AD-750 989

EFFECT OF IRON OXIDE ON COMBUSTION RATE OF MIXTURES WITH DIFFERENT PERCHLORATES

V. I. Avdyunin, et al

Foreign Technology Division Wright-Patterson Air Force Base, Ohio

16 August 1972



National Technical Information Service II. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

# AD 75 09 89

Reproduced by

NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Springfield VA 22151

# FOREIGN TECHNOLOGY DIVISION



EFFECT OF IRON OXIDE ON COMBUSTION RATE OF MIXTURES WITH DIFFERENT PERCHLORATES

by

V. I. Avdyunin, N. N. Bakhman, et al.



Approved for public release; distribution unlimited,

| DECLMENT CONTROL DATA - R<br>Chevrity closefficiales at this, body al absence and indusing anosistic must be<br>Relevant of Conversion and and a second and anosistic must be<br>Relevant of the force Systems Command<br>U. S. Air Force<br>FORT TIVE<br>EFFECT OF IRON OXIDE ON COMBUSTION RATE of<br>PERCHLORATES<br>ELCHIPTIVE NOTES (Type of report and inclusive dense)<br>Translation<br>U. I. Avdyunin, N. N. Bakhman, et al.<br>EFFECT OF GRANT NO.<br>U. I. Avdyunin, N. N. Bakhman, et al.<br>EFFECT OF GRANT NO.<br>TOTAL NO.<br>1971<br>CONTRACT OF GRANT NO.<br>PROJECT NO. 7343<br>The catalytic activity of Fe2O3 in the C<br>NH <sub>2</sub> Cloh with poly(Me acrylate), polystyr<br>was at a max. with 1-5% Fe2O3 and fell o<br>contg. greater than 20-5% Fe2O3. In all<br>of Fe2O3 was less for mixts. of relative<br>burning velocity than for those of lower<br>the catalytic effect of Fe2O3 in mixts.<br>Of NH <sub>2</sub> ClO <sub>4</sub> , in the reaction of which NH <sub>3</sub><br>absc.*t, indicated that a single mechanis<br>account for the effect of Fe2O3 on burni<br>Mosk. KhimTekhnol. Inst. Im. Mendeleev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the second second                                                                                                                                                                                                                                     | a nit i a                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Wink Time & CTIVITY (Compared by Division<br>Alr. Force Systems Command<br>U. S. Air Force      STATUS & Compared and Methods and Composition RATE (PERCHLORATES      STRIPTIVE NOTES (Type of report and inclusive dense)<br>Translation      Translation      V. J. Avdyunin, N. N. Bakhman, et al.      STRIPTIVE NOTES (Type of report and inclusive dense)<br>Translation      V. J. Avdyunin, N. N. Bakhman, et al.      STRIPTIVE NOTES (Type of report and inclusive dense)      V. J. Avdyunin, N. N. Bakhman, et al.      STRIPTIVE NOTES (Type of report and inclusive dense)      STRIPTIVE NOTES (Type of report and inclusive dense)      STRIPTIVE NOTES (Type of report and inclusive dense)      STRIPTIVE NOTES      NUMBER (THO. 7343      STRIPTION STATEMENT      Approved for public release; distribution      FPLEMENTART NOTES      STRIPTION STATEMENT      Approved for public release; distribution      FOR NH4 Clo4 with poly (Me acrylate), polystyr      Was at a max. with 1-5% Fe2O3 in the C      NH4 Clo4 with poly (Me acrylate), polystyr      Was at a max. with 1-5% Fe2O3. In all of Fe2O3 was less for mixts. of relativ      During velocity than for those of lower      the catalytic effect of Fe2O3 in mixts. of NH4ClO4, in the reaction of which NH3 assort, indicated that a single mechanis account for the effect of Fe2O3 on b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LD                                                                                                                                                                                                                                                    | and the do                                                                      |
