AD-751 494

FLAME PROPAGATION IN A VORTEX RING

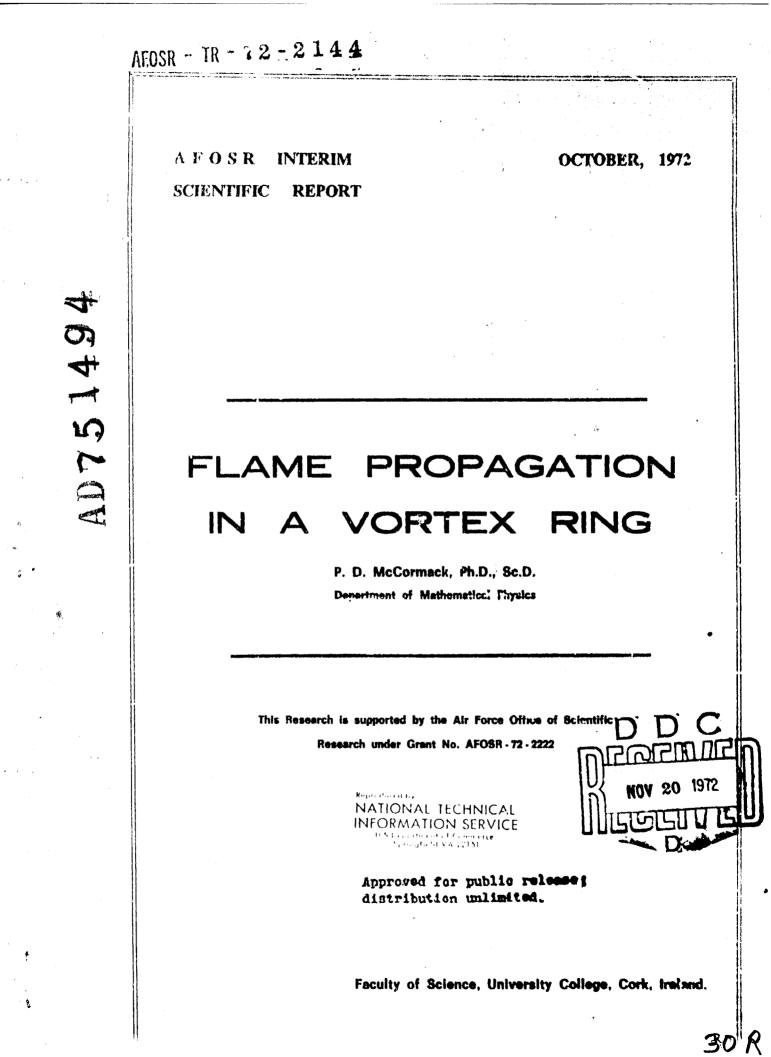
Percival D. McCormack

University College

Prepared for:

Air Force Office of Scientific Research

October 1972


۰. ۲

DISTRIBUTED BY:

,

National Technical Information Service

U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

UNCLASSIFIED						
Security Classifi	المتوجعا المراجع المتكاف المتوجر والمتحال والمتحاص والتوج التي والمتحاص والمتحاص والمتحال والمحال					
(Security classifica	DOCUMENT CO tion of title, bedy of electricit and index	NTROL DATA - R		e overall report is classified)		
DRIGINATING ACTIVITY ((Colpotate author)		20. HEPORT	SECURITY CLASSIFICATION		
UNIVERSITY COLL	EGE ATHEMATICAL PHYSICS		UNCLA	SSIFIED		
CORK, IRELAND			a. unour			
REPORT TITLE		·····		والموادعة وماكلي برعم يعينهما ويوباري بمنابعهم والمنابعة والمنابعة والمنابعة		
FLAME PROPAGATIO	on in a vortex ring					
	rpe of report and inclusive dates)					
Scientific	Interim					
•	·					
PERCIVAL D MCCO	RMACK			,		
REPORT DATE		74. TOTAL NO. O	F PAGES	78. NO. OF REFS		
Oct 1972	·		30	10		
. CONTRACT OR GRANT I	No. AFOSR-72-2222	SE, ORIGINATOR	ALPORT NU	MRER(\$)		
PROJECT NO.	9711-02					
	61102F	B. OTHER REPOR	RT NO(S) (Any	ett.st numbers that may be assigned		
	681308	AFO	AFOSR - TR - 72 - 2144			
Approved for pul	blic release; distribut	ion unlimited.				
	C 8	12. SPONSORING	MILITARY AC	TIVITY		
SUPPLEMENTARY NOTE						
	-	AF Office		ific Research (NAE)		
TECH, OTHER	-	AF Office 1400 Wilson	n Bouleva	rd		
ABSTRACT		AF Office 1400 Wilson Arlington,	n Bouleva Virginia	22209		
TECH, OTHER Enhanced flame p gases has been to (which the ignite this mechanism a Stability consider rotationally exceptions of the	propagation speeds in v reported. Constant vol ted vortex core is) can apparently fails as the derations indicate that cited. Three consequen he gas in the core; (b) heat conduction by an i	AF Office 1400 Wilson Arlington, ortex rings for ume combustion produce a prop propagation control the molecules ces of this are tive effect on	n Bouleva Virginia rmed of p with a r pagating riterion in a vor e examine reaction	erd 22209 oremixed combustible otating heat source pressure wave. But cannot be met. tex core are ed: (a) the transport a rate; (c) the		

and the second of the second second

ř ۰.

