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of airframe nonlinear dynamics, control points and methods and measurement

systems. The bomb model is general enough for a variety of dive-bomb angles,

release altitudes and release speeds. The circular error probable (CEP) at

impact is chosen as a measure of weapon delivery performance, and a technique

is developed for relating the effects of flight control parameters, airfre.me

dynamics, measurement errors and gust disturbances to this measure by using

the system model. Demonstration analysis is performed to show how to identify

critical system parameters with regard to the delivery of an iron bomb and to
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SECTION I

INTRODUCTION

For aircraft weapon systems which deliver unguided armament (guns,
rockets, bombs), small improvements in delivery accuracy can result in
substantial reductions of weapon dispersion C 1. The net result is a reduced
number of sorties required per target and hence less exposure of aircraft to
enemy defenses. Consequently, the analysis of precision weapon delivery
has become an area of extreme interest. Two approaches to the problem
detailed simulation of the tactical situation and the second is to investigate

the effects of initial condition errors, release point errors, and gust dis-
turbance errors by propagating them along the weapons trajectories to im-
pact. For the latter approach, a method of analysis is needed which con-
siders the effects of flight control parameters, airframe dynamics, measure-
ment errors and gust disturbances on the release parazmeters and then
propagates these release errors to impact to obtain a meaningful measure
of weapon system performance.

Such an analysis tool can then be used in connection with the former
approach to establish critical measurement requirements as well as to
eva.luate the effects of various control points and methods prior to larg'ý-
scale simulation or flight tests.

In this study, a dyiamic precision weapon delivery system model, a
method of performance analysis, and a set of computer programns are devel-
oped to evaluate effects of various process parameters on overall weapon
system performance, with particular emphasis on flight control parameters,
airframe dynamics, measurement points and errors, and gust environments.
The model of the process assumes precision control without considering the
dynamics of the operator as a control element. The controller is in the form
of an optimal controller consisting of an optimal estimator and optimal feed-
back gains. The model is general enough, however, to consider exis'ting
controllers as well as the operator in the loop. For the latter case (i. e. ,
pilot weapon delivery) mathematical models of the operator have to be in-
corporated into the present model [2, 3, 4, 5]. Since the operator tracking
error is one of the major contributors to impact dispersion, the piloted
delivery deserves separate attention. The model is also flexible enough for
considering alternate airframe dynamics/control points /measurement system
combinations. The developed armament model is for the delivery of iron
bombs. It is sufficiently general to treat a variety of dive angles and release
altitudes and bomb characteristics. The delivery of other weapons can be
considered also by minor modifications.

The impact covariance and the circular error probable (CEP) are used "-
as measures of delivery performance.

The mpat cvaranceandthecirularerrr pobale (E?)arease



A simplified variance analysis is given in [5] by ignoring cross-s
covariance terms. The eiimination of the cross-variance terms was pur-
sued in [2] by choosing random variables which• are uncorrelated, .:

In this work the full impact covariance matrix is developed and retained
in the analysis using the complete dynganical model. The concepts of half-
probability circle and circular error probable are extended to half -probability

k ball and spherical error probable. These are thought to be more meaningful
performance measures in air-to-air delivery.

The complete report is divided into three volumes. Volume I contains the
works on the weapon delivery system modeling and optimization. Volume II
documents the programs which implement the analysis developed in Volume 1.
Volume III contains a demonstration example to illustrate how these programs
are used.

In this volume th•e presentation begins with a brief description of the wea-
pondelivery process and the approach taken for the performance analysis of •
the overall system. In addition, the synthesis of the optimal weapi:n delivery "
controller is outlined and the overall organization of the analysis program is :
given. In Section III the development of a mathematical model for the six-
degree- of -freedom motion of aircraft and weapon is presented. In Section IV •
the development of the total force and moment system for the aircraft and
weapon moving in an unsteady airmass is given. The wind model is developed
in that section also. The development of the measurement system model is • •
presented in Section V. The nonlinear observation geometry as well as sensor
dynamics are considerged. In Section VI the process of linearization is treated. •
The transformation of the perturbation states is presented in that section also.

The development of the nominal states and parameters (trimming) for the :
linearization is discussed in Section VII. The methods of algebraic as well ' •
as the autopilot trim are presented. The performance measure development • •
for the analysis and design of the weapon delivery controller is given in • ;
Section VIII. The circular error probable performance index is generalized .
to the spherical error probable for the air-to-air weapon delivery. In Sec- "
tion IX a method for nonstationary optimal weapon delivery controller design, .
is presented. Both deterministic and stochastic disturbances are considered. -
This is followed by the presentation of a stationary controller design method
in Section X. The iterative solution~s of the Lyapunov as well as the Riccati •
equations are given in that section also. Section XI summarizes the analysis •
and modeling work and lists recommendations for additional areas of study
and extensions.

The reduced controller /fixed-form) design method is given in Appen-
dix L. The development Of the fire control equations for the nominal release
time is given in Appendix If.

2 • •
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SECTION II

PERFORMANCE ANALYSIS AND OPTIMAL DESIGN
OF WEAPON DELIVERY PROCESSES

This section provides an overview of the approach taken for the system
analysis and the optimal design of weapon delivery processes. First, a
brief description of the air-to-ground weapon delivery processes is pre-
sented; then the mathematical models of the subsystems and the overall
delivery system are described. Subsequently the optimal perturbation
control of the delivery model is discussed, and finally, the overall organi-
zation of the "Armament Delivery Analysis Programming System (ADAPS)"
is given.

AIR-TO-GROUND DELIVERY PROCESSES

Air-to-ground delivery is currently accomplished with a limited number
of well-defined attack maneuvers, each designed for a particular tactical situ-
ation (i. e., for given target type and defenses, aircraft type, armaments and
electronic aids). 2igure 1 shows some of the basic dive-bombing trajectories
used mostly for manual (iron-sight) delivery [7]. In this delivery technique,
the pilot flies a fairly consistent preplanned flight path which brings the air-

craft to an initially set release condition, e.g., release attitude, ground
speed and dive angle. The weapon is released when these three conditions
are satisfied simultaneously in the ideal cases and the target passes through
the center of a depressed reticle sight. The depressed reticle sight display
system is used most often for target tracking during conventional air-to-
ground weapon delivery.

The aim dot (pippe:) of the reticle image, which the pilot attempts to
position onto the target by steering the aircraft, is "depressed" below the
velocity vector of the aircraft as shown in Figure 2 in order to display the i
nominal bomb impact point corresponding to the preselected nominal release
condition.

The setting of the sight angle is determined from the nominal trajectory
line-of-sight angle, Vlos. The dight depression angle, In, is the angle of
the line of sight below the fuselage line (x-axis) of the aircraft. The pilot
determines from tabulated data the correct fixed sight depression angle for
the selected pickle (release) conditions, and adjusts the sight depression
mecharism to this setting. He dives towards the target in such a way as to
achieve the nominal release conditions at the time the pipper is on the target. i

When using fire control computers, achieving the same accurate dive
conditions is not necessary. Instead, the target is held on the center of an
"undepressed" reticle sight throughout the dive, and the weapon s.ystem is
pickled at the deaired release altitude. This initiates the weapon system com-
puter for automatic release.

3



STRAIGHT
PATH DIVE

ON C-DIVEI

ON DIVE V

CONWVE CENT DIVEI

i DESIRED RELEASE POINT

'LOSTR

DOP ()

STARGET
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The automatic release capability increases the number of possible de-
livery maneuvers. Figure 3 shows a typical example, tle "high-approach
dive-toss" maneuver with automatic release E 8]. After target acquisition,
this maneuver may be broken into four phases:

* Dive --- The aircraft is aligned with .he target and flown
to a desired release altitude, ground speed, and dive angle.
The automatic weapon release computer set (WRCS) is
(pickled at the desired altitude) for starting the pull-up.
This initiates the weapons system computer for auto-
matic release.

• Pull-up -- Fcllowing the release or pickle command, a
constant-g pull-up is initiated. This serves the obvious
purpose of reducing exposure to enemy defenses and also
provides for clean aircraft-bomb separation. With fire
control, weapon release will occur automatically during the
pull- up maneuver.

0 Release Transient -- Weapons are commonly released fromtheir mounting racks with explosive charges that inject them

into the airflow near wings or fuselage with uncertain linear
and angular velocities. The resulting short-lived but poorly
understood transients establish initial conditions for the
weapon's free fall.

• Weapon Free-Fall -- The weapon follows a ballistic trajectory
toward the target. This may be single-stage, as for iron
bombs, or multi-stage, as for dispenser-type weapons. Thiswork deals primarily with free-falling weapons, subject only

to aerodynamic and gravity forces. The analysis program,
however, is sufficiently general to accept nonballistic tra-
jectories for, say, guided bombs or missiles.

While the dive-toss is a specialized attack maneuver, it can easily be
parameterized with respect to acquisition altitude, dive angle, speed,
release altitude and pull-up g's to generate various other maneuvers. For
example, letting the dive angle y vanish and executing a zero-g increment

pull-up (and depressing the sight reticle appropriately) leads to the standard
"low-level approach and laydown" maneuver. Similarly, y = 0 with positive-g
pull-up and automatic weapon release gives a "loft bombing" maneuver.

Because of this inherent generality, the discussions to follow are built
around the dive-toss maneuver as a typical nominal trajectory.

•. I-
g _
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MATHEMATICAL MODELS,

The weapon delivery processes in this work are treated as nonlinear
stochastic phenomena. This is both realistic and computationally attractive.
For each phase of the attack maneuver, the process is linearized. CEP per-
formance is evaluated with standard covariance analyses, and optimization
is accomplished with linear-quadratic control theory. No repeated runs or
Monte Carlo methods are required. Discussed below are the models appli-
cable to each trajectory phase -- dive, pull-up, release transient, and weapon

free-fall.

Dive and Pull-up Phases

The mathematical model for the dive and pull-up phases includes aircraft
equations of motion, measurement equations with measurement noises and
biases, and wind model equations for gusts and mean winds. The model also
includes simple fire control equations which define the nominal pull-up and
release times, The overall system contains both linear and nonlinear dyna-
mics (Figure 4).

Airframe Model -- To handle arbitrary trajectories, various control points,
and methods, the aircraft model is described by a set of nonlinear, time-
varying differential equations of the form

p f(x, wW,V)

where

x = state vector of the aircraftp
YT = vector of effective thrust inputs to the aircraft

Y = vector of effective surface deflection inputs to the aircraft

w = vector of disturbances (gusts) on the aircraft

v = vector of deterministic inputs (mean winds) to the
aircraft

Actuator and Thrust System Model -- To allow variations in the effectiveness
of thrust and aerodynamic L;urfaces, the actuator and thrust system outputs
are assumed to be nonlinear functions of their states.

The actuator and thrust dynamics are modeled as follows:

=Faxa + Gaua + K78 Ym

XT =FTXT+GTuT+KT ym

T T T uT yT

-----------------------------------------
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with nonlinear outputs

YT= hT (X

where eI

x = actuator system state vector

xT thrust system st~ate vector

effective aerodynamic surface deflection output vector

= effective thrust magnitude and deflection output vector

K K are arbitrary feedback gains and y is the measured
V', VTT signals as modeled below.

Measurement System Model -- To allow various measurement points and
methods, the measurement system model is represented by a set of linear
differential equations (i e., sensor dynamics) with linear and nonlinear in-
puts. The nonlinear inputs correspond to the observation geometry of the
state measurements

F x +G +G y + y +G
m m m mp pm mp pm mT Tm m8 Yam

+ Gm m

=D My + D "Ye+D

where

x = measurement system state vector
m

y = sensed signal vector for aircraft statespm
Yp= sensed signal vector for aircraft state derivatives

sensed signal vector for the thrust magnitude and thrust
Y Ti= deflection states

S6m =sensed signal vector for the actuator states

nm = white noise input vector -' "he measurement system

Sm = measured signalsYmI



II

Y e= output vector from the bias error process

i•a = additive, white measurement noise

The sensed signal vectors for the aircraft states are a-3sumed to be non-
linear (i.e., observation geometry) functions of the states and its derivatives:

yh h(x x)
pm p p

Ypm =h (x)
pm p

The sensed signal vectors for the thrust and actuator states are assumed
to be linear functions of the thrust and actuator states

YTm HTm XT

V =H x
86Ma 6m

The measurement system model not only. contains those measurements i
for controlling the aircraft in flight (such as gyro and accelerometer outputs

used for augmenting pilot control and for flexure control), but also those mea-
surements necessary to estimate the states for the fire control equations
(such as radar range, azimuth and elevation, and altimeter outputs to deter- i
mine time of weapons release). Error sources in the measurement system
are also included. Examples of these are gyro biases, accelerometer noise
due to engine vibrations, and radar angle errors due to misalignment.

Linear Equations -- For small perturbation analysis the nonlinear part of the
overall system (i. e., the nonlinear equations of motion, the effective input
equations and the observation equations) is linearized about the nominal
flight path to the form

6i f6 + bP +Y - YT + Y + 6f +~.p£ p j,ý BT6Y pav

Sh

: iEpm

6y pm =( )6X± (.) 8

j 10



The measurement perturbation equations become

dim = F ax + G ay. +0 y + 3
m m 4 Yp,.n G mp aYpm + GmT 6YTm

+ G ay + Gm I

Letting
Bf B •f Bf f '

F F =-- G =Bf GFp p P po by 'pTp P

G H p H
pw = pv - Tp, = T--'- x8=Bw a7€ axT a x i

AT

"' ' pm "•x ' pm ax ýk'
xp P P

the state perturbation equations become

Ok F X + Fp F ++G H Ox w +G v

Ox - FmXm + (G H 6x + Gmp Hpm) 6Xp+a Hpmbip

+0 H mSmpm S m
+ GT HTm 6XT + G H 5x + Gm .

The wind gust model with the Dryden spectrum is described by

w F(t) x +G ww w w

w =H x
wp w pP

where

xw gust filter state

w = gust filter output

11w = white noise input to the filter

The measurement bias error vector xe(t) is modeled as a differential
equation with a long time constant so that it remains approximately constant
over the time of the weapon delivery maneuver. That is
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F Fx +GIn
e e e e e

y H1 xe em e

x = bias error vector state
e

Ye=error system output

In =white noise input to error filter

The matrix Ge is selected so that the steady-state rms values of xe are
equal to the rms biases.

Defining

x = codlxm x 8 xT xp, xw Xle

u = col [6 T

=i col~ LnoTia V Te

the augmented mathematical model is obtained in the form of

I-'(t)] •=F(t)x + u(t)u + G- (•) + GI
v T

y= M(t)x + Drn

where the matrices F, Gu, G;, Gni, M and D are given as follows:

"- Fm GmsHsm GMTHTm GmpHpm +GmpIpm 1 0

Ga K 8Mm F8 0 0 0 G8K8Dme Hem

F= GTKTM 0 FT 0 0 GTTTDmeHem

0 Gp6H8p GpTHTp Fp GpwHwp 0

0 0 0 0 Fw 0

0 0 0 0 0 Fe

i 12
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F0  0 ~ 0 G H 0 0K o0nmp pm-
0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 Fm 0 0 0

GO 0 G GK0Dm 0 0

G 0 GTG =0 ,G= 0 G6ýKyTD 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 G

M0 0M O O H 0,O 0 0] G

e

M E Mm 0 0 0 0 DmeHem D =[0 Dm 0 0]
In me em m

This finishes the dive phase of the modeling. Figure 4 shows the overall
system linearized state diagranrT.

Release Phase

For the automatic release, E.4uations predicting the nominal pull-up j
time and the release time are needed. They are in the form of

i
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tp =htp XNt) 1, t < tp

tr htr [X(t p), x(t) 1, t p <t<tr

where

tp = nominal pull-up time

tr = nominal time of weapon releasetr

x = statr vector of the nonlinear model

These are linearized at the nominal release time t = tr yielding

t

6t Wt Ext) I+(- [)6x(tr)Ir 6X(t ) axp
where prime indicates the transpose.

If the estimate of perturbation state 6x is available instead of 6x itself :1
then in the above equations Ox is replaced by 81. These equations define the
timing errors in the release time. Computation delay and rack relay delays
contribute additional timing errors. These are modeled as independent addi-
tive random variables.

Release Transient Phase

The release transient phase is defined here as the period from the actual
release time of bomb to the time when it leaves the region of the wings. Al-
though this phase is not modeled in detail in this work, it has an important
influence on the weapon delivery performance. The records in some cases
show that when the bomb is ejected from the wing rack, the wing moves up
(flexure) while the bomb follows a trajectory without safe separation. Because
of the inability to predict bomb a--rodynamics and stability in the region of
the wing, experimental data are used for the description of the release

transient phase. At the present time, the U. S. Air Force has a program
called "SEEK EAGLE" C9, 10], which is both analytically and experimentally
studying the release problem. In this work, the release transient phase is
taken into account by introducing at release an independent, additive, stochastic,
initial-condition error.

14



The state of bomb at release is described by

xb = hb (Xp)

The perturbation state of bomb at nominal release is then given by

6x ) b Hb6x (tr)

where

Shb
H-

Nb ax t=tr

The state of bomb immediately following release transient is given by

axb(tr+) = H [6xp(tr)+fr 6tr]+ H r

where

f = ;(tr)r =p

6tr= release time errorr

Hr = release transient error input matrix

r = release transient error

Weapon Free-Fall Phase

In evaluating weapon delivery performance, translating the dispersion
errors at bomb release to the impact of the bomb on the target and introducing
errors which occur during the bomb trajectory is necessary. Two possibili-
ties exist for satisfying this requirement -- bomb taLles or trajectory compu-
tation. As trajectory computation allows treatment oi various weapons and
permits introduction of disturbances such as winds and uncertain bomb param-
eters during the trajectory, this method has been chosen in this work.

The bomb model is described by

b= f(xb, bD u, w,v)

where

15



xb = state vector of the bomb

u = input vector due to bomb imperfections

w = vector of disturbances (gusts) on the bomb

v = vector of deterministic inputs (mean winds) to the bomb

For small-perturbation analysis, the nonlinear equations are linearized
about the nominal free-fall flight path. This yields

xb Fb(t) xb + Fb(t) xb + Gbw(t) w + Gbv + Gu

The perturbation state of bomb at the impact on the horizontal plane is

given by

5(tf) = 6 x(tf) + fb(tf) Otf

where
6 x(tf) = the perturbation state of bomb at the nominal impact tire tf

fb(tf) = xb (tf)

and
6 h(tf)

= H(tf)

h, being the altitude state component of the bomb.

After having modeled the delivery process from the target acquisition to
the impact, various performance measures can be defined for the analysis
and design of the delivery system as presented in the following subsection.

OPTIMAL CONTROL OF PERTURBATION MODELS

The mathematical mrdels just discussed provide small perturbation
descriptions of the weapon delivery process. They are incomplete, however,
in that the control variables ub and uT for the dive and pull-up phases of the
trajectory are undefined. Adding arbitrary (linear) controllers to the mathe-
matical model is a simple matter, and the developed aircraft model provided
this option. Its utility lies in quick performance evaluations of all kinds of
specific bomb systems and control schemes.

Tools are needed for evaluating intrinsic properties of various constraint
configurations to answer questions such as;

16



0 For a fixed complement of sensors and a given set of control
inputs (control points), what minimum CEP is attainable within
these constraints?

0 What maximum CEP improvements does adding a single sensor
to the above configuration give?

0 What performance penalty exists for replacing a sensor with a
noisier, but cheaper, version?

These questions call for performance analyses of optimal controllers.

A large number of possible optimal control problems can be formulated
for the weapon delivery process -- for example, computing optimal attack
trajectories. This has already been avoided by saying that these are largely
predetermined by the tactical situation. Another problem is that of optimallycontrolling velocity deviations and target deviations from the reticle of the

bomb sight during the dive phase of attack, followed either by an open-loop
or optimally controlled pull-up. Assuming the steady-state operation, the
performance index for this formulation takes the form

2 2 2J= E qqll V +q 3 3 I+ u' Ru]

where

8V = velocity deviation from nominal

Ch = vertical deviation of target from center of reticle

C = lateral deviation of target from center of reticle

qll, q2 2 , q 3 3 ' R = weighting coefficients and prime indicates the
transpose

The solution mimics a pilot's own efforts to hold target alignment and
velocity during his dive. The weights qii, R can be chosen via the iterative
methods of quadratic equivalence [113

Still another optimization problem which is followed in this work involves
direct minimization of the HPA. This can be done with a performance index
obtained in the following manner.

Stri.ctly speaking, HPA is the area of a 0. 5 probability circle centered
at the mean impact point; CEP is its radius. For normal distributions with
small cross correlations, this area can be closely approximated by

= 22HPA =qa (tf)+ qy U2(tf)] ,

where ax and !y are downrange and crossrange standard deviations, and qx,

qy are weightings which depend on the ratio cx/ ay.
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This expression, in turn, can be written in terms of the bomb release
covariance matrix X(tr+) using the perturbance equations of the bomb

HPA ctr(XWt ) Q + Xi~
r+ r Off

where

Qr = propagation weighting matrix for release errors

Qf = propagation weighting matrix for the forced response

Xf = impact covariance response due to wind gusts.

tr = trace operator I
The expression given above shows that, with this performance measure,

performance analysis of a weapon delivery process reduced to standard linear
covariance analysis.

tt
To directly minimize HPA, therefore, the performance index should be

=HPA + tr (u' R udtJ2

Note that this is a performance index with the terminal cost, penalizing
errors at the nominal release time tr. This means that the optimal controller
will be time varying even if the system dynamics are stationary. This makes
for expensive analysis. If stationary dynamics are adequate, modifying the
performance index such that it yields a stationary controller is desirable.
A s teady-state version of Jj does just that:

J = HPA + tr (R U]

where

U E (uu']

An important distinction exists between the optimization problems based
on J 2 and J and the optimization problem based on the earlier index J
Solutions of'the J 1 problem depend on the type of sight hi the aircraft --
whether it is fixed, or drift stabilized, or pitch stabilized, etc. Solutions of
the J 2 , J 3 problems, on the other hand, completely bypass the sighting sys-
tem. They depend only on the basic constraint configuration, i. e., on the
signals available for measurement and on the control points available for
manipulation.

I-• I8
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OVERALL ORGANIZATION OF ADAPS

The various subroutines implementing the above model provide the capa-
city to analyze weapon delivery as a general linear time-varying, stochastic
process or to analyze it as a much simplified process that is stationary during
each of its phases. The one extreme offers fidelity to the physical situation,
while the other offers low computing costs and the possibility of many analysis
iterations. By using the program organization shown in Figure 5, both ex-
tremes (as well as the many possibilities in between) are readily attainable.
In this organization, the indiv.dual subroutines are accessible from a main
program with which they share common memory. They communicate with
each other within the groups indicated. Optional inputs are provided to cover
the various special possibilities discussed above. A detailed description of
the overall organization of ADAPS is presented in the Section II of Volume I.

INMUTS

AIRCRAFT PAAMETERSMTLI ATTACK MANEUVER

TYPE OF OPTIMIZATION SIMULATOR AND UNMEARIZER

NOLIEA MASREEN NNLNER IRRAT EAUEMENT WEPO
AIRCRAFT SYTE WEPN LNAIAIN UERZATION GI~TOIRINI ~TIN SUE:OUTINE]..m.. !1 m [ m

"ARAFTAERO TRIM WEAPON WEAPON WINSYSTE�M AEAPU
AND THRUST | CONTROLLER AERO RELEASE I
SUBROUTINES I SUBROUTINE I SUBROUTINE L .....SUBROUTINE [SL Jl L L------

T LNEAR DATA LINEAR DATA IN , MRTS

FTMAL GINUS FO ICAT FOR WEAPON
WEIFGW TSA
IUITIAL COVARANCE A)F

A R

OPTIMIZER_ _ _

AU IIR CONTRIOLLERlt ESTIMT OR REPN'R OUTE EPONS

SUBROUTINEOCARARAACC

O.LAS TOVRtAM.E[ I.RESPONSE COAI~lC

• WIGHINGMATIGHINMA K]UTIOI

Figure 5. Overall Organization of Armament Delivery Analysis

Programming System (ADAPS)
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A typical analysis proceeds as follows:

SI - Linear Data Generation

1. Read input data for attack maneuver, read nonlinear air-
craft aerodynamics.

2. Trim aircraft, and fly it to obtain nominal trajectory up to
nominal release altitude.

3. Linearize the aircraft equations of motion numerically at

specified time points during flight. Write on tape.