| STATULE      EFFECT OF IRON OXIDE ON COMBUSTION RATE of PERCHLORATES      SCHIPTIVE NOTES (Type of report and inclusive dense)      Translation      Translation      HORID (Mini comme, addde inkite), here needs)      V. I. Avdyunin, N. N. Bakhman, et al.      STRICT OR GRANT NO.      STRICT OR GRANT NO.      STRICT OR GRANT NO.      STRICT OR OF COMMENT      Approved for public release; distribution      FOR      PLEMENTARY NO.      STRIED TION STATEMENT      Approved for public release; distribution      Fore      Wrig:      The catalytic activity of Fe203 in the c      NH4ClO4 with poly (Me acrylate), polystyr      was at a max. with 1-5% Fe203 and fell o      or fe203 was less for mixts. of relative      burning velocity than for those of lower      the catalytic effect of Fe203 in mixts. of NH4ClO4, in the reaction of which NH3      of NH4ClO4, in the reaction of which NH3      abscht, indicated that a single mechanis account for the effect of Fe203 on burni Mosk. KhimTekhnol. Inst. Im. Mendeleev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DE. REPORT SECURITY CLASSIF<br>UNCLASSIFIE<br>DE. GROUP                                                                                                                                                                                               | D                                                                               |
| Translation      Translation      Tronslation      Tronslation      V. I. Avdyunin, N. N. Bakhman, et al.      PART GATE      1971      PART CARE      PART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OF MIXTURES WITH DI                                                                                                                                                                                                                                   | FFERENT                                                                         |
| V. I. Avdyunin, N. N. Bakhman, et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |                                                                                 |
| CART GATE    7. TOTAL NO.      1971    **. TOTAL NO.      NTRACT OR GRANT NO.    **. ORIGINATOR      CJECT NO. 7343    FTD-1      **. OTHER REPORT    **. ORIGINATOR      Approved for public release; distribution    **. ORIGINATOR      PPLEMENTARY NO. ES    **. ORIGINATOR      The catalytic activity of Fe <sub>2</sub> O <sub>3</sub> in the c    Wriff      NTRACT    **. ORIGINATOR      The catalytic activity of Fe <sub>2</sub> O <sub>3</sub> and fell o    for elativ      ocontg. greater than 20-35% Fe <sub>2</sub> O <sub>3</sub> . In al of Fe <sub>2</sub> O <sub>3</sub> was less for mixts. of relativ    burning velocity than for those of lower the catalytic effect of Fe <sub>2</sub> O <sub>3</sub> in mixts. of NH <sub>0</sub> ClO <sub>4</sub> , in the reaction of which NH <sub>3</sub> absc <sup>+</sup> t, indicated that a single mechanis account for the effect of Fe <sub>2</sub> O <sub>3</sub> on burni Mosk. KhimTekhnol. Inst. Im. Mendeleev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ».                                                                                                                                                                                                                                                    | 49<br>-<br>                                                                     |
| CUEEVINO. 7343<br>FTD-1<br>Approved for public release; distribution<br>Fore distribution<br>Fore Wrig:<br>The catalytic activity of Fe <sub>2</sub> O <sub>3</sub> in the c<br>NH <sub>4</sub> ClO <sub>4</sub> with poly(Me acrylate), polystyr<br>was at a max. with 1-5% Fe <sub>2</sub> O <sub>3</sub> and fell o<br>contg. greater than 20-35% Fe <sub>2</sub> O <sub>3</sub> . In al<br>of Fe <sub>2</sub> O <sub>3</sub> was less for mixts. of relative<br>burning velocity than for those of lower<br>the catalytic effect of Fe <sub>2</sub> O <sub>3</sub> in mixts.<br>of NH <sub>4</sub> ClO <sub>4</sub> , in the reaction of which NH <sub>3</sub><br>abscnt, indicated that a single mechanis<br>account for the effect of Fe <sub>2</sub> O <sub>3</sub> on burni<br>Mosk. KhimTekhnol. Inst. Im. Mendeleev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75. NO. OF REFS<br>3<br>45 REPORT NUMBER(5)                                                                                                                                                                                                           | 5                                                                               |