ar in the second se

. -4 35

ž

4.	KEY WONDS .		LINK A		LINK		LINK C	
			ROLE	WT	ROLE	WT	ROLE	
COMBUSTION							1	ŀ
	_						1	
VORTEX RING COMBUSTION	•						· ·	
MOLECULAR ROTATION							1	
	u a							
			i			I	ŀ	
						Ĩ		
			ļ					ļ
		1						
		1						
				Ì				
		•		i				
			1					
			1					
						1		
				ĺ				
			I			ł		
							ł	
			1			1		
						1		
	A -							
	<u>i</u> i							
		. 1	UNCLA	SSIFI	ED		lu	
					assificat	100	•	-
•						••		

 $-\frac{1}{4}$

Interim Scientific Report

Flame Propagation in a Vortex Ring

Dr. P. D. McCormack, Department of Mathematical Physics, University Collega, Cork, IRELAND. and the second substant substant states and substant substant and substant substant

いちないないないないない いっちょうないちっちないちょうちょう ちょうちょうちょう ちょうちょう

This research is supported by the Air Porce Office of Scientific Research under Grant No. AFOSR - 72-2222.

iii

designed a starter for the start of the start of the second starter of t

ĩ

×î

Contents:

T

",

Ę

Section	1	Introduction
78	2	Structure of the Vortex Core
17	3	Constant Volume Pressure Wave
17	4	Internal Convection Mechanism
11	5	Reaction Rate Effect
11	6	Concluding Remarks.

1. S. M. C. L.

ļ.

References.

ÍV

1. Introduction

Observations and measurements on the combustion of vortex rin formed of an approximately stoichiometric mixture of propane and air have been carried out and reported on 1,2,5. The vortex rings were formed conventionally by applying a pressure pulse upstream of a circular orifice. From 3 cm. to 7 cm. diameter orifices were used and the initial vortex rings would have roughly the same diameters (2R).

Ideally the vortex rings have a finite core of rotational fluid, surrounded by an irrotational vortex flow field in which the tangential velocity falls off as $\frac{1}{r}$, where r is the radial distance from the core center. If a is the initial core radius, then $A \ll R$

If \tilde{I} is the impulse of the pressure then following von Karman, the initial vortex strength is given by

$$\kappa = \frac{\overline{I}}{e} \qquad -----(1)$$

where Q is the fluid density. Using Lamb's non-viscous analysis, the initial forward velocity of the vortex ring (with respect to the surrounding fluid) is given by the relation

A sere is viscous action between the vortex core and the surrounding

(i) a increases with time (or distance from the orifice)

(ii) Kand v decrease with time.

Continuum fluid dynamics can tell us nothing about the <u>structure</u> of the vortex core, nor about its size. A basic kinetic theory for the fluid in a vortex core must be resorted to. Section 2 of this report will consider this aspect further. Such a theory is required before a satisfactory theory of flame propagation through a vortex core can be developed.

It is appropriate at this stage to summarize the observations and results obtained from experiments made on the combustion of pre-mixed vortex rings. (i) the flame propagated symmetrically from the ignition region round the vortex ring (or torus) till the two flame fronts met on the far side of the ring.

(ii) although some expansion had occurred, visual observation showed that the ring was still intact when the flame fronts met.

and a substantial substant and substantial substantial substantial substantial substantial substantial substant

and the state of the structure when an all the state base

Fig. 1 shows a photograph of a burning vortex ring. (iii) High speed movie Schlieren photographs confirmed the ordinary photographic evidence (Schlieren is sensitive to heat output) that the ring was still intact when the two flame fronts met. There is an indication that the advancing leading edges of the 'heat fronts' are pointed rather than flat. This would support the concept of a central highly heat conductive core.

(iv) a mean flame propagation speed was arrived at by measuring the time taken for the flame fronts to traverse (half) the ring. Knowing the approximate circumference of the ring, the mean speed was computed.

Fig. 2 shows a graph of flame speed versus vortex strength for the 7 cm. orifice. Speeds of up to 1350 cm/sec. for the propane/air mixture and up to about 1550 cm/sec. for the propane/oxygen, were measured.

For a propane/air mixture the flame termperature is about 2260° K and for a constant pressure spherically expanding flame the measured velocity of flame propagation in a quiescent mixture would be about 30. $(\frac{2260}{300}) = 220$ cm/sec. The turbulent flame speed is at most about twice this 4 - that is, about 400 cm/sec.

The fluid flow in a vortex core is well-ordered - at least in a macroscopic sense - and there is no axial convection round the torus under normal conditions.

It therefore appears that flame speeds in a vortex core are enhanced with respect to that in a quiescent mixture by a factor of about five.

The remainder of this report will deal with preliminary considerations of mechanisms which could be responsible for enhanced flame speeds in vortex cores.

- 2 -

The structure of the vortex core - in so far as molecular kinutics will determine reaction kinetics and transport processes - is a matter of basic concern with respect to flame propagation therein. The next section will deal with a new postulate which the principal investigator has formulated. This will require experimental vermication and so must be regarded as tentative at present.