4. Read input data for nonlinear weapon aerodynamics.

5. Using the release conditions, generate free-fall trajectory
by the nonlinear weapon model.

6. Linearize the weapon equations of motion numerically at
specified time points along the free-fall trajectory, write
on tape.

*• I1 - Optimization

1. Generate the propagation weighting matrix using linear
weapon data.

2. Input control points, measurement points, measurement
variances.

3. Choose the type of optimization, and obtain controller gains,

estimator gains, total system covariance at releaae.

0* MI - Performance Evaluation

1. Propagate the release covariance to impact using performance
evaluator.

2. Compute impact covariance matrix, CEP performance
measure and the variance contribution matrix.

This defines one complete cycle of the use of ADAPS. Each part can be
used independently of the others, for different needs. The main program itself
is largely at the discretion of the user, to be organized as best suits a parti-
cular analysis problem.
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SECTION III

DEVELOPMENT OF A NONLINEAR DYNAMICAL MODEL
FOR RIGID-BODY MOTIONS

The ADAPS is a six-degree-of-freedom optimal delivery control and
aircraft-weapon simulation programming system. It is based on the THRUST
program developed in Honeywell [12).

The equations of motion in ADAPS are referenced to a flat nonrotating
earth. The forces and moments acting on the vehicle and the weapons -,e
generated by gravity, aerodynamic effects, and thrust. The aerody
coefficients are input in tabular form as functions of Mach number, anbe
of attack, sideslip angle, etc. The aerodynamic force and moment sub-
routines allow the description of the vehicle and weapon characteristics
over a wide range of flight conditions.

ADAPS has three running phases: (I) modeling and linearization phase;
(II) controller optimization phese; and (III) performance evaluation phase.
Briefly, phase I consists of generating a prescribed steady trajectory of an
aircraft weapon system and its variational equations starting from a given
initial condition to a weapon release point, then continuing to generate six-
degree-of-freedom free-fall trajectories of a weapon and its variational
equations until a prescribed target altitude is reached. The coeffinients
of the variational equations are obtained by a simple numerical differentia-
tion process.

In the following, analyses pertaining to phase I of ADAPS operation are
given.

DEVELOPMENT OF THE DIFFERENTIAL EQUATIONS OF MOTION

For completeness, this subsection presents the derivation of the equation
of motion of an airplane and a weapon [13, 14, 15, 16, 17]. These equations
of motion are implemented in subroutine DYNK. Since they are unaffected by
the interchangeable subroutines describing alternate airframe and weapon
aerodynamics, they are applicable to both aircraft and weapon. In the follow-
ing, aircraft or weapon will be referred to as a body or a rigid body.

Reference Frames

The coordinates necessary to specify the six degrees of freedom of a
rigid body are defined by means of two right-handed reference frames, the
x , y , z frame, or earth-fixed frame, and the x, y, z frame, or moving
Am" or %ody frame. They are defined as follows:
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* Earth-Fixed Frame -

0 = origin, fixed at the target

xe-axis is hcrizontal, in the vertical plane containing the
initial velocity vector of the mass center (downrange)

ye-axis is crossrange to the right

ze-axis is vertically downwards

* .Moving Frame-

0 = origin at the center of gravity of body

x-axis is parallel to the longitudinal axis of the body

y-axis is perpendicular to the plane of symmetry (for a
weapon which has more than one plane of symmetry
choose the one most nearly parallel to the aircraft
plane of symmetry before release)

z-axis is perpendicular to xy plane and positive down
viewed by the pilot (before weapon release in the case
of the weapon)

Earth-fixed and moving frame definitions for air.plane and weapon are
illustrated in Figure 6.

xX

)X

z z

(a) AIRCRAFT MOVING FRAME (b) WEAPON MOVING FRAME (c) EARTh-FIXED FRAME

Figure 6. Earth-Fixed and Moving Coordinate Frames
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It should be noted that the orientation of earth-fixed frame differs in accor-
dance with its use [ 17]. The earth-fixed frame generally used in bombing
and range tables is obtained by rotating the fixed frame described here by
90 degrees counterclockwise about the x-axis.

The differential equations of motion consist of:

The dynamical laws of motion

The kinematical rel.ationships between the reference frames

The Dynamics of Motion

Two vector equations define the motion of a rigid body completely. They
are [13, 16, 17)relative to the earth-fixed frame.

,• ~0
F m dt (3.1)

d t

T (3.2)

whereI

E .i resultant external force acting upon the body

,v velocity of mass center r.rative to inertial frame

m .4£8mtotal mass of the body
11T =T resultant external torque about mass center

= angular momentum of the body about mass center

For a rigid body, the angular momentum about mass center is defined as I -

SX " am (3.3) F

with

v = o + w x r (3.4)

where

v = velocity of the mass element 6m relative to earth-fixed frame
S= velocity of center of mass relative to earch-fixed frame

o
w = angular velocity of the body relative to earth-fixed frame
-0

r = position vector from c.g. to the mass element 5m
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Substituting (3.4) into (3.3) and using body-coordinates one obtains
2: 2 z2

h = (x2 + y + 2)m - Z`F(px+qy+rz)6m

in matrix notation further simplification yields [ =y J 1
" 3re J is the moment of inertia matrix given by

xx xy xz

-IXv. -Iyz Izz (3.5)

In order to supress the derivatives of moment of inertia elements, the

equations of motion given by (3.1) and (3.2) are expressed in body axes
which rotate with the body.

Thus (3.1 ) and (3.2) expressed in rotating frame of reference become

= m 6-) + in(••Xo) (3.6)

T +h (3.7)

where by definition
v # -- dv dv dv(

m _ - + J ... •" •(3.7)

Ot dt dt dt

Re. %rring to Equation (3. 7), let
-4 -9 4 1

U X v° = i(qw-rv) + 3 (ru-pw) + V(pv-qu) (3.8)

In matrix notation (3. 8) becomes

0-r q\A
r 0 -P (3.9)

Now making use of (3.9) equations of motion (3.6) and (3.7) can be expressed
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andIFM) -r q !

Mx 0 q hAM J + r 0 -p J q-M -f 0 r (3.11)
These six 6fi terential equations, called the guler equations of motion,
completely describe the dynamics of the rigid body.

The Kinematics of Motion

To describe the position and orientation of the body as a function of
time, earth-fixed frame of reference is introduced as defined earlier. To
find the differential equations Ci the coordinates of mass center relative to
the fixed-frame (i. e., differential equations of the flight path), it is necessary
to develop the time evolution of the transformation matrix Wk) which trans-
forms a vector from the body coordinates to the earth-fixed coordinates, that
is

ve QV (3.12)

Thus, if ke, Ye, te are the velocity components of mass center in the earth-
fixed reference sys+tem, and if (u, v, w) are the velocity components of mass
center in the body frame it fsllows that

• u
Y: ly) (3. 13)

Among the various angular coordinates that can be used to express the
direction cosines (i. e., the elements of Q matrix), a system of Eulerian
angles is commonly used. Because of their trigonometrical form, how-
ever, Eulerian angles cause a singularity in the differential equations
connecting the angular velocity with the Eulerian angles £17iJ. This singu-
larity gi-,- rise to a considerable tru" ation error in the integration pro-
cess. ¶It -_,roid this, the components of a normalized quaternion (versor,
Euler syxi~metrical parameters) rre used as angular coordinates. For
completeness, discussions on both the usage of 2-ulerian angles and quatern-
ions as angular coordinates are given in the folloving two subsections, re-
spectively. Quaternions are Lnplemented in the subroutine DYNK for

no-.Iinear simulawion. The Eulerian angles are used for the perturbati6n
model. 1
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The Eularian Angles as Angular Coordinates -- In the following, the elements
of the transformation matrix C1 are expressed in terms of the so-called
Eulerian angles. In general, one can carry out the transformation from a
given cartesian coordinate system to another by means of three successive
rotations performed in a specific sequence. The Eulerian angles are then
defined as the three successive angles of rotations. Unfortanately, there
is no unanimity in the literature about the definition of the Eulerian angles.
The convention of [17, 18), and £16) will be adopted here. The body is
imagined first to be oriented so that its axes are parallel to earth-fixed axes.
This system will be denoted by (xj, y,, zj). The sequence will be started by
rotating the Initial system oZ axes (x, y,, z ) by an angle * clockwise about
the z1 axis, and the resultant coordifLate syslem will be labeled the x 2 , y, z2
axes. In the second stage the intermediate axes x 2 , Y2 , z 2 are rotated a out
the Y2 axis clockwise by an angle 0 to produce another intermediate set x 3 ,
Y3 , z 3 . Finally the x 3 , Y3 , z3 axes are rotated clockwise by an angle 0 about
the x 3 axis to produce the desired x, y, z body system of axes. Figure 7 illus-
trates the various stages of the sequence. The Eulerian angles 0, * ( thus
completely specify the orientation of the (x, y, z) body system relative to the
"(xe. Ye' Ze) earth-fixed system.

ORDER OF ROTATION AXES AND ROTATION ANGLE
XV1  Xi y1 Z Xe, Ye, 'ej

Y2, Y3 2 Y2 Z2
x2 2

3x Y3 z3

S3 x y z. BODY

Figure 7. Body Orientation and Euler Angles

The elements of the complete transformation E can be obtained by
writing the matrix as the triple product of the separate rotations. Let El,
E 2 , E 3 be transformations describing the rotations *, 0, and 0, respectively.
The complete transformation E from earth-to-body system is given by

x xe( = EYe (3. 13a)

where

E E3 E2 E
1 1
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Clearly, rotation about z1 axis by the angle * is given by

cos* s in 0-11
I Zi~e

EI = [-sin* cos l0 % XCX
L 0 0 1 x2

Y2

Similarly rotation about y2 axis by the angle 0 is given by

ros 0 0 -sinB

E 0 1 0
sin 0 0 cos j

V A x2

Also rotation about x3 axis by the angle 0 is given by jz0 0

E3 = cos : sin33
-sin 0 cos 

"1Y34

z zz3

The product matrix E then follows as

cosecos* cos~sin*I -sine

E = -cososin* + sinosin8cos* cosocos# + siaosin0sint sincosO

L sin Oi*+ cososinecos* -sincos* + cososin8sin* cos~cose
(3.14)

Since E is an orthogonal matrix, the inverse tr.ansformation from body coor-

dinates to earth-fixed axes is then given by

S= E" =E6 (3.15)

27
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Equations (3. 13) together with (3. 14) and (3. 15) constitute the flight-
path equations of a rigid body in terms of body-axis velocity components
which in turn are found by solving Equations (3. 10) and (3. 11). We develop
in the following the differential equations of the Euler angles which when in-
tegrated enable one to evaluate the direction cosine matrix 0 as a function
of time.

Let Tl be an arbitrary fixed vector. Let % and "1 be its component
representation in the earth-fixed and body frames respectively.

Then one can write

11 = E Te (3.16)

Differentiating (3. 16) w. r. t time and noting that

d,,e

S-=0
dt

yields

1 = S 'n e (3.17)

using (3. 16) in (3. 17) yields

E " -n (3.18)

where (dix dry drj

rdtcol cR7 dt

On the other hand, the time derivative 71 w. r. t. rotating frame of reference
is given by

where

6t 1d dt +(

In matrix notation (3. 19) and 3. 19a) become

S= -W 1 (3.20)
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where
I:

W r 0 -p (3.21)

_-q p 0-

Comparing (3.18) and (3.20) yields

E' -W (3.22)

or

E = -WE (3.23)

The differential equation of angular ccordinates 8, jI, 0 are obtained from
the proper elements of equation (3.22):

0 cos0 -sin ¢ p

I sin 0 tan 0 cos c tan0 ( 3.24)
0 sin 0 sece 0 cos 0 sec 0 r

The Quatermons Used as Angular Coordinates -- In this subsection a brief
description of the properties of quaternions and their usage as angular coor-
dinates is presented. Then the differential equations of the elements of a
quaternion are developed 117, 19, 20, 21).

A quaternion may be thought of as a generalized complex number. It is
defined as

q % + [iql + Jq2 + kq3] (3.25)

where qo, ql, q2, q3 are real numbers and i, j, k are basis elements satis- Ifying the relations ,

.2 2 k2  _- 1-1 j
(3.26)

(ij)k = i(jk) - -1

An immediate consequence of (3.26) (since, for example, k -k) is

ij -ji k, jPe -kj =i, ki = -ik = j (3.26a)
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When qo = 0, the quaternion is said to be a pure quaterion. By definition then, a
vector is a pure quaternion and, consequently, the bracketed term in (3.25)
is called the vector part of q. Defining four angles a, 0, y, and cp in the
following way, one obtains polar representation of a quaternion [ 17)

q = (qo + i + jq + sn)f = icoi c + in cos a + j cos 0 + k cos•y)
q +i

(3.27)

The conjugate of q is defined as

qo - iqI - jq2 - kq3  (3.28)

It may be verified that

q4 = jq = N(q) (3.29)

An equivalent definition expresses the quaternion as a 4 x 4 matrix of a spe-
cial type

qo ql q2  q3

-ql qo -q 3  q2q tQ=(3.30)
-q 2  q3  qo -ql

"-q3 -q 2  ql qo

where qI, q1, q 2 , q$ are the components of a quaternion given in (3.25) . In
matrix rorm the conjugate, q, of the quaternion q becomes Q', the transpose
of Q.

Q (3.31)

The ! roduct r = qp of two quaternions represents an o eration on p that rotates
p by an amount cp/2 and stretches its magnitude by N(q). Let

r = ro+ ir 1 +jr 2 +kr 3

q = qo +[ql + jql + kq3 ] (3.32) ]
P = PO + Pil + JP2 + kP3

Using (3. 26) and .(3. 26a) the product r =qp can be expressed as
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ro= (qop° - qlPl _ q 2 P2 - q3 P3 )

rI= (qlPo + q0P " q3 P2 + q2 P3 ) (3.33)

r = (q2 p0 + q 3P1 + qoP 2 - qlP3 )

r= (q3 P0 - q 2 pl + q1 pp + qo P3 )

The same result can also be obtained by considering the matrix equivalent ofr q qp,

R = QP (3.34)

and equating elements of the first row to find ro, r 1 , r 2 , r 3

Clearly (3.33) can be written as

r = P'q (3.35)

where r and q now are 4 x 1 column vectors. Equation (3. 33) can also be iwritten as

r Qp (3.36)

where p is the 4 x 1 vector representation of the_ quaternion and Q is a 4 x 4 ma-
trix obtained from Q by interchanging the first row and the first column of Q.

Besides rotating and stretching four-dimensional vectors, quaternions
also effect rotations and stretchings of the three-dimensional space, and it
is this property that makes quaternions useful for the description of rigid
rotations. To demonstrate this, let x be a pure quaternion (i.e., a vector)
described by

x = i. 1 4 jx 2 + kx3  (3.37)

Let X be a unit quaternion (that is, XK =1) described by

S= +iX 1 +jX2 +k 3  (3.38)

and , be the conjugate of x.

Now consider the quaternion y defined by the triple product

y = Xx • (3.39)
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By actually performing the indicated multiplications with the rules given in
(3.26) and (3.26a), or writing (3.39) with the aid of (3.35) and (3.36) as

11 = Wx ". AX (3.39a)

y = (kx)k = K •(3.39b)

and substituting (3. 39a) into (3. 39b) upon returning from four to three
dimensions for y one obtains the equation 4

y = X (3.40)

where

2(X O2 +A 12 )- 1 2(h 1 X2 -xo% 3 ) 2(% 1 X3 +Xo, X2 )2 2t
2 = 2(x,1 2 +%o0 X3 ) 2(Xo2+X2 )- 1 2(X 2 X3 -XX 1 ) (3.41)

2(X 1l 3 -%Xo 2 ) 2(x X 3 +• 1 ) 2(X 2 ) - 1)

It can readily be shown that (3.39) preserves the norm, that is

xi = yi (3.42)

On the basis of (3. 40) and (3.42) one concludes that (3. 39) defines a rotation
of x. This demonstrates that quaLernions can be used as angular coordinates.
Now, the differential equations of the elements of a quaternion will be developed.

Let • arnd n be fixed-vectors attached to earth-fixed frame and rotating
body frame respectively as shown in Figure 8.

AXISOF

ROTATION

ROTO ATTACHED ON THE FIXED FRAME

ATTACHED ON THE BODY FRAME

y

z

Figure 8. Relations between Fixed and Rotating Frames
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Consider transformation defined by (see Equation 3. 39)

(3.43)

To keep track of reference frames, rewrite Equation (3. 43) in the body
frame as:

S (3.43a)

where the subscript b implies the corresponding vectors expressed In body
frame (x, y, x). Let us further assume that the two vector systems coincide
when X=l.

That is

r'b = e (3.44)

where the subscript e implies the corresponding vector expressed in the
earth-fixed frame. Since n moves with the body frame, (3.44) holds for all
values of X.

Substituting (3. 44) into (3. 43a) yietcs

g X g× (3.45)
S~or

or , e : •e(3.45a)

This relates in quaternion notation the components of the vector g in the
two coordinate frames. In matrix notation it becomes

Y = A' Y A (3.46)
e

where Y is the matrix representation of the quaternion •.

Differentiating this and noting that Ye is a fixed quaternion matrix yields
Y -Y es A+ A' Y eA (3.47)

but from (3.46)

e= AY A' (3.48)
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Substituting this into (3.47) and simplifying yields

Y A= AY +'YA'A

Noting that y is a pure quaternion so that [see Equation (3. 30)), Y'= -Y
results in

Y A, A Y - (A'AY)' (3.49)

Now, differentiation of a vector in a rotating frame in vector notation givesEquation (3. 19):

= x (3, 50)

which can be shown to have the quaternion representation

2 = ) [WY -(WY)'] (3.51)

where W is the quaternion matrix of the angular velocity vector of the rota-
ting frame presented in the rotating .-ame, that is

W = "1p + •'q + lRr (3.52)

Comparing (3.49) and (3.51) gives

it, 'A -W

or

StW
A 2 = (-)WA' (3.53)

In the manner of Equation (3. 34), after performing the multiplication the first
column of this equation constitutes the differential equations of the components
of the quaternion X, which are given by [see Equation (3. 30)]

1 () q (3.54)

2 2 -q r 0 -p X2

- r-q p 0 X

To integrate this set of equations, an initial value of X must be specified.
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Initialization of the Angular Coordiaj - - By comparing corresponding
elements of matrices (3.14) and (3.41), the components of the vector
can be related to Euler angles [21 ] as follows

X0= cos*2 Cos -coS 0+ sin I sin sin

hi COS 1 COS sin ~~sin -tsin 8O
12 2os 2 2 incs 2 2

COS CO CO -0(3.55)

X3 cos sin Y sin s + sin t cos T COsi

This set of equations can be used to obtain initial values of the versor (unit
vector) components. An alternate way of obtaining the versor components
from the Euler angles is to compute the initial cosine matrix and use the
following easily verified relations:

2 l4trE
0o 4

where tr is the trace operator, and

0 E'-EX3 0 -l = 4%--- (3.56)

-2 k1 J

provided that Xo # 0. Since for certain initial conditions (i. e., = Tr, d•=-0,
o = 0) this conaition is violated, Equation (3. 55) is complemented in ADAPS
instead of (3.56)

Gravity Components in the Body Axes

The inertial components of gravity are resolved into the required body
components by using the direction cosine matrix.

gX 0

gy =E 0 (3.58)

9z 9 e

which picks the third column of E given in ( 3. 14), that is j
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gX( -sin 8

gy =g cos e sin 0 (3.59)

gz Cos 8 Cos 0

This finishes the analysis of the equations of motion.

Summary of the Analysis

In the development of the equations of motion, the aerodynamic forces
the body axes. The accelerations on the aircraft are computed by combining

the aerodynamic forces and the forces from the engine. All cross products
of inertia are included to allow for a nonsymmetricel boly.

9 Accelerations due to Aero and Thrust Forces in Body Coordinates

aL = T- Z (3.60)

* Total Moments in Body Coordinates

FM1 L +LT
xiT

MM +M (3.61)

L M Zi [_N+ NTJ

• Differential Equations of Body Translation Velocities in Body
Coordinates -

U a -sin 1 0 r -q

LaV +g os L :sin + - 0[v ((3.62)

yy

36-2- -.---.



with prescribed initial conditions

C' - -

u(O)

v(O) w

0 Differential Equations of Body Angular Velocities in Body
Coordinates -

T~x 0 -r q P

= M r 0 -p J q (3.63)

rM-q p 0 r

where

-xz -I~y. I•.j -1 1 -1(3.64)

is a symmetric matrix; or

Sdl d1 d1 fl

=qd21 d2 2  d 2 3  f2(3.65)

d d d jL3
where the coefficient matrix D is J- and symmetric and

2 2f Mx [(Iy-Iz)qlr - I yz(r -q + (Izx q-I r)p]

2 2
f2 My + C(Iz -lr - Izx(p -r ) + (Iyr-Iyp)q (3.66)

f3 Ix'I Y 0

M[( )p~q -I q ) +(I p-I q)r
3 xXY yz zx
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and

2I

d1 2 1 y+lzz (IyRK)[ d1 2 =/(IzlK)

13 yx

(IlK

d 2 1 + yzz + (I K)

'zx'xY

d (i1 Iz (IYIK) (.7

22 yz

d (IK)

/(I
+I /(I IK)

31l 2i 2 x
zx xy
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Differential Equations of the Angular Coordinates (i. e.,
quaternions) -

% q
0 1 2

1/2  x x (3.60)
X3  "x2  x1 0

-• J t-j-

with initial conditions (expressed in terms of the initial Euler an-gles

000 3.9 1 :

*0 8 0 *.6 0Io0) COS C yo COS-7 + sin ..sin sin 0
*0 e oo *o 00XW(0) cosT Cos -m sin- - sin- sin - cos2_2 2 21 3o 2 .

*0.6 6 0 (3.69)

=2 (0) Cosy sin Cos2  + sin2 CoB si

o3-O -. • 0 . 20. 0T070)0

2 2 2 2
X + X 2 (X X A+2(k %)

.._2(k IY3+o°2) 2( 2 X 3 - oX 1)% 2 32 1 2_ 2

* The Euler Angle -

8 = -sin- (e 1 3 )

Stan•(e 2 3 /e 3 3 ) (3.71)

* = tan-(e 1 2 /e 1 1 )
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S The Differential Equations of Body Mass Center in the Earth-Fixed
Coordinates (i. e., Ight Path) -

Y~el
prescribed initial conditions (

withprsrbdiiilcniis
Xe(0)-

Ye(o)

z (0)

DEVELOPMENT OF INTEGRATION ALGORITHM FOR THE EQUATIONS OFMOTION

The method of integrating the differential equations of motion in ADAPS isthe open quadrature process (i. e., Adams formula) C22]. It is given by

Xk x~lh 1+~c l (3.73)
Xk =k-• h•l+- •)k-• S

where

h = tR - tk-1 (3.74)

x = f(x,t) (3.75)

and

V = backward difference operator

nerror associated with he proces3 is of the order of and is given1ST r u n c a t i o n e r r a s c a e i h '' e p o e . s o h r e f h a d i i e
by E = a2h33)) tk-2 <5 < tk 

(3.76)

This integration process can be written as
-1k 'k-• 1 k-1 •k-2) k i2 4k-----" xk123klk2 tk-2 'ik-i tk (3.77)1

To start the solution, the derivatives at two time points are needed. The
solution can be started by using

Xk xk-i + h•cl1 (3.78)
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with

2H
In ADAPS, the initial values, x._1, are set to zero for simplicity. For

small h the error caused by this simplification is small.

A

11

I 2,
I
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SECTION IV

DEVELOPMENT OF TOTAL FORCE AND MOMENT SYSTEM
FOR RIGID BODIES MOVING IN UNSTEADY AIRMASS

The methods by wW'.ch the aerodynamic and thrust forces and moments
are introduced into the six-degree-of-freedom trajectory program are pre -
sented in this section. Aerodynamic forces and moments for aircraft are
treated first. The computer program which implements the aerodynamical
model of aircraft is called subroutine AERK. The aerodynamic. of bombs
are treated rext. The corresponding subroutine is called subroutine WAERK.
Then a model for the thrust forces and moments is developed. The program
which implements this model is called subroutine THRUSK. Finally, the
effects of moving air mass on the aerodynamics of rigid bodies are treated
to take into account the mean winds and stochastic wind gusts. The program
which implements the wind model is called subroutine WIN.DK.