| The catalytic activity of Fe <sub>2</sub> O <sub>3</sub> in the c<br>Wrift<br>The catalytic activity of Fe <sub>2</sub> O <sub>3</sub> in the c<br>NH <sub>4</sub> ClO <sub>4</sub> with poly(Me acrylate), polystyr<br>was at a max. with 1-5% Fe <sub>2</sub> O <sub>3</sub> and fell o<br>contg. greater than 20-35% Fe <sub>2</sub> O <sub>3</sub> . In al<br>of Fe <sub>2</sub> O <sub>3</sub> was less for mixts. of relativ<br>burning velocity than for those of lower<br>the catalytic effect of Fe <sub>2</sub> O <sub>3</sub> in mixts.<br>of NH <sub>4</sub> ClO <sub>4</sub> , in the reaction of which NH <sub>3</sub><br>abscnt, indicated that a single mechanis<br>account for the effect of Fe <sub>2</sub> O <sub>3</sub> on burni<br>Mosk. KhimTekhnol. Inst. Im. Mendeleev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HT-23-0934-72                                                                                                                                                                                                                                         | v l                                                                             |
| The catalytic activity of Fe <sub>2</sub> O <sub>3</sub> in the c<br>NH <sub>4</sub> ClO <sub>4</sub> with poly(Me acrylate), polystyr<br>was at a max. with 1-5% Fe <sub>2</sub> O <sub>3</sub> and fell o<br>contg. greater than 20-35% Fe <sub>2</sub> O <sub>3</sub> . In al<br>of Fe <sub>2</sub> O <sub>3</sub> was less for mixts. of relativ<br>burning velocity than for those of lower<br>the catalytic effect of Fe <sub>2</sub> O <sub>3</sub> in mixts.<br>of NH <sub>4</sub> ClO <sub>4</sub> , in the reaction of which NH <sub>3</sub><br>abscnt, indicated that a single mechanis<br>account for the effect of Fe <sub>2</sub> O <sub>3</sub> on burni<br>Mosk. KhimTekhnol. Inst. Im. Mendeleev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DRT NO(SI (Any other numbers that in                                                                                                                                                                                                                  | ay be assigne                                                                   |
| The catalytic activity of Fe <sub>2</sub> O <sub>3</sub> in the constant of the constant of the second of t | ign Technology Divi<br>ht-Patterson AFB, C                                                                                                                                                                                                            | sion<br>hio                                                                     |
| The catalytic activity of Fe <sub>2</sub> O <sub>3</sub> in the can<br>NH4ClO4 with poly(Me acrylate), polystyr-<br>was at a max. with 1-5% Fe <sub>2</sub> O <sub>3</sub> and fell of<br>contg. greater than 20-35% Fe <sub>2</sub> O <sub>3</sub> . In all<br>of Fe <sub>2</sub> O <sub>3</sub> was less for mixts, of relative<br>burning velocity than for those of lower<br>the catalytic effect of Fe <sub>2</sub> O <sub>3</sub> in mixts.<br>of NH <sub>h</sub> ClO <sub>4</sub> , in the reaction of which NH <sub>3</sub><br>absort, indicated that a single mechanis<br>account for the effect of Fe <sub>2</sub> O <sub>3</sub> on burning<br>Mosk. KhimTekhnol. Inst. Im. Mendeleev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                       | 4                                                                               |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ombustion of mixts.<br>ene, S, or carbon b<br>ff markedly for mix<br>l cases, the effect<br>ely higher uncataly<br>velocity. Studies<br>contg. Me4NClO4 in<br>and HCl are presum<br>m of catalysis cann<br>ng of perchlorate m<br>a, Moscow, USSR [AB | of<br>olack<br>ts.<br>vzed<br>of<br>nstead<br>nably<br>not<br>nixts.<br>2209459 |
| FORM 1473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                       |                                                                                 |

