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ABSTRACT

Transfer of operational computer programs during changes from
one computing system to another presents a serious problem
throughout the industry. Duplication of software and reprogram-
ming necessary to support the data processing activity must be
minimized. This document is the result of Interndtional Computer
Systems, Inc. 's investigation into design and documentation
techniques for easing the transfer of programs from one comput-
ing environment to another.

The first part of the study is concerned with a general trans-
ferability analysis and discussion of techniques to be utilized
independent of any particular programming language. Emphasis is
placed on the importance of transferability considerations dur-
ing design and coding of the problem program.

The second section of the study deals with higher level and
-sentbly/maacro languages. Specific suggestions for improvement
f FORTRAN, JOVIAL and COBOL program design are included.
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TECHNICAL EVALUATION

1. This effort, Programming for Transferability, was undertaken to
establish guidelines to be used in writing computer programs for a given
computing environment that would ease the transfer of these programs
to another system with minimum reprogramming effort.

2. In the past, software has been machine-dependent. When the user of
these programing systems must change to a new computing environment,
he must convert all his existing programs. Often, the conversion consists
of a complete redesign before his programs will run on. the new system. This
process is very expensive and must be corrected.

3. In an attempt to rectify this condition. (Ref RADC TPO 4), RADC
decided to conduct an investigation of the characteristics of the
various languages. This study resulted in the establishment of
guidelines for the identification and separation of the machine-dependent
functions from the ,achlne-independent ones.

4. This effort provides the tools to be used in the isolation of these
functions into different modules. If a programmer must use the machne
dependent functions, only this module must be reprogrammed; thus, providing
a reduction in cost of transferring programs from one system to another.

MIiES A. MCNEELY
7 Project Engineer
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SECTION 1. COMPUTER PROGRAM TRANSFERABILITY ANALYSIS

1.1 INTRODUCTION

1.1.1 The Problem of Transferabilty

Transferability is a measure of the ease of moving a computer
program from one computing environment to another. Thus, if a
program needs to be totally redesigned and coded when moved to
a new computer, it has zero transferability. On the other hand,
if a program can be moved to, and operate upon a new computer
with no additional programming effort, it is 100% transferable
between those computers. The degree of transferability of a
program can refer to the specific case of two known computers
or the general case where the new machine is unspecified. Un-
fortunately, in both instances, the amount of success encounter-
ed is often very small. There is promise, however, that tech-
niques may be developed which will significantly improve this
situation.

Many factors affect a program's transferability. These include
the specIfic computers involved, the level of language used,
the particular program application, and the techniques used in
creating the original program design. For some of these fac-
tors, it is difficult to anticipate the requirements, and thus
difficult to plan for ultimate program portability. Other
aspects are more under the programmer's control and thus more
conducive to planning. Nevertheless, even in those areas sub-
ject to improvement, little concentrated effort has been expend-
ed towards achieving a high degree of program transferability.

In general, the data processing community continues to be bur-
dened by the apparent inability or unwillingness of computer

- manufacturers to produce greater computer compatibility among
different machines. Some manufacturers have taken the initial
steps towards compatibility among their own computer models
while others have failed to take even this step to any meaning-
ful degree. Meanwhile, compatibility among computers of differ-
ing manufacturers is virtually nonexistent except in a very few
specific cases.

Software technology has also failed to produce sufficient
progress towards alleviation of the program transfer

S~1



}I

problem. The industry's costs associated with program transfer-
ability have proliferated because no significant agency has
provided the impetus for meaningful research in this area.

The software community has not ;.rovided the necessary guidelines
or standards for program design, coding and documentation, and
the hardware community has not provided equipment compatibility.

The lack of compatibility or standardization has cost government,
the military and the business community huge sums for reprogram-
ming and conversion. Similar losses are incurred due to contin-
ued usage of obsolescent equipment that must be retained because
undertaking program library conversion would be too expensive
and time consuming. The cost and time involved in making such
transfers can seriously affect the feasibility and profitability
of the systems involved. Every aspect of the computing environ-
ment may be affected in some way.

"* Personnel may need retraining, including programmers,
operators, data clerks and end users.

* " The logical and physical form and flow of data may
have to be altered (peripherals and computers).

" The overall processing strategy may change (jobS~control).

"" The operational software may need extensive internal
modifications.

Frequently, when tranqfer of a program is mandatory and after
exploration of all the alternatives, a decision to recode the
program is made. At this point, unnecessary costs are often
.. , 'irred because of inadequate documentation of the original
d-' •gn of the program and the high rate of employee turnover
in the computer industry. Whereas reprogramming costs should
be only a fraction of the original expenditures, more often
they are very comparable.

Formalization of design and documentation procedrxes and
recommendations specifically directed towards facilitating
program transferability are steps that have been neglected by
the data processing industry.

The purpose of this document is to suggest guidelines for con-
trolling the cost and improving the efficiency of future program
transfers.

2



1.1.2 Methods of Transferring Programs ]
This section lists and discusses existing methods of implement-
ing transferable programs. The discussions are intended to
expose factors that make transfer expensive.

The methods discussed are:

* Programming in a higher level language

o Manual and automatic code conversion

* Interpretive techniques

* Macro languages

* Rewrite

Since it is unlikely that a competitive new method that will
revolutionalize all transferability problems will appear in
the immediate future, this document focuses on improving the
applicability and reducing the cost of existing methods.

Section 2 of this document discusses three higher level lan-
guages: FORTRAN, COBOL and JOVIAL. The syntax and semantics
of these and other higher level languages, by design and evolu-
tion, facilitate their translation into the language of nearly
any machine. Conversely, competitive advantage dictates that
future machines will have the features and organization required
to run programs written in higher level languages. As a result,
some programs written in higher level languages can be trans-
ferred almost automatically to any machine for which the
particular compiler exists. Exceptions to fully automatic
transferability arise for a variety of reasons:

e There has been little pressure to avoid non-standard
implementations - the apparent advantages of improv-
ing the languages outweighed the disadvantages of
creating incompatibilities.

* Standard specifications have been variously
interpreted.

* Even the standards permit certain details to be
machine/system dependent.

3
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* Certain environmental conditions cannot be
stanlardized.

The normal method of transferring programs written in higher
level languages is to provide and use "similar" compilers for
the new machines and cope with the differences. Often a small
percentage of statements must be found and manually replaced
or altered. When a popular version of a language is replaced
by an improved or standard version, an automatic conversion aid
might be developed. An example is SIFT, which converts FORTRAN
II to FORTRAN IV.

In regard to higher level languages, the intent of this docui-
ment is to help avoid or isolate those usages which may be
incompatible oi non-transferable.

The low cost of .ransferring higher level language programs
depends on the availability of a broadly-amortized compiler
for the new machine. If an unpopular higher level language is
chosen, a user may have to unilaterally bear the burden of new
software development for the sake of transfer.

SManual and-automatic code conversion is usually applied to con-
verting assembly language source code to the source code for aI
different language, either the assembly language of a different
machine or a higher level language.

Assembly languages are designed for a particular machine and
provide some way of specifying every function and combination
of functions that machine may perforr. Assembly languages are
most often used when no compiler exists for the machinc: .0

specify functions not contained in the higher level languages;
to avoid some highly general and hence inefficient code genera-
ted by compilers; or to avoid interference between compiler
output and the desired program, (e.g. a FORTRAN editor-loader
written in FORTRAN would have to be very carefully designed to
stay out cf its own way).

The actual method of transferring by code conversion is asS~ follows:

"" Determine a reali-,.: ievelopment budget for the
converter program.

"" For each aspect of the source language, design a
destination language equivalent. Unfortunately

4



this is not usually an instruction for instruction
equivalence.

e Select those aspects that can be handled within
development budget or other constraints. Develop
a program that will read source machine code. Iden-
tify aspects and extract parameters, either flagging
troublesome aspects for manual attention or 'punching'
the chosen target machine equivalent source code.

The wide disparity among computer architectures, especially with
regard to addressing schemes, may often make it virtually impos-
sible to design an effective program conversion tool. Typically,
in this situation, only the invention of very clever correspond-
ence algorithms can help to produce even partially efficient
code conversion. For this reason, automatic conversion tools
are sometimes only last resort or after-the-fact efforts at
program transfer.

Assuming that automatic conversion is possible, the process of
converting a program then entails the following steps:

v Manually edit the input source code, deleting or

replacing functions that are unnecessary or in-
appropriate in the destination syster.

e Process the program via the converter.

* Debug the result, manually editing the converter
output using the warning and error flags provided
by the converter, plus the ordinary test and de-
bug procedures and aids.

* Check-out the program on new system.

Maurice Halste~a: in "Using the Computer for Program Conversion",

Datamation, May 1970, discusses the economics of amortizing a
conversion aid program called a decompiler. He points out that
a conversion aid handles the easier parts of conversion. To
improve a conversion aid by 50% to 100% of its current capabil-
ity requires as much additional effort as has already been
expended. The residue needing manual conversion is increasingly
difficult. As a result, a conversion aid appears to be fairly
expensive before it becomes worthwhile, and must be amortized
over a large workload. Furthermore, some degree of manual
re-coding will amost always be required.

5



Figure 1 on the following page shows Halstead's conclusions in
graph form. Note that the units cannot be arbitrarily chosen;
16 units of development effort corresponds to a converter that

FAiwill handle 96% of the input code. If it is estimated that 32
man weeks would be required to do a 96% converter, then the
units are 2 manweeks.

In another area, interpretive techniques, several software
products on the market are economically viable because they
are usable on and for a variety of machines. These techniques
have been used to produce transferable meta-assemblers, com-
pilers, and application packages.

The products themselves are written in special languages usually
designed for two properties: The language is optimized for the
convenient expression of facilities needed by the software pro-
duct, and the language may be easily interpreted for a large
number of machines in the anticipated market. The language is
usudlly similar in for-.at to an assembly language for a machine
that would be ideal for the application.

To have such a software product running on a new machine usually
requires only a few man months to write an interpreter for its
internal language. For example, International Computer Systems'
DUAL, a meta assembler, is implemented using a very advanced
interpretive process. DUAL can be transferred to a new machine
for 2% of its original development cost.

The transferability advantage quite outweighs any loss of opera-
ting speed (which can be considerable unless proper techniques
aie used) through interpretive execution. Note that some higher
level language compilers produce object code which is largely a
series of subroutine calls, and that the execution of such could
be considered interpretive. Also, it should be noted that well
implemented interpretive products can be made to execute within
10-20% of efficient assembly level code. This is very competi-
tive with efficient (optimized) higher level language compiler
generated code.

The macro assembly concept, on the other hand, permits the defi-
nition of languages having some of the transferability advantages
of higher level languages as the object code efficiency of mach-
ine languages. Macro assemblers allow users to define ways in
which source input is to be processed into forms recognizable
by the assembler. To the extent that existing assemblers allow
a common macro invocation format, a program written as a sequence

6



COST SAVINGS VS CONVERTER INVESTMENT

FOR BACKLOGS OF 100 AND 1000 UNITS

Saved 100
90
80
70 1000
60
50
40
30
20

Percent 10
of 0

Cost 10
20
30
40
50
60
70
80
90

100

120
130
140

Lost 150

1 2 4 8 16 32 64 128 258

Units Invested in Converter

FIGURE 1

Converter Economics
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of macro instructions can be transferred to any of several
machines, simply by writing equivalent macro definitions for
the various assemblers. The cost of writing the macros is far
less than the cost of rewriting the program.

Various triple address pseudo-computers, for example, may be
utilized with one set of macros. The code below shows a simple
example of alternative expansions.

ADD AUGEND,ADDEND,RESULT

CLA AUGEND
ADD ADDEND
ST0 RESULT

or

L R,AUGEND
% R,ADDEND
ST R,RESULT

This technique now permits the coding of programs more efficient
and nearly as transferable as those written in higher level
languages.

A final alternative, rewriting a program or pait of a program by

hand, might seem desperate but can often be justified, especial-
ly if there is already strong incentive to re-design the program.
From Section 1.1.3 the cost per use of converted and rewritten
versions of the program can be estimated. The cost/use figures
can be compared to the value/use estimates to give a convert/
rewrite decision.

Dependencies may sometimes be isolated in a module (see Section
1.3.2 Modularity) which is expected to be rewritten. If such
modules form only a small percentage of the total program while
still absorbing a large part of the dependencies of the program,
cost savings may result.

1.1.3 Transferability Economics

The natural figure of merit by which any transfer effort or
technique may be judged is its cost effectiveness, specifically,
the cost per use of the transferred unit. This document does
not define effectiveness in any other way; it simply assumes
that transfer is completed when the end user is as satisfied

8



with the result as he was before the transfer. It may happen
that for a particular case an incomplete transfer may give better
overall results. That is, there may be a more complete defini-
tion of effectiveness. Also, this analysis makes no assumptions
about whether cost/use is greater or less than value/use.
Finally, it is assumed that the machine or system which is the
destination of a transfer is itself no more and no less cost
effective than the original, source machine or system. Manage-
ment must assign its own weighing factors to the figures derived
from this analysis.

In the folloiing sections some simple formulas are presented
along with tables containing estimates of relative values for
substitution in the formulas. Some of these estimates are brok-
en down into more detail later. Many of the suggestions pre-
sented include relative cost factors associated with system
transfer and continued operation. In fact, the guidelines
presented are those for which the cost factors are the most
rignificant.

.ogram conversion is a combination of manual and automatic
processes. For assembly language in particular, the automatic
processing is done by a fairly expensive program which must be
amortized over a large pool or program conversions. Existing
conversion aids were designed to process a pool of programswhich may not have been conditioned by application of the guide-
lines presented in this document; hence the conversion aids are
more complex and expensive than they would need to be to process
well-conditioned programs. Amortization accounting or pricing
policies infer that programs that have been designed and coded
for ease of transfer may not get the price break they deserve
until there is a large enough pool of well-conditioned programs
to support cheaper conversion aids. On the other hand, the cost
of the manual part of the conversion process can be reduced
immediately. Steps may be taken to reduce the amount of manual
work (avoiding usages that the automatic process cannot handle)
and documentation may be prepared to make the manual steps easier
to follow. This may be of no benefit, however, when the price
of the manual work is fixed at so much per card in the whole
program and established for a work mix including ill-conditioned
programs. Most commercial conversion services do offer an
option under which the customer does the manual work. For
well-conditioned programs this is probably advantageous.

The cost for each use of a program is the amortized program
preparation cost plus the operating cost:

9
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SCU =P/N +

In this formula,

CU = Cost per use

N = The number of uses of the program, usually pro-
jeced when estimating a preparation policy.

P = The preparation cost. This and operating cost
will be broken down by method of preparation, by
component programming task, by language and by
application area.

0 - The cost of operating the program, both direct
and indirect (e.g. requirement for additionalcore storage).

Three levels of program preparation for system transfer are
distinguished for estimating purposes:

"* Design and code from problem statement (complete

re-write).

"* Code from existing design (design transfer).

"* Transfer the program largely intact (code
transfer).

The following tables give general estimates of the relative costs

associated with these techniques. For example, in Table 1A the
least nostly approach is to transfer a COBOL program from one
system to another. Similarly, it is about 1-1/3 times as expen-
sive to re-code a program in assembly language as it is in
COBOL. All of these figures depend on the particular problem
proqram, system being used, etc. They are intended only to
indicate a general feeling for the relative costs most often
incurred.

The 10/1 ratio fnr level l/level 3 preparation of assembly
language material, for instance, is simply the ratio $10/card
(a widely used but unsubstantiated estimate) to a $1/card aver-
age charge for conversion services (see Appendix C). Note that
the figures are related to each other only within a table and
not between tables. Hence, the ratio of programming to operat-
ing costs is not estimated and is really peculiar to each
program and machine.

10



TABLE 1A

Program Transfer Preparation Costs

COBOL FORTRAN JOVIAL ASSEMBLY

Re-write 75 60 60 100
Design Transfer 40 20 30 60
Code Transfer 1 2 5 10

The preparation cost of transferring code can De fuith-7

analyzed:

* Cost = A + 0 + ( I + C + W) * N

This includes automatic costs - the costs of use of a conversion
aid are:

A = Amortized development cost
0 = Operating cost

and manual costs - the costs of manual work are those of:

I = Identifying exceptions t- automatic conversion
C = Comprehending exception code
W = Writing target machine equivalents

These are all multiplied by:

N = The number of exceptions.

It is important to note that there are three classes of
exceptions:

* Those the converter can identify, but not deal with.

* Those the converter can flag as potential problems.

* Those that escape identification by the converter.

÷'
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TABLE !B

Program Operating Costs After Transfer

COBOL FORTRAN JOVIAL ASSEMBLY

Re-write 90 60 30 20
Design Transfer 90 65 50 30
Code Transfer 100 65 70 50

The excess cost of operating transferred code 2s a result of:

" Original code not needed in the new environment -
usually because it is included in the operatirg
system or in the new programming language library.

"* gimulation of the methods by which the original
machine performed a function, rather than duplica-
tion of that function.

1I
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iL2 MANAGEMENT POLICIES

1.2.1 Introduction

Several items to be considered in the formulation of a transfer-
ability policy were presented in the previous section with
suggestions for an orderly weighing of alternatives. A concrete
plan for the further formalization, application and enforcement
of this policy must now be developed. Many questions remain to
be resolved by management before such a plan can be implemented.

1.2.2 Policy Formulation

A complete transferability policy requires an initial statement
of goals and an outline of the.methods to be used in their full-
fillment. Transferability considerations are first to be listed
along with the basic project purposes, usually by the manager
responsible for the programming budget. Realistic transfer-
ability depends not only upon the available standards and guide-
lines but also upon the judgment and experience of this
individual.

The competitive elements of initial cost, operating cost, future
cost, scheduling and general project feasibility must be care-
fully analyzed and balanced by the manager. Then, the methods
proposed for attainment of the desired results must be carefully
outlined. Initially, it is important to determine the avail-
ability and practicality of these techniques and to realize to
what extent they will effect costs. Later, they may be refined
as part of the ordinary design process. Explicit directions
and constraints are thus laid down for subsequent workers. The
level of detail should leave options, but not doubts. Uniform-
ity across several program projects may be a very important

subgoal in that it can spread the amortization of conversion
aids and training. Hence, many of the basic aspects of program
design must be delineated by management if an organized, coor-
dinated transferability effort is to be realized.

The following questions should be considered in formulating a
transferability policy. Although they are listed roughly in
order of inquiry, not all of them may always be applicable.

o How important is transferability?

A
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* Where does transferability rank among:

. Meeting a tight deadline?

. Meeting a tight budget?

. Accomplishing a demanding development effort?

9 What is the proba'-lity of future transfers?

0 Do other decisions reflect the stated importance of
transferability?

e Do schedules aad budgets allow for the thorough,
thoughtful job necessary?

(Remember that if a program never attains executability,
its other attributes are irrelevant. For this reason

transferability (and maintainability and reliability)Sare at best secondary goals which will be squeezed out

by unrealistically tight scheduling.)

* What effect will choice of computing system have upon
transferability?

" Regarding transfers to the system?
"Regarding future transfers from the system?

* Does the system seem to be in the main stream of

computing development? How similar are the probable
transfer target machines?

* In choosing a language, where does transferability
rank among:

"* Convenience of the lang.uge?
"* Applicability of the language?
"* Familiarity of the language?
"* Conformation with shop practice?

* What restrictions must be placed upon the usage of
the language? Does a recognized standard exist and
should it be used? Should extensions be used?

* Is the la •iage still applicable with the restrictions?

* What methoas will be used to effect a transfer?

14



e What aspects of the system 'end themselves to program
parameterization?

e Is the overall design of the program (or system of
programs) suited to the selected transfer method?

e Should a library of system dependent routines be
developed and what should it contain?

1.2.3 Policy Enforcement

In the programming environment, policy enforcement efforts may
be focused on the following four areas:

"* Task sequencing and emphasis
"* Conflict between policy and practice
"* Conflict between policy and technology
"* Attention to details

There is a natural order for the performance of the subtasks
in producing a program. A subtask is easier if performed
while the information required is fresh from a previous or con-
current subtask. This is particularly true of documentation.
The information contained in the documentation is substantially
the same as that produced and required for design and code. In
fact, projects large enough to be deemed difficult are probably
best done by producing meaningful documentation at each step.
SLccessive steps may then be guided by pr(;ious documentation.

In addition, postponed subtasks may seem anticlimatic and thus
present morale problems when resumed. Hence, little should re-
main to be done after the program is checked out. Very few
programmers care to work on a project after --irt of the staff
have gone on to other things.

Once the subtasks are scheduled, each should be appropriately
emphasized and carried to completion in its turn. (Some sub-
tasks may be concurrent.) Whatever level of supervision is
appropriate should be maintained.

Day-to-day management decisions constitute the actual manage-
ment policy which may not in fact agree with the stated policy.
Such decisions, therefore, should be examined for agreement
with policy statements. One or the other may require change.

Policy may well be translated into statements of the expected
peyrfrmance rewards or penalties. In rewarding programmer
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performance, watch out for visible results achieved at the
expense of less visible factors. If transferability is a goal,
a piece of work may be finally evaluatea only when transfer is
attempted. If you reward a programmer for meeting a tight
deadline, and penalize a maiitenance programmer for finding the
result difficult to deal wit-h, morale suffers and maintain-
dbility/transferability policies do not in fact have management
support.

It is best to reward the programmer whose work most accurately
fulfills the goals set for the project.

Beware of trying to translate goals into a blanket set of rules
once and for all. If the rules are not in fact the best way of
meeting the goals, or if they become less than germane as time J
goes on, programmers will be frustrated and alienated. At least
a periodic review of the rules is needed.

Moreover, defined requirements can be obeyed without actually
fulfilling their purpose. An example is a p2ogram listing
which contains the amount (percentage, number of lines, etc.)
of comments and documentation required by management without
conveying much understanding of the program. Documentation

beyond the programmer's ability to communicate is wasted and
harmful.

The coding of a program sometimes exposes weaknesses in its
design. Hence, it may be found infeasible to code a program
without certain transferability constraints, particularly if
those constraints were established without consideration of
the programming problem at hand.

If the transferability policy was established independently of
a particular program or project, it can probably be redesigned
and other methods found. If the policy was established for a
larger system uniformly, the program in trouble may have to be-
come an exception.

Even well documented transferability practices may get lost in
a welter of details. This is particularly true if a programmer
is inclined tu take shortcuts or make ill-advised "improvements"
on the policy. Unfortunately, examination of programmer out-
put for compliance is tedious. Probably the best way to verify
transferability is to transfer the program immediately, while
problems can be more readily corrected and while the results
can directly influence the programmer's future level of
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compensation and responsibility. Immediate transfer, of course,
is not always possible or cost justifiable.

The programming language translator or precompiler can examine
source code for factors that influence transferability. When-
ever possible, compilers should flag usage of any non-standard
language features that they implement. WATFOR (Siegel - see

Bibliography and Synopsis) is an excellent example of fulfilling
this function.