AERODYNAMIC FORCES AND MOMENTS FOR AIRCRAFT

The aerodynamic fo ces and moments are computed by making use of
extensive aerodynamic data tables. The primary objective of the function
lookup subroutine (FLOOK), presented in Volume II is to provide for a
complete accounting of the various contributions to the aerodynamic forces
and mrnents regardless of the flight conditions or the body (i. e., aircraft,
weapon) being considered. The technique used is an n-dimensional table
lookup and linear interpolation. This method has the advantage of accurately
describing even the most nonlinear variations with a minimum of preparation
effort. However, the amount of storage space and computing time increases
rapidly with the number of dimensions of the tables.

The Functional Form of the Aerodynamic Forces and Moments

The major variables that affect the aerodynamic characteristics of a
body are: Mach number, M; dynamic pressure, q; angle of attack, a; angle
of sideslip, B; total linear velocity, angular velocity, and control surface
deflections. Two typical functional-dependence relations can be written as

F F(x 1 , x 1, x20 i 2' 6, 5, h, M) (4.1)

x x 6, h, M) (4.1)
= F(V, x, 0, V, x, B, x2 , x2 , 8,# , h, M)
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where

x = linear velocity state vector

x2 = angular velocity state vector

8 = control surface deflection vector

h = altitude

M = Mach number

V = total velocity

S= angle of attack

Ssideslip angle

The decomposition of (4. 1) or (4. 2) into functional relationships with
fewer number of arguments is needed for practical reasons. Unfortunately,
there is no standard form for this decomposition, and it is dependent on the
available data. Usually airframe and weapon manufacturers provideempiri-
cal or estimated relations in the form of curves or data tables.

Usage of Aerodynamic Data

Aerodynamic characteristics strongly depend upon the orientation of the
relative wind or velocity vector with respect to body, so the angle of attack,
a, and sideslip angle, P3, which define the orientation with respect to the air
mass are used often, as indicated in equation (4.2). In general, the aero-
dynamic data is classified into two groups; static data and dynamic data.
Static data implies that, during the wind tunnel testing, the body is at rest
with respect to the relative wind. The dynamic data implies that body oscil-
lates or rotates with respect to the relative wind.

The aerodynamic data are usually given in the "wind-tunnel stability
axes" defined as follows [ 15):

Origin: center of mass (cg)

Xs in the direction of motion along the projection of V upon

the body reference plane.

Ys: eame as body axes, positive right

Z perpendicular to xsys plane forming right-hand triad
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The wind tunnel stability axes system is illustrated in Figure 9. Clearly
the body axes system and stability axes systems are related to each other by

Ys = E (4.3)

where

VCos M 0 sin

Es 0 1 0

-sin a 0 COS O
The resolution of the total aerodynamic force in the xz plane is shown in

Figure 10 where lift, L, and drag&.D, are forces normal and parallel,
respectively, to the projection of V in the xz plane. Lift and drag are defined
to be positive as illustrated.

Aerodynamic forces and moments are expressed in terms of the basic
aerodynamic coefficients in the wind tunnel stability axes with origin located
at an arbitrary reference point. The aerodynamic force and moment
coefficients are defined by the following relations:t si -D-iis) 0orC

fsa = 0 = 0 EC (4.4)sa ( L) (S ]r L'Ez -L0 0 ) E

s0 IFscl

msca sM = (is)z ]0 E ZCms (4.5)

\N L0 0 (qTS)j LFnc
where

S= dynamic pressure (lb/ft2 )

S = wing area (ft2 )

b = wing span (ft)

c = wing mean aerodynamic chord (ft)

IL
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Figure 9. Body and Wind Tunnel Stability Axes Systems

ISI

Figure 10. Aerodynamic Force Anigular Resolution
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It is assumed that the moment reference center 0 ca is located by B•rca
from the cg of the aircraft as shown in Figure 11.

oioi

Figure 11. Moment Reference Center With ,•
In FCI

Respect to Mass Center

The total aerodynamic forces at the cg in body axes are then given by K
Xs

f= E' f E Ys 4.6)
a s sa 8s

Similarly the total aerodynamic moments at the cg about the wind tunnel
stability axes are given by

sa= sc (Ar ca) s a X f(

Or in matrix notation, and in body axes

M= E'M + AR f (4.8)a s sca ca aIC

where, in terms of a reference point RP on the body (see Figure 11),

Arca =r Cg +ca (4.9)

and V

Arc= position vector from 0 to 0 caca cg c
"rcg = position vector from 0cg to RP

rca U position vector from RP to 0ca
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and, with coordinates expressed in body axes,

- 0 -Azca AYca

ARca &= cza 0 -Ax c (4.10)

Sbodyiauesna th . 5) and (4. 9) into (4. 8) yields the moment components in Ibody axes at the cg.

L F s 0 -Az ca Ay ca

L s: LA a AX(.

Total Aerodynamic Coefficient Model for Aircraft

In the formulae given below the superscript "o" indicates degrees, the
subscript "a" denotes quantities with respect to the air-mass, and subscript
"w" stands for wings with respect to the air mass (aw = aa + iw). This I
notion will be useful in treating a moving air mass as discussed later. The
aerodynamic force coefficients in the wind tunnel stability axes are assumed
to be in the following form [36):

7CD CD (POWMa, CL) + CD( 6 sb, CL, Ma)

C0I
ECL CL(Ma,h, wo

0 7 _

+10 0 
__•_o_

•, Oh j2ou 0 ; a/
+ 0C ((o ,h, M $) + i

o 0 0 2us 0 sa

+ C (h, OL ,M) 0 C (aJ h, M 0ayp _ _h_, a r w
0 -C (h, Mw 0 0 )u- rsa

L 7q a j
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K0
CD a(hD Ma) CD 6 s(haw Ma)

D a a D as a0

0 aa

+ C (M) 0 0(h, M s
c~(h, M T Ci_ (h,' OwMa, 0_o

5a ss0

"C (hM (a0 6 0- p
phMa) O D ( w) 5S

as 6 1gCsp sb51gCy (a) °sb

c L Mh'M. a L Ow-6 a--L-7 wo I0
-- 8sP 6s b g81g _ - .

Similarly the aerodynamic moment coefficients in the stability axes are
assumed to be in the form of

- 1Csc -o•

EC =C (M h,amsce j sc a
[L E sc] L 0

+ O+ 
Lah, Ma, ] L¶ I (:)

C( 0 ,M)0 C (a~ hhM,0

0 a0 2Clp(M°w, h, Ma) Clr( o h, Ma) T- 0 0 Pa

+ 0 Cm (h, M) 0 0•us 0 qq 0

Cn (h, L0wMa) 0 Cnr(Ma, h, Ow 0 0 u ra

C (a 0 ,h, M) 0 C (0o. h, M7 6°a
I6a a C1 r w Ma a

+Cm w h, MMa) CI(h, aOw Ma) 0 Ls +
Cna(0 w Ma) 0 C n(h, Ma
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C (aP h, Ma) 0 0 60

16 sp
+ Cm (CPw, hP Ma) Cm (Map aow Cm (LW) 60sb

m6 6  amsb 6 1g

C to, M) 0 0 6ig
n pw a l

sp

AERODYNAMIC FORCE AND MOMENT MODEL FOR BOMB

A complete aerodynamic model for a slowly spinning, four-finned bomb
is given in [17], where the aerodynamic parameters are assumed to be
linear functions of spin, cross-spin and accidental configurational asymmetry
but nonlinear functions of yaw orientation and roll orientation. Then the
effects of roll orientation on the aerodynamic forces and moments are
obtained by a Fourier series expansion of roll angle (the angle between the
[plane of yaw] and a reference fin). The model based on [17] (i.e., Cohen's
model) requires approximately 20 aerodynamic tables (i. e., tests), and these
tables are not readily available.

In ADAPS, a simplified aerodynamic bomb model is developed. It
utilizes generally available bomb aerodynamic data. The effect of roll
orientation is ignored. [The cross-velocity frame and cross-spin frame are
the same as defined in [17].)

Simplified Aerodynamic Model for Bomb

The reference axes used in the bomb aerodynamic model are illustrated

in Figure 12.

0 w origin, at the [ center of gravity) of bomb

The weapon body axes are defined as follows:
x-axis is along the bomb body, positive forward

y-axis is horizontal positive right

z-axis is perpendicular to the xy plane, positive down.

The cross-velocity axes are defined as follows:

S1 is the sam e as the body x-axis
z is in the direction of cross-velocityv (V Z V + w

1 ca ca
Yl is perpendicular to the x 1z, plane forming a right-handed system.
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Figuw e 12. Definition of Stability-Like Axes for Bomb

The cross-spin axes are defined as follows:

x is the same as the body-axis
y2 is in the direction of cross-spin, (qc= q2 + r2 2

z 2 is perpendicular to x 2 y2 , the plane forming a right-handed system. i

The aerodynamic forces and moments in body axes are given as

(Y i~s EI
y4

) qSd EC
N ECn
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where

S= 1/2 P V2,dynamic pressure, lb/ft2

a9 2

S = cross-sectional area of the'bomb TT -- , ft2

d = diameter of the bomb, ft

and ('"Cx, ECy, EC) = aerodynamic force coefficients in body axes system
(EC 1, ECmo ECn) = aerodynamic moment coefficients in body axes system

The nondimensional aerodynamic data are given in the cross-velocity
frame. They are:

CA(M) = axial force coefficient, along x-axis, positive aft

CN(c, M) = normal force coefficient perpendicular to the plane of yaw

CN(•M, M) = coefficient of normal force due to canted fin shielding
C (M•, M) = restoring moment coefficient, about Yl -axis

mA
Cm 6 (C, M) = restoring moment coefficient, due to canted fin shielding

about Yl -axis
Cmq(&, M) = damping moment coefficient about y 2-axis

The data for the moment coefficients are referenced to the center of
gravity[ 26, 291

The transformation matrices from the cross-velocity frame to body frame,
and from the cross-spin frame to body frame are given respectively as

•E1 1 zi = E 2 T

where
10 0 1 0 01

E 0 cos 0 sinl E = Cos 2 sin g2

L-sin €1 cos j L -sin 02 cos 02

and

1= tan - va and 0 tan-1 -r deg
a q

The aerodynamic coefficients along the body axes are given by
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E CA(M) ~7

x A
ECy E 10

1 (C 4Cm) + (a, )
FICn 0 0

where
^ Vc

tan"' ca magnitude of yaw (deg)
Ua

V = i + 2 cross-velocity (ft/sec)Vca a

V2 total velocity (ft/sec)

a u a total

V5z y , magnitude of fin cant angle (deg)

qc = r cross-spin (deg/sec)

DEVVELOPMENT OF A MODEL FOR THRUST FORCES AND MOMENTS

In general, the total thrust forces and moments acting on a rigid body
depend upon the positions and orientations of the thrust producers with respect
to the body axes ana the magnitudes of the thrusts (geometry). There are
also dynamics associated with the thrust variables since they are produced
and oriented by engines and actuators.

To provide an analysis tool by which the effects of various control points
and methods can be investigated, both aspects are considered in the develop-
ment of a thrust model in ADAPS.

In the following, a geometric model for the effective thrust acting on a
rigid body is developed first. Then the dynamics of thrust producers are
treated. In the development, the effects of angular momentum of rotating
thrust producez. are neglected.
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A Geometrical Model of Thrust Pr:uucers

In the following, first the description of a geometrical model for thrust
producers is given. Then the total force and moment contributions of thrust
producers are developed in the form of

fT = BT (Xd)YT (4. 12)

mT = r (xd)YT (4. 13)

where

fT = total thrust force vector along body axes

mT = total thrust moment vector along body aes

BT = thrust force coefficient matrix of size 3 x V

T thrust moment coeffi-ient matrix of size 3 x V

Xd = state vector of thrust orientation actuator positions

YT = effective thrust outpat magnitude vector

V = number of thrust points in the thrust-producing system

Figure 13 shows the geometry of a single thrust producer.

$ IT

Tjj

••TJ

OTJ 

C5

Figure 13. Geometi-y of a Thrust Producer
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In this model, the nozzle of the jth thrust producer is located by vector 7.
from the cg of body, It i 3 assumed tiat the orientation of the nozzle axis is
described by (B• /T) the elevation and azimuth angles from body to
nozzle axe~s. At pos[ttlon vector ZrZi Is assumed to vary as the position of
the cg varies. In this model it is asstumed that the movement of the mass
center is confined to the xz piane, The rVosition vect.,rs rcg and rlj
from a body-fixed reference point RP are used to specify A'rTj. DMnoting the
thrust vectors by TTj, the total forces and moment due to thrudst producers
become F:t

I•T : :1 (4. 14)

-T 1 Tj "

an * =. r xp v4.15)otn c fm0jlTj TiP4.

whtere ig

r Tj i :c. g. + r fTj j 1: , 2, .(4.16)

and.
Ar~j- position vector from 0 to 0Tj*II
r - position vector from 0 to RP

r Tj = position vector from RP to 0Tj

as shown in Figure 13.

In matrix notation

V
f ITj (4.17)

and

mT = AR Tjf (4. 18)j=l RTjf~

where

0 -AZ A Yz i

ART AzTj 0 -AxT. (4. 19)
-AY XTj 0J
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and

S c.i g. Tj

A rTj A YTj 0 + YTj (4.20)
I j

C. zd Tjj
Ti/ 9..

Let Tj be the effective thrust magnitude of the jth thruster. Then, in terms of
of the elevation and azimuth angles, 6 Tj and *Tj of the nozzle axis from the
body axis, the components of thrust forces fTj along body axes can be ex-
pressed as

f = b.T. j = 1, 2, ... v (4.21)
fTj j

where

bojs Tj cos 6 Tj 7
b b2 . sinqT I (4.22)

3j Tj TMakig ue Lcos *Tj sin"~

Making use of %4. 21) and (4.22) yields a

fT BTYT (4.23)

where

T

11BT [blb 21... I bandT T (4. 24)

Similarly, using (4. 21) in (4. 18) yields

mT BTT (4.25)

where

BT [b, lb 1 2 1'" b.I1 , (4.26)

TIA
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with

b. AR b. and (4.27)3 Tj3

b lj lJ• "(A YTj)(b 3j) - (Az Tj)(b2 j)

bb = 2 (Az TXbj) - (AxTj)(b.3j) (4.28)

b (A XTj)(b 2j) " (AYTj)(blj)

Equations (4.23) and (4.25) constitute the geometry of the thrust producers.
In the following, the dynamics of thrust producers and thrust orientation
actuators are treated briefly.

Dynamical Model for Thrust Magnitudes

It is assumed that the magnitude dynamics of each thrust producer can be
represented by a first-order transfer function. This is shown in Figure 14.

Figure 14. Dynamical Model for a Vo
Thrust Producer 0 - +- )

In this model

XT(j) = the magnitude state of the jth thrust producer in percent

yT(j) = effective thrust output of the jth thrust producer acting on the
rigid body in lbs

hT(j) = nonlinear output function

uT(j) = throttle input to jth thrust producer in percent

a.1.(j), bT(j) = transition and input coefficients of the producer
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The output function for the two main thrust producers (i. e., engines) Is assumed
to be in the following form [36):

YT(J) = [(l+elM)(l+e 0 h))yo + {(l+e2 M)(l+e 0 h)(c)[x~(J)'g~(J)] j = 1, 2

In this equation e 1 and e2 are Mach-number- and altitude-dependent co-
efficients of the ef'Jcive thrust, Yo is thrust bias, c is the thrust output

coefficient~and T (J) is a function of tj). These coefficients are piece wise-
constant functions of xT(j), and typic values for F-4 engines are given inS~Table 1.

Dynamical Model for Thrust Orientation Actuators

The thrust orientation state of each thrust producer is described by the
azimuth and elevation angles of the nozzle axis as defined in Figure 13.

Xd(j) P (4. 29)

IW

Table I. Effective Thrust Output Coefficients, j = 1, 2

Coefficient 0 :xT x 50 X xT; 100

YO 700 9650

c 179 137

0 50

el0 -0.2342

e -0. 25150 0.32846

e: e0-(0.25)10-4 -(0.25)10-4

It is assumed that first-order dynamics is associated with thrust orientation
actuators. Thus for each thrust producer (see Figure 14b)

Ad = AdXd + BdUd (4.30)

Yd = Ydo + x d (4. 31)
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where
Ydo o rientation bias " ~I(4.32)

b

Implementation of the thrust orientation dynamics is outside the scope
of the present program. However, in ADAPS, the thrust model includes
equation (4. 31) through which thrust orientation dynamics can be inserted into
the overall program.

EFFECT OF MOVING AIR MASS ON THE AERODYNAMICS OF A RIGID BODY

The aerodynamic force and moment system developed above is with rep pect
to the air mass (i. e., atmosphere). It is known that the air mass ýhrouh
which a rigid body flies or falls is in a motion which is variable both in time
and in space (Figure 15). In this subsection the influence of this motion on
the rigid-body aerodynamics is presented.

Modeling for the Influence of Unsteady Air Mass

Meteorological observations indicate that the velocity field o-," air mass
(i. e., winds) in the lower atmosphere consists of two distinct components,
a low-freq•,ancy component with energies concentrated in 0.01-cycle/hour
range and a high-frequency component with energies in the 70.-cycle/hour
range. The former is called the "mean wind", and the latter is referred to
as atmospheric turbulence or simply as "wind gust".

S~AIR MASS

rlt)
* I.

ye 'ze

Figure 15. Rigid Body in an Unsteady Air Mass
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In the earth axes, the velocity field of the air mass can thec.ore be
decomposed into

-- w +w (4. 33)
e e e

where, in matrix notation,
we = velocity field vector

We = mean velocity field vector

"We = gust velocity field vector

and all are, in general, position- and time-dependent.

The influence of motion of the air mass on rigid-body aerodynamics is
taken into account with various degrees of accuracy by considering a rigid
body as a point, line, surface or volume. When a rigid body is considered
as a point in the air mass, then the relative motion appears as the difference

v = v -w (4. 34)

where v is the velocity field vector in body axes. In this case, the aero-
dynamic effect of the motion of air mass is accounted for by the use of the
equivalent (i. e., producing the same aerodynamic effects) velocity a, angle
of attack Q1 and angle of sideslip 0a"aa

It should be noted that the equivalent linear velocities are to be used only
for developing the aerodynamic forces and moments. Elsewhere in the
dynamical equations the inertial velocities are used.

If a rigid body is assumed to have one or more dimensions in space, then
the space distribution of the velocity field on the assumed rigid-body model
must be taken into account. At this point, various approximations are made
to simplify the modeling problem. One such approximation is given in [30]
where the space distribution of the velocity field is lumped at the various
stations on the body. The resulting equivalent velocities are used for com-
puting aerodynamic forces and moments. In [301, the penetration effects of
the wind gusts are also considered. The treatment with such depth produces
a relatively complex model for the air-mass velocities; it is recommended
for cases where the body velocities with respect to ground are relatively low
and the b, dy-bending modes are significant.

Ai
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In ADAPS, a simpler model can be used because of relatively high aircraft I
and weapon velocities and rigid-body model. It is assumedi that the velocity
field is linearly distributed about the cg of a rigid body. The overall influence
of he motion of air mass is accounted for by Va and its space gradient matrix

evaluated at the cg of a rigid body. It can be shown [ 16, 313 that the

effects of space gradients can be conveniently taken into account by use of
the equivalent angular velocity vector defined by

S- +W (4.35)
a ,=35

where w is the synthetic angular velocity vector corresponding to the gradient
effects o9 the moving air mass.

In the following, a simplified model for the equivalent linear and angular
velocities is presented.

Modeling for the Equivalent Linear and Angular Velocities

First the modeling for the mean wind is presented. Then modeling for the
turbulence (i. e., gust) is treated.

Mean Wind Model -- As shown in Figure 16, the mean wind is described by its
magnitude and its orientation in the earth-fixed axes as follows:

w = (4. 36)

0 ~ r e

, ke

Figure 16. Description of the Mean Wind
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where

V - magnitude of the mean velocity vector relative to the origin of the
earth-fixed axes

= azimuth angle of the mean velocity vector with respect to earth
axes

= elevation angle of the mean velocity vector with respect to earth

axes

The transformation matrix from the mean wind axes to the earth-fixed axes
becomes

Cos 0cosi -sin sin 0 cos*]

E = /cos sinI cosi sin 0 sin, (4. 37)

L. sin0 0 cos "

Thus the components of the mean velocity vector along the earth-fixed axes
becomes

w W IL, 0 (4.38)

0

or

(Cos 8Cos 4
w e cos 0 sin " (4. 39)

-sin /

Then along the body axes the mean wind has the following components:

w =EWe (4.40)

where E is the transformation matrix from earth to body axes as defined by
equation (3. 14) in Section III.

The magnitude V of the mean wind is assumed to be altitude-dependent
according to the following simplified functional relationship

(h) Vo h 41)
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where

h = the altitude of interest

ho a reference altitude at which the mean wind speed is known
L0

V0  = the mean wind speed at reference aititude h

e = an empirical exponent whi,.h expresses the thermal stability
conditions of the atmosphere and the degree of roughness of
the surface beneath

For slightly unstable air, typical values of e range from 0. 12 for smooth
surfaces (such as deserts) to 0.38 for very ro-gh terrain. In ADAPS, a
constant value of 0. 25 is used, representing average conditions. Equations
(4. 39), (4.40) and (4. 41) constitute the mean-wind model used in ADAPS.

Gust (Turbulence) Model -- The gust model used in ADAPS is the form
attributed to Dryden with the coefficients specified in Ref. 31. In this
form, it is assumed that gust velocities are locally isotropic (i. e., locally
invariant with respect to position and orientation) and that time variations
are statistically equivalent to distance variations in traversing the gust field.

The translational gust velocity vector is defined as

w V (4.42)

The power spectral densities for the translational gust velocity components
are given by

0 (0)ua .2 2! 1ug u TT

w v [=ii:t1(Lva)2 • (4. 43)

1 1+(Lw0) 2 )
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where

n spatial frequency, (rad/ft) (4. 44)

X = wavelength, (ft)
L. = scales (ft)

a. = the root mean-square gust velocities (ft/sec)

i =U,V,W

The mean-square gust velocities and the scales are related to each other
through the followirg set of equations:

02 a 2  a2

S( 4- .45)Lu v w

The quantities appearing above have the following altitude dependence:

100 < h< 1750 ft

L=h

Lu Lv = 145.0 hI 3  (4.46)

h> 1750 ft

Lw =Lu =Lv =1750ft

a .5-o 1  (h )1"25 '
w -- 5.250-ogl0 i••-•o 0

For 0 < h < 100, the value of h 100 is used in the above equations.
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The gradient effects of gust velocities are considered as explained
earlier by defining angular gust velocities as follows:

AA

W w9 (4.47)
= g ax

I: gr

The spectra for the angular gust velocity vector W are given by

0 ~(0. 8)*4

0 ~) (0) T= 1 L 0 () (448
w w Wg

2

0 (0) 0 04.48)

lWg~ = Cqg~f) = 1+( 4bi 01l 2] 9~(I (.8

f2
Or n) +vg 2 M
L g l+TTO g9

where b = wing span, (ft)

Random velocities with above spectra are obtained iy passing a gaussian
random "white" noise through a linear system with a proper transfer function
G(s) _(-_ o_

0 (W)

It is known that

00(w) Goo 1(J) I 0(W) (4.49)

where the bars denote the magnitude of the complex variable.
The power spectral densities given above are ratios of polynomials in W
where w is the temporal frequency given by

w = VaQ rad/sec (4. 50)

can be spectrally factored out. This process yields the proper transfer
functions as follows:
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-R,7 V -7~~v'F

G (S) vuL

[1+ sa

wg 
a [1 + ( V a I s

v 1Ta [1 1Gv(S) = (. 1

[1+ LPg - l
Gwg(s) C (-)L a* G s(5

Va

G r(S) G0.8) -

[1+4b 4b]

G (S)4 )s] Vg

The outputs of these six filters are combined as shown in the following to .
obtain equivalent translational and angular velocities to be used in the

aerodynamics model

(UN~

G (S) (4. 53)

\w a ww

-_
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-a - V 1 - 4-q q q (454)
a a

Figure 17 shows the structure of the equivalent linear and angular gust
velocity generator model, Figure 18 shows its state representation, and
Table II gives the filter coefficients.

The pole locations of roll, pitch and yaw gust filters for aircraft are
inversely proportional to wing span, b. The corresponding term for a
weapon would be its diameter. When weapon diameter is used in place of
wing span, the magnitudes of poles of roll pitch, and yaw filters become
excesE,;vely large. N,.unerical integration (i. e., non-real-time simulation)
of these extremely fast dynamics requires very small integration step size.
For small weapons, the space gradient effects of wind gust (i. e., roll,
pitch and yaw filters) are small. For this reason, these filters are omitted
in the simulation of weapons in ADAPS.