UNCLASSIFIED.

| 4. | water water and a set of a star with the first start | No. 18                                                                                                          | BALINK A |      | LINK |   | LINK C |    |
|----|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------|------|------|---|--------|----|
| •  |                                                      | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - | ROLE     | · W7 | ROLE | - | ROLE   | WT |
|    | 1                                                    | and the second                                                                                                  | أفسادها  |      |      |   |        |    |

Combustion Rate Fuel Additive Combustion Catalyst Iron Oxide Ammonium Carbon Black Styrene Perchlorate Ammonia Catalyst Activity

# UNCLASSIFIED

Security Classification.

FTD-HT- 23-934-72

# EDITED TRANSLATION

FTD-HT-23-934-72

EFFECT OF IRON OXIDE ON COMBUSTION RATE OF MIXTURES WITH DIFFERENT PERCHLORATES

By: V. I. Avdyunin, N. N. Bakhman, et al. English pages: 8

Source: Izvestiya Vysshikh Uchebnykh Zavedeniy. Khimiya i Khimicheskaya Tekhnologiya (News of Institutions of Higher Learning. Chemistry and Chemical Technology), Vol. 14, No. 5, 1971, pp. 665-670.

Requester: ASD

Translated by: M. Olaechea

Approved for public release; distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR E OITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NDT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY LIVISION WP-AFB, OHIO.

Date 16 Aug. 19 72

| Blo | ck | Ita | lic | Tran | slite | ration | Blo | ock | Ita | lic | Transliteration |
|-----|----|-----|-----|------|-------|--------|-----|-----|-----|-----|-----------------|
| A   | 2  | A   | G   | Α,   | a     |        | P   | р   | P   |     | R, r            |
| Б   | 6  | Б   | 8   | В,   | b     |        | С   | c   | С   | c   | S, s            |
| В   | 2  | B   |     | V,   | v     |        | Т   | т   | T   | m   | T, t            |
| Г   | Г  | Г   | 8   | G,   | g     |        | У   | У   | У   | y   | U, u            |
| Д   | д  | Д   | 9   | D,   | d     |        | Φ   | ф   | Φ   | φ   | F, f            |
| E   | 6  | E   | 6   | Ye,  | ye;   | E, e*  | X   | x   | X   | x   | Kh, kh          |
| Ж   | ж  | ж   | ж   | Zh,  | zh    |        | Ц   | ц   | Ц   | 4   | Ts. ts          |
| 3   | 8  | 3   | 3   | Ζ,   | z     |        | ч   | ч   | 4   | Ϋ́  | Ch. ch          |
| И   | н  | И   | ¥.  | I,   | 1     |        | ш   | ш   | Ш   | ш   | Sh. sh          |
| Й   | 8  | Й   | ŭ   | Υ,   | У     |        | Щ   | щ   | Щ   | 14  | Shch, shch      |
| K   | к  | K   | ĸ   | Κ,   | k     |        | Ъ   | ъ   | Ъ   |     | 8               |
| Л   | л  | Л   | л   | L,   | 1     |        | ы   | ы   | Ы   | м   | Y. y            |
| M   | м  | М   | м   | Μ,   | m     |        | Ь   | ь   | Ь   | 5   | 1               |
| Н   | и  | H   | H   | Ν,   | n     |        | Э   | 3   | Э   |     | Е. е            |
| .0  | 0  | 0   | 0   | 0,   | 0     |        | Ю   | 10  | ю   | ю   | Yu. vu          |
| Π   | п  | i7  | n   | Ρ,   | р     |        | Я   | 8   | я   |     | Ya. va          |

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

\* ye initially, after vowels, and after b, b; e elsewhere. When written as ë in Russian, transliterate as yë or ë. The use of diacritical marks is preferred, but such marks may be omitted when expediency dictates.

FTD-HT-23-934-72

1 D

EFFECT OF IRON OXIOE ON COMBUSTION RATE OF MIXTURES WITH OIFFERENT PERCHLORATES

(Moscow Institute of Chemical Technology im. D. I. Mendeleyev)

V. I. Avdyunin, N. N. Bakhman, V. S. Nikiforov, A. Ye. Fogel'zang, and Yu. S. Kichin

In this work we study the effect of the nature of a fuel and an oxidizer on the catalytic activity of  $Fe_2O_2$ .