Presently, there are COBOL precompil3rs that enforce management-
selected language usage constraints. Information Management
Inc., for instance, has Magic Standards Enforcer which notes
use of management-prescribed COBOL verbs. Arkay Computer
Applications' MECCA flags about 200 management selected viola-
tions. Although largely oriented toward uniformity of the

listings for the sake of readability, such products usually
can flag use of any selected reserved words. These standard
enforcement packages are generally machine specific, however,
and thus non-transferable in themselves.

In the selection and use of standards enforcement products and
techniques, it may be wise to consider one basic aspect of the
computing environment. Namely, that programming originally
demanded people who were clever and comfortable in an absence
of established practice. The best of their innovations have
become the current standards and recognized techniques. Some
of their efforts, however, have left an aura of eccentricity
which by now is somewhat misleading. It must be kept in mind,
therefore, that policy enforcement is an ordinary management
problem, not a manager-programmer adversary situation.

All in all, it is difficult to recommend a specific policy on
transferability which will adequately suit every manager's
needs, desires, budget constraints, and personnel relationships.
Each project or installation executive must formulate a plan of
action pursuant to his particular operating environment, per-
sonality and upper management dictates. For example, it was
recommended that after initial coding an attempt should be
made at program transfer as a test and possible measure of
programmer ability and conformance to installation standards.
In many instances complete transfer may be untimely, not cost-
effective or in some other way undesirable. Hence, the manager
may elect to inspect or re-compile a small routine - section
(of his choice) or to discard the technique entirely.
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Although a wide variety of management policies seems reasonable,
a universal aspect has been shown to exist. Namely, some sort
of plan must be formulated and enforced if any degree of program
transferability is to be attained.

I
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1.3 GENERAL PROGRAM DESIGN GUIDELINES

1.3.1 Introduction

This section presents general guidelines for program design
approaches that will help minimize one or more of the transfer
costs described in Section 1.1.2. These guidelines are usually
applicable independent of the choice of coding languages.

Transferability is sometimes not the major consideration in
program design. Fortunatley, transferability techniques sel-
dom conflict with usual good design practices.

This following outline gives design steps to use in identifying
transferability problems and chosing a method of solving them.
This process goes on in parallel with the ordinary design pro-
cess and must be repeated as often as necessary since there are
transferability considerations at each level of detail. In a
few cases previous decisions must be modified in light of new
information, but this is not unique to transferability.

"* Estimate the breakeven point for additional cost of
a new program versus cost of transferring the origi-
nal program.

" Identify the dependencies. List the factors which
may effect the transfer attempt. These may include
operating system facilities, hardware configuration,
language and level of language, IO paths, secondary
and primary storage characteristics, data representa-
tion, instruction set, registers (if any), addressing,
program language features, etc. If such a list is
prepared for an installation, save it for future
reference. The list can be made as the design pro-
gresses, but remember that it may overlook pertinent
items in the early stages of design during which it
is prepared. Many of the factors in the list are
probably included in Appendix B.

"* Categorize the items on the list in terms of their
imp,.ct upon transferability. That is, if the item
is absent or different on the next machine, one of
the following applies:

"The function being performed is no longer pertinent.
"Redesign is required.
"Recode is required.
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Code transfer is not precluded.

Transferability effort is deferred until transfer
time (for budget reasons, or if there is a reason
to expect the problem will never arise).

SSelect a way of dealing with each of the above
categories. For example:

Loss of relevance becomes a system configuration
constraint.

Redesign may be treated as a system configuration
constraint, or it may be possible to isolate the
problem area into a module slated for redesign.

Items for re-code should be isolated in modules
to limit their effects on other areas (see
modularity).

For untroublesome functions, parameterization and
use of "standard" code are often enough to permit
program transfer.

Deferred items should be isolated.

1.3.2 Modularity

Modularity is a formal way of dividing a program into a number
of subunits each having a well-defined function and relationship
to tne rest of the program. There are well-known advantages in
modularity; the one of most interest here is that those program
functions which will need the most programmer attention upon
transfer can often be isolated and functionally identified as
distinct modules. The modules, if organized and documented
properly, can be worked on with little reference to, or inter-
ference with, the rest of the program. Less critical areas of I
the program can then be converted using other, perhaps less

expensive, methods.

In FORTRAN, modules may be subprograms which can be compiled
independently and reconnected to the balance of the program at
load time.

In JOVIAL and COBOL, the modules are subprograms and paragraphs
respectively.
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Assembly languages are also flexible in this regard although it
is usually necessary to distribute some symbol definitions
across modules that are assembled independently. This may be
done either by preloading the assembly symbol table (the COMPOOL
or DSECT concept) or by a load time symbol table Ithe external
symbol concept).

An essential aspect of these modules is their isolation from
the rest of the proqram. Each section should be a sequence of
programming language statements having a well marked start and
end. The function of the module and its interface with the
rest of the program should be simple and well documented. A
module performing several closely related functions may have
several entry points. However, one entry point and a function
parameter branch is usually better practice. Similarly, having
program control enter a module in the middle simply to take
advantage of a convenient piece of code should be avoided. That
entry defines an additional function for the module which may be
expensive to reproduce.

A program should be modularized by function and by nature of
machine/system dependency. Modularization by function has been
considered good practice in those languages that facilitate it.

The following is a list of modules into which a majority of
programs may be organiL-d. Each of them should be considered
for splitting into two modules - one machine/system independent,
the other containing the dependencies. In defining a machine
dependent module, remember that the object is to render the
environment of the independent modules invariant with respect
to transfer:

General Program Modules

Parameterization

. Character sets, data masks, etc.

. Machine architecture

* Initialization

" Machine/System
" Primary storage
" Program
" Files

721
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9 Processing

* Interrupt processing
. Data acquisition
. Data editing

Data organization (primary storage)
. Computation
. Intermediate secondary storage organization
. Data conversion/formatting

.Output

Error checking and recovery

a Teimination

"* Files
". Normal end
". Exceptional end

This modularity outline is, by the nature of this discussion,
very general in concept. More specific suggestions on program
organization are presented in the individual sections concern-
ing FORTRAN, JOVIAL, COBOL, and Assembly languages.

1.3.3 Parameterization

Parameterization is a method by which a problem program may
self-adjust to a program, hardware, or system modifications.
Some numeric or symbolic items in the program may require altera-
tion if the same function is to be performed in a new environ-
ment. These values may be written into the code explicitly or
they may be parameterized. In the latter case, symbolic vari-
ables are used in place of actual values. These symbolic
variables are set to the applicable values in an initializat:on
phase of the program execution or during assembly/compilatio
The values chosen may be directly initialized by programmer A

coding or they may be set up or calculated by the language
processor.

If the value is written in by the programmer, it should be in
a well marked statement, with all such statements collected in
one place. The documentation for each such value should be
explicit in how and when a new value is to be determined for
the parameter. If the value is to be computed, the computation
must be checked out for a range of values.

Parameterization may also be used to avoid usages which may not
be supported by all compilers for a language. For example, not
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all FORTRAN compilers support variable array sizes in subrou-
tines. The usage may be avoided by passing array sizes as
parameters and calculating index values (if multi-dimensional)
explicitly. Or, if there is a possibility that the organiza-
tion of an array is not standard (stored by rows rather than
columns) a switch can be used to select the appropriate calcu-
lation. The value of that switch can be determined by the
program during initialization.

Some assemblers provide for conditional assembly in which the

value of a parameter, defined near the start of the program,
may be tested for skipping of alternative code sequences.

Although a transferred program usually performs an unaltered
function on the new machine, parameterization may be used even
more extensively when the program function is altered during
transfer. This is the case for the parametric programming
language processors mentioned in Section 1.1.3, Methods of
Transfer.

Parameterization requirements depend on the details of the
programs involved. Each actual value in the code must be con-
sidered for parameterization as it is being written. If the
value and the representation of that value are independent of
any reasonable change in machine applications, scope, or langu-
age, or if the programming language does not permit a symbolic
value in that context, then parameterization does not apply.

In general, over-parameterization is rarely a problem, especially
in the assembly or compilation process. Thus, the cost of
parameterization is nontrivial •nly if the logic of the program
or usage of the language must be perverted. The value of par-
ameterization, on the other hand, can be considerable. Indi-
vidual examples of this fact are discussed in depth in other
sections.

1.3.4 Code Constraints

Program transferability can be greatly enhanced simply by avoid-
ing code that is difficult to transfer. Finding and using
alternative code, however, does involve additional programming
costs which must be measured against the benefits obtained.

For higher level languages, the primary -,ode constraints of
concern involve the avoidance of language featuzes which are
apt to be missing or altered, or which will give different
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results when comDiled on the transfer target. As discussedin Section 1.5, competitive advantage, implementor taste andstandardization ambiguities contribute to lack of basic language

compatibility.

The language features most likely to be missing or different in
other compilers are the language extensions and the expensive or
little-used standard features. Unless a language was specific-
ally extended to suit an application, use of extensions can be
avoided with only a limited loss of efficiency. In those cases
where the standard language is inadequate, the unusual usages
should be isolated in modules for recode.

Aside from subsets and extensions, two things in general make
code difficult to transfer - techniques that bind to a particu-
lar representation of data structures and instructions, and
those that bind to a particular sequence of operations. A
binding technique, then, is any usage that takes advantage of
or is cognizant of itself, when any portion of any instruction is
used as an operand, or when any address is used which is not
completely symbolic. Code may become cognizant of operation
sequences because they define a function which must be repro-
duced when the program is transferred. In further discussions
in Section 2, the effects of these techniques will be called
code restraints.
Program code which modifies itself has proven to be bad practice
for reasons of maintenance difficulty, error proneness, and non-
re-entrant properties. Recent machines and languages have taken
steps to render self modifying code both unnecessary (e.g.
execute instructions) and difficult or impossible (e.g. write
protect). Higher level language code does not directly allow
dependencies upon instruction representation.

Generally, unless the machine is deficient in indexing and other
dynamic address functions, representation-dependent code may be
easily avoided. Furthermore, resource conservation realized
through use of this type of code usually amounts to only an
insignificant percentage.

For any particular machine, external data representations cor-
respond to predictable internal storage bit patterns. It is
seldom the case that those representations will be equivalent
over a variety of different machines. If the external repre-
sentation used does not correspond to the function of the item,
the internal representation will become inappropriate upon
transfer. An example of this type of code is character identi-
fication by comparison with small decimal integers.
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Similarly, packing several data items in a word will bind the
code with respect to word size, as a data item may be split by
a word boundary upon transfer. For example, 3 items of 6 bits
each do not repack well into a 16 bit word.

Operation sequence and data representation constraints can
also be combined in ways which may seem of great value but
which defi::itely hinder transferability.

It is often the case that an assembly or higher level language
does not explicitly provide a facility needed for a particular
application. The facilities that are provided can be used in
combination to synthesize the required facility.

Such synthetic facilities become of transferability interest in
several ways. It may be that one of the facilities used in the
synthesis is not present in the transfer target. Or, it may
be that the corresponding combination of facilities on the
new machine does not have the same effect. (In this case the

original synthesis is called idiomatic.) On one machine,
for instance, a fixed point number can be converted to floating
point by adding and subtracting special floating point constants.
The technique is very convenient and very machine dependent.

In any case, converting a synthetic facility component-wise can
be less efficient than finding or synthesizing the equivalent
facility in the target machine or system. Nearly all machines
provide some form of shift instruction for use in synthesizing
facilities (usually bit-resolution or data addressing). Arithmetic
and logical operations are defined and stabilized by widespread
usage, but the shift concept is rather computer unique and is
usually defined at the convenience of the computer architect.
As a result the shift instruction set is often a transfer
problem.

The difficulty of transferring synthetic facilities may be
reduced by use of macros in assembly language. The macro invo-
cation statement becomes equivalent to the use of an explicit
rather than synthetic facility. The facility may be transferred
by using a new synthesis or, if present, the explicit facility,
in the macro definition. Fortunately, the number of facilities
that need to be synthesized is less than the totality of all
useful macros.

The principles described for modularity and paraineterization
applies as well to the synthetic facilities.
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1.3.5 System Configuration Constraints

A program may be dependent upon aspects of system configuration
in ways that make it infeasible to transfer the program to a
system in which those aspects differ significantly.

Those system attributes which become severe constraints are
usually either system resources which are heavily used or de-
vices which provide facilities not qualitatively present on the
new system.

Primary storage is likely to be the constraint most often felt.
If a program is written for a machine with a large amount of
core storage, it may be infeasible to move to a machine with less
storage unless the program was initially written with this in
mind. Similarly, programs often do not adjust well to an over-
lay/nonoverlay transition since basic algorithms may differ
(overlay processing often requires a file pass for each phase,
where this would be unnecessary with adequate primary storage).
On the other hand, large primary storage may have been crucial
to efficient operation of the program, and it would be wasteful
not t., use it.

One approach to this problem, then, is to consider (and document)
primary storage size as a system constraint precluding code and
perhaps design for transfer to a machine with less storage.

Similar considerations apply to random vs sequential access
secondary storage devices.

In the area of input/output, efforts must be directed toward
avoidance of explicit references to physical devices which can
permanently bind a program to a particular configuration. Pro-
grammers should design and code with logical entities such as
the system input device (rather than the card reader) or the
object output file (rather than the tape punch). Physical de-
vices and their associated characteristics (such as record
length) must be parameterized and isolated from the main body
of the program as much as possible.

Even stronger constraints apply to programs which are intended
to exploit particular system aspects. It would be pointless,
for instance, to transfer a graphics processor to a system
without graphic I/O capability. This type of constraint can
be considered (and documented) as categorically apart from
others. In this case, no partial loss of inefficiency can
eliminate the constraint.
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1.3.6 Transferability Feasibility Analysis

In some cases it is not immediately clear whether program trans-
fer will be cost effective. Hence, it is desirable to compare

potential new machines with respect to their suitability for
transfer of the existing library. A guide to making such deci-
sions must take into account the cost of the machine and its
effectiveness for running the transferred library.

If it is assumed that the system configuration constraints are
met, and that an acceptable transfer method must be available
(or at least is well enough specified for estimating purposes),
then the cost to be dealt with becomes the operating cost ofthe transferred program. This in turn depends on the cost of
the resources provided by the system and the burden that the
program places on those resources.

The resources treated here are time, primary storage space, and
peripheral device utilization.

The total operating cost is computed as:

Cost =i •~~mewmory cost x words + CPU cost + device cost x devices x secsodscaceiesa(word.sec sec device.sec N

Words, secs and devices represent the space, time and peripheral
device support needed to run the program. The time and space
units are arbitrary - minutes or hours may be more convenient.

CPU cost includes all those items without which the system
cannot be used, including software.

Memory cost is treated separately. Additional primary storao'
is often optional or separately priced, and programs often be-
come larger upon transfer.

The term
14

device cost x device)
device. sec

should be estimated for each peripheral device or fraction
thereof dedicated to the program and sunmed to obtain total
peripheral device costs.
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When considering a maximum amount of primary storage or a
maximum complement of peripheral devices, the estimates can
be made for the worst case deemed feasible.

Effect of Transfer Upon Size and Speed

Table lB in Section 1.1.3 gives rough estimates of relative
operating costs by level of transfer method (redesign, recode,
convert cocde) and language. Those estimates may be revised
appropriately for specific applications.

Halstead (loc. cit.) notes that assembly language programs in-
creases in size by as much as 30% upon code conversion. As a
first approximation it may be assumed that the number of inst-
ruction executions will increase in the same proportion. Hope-
fully, programs that were designed and coded with transfer in
mind will not grow as radically.

Estimates of higher level transferred code efficiency may be
refined by recording the relative size and speed figures of
benchmark programs run for a new machine.

Similarly, assembly language code may be estimated from know-
ledge of conversion equivalents. An assembler which tabulates
instruction usage counts is very helpful in this respect. For
instance, if linear instructions are converted to loops, in-
struction execution counts will increase more than proportion-
ately to the code size decrease.
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1.4 GENERAL PROGRAM DOCUMENTATION GUIDELINES

1.4.1 Introduction

In most cases, conventional program documentation will require
certain additions and changes to facilitate program transfer.
This section describes the additional documentation by purpose,
information content, and utilization.

This additional information is to be distributed over and incor-
porated in existing standard installation documentation formats.
A completely new style might not be suitable in some circum-
stances. Particular sections, such as those for FORTRAN or
JOVIAL programs, will contain comprehensive suggestions as to
the content of the documentation. They will be especially im-
portant in regard to identifying system dependencies.

1.4.2 General Format

Documentation efforts toward more transferable programs can be
divided into four parts:

* Independent aspects: These are descriptions that do
not change when the program is transferreo. This
includes the purpose and overall functioning of the
program as well as any details that are clearly
machine/system independent.

e Program dependencies: This section covers those

things that may change from one machine/system to
another. In other words, it will describe how the
program is machine dependent. This information will
be used by the programmer in determining what form
these aspects will tIake in future machines and
3ystems.

9 Ste-:fic implementation: This should describe the
form taken by dependent aspects for a particular

maci:ire/system. The specific environment should be
clearly identified.

. Transfer plan: This section describes the intended
method ol1 transfer for a program and a particular
implementaLion. Note that several specific imple-
mentations of a program may not be equally trans-
ferable to a new machine. The transfer plan should
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be specific as to which version of the program is
expected to be transferred.

Among the sections described above, those dealing with indepen-
dent aspects and program dependencies can theoretically be
written once and then remain valid for all specific implementa-
tions. in practice, aspects thought to be independent may be
found to be dependencies when the actual transfer is attempted.
Specific implementation material, however, will clearly need
zo be re-written for each new version. Similarly, tne trans-
fer plan may be partly specific to a particular implementation.

Depending on the volume of documentation requi.red, the number of
dependencies involved, the frequency of transfers, and similar
factors, several physical formats may be used. Perhaps the
most widely acceptaLle and convenient, however, would be the
current installation standard. As necessary, each paragraph
could be divided i 'nto n•,dependent, dependent and transfer plan
subparagraphs. The specific implementation material most
logically would appear in an appendix.

If the documentation is updated after all projected transfers
are completed, tne specific implementation material could be
listed at the appropriate place in the main text, with each
item identified as to pertinent implementation.

1.4.3 Additions to Conventional Documents

The following paragraphs review the usual organization of pro-
gram documentation. Each level and type of document is identi-
fied by purpose :nd customary content, and additional trans-
feraDility information appropriate to each type is described.

Overview/Introduction

This section should satisfy the needs of persons, typically in
management, who need not become involved in the details of the
program. These individuals may, however, need to review this
material with regard to future efforts in the application area,
cost predictions, proposals and similar management activities.

This documentatic- usually includes identification of a program
by name, purpose, and position in a larger system. It should
also contain:

* A descript*on of capabilities which are system-
independent.
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* System configuration constraints.

& A description of optional, system dependent
capabilities.

* A description of the expected transfer methods with,

at least, relative transfer cost estimates.

e A description of the relative importance of the pro-
gram to an overall system.

This additional information may be used to estimate the feasi-
bility of transferring to various new systems.

Product or Functional Specifications

This portion of the documentation specifies in detail what the
program does. It should also include any aspects of the program
not covered in the introduction but that may be of interest to
users and management.. In particular, the following transfer-
ability information should be added:

"* System configuration constraints.

"" The relative independence or dependence of each
program function-application.

"* The nature of all system dependencies.

"* The degree of effort directed toward transferability.

"* Projected transfers and methods of transfer.

"* The proportion in which total transfer effort is
divided between intial development and actual
transfer time.

Design Specification - Internal or Program Loaic Manual

This portion of the documentation describes in complete detail
how the program works. It includes narratives, flowcharts and
program listings. It is a working document, successive elabora-
tions of which result in the finished program. Also, it func-
tions as a training aid to the maintenance/transfer programmers
who may be required to become as familiar with the program as
its authors were originally.
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The following paragraphs describe the usual organization of the
document along with the extra material required for transfer-
ability.

The design/logic document is usually replicated heirarchically.
That is, there is a section for the program as a whole and
similar sections for each component subroutine. These include
narrative, flowcharts, and for some sections, listings.

It must be kept in mind that the design/logic section is a work-
ing document rather than simply an archival record of a completed
design. The process of writing the first draft of this docu-
ment is the process of design of the program. Difficulties
encountered in describing the transferability considerations
for a program or subroutine in this section should be taken as
a warning of similar difficulties to be experienced in actual
transfer of the program or subroutine.

The narrative included in design specifications generally con-
tains information such as:

v Purpose of program/subroutine.

*Role of this routine in the program or system and
entry/exit details.

"* Data handled by this routine and the input/output
details.

"* Parameters required/generated.

"* Tables built or used.

The narrative continues with a detailed description of the
algorithms by which the primary function and subsidiary func-
tions are performed.

The flowchart should be a pictorial representation of the narra-
tive (rather than of the listing). For the program as a whole,
most of the flowchart boxes will be subroutines. Each box

should indicate, by subroutine name or listing label/line num-
ber, where detailed information may be found.

Transferability Information

Section 1.4.2 recommends breaking dccumentation into four
subsections: machine independent section, dependency section,
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particular implementation and transfer plan. For a properly
designed program, the machine independent section will be as
similar and complete as ordinary documentation. In particular,
if some function cannot be properly documented in the machine
independent narrative, then the design should be modified. If
that is not possible, a configuration constraint is indicated.

Items in the machine independent writeup for which transfer-
ability is a consideratioi should be flagged. Ordinary textual
cross reference conventions are suitable for this; parenthesized
note numbers are suggested.

The note numbers can then be used in the dependency, particular
implementation, and transfer plan subsections to relate items.

The scheme outlined above is used for the program as a whole,
and for each subprogram. Key information should be repeated in
the introduction to each subroutine; in particular, a subroutine
which constitutes a machine independent module should be so
identified in the introduction to that subroutine.

The following example shows the mode of expression in each of
the subsections:

"* Machine independent writeup:

.. the subroutine then finds the 'leftmost comia in

the character string (5) and returns the next four
characters...

"* Dependency writeup:

(5) The speed of the program depends heavily upon the
speed of this search - a basic assembly subroutine
is indicated.

* Particular Implementation for IBM S/360

(5) Translate and test instruction is used.

c Transfer Plan

(5) Since the speed of the transferred program is an
expected problem, manual rewrite of the code para-
graph labeled SEARCH in subroutine CHARSEL is
anticipated for minimum execution time.
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Flowcharts

The scale and information content of a proper flowchart should
be such that the chart parallels the machine independent narra-
tive. A flowchart more closely related to the code than to the
narrative does little to bridge the intelligibility gap between
narrative and code, and is more susceptible to change during
program debug, maintenance and transfer.

Listings

The document should be organized and annotated so that it is
easy to find code lines corresponding to flowchart blocks or
narrative sentences.

Code lines may well be broken into logical 'paragraphs' by use
of comment lines. Any line or 'paragraph' that is machine/
system dependent should have comments explicating the dependencyand detailing the transfer plan. Occasionally, alternative code

exists which would be more transferable but which is for some
reason not justified in this particular implementation. Such
code may be displayed as comments, in the appropriate location.