Steady-State Output Variances of the Dryden Gust Filter -- In the following,
only side gust filter covariance analysis is presented. Others follow the
same pattern.

The transfer function for the side gust is given as [see equation (4. 51)]

- I
L 1 1 vi; +1VVS

Gvg(S) v o [1V +([..)s 2  (4.5 la)

This can be written as:

G (s) =k s+b 24.55)
(s+ a)7']

or • (5)

= k (4. 56)
[s~a (s+a)

where a = -A b= , ka v, (4.57)
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F igture 17. S•_racture of the Equivalent Linear' and Anugular
Velocity Gust Generator (D'.yden rh1ocXe)
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The Jordan-state diagram for (4. 56) is given in Figure 19.

I}
i2i

a

Figure 19. State Diagram for Side Gust Filter

The state equation is given by

S= Ax + bn (4. 58)

y = Cx

where

A : aJ b C k (4.59)

With a unity input covariance, the steady-state output covariance is

obtained from

k = AX+XA'+bWb': 0 (4.60)

Y = C'XC (4.61)

where

11 x

X and bWb' (4. 62)

Frm12 x(24. U :

SFrom (4.60) the following solution is obtained

1 1 1 (4.63): -- a-- - 4a 3)=
22 2a ' x 1 2 -a2 X1 1  3

Substituting these into (4. 61) yields

Y 2- 
(4. 64)
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Finally using (4. 57) in (4. 64) results in

CY2

y - V (4. 65)
2

This shows that in order to obtain variance a at the output, the input
noise r must have a variance v

2
a?12 = (4. 66)

instead of unity, or the gain element k in transfer function (4. 51a) shoul-!
be

k = -( (4. 67)

with a unity input covariance.

Subroutine WINDK computes the coefficients of the gust filter having the
Dryden spectrum and the components of the mean wind along the body axes as
a :unction of altitude.
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SECTION V

DEVELOPMENT OF MEASUREMENT SYSTEM MODEL

Sensors on board an aircraft can be divided into two groups: instruments
for the automatic control of vehicle motion and instruments for the avionics
(i. e. , fire control navigation, etc. ).

In general, the readings (i. e., observations) of sensors on board an
aircraft depend upon where and how the sensors are mounted with respect
to the body axes of the aircraft (geometry). There may also be dynamics
associated with sensors.

To provide an analysis tool by which the effects of various measurement
points and methods can be investigated, both aspects are considered in the
development of a measurement model in ADAPS.

In the following, a geometric model for the overall measurement system.
is developed first (i. e., observation equations). Then the dynamics of'
sensors are treated. Throughout this development it is assumed that the
body on which instruments are mounted is rigid. Aeroelastic effects for the
measurements and contrnls are beyond the scope of the present program.

DEVELOPMENT OF A GEOMETRIC MODEL FOR MEASUREMENTS

The basic vector quantities which may be measured are:

* Control surface deflection vector:

x= col (6 a, 6, 6r,6sp (deg)

"* Linear acceleration and velocity vectors:

= col (ii, r, ) (ft/sec2)

x= col (u, v, w) (ft/sec)

"* Angular acceleration and velocity vectors:

k2 = col (b, 4, i) (rad/sec )

x2 = col (p, q, r) (rad/sec)

• Angular position vector
(i. e., body attitude with respect to earth-fixed axes)

x3 = col (e, *,0)
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0 Translational position vector

x4 = col (xe, Ye' Ze) (ft)

As is shown in the subsequent subsections and illustrated in Figure 20,
instruments sense, in general, the nonlinear combinations of these
quantities. This is referred to as the geometry of the measurements
or in state space terminology, the observation relations.

AIRCRAFT STATES SENSED SIGNALS
AND DERIVATIVES (OBSERVABLE SIGNALS)
(IN BODY-AXES)

NONLINEAR
A/C "0,ONIEA LINEAR

MEASUEMEN MEASURED
MEASUREMENT INSTRUMENT VARIABLES"GEOMETRY 0 DYNAMICS

EARTH

Figure 20. General Structure of Perfect-Measurement Model

In the following, first the geometry of the measurements for the
automatic control of vehicles motion are given. Subsequently, a geometric
model for air data measurements is presented for completeness. Then
a simple geometric model for fire control measurements (i. e., radar
measurements) is developed.

Geometry of Control Measurements

Attitude Measurements -- The geometric model of very simple forms of free
gyros (i.e., vertical and directional gyros) are given in [15Y. In many
advanced vehicles, however, more complex attitude and direction-sensing
instrumentation is used. Models for those which are used in fire control
system are treated later.

73



The relation between the attitude state x3 and the sensed (i. e.,
measurable) attitude Y3s is given by

Y3s hx = Eax 3  (5.1)

where Fn is a fixed transformation matrix which takes into account the
nonalignments effects of the gyro axes and is normally equal to an identity
matrix.

Velocity and Acceleration Measurements - -

Linear-Velocity Measu-ements -- The geometric model of linear-
velocity measurements is given in Figure 21. In this model, it is assumed
that the origin, Ovw of the instrument axes system is located by a vector Ar'v
from the origin, 0, of the body axes. It is further assumed that, *wv ev and
Ov are fixed Euler angles from body to instrument axes, and Ev is the
corresponding transformation matrix as described in Section III.

,V

Pv (b)

Figure 21. Axes Systems for Linear Velocity and Acceleration
Measurements: (a) Body Axes, (b) Instrument Axis

The linear (i. e., translational) velocity of the point 0 v in body axes is
given [1162 by

vSB v+wxArv (5.2)

where

v linear velocity of cg with respect to earth axes in body-axes
- system

w = angular velocity of body with respect to earth axes in body- axes
system

Arv =position vector from 0 to 0v in body-axes system
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As described in Section III, the matrix equivalent of (5.2) is

vSB v v+W Arv (5.3)

where

I

US 0 -rq Ax

VSB VSB r Av (5.4)

W Sb -q p0A

Transforming (5.3) from body to instrument axes system yields the
measurable velocity components along the Instrument axes

vs E[v v+WAr] (5.5)

Equation (5. 5) constitutes the geometric model of the linear velocity observa-
tions. It is noted that the measurable velocity vector is a linear combin-
ation of the linear and angular velocities in body axes; Ev and Arv are the
velocity observation parameters.

In state vector notation (5. 5) becomes:

Yls = hxI (xl, x 2 " Arv, Ev) (5.6)

where

hE(x 1  l + LW(x 2 )] Arv] (5.7)

and W(x 2 ) is defined by (5.4).

Linear-Acceleration Measurements -- The accelerometers are
assumed to be located and oriented in much the same way as the velocity
instruments. In the following the geometric relations which express the
accelerometer observations in terms of the vehicle body axes acceleration.. -
are developed similar to previous section.

Differentiating (5.2) in a rotating frame of reference (i. e., body axes)
yields the following equation:

_. =1 "0 "0 - 0 - " 1 5.8)

Noting that Ara is constant, one obtains

s 8  XAra +Wx +ix(W xA) (5.9)+ t 4 a
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where

acceleration of point 0 where accelerometer is located
('s expressed in body axes

V = acceleration of mass center, 0, expressed in body axes

SAa -= position vector from 0 t, 0a, expressed in body axes

The matrix equivalent of (5. 9) is:

v-- + wv+a(W+W 2 ) Ar (5. 10)

Now let 4r 0 , and 0 be the fixed Euler angles from body to accelo-
meter axhs, Ld Ea bg the corresponding transformation matrix, then
the observable acceleration components along the accelerometer axes
are given by

as - Ea[(a+lV Ara) + (Wv+W2 /.ra)] (5. 11)

Equation (5. 11) constitutes the geometric model of the linear accelerometer
observations. It is noted that the observable acceleration vector, a
is linearly dependent to body axes accelerations, but also contains
nonlinear combinations of the velocities. Ea and Ara are the acceleration
observation parameters.

In state vector notation (5. 11) becomes

=ls hx (Xl' x2 xl, x2 , Ara, Ea) (5.12)

where

h. = Ea + [W(x)] Ar + W(x + W(x) 2 Ar 5x a 1 2 a W~ 2 )xl [x2~ a) (5. 13)

Angular-Velocity and Acceleration Measurements -- Here it is
tacitly Fssumed that the axes of the instruments which measure the
angular velocity and acceleration with respect to nonrotating earth are
fixed with respect to the body axes. It should be noted that, in radar-based
measurements which are treated later, the radar axes system on which
rate sensors are mounted moves with re-pect to the body.

Let E and E- be fixed transformation matrices from body to
angular rate and awngular accelerometer axes respectively. Then theobserved angular rates and accelerations are given by

U E w

wz- E~ - ii s W E

* Here E and E" are the observation parameters. In state notations these
equations become
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Y2s -h- hx -

Y= h (k2 ) (5, 14)

where

hw=[t x2

hv [Ed) u 2 (5.15)

Air Data Measurements A

Three measurements are made on the air data: (1) st•,c pressure (2)
total pressure and (3) total temperature. These measure,...,- are used by
the air data computer to obtain, among other things, the a?,'; de, altitude
-ate, mach number and airspeed.

In the following, the geometry of the air data measurements are
developed via the physics of the variables which are observed.

Static Pressure Measurement -- The observed static pressure is a non-
linear function of the altitude. The static pressure-altitude relation is de-
rived from the barometric equation which may be expressed in the following
form [383:

g Wm

d loge Ps = " - dh (5.16)

and
T = To0+ t (5. 16a)

where

h = altitud-

g = acceleration of gravity

Wm = molecular weight of air

R = gas constant

T = absolute temperature (Kelvin)

t = temperature (centigrade)

T = constant0

Approximately, one can write from (5.16)

k1h

PS= ebTe(5, 17)

77



I

or in state space notation

kl

whe P Pbe 4(5. 18)

where

c = col(0 0 1)

and Pb' k, are the observation parameters.

Total Pressure Measurement -- The observed total pressure is connected
to the static pressure and the speed of air with respect to body, through the
following relationship:

SY1
V2

PT Ps (5.19)

wherey= 1.4

and Va airspeed with respect to body

a = speed of sound

At this point, it is convenient to introduce the Mach number parameter
defined by

M= a (5.20)
a

Temperature observations are functions of this parameter.

The speed of sound is related to the temperature as follows:

a kA[Tg (5. 2)1)

where k y--
SPo0o (5.22)

Now combining (5.21) with 5.19) and noting that
Va V -W

a =(5.23)
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One can write in terms of states, the following observation equation:
L

1.(3.5)
PT L Ps (.2) (x

0La (5.24)

where

1 a(x 1  I)

k1 koT 0 (5.25)

Total Temperature Measurement -- The total temperature is related to

the static temperature t, by £387

s =( -. 2M) (1 .004M )t (5.26)

and is observed by a resistive sensor obeying the Callendar-Van Ousen
equation

RT = g(ts) (5.27)

where the function g is a second-degree polynomial in t . Thus in (5.24) the
parameter t (i. e., temperature) is indirectly observed Ind this observation
is described by (5.26) and (5.27).

In summary, the air data observation vector is connected to the states
as

p h h~(x4  b t)Pss = ps(X4 Pb t

FTs I h p(x x 1 pw,'Pss t)

RTs hTT(x. 1wt (5.28)
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where

S- 3.5
(Xx1-xlw) (X 1-x 1)

h (h +2 k(T+t (5.29)

hT g(tS)

Fire Control Measurements

Description of Fire Control Measurement Model -- T•'re ccntrol measure-
ments involve body-mounted sensors also. From tile readings of these sen-
sors, the target's relative position and velocity with respect to aircraft
are derived [393.

The radar measurement model considered here, is illustrated in
Figure 22. In this model the relative position of target is defined by the
vector

[R.R
yRP I*RI (5.30)

whore

R RR magnitude of the position vector of target relative to point 0 R on
aircraft

eR = azimuth angle of position vector with respect to body axes

6 oR =elevation angle of position vector with respect to body axes

* ' It is assumed that the relative position vector yRpIas defined above is observed
using a radar device which is located by a vector Arl• from the origin, 0, of
the body axes. The rad.ar axes are ass x'ned to be oriented by synchros so

,. that the antenna (i. c., iR vector) always points to the target. It is further
assumed that the angular velocities qR and rR of radar axes with respect to
earth are observed by antenna-mounted rate gyros, and the rate of change of

* RR is observed by dopplev' shift. This describes the fire control measure-
ment model used in ADAPS. In the following, the geoinetry of the radar-
based measurements are developed parallel to the previous subsections.
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Figure 22. Radar Measurement Geometry: (a) Body Axes,
(b) Radar Axes, (c) Earth Axes
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Geometry of Fire Control Measurements -- 3
Position Measr-ements -- From Figure 22, the position vector • of

c.g. is given by

r = -(rR + R) (5.31)

where:

r = position vector from 0 T to 0
= position vector from 0 toO

rR = position vector from 0 to 0

RI

From (5. 31) one obtain,: R in body axes and in matrix notation as
RI

=R - [E(9, j, 0)r + Ar (5.32)
R R R •

In state space notation (5.32) becomes

rR= [E(x3 ))x4 + ArR (5.33)

On the other hand y as defined in (5. 30) can be expressed in terms of
cartesian componerf'of (5.32) as

YRP hRP(x 3 P x 4 9 ArR) (5.34)

where

V2 2 2
xR +R R ZR

hRp= tan 1 YR (5.35) " I
xR

tan-
1 ZR

Lj
Thus (5.33), (5.34) and (5.35) constitute the position observation equations,
with Ar position observation parameter.

R
Velocity Measurements -- Differentiating r in rotating radar frame

"one obtains R

di!R 6;~ . -iII
d t- + LR X rR (5.36)

82,..



ii

Since

diRl

S= R (5.37)

where vt is the linear velocity of o with respect to earth-fixed frame
origin One obtains from (5.36) 4nd (5.37):

T

rR+ -WR xrR-

- 6 Rwxt (5.38)vR

In matrix notation

6rR
-v +W rR 6t R R (5.39)

where

I-Rr [ -r R qR
rR 0r 0 O WRrRO -R (5.40)0-R' 0R

Using (5. 40) in (5. 39) yields

R [(5.41)v R R r r

qr

It is noted that R, R, and angular rates q and r of radar axes with
respect to earth axes are the observed quIntitiesJ.

Now, the linear velocity of OR can be expressed in terms of the velocity of
cg in body coordinates:

RB v+ w X (5.42)

Let E = E.({., e ) be the transformation matrix from body axes to radar
axes. IE i.iobingl from equation (3. 14) of Section III, by letting 0 = 0R,
hr *R ar 0 = o).

Then in matrix notation the linear velocity of 0 R in radar axes becomesRJ

vR [ER(0R, R) Ev rR (5.43)

where vR is given by (5. 41).
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Defining the velocity observations by

SrR (5.44)YRV R

qr

one can write us'ng (5.41)

YRV = D(R) v r (5.45)

where

1 R R(5.46)
D(R) 0 -1 ,(.6

0 0 R

Finally substituting (5.43) into (5. 45) yields the observation equations in
the form

YRV = hRV (xlo x 2 " RP" (5.47)

where

h = D(R) EE(0 Ix +w(x Ar (5.48)

This finishes the treatment of the observation equations of the measure-
ment system considered in ADAPS.

In the subsection that follows, the development of a model for the
dynamics of sensors which read the above observations is briefly presented.

DEVELOPMENT OF A DYNAMICAL MODEL FOR SENSORS

Almost invariably, the dynamics associated with each measured-scalar
signal is of second order. Therefore, the overall system order increases
very rapidly when the number of measured signals increases. To overcome
this difficulty, the sensor dynamics with poles lying outside of the signifi-
cance circle of radius R on the complex plane as shown in Figure 23 are
ignored in the dynamicai representation of the overall system. However,
their positions are checked after the optirtial gain loop is closed, because of
the sensitivity of high-frequency open-loop poles to feedback.

Figure 24 is the block diagram of the ith sensor dynamics.
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In this diagram, y. and y. correspond to the ith scalar observable and
measured signals R-spect~ly; x11 and x are the state components of
the i 1sensor.

The dynamics of each sensor are identified by five coefficients, a..I
ba., b b, and d., wiere i is the sensor index. These coefficients

core nmto the obtput-frobenius implementation of the sensor transfer

function. For those cases in which the transfer coefficients (i. e. , di) are
zero, this representation provides output as the first component of sensor
state. This finishes the development of a dynamical model for sensors.

Figure 25 shows in detail the kinematics and dynamics of measurements.
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II
SECTION VI

LINEARIZATION OF THE
WEAPON DELIVERY PROCESS

The weapon delivery process is a nonlinear stochastic phenomenon. To
analyze the nonlinear equations, practically, they are linearized about the
nominal path. The nominal path considered here corresponds to a dive-toss
maneuver and consists of essentially three phases: (a) dive, (b) pull-up, and
(c) free-fall, as shown in Figure 26.

The development of a model for the release transient phase is outside the
scope of this work. This part of the nominal trajectory is taken into account
in a simplified manner, by introducing an independent, additive, stochastic
error on the initial condition for the free-fall trajectory.

hI
h (b)

Xe

Figure 26. Nominal Trajectory for Dive-Toss Maneuver:
(a) Dive Phase. (b) Pull-up Phase, (c) Free-
Fall Phase, (d) Release Transient Phase
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LINEARIZATION PROCESS

It is assu'med that the dive and pull-up maneuvers are carried out with a
fixed thrust level, and by controlling the elevator deflection.. The missing
states and parameters along the paths (a) and (b) are obtained either by
solving a set of trim equations developed for the case at hand o"r by a soft
flight-path controller. The trajectory (c) is developed by integrating the
six degree-of-freedom free-fall equations of an iron bomb

The linearization process along the paths (a) and (b) yieids the state
transition and the input matrix pair (F, G) of the aircraft, which are used to
design an optimal weapon delivery controller. The linearization along the
path (c) yields the sensitivity matrices which are used'in translating the
dispersion errors at bomb release to the impact of the bomb on the target
a.s well as errors which occur during the free-fall.

The numerical development of the ideal nominal trajectory is illustrated
in Figure 27 for the algebraic trimming. The6 process starts at t Z to with
altitude ho and range xo. First a trimming is performed as outlined in
Section VII; then a linearization is performed. This sequence continues
with every AT seconds along the dive path until the pull-up altitude, h u, is
reached. Similar steps are carried but along the pull-up trajectory, hntil
the release time, tr, is reached. Subsequently, integration of the six
degree-of-freedom equations of motion of the bomb is carried out N steps
with At = AT/N time interval. Then a linearization is performed at t .
tr + AT. The process is continued until the impact plane is reached.

The equations which describe the general motion of a rigid body are
given in Section III. Many problems of rigid-body motion involve only small
disturbances (I. e. , perturbations) from steady or quasi-steady flight condi-
tions. In the following, the assumption of small disturbances from reference
flight conditions is used to reduce the equations from nonlinear to linear form.

DEVELOPMENT OF THE PERTURBATION EQUATIONS

In the state vector notation, the general equations of motion of a rigid
body, as developed in Section III, is described by a nonlinear vector
differential equation of the form

- f Ix (t)* u(

where f is real, continuous and has continuous first order partial deriva-
tives with respect to xi, i = 1,2,..., n; anduj, Ix= 1,2,.... r; in a region
of ( x, u) space which contains the solution curve (x(t), u) with to g t < tf
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Figure 27. Development of Nominal Trajectories and
Linearized Equations of Motion for an Aircraft
Weapon Pair for a Dive-Toss Maneuver in xz
Plane
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Let (1x, u) and (x ,u) be two neighboring pair of solution curves
satisfying 16. 1). Define

and (6.2)
,n=u-u 

,

Also let the matriees with columns) * - a
B i (X(t), .):

and

(i(t), ii)

be denoted by F- (x(t), u), Fu (i(t), u), respectively. Then from (6. 2) it I
follows that [401

UT f ( +i(t), r+u) - f (x(t),iU) (6.3)

or

d§= Fxu)• + F (ii)n + o(ls2)+o(InI) (6.4)
dt Fx Xu (64

where o(e) is a vector such that

lim o(e) = 0  (6. 5)
e -40 -e

When the last two terms in (6.4) are omitted, there occurs the linear
system

= F x (i(t), i)y +F (F(tii)v (6.6)

with I

Y(to) = x(to) - i(to) (6.7)

which is called the first variation of (6. 1) with respect to the solution
(xi(t), U). It is also called the variational equation of (6. 1). The first !
variation determines the dependence of solutions on the irtial conditions I

and pa-ameters. It also determines in some cases the nature of the
stability of the soluttions ('x,iu) of (6. 1).
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In engineering practice, the procedure described above is called the
linearization process, and the variational equation (6. 6), is called the
linearized equation of motion. Also the solution (x, U) is referred to as the
nominal solution or the reference trajectory. It follows from (6. 6) and the
definitions of F and Fu that, in order to carry out the linearization:
(a) the solution (xo,) must be specified on an interval to 1 t ! tf, and
(b) the first partials of f(t, x, u) with respect to xi and uj must be developed.

In the following, first the development of the nominal solution (X, u) is
given then the development of first partials is presented. At this point a
few words on the notation for small disturbances ýi. e., perturbations) are
in order.

Usually, perturbations of velocity and orientation variables are desig-
nated by the lower case symbols for these quantities, i. e.,

(Eu) (s)' /) (e)4q Ye

Upper case symbols are used with a subscript zero to denote the reference
values of these variables. Thus

0 1Qo0 eo

( (0) eo\
are reference values for linear and angular velocity components, orienta-
tion angles, and positions. Incremental changes in aerodynamic force and
moment components are denoted by the pertinent symbol with a prefi:: A,
e.g., AX, AZ, AM, etc.

DEVELOPMENT OF THE NOMINAL SOLUTION

The way the nominal solution (x, u) is developed dcpends upon whether
or not the parameter vector 5 is controlled or uncontrolled. The term"controlled" here implies the description of 5 over a time interval suc_"
that the solution (x, u) behaves as specified. Uncontrolled _u on the other
hand implies generally, disturbance parameters effecting the evolution of
the solution.

The nominal solutions (i. e., reference trajectories) are developed by
means of a set of specified reference-flight conditions. Reference-flight
conditions are divided into two groups: free reference-fligtht conditions
and controlled reference-flight conditions.
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Free reference-flight conditions constitute the specification of an
initial value of the state, x(to) = xo: and the specification Of the free parameter
u over an interval to < t : tf. The nominal solution In this case is developed
by integrating (6. 1) over the specified time interval.

A noninal motion of an iron bomb, released from an aircraft falling
freely under the influence of the gravity and winds is an example of this cas.

The set of controlled reference-flight conditions consists of steady
flight conditions, quasisteady flight conditions, straight flight conditions, and
symmetric flight conditions L151:

Steady Flight Conditions imply a motion with zero linear and
angular accelerations. That is

dt - O, and ( q (6.8)
(Wnd

Steady sideslip, level turns, and helical turns are examples to this
kind of motion.

* Quasisteady Flight Conditions imply a motion with some nonzero
linear and/or angular accelerations. A steady pitching motion
(i. e., steep dive) which is described by the quasisteady flight
conditions

(( 0 (8.9)dtd

is an example to this case.

* Straight Flight Conditions Imply a motion with zero angular velocity
components. That is

P q (6. 10)
r) 0 a 0

Steady sideslips and dives or climbs without longitudinal acceleration
are examples of this kind of motion.
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Symmetric Flight Conditions imply a motion in which the body plane
of symmetry (i. e., xz plane), remains fixed in space throughout the
flight. That is the asymmetric variables are all zero:

p q v u0= (6.11)

Wings level dives, climbs, and pull-ups with no sideslips are
examples of this kind of motion.

The set of mathematical consequences associated with all specified
reference flight conditions is used to construct the nominal trajectory.

At this point it should be noted that some of the reference flight conditions
are on the derivatives of the state variables rather than on the state
variables themselves.

The process nf finding the values of involved state variables and inputs
so that the conditi )fl5 as specified by the equations given above are satisfied
is called "trimming". (The process of trimming for a particular set of flight
conditions, i.e. , dive and pull-up maneuver, is described in Section VII.)

