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ABSTRACT 

i 

This technical report summarizes the image processing research 

activities performed by the University of Southern California during the 

period of 1 March 1972 to 31 August 1972 under Contract No. 

F08606-72-C-0008 with the Advanced Research Projects Agency, 

Information Processing Techniques Office. 

The research program,  entitled,  "Image Processing Research," has 

as its primary purpose the analysis and development of techniques and 

systems for efficiently generating,  processing,   transmitting,  and 

displaying visual images and two dimensional data arrays.    Research is 

oriented toward digital processing and transmission systems.    Four to.sk 

areas are reported on: (1) Image Coding Projects,  the investigation of 

digital bandwidth reduction coding methods; (2) Image Enhancement and 

Restoration Projects: the improvement of image fidelity and presentation 

format; (3) Image Detection and Measurement Projects: the recognition 

of objects within pictures and quantitative measurement of image features; 

(4) Image Processing Support Projects,  a description of the USC image 

processing facilities accessible over the ARPANET. 
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1.   Research Project Overview 

This report describes the progress and results of the University 

of Southern California image processing research study for the period of 

1 March 1972 to 31 August 1972. 

The image processing research study has been subdivided into 

five projects: 

Image analysis projects 

Image coding projects 

Image restoration and enhancement projects 

Image detection and measurement projects 

Image processing support projects 

The image analysis project comprises the background research effort 

into the basic structure of images in order to develop meaningful quanti- 

tative characterizations of an image.    In image coding the orientation of 

the research is toward the development of digital image coding systems 

that represent monochrome and color images with a minimal number of 

code bits.    Image restoration is the task of improving the fidelity of an 

image in the sense of compensating for image degradations.    In image 

enhancement, picture manipulation processes are performed to provide 

a more subjectively pleasing image or to convert the image to a form 

more amenable to human or machine analysis.    The objectives of the 

image detection and measurement projects are the registration of images, 

detection of objects within pictures and measurements of image features, 

■finally, the image support projects include research on image processing 

computer languages and the development of experimental equipment for 

the sensing,  processing,  and display of images. 

The next section of this report summarizes some of the research 

project activities during the past six months.    Sections 3 to 6 describe 

the research effort on the projects listed above during the reporting period. 

Section 7 contains a short description of new projects that are being ini- 

tiated, and are not yet to the reporting stage.    Section 8 is a list of publi- 

cations by project members. 

-1- 
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2.     Research Project Activities 

The following sections describe some of the significant pro- 

ject activities of the past six months. 

Publications.   July,   1972 has been a banner month for publications 

in the field of image processing.    The Institute of Electrical and Elec- 

tronic Engineers published a special issue of the Proceedings of the 

IEEE on digital image processing.    Professor Harry C.  Andrews of 

USC acted as co-editor of the special issue.    The journal contained 

five papers written by the USC staff.    The IEEE also devoted the 

July issue of the Transactions on Computers to the subject of two- 

dimensional digital signal processing.   USC staff members contri- 

buted two papers to the issue.    Finally,  the IEEE carried a cover 

article on digital image processing featuring the USC research on 

pseudocolor image enhancement.    A reprint of this paper is in- 

cluded in Section 4. 7. 

Image Coding Conference.   The University of Southern California 

has been chosen as the host for the Fourth Picture Coding Confer- 

ence to be held on 22-24 January 1973.    Approximately 80 to 100 

research workers in the field of image coding are expected to at- 

tend.    Topics of the conference include: properties of the human 

observer,  facsimile coding,  intraframe picture coding,  interframe 

television coding,   color image coding,   and multispectral image 

data coding.    An image coding contest will be held at the confer- 

ence to determine the best image coding algorithms and systems 

for monochrome and color images. 

• 2- 
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3.     Image Coding Projects 

The goal of the image processing research study - to develop 

digital image coding techniques capable of representing monochrome and 

color images with a minimal number of code bits - is not likely to be 

satisfied, at least in the near term, by a single coding system.    Accordingly 

the research effort has been directed toward a wide variety of coding 

methods designed for various applications.    The results of the research 

study during the past six months are summarized here and presented in 

greater detail in the subsequent subsections. 

A study on quantization techniques for natural color images is the 

subject of the first report.    Using a quantitative measure of color error, 

previously developed, it was found that the minimum error color repre- 

sentation using standard PCM coding techniques is the red,  green, blue 

representation.    Other coordinate systems such as the YIQ system employed 

for commercial television transmission lead to significantly greater quanti- 

zation error unless a complicated quantizer is employed. 

The study on deltamodulation and differential PCM coders for mono- 

chrome and color images has led to worthwhile results.    In particular, 

simulation of a dual mode coder which uses deltamodulation for low detail 

image regions and differential PCM for high detail image areas has indicated 

that subjectively ^>ood results can be obtained with about 1. 5 to 2. 0 bits/pixel. 

Such a coder could be implemented in real time with a relatively modest system 

The research work on transform coding systems has continued with 

the development of the slant transform coder.    The slant transform possesses 

basis functions (expansion waveforms) that more closely approximate natural 

imagery than other more commonly employed transforms.    Analysis and 

supporting experimentation has indicated that the Slant transform is capable 

of image coding with about 1. 0 to 2. 0 bits/pixel.    Another recent develop- 

ment in the application of transforms to image coding is the transform 

differential coding method.    In this system a unitary transform is used 

to obtain a low detail estimate of the image.    The pixel differences be- 

tween the original and estimate are then coded.    With this system it is 

m im -i'i^t^^^^ — ■- -   - .,.-————MM»-^. 



possible to code images with as low as 3. 5 bits/pixel with no error or with 

about 1. 5 to 2. 0 bits/pixel with a scarcely noticeable error.    It now appears 

that these transform coding systems can be implemented in real time using 

acoustic surface wave delay line implementation. 

A problem common to almost all types of image coding systems, 

is the efficient coding of variables,  e. g. image samples, differential PCM 

samples,  or image transform coefficients.    A comprehensive comparison 

of several quantization techniques has been 'ompleted. 

In the final research study reported upon in this  section,   some pre- 

liminary results are presented on a new coding process called Universal 

Coding.    In universal coding systems,  coding is accomplished without 

complete knowledge of the source statistics,  e. g.  statistically coding an 

image without complete knowledge of the pixel correlation.    Results of 

this theoretical investigation should be useful in establishing performance 

bounds on image coders operating with incomplete statistical knowledge 

of the image data. 

3. 1   Color Image Quantization 

Anil K. Jain 
William K.  Pratt 

When color images are converted to digital form for computer pro- 

cessing or digital communication,  consideration should be given tc the 

effects of quantization errors.    Quantization errors can cause luminance, 

hue, and saturation shifts of a color that result in a significant image 

degradation.    In quantization of color images, the quantization error 

depends on:   (a) the relative number of bits assigned to the different 

coordinates; and (b) the distribution of the image colors in the color space 

corresponding to the respective color coordinate system. 

Figure 1 contains a general block diagram for a color image quanti- 

zation system.    A source image described by source tristimulus values 

R, G, B is converted to three components x  ,x  , x   which are then quantized. 
A A 

The quantized components x  , x  , x  ,  are then converted back to the ori- 
- A        A 

ginal color coordinate system producing the tristimulus values R, G, B . 
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Figure 3.1-1  Color Image Quantization Model 
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The quantizer in Figure 1 effectively partitions the color space of the 

color coordinates x ,x ,x   into quantization cells and assigns a single color 

value to all colors with a cell.    To be most efficient, the three color com- 

ponents x ,x_,x    should be quantized jointly.    However,  implementation 

problems often dictate separate quantization of the color components.    In 

such a system x ,x , x   are individually quantized over their maximum 

ranges.    In effect, the physical color solid is enclosed in a rectangular solid 

which is then divided into rectangular quantization cells.    Many of these quanti- 

zation cells will lie outside the physical color solid, and will be wasted. 

In the present analysis it will be assumed that each color component is 

linearly quantized over its maximum range into 2 x levels where n. represents 

the number of bits assigned to the component x..    The total number Oi bits al- 

lotted for the coding is fixed at 

N   =   nl + n2 + n3 (1) 

Let b. represent the upper bound of x. and a. the lower bound.    Then each 
l li 

quantization cell has dimension 

b   - a. 
_i i_ 

2ni 
(2) 

Thus the coordinates of the quantized color become 

y.   =   x   ± e 
i l        i 

(3) 

subject to the conditions 

a. ^y. *b.   ,       i = 1,2,3 
ill 

(4) 

Observe that the values of y always lie within the smallest rectangular 

solid enclosing the color solid for the given color coordinate system. 

The total error due to quantization can be specified by the gsodesic 

color distance [l"|  between x. and y. as given by 

6- 
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-I 
(y.) 

(x.) 
i 

i 
-t  2 

U»k=1 

C    dx.dx, (5) 

where the coefficients C     represent the sensitivity of average human per- 
th th 

ception of differences in the j     and in the k     coordinates of a color coordinate 

system.    Using equation (5)  it  is possible to  evaluate the total error 

due to a given bit assignment.    Thus, for a given number of bits, N,  it is 

possible to find the optimal bit assignment for each color.    However, for the 

coding of color images,  one would like to determine the optimal bit assign- 

ments for all the colors in a given coordinate system.    In this study con- 

sideration is given to the problem of determining non-inferior bit assign- 

ments for the N.T.S.C.  receiver primary major colors in the following 

coordinate systems:   i) C.I, E.  Uniform Chromaticity scale; UVW and 

uvY; ii) N.T.S.C. transmission system, YIQ; iii) N.T.S.C.  receiver 

phosphor system, RGB and rgY.    Choosing N = 12, equation (5) was used 

(via a color distance routine [l]) to determine the maximum value of S (over 

all possible y), for a fixed color and a fixed bit assignment n., n , n    such 

that 

n. * 6 ,     i = 1,2,3 (6) 
l 

N   =    12 (7) 

This was repeated for the seven major colors and all possible bit assign- 

ments satisfying (6) and (7). 

The bit assignments giving relatively large values of S were considered 

inferior and thus ignored.    Table I for example,  shows the non-inferior set 

of bit assignments for various colors and in the RGB system (see 

reference [2]  for more results). 

Quantization of a 256 by 256 color image of a girl [3], was done with 

bit assignments (4, 4, 4),   (5, 4, 3) and (3, 5, 4) in the RCB, YIQ and UVW 

systems.    The color shifts in the RGB system were found to be smallest 
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and were in relative agreement with the error values of Table I.    In the UVW 

and YIQ systems,  relatively large amount of color shifts were observed 

(compared to the values obtained computationally [2] ) and were found to be 

very sensitive to the quantization range of each coordinate.    These large 

color shifts occurred because the actual ranges of the I, Q and U, W com- 

ponents of the image were much smaller than the corresponding ranges of 

these coordinates in their color solids,  and also a significant number of 

quantization cells in the rectangular solid enclosing the actual color solid 

lie outside that color solid.    The conclusion from this study is that for a 

fixed number of quantization cells, the cells should be packed into the 

volume occupied by the color solid.    Such a quantization procedure, however, 

is difficult to implement except for the RGB coordinate system. 

TABLE I.    Quantization errors in the RGB system for different 
non-inferior bit assignments. 

Bit Red Green Blue Cyan Magenta Yellow White 
Assignment 

4,4,4. 15.4 7.0 20.6 4.5 8.2 5.0 3.4 

4,5,3 21.0 10.3 1.5 5.1 3.6 7.8 3.5 

5,3,4 22.8 6.7 2.9 5.0 13.8 0.8 6.0 

5,4,3 23.2 9.3 13.9 3.9 7.2 7.0 4.5 

3,5,4 12.9 11.5 11.1 8.5 0.3 7.7 5.7 

3,4,5 12.3 3.3 16.9 8.3 0.2 6.8 5.7 

References 
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3.2 Deltamodulation and Differential PCM Coding of Monochrome and 
Color Signals 

A. Habibi 

Deltamodulation and Differential PCM image coding systems offer 

substantial promise for real time television coding applications because of 

their relatively modest implementation requirements.    The following sec- 

tions present an introductory discussion of these systems and descriptions 

of their application to the coding of monochrome and color images. 

DPCM Systems.   A differential PCM image coder, as shown in 

figure lf consists of a linear predictor that estimates the incoming pixel 

value,  a subtractor that subtracts the estimated pixel value from its actual 

value to form a differential signal,  and a quantizer that maps the differen- 

tial signal into a set of discrete levels.   An efficient predictor for video 

signals is one that exploits the correlations of the signal in all spatial 

directions.    Experimental results have indicated that employing a third 

order predictor results in a substantial improvement over the first order 

predictor [ 1 J.    Further increases in the prediction order are usually not 

warranted. 