Code of particular interest at transfer (or maintenance) time
should be indicated by comment lines having scan value, i.e.
readily seen when leafing through the listing.

Manuals

Usually, a separate document is prepared for the guiCance of
personnel operating the comp'ter while the program is being run.
It details the input, intermediate and output files by physical
characteristic, source, disposition, and the operating system
information requirements. It also lists error and exception
conditions, and the dialogs between operator and operating
system.

The machine/system independent portion of the document serves
as an introduction to the functional purpose of operator actions
and information responses.

Since a machine-independent operating system cannot be assumed,
it is expected that the operator interface will be very machine-
dependent. Thus, a dependency writeup would be limited then to
a description of the operational differences of various systems
among which regular transfers actually take place. That is,
if the program is to be run interchangeably on several levels
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or versions of ostensibly the same machine/system, the depend-
ency writeup may detail the differences which affect the opera-
tion of the program. Additionally, the manual should include
detailed writeups for the particular system(s) on which Lhe
program is run regularly.

The transfer plan portion should describe the mutual program/
system/operator interface. This is best done in functional
terms such that operating procedures and job control language
statements can be designed for a new system.

To avoid confusing operators, the individual machine require-
ments and the transfer plan should probably be bound separately.

A user oriented manual must also be prepared. It will be clear
from the nature of the program whether or not the users will be
professional programmers. In any case, the document should be
complete enough for use by a stranger to the program.

The machine independent part of this document will include all
facilities expected to be transferred. Functional terms should
again be used in descriptions.

The dependency section must allow the user to foresee problems
that may be encountered with particular features if the program
is transferred. It is not intended that the user resolve or be
responsible for program transfer. He is entitled, however, to
an understanding of the status of the program with respect to
the risks or delays that may be associated with its use.

The particular implementation section should fully descrihe all
system dependent items, especially the actual data forinats and
conversational terminal protocols.

The transfer plan should describe in detail whether and how the
user will be able to move his data files to a new system if
necessary.

The recommended documentation plan, therefore, involves addi-
tions to current installation standards rather than major
revisions to existing techniques. In this way, the amount of
emphasis placed on transferability can vary not only by installa-
tion, but also by program.
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1.5 OTHER TRANSFERABILITY TECHNOLOGIES

This section touches upon several subjects which are related
to transferability but which are either of less general applic-
ability or are covered elsewhere in the literature.

1.5.1 Microprogramming

A microprogram is a program to be executed by a rather simple

computer for the purpose of simulating a more powerful computer,
which in turn executes application programs. The hardware need
only interpret and facilitate the micro instructions which are
constrained for ease of execution rather than the ordinary non-
micro instructions which are designed for the convenient
expression of application algorithms. Often, as with the IBM
360, the user may not even be aware that the machine is micro-
programmed.

Microprogramming has never accounted for a very significant
percentage of total programming efforts. The percentage does
appear to be on the increase as a result of emphasis on emula-
tion and because of burgeoning mini-computer sales. Neverthe-
less, because of the small percentage of total programming that
is in this area, and because ,.f the nature of microprogramming,
program re-write is the most general means of program transfer.

Generally, micro level instructions are very much oriented to
the particular machine that they are a part of, and consequently
not very amenable to being transferred to other computers. It
seems to be the nature of microprogrammed applications that the
requirement for program transfer occurs less frequently. Still,
many of the techniques applied to assembly code factors in order
to attain portability will be directly applicable to similar
microprograrming factors. Hence, some of the assembly level
conclusions may be applied to the microprogramming factors.

Microprogrammed computers can actually provide significant
benefits in some transferability situations. These computers A
normally have built-in facilities for readily combining their
basic instructions into more powerful instructions. In this
manner, a specific microinstruction computer can be made to
operate like certain other computers. When a set of regular
assembly level programs are to be transferred to a microinstruc-
tion computer, this approach may be feasible. Often though,
the creation of a correct emulator in the micro-computer can
itself be a fair size task. Incompatibilities of word and
character size, the absence in the new machine of internal data
paths and registers not essential to its original architecture,
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and differing I/O devices all limit emulation efficiency. Simi-
larly, operator interface facilities such as console switches
cannot readily be s.imulated. Hence, microprogrammed machines
are by no means a panacea for transfer problems.

1.5.2 Interpretive Languages

As with microprogramming, the total amount of interpretive pro-
gramming represents only a small percentage of all programming
activities. On the other hand, the employment of interpretive
programming techniques seems to be on the upswing as can be
evidenced by the increased usage of BASIC and APL, both of
which are generally compiled and executed in an interpretive
manner. Actually, in many instances utilization of interpretive
instructions and languages may provide the most promising
approach for strictly maximizing program transferability.

An interpretive language is essentially a series of subroutine

calling sequences, and the interpreter a set of subroutines.
One central subroutine, analogous to the instruction fetch cir-
cuits, handles subroutine linkage, selecting the next call in

accordance with sequence logic (usually a location counter),
isolating parameters, and branching to the designated subroutine.
The pseudo-machine code can be quite compact and efficient sin. I
the addressing facilities need not be general but can be
accurately tailored to the application.

The major shortcomings of programming with interpretive code is
that program execution speed will always be less on a specific
computer than the equivalent program coded at the assembly level
by a good programmer. In some cases, recent refinements in
interpretive languages and interpreters, in conjunction with
increased computer speeds, have reduced the execution speed
difference to minor significance.

The major advantages of the interpretive approach are:

"* Significantly reduced program transfer costs for
programs or program libraries.

"* Significantly reduced core requirements.

"" Faster (than higher level language) execution
speed.

"* Facility for inclusion of debug aids and measure-
ment tools.
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An attribute common to the more successful interpretive langu-
ages is their approach to memory design, usually referred to as
stack processing. The stack processing approach is to have
those tables that are of variable length share the available
memory space. That is, the tables are allocated initial start-
ing locations, and as a table touches another, the other tables
are moved to make space. Tables in this type of memory arrange-
ment are called stacks.

When interpretive techniques are used, the transferability bur-
den is centralized with the designers of the interpreter and
the interpretive language. Usually, programmers using these
languages have the fewest restrictions imposed by transferability.
With a well designed and standardized interpretive language,
the greatest transferability imposed restrictions on design and
documentation will be in the area of peripheral equipment utili-
zation, and even there the efiect will be minimized.

By carefully designing ana standardizing the interpretive langu-
age, transferability of a program library can be accomplished in
a very small time frame. The essential task required to accom-
plish transfer of a set of interpretive programs is the imple-
mentation of the appropriate interpreter for the new computer.
This can require from one man month to a few man years of effort,
depending upon the particular language. Generally, the effort
involved in creating an interpreter is only a small fraction of
the effort of creating a traditional higher level language
compiler.

It should be noted that many of the guidelines presented in
Section 2.4 may be used for both interpretive language design
and for interpreter design. These promote transferability of
user programs, simplify creation of future interpreters for the
same language, and reduce the deleterious effects that inter-
pretive operations have upon execution speed.

Finally, many of the problems associated with standardizing
traditional higher level languages also exist with interpretive
languages. This is evidenced by all the extensions that manu-
facturers have made to BASIC and that virtually all APL imple-
mentations are for a special version of APL. Were these langu-
age standards more comprehensive and acceptable, the propaga-
tion of variations of these languages would probably be reduced.
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1.5.3 Conversion Tools

The subject of source to source converters was discussed in
Section 1.1. The information presented there substantiated the
fact that there is a significant economy of scale in the develop-
ment of conversion aids. The larger the pool of programs to be
converted, the more the converter costs can be justified.
Primarily for this reason, the number of commercial conversion
aids currently available is relatively small. Similarly, the
enormous possibilities of combinations of systems, machines
and languages dictates that no comprehensive set of conversion
tools will ever be developed.

From a transferability standpoint, therefore, automatic program
conversion tools must be considered expensive, generally
unapplicable and after-the-fact techniques on which to base
future programming efforts. For the programs that already exist,
however, there are a number of aids which may apply.

Decompilers/Disassemblers

A special problem is presented when the running object program
is not identical with currently maintained source decks. This
may result from extensive patching of assembled code or dropping,
misplacing, or pirating from a source deck. There are products
available which will Cisassemble the object code to produce
source statements. Generally, they are limited to very few mach-
ines and are not completely effective. Decompilers, especially,
would be enormously expensive if they were to handle (efficient-
ly) all possible combinations of object code. Again, use of
this type of consrersion aid is generally the result of a lack of
planning for transferability in original programming efforts.

Source to Source Conversion

A source-to-source converter is a program which can identify
constructs in one source language and build an equivalent con-
struct in another source langauge, transcribing the pertinent
parameters. The equivalence is always programmer designed.
Certain items may not have an equivalent in the other language,
or the translation is too subtle or too inefficient to be worth
the effort for developing converter capability for it. In these
cases, the converter should flag the item for programmer attention.

Compatibility/Compliance Monitors

Higher level language programs are transferable only to the
extent that they do not use language features that are
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d-fferent or missing from the compiler of the destination
machine. I
Programs are presently available which inspect COBOL source
code for compliance with management-selectcd restrictions. By
restricting usages which are apt to be incompatible, manage-
ment can reduce future transfer difficulty.

Such monitors can be developed for any programming language. It
is more efficient, however, to incorporate these features in the
original compilers which must completely analyze source code
anyway. The WATFOR FORTRAN compiler mentioned elsewhere is an
example of this approach. Unfortunately, few compiler imple-
mentors seem willing to admonish customers against the use of
competitively wmtivated language features.

Usage Reference

The cross reference listing produced by many assemblers and com-
pilers can easily be made to include information on the use of
particular language features. For example, the locations and
frequency of use of instructions and addressing methods such as
indirect would be a definite aid during program transfer.

1.5.4 Language Standards

Perhaps the most fundamental step toward transferability of pro-
gramming languages is standardization. This opinion is refiec -
ed by the existence of standards committees such as those of
ANSI (American National Standards Institute) which have been
organized for most popular languages. It has long been recog-
nized that substantial savings in programmer retraining, manual
preparation, and program transfer can .e achieved through
language compatibility. Unfortunately, there are many problems
associated with this endeavor. Among these are:

"Inability to completely and clearly define the language" Subsetting

"" Extensions
"" Dialects
"* Enforcement

Most of the work in language definition has been in the area of
syntax. The semantics and practical usage descriptions of most
languages leave much room for improvement. There are often
ambigious and generalized statements which must be interpreted
by individual implementors. Similarly, some groups, motivated
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by efficiency or competitive advantage considerations (maybe
even ego), will !.eek to "improve" upon standards by making
changes to the ruies.

In other instances, hardware characteristics such as characters
per word may cause the imposition of non-standard conventions
(such as name size) for the sake of operating efficiency. This

may be encouraged by the common contract agreements to process
a specified number of cards pet minute or to operate within a
given core partition, etc. This type of alteration is usually
referred to as a dialect.

Another area where hardware plays an important part is in langu-
age extensions. Often the ability to utilize special hardware
such as direct access devices can present a considerable short-
term competitive advantage. Similar arguments and justifica-
tions can be given for application oriented additions to a
language. This form of non-standardization is not readily
controlled by the customer-user.

Hence, standards committees are faced with the ambitious task
of concisely defining a language which will exactly suit every-
one's needs. Of course, a conglomeration of all the opinions,
techniques and desires is not a realistic goal.

Standards committee must usually omit some useful language
features because not all compiler implementors can afford them.
Even so, some features included in the standard may be left out
of some implementations as too expensive. Thus, subsets of a
language come into existence.

The COBOL standard seeks to resolve the subset problem by defin-
ing standard subsets as well. Despite this, few COBOL compilers
actually conform even to a standard subset. A possible solution
is to define a fundamental minimum language with a mechanismwhereby extensions may be defined.

Even if all the individual requirements could be resolved, there
would still be the problems of enforcement. More will be said
about this aspect and the extent of current non-adherence to
established standards in the sections on higher level languages.

1.5.5 Universal Machines

The transferability problem could be effectively eliminated by
removing all the differences among machines, systems, and
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languages. It must be pointed out, however, that had blanket
standardization of hardware been adopted when it was first
suggested, the machines of the 1950's would still be in use.

Computer architecture is still being improved. Some features
presently very common are demonstratably less cost effectivethan some newer developments.

The marketplace, itself, seems tc. impose the optimum constraint
upon architectural change. Customer acceptance of a new machine
depends, in part, upon the advantages of a new architecture
outweighing the disadvantage of difficult program transfer. As
program libraries grow, transferability becomes more important
to the users, and hardware changes are inhibited unless they
are clearly cost effective.

Furthermore, the ever growing variety of applications and require-
ments for computer systems will certainly continue to obviate
complete hardware stagnancy.

The concept of the universal languages as related to hardware
differences is discussed in Section 2.4.

1.5.6 Operating Systems

Operating system differences are often the major transfer prob-

lem when standard higher-level languages are used. The operating
system and the language used to control it are usually more com-
plex than any other element of the system. Further, there seems
to be no constraint upon operating systems diversity.

Operating systems and job control languages are Lhe subject of
a study by Applied Data Research Corporation, and the reader is
referred to their report.

1.5.7 Data Bases

A production program usually represents a continuing process

with several files read regularly and updated periodically. If
tne program is transferred, and the process is to continue on
the new system, the files must be moved also. This represents

a problem in several ways:

* The organization of the data may reflect the organiza-
tion of the original machine and be inappropriate to
the new machine.
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* The hardware determines physical format of the data
end thus incompatibility with new hardware.

* The operating system usually has certain conventions
about labels, retrieval index formats, tables of con-
tents, record sequence, etc. Many of these conventions
are considered transparent to the user and are ill-
documented.

* The structure of the data may be implicit in the
code, rather than explicitly described. This is
really a program transfer problem~but it can be
alleviated by some measures that alleviate the data
transfer difficulties.

Data base considerations are covered in depth in other reports
(ADR Study).
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SECTION 2. PROGRAiMMING LANGUAGE GUIDELINES

This section presents specific design guidelines for programs
to be implemented in the higher level languages FORTRAN, JOVIAL
and COBOL. Suggestions for assembly and macro language program
preparation are also included in a separate chapter.

Each of the languages is treated independently. Once the imple-
mentation language is chosen for a particular program, the
appropriate section may be reviewed prior to actual design and

coding. In most cases, references to other portions of this
document will not be necessary.

The following tables are referenced in the discussions of dia-

lects. They represent a possible method of assignment of costs
to the use of language extensions versus adherence to recognized
standards.

Levels of Impact on Transferability-Rework
Necessary to Conform to Standards

Ti - Readily available user routines may be substituted
T2 - Requires occasional coding changes or convers*on tools
T3 - Requires minor design changes and re-coding
T4 - Requires extensive re-coding
T5 - Requires major re-design
U - Unlikely to be a problem

Inconvenience Costs of Adhering to the Standard

Li - Minor additional progranmer effort required
L2 - Aeditiona2 coding requized
L3 - Major additional programmer awaren ;s/effort
L4 - Major additional coding required
L5 - May be no substitute - management decision
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2.1 COBOL PROGRAMMING FOR TRANSFERABILITY

2.1.1 Introduction

The development of COBOL (COmmon Business Oriented Language)
began as -he result of a desire for a business oriented source
language that was widely compatible among host computers. For-
mal work started in 1959 under the direction of language experts
from several major computer manufacturers. Maintenance and
organized changes to COBOL have since become the responsibility
of a group called CODASYL (Conference on Data Systems Languages).
The most significant aspect of this history is that the original
design committee was composed of representatives from competing
ma'ufacturers who were attempting to create a language usable
on many unrelated computers.

Achieving maximum compatibility on existing equipment has always
been the goal of COBOL development. Application areas were in-
tended to be confined to business data processing with no
attempt to generalize the capabilities, though some implementa-
tions are tending toward expansion of scientific programming
features.

COBOL users can encompass a wide spectrum of individuals. The
relatively inexperienced programmer would enjoy the naturalness
of COBOL, while the supervisor or business manager would find
that the inherent readability of programs provides very adequate
documentation. The machine level progranmer, as a matter of
fact, might be unhappy with the verbosity required; however, the
ability to document programs while composing them and to under-
stand what has been done when they are completed certainly is an
asset to later machine transfer and re-coding.

COBOL is divided into four parts: IDENTIFICATION, ENVIRONMENT,
DATA, and PROCEDURE DIVISIONS. The IDENTIFICATION 0IVISI1N is
really self-explanatory and for the most part transterab.Le
across many compilers. The ENVIRONMENT DIVISION is iiz.:ended
to be the focal point of th- machine dependent qualities in
COBOL programs. Thus, an attempt is made within the language I
to isolate compatibility problems. The DATA DIVISION, which

describes records, files, and program data, experiences the most
difficulty in system transfer. it is in this area that exten-
sions, interpretations and more subtle compiler dependencies
are concentrated. The PROCEDURE DIVISION, which handles the

bulk of problem program execution, can be made relatively mobile
if care is taken to pa)ameterize implementation dependent
cttributes via the other divisions.
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As with all languages, compatibility problems do exist in COBOL.
The following sections will try to point some of the ways in
which tnese difficulties can be minimized.

2.1.2 Dialects

The first formal definition of COBOL was released 4n 1960. That
version is now referred to as COBOL'-60. Subsequent versions are
called COBOL-6l, COBOL-62, etc. The ANSE standard COBOL des-
cription used in this document we- published in 1968 and shall
hereafter be referenced as "the Standard".

As in most modern languages, COBOL does not remain unchanged.
Some aspects become obsolete while others are augmented with
new words, clauses and usages. Often this evolutionary process
results in several ways of doi.ng the same thing. Since too
much flexibility creates confusion and increases the burden of
new compiler implementation and testing, many COBOL users have
adopted subsets. Software products such as MECCA 360 have been
developed to precompile programs and enforce this type of
restriction. In an attempt to control and clarify this trend,
the Standard has adopted the following elementary terminology
which allows for three levels of capabilities. Specific func-
tjions within COBOL are referred to as modules. A particular
module can attain one of three levels. 0 indicates no capa-
bility. In the following table, n represents the level supported
by a particular compiler.

Specific Level
Module Implementation Range

Nucleus n NUC 1,2 1-2
Table Handling n TBL 1,3 1-3
Sequential Access n SEQ 1,2 1-2
Random Access r. RAC 0,2 0-2
Sort n SRT 0,2 0-2
Report Writer ii RPW 0,2 0-2
Segmentation n SEG 0,2 0-2
Library n LIB 0,2 0-2

The full standard involves complete implementation of all
moduls. The Air Force has defined subsets A, B and C as
follows:
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'-)set Descr ption

A 1 NUC, 1 TBL, I SEQ
B 2 NUC, 2 TBL, 2 SEQ, 2 RAC, 1 SEG, I LIB
C 2 NUC, 2 TBL, 2 SEQ, 2 RAC, 1 SRT, 2 RPW, 1 SEG,

1 LIB

Basic differences between module levels is summarized in this
table:

1 NUC Basic math operators such as ADD and SUBTRACT

2 NUC COMPUTE verb, options to internal verbs such as
ROUNDED, and DATA DIVISION enhancements such as
level 66 in PICTURE

1 TBL One level subscripting

2 TBL Three level subscripting

3 TBL SEARCH, SET, KEY, ASCENDING/DESCENDING, INDEXED BY

1 SEQ Basic file processing

2 SEQ Control of storage allocation and file labels

1 SRT Linkage to generalized sort program and access
to records before and after sorting

2 SRT Multiple sorts

1 SEG Overlays

2 SEG Variable limit assignments

1 LIB COPY

2 LIB COPY REPLACING

Random access and report writing seem self-explanatory; they
are either full implementation or null. By this time nearly
all major manufacturers have implemented at least Subset B on
large scale machines.

There are also many factors which contribute to extensions of
the COBOL standard. Disk files and random access, a desire for
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more computational ability via floating point number represent-
ations and built-in functions, international currency considera-
tions, debug aids, buffer allocation control, differences in

Scollating sequences, a desire to abbreviate, flags to the sys-
tem, and modularity in subroutine compilation are examples of

• such influences.

As mentioned elsewhere, the: use of extended capabilities can be
severely detrimental to program transferability. The prime
uniformity which exists among these "improved" versions is their
choice of unique names and methods of implementation. In other
words, an extended COBOL compiler can not guarantee that all
other augmented implementations will be compatible. Clearly,
maliy features which are quite useful for a specific application
or facility must be discarded if program and programmer porta-
bility are to be maintained.

The orderly updating of the Standard and adherence to current
Standard features (which hopefully will become subsets of tte
the improved Standard) is strongly recommended.

In the meantime, several large scale computers maintain highly
extended COBOL compilers. *The following charts attempt to
present some of the more obvious deviations from the Standard.
The COBOL compilers referenced (IBM 360, CDC 6600, UNIVAC 1108,
Burroughs B5500) are all medium to large scale. Refer to the
introduction to Section 2 for an explanation of the transfer-
ability and avoidance cost symbols.
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A secondary result of extensions to a language is the prolifera-
tion of compiler reserved words. Even though a program may be
coded in strict adherence to the Standard, it may produce errors
when run on another system if programmer defined names conflict
with the new compiler's extensions. An attempt to delineate all
possible reserved words seems unreasonable. The following par-
tial list, however, may give the COBOL programmer some insight
intc name formation techniques to avoid. In particular, the
avoidance of expansions or abbreviations of standard reserved
words is a good practice.
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Extended List of COBOL
Reserved Words (Non-Standard)

ABOUT DIRECT-ACCESS
ABS DISK
AN DISPLAY-ST
APPLY DIV
ARCTAN DOLLAR

DRUM(S)
B-5500 DUMP
BEGINNING
BEGINNING-FILE-LABEL EDITION-NUMBER
BEGINNING-TAPE-LABEL END-OF-FILE
BINARY END-OF-JOB
BIT(S) END-OF-TAPE
BLOCK-COUNT EQ
BLOCKS EXCEEDS
BOTTOM EXECUTE
BOTTOM-OF-PAGE EXHIBIT
BZ EXITING

EXP
CALL EXPONENTIATED
CARD-PUNCH EXTENDED
CARD-READER
CHANGED FASTRAN
CHANNEL FORMAT
CHECK FORM-OVERFLOW

CL FORTRAN
CLASS FS
CLUSTER-DUMP
CMP GQ
CONSOLE GR
CONSTANT GREATER-EQUAL

CONVERSION
Cos HYPER

cP
CREATION-DATE IBM-360
CYCLE INCLUbE

INTERNAl
DEBUGG
DECIMAL JS
DEMAND
DENSITY KEYBOARD
DESTRUCTIVE
DIAGNOSTIC-FILE LEAVING
DIGIT(S) LESS-EQUAL
DIRECT LIBRARY
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Extended List of COBOL
Reserved Words (Non-Standard)

(Continued)

LINKAGE PRINTER (S)
LN PRINT-SWITCH
LOAD PRIORITY
LOCATION PROTECT
LOW PT
LOWER-BOUND(S) PUNCH
LP PUNCHB
LQ PURGE

LS
RANGE

MASS-STORAGE READY
MD RECORD-COUNT
MEMORY-DUMP RECORDING
MFID RECORD-MARK
MINUS REEL-NUMBER
MOD REFERENCING
MONITOR RELATIVE
MULTIPLIED RENAMING

P.ESTRICTED
NAMED RETENTION
NGR REWRITE

NLS RG
NQ

SAVE-FACTOR
OC SENTINEL
OH SEQUENCED
ORGANIZATION SIN
OTHERWISE SN
OV SORT-FILE
OVERFLOW SPACING

SQRT
PAD STANDBY
PAP ER-TAPE-PUNCE SUBROUTINE
PAJ'ER-TAPE-READER SUPERVISOR

PER SWITCH

PHYSICAL-TAPE-N MBER SY
PLACE (S) SYMBIONT
PLUS SYMBOLIC
POINT(S) SYSIN
POOL / SYSOUT
PREPARED
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Extended List ot COBOL
Reserved Words (Non-Standard)

(Continued)

SYSPUNCH
sz
TAPE-PUNCH
TAPE-READER
TECHNIQUE-A (Z)
TEST-PATTERN

THEN
TRACE
TRACK-AREA
TRACKS
TRANSFORMTRY :

UNEQUAL
UNISERVO
UPPER-BOUND (S)
UTILITY I
WORD
WRITE-ONLY

XS3

zS
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2.1.3 Sstem Environment

As mentioned earlier, a great deal of emphasis was placed on
machine independence in tne developmnnt of COBOL. Certain attri-
butes of the operating environment will always be unique how-
ever. Many of these aspects that depend on the physical char-
acteristics of , specific system are isolated in the ENVIRONMENT
DIVISION of the COBOL program.

