0.386 0.338 0.301 0. 71 0.246 0.169 0.129 0.087 0.6O6 0.0w 0.027%-,N

4 1.0 0,908 0.759 0.639 0.548 0.478 0.4-3 0.380 0.344 0.314 0.219 0.108 0.115 0.087 0.070 0.C36 .. -

5 1.0 0.950 0.832 0.720 0.•29 0.556 u.497 0.449 0.410 0.376 0.26C 0.200 0.141 0.108 0.A7 0.0:4 "-' ,

6 1.0 0.972 0.882 0.783 0.636 0.623 0.562 0.511 0.469 0.432 0.310 0.241 0,167 0.128 0.103 0.053

7 1.0 0.9O5 0.918 0.832 0.751 0.67o) 0.618 0W 0. M, 0.4,3 0.3,52) 0.276 0.192 0.147 0.119 o. M)

8 1.0 0,992 0.942 0.370 0.796 0.728 0,607 0.615 0.570 0.530 0.390 0.308 0.216 0.166 0.135 0.0)70 .. '

9 1.0 0,995 0.•0 0.899 0.832 0.7 (3 0.71O 0.652 0.613 0.572 0.427 0.339 0.240 0.185 0,151 0,078 ' " " '

10 1.0 0.097 0.972 0.913 0. X3 0.803 0.747 0.C07 0.651 0.611 0.461 0.369 0.2W3 0'4 0.16C 00, 0, -.-

15 1.0 1.0 0.995 0.978 0.949 0.913 0.873 0.833 0.7941 0.757 0.6O5 0.499 0.367 0.269) 0.23b 0.1-27

20 1.0 1.0 0.909 O.994 0.981 0.SG1 0.936 0.1;C( 0.67S 0.84S 0.710 0.602 0.456 0.366 0.305 0.165 L
30 1.0 1.0 1.0 1.0 0.997 O.M.2 0.984 0.972 0.958 0.941 0.644 0.749 0..99 0.495 0.42C 0.. , -

60 1.0 1.0 1.0 1.0 1.0 O.999 0.998 0.997 0..35 0.991 0.955 0.930 0.782 0.679 0.W07

60 1.0 1.0 1.0 1.0 1,0 ,0 0.999 0.9 0.98 0.997 0.975 0.937 0.839 0.745 0.6(4I o.411i

100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.998 0.,990 0.952 0.697 0.831 o.,.5 LOD

Al,
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APPEN4DIX 2

TABLES FOR DETERMINING THE RELATIVE EXPECTATION OF THE NUMBER OF
DESTROYED TARGETS WITH UNIFORM TARGET DISTRIBUTION AND SUBSEQUENT
ANALYSIS OF THE RESULT OF EACH ATTACK, AND REAIMING

PI= 0.1

N, 3 4 7 8 9 0 Is 21 30~ 40 5

1 0.100It . i
2 0.190 0.100I

3 0,271 0.149 0.100 I
5 0.410 0.245 0.167 0.125 0.100 43'j(

8 0.469 0.291 0.200 0.150 0.100 0.100
7 0.522 0.336 0. 232 0.175 0. 14(. 0.117 0,100

8 0.570 0,378 0.%265 0.200 0.1160 0.133 0,114 0.100
9 0.613 0.410 0.2197 10,225 0,180 0.150 0.129 0.112 0. 10D

10 0.651 0.459 0.328 0.250 0.200 0.167 0.143 0. 125 0.111 0.100 .r.~.-

15 0.794 0.M23 0.476 I0.371 0.299 0.2W0 0.214 0.187 45.161 '0.350 0.100
20 0.87 0.743 0.6013 0.486 0.397 0.333 0.236 0,250 1 .222 0.200 0.133 0.100 -

0.998 0.87 I0,783 0.679 0.$7S 0.494 0. 4217 0.375 0.333 0.300 0.200 0.150 0.1001
50 0.995 (198 0.950 0.900 0,834 0.759 0.683 0.613 0.551 0.500 0.33 0.2501 0,1167 0.1001
60 0.9%8 0.992' 0.9777 0,948 0.905 0.848 0.783 0.716 0.652 0.594 0.400 0.3100 0.20W, 0.l1:m . 100
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'I- 2- 3 4 = 6 7 8 9 10 15 2 D30 40 NI)

2 0.510 0.300l* - 4

3 0,057 0.436 0,30L#.4.
4 0.760 0,551 0,397 0.300

5 0,832 0.852 0.489 0,374 0,300

8 0,882 0.731 0.573 0.447 0.360 0.3M0

7 0,918 0.794 0,647 0,517 0.419 0.3-50 0.300

8 0,942 0.8414 0.712 0.532 0.477 0.400 0,343 0.300 .*.-.$

9 0.96 0.862 0.767 0,643 U.W3 0.4-19 0.368 0.337 0.3001

10 0.972 0.911 0.813 0,698 0,588 0.498 0.428 0.373 0.333 0.300

15 0.995 0.9W0 0.944 0.884 0,804 0.717 0.633 0.5130 0.500 0.450 0.300

2d 0.999 0.900G 0.985 0.062 o.gzn 0.866 0.798 0. 7-2 0.639 0.59 0.40 0.30\N 1
30 1,0 0.90.9 0.999 0,997 0,992 0.980 0.960 0,030 0.890 0,842 0,599 0,400 0,30D r .