Deltamodulation Systems. In a deltamodulation system each image 

sample is compared to its estimate and a positive or negative signal is 

produced depending on the comparative amplitude of the difference.    A 

block diagram of a delta modulator is shown in figure 2.    The output of the 

comparator is multiplied by a constant in the feedback loop and is used as 

an input signal to an integrator whose output is the estimate of the incoming 

signal.    The size of the constant (step size) is an important parameter in 

the encoder.   A large step size degrades the encoded signal when the signal 

is changing smoothly by causing a large granular noise; a small step size 

limits the ability of the encoder to build up to large signal change.    This is 

avoided by introducing some memory in the quantizer that considers the 

polarity of the previous binary digits at the output of the quantizer and 

changes the step size accordingly.    A small step size for a slowly varying 

signal and a large step size for a fast varying signal enables the adaptive 

deltamodulator to track the input signal more accurately.   Abate [2j has 

developed a workable system that uses step sizes of 1,2, and 4. 

-9- 
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Dual Mode Deltamodulation-DPCM Systems*.   The combination of 

the deltamodulation and the DPCM coding techniques has been found to pro- 

vide an improvement in information transfer rate for a given picture quality 

for monochrome images when compared to either system separately.    Use 

of DPCM alone is inefficient because the codeword output symbols are not 

typically generated with equal probability.    Use of deltamodulation alone is 

inefficient because of quickly changing amplitude.    The dual mode coder 

combines the best of both modes (deltamodulation for slowly changing regions 

and DPCM for quickly changing regions) and potentially achieves a bit rate 

reduction while preserving picture quality.    The simulation results con- 

firm this hypothesis. 

Figure 3 presents a pictorial view of the principal somponents 

of the dual mode coder system.    The position of switches SI and S2 determine 

the current coding mode.    The switching is performed automatically by the 

system.    This system is similar to one considered by Frei et al [3]with the 

difference that here a third order predictor is used for the DPCM system. 

The quantizer for deltamodulation is uniform, with two levels.    The 

deltamodulation reconstruction level Q determines the extent of mode switch- 

ing in the system.    The DPCM quantizer is nonuniform with 8 levels. 

Prior to processing,  the number of pixels per line is expanded by a 

factor of three.    The new pixels are interpolated from the original data. 

The deltamodulation coder uses the expanded lines where the DPCM coder 

uses only the original data.    During the deltamodulation mode,  groups of 

three pixels are coded.    The sequences of three bits produced by the quan- 

tizer are then compressed to one bit according to a majority decision.    If 

all three bits are identical they are transmitted uncompressed; the coder also 

switches to DPCM.    During the DPCM mode each of the original pixels is 

coded for transmission.    When two successive transmissions are at the 

lowest quantization level,  but alternate sign (idling condition),  the coder 

switches back to the delta  mode since such a condition indicates the resump- 

tion of a smooth picture region.    One drawback of this dual mode coding is 

the generation of data at an uneven rate which requires buffering the data 

prior to its transmission. 

* The results pertaining to the combination of DPCM and deltamodulation coder 
were obtained by Thomas Middleton a graduate student in Electrical Engineering 
Department of the University of Southern California. 
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Photographs of the original and processed pictures appear in 

figures 4 and 5.    Results are quite encouraging and support the results 

reported by Frei [3 ].    All of the simulation run parameters were 

trained on the tank picture.    With the delta reconstruction threshold set 

at Q=4. 0, the tank showed only slight degradation coded at 1. 72 bits/ 

pixel (Huffman DPCM Coding).    Using these same parameters, the girl 

was coded in 1.15 bits /pixel,   suffering slightly more degradation.    With 

Q=5. 0 and a bit rate ac 1.61 (3 bit DPCM coding) the tank showed slightly 

higher contouring but svill a good picture.   At Q=10.0 and 1.16   bits/pixel, 

the contouring was more pronounced.    Thus an acceptable picture can 

probably still be coded fit about 1. 5 bits/pixel, the rate achieved by 

Frei [3]. 

Based on these results the dual mode coder appears to be a 

workable scheme,  particularly in a noiseless environment such as stor- 

ing video data digitally.    In a noisy transmission channel coder system 

it is not as attractive because redundancy must be added to keep per- 

formance at a higher level.    Differential coding schemes are unstable 

in the presence of noise and do not recover until reinitialization such as 

at the beginning of a line. 

Comparison of DPCM and Pelt Modulation Systems for Color Images. 

Both the encoder and the decoder of a DPCM and the delta modulation sys- 

tems were simulated on a digital computer    to code the luminance and the 

chromaticity components of a color video signal.    The luminance component 

of this video signal is coded by the DPCM and the delta modulation systems 

at various bit rates.    The results are used to evaluate the performance of 

each coding system and compare their performances. 

The mean square values of the coding errors (MSE) are plotted in 

figure 6.    The performance of both the first and the third order DPCM 

systems improve at about the same rate by increasing the number of quanti- 

zation levels.    The first order DPCM system with a two-level quantizer is 

essentially the same as the simple delta modulator operating at one bit per 

picture element.    The adaptive delta modulator,  taking advantage of the 

feedback properties,   outperforms both of these systems at coding rates of 
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(a)    Original (d)     Dual 
Q =   5,   2.61    bits/pixel 

(b)    DPCM,   2.66    bits/pixel 

(c)    Dual 

(e)     Dual 
Q =   10,    1. 16    bits/pixel 

(ij     Dual 
Q =  4,   1. 18    bits/pixel 

Figure 3.3-4      Dual  mode  image  coding  using  "TANK"   picture 
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(a)     Original 

(b)     Dual 
Q = 4,   1. 16   bits/pixel 

(c)     Dual 
Q  = 6,   1.07     bits/pixel 

Figure 3.3-5     Simulation   results  using "GIRL" pictu re 
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one and two binary digits per picture element.    However, the firs! order 

DPCM system achieves a better coding capability at higher bit rates.   As 

shown in figure 6 the performance of the third order DPCM system is 

better than the performance of the delta modulators at all bit rates. 

The results of the delta modulators at bit rates higher than one 

bit per picture element requires sampling the analog data at a higher 

sampling rate.    The previously sampled data was interpolated to generate 

a larger number of samples.    The linear interpolation used to double, 

triple,  and quadruple the number of samples introduces higher frequency 

errors and other undesirable distortions.    The higher frequency error 

is eliminated in practice by low pass filtering the coded signal.    In cal- 

culating the coding error for the simulated systems the effect of the 

high frequency error was eliminated by two different techniques (see  [4]). 

The solid lines on figure 6 corresponds to complete elimination of these 

errors, and the curves shown by dashed lines correspond to partial 

elimination of the high frequency errors. 

The coded pictures corresponding to some of the points on figure 

6 are shown on figure 7.    The degradation in the picture coded by the 

third order DPCM system at a bit rate of 2 bits per picture element is 

not noticeable.    Using the other schemes a rate of 3 bits per picture 

element is needed to obtain similar results. 

The color video signal is very insensitive to degradations in the 

chromaticity components,  thus these signals can be coded using only a 

fraction of binary digits per signal element.    Figure 8 is a display of the 

I and Q signals coded by the adaptive delta modulator using 1/4 bit per 

pixel.    To achieve this bit rate both the I and Q signals are subsampled 

to reduce the resolution in both spatial directions by a factor of two. 

This signal is then coded and the result is linearly interpolated to in- 

crease the number of picture elements to 256 by 256.    Combining these 

signals with the coded luminance component results in coded video 

signal which does not show any noticeable degradation.    The total bit 

rate using the luminance component coded by the third order DPCM 

system is 2. 5 bits per picture element.    The bit rate corresponding 
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(a)     Original (b)     3rd Order DPCM, 
2 bits /pixel 

(c)     Adaptive Delta,   3  bits/pixel (d)     Simple   Delta,   3  bits/pixel 

Figure 3.2-7 Lumination of a  Color  Signal  Coded by DPCM, 
Adaptive   Delta,   and  Simple Delta Modulators. 
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(a)   Original I (b)   Original  Q 

(c)    I,    Adaptive Delta 
0. 25 bits/pixel 

(d)  Q,    Adaptive   Delta 
0. 25 bits/pixel 

Figure 3.2-8.     Original  and  Coded  Chromaticity Components  of the  Color  Video  Signal 
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to the luminance signal coded by other schemes is 3. 5 bits per picture 

element. 
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3.3  Slant Transform Image Coding of Monochrome Images 

Wen-Hsiung Chen and William K.  Pratt 

In transform image coding using separable unitary transforms 

the two dimensional transform F(u, v) of an image f(x, y) may be written 

as 

[F(u,v)] =  CA][f(x,y)][A]T 

where  [A]is a matrix whose rows are basis functions of the transforma- 

tion.    An efficient transformation for image coding is one for which the 

image energy is redistributed to a relatively small number of transform 

coefficients F(u,v).    The remaining coefficients can then be quantized with 

a small number of quantization levels without significiant error.    The energy 

compaction of a unitary transform will be "high" if the basis functions of 

the transform "resemble" typical lines of an image.    In most natural images 

a large number of lines or line segments are of nearly constant brightness. 

Also many lines and line segments either increase or decrease in brightness 

over their length in a nearly linear fashion.    Thus,   one of the basis func- 

tions should be a constant and another a discrete sawtooth or slant wave- 

form.    With this thought in mind,   a family of basis functions containing a 

flat and a sawtooth waveform member have been developed.    The remaining 

basis functions have been chosen so that the sequency (number of zero cross- 
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ings) of each basis function is equal to its row number minus one.   Also, 

by design, the resulting set of basis functions,  called the Slant trans- 

form,  possesses a fast computation algorithm.    The algorithm is des- 

cribed in detail in ref.   [l ].    Figure 1 is a superimposed plot of the 

Slant and Hadamard transform basis functions for a vector length of 16. 

An iatensive study has been performed on techniques for efficiently 

quantizing transform domain samples for the commonly employed image 

transforms.   An optimum strategy from the standpoint of minimizing the 

mean square error between the original and the reconstructed images has 

been found.  First, the number of bits assigned to each transform coef- 

ficient is made proportional to the logarithm of the variance of the coef- 

ficient.    The quantizer levels are then selected according to the Max 

quantization rule.    Figure 2 contains a plot of the mean square error ob- 

tained with several image transforms as a function of the image block 

size processed for image coding with an average of 1. 5 bits/pixel.    In 

this example, the image field was modelled as a first order Markov pro- 

cess with row and column correlation factors of 0. 95.    From this figure 

it is seen that the Slant transform is much superior to the Hadamard 

transform and closely approaches the optimal performance of the Karhunen- 

Loeve transform.    Also, the curve indicates that the mean square error 

does not decrease much after an image block size of 16 by 16 is reached. 

Figure 3 contains original eight bit,  256 by 256 pixel images and 

their reconstructions coded with an average of 1. 5 bits /pixel using the 

quantization strategy described above.    Subjectively, the reconstructions 

appear to be of good quality with little visible degradation. 

Further research on slant transform image coding is underway. 

The effects of channel errors are being studied,  and the Slant transform 

is also being applied to color images. 
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Figure 3.3-2    Mean Square Error Performance of Transform Image Coders 
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(b)      Zonal Coding 
1. 5 bits/pixel 

(d)      Zonal Coding 
1. 5  bits /pixel 

(e)     Original 
[{)       Zonal   Coding 

1. 5   bits /pixel 

Figure  3.3-3.     Slant 
Transform  Image 
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3.4 Transform Differential Coding of Monochrome Images 

Faramarz Davarian and William K.  Pratt 

In conventional transform image coding a surprisingly recog- 

nizeable monochrome image can be reconstructed using about 5-10% 

of the transform coefficients with the largest magnitude.    The recon- 

structed image generally possesses the correct overall grey scale 

shading,  but lacks high frequency detail.    One could consider this 

reconstructed image to be a first order estimate of the original image 

in the t-ense that the feedback signal in a differential PCM image coder 

is an estimate of the scanned pixel values.    This idea has led to the 

development of a coding technique called transform differential image 

coding as shown in Figure 1.    In this system an image block undergoes 

a two dimensional unitary transform.    The transform coefficients are 

grossly quantized,  coded, and transmitted.    The quantized transform 

coefficients are then subjected to an inverse two dimensional transfor- 

mation.    The resultant image estimate is then subtracted pixel by 

pixel from the original image.    The pixel difference signals are quantized, 

coded, and transmitted.   At the receiver the pixel difference signals are 

added to the image estimate to obtain a reconstruction of the image block. 

A bandwidth reduction can be obtained with the transform differential image 

coding by two coding techniques.    One of the techniques is information pre- 

serving and yields a moderate compression ratio, and the other technique 

permits a small reconstruction error in order to achieve a greater com- 

pression ratio. 