Since it uas intcnded to be machinL-oriented, a significant part
of this division must be re-coded each time a system transfer
(or configuration change) is made. The other divisions are nc
completely relieved of dependency problems, however.

System characteristics do have some effect on the methods of data
description in the DATA DIVISION. The file description, for
example, contains references to recording techniques such as tape
labeling and record and block sizes. Similarly, the results of
SYNCHRONIZED clauses depend on boundary alignment and word organ-
ization features of a particular machine.

To a large extent, the PROCEDURE and IDENTIFICATION divisions
require little change during system transfer provided that dia-
lect extensions have been avoided.

Perhaps the most troublesome aspect of COBOL transfers in gen-
eral is the input/output function. The SPECIAL NAMES clause of
the ENVIRONMENT DIVISION can be used to equate implementor
detined device mnemonics to programmer defined names used in
the PROCEDURE DIVISION, but other less obvious problems are not
so easily resolved.

The IOCS (Input/Output Control System) requirements for each
machine are unique and produce a wide variation in record for-
matting and file organization. These differences may not be of
concern to the problem programmer while he is coding for one
particular system, but they will become apparent when transfers
are attempted.

Each operating system has its own unique file control block
(fcb) to which information is supplied by the FD statement and
other sources. Often sub-parameters are left null to be filled
in by the system at execution time. This group of language
features is therefore somewhat system dependent. Many computers
have more than one way to record information. RECORDING MODE,
for instance, is mandatory for IBM and unimplemented by UNIVAC.
DATA RECORD and RECORD CONTAINS are sometimes ignored and
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treated as comments while other compilers check their syntax
even though the clauses cause no specific action. In any case,
the words used and the physical effects generated are unique to
each manufacturer.

An example of a problem which may arise is the transfer of a
program written for a word-oriented computer to a character-
oriented machine. Sometimes, the number of characters in a
record need not be a multiple of the number of characters in a
machine word. However, on many computers, the smallest unit that
can be handled is a word. In this case, if a data entry does not
use all the characters of the last word on a data record, the
whole word is output. When read back into the same computer,
the extra characters are ignored. However, when the same record
(assuming constant density, blocking, etc.) is read into the
character-oriented machine, the extra characters become the
start of thrŽ next record. Hence, when a transfer is contemplated,
it would be wise to re-code the reccrd description to include a
FILLER ENTRY to receive the extr, characters.

More 3crious conversion problems do exist. Consider the compati-
bility of BCD variable length and multiple internal representa-
tion fixed word length systems. Clearly, such situations are
.sard to understand let alone resolve. A suggested technique to
minimize these nightmares is to use DISPLAY numerics (which are
the most standard) for all files that may experience machine
transfer. If computational fields appear in the program, they
must be converted via a MOVE to an intermediate DISPLAY file
before output.

Because some record formats may be extremely uncompatible
(different character sizes) it may ne necessary to code inter-

mediate assembly language utilities.

The general problem of input/output errors is best l(,-t to the
system, but first time read errors after OPEN should con-
sidered by the programmer. They are most likely recorL length
problems, and the program should be able to tell if cori •ct
data is present before self or involuntary abortion (this can
be handled with DECLARATIVES).

Another suggestion is to place input/output in a SECTION by it-
self and PERFORM it. This method is best fr.r ease of
maintenance.

A list of miscellaneous factors pertaining to the system
environment follows.
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[ REVERSED input is not universally available.

* Integer or identifier names are preferable to
implementor supplied mnemonics.

o CLOCK-UNITS differ from machine to machine.

o FILE LIMITS are hardware dependent.

o LABELS are implemento- defined.

o ACTUAL KEY clauses are hardware/implementor
dependent.

o DATE and TIME may be a single word or require
an input card.

o The effect of OPEN and CLOSE on internal operations
is determined by the individual system.

o BLOCK, RECORDING MODE, and RECORD CONTAINS vary
greatly.

* Special characters s..: < . £ and others are not
implemented on many computers.

* Card column punches and their internal representa-
tions are not universal.

* Quotation marks may consist of either ' (IBM) or

(RCA).

e APPLY may be required for all, some, or none of thefiles.

* Optimization specifications (SAME AREA) will differ.

* File identification within multi-file and multi-reel
tapes may be a problem.

• The collating sequence may no longer be valid.

* The precision available in numeric calculations may
no lonqer be adequate.

* Core space may be less.
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* The number of peripherals available may change.

* The printer line size may be reduced.

* Sense switches may not exist.

* Console interface may not be permitted.

F STOP may not be allowed.

* Report headings should be kept under 120 characters
or, if necessary, coded as 120 characters and 12
characters combined.

2.1.4 Modularity

COBOL users may justifiably claim that it is one of the most
"modularly organized" higher level languages in current use.
A survey of the syntax makes this obvious. The segregation of
many system dependent attributes to the ENVIRONMENT DIVISION
and further separation of hardware oriented aspects of the prob-
lem program into DATA and PROCEDURE divisions is evidence of
this inherent modularity.

Any programmer will testify to the rigidity of style necessary
to produce acceptable DIVISION, SECTION, PICTURE and paragraph
structures. Though somewhat of a nuisance to the application
programmer, this division of functions within a COBOL programis a great aid to clarity, maintenance and overall portability.

Although the dummy argument-subroutine capability of FORTRAN
and the desirable feature of modular compilation are not avail-
able in standard COBOL, most business applications do not seem
to suffer greatly. The use of the PERFORM verb and its attend-
ant options allow for great flexibility of design. Many machine
dependent functions such as I/O may be assigned to independent
paragraphs and utilized from various points within the program.

The principle example of this technique would be the isolation of
OPEN, CLOSE, READ, WRITE, ACCEPT, DISPLAY and associated format
conversion routines.

Other languages called up via the ENTER directive should also be
subroutinized in this fashion.

Also, some non-standard features, because of their power and
ease of use, may find their way into a program. If this is the
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case, the user should be aware that special treatment will be

necessary at conversion time. This would be greatly facilitated
by the preparation of a special area of usage and a documentation
package entitled "Non-standard features utilized - minimum sub-
set necessary". The chances are that someone other than the
original author will do the conversion.

Another area where suspected machine dependen, items may be

grouped is WORKING-STORAGE (put these items first). Even an old
characte- set/collating sequence may be entered here eventually
for data :ranslation.

The COBOL feature with the greatest potential for alleviating
transferability re-work is the COPY directive. If many pro-
grammers can use standardized (within the installation) des-
criptions in the ENVIRONMENT DIVISION, SPECIAL NAMES, FILE
CONTROL and I/O CONTROL SECTIONS, a great deal of redundant
coding could be eliminated. These standards could be done once,
entered into the library and called via the COPY option. For
example,

FD PAYROLL-HISTORY COPY LIB-01

would constitute a complete file description. Even though some-
times the formats do not show it, library calls may be utilized
by almost every section of a source program. PROCEDURE library
modules could contain a majority of the I/O discussed earlier.

A typical summary of the forms of COPY available is included
below.

In the Environment Division:

SOURCE-COMPUTER. COPY library-name.
OBJECT-COMPUTER. COPY library-name.
SPECIAL-NAMES. COPY library-name.
FILE-CONTROL. COPY library-name.
I-O-CONTROL. COPY library-name.

In the File Section:

FD file-name COPY library-name.
TD sort-file-name COPY library-name.

01 data-name COPY library-name.
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In the Working-Storage Section:

01 data-name COPY library-name.

In the Report Section:

RD report-name COPY library-name.
01 data-name COPY library-name.

In the Procedure Division:

procedure-name COPY library-name.

2.1.5 Parameterization

Almost all computer programs possess one common attribute; they
will require change. Modifications to design or programming
techniques, revisions to customer or application specifications
and hardware/system transfer all contribute to this problem.Particularly susceptible to these events are table sizes, hard-
ware device names, arithmetic and format literals, the structure
of files, printer control and the scaling and precision of num-
eric data.

Needless to say, it would be extremely unwise to ignore these
possibilities. The judicious use of compile time parameteriza-
tion, on the otherhand, can eliminate much of the individual
analysis and modification usually necessary in a system change.

COBOL does not contain an over proliferation of parameterization
possibilities, but the careful programmer can produce a more
transferable product if he makes full use of what is available.

The following list should be considered (and augmented) before
beginning a new program.

o Define all literals that are used often in the
PROCEDURE code in the WORKING-STORAGE SECTION
via level 01 entries. This should also be done
for 1-0 CONTROL statements.

* Avoid literals in arithmetik statements using
ADD, SUBTRACT, MULTIPLY, and DIVIDE.

* Use data names rather than literals in loop
controlled PERFORMs.
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9 Parameterize your own carriage control characters
and use them in ADVANCIUG clauses.

* Make full use of the SPECIAL NAMES paragraph to
assign mnemonic names to hardware devices and
switch states.

* Recognize the FILE-CONTROL paragraph as a
parameterization of hardware device names.

* Quote marks are often non-compatible - check for
compiler control card input to adjust for this.

Apparently missing from COBOL's parameterization capabilities
are provisions for OCCURS phrases (table size) and PICTURE
structure (size, scaling and precision). These items require
re-coding for each change.

2.1.6 Code Restraints

Every COBOL compiier implementation will contain individual
author and machine eccentricities. It is very important that
knowledge of these idiosyncracies is not used to produce
unobvious or "trick" results. There is no guarantee that
successive compilers will exhibit the same results or that the
"clever" programmer will be around to patch things up.

In addition, unexperienced programmers may not be aware of the
existence of alternate interpretations and mechanizations which
could be applied to their coding. For these reasons, the follow-
ing list is included. It is a brief summary of techniques which
may create unpredictable results when transferred.

* Implied subjects in IF statements, though usually
acceptable, may cause ambiguous meaning when used
with NOT. For example:

IF X NOT LESS THAN 6 OR GREATER THAN 9 GO TO PAR1

may be interpreted as

IF X NOT (LESS THAN 6 OR GREATER THAN 9)

in Burroughs implementations, or as

IF X (NOT LESS THAN 6) OR GREATER THAN 9

in IBM compilers.
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"• Omission of terms in conditional compounds may be

acceptable, illegal or unpredictable. F-- example,

IF ANNUM EJUAL 1,4,5, OR 9

is permissible in some compilers.

"* Multiple conditions IF IF should be avoided.

* Do not assume that if the GIVING phrase is omitted
in MULTIPLY X BY Y that the result will replace Y.

"" Use ON SIZE ERROR whenever numeric data may be
close to 0.

" Be careful about utilizing very long records in
I/O.

* READ statements executed after execution of an "AT
END" clause may produce bad results.

"* SYNCHRONIZE clauses are hardware dependent-regard-
ing the format of external media (tape) containing
items of this type and the generation of implicit
FILLER when the preceding item does not terminate
on a word boundary.

"* No implied background characters should be assumed;
un-initialized areas may result in random printer
control cnaracters on output.

"* No rules are given to control the way in which arith-
metic is done; thus the compiler may perform calcula-
tions in binary, BCD, packed demical, etc. Only the
result is required to be in the proper form. This
implies the following:

Limit arithmetic operations to two operands when
possible to avoid intermediate result differences.

Do rounding by adding 5 X o0 n where n is one
greater than desired accuracy.

If there are more places to the left of the
assumed decimal point than in the data item
assigned to the answer, extra digits iwill be
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dropped or execution may stop. Therefore, use
SIZE ERROR options when this is a possibility.

SCOMPUTATIONAL and COMPUTATIONAL-n internal
representations vary greatly. For example,
Honeyw-ll COMP-l is binary and COMP is packed
decimal while IBM is just the opposite. The
programmer may well try to use binary items
exclusively.

"* Comparison of data of unequal type and size produces
non-uniform resuits.

"* Do not MOVE groups to elementary elements due to vary-

ing justification and size problems.

"* Do not MOVE blanks to numeric items and expect 0's.

"* MOVE ALL to a field containing a decimal point may or
may not terminate the MOVE at the decimal point.

A
"* LABEL processing is not standard.

"* Automatic end of reel and end of file processing is
done in many ways; take care in these situations when
transferring programs.

* Do not assume that the IF name GREATER THAN "Z" state-
ment will be a saf.' numeric test even if it does save
time and core. A standard COBOL collating sequence
has not been defined. Hence the following holds true:

Special characters <A-Z <0-9 for IBM,CDC,RCA,XDS

while

0-9 -Special <A-Z for GE and Honeywell.

"• Differences in collating sequence produce differences
in LO•--VALUE and HIGH-VALUE computations.

"• The card codes for + = " ' ( ) ; @ may have
diffei.ences between hardware while * - / $ , . are
common.

"* All numeric fields used in computations should be
defined as signed.
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. If a numeric field is to be used mathematically,

define it as COMPUTATIONAL.

2.1.7 Policy

When some reasonable adherence to a standard is enforced, COBOL
source programs can be coded in such a fashion that transferabil-
ity problems between various machines and compiler implementations
are minimal. Much of this power is due to the inherent separa-
tion of DATA and PROCEDURE coding and the relative word/byte
size independence of the data description. Compiler restrictions
on ENVIRONMENT descriptions, when supplemented by programmer
efforts, also contribute to the recognition and isolation of
system dependent features.

Frustratingly often, it is individual compiler interpretations
and extensions and not the hardware that introduces idiosyncra-
cies which interfere with smooth, rapid program transfers.
Operating system interfaces (which are not dealt with here) also
provide conversion difficulty even when running on the same
hardware. In order to overcome such restraints, a small loss in
execution efficiency must be accepted.

In general, the use of a compiler's extensions will result in
incompatibility to any other compiler. Any shorthand or non-use
of Standard required syntax should be considered an extension
and avoided. This includes abbreviations such as PC for PICTURE
and implied subjects in IF statements. In addition, special
character shorthands such as >for GREATER THAN should not be used
since some machines don't have these characters. Similarly,
even though a number of compilers acccpt * in the continuation
column as a NOTE, many do not.

Another general suggestion is to always use at least one alpha-
betic character or hyphen between the first dnd last characters
of a name (some implementors reject all-numeric procedure names
for instance).

A form of abbreviation which may not be overlooked is the COMPUTE
verb. Arithmetic computations can be done with less space and
time if COMPUTE is used, but intermediate result handling
(especially truncation) is implemented in a variety of ways.

Many of the techniques are very machine dependent and final
results may vary from machine to machine. If consistency of
results is important, the basic ADD, SUBTRACT, MULTIPLY, and
DIVIDE verbs with two operands should be utilized.
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In one of the previous sections, the use of DISPLAY characters
for final output (to another compiler/machine) was recommended
since this form of data representation is the most compatible.
Unfortunately, problems do exist in transferring DISPLAY gener-
ated tapes between some machines such as UNIVAC and IBM. In
these situations assembly level utilities will probably be
necessary. If possible, the use of data records which are a
multiple of 24 bits (3 or 4 characters) may aid in this conver-
sion process.

Many installations concerned with transferability problems have
adopted additional techniques not previously mentioned. "n some
firms, for instance, name qualification has been ruled out and
"uniqueness" is considered to be part of the standard. This
helps avoid confusion when maintenance must be performed by
someone other than the original author.

Another approach is suggested by products which perform pre-
compilation of COBOL programs with a pre-defined library of
standards to be checked. If the COBOL program in question vio-
lates any of the rules set up by the standards group, appropriate
error flags and severity codes are issued. Some of the more
popular restrictions include separate cards for paragraph names,
minimum name lengths, ACCEPT is not allowed, qualification is
not allowed, REVERSED is illegal, and many more.

Fortunately, listings of COBOL source statement: provide fairly
good documentation and ease the burden often experienced in
changes or additions to other higher level languages such as
FORTRAN. This facility can be furthered by writing COBOL state-
rmints such that phrases common to most compilers are separated
from those that must be varied to satisfy individual require-
ments. In the example:

SELECT file-name ASSIGN TO
device-name

only the card with the device name would require change. This
technique, though seemingly trivial, can do alot to isolate and
identify probable changes and will even save a little keypunch
time.

Some other commonly used ideas to increase self documentation
aad facilitate maintenance of COBOL programs are:

* Final source decks should be carefully sequenced by
at least an increment of 10 per card.
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* Do not qualify fields. It is better to say

"MOVE IN-PAYMLNT TO OUT-PAYMENT"

than to use

"MOVE PAYMENT OF IN-RECORD TO PAYMENT OF OUT-RECORD".

e Define subscripts in a descriptive way. For example:
TABLE-SUBSCRIPT or ARRAY-INDEX.

* Data structures should be incremented in a fixed
amount larger than one to facilitate change.

01 FIRST-STEP

05 SECOND-STEP
10 NEXT-STEP --

e Isolate verbs and nouns in some fixed field format for
ease of reading.

ADD DOLLARS CENTS GIVING TOTAL
MOVE TOTAL TO OUT-T
PERFORM ROUTINE1
WRITE OUTPUT-BUF

* Notes may be more easily recognized when set off by
dashes.

NOTE ---- THIS IS IMPORTANT

9 When an error occurs, print all pertinent information
and branch to the end of job if possible.

* Perform a paragraph name by specifying beginning
and ending names. For example:

PERFORM PARAGI THRU PARAGI-EXIT

PARAGI.

PARAGI-EXIT.
EXIT.
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* Use indentation whenever applicable. For example: I
IF TODAYS-DATE IS LESS THAN DEADLINE

MOVE DOLLARS TO PAYMENT
GO TO NEXT-STEP

MOVE XSIZE TO TAX

In perspective, it is reasonable to expect many additions and
improvements to be made to Standard COBOL. It may also be ass-
umed that some companies will find extensions and dialect changes
worth the additional transferability problems they create. Every
effort must be made to insure that these improvements and devia-
tions are incorporated in an orderly fashion and thac potential
problems are identified, documented and isolated whenever possi-
ble. This requires implementor awareness (IBM currently flags
most extensions in their COBOL manuals) and user diligence.
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2.2 FORTRAN PROGRAMMING FOR TRANSFERABILITY

2.2.1 Introduction

In November of 1954, International Business Machines introduced
the "IBM Mathematical FORmula TRANslation System, FORTRAN", a
language dcsigned to permit users a facility for solving complex
mathematical problems on a computer without intimate familiarity
with that computer. Today, FORTRAN has achieved world wide user
acceptance and has be.•n implemented on nearly every major compu-
teL. Although originally intended for mathematical/engineering
applications, FORTRAN is now used for a variety of other da-ta
processing activities.

With wide user acceptance, however, comes a multitude of exten-
sions of what is 7nnsidered standard FORTRAN. This prolifera-
tion of dialects has hampered FORTRAN's universal transferability.
Sinct. FORTRAN IV is the most widely used version and a standard
haz been developed for it, all further references will be toi FORTRAN IV.

In the following sections, information will be presented on
dialect differences and their impact oii transferability, unique
system environment attributes such as character sets, machine
depe:tdent practices to avoid, program organization to maximizetransferability, parameterization possibilities, compiler imple-

mentat.,on technique variations and the ensuing zode restraints,
an, fiuially, examples of alternatives to our suggestions and
justification of th" warninga given.

2.2.' Dialects

Unfortunately, almost as many dialects of FORTRAN IV exist as do
machines/systems on which the languagc has been implemented, if
not more (witness IBM 360 levels F, G, -1). Some versions contain
simple logical extensions of the basic computational capabilities
such as mixed mode arithmetic involved expressions for sub-
scripts, or conditional looping. other impler.entations involve
"system environrment extensions such as di;k-oriented 1./0 instruc-
tions (FIND, DEFINE FILE). For ob'rious purposes then, we will
reference all discussion of extensions, mutatibns and their
relative costs to transferability to the ANSI-X3.9-1966 Standard
FORTRAN. Although this document seems to ruresent the mp,,o.ity
opinion of what constitutes standard FO;.TRAN, it should b.! noted
that the ANSI version is .,. itself an extension of early PORTRAN
IV dialects.
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The ramifications of using extended or "non-standard" diale,.-.s

can be numerous and far reaching. Consider, for c rample, a
company which purchases a computer and associated software
including a large FORTRAN system. After a few years of full
utilization of their "improved" FORTRAN, it becomes desireable
to switch to a new system with more speed, additional storage,
better peripherals, etc. Upon consideration of several alterna-
tives, it is decided that System Z (a different manufacturer) .

by far the superior product and that a changeover should be
initiated immediately. In choosing the new computer, it may ;.t
first seem that additional costs will be incurred only for mioior
job control interfaces and the new hardware. It is soon dis-

* covered, however, that the new FORTRAN does not support the same
. deviations and extensions as the current system and that re-pro-
. gramining costs will be a significant percentage of t. original

development outlay. The obvious result is that many have become
"locked-in" to a particular manufacturer. In this case •c would
have been wise to avoid extensive use of non-standard fea-ires,
or at least to have recognized and isolated exceptions.