DEVELOPMENT OF THE FIRST PARTIALS

Consider a general rigid-body motion characterized by

S= f(x, u, w) (6. 12)

where

x = state vector of the motion

u = control vector of the motion

w = disturbance inputs of the motion

Equation (6. 12) can be decomposed into the following form by using the
Equations (3. 62), (3. 63), (3. 24) and (3. 72) of Section III:

S= W(x 2 )xl+ E(x3 )ge +m f(xlx 2,X 3 w) +61Y

2 1 W(x2 )J x 2 + j-rn a(xlfx 2 , x3 # 6,w)+ j-1 BTYT (6. 14)

3 G(x 3 ) x2 (6.15)

"x4  = E'(x3 )x 1  (6.15)

43(6.16)
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where the subvectors are defined as follows:

x 1 = linear velocity vector

x2 ) angular velocity vector

re

x angular position'vector

\/e

d f Y translational position vector (flight path state)

6 r s(t v ) c o n t r o l s u r f a c e d e f l e c t i o n v e c t o r

YTeffective thrust input'4

W g r w in d v e lo c ity v e c to r

and finally fa and ma are the aerodynamic force and moment vectors,
respectively, expressed in the body coordinates. These two vector functions,
in general, do not have analytic form. Their values as functions of their
arguments are supplied in the form of tables. In this work, the dependencies

of fa and ma to the derivative of the state vectors as defined above are ignored.

If a quaternion is used to describe the angular position coordinates, then
equations (6. 13) through (6. 16) basically remain the same except the angular
position vector becomes
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3 1.

and the differential equation of angular position can be written as [see
Section III, Equations (3. 54) and (3.68)]

wher =anG(x 2 ) G(x 3 )x2  (6. 15a)

where G(xh)and G(3) are linear functions of x2 and x3 respectively. The state
diagram of the nonlinear equations of motion is illustrated in Figure 28.

Equations (6. 13) and (6. 14) describe the evolution of the linear and
angular velocity vectors, respectively. Equations (6. 15) and (6. 16) describe
the evolution of the angular and translational position vectors, respectively.
Two approaches are available for the development of partials of the right-hand
sides of (6.13) through (6.16): (a) mixed (i. e., analytical and numerical)
partial differentiation approach or (b) pure numerical partial differentiation
approach. Depending upon what approach is used for obtaining the partials,
linearization will be referred to as (a) mixed linearization, and (b) pure
numerical linearization. Both approaches are presented in the following,
but only the pure numerical linearization approach is utilized for the lin-
earization in ADAPS.

Mixed Linearization Approach

It is intuitively obvious that mixed partial differentiation approach for the
linearization is more accurate than that of pure numerical partial
differentiation approach. However, as will be seen in the following develop-
ment, it requires more programming effort and computer memory for its
implementation. Observation of the right-hand sides of equations (6.13)
through (6. 16) reveals that the majority of the analytical terms are in theform of

f(x., x) F(x.) x1 (6. 17)

In the following the incremental change in f(xi, xj) is developed for various
values of i and j:

0 Case 1; [see Equation (6. 13)) Clearly, an incremental change it if
about the nominal states (x 1 , x 2 ) In terms of perturbations 8x 1 and
8x 9 is given by

6f(x, x2 ) 6 W(x 2)xI =[W(x (6.18)

o )1 1+6 (2)) 11 (.8
0 0
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On the other hand

Xl2) = -1 b 6.9

a W 813' a qqW 6 bW
0 0 0

So that

8f(xl° x2 ) = 6 [W(x 2)xl] = [W(x 2 )J 06 xI +

(pw x w a ) W
SXl •--X�-x xI 6x2  (6.20)

Since W(x 2 ) is a linear function of x , indicated partials are constant
matrices. When the components of V(x 2 ) are used in (6.20) in
accordance with equation (3.21) of Section III, one obtains

8[W(x 2 )xlj = W(x 2 ) 6x1 - W(x 1 ) 6x 2  (6.21)
0 0

where I

W(xI) w 0 =u r 0 -p (6.21a)

-V u 0 q p 0

The same result can also be obtained from the vector notation
representation of f by noting that

= wxv = -vxw .

so that

6 = w x6v- v x 6w (6.23)
0 0

Equation (6. 21) is matrix representation of equation (6. 23).

Case 2:

f = [J )J"x (6.24)
2 2

Following the similar steps

9
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6f(x2 ,x.) 8[J'W(x2 )J x2 J = [Jw(x 2)J] 6x 2

"" rX2 v, 1 ix J2 6X2 (6.25)

S Case 3:

fAx 2 , Xs) = EG(x 3 )x 2  (6.26)

so that

5 f(x2 , x 3 ) =G(x3 )] I 6x2 + 6 6G(x 3 }x 2  (6.27)

But i(

G CaseG 46(G(x3 -- a a0 + - +(6. 28)

yl So that

1 f(x ) 0 x1  G(xI 1j 6x+q I x 'G x2  (aG x 6 (6.29)6

00

Bf(xT, y E "(x3)] 62 + e x x l2 ax (6.32)

0 o

In summary, the linearization of the analytic terms in (6. 13) through (6. 16)
yields the following set of equations:

-W(x)]6 W XWx)e

mo
99.32)+ml BTYT + m1 Afa(Xl, x2' x3'68,w)
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-1 -TYT +(6. 33)
iJ BTY+ J Ama(xisx 2 ax3 1 6,w)

6x3 LG(x )] 6x + G x~ G~X 'T 2)(6341 ,0
4 = [E*(x3)]o6xI + • Xl '-X xI 6x 3  (6. 35)

where the matrices W, E, and G are defined by equations (3.21), (3.14) and
(3. 24) of Section III, respectively. The set of equations (6. 32) through (6. 35)
can be written as

1 1  F 1 2  F 1 3  1 Tx IB '2
1 x- fA inl' ,x ,w)

2  2 2  0 0a(X1Txx, x3 , 2 ,w )

0 F 2 3  F 3  0 6 x 0 0

L.-x4 LF41 0 43 01 L.. - __- -0

(6. 36)

This finishes the linearization of the analytical terms. What remains to be
done to finish the problem is to compute A f and Am appearing in (6. 36). Since
these vector functions have tabular representations, one must resort to a
numerical procedure to compute them in terms of the increments in their
arguments. At this point there exist two methods of approach: (a) the
equations of the force and moment vectors presented in Section IV can be
utilized to further the analytical differentiation process/ this procedure
finally yields to the stability derivatives of the aerodynamic force and
moinent system; or (b) direct numerical partial differentiation of f and m.

This brings us to the problem of numerical partial differentiation of
vectors with several arguments. Since the size of a vector and its arguments
are immaterial, the computational procedure presented in the section that
follows for the pure numerical partial differentiation approach applies hereas well.

Pure Numerical Linearization Approach

As can be seen from the equations (6. 32) through (6. 35), the mixed- A
linearization approach requires more effort in its computer implementation A
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and it does not completely eliminate the numerical differentiation process. *1
For this reason, sacrifice is made in the accuracy of computations to grossly'
simplify the linearization process. In the following, a set of candidate
numerical algorithms is presented and the one which is implemented in
ADAPS is discussed.

Numerical Differentiation Alorithms -- Numerical differentiation algorithms
can be developed either by (a) differentiating the Lagrange interpolating
polynomial of a table function or (b) using the discrete approximation to the
derivative operator.

By differentiating three-point Lagrangian interpolation formulas and
evaluati the results at tabular points, the following derivative formula isobtained 41f

fl-fi )-I f"'(g), x0 -h<g<x +h (6.37)
Sfo' 2h60

If it is known that If' 1"(x)I< M3 in the interval (xo-h, xo+h) and if all
given data were exact, the maximum possible error in the calculation of
f'(xo) would be 3h2

3 (6. 38)

On the other hand, if each of the ordinates involved is in error by + C, then

the magnitude of the corresponding error in the calculation of ft(xo) could be
S~as large as

I R3hax (6.39)

whereas a reduction of the truncation error E3 would generally require a
decrease in h, a small value of h would lead to a large possible round-off
error R3 and, conversely, a reduction in I R3 knax would generally correspond
to an increase in I E3 Imax.

A reasonable procedure consists in determining the interval h such that
the predictable upper bounds on the two errors are about equal, if this is
feasible. The optimum value of h and the corresponding maximum total
error T* are then found to be [41]

h* = 1.8e1/ 3 M -1/3, T*=l.l1 2' M 1/3 (6.40)
3 ,3

By using a discrete approximation to the derivative operator, the derivative
of a function at discrete points can be expressed in terms of the differences of
the function at tabular points. Let s be a differential operator, that is

sf(x) f'(x) (6. 41)
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If z is a shift operator defined by 1
zf(x) = f(x+h) (6.42)

Then it can be shown by using Taylor series expansion that I
z = ehs (6.43)

If A is a forward difference opertor defined by Af(x) = f(x+h) - f(x), then one
can write z = (1+A) and

= log zlo0ail+A) T ---
sT =(A l A +...) (6.44)

In terms of backward differences, z = ( -1

s = (1- V) =i(V+ V...) (6. 45)

If the expansion is truncated after the first term one obtains

d 1_r
ax- (A) (6. 46)

so that

d f( fx+h)-f(x)
h h 7

Derivatives using more data points can be obtained from (6. 44) or (6. 45).

At this point a remark is made about algorithm selection. In airc:'aft or
weapon linearization problems, the listed increments in the function arguments
are much larger than that of increments that can occur about a nominal
argument set due to small perturbations. Consider a table function

f = fA

where

h(x u
M(ix, u)

is the data argument set of the table function. Let

A = AM
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be the set of increments on which data is given. Then there is a perturbation
Q( x, 6u) such that

186 1 < IAp1lr I C111"I + + ICIuO (6.48)

This fact is illustrated in Figure 29.

h-

On the other hand, for every M in the i, j, k data cube, f(h, M, a) is
represented by [2

f(h, M, a) A o +1 f+ 42M + 1 3 1 (6.49)

'Z1 2 hMw Z 2 3 c+ 3 1 a

+ "l 23 h M C.

where A's are functions of data point indices i, j, k only, and 1i, M, I' are
linear functions of (h, M, a). This representation follows from the multi-
dimensional linear interpolation algorithm used in ADAPS for generating a
value for a table function inside the interval of tabular points. It follows
from (6.49) that the partials

I ~ f If I

depend only upon (a) the data cube in which the nominal parameter vector is
located, and (b) the value of the nominal parameter vector. It does not
depend upon the size of the perturbations as long as the perturbation cube is

ak+l

~J+

I-I÷ 1 +.1

'kI) ();
Figure 29. "Data Increment" and "Parameter

Perturbation" Cubes
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inside the data increment cube. Therefore, we may conclude that a two-
point linear interpolation algorithm is used for representing a tabular function
inside the data int, -val, and when small perturbations are assumed then, the
use of elaborate differentiation algorithms is not justified for the table functions
and partial differentiation algorithmns given by

[f(•-• CL)-fla)]
a L (6.50)

•* [•(a)-fAa-60
iL (6.51)

(6.52)

are all equivalent and moreover independent of the size of 6a provided that

For pure numerical linearization process, however, the use of the
central differences given by equation (6. 52) provide bctter accuracy in the
linearization of analytic functions appearing in the equations of motion. For
this reason (6. 52) is utilized with a set of fixed perturbation increments, in
ADAPS.

The analysis presented up to this point is implemented as the subroutine
-*LINK. It is used to linearize numerically, the nonlinear state equations of

motion.

TRANSFORMATION OF THE PERTURBATION STATES

A few words are in order here abouc the state component assignment to
various physical quantities in the dynamics. The standard state component
assignment for the nonlinear equations of motion has been defined to be

X= col(X1, x, x jx x x1x x, xiX, x)'20 3 4' 5' 6x7,x' 89 910 il 12

col (u, v, wip, q, rl e, 0, xl.xe # z (6.53)

The resulting state perturbation equation of motion is illustrated in Figure 30.

When dealing with the linearized equations, the state components may be
reordered with respect to longitudinal and lateral dynamics for convenience.
The state component assignment for this case is defined as

4 
6 x= col(5xe, 6 he, 6 u, 66, 6q, 6w 6 y, 6 6 r, 6v, 60, 6p) (6.54)

* iThe resulting state perturbation equation of motion is illustrated in Figure 31.
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1 The gust filter states (Section IV) are also grouped with respect to
longitudinal and lateral ex itations:

wlcol(W1 , W7 , w31 w 5 1w8 , w2 , '4, w6 ) (6.57)

The resulting state equation of the full-gust filter is illustrated in Figure 32
and the state equation of the reduced gust filter (rolling gust terms omitted)
is illustrated in Figure 33. These definitions, produce almost upper-block
triangular transition matrices. They are obtained by permutational similarity
transformations. This operation is referred to as "Shuffling" of the line,.r
data and is carried out by Subroutine SHUFF.

Besides permutational similarity transformations, as explained above,
there are transformations induced by the various selections of physical
variables as state components. For instance, instead of selecting (-, v, w)
as state components, one may choose (V, •, cL) to describe the velocity vector.

Consider the state differential equation given by (6. 12). Let g be a chosen
state vector related to standard state vector x by a nonlinear relation:

- g(x) (6.58)

Then

w = h(xu) (6.59) ,i
where

h(x, u) I= M f(x, u) (6.60)

Let us assume that x, , and • are evaluated for each nominal point using I(6. 12), (6. 58) and (6. 59). Then the partials

( f) o (_Lh) and1 6h can be computed along the

nominal trajectory during the linearization process with the standard state,
as described previously.

Noting that

o~ (6. 61)

and i
8±12 8u (6.62)
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The state perturbation equations in terms of the new perturbation state
vector become

F8 =G au (6.63)

where -1

ax iFý2 10 )( ) (6.64)
and

G au(6. 65)

By this procedure, the linear data can be generated for any arbitrary axes

system.
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SECTION VII

DEVELOPMENT OF THE NOMINAL STATE
AND PARAMETER (TRIMMING)

The way the nominal state and parameters of a rigid body in flight are
developed depends on whether the body is controlled or uncontrolled. When

a prescribed nominal trajectory to be generated by a controlled body (i. e.,
aircraft, guided missile) is under consideration, one can find it either: (a)
by simulation with an autopilot for given flight conditions and reading out the
nominal values of state and control parameters during the flight; or (b) by
assuming that a body is forced to fly in accordance with given.flight condi-
tions and computing the mi&ssing nominal states and parameters which produce
that flight. The first technique is called "trimming with an autopilot" and
the second "algebraic trimming."

When a body is uncontrolled (i. e., iron bomb, bullet) the nominal
trajectory cannot be arbitrarily specified. It is obtained by integrating the
differential equations of motion starting from a given initiai condition.

In the following the development of the nominal state and parameters
along a prescribed trajectory are treated for n controlled body first using
the algebraic trimming approach. Then trimming with an autopilot is dis-
cussed. In ADAPS the latter approach is utilized.

ALGEBRAIC TRIMMING

Consider an aircraft represented by

x =f(x, u) (7.1)

y = h(x) (7.2)

where

x = state vector

u = control vector

y = response vector

The response rate is then given by

y H(x) f(x, u) (7.3)
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where

Hh (7.4)

The response vector may consist of a set of trajectory variables such as

y [ 1 w (7.5)

Most often, y and some of the components of x, and x are specified along
the nominal trajectory.

For instance F4] [a] ,
= [. = U(7.6)

indicates a quasi-steady motion with a constant acceleration and a constant
flight-path angle (steep-dive bombing).

The trim probl m is to find the missing state variables and controls
such that the error defined by

C(t) = IH(x) f(x, u) - -d I (7.7)

is small.

Algebraic Trimming for Dive and Pull-up Trajectory

The two-phase nominal trajectory considered here corresponds to a
steady, symmetric, straigh-ath, dive-bombing maneuver 7 1], followed by
a symmetric, steady-pitch (i.e., constant-g) pull-up maneuver.

In the first part of the nominal trajectorv, it is assumed that the aircraft
is in a steady flight with a constant velocity V, along a Utraight path with a
flight-path angle y, and altitude ho>: 2 hpuwhere hpu is the pull-up altitude as
shown in Figure 34. This type of flight is assumed to be accomplished by
adjusting the elevator angle (i. e., stabilator in F-4 case) and the magnitude
of the engine thrust.
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Figure 34. Nominal Dive and Pull-Up Trajectory -Itflo

In th9 second part, it is assumed that the aircraft flies with a constant
velocity V2 and a constant pitch rate Qo. Again this type of flight is assumedto be accomplished by adjusting the elevator angle and the magnitude of the
engine thrust., ?

In the following, the trim equations for the dive phase of the maneuver •
are developed first. Then the constant-g pull-up case is treated. ••

Development of the Missing Nominal Values for a Dive Maneuver -- It follows ••
from the abcve descriptions that the mathematical implications associated
with the given conditions are: -

Constant Speed V = 0 (7.8)

Steady Flight j 0 and 0 (7.9)

1u) (u:'(t) p
Symmetric Flight = ( : q(t) (7.10)

wW(t)/ r 0
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'7- t--

and

0' 0't~ COB co /2I0

0 or equivalently XI = 0 (7. 11) I;

0• sin 0/2 !;

x3 0(3

P/
Straight Flight q 0 (7.12)

Finally,
aa 0 ! ,!

Controls a - t , T = T(t) (7.13)

It is obvious at this point that the specified set of flight conditions does not
give, directly, all the states and parameters along the trajectory. In the
case treated here the missing state information is the angular position coor-
dinate 0(t), and the missing parameters are the stabilator deflection 8s and
the thrust magnitude T.

Observation of the differential equations of motion reveals that

X+XT -mgsino- 0 iu (7.14)

Y -0 (7.15)

Z+ZT+ mgcos6 0 mw (7.16)

L a p 0 (7.17)

M+MT I yq (7.18)

N= r 0 (7.19)
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and

- or 1--0(7.20)y}or equivalently X* 0 (.0
•2

3)

Therefore the problem is to find 0(t), 6s(t), and T(t) such that

x xTu=-+ - gsin0 0 0 (7.21)

m m

M MT -0 (7.23)

y y

Theoretically speaking, it is impossible to produce a steady flight during a
dive motion due to changes in the altitude and Mach number parameters.
However, for all practical purposes the contributions of fi, W and 4 terms
are negligible,

It should be noted here that in the solutions of the above equations, an
equivalent state a is used instead of 0, since the aerodynamic forces and
moments are functions of this variable. After having found the value of a,
0(t) and *(t) are computed from

0 a+V (7.24)

and

cos 0/2

Sin 0/2 (7.25) '1
0
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Development of the Missing Nominal Values for a Steady-Pitch Pull-Up
Maneuver -- As discussed previously, symmetric, steady-pitch flight con-
ditions imply a quasi-steady motion in which

'- 0, =0 (7.26)

and

v = 'w q =(q (7.27)
•w w(t)/ r 10

Similarly

0~ ~ or equivalently X, 0 sin :82

0 x2 isin 01/2

0
3

with controls

s)= ,(2) T =T(t) (7.29)

Observation of the differential equations of motion for this case reveals that

X+XT- mgsinO = mu +mqw (7.30)

Y M '2 0 (7.31)

Z+ZTr +mgcos6 = row- mqu (7. 32)

L 0 (7.33)

M+MT =Iq (7.34)
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NE r- 0 (7.35)

o q (7.36)

= 0 (7.37)

-0 (7.38)

[e (cos 6 u +(sin 6) w (7.39)

Ye -0 (7.40)

Z = -(sin 6)u +(cos 0)w (7.41)

Now, substituting u = V cos a, w = V sin a into (7.30) and (7. 32) yields

x + XT g sin0-qVsina = u (7.42)

Z ZT
m +__ + g cos 0 + qV cosa = w (7.43)

M MT
TT- + - = (7.44)
y y

which shows that the set (7.42), (7.43', and (7.44) reduces to set (7.21),
(7.22), and (7.23) when q is set to zero. Here u and v are functions oft
and 6 i 0, * # 0. If contributions due to u and * are neglected (this is a
common procedure in algebraic trim), the set of equations to be solved be-
comes almost the same for the two parts of the nominal trajectory.

In practice, usually, pull-up maneuver is defined by specifying the so-
called load factor. Assuming wi 0 in (7.32), one can write

q g t-(Z + ZT)
q - co C1 (7.45)

The load factor is defined as

-(Z+ZT)
=n T (7.46)
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In term.a of this quantity the q terms in (7.42) and (7.43) become

qV sina = g(n - cos 0) tana (7.47a)

qV cos a = g(nz - Cos 0) (7. 47b)

Now, for a symmetric flight, the engine thrust variables are given by

X = T(cos 9 cosri) (7.48)
T

ZT = - T(cos 9 sin ) (7.49)

and

MT = XTAz ZTAX = T(Az cos cos O + Ax cos sinn) (7.50)

Observation of (7.48)-(7. 50) together with (7.21)-(7.23), or, equivalently,
(7.42)-(7.44 , indicates that the total thrust, T, enters into the equations
linearly. That is,

"" T + i- T gsin 0- qV sina = 0 (7.51)
1m m

i C c 2 T + . + gcos + qV cosa = 0 (7.52)2m m

and

T TM =0 (7.53)c31 1
y y

where

c = Cos Cos 11 (7.54)

c= -c s•in i (7.55)

c= (Az cos ý cos 1 + Ax cos sin i) (7.56)

For this reason the number of equations to be solved can be reduced to two

by eliminating T.
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Solving (7. 51) for T yields

T = L[mgsinO+mqVsina- X1 (7.57)

and substituting this into (7. 52) and (7. 53) one obtains

w= g(cos 0 - c4 sin e) + qV(cos a - c4 sin (.). (7.58)

+(c 4 x+ Zy/m] = 0

C= [c(mgsine+mqVsina - X) +M]/ly= 0 (7,59)
5y

where

cI =cos g cos

c = tanfl (7.60)

c 5 = (Ay - c44x)

Hence the problem is reduced to finding a and 6s such that (7. 58) and (7. 59)
are both zero.

To summarize, in the development of the trim equations it is assumed
that the adjustable parameters are the magnitude of the engine thrust and the
elevator deflection angle:

0 Trim Equations -

wv g(cos 0 - c4 sin 0) + qV~cos a - c4 sin a)

(c 4 X + Z)

EM- c 5 (X -mgsin0-mqVsina)/yy 0 (7.59a)

where, neglecting c

V YO7' + qAT (7.61)

0 = Y+a (7.62)
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and

S0 dive

q C ; (7.47a)

sinn - cos 0) pull-up

0 Trim Value of Engine Thrust

T = (mg sin 6+ mqV sina - X)/cI (7.57a)

* Trimmed Accelerations
XT+ X

T= XT+ g sin 0 - qV sina (7.63)

S' T +gcos 6+qVcosa (7.64)m

S= (M + MT)/1yy (7.65)

In the following, a procedure is developed by which 6(t), 6s(t) and T(t)
are found at time points [tkO, k = 1, 2,.... The method is based on the con-
cept of "finite number iterations."

Development of the Finite Iteration Algorithm

In short notation, (7. 58) and (7. 59) are expressed with the aid of (7. 61)

Rzid (7.62) as

f (Mach, h,c,6s) = 0 (7.66)
1

f2 (Mach, h, a, 5s) = 0 (7.67)

where ralach number and altitude, h, are parameters and a, as are the real

solutions of thece nonlinear algebraic equations [42,431.

In the fAUiowing, we shall formally develop a discrete version of the
method given hi L421, for solving (7. 66) and (7. 67) since the partial deriva-
tives of f and f cannot be evaluated analytically as assumed in [4":. During
this development0 the parametric dependence of (mach, h) will be s. -"-essed
for the writing ease.
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* Define

T0(a6 Tl2 [f 1 (a, 6S) - Tlf, (a0

II I(7. 68)L (:6,f(a, 6 iP
2JL a - 2 f(ao, 6so)J

where a0 6 are initial estimates for a and 6 ,respectively, and T'r~ are
unknown para neters. Clearly for the initial va1YueS Tl~ 1T2

70 i(ao, 6s ,Ti,¶2  01
(7 69)

Moreover, the values a and 6s for which

r0(a, 6 ,0,0) [0170

L02s 6: 0,090)] [0]07.70

are the solutions of (7. 66) and (7.67). Hence, one can find the solution a, O
by gradually decreasing T 1 and T 2 to zero from the starting values Ti I 1T.='
and at the same time determining a and 6s so that 01 = 02 = 0 for every value
of i and T 2 .