Information Preserving Coder.   In the information preserving coder 

version of the transform differential coder, the pixel difference signals are 

quantized to the same grey scale resolution as the pixels of the original 

image and then coded using a variable length Huffman coder.    Typically, 

an average of about 2. 0 to 2. 5 bits/pixel is allotted to the pixel difference 

signals.    It should be noted that the quantization process on the transform 

coefficients does not create any reconstruction error since the pixel dif- 

ference signals are perfectly coded, but the transform coefficient quantization 

process does affect the coding performance of the overall system.    Figure 2 
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IMAGE 
BLOCK 

QUANTIZER} CODER 
PIXEL 
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FOWARD 
TRANSFORM QUANTIZER 

(a)   Coding system 

INVERSE 
TRANSFORM 

CODER 
TRANSFORM 
COEFFICIENTS 

PIXEL 
DIFFERENCES 

TRANSFORM 
COEFFICIENTS 

DECODER 

±^> 

INVERSE 
TRANSFORM 

RECONSTRUCTED 
IMAGE BLOCK 

(b)   Decoding system 

Figure 3.4-1.    Transform differential image coding system 
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illustrates entropy of the pixel difference signal as a function of the 

number of transform coefficients transmitted for a typical picture 

using a 16 by 16 pixel block slant transform.    Figure 2 also contains 

plots of the number of bits allotted to the transform coefficients and 

the total number of code bits required for the image using an optimum 

coder for the pixel differences.    The maximum pixel length has been 

limited to a difference of five quantization levels in this example.    If 

a pixel difference greater than five occurs the actual pixel difference 

is coded.    The simulations indicate that for an optimized system,  an 

image can be coded with an average of about 3.5 to 4.0 bits/pixel. 

This result is somewhat disappointing since a coding of about 4.0 

bits/pixel can be achieved simply by coding the pixel differences along 

an image line. 

Non-Information Preserving Coder.   In the non-information pre- 

serving coder,  the pixel difference signal is quantized using a nonlinear 

quantizer with a relatively small number of levels.    The quantizer design 

follows the same general rules as for a differential PCM image coder. 

In an initial set of simulation experiments shown in Figure 3, the slant 

transform coefficients were coded with an average of 2. 0 bits/pixel 

and the pixel difference signal was quantized to only three levels and 

coded with 1.0 bits/pixel.    The resulting reconstruction of 3.0 bits/pixel 

is quite good.    It appears possible   to approach a coding of 1.5 bits /pixel 

with this technique using an adaptive quantizer.    Further investigations 

along this line are underway. 

3. 5 Quantization Error and Entropy of a Single Random Variate 

A. Habibi 

Most practical coding systems that are used to convert analog 

signals to binary digits are composed of three serial processors.    The 

first attempts to process the input data to form a set of uncorrelated 

samples with a continuous amplitude; the second,  a memoryless quantizer, 

maps the continuous-valued signal to a set of a given number of discrete 

levels; and finally the third processor converts this data to a set of binary 
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(a)    Original 

(b)    Transform differential coded 
3.0 bits/pixel 

Figure 3.4-3.    Transform differential image  coding  examples 
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digits by a fixed-length or a variable length coder.    The use of the 

memoryless quantizer is justified if the signal at the input of the quantizer is 

uncorrelated.    Examples of decorrelating processors are the sampler 

and linear predictor in differential PCM and the Karhunen-Loeve trans- 

formation in the transform coding schemes  [l,2].    The variable coding 

scheme in the output of the quantizer is employed to generate binary 

data at an average rate equal to the entropy of the discrete data.    This 

rate is, in general, lower than the rate of data generated by a fixed- 

length coder which is equal to the base-two logarithm of the number of 

quantization levels.    Naturally, increasing the data rate will reduce the 

degradation between the original signal and one that is reconstructed from 

the binary digits by inverse operations.    This relationship is bounded by 

Shannons  rate distortion function which is the absolute bound for any cod- 

ing system [3,4]. 

In this report attention is focused on the operation of the memory- 

less quantizer.    The criteria of optimality are both the mean square error 

and the entropy of the discrete signal.    Thus the system which performs 

closest to the rate distortion function is the ideal system.    Using this 

criterion the performance of some existing quantizers in coding uncor- 

relat^i signals of various distributions is studied.    Of specific interest 

to image coding are the Max quantizer, the instaneous companding, 

quantizer and the uniform quantizer for input signals possessing Gaussian 

or double-sided exponential probability density functions.    These pro- 

bability densities are of interest because of their occurrance in DPCM and 

transform coding schemes for pictorial data. 

Review of Quantization Schemes.    A quantizer maps a sample x,  a 

continuous variable with a continuous probability density p (x) into one of 

a finite set {y , . . . , y    } of rational numbers.    This mapping follows the 

procedure: 

if   x. < x  < x    .   then x is mapped to y.(j = l, . . ., N) 
J J J 

The x (i = 2, . . . , N) are the transition levels, with x, and x„,, , the greatest 
j 1 N + l 

lower bound and least upper bound,   respectively,  to the input signal,   and 
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the y.(j = l, 2, ...,N) are the quantization values.    Given the total number N, 

of discrete levels allowed,  a quantizer is specified by the sets of transition 

levels x. and the reconstruction values v.. 
J J 
In his search for a quantizer with a minimum distortion, Max [5] 

minimized the expected value of an arbitrary function of error between 

the input and the reconstructed signals, and obtained a set of sufficient 

conditions.    For a square function of error the sufficient conditions are 

J 
2x. - y. 

J        J"1 j=2, ...,N (1) 

and 

yf J+1 

x. 
J 

(x-y.) p (x)dx=0 j = l, . ..,N (2) 

Note that this technique minimizes the mean square error without con- 

sidering the entropy of the quantized numbers.    Equations (1) and (2) can 

only be solved by iterated techniques.    Various schemes of approximating 

the above quantizer have been suggested that use easier techniques of 

computing the transition and the reconstruction values  [6-8] 

In a uniform quantizer,  as shown in figure 1, both the transition 

and the reconstruction levels are spaced at equal intervals,   q.    For a 

given number of quantization levels N,  the maximum quantization levels 

is X=(N-1) q/2.    The parameter q can be chosen to minimize the mean 

square error [5],  or to minimize the entropy of the quantized signal or 

a combination of the two in order to code at a rate closest to the Shannon 

rate distortion function [4].    The Instantaneous companding quantizer is  a 

third type of quantiser that,  in a sense,   combines attractive features of 

the other two typos.    This system uses a uniform quantizer that is pr   - 

ceeded by companding of the input signal.    The type of compression de- 

pends on the probability density function of the signal.    The quantizer is 

followed by an expander that compensates for the effect of the compression 

by expanding the quantized signal.    The system is shown in figure 2 where 

f(. ) and g(. ) are the pre-and the post-quantization mappings.    Algazi  [6] 
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R(x) 

I    I    I    I 
Xk       Xk + I 

Figure 3, 5-1«.    Uniform quantizer 

UNIFORM 
QUANTIZER 

f*(x) 

Figure 3.5-2.   Block diagram of the instantaneous companding quantizer 

n 

f(x)     A\    f(x)+n 
g(*) 

Figure'3. 3>3.      The  analog model of the instantaneous  companding quantizer 
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modeled this quantizer by the linear system of figure 3.    Under the as- 

sumptions that the quantization noise is small,  additive and is uncor- 

related with the signal,. Algazzi showed that the system will minimize 

the mean square error if mapping f(.) is given by 

f(x)   -   K     I [P (x) ]3   dx + K 
■■■      ft* A C 

(3) 

and 
J 

1 
g (•)   =   i  ' ( ) (4) 

The same results have beer, obtained by Panter and Dite using a dif- 

ferent approach [9,   10].    Mappings f(.) and g(.) are obtained from (3) 

and (4) for a given probability density p (x).    Then the uniform quanti- 

zation parameter (for a given number of quantization levels) is chosen 

to minimize the mean square error or to operate at the closest point 

to the rate distortion function. 

Comparison of Quantization Schemes. The Max,uniform,  and 

the instaneous companding quantizers discussed in the previous sections 

have been designed for two-sided exponential and Gaussian probability 

density functions.    Thess probability density functions have been chosen 

because of their importance in image coding.    Equations (1) and (2) 

were then solved iteratively for the two-sided exponential and Gaussian 

probability density functions to obtain the quantization error and the 

entropy of the quantized signals for various number of quantization levels. 

The number of binary digits required to achieve this coding error is the 

base-two logarithm of the number of quantization levels for the system 

that uses fixed-length code words.    When variable length coding is em- 

ployed the number of binary digits is equal to the entropy of the quantized 

signal.    Figures 4 and 5 show the bit rate versus the mean square error 

for the exponential and Gaussian probability densities for fixed-length 

codes while figures 6 and 7 show a similar relationship for the variable- 

length coder.    In figures 4 and 5 the parameter q of the uniform quantizer 

is chosen   to minimize the mean square error.    The parameter q varies 

over a range of values for different numbers of quantization levels in 
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figures 6 and 7.    For the Gaussian probability density function the tan- 

gent to these curves is within 1/4 of a binary digit from the rate dis- 

tortion function,  and for the two-sided probability density it is within 

1/8 of a binary digit.  Figures 4 and 5 indicate that for a fixed-length 

coder the efficiency of the instantaneous companding quantizer is worse 

than the Max quantizer,  but it is better than the uniform quantizer. 

Figures 6 and 7 show that the instaneous companding quantizer does not 

perform as well as the uniform quantizer using a variable coding 

scheme,  but ic outperforms the Max quantizer. 

From the results above it is concluded that: (1) If the quantizer 

is followed by a variable length coding scheme (such as the Huffman Coder) 

then the best results will be obtained by using a uniform quantizer.    The 

performance is not very sensitive to the least upper bound of the transition 

levels X.    Good coding results are obtained with a value of X about three 

times of the standard deviation of the signal.   The performance of the 

instantaneous   companding quantizer  is  close  to the uniform quantizer,   but 

it remains inferior to it with the Max quantizer doing worse than both 

schemes.    (2) Using fixed-length code words the performance of the 

Max quantizer is superior closely followed by the instantaneous   companding 

and the uniform quantizers. 
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3. 6 Universal Coding 

Lee D.  Davis son 

Suppose one is given a time and state discrete source (e.g.,  a 

sampled and quantized image) to block encode without error to minimize 

the average code word length, the code depending on some unknown para- 

meters of the source message probabilities.    The unknown parameter 

couid be something as simple as,  say,  the probability of a one in a binary 

independent letter source or the transition probability matrix for a Markov 

model of an image,   or as general as the complete set of message proba- 

bilities for the source.    Such sources are called composite. 

In some case?,  although not usually,  the unknown parameter may 

itself have a known prior distribution so that all ensemble message pro- 

babilities are known.    There is no reason to suppose,  however,  that cod- 

ing for the whole ensemble will be efficient for the actual parameter in effect. 

One of the important results of this study is to establish that coding for the 

whole ensemble does,  under certain circumstances have a very important 

meaning in an asymptotic sense.    For example,   consider a composite 

binary source whereby the probability,   0 ,  of a "one" is chosen by "nature" 

randomly according to the uniform probability law on  [O, 1 Jand then fixed 

for all time.    The user is not told the 0,  however.    Subsequently,  the 

source produces independent letter outputs with the chosen,  but unknown, 

probability.    The probability,  given 8,   that any message block of length N 
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contains n ones in any given pattern is then 

9n(l - 8)N"n (1) 

If 8were known, a per letter average code word length of 

H(8)   =   -9log2 6- (1 - 6)log2 (1 - 8) (2) 

bits would be required to block encode the source.    Although 8is unknown, 

the composite source output probabilities are known.    In fact, the pro- 

bability of any given message containing ones in N outputs in simply 

/ 

8n(l-8)N-nd0 N (3) 
N + 1   \ n/ 

(Note that the composite source does not produce independent letters. 

This is due to the fact that past observations provide information about 

the value of 9 in effect.) 

There is no reason to suppose that the use of the probabilities of (3) 

to design a variable length code will do well for any 0that comes along in 

the sense of approaching (2) by using large blocks.    One of the surprising 

results of this study is that the probabilities of (3) provide codes 

as good asymptotically as the probabilities of (1) with 8 known exactly. 

Consider the following encoding procedure. It is seen from (1) 

that all sequences with the same number of ones are equally probable. 

Send the message in two parts.    Part one consists of a fixed length code 

for the number of ones using at most   log(N+l) + l bits.    Part two is a code 
/N\ indicating the location of the ones within the block,   one of I     j   possibilities. 