To fully document all deviations ever conceived or realizec 3eems
an ambitious task. For this reason, it was decided to illustrate
the most common dialect differences by reviewing several popular
implementations. Specifically, IBM 7094, OS 360, CDC 6600, XDS
Sigma 5/7, and Burroughs B5500 computer systems were investigat-
ed. The tables that follow include examples of notable exceptions
to the standard and estimates of their cost impact on transfer-
ability as well as the expected increased effort necessary to
avoid their use. These symbols used to represent the relative
import of each attribute are defined in the introduction to
Section 2.
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2.2.3 System Environment

It is difficult to control or predict the machines/systems on
which a program may someday be compiled. There are, however,
several actions that can be taken to avoid system environment
impact on transferability. An awareness of the many items which
are likely to be unique in a given environment can be of great
importance in planning programs to minimize and isolate system
dependencies. The following two lists show attributes to con-
sider in system changes and practices to avoid in general.

Unique Attributes to Consider

1. Word size and precision.

2. Character size and the effect en*core space and
character oriented coding. Example:

DATA MX/6HCHARAC,6HTER---/ versus

DATA MX/4HCHAR,4HACTE,4HR---/

3. Logical unit assignments.

4. Peripherals available (number and kind).

5. BCD, EBCDIC card code differences.

6. Time controls.

7. Block and segment command words affixed to binary
tapc records.

8. Maximum and minimum record size constraints.

9. Printer and typewriter line size and character
sets.

10. Incremental compiler restrictions (order of

statements).

11. Internal representation (hex, octal, binary).

12. Core size.
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Practices to Avoid

1. Multiple file I/O. (OS 360, not available on
other machines.)

2. Special disc or drum oriented instructions.

3. Literal unit assignments.

4. Special system routines such as sense switch
options.

5. Typewriter I/O.

6. Use of hex and octal literals (internal
representations).

7. Special characters (other than A-Z, 0-9, +, -,
*, /, (,), ,, $ and, ANSI standards).

8. Format controlled records of ..re than 120
characters.

9. Assembly language interfaces.

10. STOP and PAUSE (differing system response).

11. Assuming pre-initJialized memory.

12. .,.Character tests with machine dependent coding
(input the character set).

13. Excessive use of labelled COMMON (insufficient
blank COMMON may result in the inability to load
in OS 360 due to loader sharing of that space).

14. Word, byte, character, or sign implementation
dependent coding.

2.2.4 Modularity

The ability to divide machine/system dependent and independent
attributes into separate entities via sub-programs greatly en-
hances the transferability of programs. Furthermore, the
ability to compile these entiti .s individually aids in the
speedy checkout of transferred modules. FORTRAN is exceptional
in the ease to which it facilitates modularity. The FORTRAN
programmer may write his program as a collection of small
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routines, compile and test them individually, and pr't them
togetlher in a building block fashion into large ass .nblages with-
out recompilation. Only subroutines that are modified or
corrected ever need be recompiled. In this way, machine depen-dent code may be economically isolated into separate modules.

Assuming that the isolation of sstem dependencies is feasible,
the dependent segment should he ,eparated into relatively homo-
genous sub-segments. This is necessary because some aspects
will not be as dependent as others (formatted versus unformatted
input/output, for example).

Similarly, it may not be possible to completely purge an inde-
pendent section of transfer problems. Thorough checks should
be made for obscure problems connected with machine characteris-
tics such as precision and round-off. Parameterization may be
of help in this area.

Programs written in FORTRAN usually contain the following
grouping:

Dependent Independent

Special input/output Program logic
Error checking and recovery Calculations (except
Operating system interface for precision)
Character set Data movement
Data masks

With this functional grouping in mind, a typical program can be
designed (divided) into the following modules.

" Main control (independent)

Calls computational routines
• Calls dependent routines

Calls main control loop
Calls independent exit routine I
Capable of compilation on very basic system

"* Dependent initialization

Sense lights, overflow indicators, etc.
Character set (read in)
Format statements (read in)
Parameters (word size, character size, etc.)

SCalls ERROR routine
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* Main control !oop (independent)

. Calls independent initialization
* Defines blank COMMON
• System independent tests and calculations to

drive the job
Calls input routines

• Calls ERROR routine
* Calls output routines

. Loop control

. Calls general program
* Returns to main control

Operating system interface (dependent)

* Mechanism to exit system and dump

. ERROR routine

. Unformatted I/O routine (entered via computed GOTO)

* Independent initialization

* Usual program initialization process

* Calls to operating system interface

* ERROR routine (dependent)

"* Handles sense lights, overflow check, etc
"* Handle recoverable errors (parity, end files, etc.)
* Calls dump routines

"* Formatted input/output 'independent)

"* All formatted input/output"• Controlled by comruted GOTO

"* General program (independent)

o All calculations, data handling and program logic
not present in separate modules. A_

. Calls dependent routines

2.2.5 Parameteri zation

Specification of machine/system dependent aspects by way of
coded or card input parameters would indeed aid program trans-
ferability. Unfortunately, many of the features such as word
size, byte size, core size, record length and type, are
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deeply imbedded in individual compiler designs or have simply
been overlooked. For instance, the number of characters per
word is inherent in hollerith definitions such as DATA/X/6HABC
DEF/. Similarly, there is no easy way to reduce the dimensions
of arrays in COMMON. Of course, it has always been good pro-
gramming technique to parameterize such things as DO loop indi-
ces or logical unit assignments, but much more is needed in this
area. Although there have been a few contributions such as
variable dimensions in subroutines, transferability of applica-
tion programs must be taken more into account in future FORTRAN
compiler implementations and revisions of the Standard.

2.2.6 Code Restraints

Many commonly utilized techniques or "tricks" in FORTRAN programs
are severly detrimental to program portability because of mach-
ine/implementation differences inherent to individual compilers.
The following list is a sample taken from knowledgeable users
of such tricks.

Coding Techniques With

Unpredictable Variations

1. Testing for 0. Example: IF(X.EQ.0.0) GO TO 10

2. One terminal statement for a nested DO loop exit.

3. Termination of a DO with a complex statement such
as an IF.

4. Literal strings of excessive length (>255 characters).

5. Altering a DO parameter within the loop.

6. Ambiguous statements such as

N=N+FUNC(N)*N where FUNC(N) alters N.

7. Double exponentiation: A**B**C.

8. Assumption that some finite value will be su .i-

tuted for a division by 0.

9. Recursive subroutines.

10. Variable length argument strings in subroutine
CALLS.
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11. Scattered specification statements.

12. Shifting by multiplication.

13. Using large numbers as DO indices. Example:

DO 10 I=l, N where N = 217

14. Assuming a loop is always executed once. Example:

DO 10 I=4,N where N = 3

15. Transferring into a DC r-ge.

16. Assuming the value of an index outside a DO loop.

17. Returning from a subprogram via an assigned GO TO.

18. Assuming an incorrect computed GO TO variable will
result in a default condition such as "falling through".

2.2.7 Policy

Regardless of individual arguments against the Standard FORTRAN,
it seems that only strict adherence to this definition will
minimize transferability problems. Although intended for con-
venience and versatility, extensions of the Standard base will
eventually lead to severe restriction and user dependence on
particular suppliers' products. In addition, programmers work-
ing in an environment which allows broad variations of FORTRAN
will experience re-adjustment difficulties when attempting to
code on other systems; hence, programmer transferability cost
is also a factor.

If an organization is committed to non-standard dialects, every
effort should be made to utilize the Standard recommendations as
a documentation guideline. All deviations should be listed
along with estimates of their diversity and importance to the
individual program (see Section 1.4).

If possible, compilers thit are non-standard should include
diagnostics pointing out these extensions/modifications as
potential problems. An example of this approach is the WATFOR
FORTRAN compiler developed by the Univeisity of Waterloo. WAT-
FOR lags its own extensions and also attempts to point out
(via diagnostics) system dependent code such as uninitialized
variables.
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Many general policies which will aid in program design are
summarized in the following list.

General Guidelines

1. Avoid usage of extensions to the Standard
whenever possible.

2. Document extensively all dialect variations and
machine/system dependent code, functions, general
design, etc.

3. Modularize programs into machine/system dependent
and independent sections.

4. Avoid assembly language code interfaces.

5. Do not use programming tricks dependent on machine
idiosyncracies.

6. Design magnetic tape outputs for general compati-
bility. Avoid complicated blocking or binary (non-
formatted) final outputs.

7. Lay out blank COMMON in one central routine and
treat variables there as if they were global.
This avoid duplication and is a form of documentation.

8. Always initialize memory even if your present system
does it for you.

9. Always assume the character set is variable. Do

not make programs dependent on the internal character
representation of a particular machine.

10. Avoid operator inter-action (typewriter I/O).

11. Plan to end up with a test package which can be
used in future transfers.

12. Estimate the range of data values and document same.
The precision of integer and floating arithmetic is
machine and software dependent. If future systems
have fewer bits assigned to the characteristic in
floating point representations, for example, the
current data may generate iver/underflows (which
may go undetected).
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After the program is complete and a system change occurs, tne
following checklist may help detect potential problems.

Checklist for Transferring a Program
From One Machine to Another

1. Does FORTRAN exist on the new machine/system?

2. Is the new machine's core size adequate?

3. Are all intrinsics available?

4. Are all library routines available?

5. Is the IORTRAN standard?

6. Are word and byte size the same?

7. Is the precision adequate?

8. Is internal representation the same? (Octal, hex,
binary, etc.)

9. Is the character set the same? Must card decks be
converted?

10. Are necessary peripheral devices available and
adequate?

11. Does operating system interface necessitate changes
in the code? (i.e. are the systems CALLs the same?)

12. Can assembly language routines be re-written easily?

13. Can the machine characteristics be defined in an
initializing subroutine?

14. How will machine speed affect the programs? Must
some be re-written for more efficiency?

15. Are all necessary FORTRAN statements available?

16. Does the machine/system dependence/independence
modularity still hold?

17. What about data? Can some be used without reformatting?
Do tapes have to be converted? I
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18. Will possible record size changes cause any storage
problems?

19. Can rapid change and checkout be made? If not,
why not?

20. Recompile independent modules first. Any errors
which are encountered may signify some basic problems.

Many of the suggestions made in previous sections involve trade-
offs %iich perhaps should be individual management decisions.
In modularity, for example, design of relatively independent
subprograms greatly enhances transferability, but it also will
increase execution time in most cases. If the project leader
feels that modularization will severely hamper the development/
efficiency of the program and also that the application is short
term and will surely not *Ped to be transferred, then obviously
the suggestions made in 2.2.4 should be discarded.

With regard to extensions of the Standard, a general policy of
avoidance is a good one. However, the programming manager may
feel that the use of particular additional capabilities present
in his dialect is of such importance that it outweighs the
obvious transfer problems it will create. Again, as suggested
in 1.4, at least document and attempt to isolate these exten-
sions.

Also, it is apparent that some programs simplyi cannot be trans-
ferred. An in-core sort based on at least 128K bytes of storage
for tables may be impractical on a machine with only 32K bytes.
Similarly, if a scientific analysis program currently takes one
hour to run and a transfer is proposed to a machine with 1/10
the speed, it may no longer be economically feasible to utilize
this routine. This brings out another basic policy considera-
tion in program design. The manager should influence design
decisions based on speed, accuracy and core space keeping in
mind how the particular computer now being utilized relates to
other possible future machines. For instance, if the current
application computer has 36 bits and at least 34 bits are re-
quired for accuracy of computations, perhaps double precision
should be used anyway since a transfer to a computer with 32
bits may involve extensive reprogramming. Again, this may be
a management trade-off (speed versus reprogramming) decision.
The same reasoning applies to speed versus table size cons..dera-
tions.
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So that there is no misunderstanding about code restraint
implications listed previously, the following justifications
are included:

1. Due to inherent inaccuracies of floating point
representations, it may happen that a test for a
specific number will fail when actually it should
pass. For example:

A = 1. - 2.0/2.0 may come out to be .0000001
and a subsequent test for (A.EQ.0.) would fail.

2. Some compilers put special restrictions on nested DO
loops that terminate on one statement. XDS Sigma
5/7, for instance, only allows the inner most DO to
transfer directly to its termination point.

3. Compilers which allow termination of DO loops on
IF statements disclaim the predictability of
results (XDS Sigma).

4. Compilers may have inherent table size restrictions
on character string length (CDC).

5. Altering a DO parameter within a loop may produce
varying results depending on the mechanization of
the DO (pre test, post test, index in core, index
in register, etc.)

6. Ambiguous statements such as

N=N+FUNC (N) *N

depe.nd on the mechanization of the scanning a),orithm.
If the original value of N is not stored in another
temporary location FUNC(N) may destroy it.

7. Double exponentiation A**B**C is also not defined
in the Standard and is dependent on the mechanized
algorithm

(AB)C or (A)BC

8. Division by 0 may result in values 0, 1039 etc.
depending on the system.

9. Most compilers do not allow recursive subroutines.
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10. Some compilers will not deal s,,ccessfully with
missing arguments (variable length) in a sub-
routine CALL (mechanized at the RETURN and assumes
the number of arguments is fixed.

11. Incremental compilers cannot handle scattered type,
dimension, and DATA statements. Yet, this form of
compiler is desirable for a speed/user interface
stand-point.

12. Shifting algorithms are word-size and hardware
(multiplication, sign representation) dependent.

13. Compilers may implement DO loops in index registers
(IBM 7090) and hence set an upper limit on index
values.

14. Loops of the form DO 10 I=K, J where J<K may or may
not be executed once depending on where the test for
completion is made.

15. Most compilers do not guarantee the results of
transfers into a DO loop.

16. The addressing scheme of some machines/compilers
allows for passing of statement label addresses for an
assigned GO TO to subroutines.

17. Some compilers generate code for testing the computed
GO TO arguments. The last statement label or next
statement becomes the error condition default.

In summary, the use of FORTRAN can unquestionably aid in program
mobility especially when applications are modularized into mach-
ine/system dependent and independent sections. Dialect varia-
tions should be avoided. Although most compilers contain
diagnostics which will flag illegal code, serious design prob-
lems may result when machine/system transfer is attempted.
Undetected errors will often occur when special tricks or mach-
ine dependent algorithms are used. Parameterization of crucial
restraints such as core size, and word length are needed though
FORTRAN is somewhat deficient in this area. It is the respon-
sibility of the programmer to follow recommended guidelines and
carefully document exceptions.

87

? - -- ±--- ~ '--. - -~- .. - - - -~-----



I

2.3 JOVIAL PROGRAMMING FOR TRANSFERABILITY

2.3.1 Introduction

Although JOVIAL has been developed primarily by System Develop-
menL Corporation (SDC), its history of modifications and varying
implementations has been as complex as FORTRAN's. The basic
objective of "Jule's Own Version of the International Algebraic
Language" was to create a language for use by professional pro-
grammers in solving large complex information processing problems.
In route to the fairly successful fulfillment of this objective,
JOVIAL has been involved with all the problems associated with
efforts to avoid dialects, control extensions and subsets, main-tain compiler independence and attain wide usage.

Originally used by SDC for Air Force projects, it has also been
adopted by the Navy and Army in many of their programming
efforts and has enjoyed wide acceptance within SDC. In June
1967, after several "official" JOVIAL specifications had been
established by SDC, the Air Force issued its own specifications
of JOVIAL (J3) as the standard programming language for Air
Force command and control applications. This document, Air
Force Manual 100-24, is considered "the standard" in the prepara-
tion of the following material.

2.3.2 Dialects

Standardization of languages has been said to be important for
two reasons: It allows the transfer of programs from one com-
puter system to another. It allows the transfer of programmers
from one application to the other. The consensus of opinion on
JOVIAL is that the first reason, program transfer, is possibly
less important than the second, mairtaining a staff of mobile
programmers. The assumption is that JOVIAL applications, large-
ly in support of command and control systems, tend to be much
more application specific than routines written i.n other higher
level languages such as FORTRA Hence transfer may be imprac-
tical or meaningless in many instances. Transferring programmers
between applications, on the other hand, is aeemed extremely
important with great emphasis having been placed on programmer
convenience and usability. This concept seems largely respon-
sible for the adoption of a standard JOVIAL (J3) by the Air
Force.

From a transferability standpoint, we must assume that the Air
Force standard is generally accep4-tlh.e and that it will form
the basis for subsequent recomme:.j, .±ons that may be made. With

88

* * *-** . -* .-



this in mind, it is the purpose of the following tables, com-
piled from descriptions of widely used J3 dialects, to point

out common extensions and subsets of the Air Force standard.
Furthermore, an attempt is made to assign relative cost factors
to these extensions in terms of programmer convenience of
initial coding and transfer re-work (see tables at the beginning
of Section 2). The compiler implementations used for this study
were: Burroughs D-825, Hughes 3118M, UNIVAC 1108, Control Data
6000, IBM AN/FSQ-7.
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It was almost always the case in FORTRAN that a particular imple-
mentation had numerous extensions but virtually no deletions
from the standard. JOVIAL compilers, on the other hand, seem
to divide changes equally between additions and subsets.

Extensions may be dealt with in advance of system transfers by
simply avoiding them. Trying to "guess" what will be left out
or changed in the next system, however, is no easy task. In-
deed, in the event that current JOVIAL programs are to be trans-
ferred to "smaller" systems, it appears that recoding cannot be
avoided. Actually, no meaningful or predictable common subset
seems to exist among popular implementations. Rather, each
compiler tends to drop or alter different features. The follow-
ing list of unavailable or changed aspects of JOVIAL was pro-
duced from the small but highly utilized computers IBM Q7,
Burroughs D-825 and Hughes H3118.

It is not intended to suggest that these features be avoided
since they are only a representative sampling. Avoidance of
all facets of JOVIAL which may not be present in "some" compiler
implementation may very well result in a null capability. It
is hoped, however, that this list may at least indicate differ-
ences to look for in the event of a pending system change.

Subsets of the Air Force Standard
and Miscellaneous Differences

Attribute System

1. No varia'-le (ITEM) range specification. Q7

2. Floating poiint not available. Q7

3. Transfer around CLOSE declarations must be pro- Q7
vided by the programmer.

4. Storage of arrays by rows rather than by columns. D-825

5. Absolute addresses not permitted. D-825

6. The (* *) form on exponentiation is not allowed. Q7

7. Functions CHAR,MANT,STRING,'LOC are not present. Q7

8. Exponeatiation takes precedence over negation: D-825
-B**2=-B 2 .



9. Variables assigned to items with fewer bits D-825
are truncated from the r .

10. Variables assigned to items -ith more bits are D-825

left-justified with tr; ling I bits.

11. The default mode is A_ S. Q7

12. CLOSE names are not allowed as inpaits to a Q7
PROCEDURE.

13. DUAL va-iablez are not permitted. D-825

14. Roundir: (R) ,s not available. D-825

15. Litera, : ems must i[e less then or a multiple H3118
of 3 ch.-- teiz.

16. Medium p-oking (lvý not availalle. H3118

17. Tables and arrays may not be the output para- H3113
meters of a PROCEDURE.

2.3.3 System Env.L:onment

Many of the factors which were recognized as system environment
sensitive in Section 2.2.3 (FORTRAN) apply to JOVIAL programs
as well. The impact of dxfferent word and byte sizes, charac-
ter representations, peripheral devices and other attributes
unique to each system is universal.

Actually, JOVIAL programs are generally more dependent on the
current operating environment than are programs coded in many
other higher level languages such as FORTRAN. This is not to
say that careful choice of che JOVIAL capabilities utilized and
generous parameterization will not be effective in maximizing
transferability. Rather, it must be emphasized that failure to
recognize potential system depende- t situations can seriously
complicate subsequent machine transfers. The range of possible
outcomes is due in large to the number of environment sensitive
specifications which are left to the JOVIAL programmer. Some of
these include:

"* the number of bits per variable (ITEM)

"* the number of words per table entry
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* literals of "unlimited" length packed in tables

o fixed point precision - the number of bits in
the fraction

* roundir- or truncation

e programmer packed tables

* formatting of I/O

o device oriented I/O

Many of these features can be specified parametrically. When
no convenient method of parameterization exists, however, isola-
tion of necessary machine dependent functions into easily recog-
nizable and hopefully changeable modules is recommended.

Perhaps the most likely candidate for isolation in JOVIAL pro-
grams is input/output. One of the reasons for the system
dependence of JOVIAL I/O commands is that file manipulation is
at the device (rather than logical) level. Only physical rec-
ords in the file are addressed and after initialization, no
JOVIAL monitoring takes place. Hence, error checkina by means
of status items tests (which vary from system to system) and
even data conversions (such as formatted I/O in FORTRAN) are
left entirely to the programmer. Needless to say, a great deal
of machine dependent coding and duplicated effort is generated
in this process.

A possible approach to minimizing this problem is the creation
of a system library. A standard set of routines could be made
up from an outline of the various types of input/output gener-
ally performed and included with each application. These
PROCEDURES would include FILE,OPEN,SHUT,INPUT,OUTPUT declara-
tions and status constant tests for end of file, parity errors,
etc. The programmer would then call the appropriate routine
and pass information on status (in terms of program defined
constants), number if words, array addresses, etc. This
approach would most likely follow the lines of inherent I/O
used by FORTRAN with intermediate buffering, fixed record
lengths and similar standardizations. By giving up some free-
dom, the programmer would produce routines which could be trans-
ferred to other machines by re-writing of I/O procedures rather
than extensive re-coding of every application.

Some of the more subtle forms of system environment effect on
transferability involve the basic JOVIAL commands and functions.
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The following list is a sample taken from the Air Force Standard.
It is not intended to be an exhaustive accumulation of do's and
don't's, but is intended to point out the types of statements
in JOVIAL which should be used with caution to insure a minimum
of sy-'4em dependence.

Machine (Environment) Dependent
Aspects of the JOVIAL Language

1. The use of the BYTE modifier in conjunction with non-
literal items assumes the character size and the number
of characters per word.

2. The BIT modifier assumes word size.

3. The 'LOC modifier in many cases assumes fixed addresses
for variables.

4. CHAR and MANT results depend directly on machine
characteristics and floating point implementations.

5. When STOP is used the computer may take alternate action
(including bombing out) depending on the computer system.

6. Literals exceeding the host computer word size or packed
partially in multiple core locations will encounter mach-
ine dependent restrictions such as byte boundary alignmert
and compiler restrictions such as starting byte (in the
word) specification. Thus, literal packing by the pro-
grammer should be avoided and code referencing such items
should avoid word length dependence.

7. Octal constants modifying or setting literals such as
BLANKS = 0(6060) are word size and character set
dependent.

8. The ODD function may produce varying results with regard
to the negative number representation of the machine.
AFM 100-24 specifies "ODD designates the value true when
the least significant bit is one and false when it is
zero. ODD is true, therefore, when the modified variable,
c-onsidered an integer is odd." Note what happens in one's
complement notation: -3=1.... 1100. Therefore, -3 is
even! If ODD is to be used on negative numbers, perhaps
ODD(ABS(X)) should be substituted.

Some of the items to be considered in transferrying I/O routines
to new systems include:
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* FILE declarations contain unique status constants to
indicate errors, tape marks and device ready. The
number, order, and meaning of these constants is
guaranteed to vary.

"• Device names are assigned by the compiler implementor.

"* Card column usage is system dependent.