- 3 -

.1

artisteriological and a strategy that the second and the second at the second strategy of the second second sec

Same and a state of the later.

State Ones Alt Site of States

2. Structure of the Vortex Core

It has been generally assumed that the velocity profile in the vortex core is linear - characteristic of solid - body rotation. The core is thus a shear free region. But this leads to a velocity discontinuity betwee. the core and the surrounding irrotational region. There must be a shear layer (or boundary layer) between the two regions. Thus on a macroscopic scale the core structure is to shown in Fig. 3.

The inner rotational core is formed initially at the orifice by the pressure pulse. Through viscous interactions with the surrounding gas the shear, or boundary layer is formed, and increases in extent with time.

It is thus pertinent to consider the inner rotational core. If it rotates with an angular velocity (f_{n}) then this is called the vortex angular velocity and

angular velocity and $\vec{\omega} = \frac{1}{2} \operatorname{curl} \vec{\nabla} = ----(3)$ where $\vec{\nabla}$ is the macroscopic translational velocity.

The internal thermodynamic energy, E, of the vortex core is a good physical variable. But $\frac{1}{2}$ curl \vec{v} corresponds to a uniform rotation of the molecular mass centers (for polyatomic molecules) and E is not invariant with respect to such a rotation. If \vec{M} is the molecular spin angular velocity, it is only when $\vec{M} = \vec{M}$ that E is independent of curl \vec{v} and so can be good physical variable. In fact unless this is so, the core could not be in equilibrium and torque must be present in the system. If the z-components of \vec{M} and \vec{M} are different say, then the torque would have a moment proportional to $W_2 - \hat{M}_2$.

It is interesting to note that Fetter has shown that a planar lattice array of point vortexes each of strength K, confined to a circular region, must have a definite angular velocity for self-consistency. In the continuum limit of number density n, this angular velocity is given by the relation

$$\vec{\omega} = \frac{1}{2} k n - - - - - - - - (4)$$

- 4 -

where κ is the point vortex strength. If these are identified as molecules, each with effective radius r and spin angular velocity Λ then $\omega = (\pi r^2 n) \Lambda - - - - - - (5)$

 $\pi \tau^2 n$ represents an effective polectian cross-sectional area per unit area (for a planar system). This is probably a more realistic condition for a stable vortex core than that arrived at by thermodynamic considerations alone ($\omega = \Omega$). Thus, if a vortex core is to be inherently stable, the molecules of which it is formed must be in states of non-zero angular momentum.

It is postulated that this rotational excitation occurs in wall collisions (non-specular) as gas molecules pass through the orifice. It has been shown theoretically⁵ that a finite percentage of diatomic molecules in a beam colliding with a solid surface, are excited into the second, or third, rotational energy states. The pressure pulse used to form the vortex could possibly

ないないであるというないないないで、「ことのないないないとうとうと

- (a) increase this percentage greatly by supplying the extra energy required
- (b) cause the excited molecules to form a 'clump', or rotational core in space.

The major objection to this postulate is that rotational relaxation times are of the order of 10^{-8} second. And vortex life-times are of the order of at least 10^{-2} second. But in a volume element of a gas containing <u>only</u> rotating molecules - all in the same excited state - the relaxation cime would be effectively infinite. Only the peripheral gas molecules would experience rap[d] attenuation of their rotational energy through interaction with the surrounding 'irrotational gas' molecules.

The gas in the vortex core would have bulk viscosity and so energy dissipation within the core would only occur in the presence of pressure fluctuations.

Molecular Orientation due to Rotation-induced Dipole Moments

Molecular rotation can endow a non-polar molecule with

- (a) an electric dipole moment due to centrifugal distortion of the molecule.
- (b) a magnetic dipole moment due to asymmetry in the electronic change distribution in the molecule.

In both cases, if the dipoles are aligned and each of strength A then the interaction potential is given by

Even for a polyatomic molecule such as propane, unless the rotational quantum number (J) is quite high, the distortion of the molecule is small and so /t is small.

If L; is the rotational angular momentum, then the magnetic dipole moment is

$$M = V_{nT}L - - - - - - - - (7)$$

where

Service of the Association of the Association

 $\gamma_{n,r}$ is the nuclear rotational gyromagnetic ratio. This can be written classically as

For example, if there were N nuclei of the same mass m and charge e

then
$$\mu^{RN} = \frac{2}{2\pi} \sum_{s}^{2} (\gamma_{s} \times \nu_{s})$$

= $\frac{2}{2mc} L - - - - (8)$

where $\mathbf{L}_{\mathbf{i}}$ is the rotational angular momentum of the molecule. Even for the maximum possible $\mathbf{L}_{\mathbf{i}}$ values, $\mathcal{M}_{\mathbf{i}}$ value of less than 1 Bohr magneton are predicted.