/N \ n 

At most the log I      )  +1 bits,  a variable length depending on the number of 

ones,  is required for this information.    The per letter coding rate is then 

<  i    [( log(N + l)+2)+log (N)    ] (4) 

The first part goes to zero as N ">0°.    The expected value of the second 

part must converge to the per letter entropy of equation (2) because the cod- 

ing rate cannot be below the source entropy,   and,  at the same time,  the 

second part of the code is optimal,   all messages conditioned on the first 

part being equally likely,  independent of 8 .    This will be demonstrated quan- 

go- 
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titatively subsequently.    Note that a comparison of (4) and (3) shows that 

coding with respect to the whole ensemble with 8 uniform on [O, 1 ] is 

asymptotically optimum for this example. 

Formulation of the Universal Coding Problem.   Several measures 

of optimal universal coding effectiveness can be proposed in terms of a 

source block output random variable, X     and an unknown parameter JB . 

As they all involve differences between the average code word length, 

denoted I (X, | 8_) and the entropy per block symbol, H( X     | 8), the 

measure is a form of redundancy.    In each case the infimum is taken 

over the class C., of uniquely decipherable codes on block N.    They are 

listed in order of ascending redundancy: 

Definition 1.    Weighted Redundancy 

?     =   lim    inf f    *gNli> - H(X ^ | 8) 
~ N  ' -'    dw (8) 

N N 

where w (8_) is a probability measure. 

for which P    approaches zero 
w 

Definition 2.    Maximin Redundancy 

A code for which P    approaches zero is called weighted universal. 
w 

lim    sup        inf 
N -*» wew    C 

N 
/ 

(XN |B)-H(XN|i) 
dw (8) fA N 

If /? is zero, the code sequence which approaches it is called maximin- 

universal. 

Definition 3.    Minimax Redundancy 

lim 
N -»« 

inf     s up 

CN    ^£A 

^(xN ll.)-H(2^ll) 
N 

If the min)    ax redundancy R is zero,  then the user can transmit the source 

output at a      te per symbol arbitrarily close to the source entropy rate uni- 

formly over all values  |_ e A (unlike the other forms of universality) by taking 

N large enough.   P = 0 is the strongest and most desirable condition.    However, 

in some cases it is too much to hope for.    If a sequence of codes for which 
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I(xN> 9) = 0 

R  - 0 does exist, it is called minimax-universal. 

It can be shown that: 

Theorem 1.    The necessary and sufficient condition for the exis- 

tence of weighted universal codes is that the per letter average mutual 

information between the message ensemble {x. }and 9_ be zero. 

Theorem 2.   Maximin universal codes exist if and only if the 

per letter channel capacity between % and [x. } is zero. 

Theorem 3. A necessary and sufficient condition for the exis- 

tence of minimax universal codes is that there exist a mixture probability 

mass function p(x„Y) for which the conditional mutual information be zero r —N 
uniformly in 9_ and N, i. e. 

lim —   sup 
N       r 

N -»»    9_ eA 

The determination of the existence or non-existence minimax uni- 

versal codes is mot easily made by searching the class of weighted-uni- 

versal codes.    This is analogous to decision theory where Bayes rules are 

more easily formed than minimax rules so that minimax rules are con- 

structed by searching the class of admissible Bayes rules by finding the 

Bayes rule with respect to a "best guess" least fevorable prior. 

For the binary example presented here: 

S^N. !> ■ 5   L(>n<'-e>N-n>og[<N+i)<>V9)N-'1] 
n=0 

=   log(N + l) - J_ 
N N 

<    log(Nfl) 
N 

-    0 

N ■♦• 

Hence,  the code constructed by taking 6 uniform results in a minimax uni- 

versal code,  as well as a maximum and weighted universal code. 

Summary.    The preceeding has charted the basic concepts of uni- 

versal coding for arbitrary information sources.    Studies are underway to 

("entropy of a binomial random 1 
Lvariable with parameter 9        -" 
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apply universal coding to theoretical image models and to digitized images. 

3. 7 Analog Real Time Implementation of Transform Image Coders* 

Lloyd R. Welch 

The invention of surface wave acoustic devices has made possible 

the design of tapped dely line filters of long lengths.    (Filters with several 

hundred delays are practical.)   Since an N point transform can be thought 

of as N, tapped delay line filters, the thought naturally arises as to the 

possibility of the real time mechanization of transforms using surface 

wave devices. 

Since N distinct surface wave substrates with associate driving 

circuits would be expensive, various investigators have considered mul- 

tiple use of a delay line by connecting the taps through semiconductor 

switches.   A switch arrangement is shown in figure 1 when the transform 

coefficients are +_ 1,0.    The number of such taps is 2N-1.    To produce 

the inner product of the signal with the first row of the transform matrix at 

time 1, S     through S      are appropriately activated while S    for k >M are 
- - - 2 

all off.    To produce the inner product with the second row at time 2, S       to 

N+l Ik 
S        are appropriately activated while S    and S     for k >N+1 are all off. 

It is somewhat doubtful, however,  that the signal amplitude out of the 

switches can be controlled well enough to produce an accurate summation. 

Furthermore, when the transform has coefficients with amplitudes other than 

unity, the switches cannot be controlled well enough to produce these am- 

plitudes accurately. 

Recent studies by material science investigators have shown that 

it is not difficult to lay several paths on a substrate driven by a single 

transducer.    This offers an alternative configuration where each row of 

the transform matrix corresponds to a delay line channel on the substrate 

with its own tap configuration.    Since the tap apertures can be precisely 

cut,  summation coefficients can be controlled easily to less than one percent. 

Several problems remain, however.    Multichannel devices result in parallel 

output.    If several outputs are desired,  the tap configuration on consecutive 

delay lines must be offset by one sample time,  thus the total amount of delay 

*   supported in part by the Air Force Office of Scientific Research 
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needed on the substrate is still 2N-1 units of sample time.    A second pro- 

blem not so easily solved is as follows:   The signal on the substrate is g(t) 

cos (2 TTft) where f is the carrier frequency and g(t) is either the signal 

to be processed or the signal with a bias term added.    In either case, the 

tap configuration on many of the channels will be orthogonal to the bias 

term and the output g cos ( 2rrft) may have a negative value for g .    There- 

fore a simple amplitude detector will preserve the absolute value but lose 

the algebraic sign.    The method used to overcome this problem will de- 

pend on what further analogue digital processing will be done.    This pro- 

blem is currently under investigation. 
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4.     Image Enhancement and Restoration Projects 

Image enhancement, as defined here,  is the manipulation of pictoral 

data for improvement in presentation to a human viewer,  or for simplification 

in format for subsequent machine processing.    In image enhancement pro- 

cesses there is no overt attempt to preserve or improve fidelity.    Image 

restoration processes attempt to reconstruct an image according to some 

pre-conceived notion of what the image should have been if there had been 

no distortion in its formation.    The latter problem of image restoration is 

amenable to hard analysis, while the former problem of image enhancement 

is usually subject to heuristic approaches.    Image enhancement and restoration 

research topics considered during the past six months are summarized below. 

The first three research tasks deal with the application of generalized 

Wiener filtering techniques to the restoration of images that are statistically 

described in terms of covariance functions of the original image and the noise 

or interference.    In the first report consideration is given to restoration of 

images subjected to a linear, but not necessarily space invariant, blurring 

and additive noise.    A process has been developed for sequential row and 

column filtering of the image which yields substantial improvements in 

image quality.    The second report is concerned with the computational 

aspects of generalized Wiener filtering for images subjected to additive 

noise.    A procedure for restricting the Wiener filter to be causal,  i. e. , 

only operating on past data samples,  is given.    It is demonstrated that 

the increase in reconstruction error under a causality condition is small 

if Hadamard transform preprocessing of the data is employed.    The third 
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report deals with the combination of the scalar Wiener filtering and the 

homomorphic filtering concepts.    A logarithmic operation is performed 

on the image to separate multiplicative interference from an image.    Linear 

Wiener filtering is then employed to minimize the interference, followed by 

an exponentiation operation to restore the image.    Significant improvements 

in the detection of image detail are demonstrated. 

The following two reports discuss the problem of image restoration 

for images subjected to linear space variant degradation.   It is shown that, 

in a wide class of problems, the space variant operator can be cast into the 

cascade of an invertible geometric operator,  a linear space invariant system, 

and another invertible geometric operator.    Such systems can be "undone" 

and restored by conventional space invariant techniques such as scalar 

Wiener filtering.    An example of space variant restoration is given for an 

image subjected to motion during film exposure. 

The next report outlines some beginning attempts at image restoration 

by nonlinear filtering.    It is pointed out that conventional linear filtering 

often results in non-physically realizable reconstructions, i.e., the 

representation of negative intensities.    A nonlinear recursive technique 

is developed for image restoration,  and examples of its performance are 

presented. 

The last report is in the form of an inserted reprint from the July 1972 

issue of the IEEE Spectrum.    This paper outlines several image enhancement 

techniques and discusses the uses of pseudocolor for image enhancement. 
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4. 1   Image Deblurring by Generalized Wiener Filtering 

William K.  Pratt 

The concept of generalized Wiener filtering previously developed [l j 

for the restoration of images degraded by additive sensor noise can be 

extended to compensate for spatial blurring of the image as well as noise. 

Image Degradation Model.    Figure 1 contains a block diagram of a 

model for image degradation.    The ideal continuous image is subjected to a 

spatial blurring mechanism which is assumed linear, but not necessarily 

spatially invariant.    Next,  the blurred image is combined with additive 

noise that is uncorrelated with the image,  and the blurred and noisv image is 

then spatially sampled and quantized for digital processing.    The spatially 

sampled image function can be expressed as 

fg(x, y)   =   [fß(x, y) + n(x, y)] s(x, y) (I) 

where the blurred image is given by the superposition integral 

fß(x,y)   =   J     f^a, ß)b(x,y;a,ß)dadß (2) 

with b(x, y;a,ß) representing the impulse response of the physical blur 

mechanism.    The sampling array 

M-l       N-l 
s(x, y)   =    AxAy     \ ~r       \ T   j(x-mAx, y-nAy) 

m=-M   n=-N 

(3) 

is assumed to be composed of (M* N) identical sample pulses j(x,y), 

arranged in a grid of spacing (Ax, Ay).    The image at the sample points 
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(j = mAx, k = nAy) can be approximated as the double summation 

j+c       k-d 
fs(j,k)   =    J2      J2      yP.q)MJ.kn»,q)+n(j,k) (4) 

p=j-c q=k-d 

where the constants (c, d) define an enclosing boundary for the blur 

mechanism impulse response.    Figure 2 illustrates the geometric arrange- 

ment of sample points in the ideal image, blur impulse response, and the 

sampled blurry image.    It should be noted that the sample points outside 

the physical sampling array contribute to samples of the blurred image. 

In general the blur impulse response is a four dimensional function 

that is spatially convolved with the ideal image.    If the blur function is 

separable in orthogonal coordinates,  i. e. 

b(j,k;p,q)   =   b.(j;p)b, (k;q) (5) 
J K 

then the rows and columns of the image array can be processed sequentially. 

In this case eq.   (4) can be expressed in matrix form as 

[fs(j,k)l  =   [bj(j;p)][fI(p,q)][bk(k;q)]T + [n(j,k)l (6) 

The development of the generalized Wiener filter for image deblurring 

and noise smoothing presented here is limited to the sequential processing 

of rows and columns of an image.    The more general case of two dimensional 

filtering is under investigation. 

Sequential Row and Column Wiener Filtering.    For notattonal simplicity 

let 
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s   = 

f  = 

n   = 

b   = 

P X 1 column vector of ideal image row or column 

MX 1 column vector of observed image row or column 

M X 1 column vector of noise along image row or column 

M X P matrix of blur impulse response along image row or column 

Then,  the observed image vector can be expressed as 

f    =   b s + n (7) 

In the generalized Wiener filtering solution to the image restoration 

problem,  as illustrated in Figure 3,  an estimate £ of the ideal image 

line j[ is obtained by performing a unitary transform on the observed image 

line f_,  multiplying the transformed data vector by a filter matrix G   ,  and 

performing an inverse transform.    The resulting output vector is then 

s  =   A     G   A f (8) 

The reason for introducing the unitary transform A is to decorrelate the 

observed data vector and permit subsequent computational simplifications 

in the filter function multiplication.    Transforms that have been considered 

include the Fourier,  Hadamard,  and Karhunen-Loeve transforms.    This 

subject has been covered in Ref. [l J and is extended in the following section 

for the case of additive sensor noise, but no image blur.    In developing the 

optimum filter matrix G    for a particular unitary transform matrix A,  it 

is possible to compute the optimum filter matrix for the identity transform, 

G_ ,  and then perform the two dimensional transformation 

■5.1- 
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Figure 4. 1-3-      Generalized Wiener  Filtering 
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GA   =   AGTA 
—A 1— 

(9) 

The optimum Wiener filter matrix is, by definition, the filter matrix that 

minimizes the mean square error between _s and its estimate £.    However, 

the estimate will only be used over the vector length of the observed data. 