The first series of experiments was conducted with mixtures of ammonium perchlorate (PKhA) [ $\Pi$ XA] with fuels of very different compositions: polymethylmethacrylate (PMMA) [ $\Pi$ MMA], polystyrene (PS) [ $\Pi$ C], carbon black, sulfur, and guanidine nitrate (NG) [HF]. The second series of tests was conducted with different perchlorates: of ammonium, potassium (PKhK) [ $\Pi$ XH], formamidine (PKhF) [ $\Pi$ X $\Phi$ ], and tetramethyl ammonium(PKhTMA) [ $\Pi$ XTMA].

The grades of these substances: PKhA - technically pure, PKhK - pure, PMMA - technically pure, carbon black - technically pure, sulfur - sublimed sulfur, NG - analytically pure,  $Fe_2O_3$  analytically pure, PKhF and PKhTMA - synthesized and recrystallized from alcohol and water, respectively. All substances were desiccated; PKhA, PKhK, PKhTMA, and NG were ground in a vibration mill. By means of the PSKh-2 device  $S_{yA}$  was determined and the average particle dimension d was calculated, which for PKhA ~ 9 µm,

PkhK ~ 10  $\mu m$ , PKhTMA ~ 10  $\mu m$ , FMMA ~ 3  $\mu m$ , PS ~ 20  $\mu m$ , carbon black ~ 3  $\mu m$ , sulfur ~ 15  $\mu m$ , NG ~ 10  $\mu m$ , and Fe $_2O_3$  ~ 1.8  $\mu m$ .

The components were mixed on tracing paper with a rubber cork and were pressed into brass cylinders with an inner diameter of 8 mm to a relative density of 0.92-1.0. The charges were combusted in a constant-pressure bomb in nitrogen at a pressure of 70 atm. A piezoelectric crystal pressure sensor was used to measure combustion time, and the average combustion rate was calculated. The effectiveness of the catalyst is described by the value  $z = u/u_0$ ,

where u and  $u_0$  is the combustion rate of a composition with and without a catalyst.



Fig. 1. Dependence of combustion rate (a) and effectiveness of catalyst (b) on per cent of iron oxide in mixture of PKhA + fuel ( $\alpha = 0.6$ ; P = 70 atm). 1 - Sulfur; 2 - Carbon black; 3 - PMMA; 4 - NG.

In the first series of experiments we took curves  $u - \% \text{ Fe}_{2^03}$ and  $z - \% \text{ Fe}_{2^03}$  (see Fig. 1). The overall shape of the curves for all mixtures is the same, although on some curves there is a definite maximum (PKhA without fuel, all mixtures when  $\alpha = 2$ , and all mixtures with sulfur when  $\alpha = 1$  and  $\alpha = 0.6$ )<sup>1</sup>, while in other curves this shape represents a plateau (a mixture with carbon

 $^{1}\alpha$  - the stoichiometric coefficient:  $\alpha = \frac{m_0/m_2}{(m_0/m_2)_{cmex}}$ , where  $m_0, m_2 (m_0)_{cmex}, (m_2)_{cmex}$  - are the parts by weight of the oxidant and the fuel in the given and the stoichiometric mixtures, respectively.

black,  $\alpha = 1$ ; a mixture with NG,  $\alpha = 0.6$ ). The increase in z with an increase in the % of Fe<sub>2</sub>O<sub>2</sub> is steep, while the decline (to the right of z<sub>max</sub>) is sloping. A catalyst effectiveness close to maximal ( $z \approx 0.9 z_{max}$ ) was reached at 1-5% Fe<sub>2</sub>O<sub>3</sub> and was maintained right up to concentration of  $Fe_2O_3$  equal to 20-35%. However, values of z max for mixtures with the studied fuels differ greatly. It seems that here the nature of the fuel does influence the effectiveness of the catalyst. Yet, if we plot the data for the different mixtures in coordinates  $z_{max}-u_0$  (see Fig. 2), all of the points are grouped around one curve<sup>1</sup>. In this case the higher the combustion rate of the initial (without catalyst) mixture, the lower will be the effectiveness of the catalyst<sup>2</sup>. This means that the effect of the nature of the fuel is not specific: if we equalize values  $u_0$  (for example, because of the oxidizer content), then the effectiveness of  $Fe_2O_3$  in mixtures with the fuels which we have studied is the same.