" Physical device characteristics vary greatly (number
of tracks, density, parity).

* Record size restrictions may exist. Some systems
override FILE declarations and make their own
assignments.

• Records may contain system reference marks such as
end-of-line, carriage control, beginning of record,
etc.

"* Timing controls (one manual specifies that JOVIAL
programmers must be sure that 40 milliseconds elapses
between rewinds:)

"• I/0 can often be done only in word increments making
physical record length a variable.

Core size, record size, instruction set, and myriad other con-
siderations effect the method of compiler implementation. Be-
cause of this, compilers will be forced to apply restrictions
on programs they process. Clearly, no well-defined prediction
of these restrictions can be made without specific knowledge
of the particular machine to be utilized. A brief summary of
some of the more commonly restricted items and representative
size limits may nonetheless provide some insight into when
JOVIAL code may become "uncompilable". This in turn may help
the JOVIAL programmer to avoid "way out" designs.

Compiler Implementation Restraints

Item Restraint Example

1. Status constants 6 characters UNIVAC 1108

2. Array dimensions 5 Q7
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Item Restraint Example

3. Number of constants/ 2000 UNIVAC 1108

names

4. Nested parentheses 25 UNIVAC 1108

5. Nuested PROCEDURE calls 25 UNIVAC 1108

6. Number of PROCEDURE 50c UNIVAC 1108

calls

7. Number of PROCEDUREs 250 UNIVAC 1108

8. Number of external 1025 UNIVAC 1108
references

9. Number of JOVIAL signs 200 UNIVAC 1108

per statement

10. Length of hollerith 250 CDC 6000

constants (characters)

11. Length of a name 30 CDC 6000

(characters)

12. Number of words per 32 CDC 6000

table entry

13. Nested BEGIN-END 25 CDC 6000

brackets

14. Nested IF statements 50 CDC 6000

15. Nested IFEITH-ORIF 20 CDC 6000

statements

16. Nested FUNCTION calls 20 CDC 6000

17. Time between I/O 40ms Q7
rewinds

18. Number of DEFINE 75 Q7

statements

19. Number of OVERLAY 128 Q7

declarations
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I tern Restraint Example

20. Number of variables 32 Q7
per OVERLAY

21. Size of an array 2048 Q7

(product of first 2
dime2nsions)

22. Size of index in a FOR 15 bits Q7
loop

23. Items per densely 50 Q7
packed TABLE

24. COMPOOL Restrictions Q7
ITEM name 4 characters
STAT,:S name 3 characters
TABLE name 3 characters
ENTRIES per TABLE 9,999

25. Number of diagnostic 200 CDC 6000
messages generated

26. Items in compiler packed 300 CDC 6000
TABLE

27. Literals' length 8 characters D-825

28. Only the first six H3118
characters of names are
used by the compiler

2.3.4 Modularity

The JOVIAL programmer can write his program as a collection of
small routines and compile, debug and modify them individually.
Assembling these routines into a larger program, however, in-
volves re-compilation of the entire set. Further modification
or correction also implies total recompilation in most systems.
This difficulty could seemingly be avoided by insertion of
checked-out subprograms into the system library. Since most
JOVIAL compilers produce non-relocatable code, however, this
can not be recommended as normal practice.

This undesireable restriction evidently has led a few pro-
grammers to express their doubts regarding JOVIAL mcduldrity
as an aid to program transferability. Some feel that the
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inability to update individual portions may inhibit efforts to
modularize machine dependent code. Isolation intc subprograms
(which may introduce "extra" interface bugs) for the purpose of
facilitating re-coding may increase check-out costs since
"good" co,3e must be re-compiled many times as well.

On the whole, this lack of independence in JOVIAL seems to be
more of a deterrent to efficiency than to portability. The
basic elements of modular design are nonetheless available to
the programmer. Furthermore, what JOVIAL lacKs in relation to
FORTRAN independence of compilation, it may make up for in its
ability to utilize the macro-like CLOSE structure within
individual routines. Isolation of system dependent code to
PROCEDUREs (subroutines) and further division into CLOSE struc-
tures within these PROCEDUREs is an important aid to transfer-
able design.

Specification of general input/output routines with individual
I/O functions defined as CLOSE areas, for example, might enable
this highly m,.chine oriented activity to become a series of
CLOSE calls. Hence in a new system, much of the structure of
the I/O function could be retained while the necessary CLOSE's
are re-coded.

Another feature worth mentioning is COMPOOL. In large command

and control applications, data referenced in several programs
need be declared only once. Thus, where transfer becomes
necessary, machine dependent declarations must be rewritten
only once. If proper parameterization is used, a relatively
few statements need ever be re-coded. It is felt, however,
that the J3 Standard should specify more precisely the kind
and form of declarations which may appear in COMPOOL.

2.3.5 Parameterization

The most predictable aspect of large-scale system development
is change. Modifications to the requirements, revisions to the
specifications, and changes in design or programming techniques
all result in changes to the program data. Particularly sus-
ceptible to these events are the dimensions of data structures,
the explicit coding of numeric data, and the scaling, packing
and precision of fixed point items. If specified in exact
numeric terms, as in FORTRAN, any changes in these characteris-
tics will require individual analysis and modification of each
of several references.
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JOVIAL presents the programmer with an opportunity to isolate

many system design and machine dependent features into a rela-
tively small number of statements. Thus, the careful program-
mer can produce a large percentage of transferable code.

This facility can be realized through judicious use of compile
time parameterization. On the other hand, overlooking possi-
orilites of using parametric representations for crucial system
oriented factors can result in very dependent programs. Like-
wise, poor technique or over proliferation of explicit param-
eters can also be a hindrance. For instance, a parametric
variable for the number of records on an output tape may reduce
re-coding during system transfer, while explicit delineation of
the precision required for specific variables (precision is a
JOVIAL parameter) may cause extensive recoding of ITEM
declarations.

Fortunately, JOVIAL is flexible in this area and even parameters
mtay be parameterized. For example, DEFINE a variable "PRECISE"
to be "5". The:i use "PRECISE" as the number of bits to the
right of the binary point in a particular set of items. The
statements:

DEFINE VLENGTH "16"
DEFINE PRECISE "5"
ITEM X VLENGTH S PRECISE

would generate ITEM X 16 S 5. Of course, even the sign designa-
tion "S" should be parameterized if any change is possible. If
a machine change is made and 16 bits are no l.,ger available,
then only VLENGTH may need to be changed. All ITEM declara-
tions using VLENGTH would be left alone. These simplistic
techniques, though quite effective, seem to he overlooked or
ignored by most JOVIAL programmers.

Perhaps the most crucial area with regard to data structure
declarations is table packing. JOVIAL allows the programmer
to specify the number of bits allocated to each ITEM and fur-
ther to specify which bits of each word these ITEMs are to
occupy. This is indeed a powerful tool which could produce
highly optimized table storage allocations. To use this
ability explicitly, however, is to hamper attempts at trans-
ferability. A new machine is very likely to have a differ-
ent word size. Hence, all table packing would be redone by
hand. A better technique may be to parameterize the number
of bits per ITEM and allow the compiler to pack the data. Most
compilers will pack from left to right as ITEMs are encountered.
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The programmer may still participate in storage allocation by
listing ITEMs in the order in which they will best pack into
words. Furthermore, some compilers will automatically scan
all ITEM declarations and choose those which "fit" together
best (use most number of bits in each word).

The following is a summary of items which should be parametcri-
zed in most JOVIAL programs:

* number of bits per variable

* number of fractional bits in a variable

o sign specification

* packing factor

* rounding or truncation

o maximum number of entries in a table

o number of words per entry

o range of values for a variable

o array size

o 1/0 device names

o number of records per file

o device status constants

o default mode(s)

The last entry in the list deserves additional mention. The Air
Force Standard allows for the presence of more than one MODE
directive in JOVIAL programs. Hence, by careful ordering of
initialization statements, much of the explicit item declara-
tion can be avoided. For instance, if a program is to have
two basic types of variables, say 16 bit integers and 16 bit
fixed point with 5 fractional bits, two MODE declarations could
possibly take the place of many complex ITEM declarations.
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Consider the example:

MODE I 16
AB=3+XA

AZ =5

MODE A 16 S 5 P 5.1
ITEM XX
ITEM YY

ITEM ZZ

All variables i:,itialized between AB and AZ would be integers
and all variables after AZ (XX,YY,...) would be fixed point
with initial value 5.1. Hence, only tCe MODE directive may
require changing during system transfer (it actually should
be parameterized also).

2.3.6 Code Constraints

Care must be exercised tD avoid the use of tricks dependent on
particular machine or system idiosyncracies. So many variations
in structure, type conversion and algorithm impleimentation are
possible that use of specific compiler characteristics can
result in virtually untransferable code. Worse yet, programs
may appear machine independent while producing several results
when executed on different machines. If often happens that
compilers do not reject certain illegal or undefined structures
but compile them instead, giving results the programmer
"knows" are appropriate.

It is universally recommended that programmers avoid exploita-
tion of this kind of special knowledge. There is no guarantee
that a new version of the compiler will exhibit the same eccen-
tricities so cleverly discovered by a programmer who may no
longer be present.

Some instances where this type of coding may be encountered
are listed below.
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t Floating point comparisons for equality may fail
due to hardware algorithm inaccuracies (absolute
value of difference should be substituted).

9 Binary point alignment required for comparison of
fixed and integer operands may cause loss of high
order bits.

o Avoid hollerith comparisons other than EQ,NQ since no
collating sequence is defined generally.

o Unpredictable results may result from FILE declara-
tions within PROCEDURES.

* Mixing programmer allocated and compiler allocated
(N,D,M) packing i3 unpredictable or unallowed.

o Do not assume that the value of a function is passed in
the accumulator, register 0, etc.

* Do not try to inhibit rewind by overlaying a DUAL
item on a file name, OPEN file and setting DUAL = 1.

o Do not expect 2N to be implemented by a shift (it
may be done by logorithms).

o Avoid use of mixed type expression evaluations such
as numeric=hollerith which expect hollerith to be
treated as a straight numeric value (no conversion)
or hollerith-numeric with truncation of the numeric.

6 The assumption that output parameters not referenced
in a particular PROCEDURE execution (skipped) main-
tain previous values (last time PROCEDURE was execu-
ted) is sometimes not warranted.

"" The assumption that AW*B**C is evaluated left to
right

(AB) C

may not always hold true.

"* Shortening status constant lists by specifying too
few bits and assuming remaining constants are
ignored is bad practice.
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0 Automatic code conversion between hollerith and trans-
mission code for comparisons may not occur.

* Entry operations on TABLE entries of varying length
may produce varying results.

a The assumption that indexing is performed by taking
the absolute value of an expression is not warranted.
For example X(9-17)=X(8) in some implementations and
is an error in others.

* Although convention specifies a left to right scan,
some compilers could conceivably produce different
results for expressions containing functions which
modify variables in the expression. For example:

A=A+SFUNC(A)*A is usually A2 =A0 +SFUNC(A 0 )*A 1

where A0 ,A 1 and A2 represent 3 states of the variable
"A" which is altered by function SFUNC. Other results
could exist especially if optimization of code is per-
formed by the compiler. (See Appendix A.)

* Do not assume that core is pre-set by the system (to 0
or other values).

* Do not assume that the NENT of a variable length table
is pre-set.

2.3.7 Policy

Many of the recommendations that were made in Section 2.2 are
directly applicable to JOVIAL programs. A review of 2.2.7
should prove valuable to JOVIAL programmers as well.

Adherence to an acceptable standard remains the most necessary
step toward assuring program and programmer transferability.
Similarly, careful segmentation of programs into system
oriented and machine independent modules is another basic goal.
A third fundamental principle, parameterization, is especially
important. JOVIAL has distinct advantages over other higher
level languages in its ability to parametrically define system
dependent attributes. This may balance the seemingly restric-
tive necessity for device oriented input/output which is absent
in languages such as FORTRAN.
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These three concepts, standardization, modularity, and param-
eterization cannot be over emphasized. There is another aspect
of JOVIAL, however, which also is an aid to transferability.
The lack of format restrictions and the ability to intermix

comments among the symbols in JOVIAL statements projides the
ingenuous programmer an opportunity to create programs which
are largely self-documenting. This facilitates easy mainten-
ance and revision. A policy of one JOVIAL statement per line
and meaningful comments on the same card where possible will
help maximize the readability of any JOVIAL routine.

One area where a qualification of general policy regarding
extensions might be beneficial is external PROCEDUREs. Most
compilers allow only internal PROCEDUREs which must be compiled
with each program and become part of that program. External
PROCEDUREs, which are compiled separately, are very useful when
a routine is to be used by several programs that operate in
core memory together. With this facility, only one copy of
the routine is in core memory and each program refers to it
either by an external PROCEDURE declaration or by COMPOOL
definitions. Although this is not a standard feature, it is
quite useful and does not seem to inhibit future transferability
to a great degree.

There are also features in JOVIAL which should be avoided even
though they are included in the Standard. The "DIRECT" state-
ment is an example. "DIRECT" is a means of breaking out of
JOVIAL within a program and writing instructions in the basic
assembly language of the target computer and hence is generally
non-transferable. Obviously, then, DIRECT code should be
eliminated or, if absolutely necessary, isolated, simplified
and exhaustively documented.

Similarly, the specification of absolute addresses is inflexible
and prohibits relocation of data or program blocks. Relocation
is highly desirable in that it allows for the assembly of pro-
grams in a variety of ways insensitive to the operating system
environment. Generally, it would be invalid to construct pro-
grams that assume some order or sequence in storage. The
possibility exists that the operating system may segment
arbitrarily and load programs into whatever space is available
in memory. Furthermore, in a time-sharing environment each
"turn" may result in a newly allocated memory environment.

Undoubtedly, many of these aspects require management decisions:
is absolute location necessary; how much direct code is required;
should time-sharing and multi-prooramming be ruled out; etc.

106



Finally, there are some facets of JOVIAL which are noticeably
deficient. The precision of numeric variables (number of bits),
for instance, cannot exceed the number of magnitude bits in
in one memory word. Frequently, greater precision is needed
and the hardware may even support multiprecision arithmetic.
JOVIAL seems curiously lackinq in this area considering the
myriad of sub-word capabilities that do exist. Such word size
dependence may seriously inhibit the transfer of JOVIAL pro-
grams to "smaller" machines.
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2.4 ASSEMBLY LANGUAGE PROGRAMMING FOR TRANSFERABILITY

2.4.1 Introduction

It is in assembly level programming that the problems associated
with program transfer become the most acute and costly. The
least significant progress made in regards to portability has
been in this area. Yet, because of the large volume of program-
ming still done at the assembly level, the greatest requirements
for transferability solutions still exist.

Assembly languages, by definition, are designed for a particular
machine to provide some way of specifying every function and
combination of functions that the machine may perform. Assembly
languages are most often used when no compiler exists for the
machine; to specify functions not contained in higher level
languages; to avoid some highly general and hence inefficient
code generated by compilers; or to avoid interference between
the compiler output and the desired program.

These conditions are most frequently encountered in the military
and scientific environments because of the absolute need for
maximum program efficiency, because many special purpose compu-
ters (usually not possessing FORTRAN cr other higher level
compilers) are utilized, and because of the frequent computer
changeovers necessitated by new weapon systems.

Generally, when a programming language makes reference to the
unique hardware of a specific computer system (sense switches,
drums, discretes, analog I/O, etc.), it is not possible that
programs written in this language can be directly transferred
to another machine unless simulation techriques are utilized.
Inherent characteristics such as word length, internal repre-
sentations (binary, packed decimal, etc.), and character size
produce similar difficulties when machine change is attempted.
Word sizes, for instance, affect the results of numerical
calculations, the storage space allocated to literal data,
address sizes, direct value magnitudes, and many other less
tangible aspects of the problem program. Often, even transfers
to new systems on the same machine involve problems such as
assembler instruction repertoire and structure. Apparently
then, there is no way to write assembly code to make it auto-
matically transferable. This unfortunate conclusion has caused
many programmers to label assembly language transferability as
"impossible" or "ridiculous" and to abandon all attempts toward
achieving such a goal. Hence, some programs are written in
a manner which dictates complete re-design, re-coding, and re-
check out for each new system.
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Clearly, the proolem is one of degree. There are techniques for
improving the transferability of assembly language programs.
The following sections will deal more specifically with the
factors involved and will present examples of methods currently
utilized by groups a tively involved in this problem. Perhaps
as these concerned organizations develop workable techniques,
skepticism will wane and more individuals will come forward
with meaningful new ways to increase the portability of "mach-
ine oriented" programs.

2.4.2 Assembly Language Justification

There are many applications in the military, systems and scien-
tific areas where assembly level programs are highly economical
and unlikely to be transferred intact (ideas and techniques may
be transferable while specific hardware is unique and short-
term). In these cases, the use of assembly level coding needs
no justification. In other more general applications, however,
serious consideration should be given to the use of procedure
and problem oriented languages.

The non-professional progrmmer is often more concerned with
expressing and solving his problem rapidly than with obtaining
maximum efficiency from the machine being utilized. For this
type )f individual, the facility by wnich he can write, modify,
understand, and dp istrate his program is of foremost import-
ance. In many in- ices, the actual code may be used as
explanation and documentation of the problem being solved.
Before such a program is implemented, a review should be made
of the justifications most commonly given for the use of
assembly languages.

"* No higher level or macro language is available for
the target computer and the cost/time of development
of such a tool is prohibitive.

"* Acceptable I/O and inner-loop speeds can be obtained
in no other way.

"* The problem program requires code complexity which
cannot be obtained in any other way.

* Insufficient space requires extensive bit packing,
machine dependent algorithms, etc.

o A level of security must be provided - programs must
not be readily discernable by "outsiders".
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a Unique machine features such as discretes, sense
switches, and interrupts cannot be handled in

another language.

J4 Timing and instruction counts must be exactly
calculable.

"* Extensive "patching" of assembled code may be
necessary.

"• Dynamic alternation of code is necessary-execution of the program. will alter theinstructions themselves.

"* System or library routines with heavy usage should
be as efficient as possible.

Many of the items listed above may not be relevant upon further
investigation. CoCe complexity on most commercial'machines,
for instance, is seldom an excuse since FORTRAN and ALGOL type
languages will handle a large percentage of these problems.
Similarly, state-of-the-art techniques in overlays, paging,
and storage allocation have alleviated many space problems.
Assembly language "security" has really never been valid since
obscure code can always be overcome by an experienced program-
mer with a strong desire to do so. Finally, patched code and
dynamic source alteration are considered dubious programming
techniques in most installations.

There are still instances when only assembly level and "machine-
oriented" code is acceptable. A complex time-sharing system,
an 8K airborne computer, a 9-bit process control monitor and
myriad other applications require peak efficiencies in time
and space utilization usually obtained only by assembly level
languages.

It is in this area, programs that must be coded at the machine
level, that efforts for increased transferability are most
needed. Subsequent sections will present suggestions for the
improvement of this situation.

2.4.3 Hardware Design Constraints

The computer designer has considerable freedom of choice in
determining the final configuration of a computer system. The
assembly languages ultimately provided for use of these systems
will be largely pre-determined and severely constrained by the
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array of hardware features selected. It follows, then, that
assembly language transferability is directly effected by basic
hardware compatibility.

From a portability standpoint, one of the most difficult mach-
ine dependent areas to overcome is that of the computer's regis-
ter architecture. This is especially .true, when fully effective
employment of the computer's particular register scheme is to
occur. Currently, common computers range from having 16 general
registers to one very limited register. This wide variance is
further compounded by difficulties arising from differing regis-
ter arrangements. Possibilities involved are: operations be-
tween general registers or registers and memory, transfers of
data between registers of different lengths, registers altered
by external devices, registers that count up, down or both,
registers with distinct sign bits, and more.

Another basic incompatibility that must be dealt with is the
current wide variety of addressing schemes availatle. Some of
the more -ommon methods include direct, base, relative, indirect
and indexed. Virtually every combination of these types has
been incorporated by some computer manufacturer. Even within
a particular address type, there may be wide variations. For
example, different quantity of index registers, single level or
multiple level indirect, pre-indexing, post-indexing, etc. This
area represents one of the most difficult transferability stum-
bling blocks since taking full advantage of existing addressing
schemes is fundamental to program efficiency. Virtually all3
areas of a computer program will be effected.

An additional factor that often hampers the transfer of programs
is the computer's internal method for representing negative
numbers. If the computer uses a binary number system internally,
number representation may be 2's complement, l's complement, or
magnitude and sign; similar choices may be made if the computer
is decimal or byte oriented. One particular problem that arises

= is that some programs may make use of a neg.tive zero, which
does not exist in a 2's complement number system. Similarly,
a programmer may use a negative constant as a logical mask.
When transferring to another computer with a different negative
representation, the mask usage may cause an error.

In yet another area, control of peripheral dev.. ,es, both the
design and use of assembly languages necessarily effects the
original configuration of hardware. The equipment associated
with a computer may vary widely in speed, capacity and mode of
use. A disk memory may have fixed or multiple heads. Magnetic
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tape units may be seven or nine track, recording may be ofdifferent densities and speeds, and the tape unit may read only

forward or may read both forward and backward. The number of

printer columns may differ from one installation to znother, or
perhaps an output device may be capable of both printing and
pictorial output. Input-output device priorities may be hard-
ware or software determined. Communication with peripheral
devices may be by means of busses, or direct wiring; in one case
each device must be addressed and connected before data trans-
fer occurs, in the other, these steps may be omitted. Input-
output communications may be through the central processor,
through a controller that steals memory cycles, or by a satellite
computer that accesses the same memory devices.

In the very worst case, unconventional hardware may be intro-
duced, with the result ti~at either program libraries must be
rewritten or else the capabilities of the computer will be very
inefficiently employed. Unconventional hardware that may have
to be considered includes microprogramming, associative memor-
ies, parallel processors, and pipeline processors. Micro-
programming capabilities may permit the user to configure
instruction codes to his own needs. Associative memories may
greatly affect look-up or search procedures. Parallel process-
ing, exemplified by Illiac IV, requires an entirely different
type of operation. A computer with a software-alterable pipe-
line processing system would necessitate new programming and
system operation techniques for effective use.

After a brief investigation into some of the factors involved
in the design and use of an assembly language, it becomes clear
that many computer programs cannot be effectively transferred
without massive re-codinq. This, of course, is without even
considering basic differences in language mnemonics and formats.
Upon elimination of the more extreme computer architectures, a
list of basic machine differences may be compiled.

*Instruction repertoires - number, type and format

" Word size

"* Page size

"* Core size

"* Address size

"* Character and byte size
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* Register architecture - general, base, index

* Cycle time

* Input/output characteristics

* Interrupt types, mechanisms and priorities

* Internal number representation - binary, packed
decimal, etc.

* Floating point format

* Arithmetic - fixed point fractional, integer, etc.

* Multiplication and division characteristics - double,
single, remainder, etc.

* Conditicn codes, overflows, sense lights, etc.