Thus, the mean square error may be written as the trace of the covariance 

matrix of the error over the data vector length. 

e   =   T ̂ [k(s-s)][k(s-i)]T  } (10) 

where k is an identity matrix of dimension M embedded in the center of a 

matrix of null elements of dimension P 

f P > 

Bv the orthogonality condition the mean square error is minimum when 

Tk(£-s)]f_   =   0 

or 

i>(i-G b£ - Gnj] [ b£ + n]       =0 

(Ha) 

(lib) 

For the case in which the ideal image and noise are uncorrelated, the 

optimum filter matrix is found to be 
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G    =   kC b   fbC b    +C] 
—I s —   * s—       — 

and the resulting mean square error is 

(e)    .     =   kCk-GbCk 
min s—    —I s 

-1 
(12) 

(13) 

In the limiting case in which there is no blur, the blur matrix becomes 

f P    > 

M 

«-P/ 2 -^ M }H^P 12 ■ 

The optimum Wiener filter 

GT   =   kC k[k C k + C  ] _1 

—I s— s—    —n 
(14) 

then reduces to the form derived in Ref.   [l] for no blur.    If there is 

no image noise the optimum Wiener filter becomes 

GT   =   k C bT[b C b7!"1 

—I s— s— 
(15) 

Image Restoration Example.    Consider the restoration process when 

the image lines are statistically described by a first order process with a 

covariance function 

C _{i,j] =  P!l'J (16) 
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and the noise is white with a covariance function 

C-{i'jl   =   SNR6(i'j) n 
(17) 

where SNR is the image signal-to-noise ratio.    The blur function is 

assumed to be Gaussian in form 

b{i,j}   =   exp{-(i-j)  /BL) (18) 

Figure 4 is a plot of the variance of each pixel of the image line estimate 

as a function of signal-to-noise ratio and blur for an image line section 

of 32 pixels and an observation of 16 pixels.    The image correlation 

factor is P = 0. 8.    The reason for utilizing only the center 16 pixels of 

the 32 pixel estimate is readily apparent from Figure 4. 

A series of simulations have been performed to evaluate the filtering 

process.   An original image of 256 by 256 pixels and 6 grey levels 

was filtered over its entire size with the filter function of eq.  (18) using 

Fourier domain technique.    Numerically generated,  zero mean Gaussian 

noise was added to each pixel value.    The resultant blurry and noisy image 

was then requantized to 64 grey levels to serve as an input to the restor- 

ation filter.    Figures 5a,  5c, and 5e are photographs of blurred and 

noisy originals.    The corresponding restorations are shown in Figures 5b,  5d, 

and 5f.    It is clear that the restoration filter has resulted in a substantial 

visual improvement.    Also, there is no apparent checkering effect in the 

images even though the filtering is limited to 16 X 16 pixel blocks. 
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.3 

.2 

.1 

BLUR - exp{-(i-j)VBL} 

PIXEL   CORRELATION - p = 0.6 

4 
1 I I I II 

PIXEL     NUMBER 
8 12 16        20       24 

I I I i I I I i I i i I i I i I I M i 
28        32 

I I I I  I I I 

Figure 4. 1-4.     Variance of pixel estimates 
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(a)    Original 

N =   oo    ,    B =    10 
N 

(b)    Restoration 

=   100,   B = 10,   R =  .6 

i.i 
rm 

i'i 
TUB 

N 

(c)    Original 

=   10,        B =   5 

Reproduced from 
best available copy 

f.   ■ «1 

K*1"^- v      "^^^^ itfNjI 
m   ■ 1^1 ?i 

^ Ja 

(e)    Original 

B = 10 I-10- 

(d)    Restoration 

|=   10, B=  5,   R =    .8 

(f)    Restoration 

j| =   10,   B =   10,   R =   . 6 

Figure 4. 1-5.     Generalized Wiener filtering image deblurring examples. 
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4. 2    Causal Generalized Wiener Filtering for Image  Restoration 

Nelson D. A.   Mascarenhas 

Generalized  Wiener filtering computational techniques have been 

used with excellen results in one and,   more  recently, two dimensional 

processing.     A typical example of the last case is the problem of the 

restoration of an image corrupted by additive noise Cl],    It has also been 

shown that suboptirnal filtering can be done,   with reduced computational 

demands,   without  severe degradation in performance^     This   section pre- 

sents the derivation of a suboptirnal Wiener filter  satisfying the  additional 

constraint that the matrix multiplication that performs the filtering must 

be causal or with a preassigned delay.    Major advantages  result from this 

restriction.     First,   the number of operations on the filter matrix multi- 

plication can be considerably decreased.     Second,   the delay in starting 

this operation is  reduced.      This  also leads to a further increase on the 

speed of the overall filtering operation. 

Derivation of the Suboptirnal Filter.   The discrete  causal filter for 

a mean square error  criterion was first derived by Friedland [2].     The 

concept is  extended here by permitting unitary preprocessing on the data. 

Figure  3 of Section 4. 1   shows the block diagram of a generalized Wiener 

filter in a  system for sequential image row and column processing.    In 

this   system f_ is the input  (Mxl)  data vector,  Ais  a unitary (MxM) matrix 
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and G. is the (MXM) filter matrix.    No assumption is made on the 

stationarity of the input process, but it is assumed, for simplicity, that 

the signal and noise are uncorrelated,  although the analysis can easily 

be extended to the other case.    The covariance matrices of the signal (C_ ) 
s 

and noise (C  ) are assumed known. 

The design of the filter G.  is based on minimizing the mean square 
.A. 

error 

e   =   Tr{(s-s)(s*-s*)T) 

However,   since A is a unitary transformation,  it is equivalent to minimize 

e   =   Tr{(S-S)(S*-S*)   } 

Observe that if f_ is a stationary process, the process F_ may be nonstationary. 

Also, if the matrix A represents a time invariant filter (i.e. A(i, j) = A(i-j)) 

then F will be stationary. 

The optimum noncausal filter has been derived as [l] 

cA = £srcs + CN] -1 

where 

and 

-1 ...T 
C„   =   A C  A        =   A C  A" 
—S s—  s— 

C      =   A C  A~ *    =   AC  A*T 

—N n—  n— 

In order to obtain an expression for G     in the suboptimal filter,  first consider 

the case where no delay  is allowed on the product of G    by F.    This restricts 
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GA to be a lower triangular matrix.    A direct approach to obtain G    in 
—~A A 

this case would consist in imposing the orthogonality between the error 

(S-S) and the data (F) vectors.    In the general, non-stationary case, a 

set of 1 + 2 + • • • + M = M(M+l)/2 linear equations would result in the 

same number of elements of G    below or on the main diagonal.    In the: 

stationary case this number would be reduced to M.    However, another 

approach can be taken,  giving more insight into the problem and allowing 

the use of a general procedure for any delay.    Starting from the result. 

obtained for the noncausal filter,  observe that (C_, + C^T) is a positive 
—S     —N 

definite matrix and,  consequently, it can be uniquely decomposed at [3 J . 

£S + CN   =   L.D 

where L is a lower triangular matrix and U its conjugate transpose.    Thus, 

the optimum noncausal filter [G. 1 assumes the form r —A J one 

r      T „      -1   -1 
[G.] =   C  U    L 
—A Jonc        —S—    — 

where U      is upper triangular and h      is its conjugate transpose or simply 

transpose if F_ is a real process. 

Now,  consider the process 

W   =    L"   F 

The covariance matrix of W is given by 

But 
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so that 

£F   -   Cg + CN   .   LU 

C„r   =   L_1L U U"1   =   I 

1 
Thus it is concluded that L,      performs a whitening filter operation on F_. 

Since LJ      is a lower triangular, this is equivalent to the statement that 

L      represents the Gram-Schmidt orthogonalization process on the data 

F.    The problem now has been transferred to the task of designing an 

optimum causal discrete filter operating on the white noise process W. 

This can be done by first examining the optimum noncausal filter operating 

on W, which is given by 

TG.]      L = ccu
_1 

—AJonc— 5 — 

-1 
The product C_U      can be decomposed as a sum of a lower triangular and 

o 

an upper triangular matrices 

csu-' . ^-\*{c^\ 

The first term operates only on past and present values of W, which are 

uncorrelated with future values of W.    This means that the best that can 

be performed when no future values of W. are to be operated upon, is to take 

the optimum causal filter T GA1       as r L —A ' oc 

or 

[cLi = ^_1
1L oc 

[Gloc   -   tc^-'^L"1 
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Observe that the procedure of taking [GAJ       =   [C U    L     JT  is, in 
—A oc —S—    —      Li 

general, wrong,  since F_ is not necessarily white (an exception occurs when 

A is the Karhunen-Loeve transformation) so that future values of F_ are 

correlated with past or present values of this process. 

The Suboptimal Filter with Non-Zero Delay.    When a delay of D units 

is allowed in the operation, it is possible to use values of the process W_, 

D units of time after the present time.    Then the optimum filter under the 

constraint of delay D,  (G.)   , has the expression 
A OO 

or 

.-!■ 
where [ JC _U    1 T r\ includes the elements of a lower triangular matrix and 

o LD 

subdiagonals up to the delay D. 

The number of multiply and add operations involved in the filter matrix 

multiplication [G   ]        F when a delay   D(0 SD ^M-l) is allowed can now 

be calculated.    The first (M-D-l) rows of [G   ]      (from top to bottom) have 
A od 

(M-l),..., (D+l) nonzero entries.    Each of the last (D+l) rows have M 

nonzero entries,  so that the total number is given by 

(D+1)M + ^-P-1*  (D+M)   =   |(M(M+D) + (D+1)(M-D)) 

Calculation of the Additional Mean Square Error.    When the optimum 

noncausal generalized Wiener filter is used,  it can be shown that the mean 

square error is [lj. 
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e    .     =   Tr{C_C   (C +C   )'   } 
mm —S—N ~S —N 

Now consider the error when a constraint of delay D is imposed on the 

filter.    In this case the error is expressed by 

e   =   Tr{(s-sDHs!:-l*)T}   =   Tr{(S_-SD)(S/::-S* )T] 

The error can also be given by 

e   =   Tr{(S-S+(S-SD))(S::c-S;:;+(S*-S*))T} 

where S is the estimate for the optimal noncausal filter.    Taking into 

consideration that S-S is uncorrelated with any linear function of the input 

A        A 

data, in particular S-S   ,  one obtains 

e   =   e 
mm 

+ Tr{[GA]d.f  (C, + CN,[GAlod 

where 

rcjdif = [GA]on<: - [GAI one        —A od 

The fact that (C_   + C   ) is a positive definite matrix guarantees that the 

error is strictly increased for any nonmaximum allowed delay. 

The mean square error for different transformation   varying the 

preassigned delay from Ö to 15 has been calculated,  for a one-dimensional 

(16 x 1) input data vector.    The input process co^^ists of a Markov process 

signal in the presence of white noise as defined in Section 4. 1.    It can be 

observed from the curves of Figure 1 that only a small price,  in terms 

-63- 

^ > ■ i  ■ I.  i ■       ■•■-.. ■-.■-- 
I |   ^"-■"■"'«'"•'"•«""'■■■«■"^^ ■    ■»^-•»M» «WIIUMWllr MM1 



UÖUU3   3dVnOS    NV3IAI 

-64- 



of mean square error,  is paid by allowing a few units of delay or even no 

delay,  for any of the considered transforms.    This is due to the concentration 

of energy on and around the main diagonal of the filter matrix.    The most 

severe increase in mean square error occurs for the identity operator, 

followed by the Hadamard transform.    As should be expected,  the 

Karhunen-Loeve filter,  being diagonal,  is not affected by the restriction 

of causality. 

However,  the final judgement for the selection of the best transformation 

requires a joint consideration of the curves of Figure 1 and the number of 

operations involved.    Another possible element for consideration comes 

from a detailed analysis (beyond the scope of the present paper) of numerical 

errors in computing the inverse of (C^    + C,T) in the general case,  for differ- 

ent transformations. 

It should be observed that,  although the present method results in 

causal operation only on the matrix G^,  in the case of the identity operator, 

the overall transformation is causal. 

Finally,  consider the fact that the h U factorization method (also called 

square root factorization or Cholesky method) suggests an efficient way of 
i 

inverting the covariance matrix (C    + ^±»T)»  namely,  obtaining the lower 

-1   ,T -1 triangular matrix _L,  inverting it and multiplying (L     )',c    by Li     . 
| 

Experimental Results.    The suboptimal filter has been used to enhance I 
1 

a 256 by 256 pixel,  64 grey level picture of a toy tank shown in Figure 2a. 
i 

In Figure 2b, white Gaussian noise has been added under the condition of 

unity signal to noise ratio.    This was done by setting the variance of the 
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(a)     Original  Picture 

Reproduced  from        gj»y| 
bes!  available  copy. 