Fig. 2. Decline in effectiveness of  $Fe_{20}^{03}$ with an increase in the combustion rate of the original mixtures: 1 - PKhA + carbonblack,  $\alpha = 2.0$ ; 2 - 77% (30% PKhA + 70% PKhTMA) + 23% PMMA; 3 - PKhA + NG,  $\alpha = 0.6$ ;  $4 - PKhA + carbon black, <math>\alpha = 1.0$ ; 5 - PKhA+ PMMA,  $\alpha = 0.6$ ; 6 - PKhA + PMMA,  $\alpha = 2.0$ ;  $7 - PKhA + carbon black, <math>\alpha = 0.6$ ; 8 - PKhA+ PS,  $\alpha = 0.15$ ; 9 - PKhA (without fuel); 10 - PKhA + PS,  $\alpha = 2.1$ ; 11 - 77% (50% PKhA + 50% PKhTMA) + 23% PMMA; 12 - (10% PKhK+ 90% PKhA) + PMMA,  $\alpha = 0.6$ ; 13 - PKhA+ PMMA,  $\alpha = 1.0$ ; 14 - (50% PKhK + 50% PKhA)+ PMMA,  $\alpha = 0.6$ ; 15 - PHhA + PS,  $\alpha = 0.3$ ; 16 - PKhA + sulfur,  $\alpha = 1.0$ ; 17 - PKhA+ sulfur,  $\alpha = 0.6$ ; 18 - PKhK + PMMA,  $\alpha = 0.6$ .

<sup>1</sup> In Fig. 2 the curve corresponds to the dependence  $z_{mex} \sim \frac{1}{u_{0.65}^{0.65}}$ 

<sup>2</sup>The value of  $z_{max}$  also declines with an increase in  $u_0$  due to an increase in the initial temperature  $T_0$  (for example, for a mixture of FXhA/PMMA when  $\alpha = 1$  at 20° C we have  $u_0 = 12.2 \text{ mm/s}$ ,  $z_{max} = 1.85$ ; and at 150° C  $u_0 = 20 \text{ mm/s}$ ,  $z_m = 1.50$ ). The position of  $z_max$  has a relatively weak dependence on  $T_0$ , yet with a decline in the combustion rate to the right of  $z_max$  it becomes more sloping with an increase in  $T_0$  (Fig. 3).

Nevertheless, here we have a complicating factor: in any mixture based on PKhA the "total" fuel is a mixture of the "basic" fuel (for example, PS) and the ammonia<sup>1</sup>, where the molecular fraction of the ammonia is very significant. Therefore, the absence of a specific effect in the nature of the "basic" fuel could be explained by the fact that  $Fe_2O_3$  acts on the ammonia oxidizer.

We studied the effect of  $\text{Fe}_2O_3$  on the mixture  $\text{NH}_4\text{NO}_3$ + charcoal and the mixture PKhK + NG (pure and diluted  $\text{NH}_4\text{Cl}$  and  $\text{NH}_4\text{HCO}_3$ ). In all of these cases  $\text{Fe}_2O_3$  was not effective (see Table 1).

Table 1. Effect of  $\text{Fe}_2^{0}_3$  on the combustion of mixtures whose gasification products contain ammonia but do not contain perchloric acid

|                                                                            | u, mm/s                                   |                       |                       |  |  |
|----------------------------------------------------------------------------|-------------------------------------------|-----------------------|-----------------------|--|--|
| Mixture .                                                                  | without<br><sup>Fe</sup> 2 <sup>0</sup> 3 | 1% Fe <sub>2</sub> 03 | 5% Fe <sub>2</sub> 03 |  |  |
| $NH_{\downarrow}NO_3$ + charcoal, $\alpha = 1$                             | 2.8                                       | 2.4                   | 2.4                   |  |  |
| $PKhK + NG, \alpha = 0.6$                                                  | 19.4                                      | 18.8                  | 17.7                  |  |  |
| 85% (PKhK + NG, $\alpha = 0.6$ )<br>+ 15% NH <sub>4</sub> Cl               | 6.9                                       | 5.2                   | 3.8                   |  |  |
| 80% (PKhK + NG, $\alpha = 0.6$ )<br>+ 20% NH <sub>4</sub> HCO <sub>3</sub> | 10.0                                      | 9.8                   | 8.5                   |  |  |