* Logical and magnitude operations

* Half, full, and double length instructions

"* Half, full, variable length data reference
capabilities

"* Character set

"* Negative number representation

"* Shifts - sign excluded, sign propagated, single,
double, variable length, arithmetic, logical, rota-
tional, etc.

"* Peripherals - speed, capacity, modes of use.

"* Addressing - direct, base-displacement, indirect,
relative, indexeC, etc.

"* Memory - scratchpad, drum, core, ROM, etc.

This list should be consulted (and augmented) whenever a sys-
tem transfer is anticipated. In the event a new computer is to
be obtained, a quantitative analysis of architectural differ-
ences weighted by their effect on program library transferability
could be compiled for each prospective machine. This in turn
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may be weighed against the cost, power and general applicability
of each candidate. Unfortunately, these weighing factors will
vary considerably with the applications and machines involved.
Hence, they cannot be rigidly defined for all machines in
general.

2.4.4 Parameterization

In the previous section, a number of machine depende:,t charac-
teristics were identified as probable hindrances to the transfer
or assembly language programs. Fortunately, some of these
variables can be effectively handled by parameterization t.-ch-
niques.

Frequently, an assembly level statement will be non-transferable
simply because the programmer unnecessarily utilized machine-
oriented knowledge in performing an application-oriented func-
tion. For instance, to left justify a character in a register
(contending that this is a reasonable thing to do independent
of a particular machine) he ma'y have coded:

SHIFT,LEFT REGO,30

Embedded in this statement is a knowledge of the register (REGO)
and character size (say 36 and 6 bits respectively). A more
transferable approach would be to write:

SHIFT,LEFT REGO,WDSIZE-CSIZE

where WDSIZE and CSTZE had been parametrically defined (via an

"EQU"') at the beginning of the program.

Almost all programmers have been asked to modify certain aspects
of their programs as a result of changes to specifications and
requirements of the problem being solved or function being per-
forme:1. These programmers rap3dly learned to plan ahead for
such events by parameterizing application dependent attributes
such as table sizes, number of fields on a card, etc. Few will
disagree that this practice has saved considerab1 .e effort when
changes are finally requested. The same techniques should be
encoura7ged for computer-dependent aspects of assembly language
programs.

Depending on the application, many of the following machin'-
features will appear in the code and thus will require
parameteri zation.
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* condition codes

* characters per word

* word size

* character size - bits per character

* address size

* page size

o right halfword (mask)

e left halfword (mask)

o character mask

* character set

o registers

o parity (0 for even, 1 for odd)

* -1 or other basic negative number

o sense devices (switches, lights)

o buffer sizes

e record sizes

I/O devices

"* origins (instruction counter values)

"* key bit or character positions (for packed data)

* file marks

2.4.5 General Coding Techniques

The previous section contained a list of machine dependent items
which are the most likely candidates for parameterization. In
conjunction with this list, a set of general assembly language
coding guidelines has been prepared. Many of the suggestions
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are based on composite characteristics of the currently most
popular machines.

"* When defini,.g condensed data structures, no more than
n bits of information should be packed into a single
word, when n is the minimal word size of a computer
to which the programs might be transferred.

"* No immediate (direct) values should exceed 50% of
the minimum word size or be relocatable.

"* All shift instructions that are justifying or posi-
tioning data should use word-size and character-si.z_
parameters.

"• Data should be declared on word boundaries.

"* Logical masks should not be defined as negative
numbers.

"* Data constants and EQL parameters defined at a
definite place in the progran should be used in
place of literals.

"* Address and instruction modifications during execu-
tion (dynamic code replacement) should be avoided.

"• Test characters and values against data constants
defined earlier.

"* Use symbolic names for all hardware such as registers,

indexes, etc.

"* Avoid relative code such as:

JUMP $+5

If necessary for some reason, parameterize the add-
resses as $+N5. This is especially important in
transferring between byte address and word address
machines.

"* Explicitly state each equation, function, or decision
tree in comments.

"• List all system calls, their purposes and locations.
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9 Avoid complex floating point manipulations.

* Note any bulk I/O non-standard usage.

* Limit printed output tc 120 characters per line.

* Use data masks to extract sub-units of a word (left
half-word, second character, etc.).

* Avoid tests which are sign and arithmetic dependent.
For example, whenever possible use "transfer on non-
zero" rather than "transfer on plus".

• Do not assume pre-initialized memory.

* Avoid sign manipulation such as "set sign plus" or
"complement and add" rather than "subtract".

* Use macros or subroutines for double precision opera-
tions.

* Don't depend on absolute core location knowledge -

assume relocatability.

* Avoid indexed - indirect addressina.

* Use macros or subroutines for I/O operations.

* Note micro coded instructions - relying heavily on a
micro cocied search (B5500) or decimal (IBM 360)
instruction may cause poor results when transferring
to a new machine without these facilities.

* Be familiar with hardware trends. In particular,
recognize engineer designed and programmer designed
machines. For instance, code may be transferred
more readily between two machines that are programmer
oriented.

o Take advantage of special timing knowledge (external
device, instruction execution, etc.) only if necessary.

o Try to avoid complex machine oriented scaling.

o Prepare a section (module) frequency chart. This will
aid in general understanding of your program and may
be used to estimate the time/cost effects of transfer
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to new machines. Bascially, this chart should
contain:

* function performed
. section of module involved
. estimated frequency per run
• estimated time per iteration
. estimated percent of total run time

e Prepare a register usage chart. This is of great bene-
fit to other programmers who may be required to alter
your program and it also helps to insure that the
minimum number of registers is used at all times. This
chart is usually subdivided by program section or sub-
routine and register. Each register in the module is
then flagged by symbols indicating its use. For• example,

S - special purpose

M - mu2ti-purpose
L - loop controlX - index
G - global

A - arithmetic
H - logical masks
F - shifting

Additional guidelines of a more complex nature will be presented
in Sections 2.4.6, Modularity, and 2.4.7, Macro Coding.

2.4.6 Modularity

It was pointed out in the discussion of higher level languages
that the ability to divide machine dependent and independent

* attributes into separate entities greatly enhancus the trans-
ferability of computer programs. This concept also pertiains to
assembly level coding. Programs can be modularized so as to
render the environment of relatively independent sections in-
variant while identifying and isolating the more machine
oriented areas.

Hence, program functions which will require a great deal of pro-
grammer attention upon transfer should be isolated in distinct
modules. These modules, in turn, should be organized and docu-
mented such that they can be worked on with little reference to,
or interference with, other modules. The rest of the program
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can then be automatically transferred, converted or re-coded
with less effort.

Individual assembly of modules further aids the check out of
transferred programs. Assembly languages are usually flexible
in this regard, although it is generally necessary to distribute
symbol definitions among modules by pre-loading the assembly
table or by load-time resolution.

A theoretical modularity design specific enough to be effective
yet general enough to cover a wide range of application/sys-
tems is a somewhat abstract concept. A review of assembly
language programs, however, indicates many common features. The
following outline, which reflects these similarities, is pro-
posed as a basis for the modularization of assembly level
programs. Although it seems functional in nature, this design
serves to separate highly system dependent code (inner loop,
interrupts) from less machine oriented activities (main body,
data generation).

Modular Design of Assembly Programs

* Main Control

• Prologue
. Main Body
. Epilogue

e Initialization

e Data Generation

e Outer Loop

9 Inner Loop

e Output Data Routine

* Clean-Up

* Interrupts

* Error Handling

The purpose and content of these sections is defined on the
following pages:
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The main control section is intended to be the basis for the
transfer of the program. It must contain sufficient informa-
tion to allow other programmers to perform the re-coding,
substitution of parameters, and other procedures necessary to
update the program for the new machine. In particular, the pro-
logue should include:

"* storage layout

"* program modules

0 section frequencies

"* constants and masks

"* register definitions, macros, universal instruction
definitions (see 2.4.7)

* character set

% common storage

e documentation as to purpose of the program

& comments regarding any of the above items which occur
in other sections and the relationships involved

The main body consists of the main control logic and calcula-
tions. It will call upon the other sections including the
system and termination procedures.

"* main program

"* calls to routines

"* system service requests

"* exit

The epilogue will summarize the machine and program character-
istics not mentioned elsewhere. Generally, this will include:

"* miscellaneous machine characteristics

"* code anomolies

"• system requirements
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a eccentricities, idiosyncracies, tricks, etc.
pointers to key areas where word, byte and other
machine factors are of special importance

The initialization section sets up starting program data,
initializes memory, restart parameters, path setting informa-
tion, and other factors not handled in the prologue.

The data generation section either generates (via program algo-
rithms) or inputs data to be used in other sections. This data
should be well insulated from external devices. Hence, it must
be presented in a format which is source device independent.
Macros or, if possible, higher level languages can be utilized
in many instances.

The outer loop section is somewhat artificial in that its pri-
mary function is to control the inner loop. It may be thought
of as an interface between the main body (application oriented)
and the inner loop (specific machine functions necessary to
perform calculations).

The inner loop can be defined as those machine specific func-
tions which must be re-coded for every machine. Candidates
for this module(s) would be: functions which are very critical
in terms of time, space, or accuracy; algorithms which are
very difficult to parameterize but which utilize hardware
characteristics; micro-coded instruction routines; and unusual
external device interfaces. Elements which are placed in the
inner loop are often responsible for the choice of assembly
language as the implementation tool. By definition, the inner
loop will probably have to be re-organized and re-coded for
every machine. For this reason, it must be minimized by full
utilization of parametric and macro coding techniques. Similar-
ly, the inner loop must be carefully commented as to purpose,
precisions, frequencies, machine oriented techniques (dynamic
word modification, etc.), and application functions included.

The output data routing section will be the counterpart to the
data generating section. It will convert data from a basically
machine independent format to device oriented structures and
perform the actual output commands. It may include preparation
of data for handling by other programs written in different
languages.

The clean-up section will prepare and make dumps for future
restarts if necessary. It will also act as the counterpart
to the initialization section.
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The interrupt section will detect and process all interrupts
(I/O, system, error, etc.). It may pass control to the error
section for handling of recovery procedures if necessary.
This section is usually very machine oriented and may require
extensive re-organization during system transfer.

The error section will handle problems encountered in other
sections and may be further sub-divided into software and
hardware errors. With a great deal of care, this section can
be made largely general in nature and will require varying
degrees of re-work.

Of course, in practice it is often difficult to distinguish
and separate machine dependent attributes. Especially in
assembly language, machine independence is often only a matter
of degree. Nonetheless, some efforts at modular design, when
combined with parameterization and macro coding techniques,
can produce noticeable reductions in the costs of program
transfer.

2.4.7 Macro Coding

Many of the transferability advantages of higher level languages
can be realized with the use of macro concepts. To the extent
that existing macro assemblers allow for a common invocation
format, a program written as a sequence of macro instructions
can be transferred to machines of similar architecture by
simply rewriting macro definitions. The costs involved in
program transfer can be greatly reduced in this manner. In
many instances, programs may be coded which are nearly as
transferable as those written in higher level languages. Very
little operating efficiency is sacrificed since the macro
definitions are machine oriented.

For example, a triple address computer may be utilized with
the macro:

ADD AUGEND ADDEND RESULT

In one machine this may expand to:

CLA AUGEND
ADD ADDEND
STO RESULT
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In another computer the result could be:

L R1,AUGEND
A RI,ADDEND
ST RI,RESULT

Hence, simple macros may be developed which can be used as
higher level language statements and which display noticeable
machine independent characteristics.

There are many difficulties to be overcome in a macro processor
approach, however. Assembler implementations cover a wide
range of capabilities. Some are widely employed because of
their powe- while others are so weak as to be virtually useless.

The most reasonable solution to this non-standardization prob-
lem is the development of an essentially machine independent
assembler. This software should include powerful macro capa-
bilities and extensive target computer parameterization
facilities. Such products, usually called meta assemblers,
do currently exist (for example, International Computer Sys-
tems' DUAL meta assembler is operational on numerous host
computers generating code for a variety of targets).

A meta assembler allows for the description of pertinent tar-
get computer characteristics including the symbolic assembly
format of the instructions. The macro facilities include means
of conditionally generating different sequences of code based
on the arguments of the calling lines. With such a tool,
assembly languages may be developed which are capable of
producing object code for a wide variety of machines. Addi-
tional benefits could be realized if the meta assembler itself
was readily transferable (via self-assembly and interpretive
techniques).

Some of the factors which are provided by the user to the meta

assembler include:

9 core size

* word size

* character size

"* character set

"* floating point format
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"* fixed point format

"" negative number representation

"" address size

"" page size

"" base registers

"* object structures

"" command mnemonics and formats

Usually, this information can be maintained in libLaries along
with the macro definitions.

Cross-assembly and source to source translation are additional
transferability applications inherent in a meta assembler. The
commonly used conversion technique of translation, for instance,
can be implemented by macros. Source input language mnemonics
become macro names while the expansions consist of equivalent
output language statements. Any unresolvable ambiguities can
be readily flagged as part of the macro process. Similarly,
when two or more input statements must be combined, the assem-
bler can allow for saving input lines in working parameter
lists.

Assuming the availability of such a tool, plans may be made
for the development of a "universal" assembly language for use
on a variety of machines but maintaining machine oriented capa-
bilities. This concept of course, is complicated by the fan-
tastic variety of computer architectures presently in use. The
definition of a universal assembly language must include meth-
ods of defining register implementation, addressing schemes,
aand less salient flatures of the computer architecture. Other-
wise, highly inefficient and lengthy programs may result.

It is difficult to imagine an assembly language designed for
efficient use of every machine in existence. Since many pro-
grams wc'ld not ba coded in assembly languages if efficiency
was not o, primary concern, this facet of the problem cannot
be ignored.

Keeping these conflicting factors in mind, the most acceptable
compromise seenas to be the maximum utilization of the originz!.
target computer's architecture. The degree of efficiency of
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code produced for new targets must become a function of the
"likeness" of the new machine. This is entirely reasonable
since one of the factors involved in the purchase of new equip-
ment must be its compatibility with existing and future hard-ware implementations.

A most important facet of the development of a universal assem-
bly language is the efficient use of the current register-
address schemes in a manner readily adaptable to other computers.
As yet, no solutions have been presented which promise to
completely satisfy this requirement. One possible app.'oacL,
however, is described below.

"" A base register machine is assumed. The assembler
"should do as much of the base-displacement manipu-
lation as possible and the programmer should use
symbolic ciddressing. If the target computer is
directly addressable, the base addr-ss defaults to
0.

"* The user will. declare registers and code with a
particular architecture in mind. For example, in
a machine with 16 general registers, instructions-×
such as the following may occur.

ADD Rl R2 R2

If this implies "add the contents of register R2 to
register RI and leave the result in R2", it assumes
a knowledge of the previous contents of Rl and R2
and makes efficient use of the machine's architecture.
In a single accumulator (RO) machine, the same state-
ment might be processed (by the ADD macro) as "add the
contents of memory location R1 to the contents of
memory location R2 and store in memory location R2".
It follows, then, that the efficiency of the program
with respect to machine design is directly related to
the "likeness" of the computers involved. Note that
upon transfer of such a program, a new register
declaration and set of macros must be generatod.

* Regiters can be used as •or arithmetic, shifting,
indexing, and other "normal" operations.

* Registers and wemory should be considered intor-
chang-able for most instructions.
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"* Indirect addressing and indexing can be used for
address modification.

"* A basic address operand format of:

-register,index
*address,index

is assumed where * indicates indirect addressing.

"* The basic instruction format is:

INSTRUCTION,m a b c

where a and b are inputs, c is the result, and m is
an instruction modifier (see condition codes). With
some instructions, a, b, c and m will be optional.
a, b, c, will be considered addresses or direct
values where appropriate.

"* Condition codes will be handled by the macro pro-
cessor such that mnemonics may be substituted for
actual values. For example, assuming X, Y, and Z
are addresses and V is a value,

LOAD X
COMPARE Y
BRANCH-ON-CONDITION V,Z

may be coded as:

CW,GT X Y Z

which reads "compare words X and y and branch to Z
if X is greater".

"" All macro (universal assembly language command)
mnemonics will contain a $ (or any special character)
to avoid conflicts with actual machine instructions.

With these ground rules in mind, a set of universal assembly
language commands can be formulated. In the following instruc-
tion set definition, a few descriptive symbols are used.

* The "Type" column contains four items; A,I,R, and M.
These subcolumns indicate some of the characteristics
of each instruction. The column explanations are
as follows:
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A - The number of address type operands associated
with the instruction.

I - A check in this column indicates that an imme-
diate value is presented as part of the instruction.

R - A check in this column indicates a relational is
presented as part of the instruction. The rela-
tionals that may be associated with the "compare"
and "jump if index" commands are:

EQ - Equal
GT - Greater than
GQ - Greater than or equal to
LT - Less than
LQ - Less than or equal to
NQ - Not. e,'uai

The relationals; that may be associated with the
JUMP command are:

P - Positive
N - Negative
V - Overflow
Z - Zero
NZ - Non zero

"M - A check in this column indicates that the number of
words, bytes, or bits operated upon is supplied
as part of the instruction. For example,

MW$,3 A B

is interpreted as "mcve 3 words from A to B".

* In the function column, a, b, and c are used to repre-
sent the operands involved in the command. The letter
v is used to represent immediate values.
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UNIVERSAL COMMAND REPERTOIRE

COMMAND TYPE FUNCTION

Mnemonic "English-like" A I R M

Arithmetic: (Fixed Point)

AS ADDS 3 b + a - c

S$ SUBTRACT$ 3 b - a -- c

M$ MULTIPLY$ 3 b x a - c

D$ DIVIDE$ 3 b - a -- c
remainder -c + 1

AV$ ADD$VALUE 2 * a + v-- b

SV$ SUBTRACT$VALUE 2 * a - v - b

MV$ MULTIPLY$VALUE 2 * a x v - b

DV$ DIVIDE$VALUE 2 * a -- v - b
remainder-- b + 1

Logical:

ANDS AND$LOGICAL 3 a . b - c

ORE$ OR$EXCLUSIVE 3 a ® b - c

ORI$ OR$INCLUSIVE 3 a + b-- c

CA$ COMPLEMENT$ADD 2 * a + v - b

ANV$ AND$VALUE 2 * a . v - b

OEV$ OR$EXCL$VALUE 2 * a 6 v - b

OIV$ OR$INCL$VALUE 2 * a + v - b

Manipulative:

MW$ MOVE$WORDS 2 a - b,...,a+n-l--b+n-1

MWV$ MOVE$VALUE 1 * * v- a,...,v-a+n-I
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COMMAND TYPE FUNCTION

Mnemonic "English-like" A I R M

Manipulative:

MWR$ MOVE$REPEATEDLY 2 * a-- b,...,a b+n-l

MB$ MOVE$BYTES 2 * Byte 1 -, b,...,Byte
n , b+n-i

MLB$ MOVE$LEFT$BITS 2 n leftmost bits are
moved from a to b

MRBS MOVE$RiGHT$BITS 2 n rightmost bits are
moved from a to b

MBR$ MOVE$BYTE$RIGHT 2 * Specified byte of a

is moved to right-
most byte of b.

Shifts:

SLA$ SHIFT$LEFT$A 1 * The specified regis-
ters are shifted
left arithmetically.

SRA$ SHIFT$RIGHT$A 1 * The specified regis-
ters are shifted
right arithmetically.

SLL$ SHIFT$LEFT$L 1 * The specified regis-

ters are shifted
left logically.

SRL$ SHIFT$RIGHT$L 1 * The specified regis-
ters are shifted
right logically.

SLC$ SHIFT$LEFT$CIRC 1 * The specified regis-

ters are shifted
left circularly.

SRC$ SHIFT$RIGHT$CIRC 1 * The specified regis-
ters are shifted
right circularly.
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COMMAND TYPE FUNCTION

Mnemonic "English-like" A I R M

Shifts:

SRP$ SHIFT$RIGHT$PROP 1 * The specified regis-
ters are shifted
right arithmetically
with the sign bit
propagating.

Sequence Control:

CW$ COMPARE$WORDS 3 Execution control
transfers to c if a
"relation" b is true.

CBS$ COMPARE$BYTES 3 * * Execution control
transfers to c if Byte
string a "relation"
Byte String b is true.

CLB$ COMPARELEFTBITS 3 * * Execution control
transfers to c if Bit
String a "relation"
Bit String b is true

CRB$ COMPARERIGHTBITS 3 * * Execution control
transfers to c if Bit
String a "relation"
Bit String b is true.

CWV$ COMPARE$VALUE 2 * * Execution control
transfers to - if a
"relation" v is true.

CL$ COMPARE$LIMITS 3 * Execution control
transfers to c if a
"relation" b and b+l
is true.

J$ JUMP$ 1 Unconditional trans-
fer to a.

J$,V JUMP$,OVERFLOW 1 * Execution control
transfers to a if
the overflow indica-
tor is set.
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COMMAND TYPE FUNCTION

Mnemonic "English-like" A I R M

Sequence Control:

J$:P JUMPS,POSITIVE 2 * Execution control
transfers to a if b
is positive.

J$,N JUMPS,NEGATIVE 2 * Execution control
transfers to a if b
is negative.

J$,Z JUMP$,ZERO 2 * Execution control
transfers to a it L,
is zero.

J$,NZ JUMP$,NONZERO 2 * Execution control
transfers to a if
b is non-zero.

C$ CALLS 3 Call subroutine a; put
return address in b;
calling sequence is
at c.

E$ EXITS 1 * Returns v cells bey-
ond subroutine
return address a.

JXD$ JUMP$IF$DECR 2 * Execution control
transfers to a if
register b is
decremented.

JXI$ JUMP$IF$INCR 2 * Execution control
transfers to a if
register b is
incremented.

Jl$ JUMP$IF$1NDEX 2 *Execution control

transfers to a if b
"relation" v is true.
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COMMAND TYPE FUNCTION

Menmonic "English-like" A I R M

Miscellaneous:

I$ INPUT$ 3 The specified quantity
of data is input from
the selected input
device to the speci-
fied destination.

0$ OUTPUTS 3 The specified quantity
of data is output on-
to the selected out-
put device from the
specific location.

XCH$ EXCHANGES 2 The specified number
of words starting at
a and b are inter-
changed.

XEC$ EXECUTE$ 2 The instructions
starting at a down to
b are executed.
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Instructions of less general applicability which may be includ-

ed are:

o Floating point arithmetic

o Peripheral equipment controls (rewind, backspace)

o Stack oriented instructions (PUSH,PULL)

o Conversion operations

o Search operations

In all instances, the suggestions made in previous sections
regarding parameterization and general coding techniques may be
incorporated into programs written in macro languages.

Some of the benefits which are to be expected from this approach
include:

"* An awareness of transferability considerations before
and during coding.

"* Relatively efficient use of original target computer
architecture.

"* Programs which are "very" transferable to machines of
like architecture.

"* Feasible transfer of programs between machines of
different architectures (assume some loss or trade-
off of efficiencies).