Thus dipole-dipole interactions in a gas of rotating molecules will be weak, but they are long range and

- (a) can reduce, or even eliminate, hard core interaction so that the softpotential contribution to the transport properties predominate. In fact one woold expect anomalously low shear viscosity and thermal conductivity.
- (b) can cause the molecules to orient due to alignment of the axes of rotation. This should result in the gas in a vortex core being optically anisotropic and it should be possible to design an experiment to verify this. The molecular motion in a gaseous vortex core would be correlated in this sense - that is, angular correlation.

and the state of the state of the second state of the state of the second state of the

Core Size

An estimate of the lowest value feasible for the core diameter can be arrived at by the following arguement. To cause an overall enhanced burning velocity the core region should have a lateral extent which is at least of the order of magnitude of the flame preheat zone thickness. And for propane/air, this is about 0.1 cm. The observed initial core diameter (for the 7 cm. orifice) was about 0.5 cms., and so the shear-region must be the larger in size, even close to the orifice.

It is interesting to note that the smallest energy containing centered eddies in turbulent flows have a reciprocal wave number (size) of about .07 cms.

One must be careful to differentiate between a turbulent flame, in which a flame propagates through a system containing a random assembly of eddies, and the vortex ring flame in which flame propagation through a single '~ !y" in effect, is being observed.

To establish the stability and properties of a vortex core (thermodynamic and transport) which would follow from the core structure proposed here, will require extensive theoretical analysis. Detailed and critical experimentation will be required to substantiate these predictions. In the meantime, the question of flame propagation in such a vortex core has been considered. Some possible mechanisms of propagation will be outlined in the following sections.

NATES OF A SAMPLE AND A SA

3. Constant Volume Pressure Wave

If combustion occurred at constant volume, then as the burning vortex core is effectively a rotating heat source, a propagating pressure wave could arise at the flame front and would result in an increase in flame speed.

Following the analysis of the pressure waves generated by such a source⁶, it turns out that a wave can only propagate if the core rotational frequency ($(\))$) is larger than the natural frequency of transverse vibration of the column of gas of radius a (the initial vortex core radius in this case). The latter frequency was deduced to be given by the relation

 $\omega_{\perp} = \frac{\lambda_{imn} c_{o}}{\pi}$

where

is the speed of sound in the burned gas. is the nth smallest root of the equation, $T(\chi)=0$

For the gas column of radius 0.1 cm. (the initial core radius), $(\mathcal{W}_{+})^{1}$ \sim 10 radians/sec. Using an average vortex strength of 3,000 cm²/sec. sec leads to a value for $(\mathcal{W}_{0})^{10}$ of about 10 radians/sec. It appears that this criterion for pressure propagation could be met only by postulating,

(i) unrealistically high vortex strength and/or

(ii) a much smaller core size (and then the problem of ignition would arise).

The analysis also predicts that the amplitude ratio of the wave is proportional to the value of ω_{e} : and so would increase linearly with vortex strength. The flark speed ratio, $\frac{\Delta u}{\Delta r}$ will be proportional to $\frac{\Delta u}{\rho}$ and so should increase linearly with vortex strength - as indeed has been established (see Fig.L) To achieve speed increases by a factor of between 3 and 5 would require large pressure changes and the vortex ring would disintegrate. Finally, there is no real reason to drop the constant pressure

combustion condition.

J

.

In view of these various adverse factors, it is doubtful if this mechanism can be taken as operative in vortex core combustion.

いっちんこう いっちょう いっちょう

execution in the constant of the solution of the

4. Internal Convection Mechanism

Luniel1⁷ in 1930 demonstrated that essentially the laminar burning velocity was proportional to

- (i) the square root of the reaction rate.
- (ii) the square root of the ratio of the thermal conductivity to the specific heat at constant pressure. In fact,

$$\mu \doteq \left(\frac{1}{e_{o}}\right) \sqrt{\left(\frac{\lambda}{c_{p}}\right)} w = - - - - - - - - (10)$$

where

is the reaction rate

is the thermal conductivity of the combustible mixture is the specific heat of the mixture is the density """"

Now,

and southed by Richard means and the late or bedre farmately Andra March Standart ever when a

 $C_p = \frac{4}{3}\mu + \mu_{\bullet} - - - - - (1)$

where

is the shear viscostty of the gas is the bulk viscosity of the gas

Thus (A,) represents the effective viscosity of the gas, or the molecular interaction. As postulated in Section 2, there is no shear viscosity in the core ges and so

 $\frac{A}{C_0} = \mathcal{A}_{B}$

in the core. If \mathcal{L}_{p} is reasonably constant, then this implies that the coefficient of heat conduction for core gas is very low. A reduction in flame speed would therefore be expected from this. It is possible, however, that heat transport in a vortex core could be effected by a mechanism known " as Internal Convection. The high heat conduction in liquid helium has been attributed to this mechanism⁸.

Derivation of Spin-Wave Equation

A wave motion in a gas (apart from the normal preasure, or sound, wave) becomes possible if the molecules are endowed with magnetic moments associated with internal angular momentum or spin. Spin 'signals' can then be propagated through the gas from one part to another. The relevant wave equation will now be derived.