(b)     Original plus  Gaussian Noise 
(SNR  =   1.0) 

(c)    Optimal Hadamard  Filter 
(delay =   15,     SNR =  1.0) 

(d)     Causal Hadamard  Filter 
(delay =  0,    SNR =   1.0) 

Figure 4. 2-2.    Examples  of  Causal  Wiener Filtering 
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noise equal to the measured variance of the pixel values.    Figures 2c and 

2d show the comparison of the performance of the optimal (delay = 15) and 

suboptimal (delay = 0) filters, with Hadamard preprocessing.    The correlation 

coefficient giving the best result was found to be equal to P = 0. 5 for this 

particular picture.    Hardly any difference between the two pictures was 

noticed. 

Conclusion.    The concept of causal filtering has been extended to 

generalized Wiener filter computations.    The method is based on a factori- 

zation of the covariance matrix of the signal plus noise.    It has been shown 

that only a small price in mean square error is paid even when small or no 

delay is allowed on the filter matrix multiplication.    The comparison of the 

performance of the optimal and suboptimal filters indicate that even though 

the number, of operators for the filter muHiplication is reduced to almost 

half for the zero delay filter, very little,  if any, visual difference is detected 

on the filtered pictures for different unitary transforms. 
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4. 3   Homomorphic Scalar Wiener Filtering *or Image Restoration 

Robert H. Wallis 

Images degraded by the effects of non-uniform illumination can be 

dramatically restored by using a non-linear filtering technique which 

utilizes the response of the human visual system [l J.    Experimental 

evidence indicates that the human eye behaves in accordance with the model 

shown in Figure 1.    This model explains the eye's ability to accommodate 

an enormous dynamic range of intensities.    Consider the input to the 

system as 

I        -   i      •   r (1) 
xy xy       xy 

where i      represents the illumination of the scene and r      its reflectivity, 
xy xy 

The logarithm transforms this product into the sum 

log(I     )   =   log(i     ) + log(r     ) (ZJ 
xy xy xy 

Since the illumination of natural scenes varies gradually across the 

image while the reflectivity contains much sharp detail (edges,  etc. ), the 

high pass filter tends to extract the scene from the shadows.    By treating 

the log (i     ) term as additive inteference,  a processor which imitates the 
xy 

human eye can be constructed,  reducing the effects of nonuniform lighting 

of the  scene.     A block diagram of this processor is provided in Figure 2. 

The homomorphic filter adds an exponential function to the visual model 

in order to neutralize the logarithm.    The log function transforms inten- 

sities into densities.    The filtered densities are then transformed back 

into intensities for viewing.    Since 
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xy 
log 

IMAGE 
INTENSITY 

log (ixv) + log(rxv) xy xy 
BRAIN 

Figure 4. 3-1. Model of Human Visual System 

l\ xy 
log 

log(i'xy) + log(rxy) LINEAR 
FILTER exp r 

ESTIMATE 
OF 
REFLECTIVITY 

Figure 4. 3-?.   Homomorphic Filter 
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logd1   )   =   log(i«   ) + log(r'   ) 
°   xy xy xy (3) 

can be treated as signal plus additive interference, the linear filter which 

best estimates the signal in a mean square sense can be found using 

Wiener filtering theory. 

Wiener filtering.    Wiener filtering is a technique which estimates a 

signal in the presence of additive noise,  or interference, with a minimum 

mean square error.    Consider 

where 

y_  =   s> + n (4) 

y_   =   available data vector 

£   =   signal vector to be estimated 

n   =   interference vector 

All vectors are of length N.    For simplicity let the structure of the estimator 

be as follows 

k X   =   li 

th 

(5) 

That is,  the estimate of the k     element of the vector £ is given by the 

vector dot product 

N 
h  y.   = £     h.v. (6) 

i=l 

The problem then,  is to solve for the h that minimizes the squared error 

E(e2}   =   E[hTy. - s^2 (7) 

■^-^-^^- ■ TT- in r fwi%miTiiB?miiMtfifii 
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Where E denotes expected value.    Defining V,  to be the gradient with 

respect to h, it is required that 

VEfeTZ " !kl
2}   =   ° (8) 

rherefore 

or 

T T T 
h   E(y_£   )   =   E(Skx   ) 

h   =   [E(XX
T)]_1E(SkY.) 

(9) 

(10) 

Assuming the signal to be uncorrelated with the interference, and that 

both are zero mean, then 

or 

E(y_y/)   =   E(s sT) + E(nnT) 

E(yyT)   =   C    + C 
-*-■*- s        n 

(11a) 

(lib) 

where C    and C    are the covariance matrices of the signal and interference s n & 

respectively.    Therefore 

h   =   [C    + C  l^Efs, s) 
s n 

(12) 

An Example of Homomorphic Wiener Filtering.    For simplicity assume 

that both the illumination densities (interference) and the reflectivity densities 

can be modeled by Markov processes, i. e. , 

\ 
C  (i,j)   =   E(n.n.)   =   a2p|i_jl 

n IT n n 
(13a) 
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C(i,j)   =   E(s.s.)   =   oV^ 

E(s   s)   -    a 
-k- s 

> -n 
ik-2| 

1 

P 

(13b) 

(13c) 

JN-k 

Since the interference is highly correlated (slowly varying) and the signal 

less correlated,  p    should be chosen larger than P  .    The following para- 
n s 

meters were selected somewhat arbitrarily. 

n 

n 

k   = 

= .9 

= .6 

8 

N   =   16 

(14a) 

(14b) 

(14c) 

(14d) 

(14e) 

Thus, the resulting h vector is 16 elements long and estimates the 8th 

element of the ^-vector.    This scalar filter can be used to filter large 

records of data by convolving h with a long data vector.    This can be 

thought of as multiplication of the data array by a large circulant matrix. 
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filtered 
signal 

filter 
matrix 

n 
(15) 

data 

Each row of the filter matrix is a shifted version of h centered at the 

diagonal.    Of course,  the first and last N/2 elements of the % vector will 

be inaccurate estimates,  however, for the large arrays used in image 

processing, this error is negligible. 

The actual convolution is carried out most efficiently using the Fast 

Fourier Transform (FFT) algorithm [3*] .    The processing is extended to 

two dimensions by using a two dimensional FFT whose frequency domain 

filter function is the product of two one-dimensional filter functions,   i. e. , 

H(fx,f )   =   H(fx)-H(f ) (16) 

where f   and f    are spatial frequencies in the x and y directions. 
x y 

Although the filter parameters have been chosen somewhat arbitrarily, 

the results are quite good.    Figures 3a and 3b present original and restored 

images of a tank sampled on a 256 by 256 grid.    Note that the restored 

version shows rruch detail not visible in the original,  and seems to be 

more uniformly illuminated.    It is expected that more careful modelling 

will yield even better results. 
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(a)    Original 
Reproduced from 
best available copy. 

(b)    Reconstruction 

Figure 4. 3-3.     Homomorphic  Filter 
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Conclusion.    This is a preliminary study and neglected many important 

considerations such as the calibration of the intensities in the original 

image.    Questions such as "what effect does the length of the filter's 

impulse response have on its performance?" remain unanswered.    The 

results however are qaite encouraging and future study on extensions of the 

technique are planned. 
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4.4   Image Restoration By Space-Variant Decomposition 

Alexander A.  Sawchuk 

In the well-known linear superposition model for incoherent imaging, 

the degradation from object to image is given by 

+°° 
J(x)   =   J      h(x,uK>(u)du (1) 

where Q(u) is the original object intensity function, J(x) is the image 

intensity recorded by the system,  and h(x, u) is the response at image 

coordinates x = (x ,x ) to a unit impulse at u = (u , u ) in the object coordin- 

ates.    In general, the form of h(x, u) varies with the position of the object 

impulse u and is called a space-variant point-spread function (SVPSF) in 

the context of image processing.    If h(x,u) can be written as a function only 
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of the difference x-u, then h(x, u) is a space-invariant point-spread 

function (SIPSF) and (1) reduces to a convolution. 

A large number of enhancement and restoration methods are available 

to process degraded images, but so far most of the:.Tn are of practical use 

only when the system degradation (1) is space-invariant.    Restoration in 

the general space-variant case is theoretically possible using brute force 

sampling and digitization of the functions in (1) followed by solution of the 

resulting tensor equation, but the enormous computational capacity required 

for practical realization makes such a technique useless in most cases. 

With these facts in mind, it is evident that the restoration of space-variant 

degradations might be easily accomplished if the SVPSF could be uniquely 

related to an equivalent space-invariant system.    This approach to image 

restoration is referred to as space-variant decomposition. 

Given a general linear SVPSF describing an optical system degradation, 

the basic idea behind decomposition is to express the SVPSF as an equivalent 

cascade of invertible geometrical distortion operations with space-invariant 

systems.    Figure 1 illustrates the concept of a space-variant system h(x, u) 

and its equivalent.    Because the distortions are one-to-one mappings of 

points between coordinate systems, they are invertible even though they 

may be nonlinear in the spatial coordinates.    The center block is a space- 

invariant system h (z-v) which gives the transformed intermediate image 

J (z) by operating on the transformed object <3 (v).    Once h(x,u) is reduced 
Z V 

to this form, the restoration proceeds '-y inverting the distortions and 

applying computationally simple space-invariant estimation or inverse 

•76- 



J(K) 
Inverse 

Geometrical 
Distortion 
z = c(x ) 

\^ 
Space-Invariant 
Estimator 

or Inverse °V(D 
Inverse 

Geometrical 
Distortion 

u = b"   (v) 

C(u) 

Figure 4.4-1.    General Coordinate  Transformation Restoration 
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filtering to recover the object function [3] .    This idea is summarized in 

Figure 2 and is a generalization of techniques reported previously [2], [3] . 

The procedure for testing whether or not the decomposition is possible 

for a given SVPSF involves manipulating h(x,u) into a functional form in 

which the geometrical distortions and space-invariant h (z-v) are more 

obvious.    Simply stated,  if h(x,u) is expressible in the form 

h(x,u)  = awßWhjfcW - b(u)) (2) 

where a(x),  ß(u),  c(x) and b(u) are one-to-one, continuous,  and invertible 

functions, with 0C (x) 4 0 and ß (u) 4 0 over their domains,  and h (r) is a 

Fourier transformable function, then space-variant decomposition and 

restoration are possible.    The SVPSF h(x, u) may also be put in alternative 

related forms from which restoration follows [ 1 j.    Writing h(x,u) in the 

form (2) immediately gives the geometrical transformations 

£   -   c (x) 

v   =   b(u) 

(3a) 

(3b) 

and the SIPSF    hT(r).    Here the intermediate functions are given by 

0(v)   =   ß(b"1(v))I.1(x)ö(b"1(v)) 
v — —     b 

and 

J   (z)    = 
z — 

J(c_i(z)) 

a(c_1(z)) 

(4) 

(5) 

where J   _ i (v) is a Jacobian function. 
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0(u) |h(x,u) J(x) 

0(_u) 
Geometrical 

Distortion 
v - b(u) 

6.te>. 

Space- 
Invariant 
hjCz-v) 

■",<£> 

Geometrical 
Distortion 

x - c     (zj 

J(x) 

Figure 4.4-2.   General Space-Variant Decomposition 
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By examining physical sources of optical image degradation from a 

system point of view, it has been found that the decomposition can be 

derived for a large class of space-variant imaging systems [l], [2^,  [5*] . 

The application of this technique to incoherent motion blur is discussed in 

the following section, while the remainder of this section is concerned with 

the restoration of optical aberrations. 

In optical imaging, degradations due to the system aberrations are 

usually of greater magnitude than those due to diffraction.    An inherent 

difficulty in attempting restoration arises because these aberrations are 

usually quite space-variant.    Robbins and Huang [3*] have derived the form 

of the aberration point-spread function as 

h(r.,9.;r   ,9   ) 
1     l   o      o 2n 

r. cos(0,-8 ) 
_i i    o 

n 

r.sin(8.-8r 
^+1, -1 X    ° 

n 

(6) 

where (r  , 8   ) and (r.,8.) are object and image respectively,  expressed in 

polar coordinates for simplicity due to the circular symmetry inherent in 

many optical systems.    In this formulation the function h*(x.,y.) is the 

response to an input impulse at standard position r    = 1,   8   = 0, and the 

expression for the overall system operation becomes 

2TT   » 

J>(r.,8.)   =   J     J    h(r.,9.,r   ,0   P (r  ,9 )r  dr  , 
11 „      „ llOO oooo 

d8 (7) 
0     0 

with n = 0 representing spherical aberration, n = 1 coma,  and n = 2 astigmatism 

and ^ui - ature of field. 
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With knowledge of the degrading expression (6), it is often possible to 

use the decomposition technique for space-variait restoration.   Robbins 

and Huang [3] reported a method for the restoration of coma (n = 1) which 

is essentially a special case of the general technique.    By making the changes 

of variable (the geometrical distortions in Figi re 1) 

ln(r.) 
l 

ln(r  ) 
o 

= e 

(8a) 

(8b) 

(8c) 

(8d) 

one obtains 

/   Zi-V 
1 cos(z_-v );e   *     * sin(z  -v ) 

2     2' 2     2 l)   =   hl(Zl-Vl, z - v  ) 2   r 

(9) 

where the 1/r    factor from the right hand side of (6) is absorbed into 
o 

0(r  , G  ).    It can be shown [ll that a Mellin transform method which 
o    o 

accomplishes the same coma restoration is really the same decomposition 

technique. 