"* Standardization of assembly mnemonics and formats to
reduce re-training costs.

"* A basis for quantitative analysis of costs of trans-
fer versus efficient use of machine characteristics
(especially when considering the purchase of new
hardware).

"* Possible check-out of programs for "un-implemented"
or currently unavailable machines on another computer.

"* A recognizable starting point on which to base addi-
tional transferability effort.
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2.4.8 Policy

Major hardware advances in a relatively short period of time

have magnified and confused the problems of program transfer-
ability. Basic assembly languages, because of their inherent
references to unique hardware designs, have presented the
most acute obstacles to these changes. ct

The urgency associated with this problem seems to have been
responsible for the after-the-fact attributes common to many
current efforts. These range from source-to-source transla-
tion through complete re-coding. Generally, these approaches
have been costly, machine specific, and only partially effect-
ive. It seems desireable, therefore, to redirect efforts at
assembly language program transfer to the pre-program design
stage.

This implies that assembly level programmers must be made aware
of the potential for system transfer and the effect of their
coding techniques on the success of such ventures.

Similarly, each programming organization must develop standards
for design and coding of assembly language programs as they
have done for COBOL, FORTRAN, and JOVIAL. The programmers
should be encouraged to help develop these standards.

Additional areas where standardization might be imposed in-
clude the actual assembly languages and the equipment to which
they are so closely related. It seems restrictive and unwise
to require manufacturers to structure their hardware to be
consistent with , standard assembly language. On the other
hand, it does seem possible to design a standard pseudo-
assembly language. Although this was discussed in Section
2.4.7, some additional comments seem appropriate at this time.

An unquestionably important factor in the success of assembly
program transfer is the programmer's individual awareness and
involvement. The use of universal assembly language with
machine independent aspects is a possible method of solidifying
these feelings. The knowledge that the lang'.ige being used
can be modified and improved by the programmer may engender
such efforts (at least many have expressed this desire).

Similarly, the wide spread and often costly pre-occupation
with "tricky", "shorter" or "faster" coding algorithms could
conceivably be diverted to the development of "independence"
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algorithms. Dedication to the invention of clever ways to
perform seemingly machine dependent functions in a universal
or parameterized manner is certainly desireable.

Hence, the development and use of a standard assembly language,
when combined with an awareness of transferability oriented
coding techniques, could result in significant improvements.
A recognizable effort in this area could influence machine
manufactures toward partial standardization of character sizes,
object formats, machine code mnemonics, etc.

Unfortunately, there will undoubtedly always be programs to
which these techniques do not apply. Airborne computer appli-
cations, for instance, are often so limited in resources arid
application dependent that efforts at transferability would be
wasted. There is considerable area for improvement, however.
Elegant, abstruse programs written by the experienced coder to
save a little time or space and unricessarily complex concoc-
tions produced by the inexperienced programmer through ignor-
ance can both be eliminated. In the area of assembly level
transferability, any improvement will be a major one.
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APPENDIX A

FORTRAN Program Transfer

A small FORTRAN program was prepared, compiled and executed on
several machines as part of this study. Each of the statements
in the program would, theoretically, compile and execute "as
expected" on at least one major computer's FORTRAN System. All
statements which would not compile properly or which were re-
jected by the compiler were removed from the program before re-
compilation and execution.

It should be noted that other compiler versions of many of the
computer systems utilized would display different results. It
is also interesting that no particular patterns can be realis-
tically formed from these results. Even more advanced compilers
rejected some statements found acceptable to other more
"primitive" systems.

A summary of the features of this transfer which would pose
obvioub transferability difficulties follows. In the first
chart, Compilation Characteristics, several definitions are
used.

F - The compiler flagged this statement or function as
a probable error.

R - The compiler rejected this statement and produced
no output for it.

A - The compiler accepted (compiled) this statement
without special notes, errors, warnings, etc.

I - The compiler literally ignored the non-standard
aspects of this statement. For instance, INTEGER*2
was read as INTEGER.
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APPENDIX B

Transferability Factors

e Operating system interfaces

* Dialects, extensions, subsets and abbreviations in higher
level languages

* Code restraints imposed by interpretation of language
standards

* Character set differences - internal, tape, and card
representations and collating sequences

* Internal clock units

"* Recording modes - record sizes, block sizes, densities,
parities, control words, file limits, volume sizes, carriage
controls, end of the line marks, etc.

"* Computer speed

" Core size

"* Peripherals - number and type

"* Sense devices - switches, lights, etc.

"• Operator interface

"* Printer speed and line size

"* Negative number representations

"" Internal number representation (packed decimal, binary, etc.)

* interrupts - types, mechanisms and priorities

"* Boundary alignment - halfword, doubleword

"* Condition codes, overflow bits, and other indicators

"* Channel processing

"* Memory types - ROM, scratchpad, etc.
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* Instruction repertoires

Variable word length instructions

Div..•on/multiplication algorithms

"" Rounding

". Shifting algorithms

"* Absolute addressing

"" Relative addressing

"* Indirect addressing (with/without index, etc.)

"* Dynamic instruction modification

* Address size

"* Page size

"* Direct value size

"* Word size

"* Character size

"* Object format

"* Indexing

"* Register schemes

"* Pre-initialized memory

"* Micro-programs

* Input/output timing controls
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APPENDIX C

Software Products Synopses

These synopses are presented as a sample guide to the general
nctlure of commercial conversion services and products. Capa-
bilities and limitations are listed by way of example and are
not intended to reflect the exact attributes of the associated
products. A choice of conversion aids should not be limited
to or influenced by this material.

AED Cross Compilers
SoftTech, Inc.

AED languages feature a high degree of modularity with target
language modules treated as off-the-shelf software components.

BASIC to FORTRAN Translator
International Conversion Systems

Translates BASIC language to FORTRAN on a timesharing system to
prcvide tne facilities of BASIC to IBM 360 users.

BCD to EBCDIC
International Business Machines

Converts BCD punched cards to EBCDIC format.

BIAS - Basic Iterative Assembler for DEC PDP-11
COMPATA, Inc.

"Can be used on any host computer which supports ASA standard
FORTRAN" with 23 bits plus sign precision, card reader, card
punch, printer and one tape.

BIRS - Basic Indexing and Retrieval System
Information System Laboratory, Michigan State University

This collection of 150 FORTRAN routines includes the TRAC debug
tool. TRAC is written in FORTRA.N and is a pre-compiled debug
tool for FORTRAN programs. This highly machine independent
program provides sophisticated loop detec "n printouts and
diagnostics.
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BUFF40X
Nanodata Corporation

A special fast FORTRAN compiler with enhanced printouts of
storage allocation, expanded diagnostics, traces, timing, etc.
Operates on IBM 360/25 and up.

CATALIST - Autocoder to BAL Translator
International Business Machines

A conversion aid for transition from IBM 1401 Nutocoder to
IBM 360 BAL.

COM/FORT Programming Aids
ADAPT, Inc.

Subroutines designed to interface commercial applications with
FORTRAN to extend the standard. They can also be invoked via
BAL, COBOL and PLl and increase speed and remove input/output
restrictions such as record sizes. They run under DOS or TOS.

COBOL Language Conversion Program for IBM 1401
International Business Machines

Facilitates transition to IBM 360 by converting COBOL source
written for IBM 1401 to System 360 Level E or Level F.

DECIBLE III
Independence Computing and Software

General decision table processor written in COBOL.

DSI-11
Decision Science, Inc.

Cross assembler for PDP-11 written in FORTRAN.
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DUAL
International Computer Systems, Inc.

A procedure oriented macro processor with extensive cross-
assembly and language generation facilities. Largely ,%ost and
target machine independent.

WUO 360/370
Computer Technology, Inc.

The DUO package enables the user to run IBM 360/370 DOS object
programs, without modification, under OS and to use the OS
features via JCL.

EXODUS I and EXODUS II
Computer Sciences Corporation

Respectively trar-piate IBM 1410 and 1401/40/60 AUTOCODER or SPS
source to IBM System 360 BAL.

HELP - Highly Extendable Language Processor
Advanced Computer Techniques Corporation

Allows programmer to define extensions to FORTRAN, COBOL and
PLI via macro definitions. Translates extended statements to
conventional language forms in a pre-compile phase.

IBM 7040/7044 Emulator Program
International Business Machines

The emulation is performed on the System 360 and consists of
the emulator program and special machine additions called the
7040 compatibility feature.

MECCA 360/370

Arkay Computer Applications

"Monitor and Enforce Conformance to COBOL Administrative" stand-

ards. Inspects COBOL-source for conformance to 200 management
selected standards and lists corresponding severity codes and
messages. Reserved words (abbreviations) can be prescribed.
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MASTRAN
National Information Systems, Inc.

140J. AUTOCODER to System 360 BAL conversion service. "No charge
for less than 90% conversion."

METAPLAN
Programmatics, Inc.

A procedure oriented macro language assembler with machine
independent attributes.

MINI-SIM
Trippe Systems Incorporated

A 360 BAL program for simulating a variety of mini computer
programs including control panels. Allows use of 360 peripherals
by mini program for rapid checkout.

OPTIMAIL
Clasco Systems, Inc.

COBOL source program optimization by mail. Promises 25t re-
duction in computer time.

?I

OPTIMIZER
CAPEX Corporation

Global analysis of IBM 360/370 COBOL compiler object output
to minimize object code (time/core).

PASSPORT
Creative Computing Techniques

A general software-assisted program conversion service based
on pattern matching of source/destination templates for various
languages and machines. Conversion templates are tailored to
customer habits, and CCT personnel assist in manual work.
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PLI Checkout Compiler
International Business Machines

PLI program modules translated by this product run more effi-
ciently and can be link-edited with output modules from OS
'O:RAN and COBOL.

RFPR7 2'E.
Na--ional Information Systems

A softwctre package which allows RCA TDOS users to convert to
IBM 360/370 without modification or system regeneration.

SIFT

Operates on FOPTRAN Ii source decks to produce basic FORTRAN
IV source.

STAGE I I
Optimization Sciences, Inc.

COBOL source program optimizer to reduce run time and core size
by suggesting programmer changes to the code.

TACOS
Management Systems Corporation

Translates AUTOCODER 76 to IBM 360 COBOL for OS. Handles about
90% of source statements.

TOTALTRAN
CPU Management Advisory Corporation

Translates 1401 object decks to System 360 assembly source.
Includes disassemblers to produce AUTOCODER source from patched
1401 or 7070 object.
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TRANSEMBLER
Code, Inc.

Cross assembly for the Varian 620/f written in FORTRAN.

Universal Assembly System for One-Address Minicomputers
Jack R. Guskin, International Business Machines
(Not an IBM Product)

Uses a we]l-defined fixed syntax and dynamically modified seman-
tics dependent upon target machine characteristics.

UPGRADE
Information Management, Inc.

De-compile or translate .... • " 4n , 144,, -- VA. *VV Uto - -, -C--
source. Includes manual pre-translation, machine translation
with flags, manual post-translation.
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APPENDIX D

Document Synopses and Bibliography

Synopses

BALZER, R. M.
)atdless Programming

All data and function references are expressed in a single can-
onical form so that the alteration of a data representation has
no syntactic effect on the program. A PL/! extension.

BA.0'0", M. E
SWAP: Thp M•crn Asr-mh] er

Examples of features included in a macro assembler. Recursive
functrioxi definition, ellipsis notation for arbitrary number of
arguments, character string partitioning and naming are mention-
ed. Includes a 3½ page listing of "A SWAP Program to Inter-
pretively Process a FORTRAN Like Language". Points out that
macro facilities do not have to be out of reach of the average
user programmer.

BELL, C. GORDON AND ALLEN NEWELL
Computer Structures: Readings and Examples

... presents many examples of computer systems...in enough
detail (for) meaningful...study and analysis...using the
original descriptions...in the technical literature. Collected
comparisons of machine features, some of which are pertinent
to transferability. (Those not transparent to the program.)

BEMER, ROBERT W.
Program Transferability

Program Transfer is complicated by each element which is differ-
ent. Programs must be planned for transfer... (has) not yet
been successful mechanical translation of machine language
program. Lists information needed to transfer (run) a program.
Suggests tools for conversion checkout. Suggests that compiler
should capture information and describe its own peculiarities.
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DELLERT, GEORGE T. JR.
A Use of Macros in Translation of Symbolic Assembly
Language of One Compiler to Another

A set of macros used to help translate IBM 7090 Assembly
Language to IBM 7040 Machine Language.

DONOVAN, JOHN J. AND HENRY F. LEDGARD
A Formal System for the Specification of the Syntax
and Translation of Computer Languages

This paper deals with the use of established methods of
recursive definition to present a single method to:

1. Specify the syntax of computer languages.

2. Specify the translation of programs in one
computer language into programs in another

language.

ELSPAS, BERNARD, MILTON GREEN AND CARL LEVITT
Software Reliability

We examine...approaches to improving the art of computing,
debugging and verifying programs,...improvements in program-
ming languages,...debugging techniques that incorporate
semantic analysis in the.. .compilation,...possibilities for
the logical proof of the correctness of a program.

ENGLANDER, WILLIAM R.
How Standard are COBOL Compilers?

COBOL compiler validation system (Air Force) used to audit
computers for:

B2500/B3500 COBOL
GE 625/635 COBOL
S/360 COBOL F
UNIVAC 1108 COBOL EXEC II

Test failures are reported without identifying which compiler.
Suggests using CCVS to select both a compiler and those features
to be avoided as not compatible.
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ERICKSON, BEVERLY
A Program Disassembler

The concept of object program disassembly is presented as the
final step in a series of three utility programs. Flowcharts
and examples are included.

FALOR, KEN
Survey of Program Packages

Lists source, name, description, computer, compilor and price
for software items in the categories conversion, translation
and simulation programs (19 items); debugging and testing pro-
grams (23 items); JCL compilers (6 items); documentation and
flowchart producing programs (12 items); languages (17 items);
preprocessors for decision tables, shorthand languages, etc.
(19 items); other general purpose programming aids (14 items).

FERGUSON, DAVID E.
Evaluation of the Meta-Assembly Program

A generalized meta assembler is described. Evolution of the
assembly programn and its implication to compiler design are
discussed.

FRITZ, W. BARKLEY
Computer Change at Westinghouse Defense and Space Center

Management guidelines for transferability.

FUJII, ATSUSHI
Software in Japan: Supported Growth

The Japanese Government is encouraging and supporting software
development in several ways. A new organization will buy soft-
ware packages from developers and lease them to users. The
government thus assumes the majority of the risk. The govern-
ment gives examinations for information processing engineers.
In the test for programming, FORTRAN, COBOL or Assembly Language
could be chosen for solving the problems. The Japanese Govern-
ment has launched a 5-year project (large Industrial Engineering
development) to upgrade the technology of the Japanese informa-
tion processing industry. One program is for the development

D-3



of common, hardware independent, software. FORTRAN, COBOL and
PL/I compilers written in a subset of PL/I, translate to a
common hardware independent intermediate language. Hardware
dependent compilers translate the intermediate language.

GAINES, R. STOCKTON
On the Translation of Machine Language Programs

Four classes of problems in translation:

1. Untranslatable segments, e.g. a core memory test
for a particular machine.

2. Idiomatic expressions, e.g. the conversion of an
integer to floating point on the CDC 1604 by doing
an integer add and floating subtract of a particular
constant.

3. Program self-modification, e.g. altering an address
or an operation code in an instruction.

4. Differences in machine design, e.g. different word
sizes, different instruction details.

Discusses simulation and automatic translation (of a programmer
pre-edited source deck followed by programmer debugging), The
problem statements suggest a partial answer: Syntax should
accurately reflect semantics, e.g. 'Float' vice 'integer add,
floating subtract'. Such can best be done with macros.

GODSEN, JOHN A.
Software Compatibility: What Was Promised, What We Have,
What We Need

In very general terms, this paper defines compatibility;
defines kind of, degree of, extent of and direction of com-
patibility; lists zones of compatibility ranging from one
installation of a computer to all computers in Air Force Logis-
tics Command; lists seven implicit promises made by producers
of higher level languages ana the extent to which the promises
were kept.
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GOOSEN, JOHN A.
Software Compatihility.'

The subject oE this paper is data compatibility.

GRAHAM, MARVIN LOWELL AND PET"ER ZILAHY INGERMAN
An Assembly Language for Reprogramming

Describes an early Meta-assembler.

GI.RES, DAVID
Compiler Construction for Digital Computers

1..e... ;: examp±cs of higher level language compilers design
including syntax, semantics, optimization, interpretive
tazchnic•cus -nd rcros.

GRUENBERGER, FRED
Probiems and Priorities

The problems facing the computer industry as of 1972 are listedin order of importance. Language standardization is given the
lowest priority.

GUSKIN, JACK R.
A Uni-Language for a General Purpose Assembly Translator
Sy.-tem for Single Address Machines

A discussion of translators capable of accepting a variety of
sour-ce languages.

IHALSTEi• MAGRICE H.
Machi +'eperdence and Third-Generation Computers

An exaiý asc of a decompiler, converting to NELIAC.

HALSTEAD, MAURICE H.
Using the Computer for Program Conversion

Discusses decompilers ýjhich accept an absolute binary program.
analyze it in great detail, translate it into an equivalent

D-5



prograip in a higher level language and flag ambiguities. Dis-
cusses the economics of writing and using a decompiler.

HARPER, WILLIAM j..
Documentation for Application Programming

The function of documentation is defined in general terms.

HICKS, HARRY T. JR.
ANSI Cobol

Discusses the levels of ANSI COBOL, compiler validation, and
the transition from prestandard COBOL. The arrival of the
ANSI COBOL ccompilers will require many COBOL users to convert
their existing programs. The organization can adopt a stand-
ard dialect to facilitate programmer training and make avail-
able a richer choice of future comput-rs and compilers.

HOPPER, GRACE MURRAY
Standardization of High-Level Languages

The common element essential to mobility is the establishment
of standards for programmers, programs, and documentation.

JONES, RONALD W.
Generalized Trranslation of Programming Languages

A generalized model for the computer translation of both pro-
gramming and natural languages has been developed at the
Linguistics Research Center of the University of Texas. The
theory says there are two structures underlying a language -
surface structure and basic structure.

LEE, JOHN A. N.
The Anatomy of a Compiler

An author who has written many practical language processors
communicates his experience, choosing FORTRAN as an example.
The exposition is concrete (thoroughly exemplified), a blend
of theory and practice.
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MEALY, GEORGE H.
Another Look at Data

Proposes theoretical model for data and data processing.

MILLS, HARLAN D.
Syntax-Directed Documentation for PL 360

The language PL 360 with its phrase structure grammar is used
as a concrete basis for illustrating an idea called Syntax-
Directed Documentation. The idea is:

1. To use the phrase structure of a program to define
the structure of a formal documentation for that
program.

2. To use the syntactic types and identifiers in the
resulting structure to trigger the automatic forma-
tion of questions to the programmer whose answers
will become part of that documentation.

3. To provide automatic storage and retireval
facilities.

A small PL 360 program is worked out as an example.

MORENOFF, EDWARD
The Transferability of Computer Programs and the
Data on Which They Operate

History and overview of RADC interest in transferability.

MULHOLLAND, K. A.
Software to Translate Telcomp Programs into KDF9 Algol

Lists the KDF9 Algol statements chosen to correspond to
Telcomp statements. Not a particularly successful effort.

ORGASS, RICHARD J. AND WILLIAM M. WAITE
A Base for a Mobile Programming System

Describes an algorithm for a macro processor which has been
used as the base for an implementation, by boot strapping, of
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processors for programming languages. This algorithm can be
easily implemented on contemporary computing machines.

RECTOR, DR. ROBERT W. AND DR. C. J. WALTER
The Fourth - Another Generation Gap?

Some anticipated characteristics of fourth-generation computer
systems are briefly discussed. The view is presented that
computer designers do not understand the needs of the user;
software production is a significantly different effort from
software use and designers tend to optimize for software
production.

REENSKAUG, TRYGVE
Some Notes on Portable Application Software

Notes based on experience with the AUTOKON system for design of
ship's hulls. Three methods were tried - reprogramming - time
consuming, expensive, boring, error prone. Generative coding
via SLEUTH II; dropped because producing relocatable object
decks for ill-documented operating systems was difficult and
decks not customer-maintainable. High level language now
method of choice, becoming restricted to USASI '3ASIC FORTRAN.
Equivalence between real and integer arrays, low precision real
have caused problems. Peculiar restrictions on FORTRAN unit
numbers, paper tape not well supported. Operating systems
"have strong opinicns about disc data physical organization.

SABLE, JEROME D.
Transferability of Data and Programs Between Computer Systems

The problem of transferrina data and interpreting it can be
approached by constructing an adcquate range of data structure
types and devising a standard way of describing these types
(Data Description Language).

SATTLEY, KIRK, ET. AL.
On Program Transferability

Suggestions on transferabil.ty enhancements effecting the total
program transfer problem with emphasis on operating systems.
Prepared for RADC.
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SHAW, CHRISTOPHER J.
A Comparative Evaluation of JOVIAL and FORTRAN IV

Side-by-side outline of the advantages and capabilities of each
language. Identity, applicability, origin, dialects, structures,
input/output and modularity are discussed with suggested uses
of each language. Low-key comments regarding portability are
included.

SAKlETr, JEAN E.
Programming Languages: History and Fundamentals

An overall view of higher level languages. This book brings
together in one place fundamental information about program-
ming languages, including history, general characteristics,
similarities and differences, as well as detailed technical
descriptions. The book contains basic information and provides
perspective on 120 higher level languages, including all the
major, and most of the minor, languages developed in the United
States. Major languages are described in a consistent way,
following a fundamental outline and general discussion of tech-
nical and non-technical characteristics of programming languages.

SCHAEFER, MARVIN
DBL: A Language for Converting Data Bases

Describes a program to transfer data from one data management
system to another. It is not clear from the article whether
it will handle transfers from one operating system or one
machine to another.

SIEGEL, STAN
WATFOR...Speedy FORTRAN Debugger

WATFOR is a FORTRAN compiler developed by the University of
Waterloo, Canada. It provides diagnostics on usages that some
FORTRAN compilers overlook and, by chance handle "properly".
It shows definite transferability oriented design in the areas
of code restraints and standardization.
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VAUGHN, PETER H.
Can Cobol Cope?

The COBOL environment is fundamentally hostile to effective mod-

ular design. Business data processing applications are less

rigorously designed than are scientific applications. Both

considerations make COBOL prograins hard to maintain and, although

the paper does not mention it, hard to transfer un ?ss the

destination compiler is fully compatible.

WALL-, DOROTHY A.
A Guide for Software Documentation

A series of outlines or models is given for the standard manual

and references written to describe software. The outlines give

a basic minimum content list and provide a basic minimum features

checklist for the software itself. Text gives directions for

adapting an outline for a general document type to the specific

software item to be described.

WARD, jAMES A.
Program Transferability

An overview of the need for and progress toward easier transfers.
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