The molecules will orient or line-up in the presence of dipoledipole interactions and if is the molecular magnetic moment and. n the number density the macroscopic magnetizition is given by

所 = n くず〉 12) **太 - 8 T** + -----(13)where is the gyromagnetic ratio is the rotational momentum implies the ensemble average. A disturbance, such as a sudden rise in temperature (as in ignition) will destroy this magnetization and lead to a diffusion of spins. = n[人広] If is the flux of magnetization (c is the mean molecular speed) then M and J. satisfy the following equations of change.⁹ $b_{\pm}M + \nabla \cdot \left[\overrightarrow{\mu} \overrightarrow{M} + \overrightarrow{J}_{n} \right] = n b_{e} \langle \overrightarrow{\mu} \rangle$ (14) - e- (v.p) m = n d (2,1) ---. - (15)

เริ่มห้าร รักษา แล้งและ จำนั้นเมืองสามหารมีการมีหรือมหรือมหรือ

It can be shown¹⁰ that if the distribution function is taken in the form

 $f = \mathfrak{f}[1+\phi]$

• 12 -

Strate and the second

that to this first order of approximation the collision, or source, terms in equations (14) and (15) are given by

$$n \partial_{\epsilon} \langle \vec{\mu} \rangle = - \frac{M_{\epsilon}}{\tau_{\mu}} - - - - - (16)$$

$$n \left(\frac{c}{\mu} \right) = -\frac{J_{\mu}}{c_{\mu}} - - - - - - - - - (17)$$

where $\mathcal{M} = \mathcal{M} - \mathcal{M}_{a}$ is the deviation of the magnetization from its stationary value.

$$\vec{M}_{o} = \eta^{\circ} \langle \vec{\mu} \rangle$$

and

$$\vec{u}_{1} = \langle \vec{u}^{2} \rangle \{ 2n [\vec{u} \times \vec{w}; \vec{u} \times \vec{w}] \} = \cdots (19)$$

where

$$\overline{W} = \left(\frac{m}{2kT}\right)^{\frac{1}{2}} \overline{C}$$
implies a square-bra

are-bracket 'ntegral. If 🗙 is independent of then reduces to the spin relaxation TSP defined as

$$T_{sp} = \left(\frac{T}{2\pi}\right) \left[\vec{\Omega}; \vec{\Omega}\right]$$

$$\vec{\Omega} = \left(2\Gamma R T\right)^{-\kappa} \vec{\Gamma} \quad \text{is the dimensionless angular momentum}$$

where

time

 Γ is the moment of inertia of the molecule.

Y is the number of degrees of rotational freedom.

If there is no streaming motion then $|\vec{x}| = 0$ and from the above

equations result the following coupled differential equations

$$\partial_{x} \mathcal{M} + \tilde{j} + \mathcal{T}_{y} \mathcal{M} = 0 - - - - - (21)$$

$$\partial_{x} \tilde{j} + \omega_{sp} \mathcal{D}_{sp} \Delta \mathcal{M} + \omega_{sp} \tilde{j} = 0 - - - (22)$$

$$\omega_{sp} = (\mathcal{T}_{y})^{2}, \mathcal{D}_{sp} = k \mathcal{T}_{m} \omega_{sp}$$

$$\tilde{j} = \nabla \cdot \tilde{j}_{m}$$

If the inertial term is ignored in eq.(21) then one gets the constitutive relation

$$\vec{y} = -\mathcal{D}_{sp}\Delta\mathcal{M} - - - - - - - (73)$$
$$\vec{J}_{n} = -\mathcal{D}_{sp}\nabla\mathcal{M} - - - - - - (24)$$

or

Equation (24) relates the spin flux to the gradient of spin, or magnetization, deviation. Using this in equation (21) gives the equation

 $M - D_{SP} M + M = 0 - - - - (75)$ Thus D_{SP} is identified as the coefficient of spin diffusion is the spin relaxation time. But this is a parabolic equation which describes a 'collective' motion of the medium which tends to 'smooth out' irregularities of the spin deviations. This equation would imply that a deficit of magnetization in one region stimulates an <u>immediate</u> response through the system.

One can obtain uncoupled partial differential equations for \mathcal{M} and \mathcal{J} from equations (21) and (22) by differentiating (21) with respect to time and eliminating \mathcal{J} and \mathcal{J} from the resulting equations by the use of equations (21) and (22). This results in the telegrapher's equation

 $\dot{M} + (\omega_{sp} + \zeta_{m}^{-1})\dot{M} - \omega_{sp}\mathcal{D}_{sp}\Delta \mathcal{M} = 0$

which implies that the spin deviations propagate in a wave-like way with a

finite velocity of propagation and are confined to a characteristic signal cone.

- 15 -

The coefficient $\omega_{sp} \mathcal{D}_{sp}$ has the dimensions of velocity squared. This the wave-velocity, κ where

$$\kappa^2 = \omega_{\rm sp} \mathcal{D}_{\rm sp} = \frac{kT}{m} - - - - (24)$$

For normal temperatures this predicts a value for \mathcal{C} in the region of 10⁵ cm/sec. Normally $\mathcal{W}_{SP} \sim \mathcal{L}_{A}^{-1}$ and so the damping coefficient in equation (26) is just 2 \mathcal{L}_{SP} or 2 \mathcal{L}_{A}^{-1} . As \mathcal{L}_{SP}^{-1} is about 10⁸ sec⁻¹ the damping would be far too great to allow propagation of the wave. But accepting that the spin relaxation time (decay time would be more accurate) in a vortex core is much larger than in normal gas, the damping becomes negligible and to a first approximation can be ignored. Equation (26) then becomes a pure wave equation. The boundary, or initial conditions are:

$$M = M_{n-1} + x > 0, t = 0$$

$$M = 0 \quad \text{at } x = 0, t \ge 0$$

The step change M_0 in the spin at the ignition point will propagate at about 10^5 cms/sec through the core.