Hence it follows that  $Fe_2O_3$  either does not speed the oxidation of ammonia during combustion at all or speeds it, but only when the oxidizer is perchloric acid or its decay products. This is a problem which requires further study.

In the second series of experiments we tested the hypothesis that the effect of the catalysts on thermal decomposition and, possibly, on combustion of the perchlorates was related to the

<sup>1</sup>The drop in PKhA is according to the system  $NH_4ClO_4 \stackrel{*}{\downarrow} NH_3 + HClO_4$ .

accelerated decomposition of perchloric acid [1-4]. From this standpoint  $\text{Fe}_2O_3$  should be effective in compositions with PKhA and PKhF and should not be effective in compositions with PKhK and PKhTMA. Actually,  $\text{Fe}_2O_3$  substantially accelerated the combustion of PKhF (without fuel; plexiglass shell with d = 8 mm):

| % Fe203 | 0    | s 1  | 5    | 9.1  | 16.8 | 28.6 |
|---------|------|------|------|------|------|------|
| u, mm/s | 13.5 | 26.4 | 27.7 | 26.0 | 24.0 | 19.9 |

The iron oxide had almost no effect on compositions with PKhK and PKhTMA, which, it seems, is in total agreement with the hypothesis concerning the role of the catalyst on the decomposition of  $\text{HClO}_4$ . Yet the combustion rate of these compositions is high, and judging from Fig. 2, this could be the reason for the low effectiveness of Fe<sub>2</sub>O<sub>3</sub>. Actually, when the value of u<sub>0</sub> for mixtures based on PKhTMA was reduced due to dilution, the effectiveness of Fe<sub>2</sub>O<sub>3</sub> rose sharply (Table 2).



Fig. 3. Combustion rate of PKhA (without fucl) as a function of the per cent of iron oxide (tests with plexiglass shells at P = 100 atm). T<sub>0</sub>, °C: 1 - 20; 2 - 100.

Since in the primary decomposition of PKhTMA neither perchloric acid nor ammonia are formed, we should turn our attention to other possible ways in which  $Fe_2O_3$  could be effective (for example, associated with reactions of chlorine oxides).

As for mixtures based on PKhK, when their combustion rate was reduced by introducing KCl or  $Al_2O_3$ , the addition of  $Fe_2O_3$ 

was, as before, not effective (see Table 3 for the composition of PKhK + PMMA).

| Co      | omposition.   | %          | <sup>u</sup> 70atm'           | mm/s                  | Z                     |
|---------|---------------|------------|-------------------------------|-----------------------|-----------------------|
| PKhTMA  | PKhK          | Diluent    | without<br>Fe <sub>2</sub> 03 | 1% Fe <sub>2</sub> 03 | 1% Fe <sub>2</sub> 03 |
| 85      | 15            |            | 27.1                          | 28.2                  | 1.04                  |
| 90      | 10            | . N        | 20.1                          | 22.2                  | 1.10                  |
| 77.3    | 13.6          | 9.1 NH4C1  | 14.0                          | 23.7                  | 1.69                  |
| 70.7    | 12.5          | 16.8 NH4C1 | 8.5                           | 18.8                  | 2.21                  |
| 65.4    | .11.5         | 23.1 Al_03 | 6.3                           | 16.2                  | 2.58                  |
| \$ 52.7 | 2.8           | 44.5 KC1   | 5.2                           | 11.7                  | 2.25                  |
| 55.5    | , *• - *• • • | 44.5 KC1   | 4.4.5                         | 9.7                   | 2.20                  |
|         |               |            |                               |                       |                       |

Table 2. Effect of Fe<sub>2</sub>0<sub>3</sub> on combustion of mixtures based on tetramethyl ammonium perchlorate containing different diluents.