50 1.0 1,0 1.0 1,0 0,99 0.9%. 0.999 0.99 0.997 0.903 0,914 0.7415 0,500 0,MO

60 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.099 0.9w9 0.999 0.975 0.868 0.1300 0.450 0.300

A 0,5

2 .3 0 i 1) 30140' s0

2 0.750 0.500.4
-4 3 0,875 0,6870,0

4 0370.8 22054 0.500

4 0.943 0.917 0.844 0,90.5 970,0

5 0.99 0.691 0.760 0,61. 0.500 I

7 0,992 0.065 0.901 0.801 0. V86 0.5812 o,.SW0

8 0.998 0.9SO 0.939 0.863 0.763 0.6W0 0. 57,1 0.500oo.'
9 0.9)38 0,99 0.9M3 O.90 0.827 0.731 0.610 0.562 0.50 ..

10 0.999 0.9 ,7 .40087074 0.702 0.621 0.5515 0,500

Is 1.0 0,999 0.1418 0.995 0.984 0.961 4).0223 0.870 0.808 0.742 0.500 L %

20 1.0 1,0 0.999 0.999 0.M9 0.995 0.988 0.973 0,948 0.912 0.867 0.500

30 1,0 1,0 1.0 0.999 0.99 0,99 0.099 0,99 0.999 0.997 0,928 0.74S 0.500
50 10 10 10 10 10 1 0 00 10 1. ., 1.0 0.994 0.8~29 0,500

a0 1.0 1.0 1.0 1,0 1.0 2.0 11.0 1.0 1.0 1.0 1,0 1.0 0.919 0,750 0.500 _ ____

40 ~~" 1,0 1,0. , , .
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F,.o - - " - -a-r•

L i ,i, =•t , -.. _. . ..

1. 2 3 48 9 10 Is z 3m 40 S.O-" _ -'-p, . ,...--,.[.: '- •:KJ

1 0,700 "

2 0.910 0.700

3 0.973 0.879 0.700

4 0.992 0.94 0.853 0.700 t. "

5 0.998 0.933 0.935 0.833 0.700

6 0.909 0.04 0.973 0.916 0.86 0.700
7 1.0 o...A: 0.9S 0.96 o.M o.SD 0.70 NO%'L'
3 1,0 1.0 09 0.960 0.948 0.8810 0. 0700 -Z!---

9 1.0 1.0 0,"- 0.992 o,974 0,933 0,Sff 0.782 0.700 ... •:-•.'

is 1,0 1.o 1.0 1.0 1.0 0,999 0.997 0.991 0.978 0.V.a 0.700 .•...-?

W . ~ 1.0 1.0 1.0 1.0 1.0 !1.0 0.999 0,9%8 0.907 0,700••::•.••'''',-._S1.0 3.0

30 1.0 3. .0 1.0 . 1. 1.1. 1. M 0.10.0

50 1.0 1,0 1.0 1.0 1.0 1.0 i.0 Oi" 0.700

60 1.0 1.0 1.0 1.0 3,0 1.0 3.0 1.0 1.0 1.0 1.0 1,0 .0 0.9S4 0.;03

0.9.P•, -0,9- ,.?,,,•

1 3 4 ,5 6 7 9 10 is Zo 30 40 50

2 0.990 0900

3 0.999 0.983 0.900

4 1.0 0.996 0.981 0.W0-

5 1.0 1.0 09.07 0,77 0.9000

6 1.0 1.0 1.0 09,77 0.974 0.90

7 1.0 1.0 1.0 0.999 0.994 0.070 o.900

8 1.0 1.0 1.0 1.0 0.999 0.993 0.967 0.900

9 1.0 1.0 o .0 . .0 1.0 0.998 0.981 0.964 0.900

10 1.0 1.0 1.C 1.0 1.0 1.0 0.999 0.98n 0.961 0.900
15 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.Ow 0o.9 w'o°- •-

20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1,0 1.0 1.0 0.999 0.900 .. .. ....

30 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.900 .. *..,*-.

80 1.0 1.0 1.0 1,0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.900 ,- .-*.-." '

00 1.0 1.0 1.0 1.0 1,0 1.0 1.0 1.0 1 .0 1.0 1.0 1.0 1.0 1.0 0.9.0
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