In effect there are two kinds of fluid present in the vortex core: the rotational, or gyroscopic fluid, which has low velocity and molecules with extra spin. It could be called a superfluid.

(ii) the normal fluid - which is created when the temperature rises.
 It has normal viscosity and normal spin.

There is no net mass flux and so

(29)

 $q = eSTv_{n}$

where S is the entropy per unit mass. It has been shown⁸ that

 $\dot{v}_{r} + \left(\frac{\rho_{r}}{e}\right) S \nabla T = 0$

and as $V_n - V_s = V_n \frac{1}{p_s}$

(i)

じんでいたいないないという

$$\dot{v}_n - \dot{v}_s = -\left(\frac{P}{R_n}\right)_s \nabla T$$
 - - - - - - - (30)
It is this concept of 2 fluid components which is the basis for the in-

ternal convection of heat. The differential equation for internal convection is as follows:

$$\frac{\partial(v_n - v_s)}{\partial t} = RS\nabla T + \frac{\eta}{RST} \left(\nabla x \nabla x q - \frac{4}{3} \nabla v_s q \right)$$

is the viscosity of the normal fluid. For stationary where heat transfer.

 $\Lambda \nabla T = -\nabla F \nabla X - - -$ - - - -(32) $\Lambda = (PS)^2 T_{n_{-}}$

where

arbeite die enderheite beite der einen die die beite die die beite die bestehen wienen werden die eine die die e

is a coefficient characteristic of heat transfer by internal convection. It is analogous to the normal coefficient of heat conductivity.

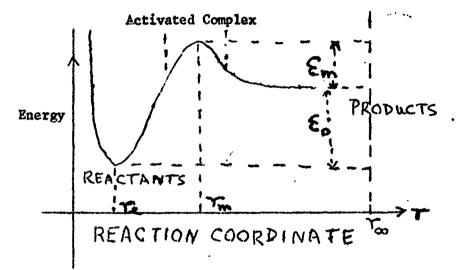
Using typical values of .

$$S = 1.0 \text{ cal/ °K}.gm.$$

 $P = 10^{-3} \text{ gmd./c.c.}$
 $M_n = 1 \text{ micropoise}$
 $T = 300^{\circ} \text{K}$

gives a value of

= 3 cal/*K·cm./sec.


This compares with a thermal conductivity of about 10^{-4} for a normal gas. and so an enormous increase in the capacity to conduct heat is indicated.

This estimate is probably excessively high due to the ideal fluid model used. But it does indicate that the process of internal convection in vortex cores could easily produce thermal conductivities such that flame speeds as high as those observed would be feasible (a 25-fold increase in heat conduction would be guite sufficient).

5. Effect of Molecular Rotation on the Chemical Reaction Rate.

The collision of reactant molecules can produce products only if the energy of the reactants (that is, their relative kinetic energy)exceeds a certain minimum value known as the activation energy, E.

The situation is illustrated schematically below for a one-dimensional potential energy surface.

The Boltzman energy distribution law states that the probability that a molecule possesses energy $E = E_0 + E_m$ is proportional to $E \times P \left(-E/RT\right)$. This factor actually represents the fraction of collisions between reactant molecules in which reaction products can be formed. That is, to form products the colliding molecules must reach the top of the potential energy barrier.

Absolute reaction rate theory assumes that the reacting system at the top of the barrier is a molecule - or activated complex - which is in equilibrium with the reactants. The rate at

- 17 -

which the activated complex decays to products is then equal to the reaction rate.

The rate of dissociation of a diatomic complex formed of 1 atom of A and 1 atom of B will be studied here.

Suppose the number of combined pairs is N_{AB} , then the rate constant for dissociation is

$$k_{\rm b} = \frac{kT}{h(P.f.)_{\rm vig}} EXP\left\{-\frac{\varepsilon_{\rm b}+\varepsilon_{\rm m}}{kT}\right\} - - - - - (33)$$

where h is Planck's constant

and a submitted of the state of the state of the second second second second second second second second second

(P.f.) is the vibrational partition function
k is the number of dissociations per unit time per unit complex.
Effect of Rotation on k

In deriving eq. (33) it is assumed that the molecule is in its lowest rotational state. If this is not so, then the effect on dissociation can be accounted for by adding the rotational potential to the potential-energy curve.

For the rotational state with quantum number j the rotational potential is given by,

$$\frac{j(\dot{q}+i)h^2}{8\pi^2 mr^2}$$

The addition of this putential to the potential energy curve

(a) shifts the positions of the maximum and minimum slightly

(b) raises the minimum by

(c) <u>raises</u> the maximum by

$$j(j+1)$$
 h_{j}^{2} $g\pi^{2}$ $m\tau_{m}^{2}$

Thus $E_p + Z_m$ is changed by the difference between these quantities and so

 $k_{0;j} = \frac{kT}{h(P,f)} Exp\left[-\frac{\varepsilon_{0} + \varepsilon_{m} + j(j+1)K^{2}(\gamma_{m}^{-2} + \gamma_{m}^{-2})}{kT}\right]$ where K^2