Table 3. Effect of  $\text{Fe}_2O_3$  on combustion of mixtures based on potassium perchlorate containing different diluents.

| 5<br>24 |             | . <sup>u</sup> 70 |                       |                       |                       |
|---------|-------------|-------------------|-----------------------|-----------------------|-----------------------|
| α       | Diluent     | without Fe203     | 1% Fe <sub>2</sub> 03 | 3% Fe <sub>2</sub> 03 | 5% Fe <sub>2</sub> 03 |
| 2.0     |             | 12.8              | -                     | 13.7                  | 5                     |
| 2.0     | 16.7% KC1   | 8.8               | 9.0                   |                       | 9.1                   |
| 0.4     |             | 14.2              | 14.8                  | 14.7                  | 14.9                  |
| 0.4     | 1.3% KCl    | 11.9              | 12.25                 | -                     | 11.3                  |
| 0.4     | 23.1% KCl   | 8.6               | 9.0                   |                       | 8.7                   |
| 0.4     | 16.7% Al_03 | 8.1               | 8.3                   | -                     | -                     |
| 0.4     | 50% Al203   | 2.6               | 2.8                   | 2.7                   | 2.8                   |

We note in conclusion that the results obtained confirm the ideas of [5] concerning the concurrence of a homogeneous reaction in volume and a heterogeneous reaction in the catalyst. With an

6



increase in the rate of the homogeneous reaction<sup>1</sup> and, accordingly, with an increase in  $u_0$  the contribution of the heterogeneous reaction (which also means quantity z) must decrease, which is observed experimentally.

One might think that the catalyst acts on one of the intermediate combustion stages Actually,  $z_{max}$  has already been reached with a relatively low per cent of Fe<sub>2</sub>O<sub>3</sub>. This is related to the fact that by accelerating the given stage the catalyst will accelerate the combustion rate only as long as one of the other stages does not become limiting.

## CONCLUSION

o The authoris

1. We have studied the catalystic effect of  $Fe_2O_3$  on the combustion of mixtures of ammonium perchlorate with five different fuels and of certain mixtures with perchlorates of formamidine, potassium, and tetramethyl ammonium.

2. For mixtures based on ammonium perchlorate the effectiveness of the catalyst, which is close to maximal, is reached with only 1-5%  $Fe_2O_3$ , while a substantial decline in its effectiveness is observed only at 20-35%  $Fe_2O_3$ .

3. In all cases the effectiveness of  $\text{Fe}_20_3$  decreases with an increase in the combustion rate of the original composition. The nature of the fuel was not observed to have a specific effect on the effectiveness of  $\text{Fe}_20_2$ .

4. An acceleration in the decomposition of perchloric acid and an increase in the oxidation rate of ammonia are not the only

<sup>1</sup>As a result of the increased combustion temperature or the transition to a more active fuel (but not because of pressure, which can accelerate both the homogeneous and heterogeneous reactions).

possible ways in which Fe<sub>2</sub>0<sub>3</sub> can be effective, since Fe<sub>2</sub>0<sub>3</sub> effectively accelerates the combustion of dilute mixtures based on tetramethyl ammonium perchlorate, where perchloric acid and ammonia are absent.

## BIBLIOGRAPHY

- 1. В. П. Грицан, В. Н. Панфилов, Р. В. Болдырев. Докл. АН СССР, 187, 1082

- В. П. Грицан, Б. Н. Панфилов, Е. Б. Бойдарсь, дом. Ан ссст. 104, 1052 (1959).
  Р. W. M. Jacobs, G. S. Pearson. Combustion and Flame, 13, 419 (1969).
  S. H. Inami, H. Wise. Combustion and Flame, 13, 555 (1969).
  C. U. Pittman. American Institute of Aeronautics and Astronautics Journal, 7, 328 (1969).
  B. С. Пикифоров, Н. Н. Бахман. Физика горения и взрыва, 5, 270 (1969).