Now let AT, and Ar be sinall perturbations about the initial values T

and T,,. Then by expanct9 ng 0 1 and 0 2 abu h nta on a s¶ 2) Ais
possitle +o) find small perturbations Aa and A6. such that

AI

01:(] + L O 2 a+ 1 6 S +A 6 S, T1 +A,, T2: +A T 2)1 [:
Ignoring the second- andi higher-order terms and making use of (7.69) one
obtains

A1 6ai A (6 a,6~ A6 f (a 0, 6S)AT1  0 (7.71)

II
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Ii
0 -+b a(As + f2 (•oaSo) A = 0 (7.72) i

where indicated partials are obtained by divided differences. Now if these
two equations are independent, then Aa and Aas can be obtained in terms ofgiven AT, and AT2 I

By continuing this procedure, the parameters TI and T2 can be reduced to
zero in a finite number of steps and the values of a and 6s corresponding to j
¶ -_ T _i- 0 become the real solutions of (7. 66) and (7. 67). From the above
formaf treatment, a numerical algorithm for finding the values of a and 6.emerges. The subroutine which implements the procedure is called

SUBROUTINE NOMK.

In the following, finite iteration algorithm is compared with the Newton-
Raphson process with respect to convergence.

Finite Iteration Algorithm versus Newton-Raphson Process

The development given above is closely tuned for solving a specific trim
problem. However, the method of solution applies equally well to solving
nonlinear vector equations of the form

f(x) = 0 (7.73)

with a vector argument. In this cgae, one obtains the following vector equa-
tion with initial guess solution x(o:

LX I Ax f~x(°)x -( - 0 (7.74)a x

Then for given value of AT"(° Ax is found as

-bfxl (010A -- - 1 f(x A)) r (7.75)

Provtded that the inverse exists Starting with x = x(0) and T = 1, the
variables are updated by

T = T--AT(0)

(7.76)
x = X+ AX
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and a new Ax is computed from (7. 75). This process continues until " = 0,
and at that point x(1 ) = x is the new solution.

To improve x(1), one may repeat the computations with the new initial

vector f(x(l)) and with possibly larger value of AT( 1 ), as llustrated in Fig-
ure 35. Note that as A() - 1 this algorithm reduces to the Newton-Raphson
process (Figure 36) in which the increments are computed [59J as,

Axk -k x fxk) (7.77)

and solution is corrected as

Xk+ x•'x (7.78)

Note that, in the finite iteration algorithm, the solution is approached in small
steps (i. e., AT << 1) and corrected in small steps. Consequently, it is not so
sensitive to the convergence problems as the Newton-Raphson process.

TRIMMING WITH AN AUTOPILOT

Figure 37 shows a trimming process by an autopilot. During the nonlinear
simulation of aircraft, the error signal, (i. e., the difference between actual
and desired trajectory variable) is used in a simple autopilot to generate a con-
trol input. If the gains are properly chosen, e(t) can be maintained reason-
ably small while obtaining trim profile. The controller equation used for
dive and pull-up is in the form:

6s(tk+l) = •s(t) + K [o - Y(tk)] + KY V(tk) (7.79)

+ Kequ[qi i q(tk)] + Ki c (tk)

This equation is implemented as subroutine PILOT in ADAPS.
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• i'• ,._•..• x(O)

._ A 1~) __=1

Figure 35. Finite Iteration Algorithm

.. •.__x(2)

S~x(O)

A:=r= 0 p "

Figure 36. Newton-Raphson Process

AP x fL (x4) h t)I

Figure 37. T rim by Autopilot
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SECTION VIII

DEVELOPMENT OF A PERFORMANCE MEASURE FOR
OPTIMAL WEAPON DELIVERY CONTROLLER DESIGN

In this section, a methodology is developed for determining weighting
matrices for optimal weapon delivery controller design. Half probability
area, HPA, is chosen as a measure of weapon delivery performance, and
the effects of fight control parameters, airframe dynamics, measurement
errors, and gust disturbances are related to this measure by using the over-
all system model.

HPA is the area of a circle centered at the mean impact point with 0. 5
hit probability. CEP is its radius.(see Figure 45). For normal distribu-
tions with small cross correlations, this area can be closely approximated
in terms of the impact covariance matrix of the bomb.

For this reason, performance analysis of a weapon delivery process
can be reduced to linear covariance analysis. In the following, a model is
developed for determining the initial perturbation state of bomb, and propa-
gating the release point errors to impact. Next the expression for the HPAperformance measure is developed and its approximation in terms of quadlratic cost is given. The analysis is implemented as subprogram PERK

which propagates the release errors to impact.

DEVELOPMENT OF THE INITIAL STATE OF BOMB

The statistical description of the perturbation state of bomb just after
release is needed to propagate release-point errors to impact.

The state of bomb and the state of aircraft which carries the bomb are
related to 'each other by a nonlinear algebraic equation

xb = hb (x' Ebo Arb) (8.1)

where

x state of aircraft

Eb = bomb orientation matrix (transformation from
aircraft to bomb axes)

Arb bomb position vector

125



I
The perturbation state of the bomb at t = tr for fixed Eb and Arbis given by

6xb H,6xtr (8.2)

where

b (8.3)Hb x• tr

r4

In this work it will be assumed +hat
Hb (8.4)

b!
(i. e., the bomb is at the cg of the aircraft and oriented parallel to the aircraft

axes). However, for completeness, the bomb station geometry will be
given briefly in what follows.

Nominal State of Bomb at Release

The twelve components of the state of the plant undergo a jump at the
release time (Figure 38). This is due to changing the plants, namely the
transition of dynamics from the aircraft to the weapon and adding ejection
velocities.

Xp -. xb

To compute the nominal state of the bomb at release from the nominal
state of the airplane, the bomb station geometry is considered.

It is assumed that the mass center Ob of bomb is located by a vector
ZArb from the mass center 0 of the aircraft (Figure 39). It is further

assumed that /b', Ob are fixed azimuth and elevation angles from aircraft to
bomb axes.

Then, as developed later in this section, the nominal state of the bomb
at release is obtained as follows(see Figure 38):

* Transition of the Linear Velocity State - j
x1 (tr+) Eb (b' ( b) E' (tr) x 1 s (tr+) + WAr] (8.5)
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•jj

Xp

tr t

Figure 38. Discrete Nonlinear Transition of
the State at Release

c Arb R P

b p

Figure 39. Bomb Station Geometry
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where

Xls(tr+) col (us, VsVe)

U 2 +W2

US =VU

= a

SVe = ejection velocity

E transformation from aircr
s body to stability axes

Eb = transformation from aircraft body axes to
bomb body axes

0 Transition of the Angular Velocity State -

x 2 (tr) = Eb(Ob. 'tb) x2(tr) (8.6)

0 Transition of the Attitude State -

(a) Transformation matrix from earth to bomb:

E(tr+) Ft(0b, 4/b) E(tr) (8.7)

(b) Corresponding attitudes (Section MI)

0 (tr+)

0 (t r+)

V/ (tr+)

(c) Corresponding quateinions (Section III)

X 0 (t r+ )

X 1 (t r+)

X-2 (t)r+

X3 (tr+)

* Transition of the Position State -

x4(tr+) x4(tr) + E' (tr) Ar (8 8)
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where xb the distance vector from aircraft

r= Y cg to bomb cg in aircraft axes

E(tr) = transformation matrix from earth to aircraft body axesr

The set of equations given above defines the nominal state. of the bomy~b'
state. t = t r. The linearization of bomb dynamics at t tr utilizes this inal

Perturbation State of Aircraft at Release

To express the perturbation state of the aircraft at release, consider
he nominal and perturbed release points represented by Ix(tr), t I and
5r(V), f•r respectively in Figure 40. r r

r r

Define the release point error to be

6z(tr) = Ex'('r) - x(tr) (8.9)r r r

:1 with

at ttr (8.10)

T T

Figure 40. Linearization About the Nominal Release Point E•cltr), tr)
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and

8x(tt) x(t r) X(t r) (8.11)

Let

x =f(x, u) (8.12)

be the equation of the evolution of x (i.e., perturbed state of the aircraft).

Then along the perturbed trajectory

xlt) =xltr +Afx, U)dt (8.13)

tr 4 •

Making use of (8. 11) and expanding the integrand into Taylor Series about
the nominai yields

trJ

x (tr) =[x(t r + x(t r)+ fAx, u) dt + h.o.t. (8.14)

Using (8. 10) and assuming small Otr, it follows from (8.14) that

x(t) X(tr)J = 6x(tr) +f(X(tr), u(t•)*t + . (8.15)

Therefore the perturbation state of the aircraft at release in terms of
terminal perturbation state and terminal time error is given by i

ax (tr) = 6x(tr) + f( X(tr), u(tr))Wt (8.16)

From (8.16) the mean error vector and the covariance matrix of the error
can readily be obtained:

axlt = x(t) + flxlt), U(tr))tr (8.17)

X(t) = X(tr) +frE[6t (8.18)E t

Here f denotes the derivative of the aircraft state vector evaluated at the Y
nominai release point (x(tr) tr).
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Equations (8.17) and (8.18) show that the statistics of 8tr (i.e., E -StrJ.

E (8tr2 )) must be known to compute release point error statistics.

The release time error 8tr coneists of two components: (a) timing error
Ut due to delays in the release mechanism, and (b) timing error 8 tr in com-
;puing the release time.

For closed-loop fire control algorithms it, which release time continu-
ously depend upon the current state, the release time perturbation 6 tr is a
deterministic function of the state at the nominal release time tr. That is

tr = h x(t)] t' !tr (8.19)

For small perturbations in state, Equation (8. 19) yields

8t = O 8x(t) (8.20)

where

b- x (8.21)
r

Equation (8.20) is the linearized model of the release computer. If instead
of 8x, its estimate is available, then

atr + =(t (8.22)

where e(tr) is the error in the state estimation, and Qx(tr) is the optimal
estimate of 5x(t).

Thus, (8.16) and (8.22) define the .lease-point error in terms of the
perturbations about the release point.

Perturbation State of Bomb at Release

The transition from the aircraft perturbation state to the bomb perturba-
tion state is accomplished using equation (8.2). The nonsingular matrix Hb
is obtained from the linearization of (8.5)-(8.8) at nominal release point
CX(tr), tr . Substituting (8.16) into (8.2) yields the perturbation state of the
bomb at release:

Ii'. ut~l 1(8.23)5•b(tr) a Hb [OX(tr) + fx(tr)0 U(tr)] 8tr(

As indicated before, in this work Hb = I will be utilized.
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Perturbation State Transition During Release Transient

Modeling of the state transition during the release transient phase
(Figure 41) is outside the scope of this work. A detailed model is currently
being developed in [9, 10 J.

Since it is difficult to predict the bomb aerodynamics (i.e., aerodynamic
forces acting on bomb) in the region of wing, the state transition during this
phase is taken into account in a irnmplified manner by introducing an additive
release transient error •r with known statistics. (Ejection velocity is in-
cluded in 9r" )

r

O b(t ) = X' (t )+H (8.24)
b r+ b r r r

where H is the release transient input matrix. Thus, perturbation state of
bomb juit after release is given by

Oxb(tr) = HbCSx(tr) + fr 6t r I + Hr r

Figure 42 shows its structure.

Statistical description of perturbation state of bomb at release, (mean
and covariance), are given respectively as

No =Hb Er+ fr 3r3+ Hr Tr (8.25)

2
X HbEx + ff' atJH 1 +H 2DH '(8.26)

Xbo b r r r r b r rr

where Xr and •r denote the covariance matrices of 8xr and %r respectively.

In these equations 3xr and Xr are obtained by using the linear equations
of the aircraft together with the deterministic and stochastic inputs (i.e.,
mean wind and gust).

The estimate of 8tr and Otr2 involves basically, determining: (a) the
contribution of the release computer and (b) the contribution of uncorrected
delays in release mechanism.

The estimate of gr and Zr involves the knowledge of ejection velocity,
its uncertainties as well as transient effects. In this work they are con-
sidered to be arbitrary input parameters.
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Figure 41. Weapon State Transition
During Release Transient
Phase
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BOMB STATE INITIAUZER

I I

Figure 42. Structure of Perturbation State of Bomb
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Perturbation State of Bomb at Impact Planes !

Consider the nominal and perturbed impact points represented by
[x(tf), tf] and ['('tf),•'f] respectively (Figure 43).

Ff
Analogous to (8.16) the impact error can be written as

ax'{f) = Ux~tf) + f Lxtf), u(tf)] atf (8.27)

where f is the derivative of the nonlinear bomb dynamics. In (8.27) 6tf is

computed using horizontal or vertical impact planes. Horizontal impact
occurs when the end point of the perturb trajectory lies in the xy plane
(Mh = 0). Similarly vertical impact occurs when the end point lies in the
yh plane, (xe= 0).

Tnese take place when

6 h(tf) ax (tf2
tfh(tf) fv = ke(tf)

Substituting (8.28) into (8.27) yields the horizontal and vertical impact errors
in terms of the nonminal impact error:

a xh(tf) Hh 6X(tf) H
(8.29) i

6 Xv(tf) = Hv x(tf)

xrx

x(y

Figure 43. Linearization About the Nominal Impact Point Ex(tf), tf)
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ii
where

i ~f(t )c'Hh (8.30) j
c'h ff

H = f

where c and cxe are vectors which pick up h and xe components out of full
state ve'tor x.

From (8.29) the mean error and the mean square error matrix can

readily be obtained

i~x~t h = H i
(8.31)

Xh(tf) "HhXtf) Hh

(Similar expressions apply to the vertical impact errors.)
i

DEVELOPMENT OF STATISTICAL PERFORMANCE MEASURE
FOR WE.P-.ON DELIVERY PROCESSES

For a linear system driven by a Gaussian white noise, the mean and the
covariance of the state are described respectively by

A

x - Fx + G u + G w (8.32)

y- Hx (8.33)

and

S=FX + XF'+ GUG + GWG (8.34) '11 1 2 2

Y =HXH (8.35)

where

"= E[x), u= E[u), ' E w), [Ely), (8.36)

X= E (x-5)(x-R)'], U' Et(u-a)(u-a)' 1, Y E (y-•)(y-y)'] and

= E(ww'j
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Since the process is linear the state turns out to be Gaussian also. For this
reason, the mean and the covariance (i e., firs' and second moments) com-
pletely determine the statistical behavior of the state, and the output. The
probability density function of the state vector x of size n x 1 is given [47]
by

f(x,t) = 1 e (x x)' (8.36a)

"V (2 Tr)n det X(t)

The loci of constant probability densities at each time instant are families
of concentric quadratic surfaces centered at x and are described by

(x-i)' X 1 (x-i) = c (8.36b)

The density is maximum at its center, and it equals

f(Rt) = 1 (8. 36c)

V(2U)n det X(t)

For weapon delivery performance, the distribution of x4 (i.e., position
coordiqates) are needed for computing the probability of an event described by

x4eD.. In general the probability density function of x4 in subspace
R 3 , (i. e., marginal density) is obtained by integr'ting the joint dens.ty fx-:

+GO +CO +C

f . (xI f (x.., x 2 ,x3,x 4 )dx dx dx 3. 36d)

However, for the case treated here this integral can be eliminated since the
output is linear function vf state and is therefore, normal (i.e., Gaussian).
It follows that x 4 has a mean and covariance given respectively by

4 Hx 0.37a)

X = HXH (8.37b)

where H is a matrix of size 3 x n which sele,•ts the position coordinates
from the full state vector x of size nx 1. Thus its density is described as

, (x4) e(x 4 -x 4  ) 44-14 (8.38)

(r de1X
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This shows that when components xi are jointly normal, they are also
marginally normal.

3Now, consider a region D in R3, and an event described by

[x 4 eD] (8.39)

The probability of occurrence of this event is

PIx CD] = x (xt) dx dy dh (8.40)
4 f x 4 0D 4

where the integration extends over the region D.

Region D may be a cube or a ball. For weapon delivery performance
against a specific target of dimensions a x b x c, hit probability PH given
by (8.40) is used with

D: • - z 2 (8.41)2 2' 2 2

If the shape of target is not specified, n-dimensional ball (n = 1, 2, 3) centered
at the mean ised most often for region D. The probability that the weapon is
within this bE time t is also given by (8.40) with integration extending
over the ball:

D: (x-i)2  + +.(h-h) 2 • (R) 2  (8.41a)

eradius R for which is referred to as the "spherical probable

error" and is denoted by SEP or SPE.

When the region D is circular, the radius of its boundary is referred to
as CEP or CPE. (These are confusing names attached to a radius.)

Figure 44 demonstrates the evolution of the spherical region D as a
function of time.

In air-to-air weapon delivery, SEP can be used to measure the delivery
performance. For air-to-ground delivery, a simpler measure, CEP can be
used effectively.

For horizontal targets. CEPH is obtained from

f y(x, y) dx dy " (8.42)
DH
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R(td .R(tr+)

: I
HMY

Figure 44. Evolution of the Region D

where the integration extends over the circular region defined by

D (x.-)2 + (y-_-)2 r (CEPH)2  (8.43)

Similarly for vertical targets, CEPV is obtained from

f fyh(x.h) dy dh (8.44)

D-

where the integration extends over the circular region defined by

DV: (y_-) 2 + (hh)2 5 (CEPv)2  (8.45)

Regions DH and DV are illustrated in Figure 45. j
Range error probable (REP), deflection error probable DEP, and

elevation error probable (EEP), are defined respectively as

f f(x) dx =1 DR: Ix-i_ REP (8.46)

Jf y(y) dy=4 DD: ,y_-, 1 DEP (8.47)
DD
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CEPv HPAHA
H

CEPH

Figure 45. Regions for Horizontal and Vertical CEP
Evaluations

and I I
fh(h dh = D h-f-I: EEP (8.48)

DR

Table III shows the terminology associated with the radius of the half
probability ball for one-, two- and three-dimensional balls.

"Table III. Terminology for the Radius of Half Probability Ball

Dimension Symbol for the Name for the
of Ball Radius of Half Radius of Half

(n) Probability Ball Probability Ball

3 SEP Spherical Error Probable
CEP, (CEP , CEPV) Circular Error Probable

(horizontal, vertical)

1 LEP, (REP, DEP, EEP) Linear Error Probable
(range, deflection, elevation)

In general, the integrals given by (8.40), (8.41a) and (8.432) cannot be 7

evaluated analytically. The results from a computer solution for the case
where x and y are independent stochastic 2esses is given in [44).
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In [45, 46], CEP is expressed as

CEP = Q(p) a (8.49)

and this dependence is exhibited as shown in Figure 46, where Q(p) is referred
to as the CEP parameter and is a function of the ratio

0.
Op <5 1 (8. 50)

I

and a, greater of [a x Iya 3 , = smaller of fa x# a), and a •x y are the cross-
range and down-range variances, respectively.

1.2•

1.0 "z

0.8 -

0.6
0 0.2 0.4 0.6 0.8 1.0

IP 0,

Figure 46. CEP Parameter versus Standard Deviation Ratio

Now, we shall introduce a modified performance measure, "Half-Proba-
hility-Area (HPA)" defined as

HPA = (Tr) (CEP)2  (8. 2)

and relate this to the quadratic measure described by

J = tr [HX(t)H' (8.52)
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where tr is the trace operator and H is the output matrix which selects and
weighs appropriate elements (i. e., U2, U2, ag) of the covariance matrix. To
be specific, we wish to find weighting paiameters a and 3 such that the
quadratic cost given by

J ()(a) 2 (8. 53)

whereit l

p = • 1 (8.54) --

is a good approximation to HPA. i•

For a close fit, a and 0 should be functions of p. For simplicity, we shall •
assume constant a and P in the inter-val

0 !ý p r. I.

Approximation to Weapon D-±ivery Performance Z

The CEP parameter Q() is approximated by two line segments a

Q(p)2!k.ll+Pip) i= 1,2 (8.55)

for the ranges 0 : p • 0. 2 and 0. 2 :r p': 1. 0, as shown by dotted lines in Fig-
ure 46. The values for ki and •i are:

0 !5 p:0.2 0.2 p'1.0

k1 = 0. 6744 k2 0 . 585 [i

Figure 47 shows the HPA parameter 4(p) defined by

Q(P) 2 (8.56) !

Also shown is an almost-bound to Q(p) defined by

Q(p) [•aI + 9 p2) (8.57)

where •e and 2.2 ( 8.58)

With these values, the quadratic cost becomes
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Figure 47. HPA Parameter versus Standard
Deviation Ratio
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2 2

J [1 + 2p 2  2 (8.59)

or

J qi.i2 +>qj 2 0 a> (8.60)

where A

"q. and qj TT (8,61)
: .2

Finally from this quadratic cost (i. e. half-probability area) approxi-
mate CEP can be computed as

CEP T (8.62)
V A

Development of Design Performance Index

It was shown in the previous section that for normal distributions with
small cross-correlations, the half-probability area HPA is almost bounded
by the quadratic cost:

2 2
J =qai + qj a• (8.63)

where

ax = downrange standard deviation

a = crossrange standard deviation
y

a = greater of (Ox, a:

a. smaller of tax, o,.

qi n/•2

qj= rTT

Equation (8. 63) can be written in terms of the covariance matrix as

HPA a: tr [tX(t)H W = tr C(t) Q o (8. 64)
0

where
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_ I
0 0 0

Qo -- 11= -1-- (8.65)
q 0

0 0o q y
0 0 0

which selects and weighs the downrange and cross-range variances out of the

full weapon state covariance matrix.

DEVELOPMENT OF THE RELEASE ERROR
PROPAGATION PROCESS

In this subsection the bomb covariance, CEP measures and the equivalent
quadratic weighting matrices are developed in terms of the release state
covariance, using the results of the initial-state development and the wind
model. This analysis is implemented in subprogram PERK.

Figure 48 shows the vector state diagram of a linearized bomb model
with a wind driver.

MEAN WIND iw
GENERATOR

Inw GW +..H G3 bt b Yb

Figure 48. Bomb Dynamics with a Wind Driver

The state equations are given by

xw FwXw +Gw w (8.66)

HJYw H wXw (8.67)
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and

XXb b + GblUb + Gb2yw + Gb3w (8.68)

Yb Hbxb (8.69)

letting x * col (xblxw) and substituting (8.67) into (8.68) yields

x = Fx + GlUb + Gw2 Yw+ G3T (8. 70)

Yb =Hx (8.71)

where

F [F ,b G1 = , G3 = , G 3 =

and H = (Hb j 0) (8.72)

From (8. 70), (8. 71) and (8. 72) the mean and covariance responses are
determined using (8. 32) through (8. 35).

For convenience, the total state covariance matrix is separated into two
components, (a) homogeneous and (b) forced. This enables one to evaluate an
impact covariance matrix for arbitrary initial covariance matrices. Obv,.1-4y,
if only one initial covariance matrix is considered it is better to integratc
(8. 34) with nonzero initial conditions to obtain total covariance.

It should be noted that forced covariance component is obtained by inte-
grating the differential equation (8. 34) rather than evaluating the integral

t
Xpt) = f ¢(t, s) W(s) 0 (t, s) 6s (8, 73)

tr

Where O(t, s) is the state transition matrix.

The total covariance at any time instant is given by

X(t)= 0(t'tr) Xr+ 0'(t'tr)+Xf(t), t ktr (8.74)
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As was shown previously, the quadratic approximation to HPA) is given
by

HPA(t) a: J(t) = t r CK(t)Qo1 (8.75)

Substituting (8. 74) into (8. 75) yields

J(t) = tr 1( Xr+ 0' + Xf(t)) Q0o

or

J(t) = tr [(X+) (' Qo0 ) + (Xf(t)) (Qo0 ) (8.76)

The matrix defined by

Q I 0'Qo¢ (8.77)

where p o a(t, tr) will be referred to as the ,tate covariance weighting matrix J I
or the propagation matrix.

The approximate radius 6C (t) is computed from

CEPlt) =- t 5tf (8.78)

As developed previously, the non-zero eleinents of Qo; (qx* qy) or I
(qv, qh) are determined from (ck2 , a• 2 ) or (ay , ah2) by a simple test. j
NImelyn in each pair, greater variafice is associated with weighting value

2 and smaller with Tr.

At impact it follows from (8. 74) that

X(tf) = 0(tf, tr) Xr+ 0(tr tr) + Xf(tf) (8.79) ;

Substituting this into (8, 31) yields the impact covariance I -.