19

For a rotational state j, then, the factor by which the rate constant will change will be

$$k_{p,j} = E \times P \left\{ \frac{\dot{y}(\dot{y}+1) K^{2}(T_{m}^{-2}-T_{e}^{-2})}{kT} \right\} - (35)$$

Now at large distances the attractive force between atoms is predominantly van der Waa1's, whose potential varies as γ^{-6} Hence, the effective potential energy at $\gamma > \gamma$ is

$$\mathcal{E}_{*} = i(1+1)K^{2}/r^{2} - C/r^{6} - - - - (36)$$

For an atom with radius 2A

 $C \sim 1.4 \times 10^{-58}$ and it can be shown that

$$\gamma_m^2 = 1.728 \left(\frac{3C}{kT}\right) - - - - - - (37)$$

For j = 3(say), this leads to

A 3% increase in reaction rate is forecast. Even if a = 10 value was used, the factor only rises to 1.35 - a 35% increase.

To explain the 5-fold increase in flame speed in vortex cor's, the reaction rate would have to increase by a factor of 25.

So the enhancement of reaction rate in the presence of molecular rotational excitation would appear to be ruled out as being responsible for the high flame propagation speed in vortex cores.

6. Concluding Remarks

An Ang Partition and a state of the state of the second state of the second state of the state of the

The high flame propagation speeds observed in vortex rings formed of premixed combustible gases could be explained if the heat transport capability of the gas mixture was increased sufficiently.

20 ~

In a gas of molecules with spin, heat transport could occur via a spin (or entropy) wave mechanism instead of the normal diffusion process. An internal convection analysis shows that the effective coefficient of heat conductivity in this case is several orders of magnitude greater than the normal coefficient. A very high flame speed would result from this.

This mechanism depends on the vortex core being somprised of rotationally excited molecules. Thermodynamic and stability consideratiors suggest that this must be so. Such a core structure has several implications:

(i) the spin (or rotation) attenuation time in a gas of rotating molecules must be of the order of a second (the vortex life-time in air). The vortex core gas then must have almost zero shear viscosity, but would have bulk viscosity. Indeed it is frequently assumed that the core is a shear-free region (that it rotates as a solid-body).

This remains to be shown.

(ii) the core will have a small, but finite, magnetization.

(iii) the core gas would be optically anisotropic.

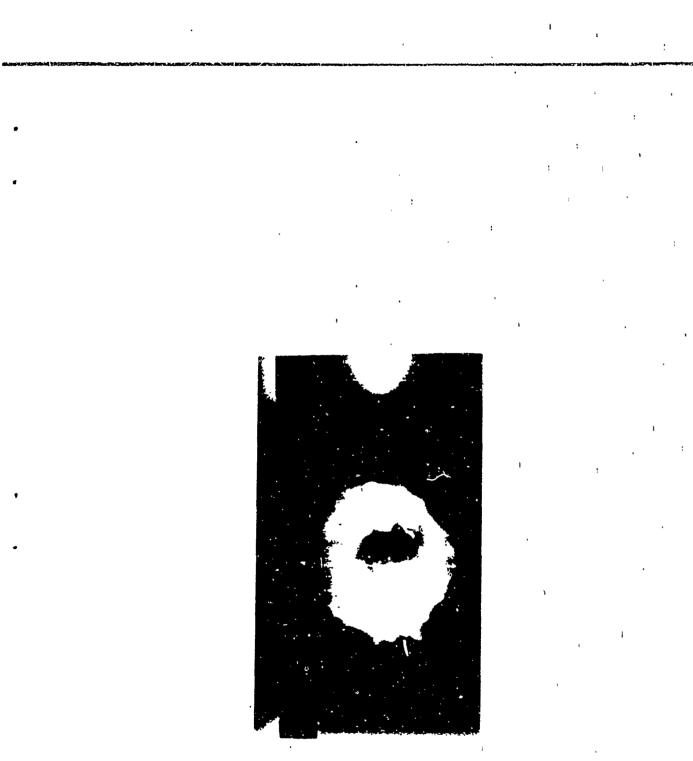
In the area of Air Force technology three complementary project require to be carried out:

(i) the combustion of vortex rings formed of gaseous oxygen and entrained atomized liquid fuel. This will increase the energy dansity of the flame.

(ii) the repetitive formation of vortex rings and their combustion (a frequency of 10 per second should be possible.)

Both of these projects are nacessary steps to establish the

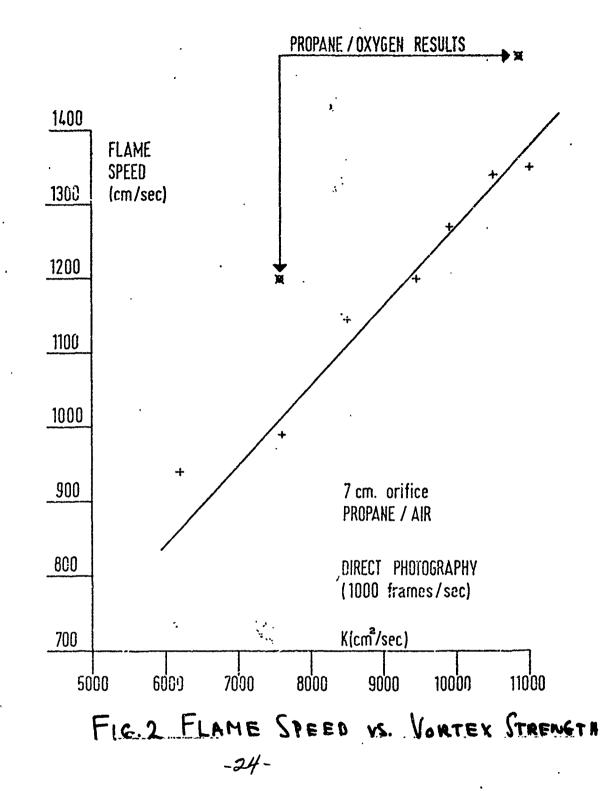
feasibility of a practical combustion, or light source, based on this phenomenon.