The application of decomposition restoration to spherical aberration 

(r; = 0) and other aberrations (n = 2) is not quite so straightforward but is 

possible for certain special cases of h*(x.,y.) and is a currently active 

research area. 

l    l 

The decomposition method is also useful when the degradation is a 

space-variant blur caused by tilt of the image plane.    For this case,  the 
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SVPSF can be represented approximately by [3] 

i /xi~ui      x7_u2\ 
h(Xl,x2;Vu2)   =   -   h*l"t-  --T-)       ' (10) 

u. ^      1 1    ' 

When h""(u ,u») factors into functions h'"(u.)h*(u ) it is called separable, 

and for this large class of functions space-variant restoration of tilt can 

be accomplished by decomposition. 

The restoration methods described here are very general and useful 

in both noisy and noise-free systems.    Future work will be directed at 

determining other areas of application and implementing digital simulations 

of the technique.    Several papers reporting on the details of this work are in 

preparation and portions will be presented at the Fall Convention of the 

Optical Society of America [5*|. 
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4. 5   Restoration of Motion Degraded Images 

Alexander A. Sawchuk 

The coordinate transformation restoration technique described in the 

previous section is of particular value in the restoration of ima.ges degraded 

by motion.    In a recent paper [1^  an equivalent linear space-variant system 

containing all the motion effects has been derived given a mechanical des- 

cription of the motion.    The mechanical description has the general parametric 

form 

Ul   =   gl*Xl'X2;t)   =   gi(-;t) 

U2   =   g2(xi'X2;t)   =   g2(x-;t) 

(la) 

(lb) 

which uniquely relates any object point u = (u.f u_) to the location x = (x ,x  ) 

of its image in the fixed frame as a function of time for the exposure interval 

[O,T]. 

Although the equivalent space-variant point-spread function (SVPSF) 

which can be derived from (1) is rather complicated [l], [2]  it reduces to 

some simply expressions for common types of motion.    ^Tor parallel object 

and image intensity function planes which translate during exposure,  equation 

(1) takes the form 

u!   =   IjCxjt)   =   x -mj(t) 

U2   =   g2-;t^   =   X2_m2^^ 

(2a) 

(2b) 

where only the coordinate difference x-u is a time function, and the m.(t) 
  l 

describes the planar translation.    This particular form of motion function 
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leads to an equivalent motion point-spread function which is space-invariant, 

yielding a simple solution to the restoration problem. 

More complex space-variant motion blur occurs when object and image 

planes are not parallel.    For a large class of aerial imaging systems, the 

motion functions (1) can be expressed as 

bi*uru2* = ci*xrx2* " mi^ 

b2(ul'U2)   =   C2(Xl'X2)-m2(t) 

(3a) 

(3b) 

where the m.(t) express a translation between transformed coordinate 
l 

planes.    Making a change of variable 

z.    = 

WV 
b2(ul'U2) 

C1(X1'X2) 

c2(x1,x2) 

(4a) 

(4b) 

(4c) 

(4d) 

immediately puts (3) into space-invariant form and simultaneously identifies 

the coordinate distortions for space-variant decomposition described in 

Figure 1 of Section 4.4.    The general restoration method of Figure 2 of 

Section 4.4 is then applied directly with a space-invariant estimator or 

inverse filter.    The space-invariant equivalent system h (w ,w ) is given by 

l 

/ 

bI(wl»w2)   = 

[(m^t))2 + (m2(t))2] 
t=m    (Wj) 

t=m-1(w2) 

m^O) £w} ^m^T) 

m2(0) *w2 *m2(T) 

\ 

elsewhere 
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Coordinate transformation restoration has been applied in a computer 

simulation of space-variant aerial imaging.    Figure la is the ideal lunar 

object scene taken by a Ranger spacecraft.    Figures lb and lc respectively 

show the motion degradation when the object is imaged by side and forward 

oblique tilted cameras with constant velocity translation at fixed altitude 

during exposure.    Jn Figure lb, the camera looks sideways to the left at 

an angle of 20    from vertical.    The movement smears the image as a 

function of position, verifying the space-variant nature of the system. 

Figure lc shows the image recorded by a forward oblique system tilted 

forward in the direction of movement by an angle 20    from vertical.    As 

before, the blurring length and direction changes with position, and in 

contrast to the side oblique case there is blur in both the x   and x   directions, 

even though the movement is along the u   axis.    For these two space-variant 

systems,  it turns out that the first geometrical transformation v = b(u) 

Figure 1 of Section 4.4 is not present,   so restoration proceeds by first 

using the appropriate inverse geometrical distortion z - c(x) to obtain the 

intermediate image J (z) which appears as Figure Id.    Using an inverse 
z 

FFT filter then gives the final restored object in Figure lc. 

Another application of coordinate transformation restoration occurs 

when there is  relative rotation between parallel object and image planes. 

The equivalent SVPSF may be derived in this case [l], where it is shown 

that the polar coordinate transformations 
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u. 

(b)     Degradation by Moving 
Side Oblique System 

(d)    Intermediate  Image 

(e)     Final Restored Object 

Figure  4.5-1.    Space-Variant Image Motion  Restoration 
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x,    = 

x„    = 

u,    = 

u„   = 

r   cos 6 
z z 

r    sin 8 z z 

r   cos 6 
v v 

r    sin 8 
v v 

(6a) 

(6b) 

(6c) 

(6d) 

used for the geometrical distortions in the model of Figure 1 of Section 4.4 

convert the rotation into an equivalent space-invariant hJz-v) for restoration. 

Several computer simulations to verify the rotational restoration technique 

are now underway, as well as investigations of other types of decomposable 

space-variant motion. 
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4.6   Linear and Nonlinear Interpolation for Image Restoration 

Anil K. Jain 

In many parameter estimation, data interpolation and other similar 

situations, one has a knowledge of the lower and upper bounds of the esti- 

mates.    For example, in the processing of image data,  obtained by scan- 

ning a black and white picture, it is known the data should always be positive 

(since the intensity of reflected light at any point is 2 0).    The estimates 

obtained via optimal filtering may violate these bounds due to inaccuracies 

in modelling,  e. g., when a two dimensional image is modelled by a linear 
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Markov process, given the nc isy observations and the bounds on the esti- 

mates themselves (or hard constraints).    The problem is formulated by 

considering the maximum likelihood function, and the presence of these 

bounds (or hard constraints) leads to a nonlin-ar filter [l] . 

Consider the class of two-dimensional images r< presented by the follow- 

ing first order vector Markov process model [2J, 

=   A x,   + B 

Y.k   =   c^+^k »   k = 0,1,...,N 

(1) 

(2) 

where, 3c are (N X 1) state vectors, y_ are (R X 1) observation vectors, 

\r and TL are (N X 1) are zero mean uncorrelated, white Gaussian noise 

vectors with, 

E[U.U
T
]   =   K6(k-s) 

EtUfcHs"'   =   L6(k_S) 

Now,   suppose there exists a priori knowledge of the lower bound on the 

observations,  viz. , 

y   a i        k = 0,. . . , N (3) 

where l_ is an (R X 1) vector. The problem then is to determine the optimal 

estimates of x^, given the noisy observations y_ and the constraints so that 

the conditional probability, 
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7)  =      max {p(x    c xv + T^ > 4 |y_v, k = 0,...,N)] 
x ,k=0,N 

-k ' ^k (4) 

is maximized.    The solution of this maximization problem,  obtained via 

the calculus of variations after using the Bayes rule and the probability 

densities of J\   and u ,  gives the following nonlinear equations of the inter- 

polator [l] (or the Maximum Likelihood Filter). 

x.   .    =   A x. + B K B   q.   . 
-i+1 1 :H+1 

T T T 
3.   =   A   CL      -, (p_  /L)(y. - c x.) + c   h(xj 

%   =   ° 

(5) 

(6) 

(7) 

(8) 

where 

h(x.) 
--*=?-> exp 

{i  - c x.) 
~ 1 

2L 
1 - z(x.) (9) 

and 

5(xi> = 7WD J   ~_1 "^lirJdt 
.00 L -* 

(10) 

I4: can be easil/ checked that for^ = -00 (i. e., in the absence of any con- 

straints), equation (6) reduces to a linear equation and equations (5) and (6) 

represents the standard optimal linear interpolator equations.    These linear 

set of equations subject to conditions (7) and (8) are easily solved by using 

a Riccati Transformation [l] .    Figures 1 and 2  show the original and noisy 

image.    Figure 1 shows the optimal linear interpolation on the two-dimensional 

32 x 32 noisy image with S/N ratio of 7/3.    The S/N is improved by roughly 
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20. 5db.     Let u.   represent the linear interpolation  estimate.      The nonlinear 

interpolator is  determined by first linearizing  equation  (6) about the linear 

estimate u..      The  linearized equations are then  solved via a Riccati 

Transformation  as before.     Figure  2  shows this interpolation  estimate.      The 

major  improvements  in the picture  are  on the  left and  right  sides  of the white 

square  (about   1. 1 db).     The improvement  in the picture  depends  on how often 

the constraint in violated.     Retter approximation to the nonlinear filter may 

be  obtained by taking more iterations.     For  a picture of size  M x M,  the 

storage requirement for interpolation are nM(M+l)  locations,   where n is the 

order  of the  vector x [Z].     However,   an estimator  or  one   step predictor 

corresponding to the nonlinear filter would require only n  storage locations, 

thereby,   making  on line filtering  feasible. 
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4. 7     Pseudocolor Image Enhancement  Techniques 

Harry  C.   Andrews,   A.   G.   Tescher,   Richard  P.   Kruger 

The article  commencing on the  following page  appeared in the  July, 

1972 issue of the IEEE Spectrum   as   a tutorial  paper  describing  digital 

image processing.     It is  included in this  report because  of the relatively 

new results  on the use of ; seudocolor  which  appeared on the  latter  part  of 
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the article.    The article lists a variety of techniques on the use of color 

as an aid to viewing monochrom? imagery, and illustrates a few of the 

methods by color reproductions.    Applications of the techniques might 

range from biomedical to photoreconnaisance imagery, the success being 

related to the applicability of the given pseudocolor technique to the 

viewing objective desired.    Unfortunately,this is more of a user oriented 

criterion, and one in which theory has yet been quite limited.    Future 

pursuits of the technique will be directed along the lines of maximizing 

the entropy of the pseudocolor displays and utilizing just noticeable 

difference (jnd) uniform chromaticity display scales. 
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5.      Image Detection and Measurement Projects 

The imag; detection and measurement projects comprise a 

mixture of tasks concerned with techniques and tools for formatting 

images and extracting information from pictures.    The problems con- 

sidered under this classification include the registration of pairs of 

images,  the measurement of image features,  and the detection of ob- 

jects within pictures.    In many instances the solutions to the problems 

are very much unique to the problem,  but there are also universal pro- 

blems.    The latter have been given primary consideration in the study. 

The first report describes the preliminary effort in the appli- 

cation of recursive estimation techniques to the detection of objects 

within pictures.    During the restoration of images by recursive filter- 

ing,   one of the by products of the estimation is a measure of the likeli- 

hood that the image contains an object of interest possessing a certain 

statistical description.    This information can be utilized with a minimal 

amount of effort to determine the presence of objects in the presence 

of substantial amounts of image noise. 

Another research topic of the past six months has been a study 

of edge detection techniques.    Several methods have been surveyed, and 

one of them - called a bug tracer - has been implemented by software. 

This edge detector has been evaluated on a sequence of poor visual quality 

radiographic images.    The performance of the edge detector is quite 

promising. 

5. 1  Detection of Objects in Noisy Pictures 

Nassar E.  Nahi 

Simple recursive procedures have been developed to detect the 

presence of objects described by statistical measures in pictures con- 

taining additive noise.    Let the output of an image scanner bt denoted by 

the scalar discrete time function z(k) = y(k) + v(k) observed for k=l, . . . , 

N where y(k) and v(k) are independent scalar stochastic processes.    Sta- 

tistical properties of v(k) and y(k) are assumed known.    The function y(k) 
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Computers 

Image processing 
by digital computer 

Image restoration and enhancement can be implemented by 
means of large-scale digital computers, with striking results 

Harry C. Andrews 
A. G. Tescher 

Richard P. Kruger 

University of Southern California 

The Aerospace Corporation 

University of Southern California 

Recently digital computers have been brought to bear 
on the problem of processing natural-quality imagery, 
and with surprising success. Optical processes, communi- 
cation systems, and automatic image detection are three 
areas in which computer techniques are being applied. 
Perhaps the most exciting areas of research are those 
involving image restoration and enhancement. The most 
visually dramatic of these developments, known as pseudo 
color, is a technique for generating color from black- 
and-white images. 