Xh(tf) = Hh [0 Xr 0 + Xf] H' (8.80) 1
where 0 and Xf are matrices evaluated at impact time tf. J

HPA at impact is then given by

HPA(tf) a! J(tf) = tr [X(tf) Qo] (8.81)

Substituting (8. 80) into (8.81) yields
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J(tf) * tr (Hh ( Xr+ 0' + Xf) Hh'Qo } (8.82)

or

J(tf) tr K,+ [£0'Qo 03+XfQo0  (8.83)II '!
where

ia =Hh' QoHh (8.84) 1QO h

is called the impact propagation matrix

DEVELOPMENT OF THE VARIANCE CCNTRIBUTION MATRIX

The variance contribution matrix, V, displays the effects of the pertur-
bation state vector components onto the position error variances at impact.
Its brief development is presented in what follows:

The diagonal elements of X(tf), can be expressed as:

x(tlf) =lx 1  4/2x 2  +  + +4ix xf(tf) (8.85)x~f)+ r+ .. +nnr+

where

Xr • Xn+ are the column vectors of the Xr+ matrix, that is
14

x + 1 I r.x.. Ir+ (8.86) .

and x(tf), xf(ti-) are vedtnrs made up from the diagonal elerrents of X(tf) and
Xf(tf) matrices, respectively. The elements of the weighting matrices and
covariance vectors xjr. for j = 1,... n are given by *

ax ax

tj021 0 2j 0 22 ...... 02j 02n 2

Xjr+ E (8.87)

nj~nl .Cn. . njnn 6Xn6X +
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In the decomposition represented by (8. 85), each vector inthe sum, e. g.,

X..Jx Jr+

is identified as the contribution of the perturbation state component 6xi to the
impact covariance vector. Note that in this identification the cross-viriance
terms are also included as given by (8. 87).

If position error covariance.. (axe 2 , aye2, Oh2 ) about the nominal impact
point are of interest only, the three rows of (8. 85) need be evaluated.

The matrix which is made up of the vectors *j xjr+ is called the variance
contribution matrix:

[•~r+ j ""•nnr+j= [- ' ! ... x4j jI+L/n

Each row sum of this matrix gives a component of the error variance
about the nominal impact point. Dividing the elements in each row by their
row sum gives a normalized variance contribution inr.trix, in which each ele-
ment shows the relative contributions of state components onto position error
variances about the impact.

The normalized variance contribution matrix is used to identify those state
components which are infportant contributors to impact error variances.
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SECTION IX

DEVELOPMENT OF A METHOD FOR *1
NONSTATIONARY OPTIMVAL WEAPON DELIVERY CONTROLLER DESIGN

In this section, a method is presented for designing an optimal non-
stationary perturbation controller for the precision weapon delivery processes[417 il].

The optimization problem considered here involves direct minimization
of the CEP. Strictly speaking, CEP is the radius of a 0. 5 prubAbility circle
centered at the mean impact point of a bomb ;.' target. For normal distributions
with small cross correlations, t,,e area of this circle can be closely
approximated in terms of the iripact covariance matrix.

As shown in Section VIII, about a nominal trajectory, the impact covariance
matrix: can be exp-.essed in terms of the state covariance matrix at bomb I
release. By this process, controller optimization for the precision bomb
delivery is reduced to optimization with a terminal time performance index,
in which the 'tate deviations at the nominal release time are penalized by a
weighting matrix which depends upon the nominal bomb trajectory
sensitivities.

In the following, the statement and solution of the optimization problem
corresponding to cont'nuous time-varying processes are given first for
completeness. Then the discretized model and its solution are developed.
This solution is implemented as a program called DISCOP.

STATEMENT OF THE PROBLEM

Given the linear system

=(t) F(t)x(t) + GM(t)uMt) + G2 (t)v'r(t) + G3(t)11l(t)

r(t) = (t)x(t) + D + O2(t)U{t) (9.1)

n(t) P H2 (t)x(t) + I 2(t)

wher - a deterministic (kiown) time function, the inputs fl l(t) and
n 2 (t) -' ,:pendent white noise processes

E 1T1l(t)I p1ft)' = Wl(t)6(t-tI)

E 112(t)072(tl)} = W2 (t)6(t-t 1 ) (9.2)

E in0t)712 (t 1 )' = W3 (t)6(t-t 1 )
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and the initial state mean and covariance are known

* x(o)] -- (o) (9.3)

E R(x(o) - i(o)) (x(o) - 'i(o))'} - X(o)

Find the linear control functional of past and present measured outputs m(t)

u(t) = L(tm[o, t]), (9.4)

that minimizes the quadratic J
T

J = tr 1Q(T)S(T) + V(T)B'T) + I (Q(t)S(t) + V(t)R(t))dt] (9. 5)
0

where R(t) is the mean response matrix defined by
R(t) = -i(t)-r(t)' (9. 6) ,

S(t) is the response covariance matrix defined by
S(t) = E Iwrot - 3"(t)) (r(t) - "r(t))' 1 (9. 7) :

and Q(t), V(t) are the weighting matrices, assumed to be symmetric and non-
negative definite for all te 10, T], the matrices D•Q(t)Dj and D•V(t)DI are
assumed positive definite for all te [0, T]

Q(T)DI(T) V(T)DI(T) 0 (9.8)

SOLUTION OF THE PROBLEM

In this subsection, solution to the optimization problem posed above is
given in terms of differential equation formulation. It is shown [46J that the
minimization of J can be separated into a deterministic problem and a
stochastic problem, and that tne solutions of these two problems can be
combined to form the optimum controller.

Minimization of the Continuous Model

The J minimization problem can be divided into the control of the mean
response R(t) and the co±atrol of the response deviation from the mean,
r(t) - F(t).
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By defining i, En, U to be mean responses, and

X* x-x

u, = u -(9.9)r =rn-r-n

to be deviations from the mean, there results the two sets of system equations

an (t) = F(t)X'(t) + G10)M + G t)VW (t)

T'(t) = Hllt)x(t) + D 1 (t)u - D2(t)vt(t) (9.10)

i(t) = Hl(t)-x(t) +

and =

i*(t) = F(t)x#(t) + Gl(t)u*(t) + G2(t)?I l(t)

r*(t) = Hl(t)x*(t) + Dl(t)u*(t) (9. 11)

m*(t) = H lt)x*lt) + ?I2(W

The cost J becomes

T

J= [(T)'V(T)r(T) + FRt)'V(t)j-(t)dt]
0

T (9. 12)

+ E[r*-(T)'Q(T)r*(T) + S r*(t)'Q(t)r&(t)dt]
0

Since u* in (9. 11) does not in any way affect r in (9. 10), and • in (9. 10) does
not in any way affect r* in (9. 11), the controls U and u* may be designed
separately to minimize their respective contributions to J.

Development of the Optimal Mean Control Law -- The mean control u will be

determined first t.47 J. Given (9. 10), the functional J where

T

j = -(T)' V(T)F('I)+ fr(t)' V(t)i(t)dt (9. 13)
i

is to be minin'ized.
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Examination of the responses whose termin-A behavior is to be controlled
reveals that the equations for those responses do not contain the final control
u(T). It can therefore be assumed that the contribution of UI(T) to J(T)' V(T)r(T)
is zero. That is

V(T)D,(T) = 0 (9. 14)

The above problem is then a Bolza variational problem. By writing

T

G G'I(T) + f G2 (x(t), u(t) t) dt (9.15)
0

The Hamiltonian for the problem is

H = G2 +Xx (9.16)

and the control U(t) is defined by the equations

6 H =0

H'(t) (9. 17)•x(t)

bi(T)

With
H =[H (t)-x(t) + Dl(tYJu(t) + D (t)•u)(t)]' V(t)[H l(t)•x(t) + D (t)•-(t)

(9. 18)
+ D2 (t)•v(t)] + X(t)' [F(t)i(t) + Glt tiu(t) + G3(t)•ut)]

then

•.l X'(t) = F(t)' X (t) + 2H (t)' V(t)[H (t)i(t) + Dl(t)u(t)ai(t)=-

+ D2 (t)•v(t)]

o G(T) X'(T) = 2HI(T)' V(T)[ H1(T)' i(T) + D2(T),(T)]

c(T)

- = 0 G (t)' h(t) + 2Dl(t)" V(t)[Hl(tY(t) + Dl(tju'(t) + D2( (t)] *1

U-w 1-A, 1.J¶L 2~~ut1(t)2
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By making the additional substitutions [49]

X (t) = 2 [Pv(t)•{t) + g(t)]
(9. 19)

iu(t) = Kv(t)x(t) + fv(t),

and assuming that the inverse [Dl(t)' V(t)Dl(t)]1 exists for t e £0, T], there
results the familiar Riccati end conditions:

Pv(T) = H (T) V(T)H (T)V 1 (9.20)
g(T) = H (T)' V(T)D 2(T)v (T),

the backwards differential equations

- 1Pv(t) = F(t)' Pv(t) + Pv(t)F(t) + Hl(t)' V(t)HM(t)

- [Pv(t)GI(t) + Hi(t)' V(t)Dl(t)]£Dl(t)' V(t)Dl(t)'-"

S[G1 (t)' Pv(t) + D1 (t)' V(t)H1 (t) ] (9. 21)

- g(t) = F(t)' g(t) + [Pv(t)G2 (t) + H2(t)' V(t)D2(t)])w(t)

- [PvGt)I(t) + Hllt)' Vlt)D lt)][DVlt)' Vlt)Dl(t)1 'l

[Gllt)' g(t) + D (t)" V(t)D2 (t)w (0t)3

and the controller equations

Kv(t) = - [Dl(t)' V(t)Dl(t)]-l[G (t)' Pv(t) + Dl(t)' V(t)H(t)02
f v(t) = - E[D Ilt)' V(t) D I(t)]j'l[Gilt)0' glt) + Dllt)' Vlt)D 2lt)-v~t',] (92

These three sets of equations completely define the mean control u(t),

Development of the Optimal Stochastic Control Law -- Given the system
equations, (9. 11), it remains to find the controller

u*(t) = L(t,m*[o,t])

minimizing the quadratic J*

T
JP = E[r*(T)' Q(T)r*(T) + j r*(t)' Q(t)r*(t)dt] (9.23)

0

Let x*(t) be the sumr

x*(t) = x (t) + xtt) (9.24)
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where x (t) is defined by the orthogonality condition

E[X (t)' (t) lm*(o, t), u*(o, t)0 = 0 (9.25)

This is the expected value of the product xl(t)' x(t), given present and past
output measurements m*(t) and past inputs u*(t). Let KQ(t) be the set of
gains defined by (9. 20), (9. 21) and (9. 22) when V(t) is replaced by Q(t). It
is asserted that the controller L(t, m*(o, t)) minimizing the quadratic J* is

u*(t) = KQ(t)x(t)

That is, the optimum control input u*(t) is the product of the state estimate
xl(t) defined by the orthogonality relation (9. 25), and the gains KQ(t) defined
by the Riccati equations, (9. 20), (9. 21) and (9. 22).

This assertion is known at the "separability property". It permits
separating the J* minimization into two problems:

* The determination of the state estimate xW(t)

0 The determination of the controller gains KQ(t) that would be
employed if the entire state x*(t) could be measured, and thei system inputs T11Wt were known

State Estimation

The state estimate xl(t) must be generated to complete the controller
design. The problem of generating state estimates xl(t) satisfying the
orthogonality (9. 25) has been completely resolved [50J. It is well knownthat the orthogonality condition (9. 25) implies that, with x*(t) Gaussian,xi(t) is the conditional expectation

xl(t) = E 1x*(t) m*[o, t], u*[o, t] (9.26)

It can be shown that xl(t) could be generated by a linear transformation of
m*(t) and u*(t)

x1 (t) = L* It, m* [o,t ], u[o,tt] (9.27)

In [49), the appropriate linear transformation L* is developed for the case
where

rank[W2 (t)!- di:m[m*(t)]

W3 (t) = 0

That is, every nonzero linear transformation of m*(t) contains white noise,
and the inputs 1i1 (t)112 (t) in(9.11) areunccrrelated. In [521, the latter restriction
(W3 = 0) is removed.
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Assuming the system is of the form (9. 11), x (t) could be generated from
the linear system

W= [F(t) - LtHtlxt)+ L(t)m*(0' (9. 28)

where L(t) is the solution of the forward Riccati equationA

W~t F(t)P (t) + Pt)t) + G (t)W MtG (t),

-P()(t"+ G (t)W (t03 (9. 29)

(W (t)- i W (t)'G (t) + H (t)P,. W)

Then the estimator gains are given by

L(t) = [P~)2t"+ G tW(1W(tY

where the initial conditions are

P ?1(o) = coVEWx9(o)x*(o)] (9. 30)

Combining the Results

The optimum control is the sum of the deterministic and stochastic

souton= KV(t~x(t) + fV(t) + KQ(t)xl(t) (9. 31)

= KQ(t)E:xl(t) + i(t)] + £KV(t) - KQ(t)Jix(t) + fv W

= KQ Wx"tW + f(t)

where f(t) is the deterministic input given by

f 1K = ~(t) - KQ(t) 1X tW + fv(t) (9.32)

and XAMt is the conditional state expectation

x(t 1 x(t) + -X (t) = E [x(t) I m(o, t), u(o, t), VWo t)ij (9.33) `

whereRx and x are generated by (9. 10) and (9. 28), respective'y Figure 49
shows the decAmposition of the state vector. Ai
DISCRETIZATION OF THE CONTLIrNUOUS PROCESS AND OPTIMIZATION
OF THE DISCRETIZED SYSTEM

For computational purposes the differential equations given above are I
approximated by difference equations. Also, the performance integral is
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Figure 49. Decomposition of the State Vector

approximated by a sum. This is called the discretization of the continuous
optimization problem. The discretized model is derived with two constraints
in mind. Both of the constraints are based on the desire to achieve
reasonable computation time for the optimization program and at the same
time maintain a sufficiently accurate approximation of the differential
equations, and the performance inte•,ral.

The simplest discretization is based on the rectangular rule. This
approximation would be sufficiently accurate if A t is chosen sufficiently
small. But the computation time is inversely proportional to At; to reduce
computation time it is desirable to choose At to be as large as possible.

In the following discretization based on the rectangular rule is presented
first. Then amore accurate discretization with matrix exponentials is
given. The latter discretizaLion can be used for the high-frequency dynamics
of the overall system, and former for the low-frequency dynamics of the

system.

Discretization by Rectangular Rule

Choose a large, finite integer N and let

At T (9.34)

Define

A(n) - I + At F(nAt) HI(n) = H1 (nAt) Wl(n) = WW(nOt)

Bl(n) = At G1 (nAt) Dl(n) = D1 (nAt) W2 (n) = W2 (nAt)

B2 (n) = At G2 (nAt) D2 (n) = D2 (nA t) W3 (n) = W3 (nAt) (9. 35)23 23 2( 2( 3 3

B (n) = At G(nA t) H (n) = H (nAt) Q(n) = Q(nAt)

W (n)= i (nA t) V(n) = V(nAt).
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The above quadratic problem may then be restated: given the linear system

x(n+l) - A(n)x(n) + Bl(n)u(n) + B2 (n) u(n) + B3(n)?l(n)

r(n) = Hl(n)x(n) + Dl(n)u(n) + D2 (n)•v (n) (9.36)

m(n) = H2 (n)x(n) + fl2 (n)
where

*E T 17(i)071 (J)' = (At)1 WW(i) 86

E 1n12 (j)'I = (At)- 1 W9 (i)6 jj (9.37)
E 1?1l(')T2(j)11 (At)- W 31) ii

8.. =1, 8. =Oifi#j

E Ix(o)j = i(o) (9.3s8)
E J(x(o) - x(o)) (x(o) - 1i(o))'I = X(o)

find the linear functional (i. e., piecewise constant controller)

N
u(n) = E L(n, i) m(i) (9. 39)

i=o

that minimizes the quadratic J
4,

(N-i)
J = tr [(Q(N)S(N) + V(N)R(N) + , At(Q(n)S(n) + V(n)R(n))]. (9.40)n=o

where •

R(n) = T(n)i (n)' 41)

S(n) = Ef (r(n) - 71n)) (r (n) - T1n))/ I

It is assumed that Q(n) and VWn) are syrmr etric and nonnegative definite for
n=O, ... N, and Dl(n)'Q(n)Dl(n) and DI(n) V(n)DI(n) are positive definite for
n < N, and

Q(N)D 1 (N) = V(N)D 1(N) = 0 (9.42)

Discretization by a Matrix Exponential

For a given value of At a more accurate approximation to equation (9. 1)
is given by the sample-data form
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x[(k+l)At] eAtF(kA t) {x(kAt) + F 1 (kAt) [I - e-'tF(kAt)%

[Gl(kAt)u(kAt) + G 2 (kA t)TI~kA t) + G 3(kAt)v %kAt)] I ý 3

This form is approximate in that the various coefficients are not constant over
the At intervals, and the control u(t) is continuous and not piecewise constant.
The major disadvantage of equation (9. 43) is that almost all of the elements
of the coefficient matrices are nonzero, whereas in equation (9. 35) the
majority of the elements of the coefficient matrices are zero. Computation
time increases at least linearly with the number of nonzero elements [111

SOLUTION FOR THE DISCRETIZED MODEL WITH PIECEWISE CONSTANT
CONTROLLER

The solution to the a: )ve discretized model problem follows that pre-

sented for the continuous-model problem. The optimum control is of the
form

u(n) = KQ(n)W(n) + [K v(n) - KQ(n)Jx (n) + fv(n) (9. 44)

where i(n) is the a priori mean state

5i(n) = E Ix(n)} (9.45)

and ý(n) is the conditional estimate

(n -- E 1x(n) I m(o)°....m(n)0 ~) ~-1,v~).. n1.

The gains KV(n) and input fv(n) are the solutions of the backwards difference
equations

Pv(N) = HI(N)' V(N)HI(N) (9.46)

g(N) = HI(N)' V(N)D.(N)F-(N) (9.47)

Kv(n) = E [Bl(n)' Pvr+l)Bi(n)+AtDl(n)' V(n)Dl(n) ]-(4 (9.48)

[Bl(n)' Pv(n+l)A(n) + AtDl(n) V(n)H (n)]

fv(n) = [ BI(n)' Pv(n+l)BI(n) + AtDl(n)' V(n)DI(n)]-'
(9.49)

{B1 (n)' [g(n+l) + Pv(n+l)B2(n)vw(n)]+ AD 1(n)' V(n)D 2 (n)v,(n)J

Pv(n) = (A(n) + BI(n)Kv(n)]' Pv(n+l)[A(n) + Bl(n)Kv(n)]
(9.50)

+ At[HI(n) + DI(n)Kv(n)]' V(n)[H1 (n) + D1 (n)K v(n)]
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g(n) = [A(n) + B1 (n)Kv(n)]'Cg(n+l) + Pv(n+l)(Bl(n)f(n) + B2 (n)vw(n))]

+ At[Hi(n) + D(nW)Kv(n)]'V(n)[D 2 (n)Vw(n) + Dl(n)f(n)] (9.51)

The gain K0 (n) is the solution to the above where V(n) is replaced by Q(n).

A major sifhplification which has been found satisfactory in [46.1 and [11] is
setting

V(n) =Q(n), 0 C. n :5 N (9. 51 a)

This is assumed in the implementation of the above equations.

The solution to the state estimation problem is

x(n) = x1 (n) + Y(n) (9.52)

x (n+1) = (A(n) - AtL(n)H2 (n)) x 1 (n) + AtL(n)m(n) (9.53)

where L(n) is obtained from the solution of the forward Riccati equation

P (o) = X(o)11 W3(n)

AtL(n) = [A(n)P (n)H2 (n)' + B 3 (n) 3
-' (9.54)

[H2 (n)P (n)H2 (n)'+

W(n) B() 95)i

P (n+1) = A(n)P (n)A(n)' + B3 (n) - (n)' (9.55)

- AtL(n) [H (n)P (n)H2 (n)' + L(n)'At.

The matrix P-n) in these equations is the covariance matrix of the estimation

error x(n) givldn by

x(n) = x(n) - x (n) (9.56)

P4n) = (9.57)

=E `Zn xn)' • :

The estimation error ;n) has zero mean

E{On) 0 (9.58)
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A state covariance transition matrix can be derived from this property.

With

x(n+l) rAk'n)x(n) + B (nK(n)R(n) + B2(WV (n) + B (nItIn
(9.59)

F3E(n+l) A(n)x(n) + B (nK(n)3x (n) + B 2 (n)Vw~n)

then

x(n+1) - 3E(n+l) =AWn)xOn - Y (n)) + B31(n)K(n)(X"(n) - Z.n) + T B3 ni(n)
3 1

= (An) + B (n)K(n))(* (n) - R(n)) + A(n),n)
(9.60)

Then+ B (0Y1 (n)

Iicov lx(n+1)x(n+l)'1 E I(x(n+1) 3F (n+1))(x(n+1) -X(n+1))ll (9.61)
W An) + B 1 (n)K(n))E (X^(n) -KX(n))(c*(n) - Y(n))'l (An) 1 nKn)

+ (AWn + B 1 (n)KWn)E (XA(n) - 3Z(n))i(n)ll A(n) B()Kn)

+ (AWn + B, (n)K(n))E I (X^(n) - Y(n)),i 1 (n)'I B 3 (n)'

+ AWnE I-X(n)(ý(n) - 3R(n))'l (A(n) + B()kn)

+ A(n)Elx(n)T11 (n)' B.(n)'

+B (n)E 1¶(n)(R(n). - i(nWM' (AWn + B (n)K(n))' 1
Sine xn),+ B 3 n)E IYni n1ri(n)1l B 3 (n)' o atiptte r

Sinc x~), (n), and her-s x~ (n), are functions o atiptte r

independent of the current (white) input -n 1(n), and(96)1

E I(x^(n) - Y(n))Tl1 (n)'l =EI YW ('l=09.2

From the above

E 1(R(n) - Y (nflx(n)' Elk(n)'x(n) I - 3~nE W (n)' (9. 63)

0- 0 =0
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Hence

covfx(n+l)x(n+l)l (A(n) + B (n)K(n))E 1(x^(n) - 9(n))(X^(n) - R(n))'I

(An) + B 1(n)K(n))' + AWnE Jx(n)x(n)' A(n)' + B3() (n)(96)1 1
~(n)' I B (n)I

With k -x x - x - , (see Figure 49.)I

E 1(X^(n) - F(n))(X*'(n) - 3F(n4j = E I(x(n) - Y(n))(xn) -"n)'

-E l(x(n) - i(n))x-(n)'f - EI'xX(n)(x(n) - 3F(n))'l (9. 65)

+ Et`X(njx-(n)'I

- covlx(n)x(n)'1 - 2EF-(n)-X(n)'I + El Z(nf(n)'j

then

cov ix(n+l1x(n+l)'l [(EA(n) + B (nK(n))]

Ccov Ix(n)x(n) I/ n An nKn) (9. 66)
+A~nP (nA ~Wi(n)

+ 1) nAn' + BP )A(n) - B (n)K'.)

Thus the optimal state covariance matrix

X(n) E= EI x(n) - 34n)Xx(n) - 3E (011'

satisfies the difference equation

X~~)= [A(n) + B 1K(n)) [X(n) - P ,(n))[A(n) +i I,~n
+ A(n)P ,(n)A(n) + %'-t) -1B (n)W,(n)B (d)(.7

The response covariance matrix, S(n) =E [E~r(n) - F(n))Er(n) - Fn],
may be obtained as follows:

r(n) - F(n) = H 1 (WNW1~ -. 3(n)] + D 1 (nK(n) [ (n) (n)

] ~= rH (n) + D (nK(n)] [x(n) - x(n)] - D (nKWn)Exn) - i(n)]

1 1 1
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S(n) -[Hl(n) + Dlln)Kln)]Xln)[g (n) D• Dln)Kln)]'

+ Dl1(n)K(n)P 11 (n)K (nfD 1 (n)'- [1ý(n) + Dl(n)K(n)]
SE J x(n) - -(n)'(n)- (n)31 K'(n)D (n)- D nK(n)

SE{ Ix(n) - ^(n)3[x(n) - . (D•(n) + Dn(n)K(n)]'

S[H (n) + )K(n)K (n)) +DnHl(n) ]'+

+ DE1t(n)Kln)P (n)1K (nDl(n) - [I1(n) + DKn (n)K-n)]

+ PD(n)K (nD (n)- D(n)1 Kn)-PH(n)[H+(n) + DI(n)K(n)]'

Thus the response covariance matrix is given by

S(n) = [Hl1(n) + Dl1(n)K(n)][X(n) - P 11(n)][Hl1(n) + Di. (nK(n)]" 9.8

+ H 1(n)P (n)H 1 (n)"

For the special case in which it is assumed that the complete state can
be measured exactly, m(n) = x(n) and the above results are simplified since
x(n) = x(n) and Pn) =0. The mean optimal response vector is obtained by
substituting (9. 44) into (9.36) and averaging the resulting equation. It is
given by

F(n) = H1(n) (n) + D1 (n)[K(n)-(n) + f(n)) + D2 (n)•v(n) (9.69)

where

i(n+l) = A(n)i(n) + Bl[K(n)x(n) + f(n)) + B2 (n)VW(n) (9.70)

This finishes the discussion on the development of the optimal control
and estimation algorithms. These algorithms are implemented as program
DISCOP. The discretized dynamics of the overall system is shown in Figure
50.