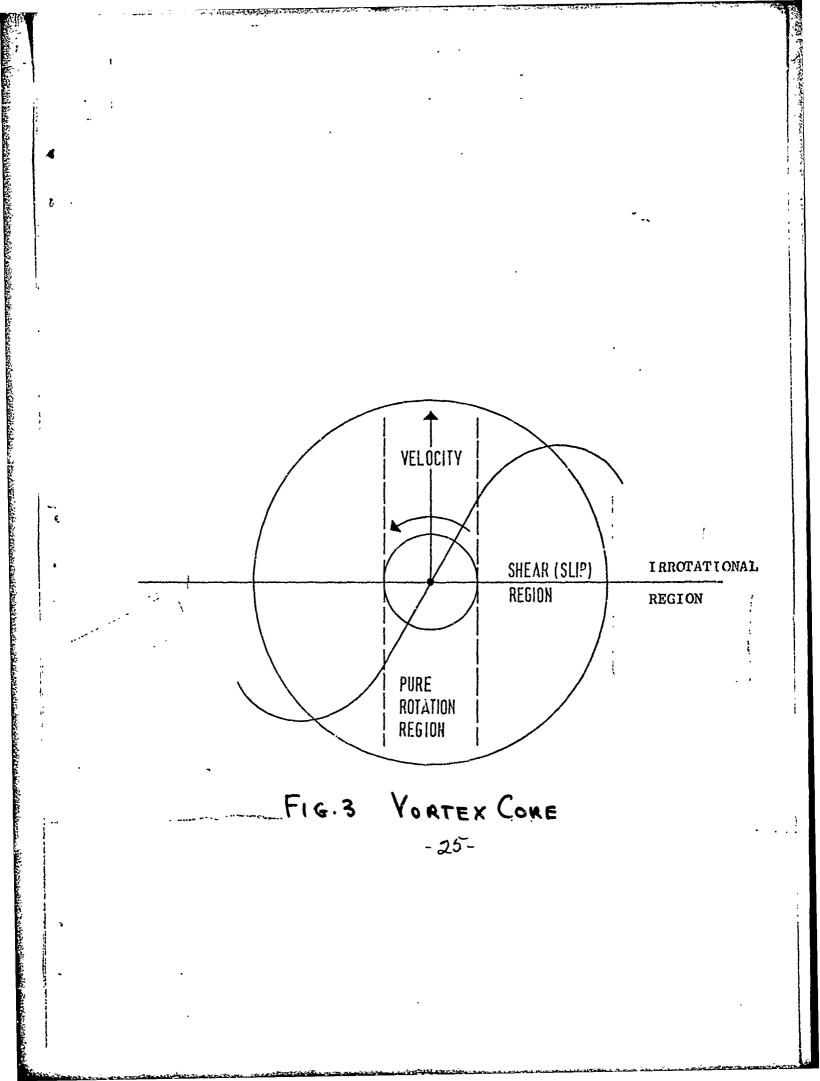

(iii) the use of lasers to ignite the vortex ring. This could have a bearing on the use of such a configuration in fusion reaction.

REFERENCES:

(1)	'Combustible Vortex Rings' Proc. Royal Irish Academy Vol. 71 No. 6 (1971)
(2)	'Flame Propagation in Vortex Cores'. Combustion & Flame (in the press, 1972)
(3)	"Vortex Ping Combustion" 8th AFOSR Combined Contractor's Meeting on Combustion Dynamics Desearch Chicago, 1972. AFOSR - TR - 72 - 0653
(4)	Gerstein, M. and Dueger, G. L. Report 1300 NACA, Washington, D.C. (1957)
(5)	"Rotational Transitions in the Scattering of a Beam of Light Diatomic Molecules from a Surface". R. Logan Molecular Physics <u>17</u> No. 2 (1969)
(6)	B. T. Chu N.A.C.A., TN 3411

「ないないないない」 いっちょうちょう ちょうちょうちょう ちょうちょうしょう


- (7) P. G. Daniell, Proc. Royal Society London 126A, 393 (1930)
- (8) Superfluids. F. London John Wiley & Sons (1954) pp. 157-164
- (9) Dahler, G. Phys. Rev. <u>129</u>, 1464 (1963)
- (10) Dahler, G. and Hoffman, D. K. Ch.1 Transfer & Storage of Energy by Molecules. Volume 3. Wiley-Interscience (1970)


FIG. 1 BURNING VORTEX RING

23

11,157,10

-24-