The gains and performance values obtained from the equations are
functions of sample time At. As Nt goes to zero, the values obtained by
DISCOP approach to the continuous model solutions.
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SECTION X

DEVELOPMENT OF A METHOD FOR STATIONARY[OPTIMAL CONTROLLER DESIGN

As developed in Section IX, the computation oi optimal controllers involves
integration of Riccati differential equations backward for the controller gains
and forward for the estimator .pains together with state covariance differential

Sequations.

If the dynamics are stationary, and constant gains are ut.,,. very substan-
tial savings can be achieved by directly computing steady-staw ,lu ons of the
covariance and Riccati equations [57.

In the followi.ng, the development of stationary 'esign equations and the
( u-scription of algorithms for solving these equationb are briefly presented.

DESCRIPTION OF ALGORITHM LYAK

The LYAK is an iterative algorithm for solving either of the following
matrix equations for the unknown matrix X given the matrices A and Q

XA+A'X+Q = 0 (10.1)

XA'+AX+Q = 0 (10.2)

In wvhat follows the method for solution is briefly stated. Next the con-
verxrence criteria is explained.

Method of Solution

The method used to solve the equations is iterative and based on conforiral
mapping and matrix- functions [53, 57]. Given the matrices A and Q where A is
a stability matrix (real parts of all eiqenvalues of A are neg:uive), let I/j =
(A-aI)-I where a is a positive consta • 1, define

0o= I+ 2a, , (10.3)

X = 2ac?4' Qi (10.4)

then the '.erative algorithm is given by the following set of equations:

=0XAXi i (10.5)

X.+ Xi(10.6)

¢i+1 ¢ (10.7)
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Choice of the Parameter a

It is shown in [53) that there is an optimal value for the parameter ,v
(i. e., ctimal in the sense that the algorithm will converge in a minimum
number of iterations), call it a*. Calculation of a* requires solving for the
eigenvalues of A. This cannot be considered because it is too expensive com-
putationally. It is also shown in [53], however, that a good suboptimal choiceSof a, call it •,is the a_.ithmetic-rnean of the eigenvalules of A. Since the sum

of the eigenvalues of A is just the trace of A

a = tr(A) I/IN (10.8)

where tr is tt trace operator and N is the order of the matrix A.

Convergen,& -Cr iteria

The convergence criteria for this algorithm is a ratio test which is per-
formed at the end of each iteration. The absolute value of the ratio AXipXi+1,
for each element in the upper triangle of t'ie two matrices AXi and Xi+1, is
tested to see if it is less than or equal to some small constant e. (The value
of e currently being used is 0. 01. ) If this test is passed X+1 I is accepted as
the converged solution. If the test is not passed the iterative process will
continue.

DESCRIPTION OF ALGORITHM DLAK

* 'The DIAK is a doubly iterative algorithm for solving the algebraic Riccati
equation

PA+A'P+PEP+Q = 0 (10.9)

where

A = (A-EP) (10.10)

In the following, first, equivalence relations are developed between
(10. 9) and the optimization problem posed. Then the method of solution is
given.

Stationary Optimization Problem for Controller Gains

Given the time-invariant matrices F, G1 , G-, H, D, Q defining the con-
trolled system

x = Fx+ G1u + •2 1 (10.11)

S' r =Hx+ Du (10.12)

165



where r is the vector of controlled responses, u is the control-input vector,

and ilis white noise

E(Srj(t) i(T)'] = W 1
6 (t-') (10.13)

Let the cost of control be

J = E(r'Qr) (10.14)

where Q 2 0, D'QD >0, (F. G 1) controllable and (F, H) observable [47].
The problem is to find the gain matrix K such that the controller u = Kx

will minimize the cost J.

The covariance equation for this problem is

0 (F+ C )X + XIF+GIK)+ G2WG2 (10.15)

where

X = E xx I is the covariance matrix

R = E~rr I = (H+DK) X(H+DK) 'is the response covariance matrix
(10.16)

The cost is
SJ =tr ((H+DK)' QIH+DK)X] (10.17)

where tr is the trace operator. Appending the covariance equation to J via
the Lagrange multipliers P yields the Hamiltonian

IHI = tr ((H+DK)'Q(H+DK)Xl+tr (P[(F+G1K)X+X(F+G 1K)'

9 Taking derivatives

=0 = (F+G1 .- )X + X(F+GK)' + G2 WG 2 ' (10.19)

- *- 0 (F+GIK)'P + P(F+G K) + (H+DK)'Q(H+DK) (10.20)

W 0 = D'Q(H+DK)+ GI'P]X (10.21)
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The optimal controller K, for this problem, is the soiution to the pair of
equations (10.20) and (10.21). Solving (10.21) for K results in:

K = -(D'QD)- 1 [GI"P+ D'QH] (10.22)

Substituting this into equation (10.20) yields the Riccati equation in P

0 = (F-G1 [D 'QD] D QH) 'P + P(F-G1 [D 'QD ] 1 D 'QH)

-P (GI[D'QD- G ']P+ H'QH- H'QD [D'QD] 1 D'QH (10.23)

Equating matrices in equations (10. 23) and (10.9) gives the following rela-
tionsbDlos:

A = (.F-G 1 [D'QD]-1 D QH) (10.24)

E = (G1 [D'QD]-1 GI') (10.25)

Q = H'QH - H'QD [D'QD]- 1 D'QH (10.26)

Method of Solution

Equation (10. 9) is rewritten as

PA+A'P+Q = 0 (10.27)

where

A = (A-EP) (10. 2P)

Q ( (•+PEP) (10.29)

Starting with Po such that A = (A-EPo) is a stability matrix, equation
(10. 27) is solved by the iterative algorithm LYAK. The solution to (10.27)
is substituted into (10. 28) and (10. 29) and then equation (10.27) is solved again
for the updated values of A and ? [541 This process is continued until two
successive solutions to equation (10. 27) are tLh same to a certain number
significant figures (i. e., the same convergence test as is used in the algorithm
LYAK.
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STATIONARY OPTIMIZATION PROBLEM FOR THE
ESTIMATOR GAINS

Consider the following timer-invariant plant, measurement and estimator
equations:

x= Fx+ Ilu + G2 11  (10.30)

m= H2x + 12 (10.31)

x= (F-LH2 )++Glu+Lm (10.32)

where Tq and 12 are stationary white noises with

E j1 (t) •1(T) W 1
6 (t-') (10.33)

E (. 2 (t) n2 (()'I = W2
6 (t-T) (10.34)

E( i 1 (t) n 2 (T)'3 = W 3 5(t-T) 0 (10.35)

and L is the estimator gain matrix, (F, G2 ) controllable and (F, H2) observable.

Define the estimation error to be

x - (10.36)

Then the differential equation of the estimation error is obtained from

_x (10.37)

Substituting (10. 14) and (10. 16) into (10. 37) yields

x = (F-LH2 )x+ G2 1 - L112  (10.38)

The covariance of the estimation error is given by

PI = (F-LH2)P+ P. •'-LH)' + LW2 L'+ G2WlG2 , P (o) X(o)
2 I L'1 (10.39)

The mxinimizltion of P with respect to L yields optimal estimator gain aE

L= PH' W2 (10.40)

~2 2I
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Substituting (10.40) into (10. 39) results in

S(F-PbP + P (F-P I)'+P P +GWG1 (10.41)
T1 7 n1 2 12

where

I H'2W" - 2 (10.42)
22 2

is called the "information rate". .

The steady-state value of the estimation e.rror covariance is given by

A P--P A +Q= 0 (10.43)

where I

A = (F - P i) (10.44)

S:(G2 WlG 2 ' I n~ )11.5t
Q = (GWGI+ ) I (10.45)

Note that the set of equations (10.43), (10.44) and (10.45) have the same
structure (i.e., duals) of the equations (10.27), (10.28) and (10.29). There-
fore, the steady-state estimation covariance and the estimator gains are I
obtained also by using the algorithm DIAK.

THE STEADY-STATE COVARIANCE WITH THE
OPTIMAL ESTIMATOR

The covariance of the controlled system with the estimator is obtained
from the definition given by (10.36):

x - + X (10.46)

where

x= the state of the estimator dynamics

x = the estimation error

Clearly,

x= P +y+Y' (10.47)+ Y

where

Etxx'), X^ = E[CX*', P = E(x'x andrY= Ex xx']
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We remark here that for the optimal estimator gains

Y Y= 0 (10.48)

so that (10.47) reduces to

x = X+ P (10.49)

Now using the feedback law given by

u = -K• (10.50)

and substituting (10. 31) into (10. 32) yields

x= (F-G 1K)x+ LH 2 x+ Ln 2  (10.51)

From (10.51) and (10.38) one obtains

A., 0 (~K (F-LH i()] + FG 2 ~'2¶k (10.52)

This yields the following set of differential equations:

X = (F-G 1 K)X + X(F-G 1 K)' + (LH2Y '+ YH 2 L') + LW2 L' (10.53)

Y = (F-GIK)Y + Y(F-LH2 )' -L(W 2L'- H 2 P•) (10.54)

P - (F-LH2 )P + P (F-LH2 )'+ LW2 L'+ G2 WG 2 ' (0.55)

The initial conditions are given by

X(O) 0 (10.56)

Y(o) E([iý0) X' (0)] = 0 (10.57)

P (0) = X(O) (10.58)

On the account of the optimality the last ternm in (10.54) vanishes so that with
equation (10.57) one concludes that

Y(t) 0 (10.59)
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Also noting that
LW2L' PiP (10.60)

equation (10.53) can be written as:

X (F-GIK)X + X(F-GIK)'+ PIP (10. 6?)

The steady-state value of X is obtained from 1
A A

AX+XA+Q = 0 (10.62)

where

= (F-G 1 K) (10.63)

P - ip (10o64)

Once P and X are found X is obtained from (10. 49).

An alternate way of computing X can be developed by writing l .0 r5 as

P =FP + P F' - PnIP + G2WIG (10.65)

This can be written as

Pr- (F-GIK)P l+ P -GIK) + GIKP + P K'G1

-P ip +G 2 W G2' (10.66)

Summing (10.61) and (10. 66) yields

=(F-GIK)X + X(F-G K)'+ G2 WIG2 '+ [G KP + P K'GI'] (10.67)

Equation (10. 67) indicates that the estimator error covariance acts as a
driver in the state covariance differential equation. The steady-state value
of X is computed from

AX+XA'+Q = 0 (10.G8)
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where

A - (F-GIK) (10.69)

(G2WG'+ GKP K'G') (10.70)

In ADAPS, the total covariance, X, is computed from (10.49) by solving
X from equations (10. 62), (10. 63 and (10. 64) using the algorithm LYAK.
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SECTION XI
CONCLUSIONS AND RECOMMENDATIONS

The overall objectives of this study were threefold: (I) development
of theoretical analyses and mathematical models for precision weapon
delivery, (2) development and documentation of computer analysis programs,
and (3) demonstration o: -.heir use.

These objectives were primarily met. In the followving, qualitative re-
sults and recommendations for futur. ;Alidies pertaining to the work reported
in this volume are discussed.

SIGNIFICANT QUALITATIVE RESULTS

The following aspects of the technique developed in this study are con-
sidered significant:

The stochastic formulation of the weapon delivery problem is meaningful
and tractable. It incorporates into the design the stochastic nature of the
incident winds, the time-varying aircraft and weapon dynamics, and the
finite-time nature of the weapon delivery control problem. It develops the full
impact error covariance matrix using the overall system model. It handles
high-order system descriptions, arbitrary sensor arranger..ents, arbitrary
sensor noise levels, and arbitrary control points. The formulation defines
an optimum controller, and it provides a criterion for measuring the quality
of any linear controller. Its basis minimizing the CEP at impact is a mean-
ingful and appealing design motivation. The technique makes the physical
nature of the weapon delivery problem evident. The release covariance of tne
airframe and the impact propagation matrix of the weapon show where the con-
trol and measurement emphasis should be placed for the best delivery.

RECOMMENDATIONS POR FUTURE ANALYSIS AND MODELING WORK

Many interesting issues came up in the course of the study:

0 Optimal steering of airpraft from an arbitrary target acquisi-
tion point to weapon release. This can be posed as an optimal
control problem with a nonlinear cost functional. It can be
treated using iteratively quadratic control in the quadratic equi- .

valence theory of Skelton.

• Although no simulation was required in this study, the developed
model can simulate nonlinear aircraft and nonlinear vweapons.
To increase the simulation capability to automatic weapon
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delivery a model of the nonlinear weapon release state predictor

based on the current state of aircraft should be developed end
incorporated into the program.

* For efficient piloted-weapon delivery analysis, the model of the
operator should be incorporated into the program.

* The nominal trajectories for the linearization are generated
by using a soft autopilot. The selection of suitable gains in the
autopilot depends on past experience and trial-and-error pro-
cess. To increase the versatility of the program, the algorithm
designed for algebraic trim should be programmed, tested and
incorporated into the program.

* In this study, an exact probability density function of the overall
system is developed as a function of time. Therefore, the uni-
versally used assumption ot small correlations in the CE P

evaluation should be removed by using this density function. A P
good approximation to HPA should be developed using the full
covariance matrix.

CONCLUSIONS

A reasonably powerful technique for the analysis and design of precision
weapon delivery systems -s developed in this study. The technique emplo's
nonlinear modeling, linearization, stochastics, quadratics and a significant
amount of digital computation. The optimum controller it produces minimizes
the CEP at impact. Optimal time-varying as well as time-invariant gains can
be evaluated for various airframes, control points, measurement points,
and weapons.

The value of the approach lies in its mathematical models and algorithms.
They provide total system analysis and design capability by a digital com-
puter.
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APPENDIX I

DEVELOPMENT OF A METHOD FOR FIXED-FORM
OPTIMAL CONTROLLER DESIGN

A method is presented in this appendix which designs optimal algebraic
controllers with limited number of states (i. e., fixed-form controllers) [55].

o The method is based on the concept of orderly reduction of the elements
S of optimal full gain matrix to zero for the states which are not measured. This

is achieved by adjusting the remaining elements (i. e., elements corresponding
to measured states) while maintaining the optimality. It tacitly assumes the
existence of solutions.

The program which implements the technique is called "PROGRAM PAPS".
It enables one, aniong other things, to asses the performance degrad-itions
which occur when the complexity of a full set of optimal gains and a Kalman
filter cannot be permitted.

In the following, the problem statement is given fi:.st. The method of

solution is treated next.

PROBLEM STATEMENT

Given a time-invariant stochastic control system

x Fx+G u + (I-1)

r Hx + Du

x = vector of state variables

u = vector of controls

r response vector

g = vector of disturbances such that

E{g] = 0 Et (t) •'(r)] = NO(t-T)

The problem is to minimize the performance index

J(K IK3) = 3tr [H-+D(K I+K3 Q C-H+D(K +K 3)' xx'] (1-2)

with a controller of the form

u = (K +K )x (1-3)
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I

In J1-3), K is an (mxn) matrix with the following zero elements:I (K 1 ).- 0 je Q, i = 1,2,...,m
13

The set (2 denotes a prespecified collectior, of inteýgers which define the
unmeasured states. K3 is an arbitrary fixed matrix.

METHOD OF SOLUTION

.h gain matrix K corresponding to full-state measurement can be decom-
posed into the following components:

K = 1I+XK 2 +K 3 , X= 1

X is a scalar parameter with

K.. K1ij (ij) e fllKj 0 (ij) 401l

K 2 = K gij(ij) E 2 (1-4)
0 (ij) 92

K'.3 = K Kij(i0) 039
ij 0 . (ij) c13

where the sets fl, il2, and 0 3 dei.%Jce preselected collections of integers

which define the row and column indices of K1, K2 and K3 .

The necessary condition for the optimality of K1 is

a j(K+K 2+K3) 0 (1-5)aK1
-i~~ =( +X0

To express K1 as a function of X, (1-5) can be written as

-a- J(KI+XK2+K) = 0 (with K2 and K3 constant and'- arbitrary)
aK.

which implies K1 I K (X).
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Then by the Implicit Function Theorem Kl( ) is defined by the following
differential equation:

d _ [2J (K+ K2+ K3 - 2J ( 1+XK 2 +1K3  (1-6)

BK' BXKT I K ax

A solution to equation (I-1) can be obta:.ned by starting with any known
terminal condition K = K 1 + xK2 + K3 for' = l and integrating (1-6) backwards
to X = 0. In the program the terminal condition used is the global optimum
of the performance index J (i. e., the solution of the perfect sensing optimal
quadratic control problem). In order to integrate (1-6), one must develop the
indicated partials and select a numerical integration algorithm.

NUMERICAL INTEGRATION ALGORITHM

The numerical integration algorithm used to solve (1-6) is a predictor-
corrector scheme [55] which employs the following equations-

(Predictor)

KP = K 1(X)+ x 55 - 59 dk -
K 24 d)' K dKX K-1

+ 3 dK 1 (XdK1 IxK_3)] (1-7)dX• (K-2)9 dXK -I

(Corrector) -3

K1 1 JKKP K+I
K XK+l1, W1Z K 1 aKiT

(1-8)

where) = 1;X =X +KZX, (K= 1,2, ... , -).
o K 0 A

In order to obtain enough "back information" to use (1-7), the first three
predictor steps employ the following equation

K1P = K1 (XK)+ X dK (X K = 1,2,3 (1-9)

The major computational task is to evaluate the first and second partial
derivatives in (1-6) and (1-8). A method to evaluate these partials is given in
the next subsection.
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METHOD OF EVALUATING PARTIAL DERIVATIVES

Let X denote the covariance matrix of system (I-1) with the controller

u= Kx

(F+GK)X + X(F+GK)' + N = 0 (1-10)

and corresponding to X, define an adjoint matrix S as follows:

(F+GK) 'S + S(F+GK) + (H+DK) 'Q (H+DK) = 0 (I-Il)

The performance index J(K) of (1-2) is given by

" J(K) = tr ((H+DK)' Q(H+DK)X) + tr[SI'] (1-12)

The first partial of J [55) is:

= 2tr ([H+DK]'QD+SGEiJX- (1-13)
aK..

13

where

Eijl aK

The second partials of J are

2 a2 (D' QD)iX + [(H+DK)' QD+SGi
+'. QD+SG]. a 1R-

(3Aj ' a U•' ~ja

+ [(H+DK)' QD + SGU a, X (I-14)
a ma

where a is defined by

(F+GK) - + 6A (F+GK)'+(GEiJ)X+X(GEij) '= 0 (1-15)

" i

a(K 2 D E'jX 7(H+DK8 QD+S 2KA
QD'+ x Eia

9. (1-16)
1'78



where WXIbA is defined by (1-15) with E13 replaced by K2 , Therefore, if the
number of non-zero elements in K 1 is k the partials required to solve (1-6)
and (I-8) can be computed by solving t+ 3 covariance equations for the
matrices S, S

WK (j e fl a total of•.) and --

The program PAPS implements these analytic developments.
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APPENDIX II

DEVELOPMENT OF THE NOMINAL RELEASE EQUATIONS

In the analysis and design of weapon delivery systems, for a given attack
maneuver and a slant range, the prediction of the nominal weapon release
time is needed.

With a high-power airborne computer, the prediction of release time for
hitting a target can be based on the six-degree-of-freedom weapon trajectory,
computed on line, taking into account all miss-producing effects, and the
current states of the aircraft. This may be referred to as "release with a per-
fect computer." To reduce demand on high computing power, however, a
simplified model is usually used.

Since no real-time simulation is involved in ADAPS, the prediction of
nominal release time is based on the integration of six-degree-of-freedom
trajectory equations (i. e., perfect computer). For determining the magnitude
of timing errors in release, the release model must be developed separately
by the user as it depends heavily on the fire control system being evaluated.
In the following one such model is developed for completeness.

DEVELOPMENT OF NOMINAL WEAPON RELEASE EQUATIONS

It is assumed that the position vector of the bomb's trajectory is given by

ST s

rw (1") =r + fr d+ ffv dsdT (I1-I)

0 0 0

where

vr= weapons velocity at T =0

v = weapons acceleration

The acceleration term can be decomposed into contributions due to gravity,
aerodynamic drag per unit mass, lift per unit mass, rotational effects per
unit mass, etc. In order to avoid line integrals given by (fl-1), it will be
assumed that all these effects can be lumped into the form of [56)

4 = kg (H1-2)
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That is, the bomb "sees" gravity as equivalent to ge. In addition, the drag
terms affecting the forward velocity are neglected. With these assumptions,
(11-1) can be written as

1 ~'2
rw 7 (0) + r (0) + ge (II-3)

Referring to Figure 51, the miss-vector, r, (i. e., the position vector
from target to weapon) can be expressed as

( (1-4)

1 2 T

r (0- - ()T+ T r (11-51
r r 2g

Now the problem becomes finding 0 and T such that
-4
r' (0, T) =0 (11-6)

Equation (II-6) forms the basic part of the so-called fire con*rol equations.

This algebraic problem can be solved in various ways. One approach is
to evaluate

J** m min rin 1 r?(O, T) (11-7)
9 T

which overrides the questions of existence of solutions to (11-6).

In the following the existence of solutions to (11-6) is assumed and a solu-
tion algorithm is developed as given in [42] (see Section VII also).

In matrix notation (11-6) is expressed as

SL f21(0, T) 0

z f 20, r)J\0

where

f 1(0 r u' U(6) 0FxTI
+ + 1 (11-9)

L2 r [ i[g(6, T) z (0) W (0) kgzT
,1 J r L8
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With ejection velocity'e alongr , the velocity term in II-9 becomes

ur V Ve rs 0

'wriLV VJ 'Cos 9)

On the other hand, letting
r[sin e VV

r(O) = s , q= 4 , and, qe --L-- (TT-11)[Cos 01

one can write

, =R r(O) (II-12)

Substituting (H-10), (II-11) and (11-12) into (11-9), collecting termns and dividing
throughout by R yields the normalized miss-vector equationJ 2R 2w(, = ([I+QT]r(O)+ e 2 T TIT LO] (11-13)

where

Q [q (11 - 13 a)

qe

and -

rT (1-1b
'nT = -- (R1b

with

rT = [ (II-13c)\ZT S R cos Y

I
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DEVELOPMENT OF THE FIRE CONTROL ALGORITHM i

Let • and define

0 (ý, h) = f0(E)- )(1-h) 0

For h = 0 and =o one gets 0 Q(, o) =0.

For h = 1, 0(Q, 1) = f-() = 0. This implies that if one can maintain 0(Q, h)
0 by properly choosing the values of ý while increasing h from zero to one,
the value of g at h = 1 becomes the solution vector to Q (E) =0.

Using the implicit function theorem:

- g+ 6h 5h = 0 (II-15)

If (ao/aI) is invertible then

But

ag a and N= f( ) (1- 17)

Therefore

de= - I f (go) (11-18)

With the given ho and go this differential equation is integrated up to
h= 1togetg. Now

2e 2
and[I + QT] r() + 2'r - 1T (H-19)

and

- F(g) =If I f
w I -a-

where
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- ----- with

1P , a = (11-21)
"-L1  0 kg

"If Euler's integration algorithm is used, one can write from (H-18)

=F-1 k) b (H-22)

k+1 k

where

b -f 0 h
0

an:i (11-20) is iterated from k = 0 to k = = N.Ah

To establish startup values for the fire control algorithm, select

= tan- (1-23)0o V

and compute ro so that z = f 2(80 , T) = 0. This gives

_ /2(z T - R)

To (11-24)

Substituting this into fl in (1-9) gives the normalized range error at the
beginning of the iL:eration

X= fl(0 "o) = Vr To -xT (11-25)

Thus, following equations are used to start up the iterations:
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6 " tan'V 1 VT-
and-fand0 (11-26)

After ih, ;;ng fourd gp so that (11-13) is satisfied, the predicted time during
"pullup" is given vy

t + Op (11-27)

pu q

Due to simplifications used in the modeling of the weapon trajectory, the
predicted nominal release time tpu must be corrected. This correction is
in the form of

tr = kCtpu + Atc -At (I-28)

-- j where

k¢ algorithmic error correction multiplier

Atc r algorithmic error correction bias

At known delay in the release mechanism

Obviously, the actual nominal release will occur at -

tra = kctpu+ Atc (H-29)

The correction multiplier kc and bias Atc are obtained from numerical experi-
ments with actual six-degree-of-freedom weapon model.

18
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