Computers and pictorial data 
High-speed general-purpose digital computers have 

reached the stage of development where it is becoi ning 
feasible to perform mathematical or algorithmic pro- 
cesses on images of natural photographic quality. From 
an analysis viewpoint, an image is nothing more than a 
two-dimensional function whose variations in gray 
scale describe pictorial information. Because man has 
been somewhat successful in analyzing one-dimensional 
signals with computational techniques, it is not unreason- 
able to expect that, because of the disproportionately 
large role that the eye plays in human experiences, there 
will undoubtedly be an increasing use of computers for 
manipulation of such natural images. Indeed, within the 
past five years a tremendous amount of computer pro- 
cessing of photographs has occurred, with facilities spring- 
ing up around the globe to process anything from aerial 
photographs to X rays, and almost everything imaginable 
in between. However, common to most such prcesses 
is the fact that the pictorial information is most often 
represented as a brightness function of two space vari- 
ables (JC, y), thus allowing two-dimensional analysis 
techniques to be utilized In fact, the pictorial data may 
not be imagery at all but range-Doppler planes, sonar- 
gram displays, or voice prints. In any event, utilizing the 
basis of two-dimensional analysis, it is possible to de- 

velop universal computational techniques for a large 
variety of image-processing applications. In fact, many 
two-dimensional techniques are simply trivial extrapola- 
tions of one-dimensional processes, for which consider- 
able analysis is already available. This article, then, at- 
tempts to outline a few methods utilizing digital com- 
puters in the manipulation of two-dimensional data for 
image-quality applications. 

Optical processes 
Long before large-scale digital computers were avail- 

able, optical devices were being mathematically analyzed 
as to their capability of representing an object of 
interest mapped onto a photographic plate. This map- 
ping process can be viewed as a system that was found 
to be linear in intensity for incoherent illumination and 
linear in amplitude and phase for coherent illumination. '•2 

Thus, if the object can be described as a two-dimensional 
function o(x, y) then the photographic image becomes 

f(x,y) = -ST. h{i,n,x,y)o{lv)äidr,        (1) 

where (£, i?) are the spatial coordinates of the object of 
interest and /;(£, ?j, x, y) is a function describing the effect 
of the optical devices on distorting the object in generat- 
ing the image. The latter function has often been referred 
to as the point-spread function or impulse response of 
the system, because the image would equal the point- 

The reader's attention is directed to the July 1972 
Proceedings of the IEEE, a special issue devoted to 
digital picture processing. 
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COLOR REPRESENTATION of the left ventricle of a human heart, with 
a computer-detected systolic (blue) and diastolic (red) ventricular outline. 

spread function it' a point source of light (a Dirac delta 
function) were the object of interest. If the point-spread 

function is invariant to shifts in the delta function, then 

Mi, I)- v. v)     ln.\ (2) 

which suggests that the image is rcalh a convolution of 

the object with the point-spread function 

/(.v. i ) If ><i. </>/'< v - ■  i. i   -   nUlidq     (3a) 

/(.v. i')       o( v. r) • //(\. r) (3b) 

Such s\stems are referred to as linear isoplanar or shift- 

iinariani. It is known that, for these s\Menis. I ourier 
transforms plav a maior role in analysis, and 

/(//. r)      Oiu. c) Ihn. i I (J) 

'mlmi..  Icvclicr. tsniLicr     IHM;; pi .v. "ini; In JIL-IMI cnirnik' 

where uppercase functions imply the transform domain; 
that is. 

Hin. r) 
='./ /'<"- 

i ) e\p ! - jinx  -   iy)\ i/.v ily 

Ö) 

Ihus.  for  linear-shift-tn\;inant   systems,   in   theory   it 
should be possible to recover the object from the image 

O(tLi) 
l(ii.i) 

Hin. i) 
(6) 

and inverse I ourier transforming or. cqui\alently. by 
decomoKing the image by the point-spread function. 

I he digital computer lias hen used as a device for 
mathematically inventing (undoing) the degradation 
effect  resulting from   the  point-spread function of the 
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FIGURE 1. Fourier transform of an image. A—Original 
(Surveyor spacecraft). B—Logarithm of the magnitude 
of the Fourier transform. C—Low-pass-filtered original. 
D—High-pass-filtered original. 
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optical imaging system.3'4 Indeed, the power and gen- 
erality of the computer allow far greater flexibility for 
image manipulation than was first envisioned from the 
optical viewpoint. 

Digital implementation 
In order to explain how computers can be used ef- 

fectively in image processing, a brief digression to dis- 
crete mathematics may be helpful. Because we will 
eventually be interested in other than optically generated 
images, we will use the notation that our original function 
will be /(.v, y). Then in the computer the brightness or 
amplitudes will be stored as an N X /V array of numbers, 
where we have limited ourselves #o square pictures for 
ease of analysis. The infinite integration Fourier trans- 
form will be replaced by a two-dimensional Fourier 
series ,'xpansion 

$£* 
r*^|^fe2 

F(u,i) = Tr E    E   /(.v,.v)exp 
>V   y = 0   ;/ = (> {-r<»+"4 

(7) 

which will be our discrete analog of the continuous Four- 
ier iransform. Figure 1 presents an original image (256 X 
256 with 64 gray shades); its Fourier transform, given 
in Eq. (7); and a low-pass and high-pass version of the 
original. The filtered images have been obtained by 
multiplying F(u, c) with a filter function H(ti, t) such that 

fix, r) 
A" - 1 

E 
A'-l 
V F(u, r) H(u, c) 

X exp <       (ux 
1 N 

ty)}  (8) 

and. for Fig. 1. H(u, v) is a zero-one filter retaining or 
suppressing the spatial frequencies respectively. 

Whereas the Fourier transform finds considerable use 
in modeling and inverting optical systems, o'hcr mathe- 
matical transforms might be of interest for coding or 
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FIGURE 2. Two digital communication systems. A—Dif- 
ferential pulse-code modulation system. B—Transform 
image-coding system. 

pattern-recognition activities. One such transform that 
has been extensively investigated for these activities5-8 is 
a subset of the Hadamard transforms known as the Walsh 
transform.7 8 The advantage of the Walsh transform is 
that it is comprised of ±1 entries and thus is implement- 
able by simple additions and subtractions. In notation 
equivalent to that of Eq. (7), we see that 

H-f 

1  ^! X^1 2 ««.' + »«IK 
*&.»)-£ £ £ fl.x,y*.-vr w 

where xt, yt, uu and c( are the binary bits representing the 
spatial and transform variables, respectively, and N = 
2« 9 

In investigations of the statistics of an image, second- 
order moments (variances) become particularly relevant. 
Assuming separability of the horizontal and vertical 
statistics for computational simplicity, let |gj be the 
covariance matrix, computed or modeled, for the hori- 
zontal or ^-dimension. Then it is of interest to measure 
the statistics of the «-dimension (the transformed x- 
variable) in the various transform spaces. In general, for 
ihtN X N unitary transform [A], 

[+J = lA]'[<t>ÄA] (10) 

For the Fourier case, 

[^] = [exp?f-*] (11.) 

for the Walsh case, 

["z um"] 
(-D-0 

and for the Karhunan-Loeve case, 

[AK-L] = py 

where 

14>K-L) = [X] = [EMrWA 

(lib) 

(He) 

(12) 

and [X] is a diagonal m:.irix comprised of the eigenvalues 
offej. 

Computer image coairtg 
The objective of efficient coding of an image is to re- 

move the redundancy (usually statistical) from the image 

'-<ws, Tesche.-, Kruger—Image processing by digital computer 

in transmitting the picture across a digital communica- 
tion link. As an example, the images of Fig. 1 require 
256 X 256 X 6 bits for representation in what has come 
to be known as a PCM (pulse code modulation) mode 
(i.e., six bits for each picture sample). Yet from observing 
the image it is evident that there is considerable redun- 
dancy or correlation between adjacent samples and that 
it might make more sense to code the differences in ad- 
jacent samples rather than the sample values themselves. 
This technique, or various modifications, has come to 
be known as DPCM (differential PCM) and is the fore- 
runner of some of the methods used in the Bell Labora- 
tories Picturephone. Initially, it might seem that more 
bits (seven for the six-bit PCM) are required because 
we must be able to code both positive and negative dif- 
ferences. However, the statistics of the differences are 
such that a vast majority of the time the changes are 
very small, so coding these differences with short code 
words results in an overall bandwidth reduction. Good 
image-quality reconstructions have been achieved with 
rates equivalent to two bits per picture sample. Figure 
2A is the block diagram of such a system. 

In transform image coding (Fig. 2B) the mathematical 
transform of an image is taken in two dimensions— 
possibly using one of the matrices of Eq. (11) twice, 
once on the rows (x-direction) and once on the columns 
of the image (y-direction). The transform domain is then 
investigated in regard to its coding efficiency. If the 
Karhunen-Loeve transform is used, the transform sam- 
ples are uncorrelated and all redundancy has been re- 
moved. Simply coding each transform sample with a 
code word proportional to the expected variance of that 
sample will result in a quite efficient coding scheme. 
Unfortunately, computation of the eigenvector matrices 
[Ez] and [£„] is almost impossible for large-array images. 

Surprisingly enough, the Fourier and Walsh trans- 
forms provide adequate domains for independent 
sample coding even though they are somewhat inferior 
to those obtained by the Karhunen-Loeve technique.10'11 

In addition, they have a rapid implementation algorithm 
that allows 2N* log2 N operations instead of 2N3 opera- 
tions, which becomes a considerable savings for large- 
size images. 

Computer image detection 
Because of the successes developed in the field of de- 

tection theory for one-dimensional radar returns, it 
seems natural to try to extend the analysis to two dimen- 
sions in the detection of objects in an image or field of 
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view. The computer can again be enlisted as an aid to this 
task. It k known that the matched tiller maximizes signal- 
to-noise ratios for detection purposes. The filter function 
utilized in Eq. (K) then becomes1" 

F*(u, c) 
IHii, i) 

.V<«. v) 
exp -./(«£ ;  crj) (!3) 

for an image /(.v, y) located at point (t.»;) in noise with 
a Fourier power spectrum N[u. r). Indeed, the Fourier- 

transform plane becomes the natural one for implement- 
ing the matched filter, since it is the only domain that 
provides an invariance to position of the image one 
sought. The tiller has the property that it will detect the 
image anywhere in the plane or field of view but it will 
reject rotations of that image. Thus, it is possible to 
discriminate between the /> and </. the two being ISO- 
degree rotations of one another Figure 3 presents the 
results of such an experiment, where the image o( in- 

| Reproduced   from 
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FIGURE 3. Image detection. A—Signal. B—Array. C—Array and low-frequency noise. D— 
Array and high-frequency noise. E—Filter output after threshold detection. F—Perspective 
of correlation peaks. 

FIGURE 4. Motion-detection images. A—-Cineangiogram of a left ventricle at diastole. B— 
Cineangiogram of a left ventricle at systole. C—Cineangiogram of a left ventricle showing 
inserted catheter Before dye injection. 
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terest was the letter d and the various fields of view in- 
cluded <ft and p's in a variety of noise situations. In all 
three cases üie three <fs are successfully detected with 
relative amphtudes of the signal peaks displayed Ü. fig 

Another example of image detection is that of motion 

25* m ThJPle-frame ima^- A biomedical aP P.canon used for il.ustrative purposes is described 
herein  For several years cardiologists have routinely 
ecorded^nd manually measured ,udiac dynamics using 

a techmque caiied cineangiography.— principal di
8 

agnostic attention has been concentrated on extracting 
measurements pertaining to left ventricular function 
since this chamber supplies the systemic circulation. A* 
adiopaque blood-soluble contrast medium is injected 

into the heart chamber using a catheter inserted into a 
peripheral artery or vein. As the contrast medium fills the 
ventncuto cavity, cardiologists view the dynamic motion 

n r col t 
am^r USing 3 fluoro^Pe/™age-intensi- 

fier combination, the output of which is interfaced to a 
vidicon or orthicon television camera and monitor 
Quite often the output of the image intensifier is simuK 
taneously recorded on a 16- or 35-mm motion picture 
film at a rate exceeding 30 frames per second. This film 
record ,s then used to make manual estimates for a cum 
of chamber volume vs. time.—. Simultaneously, a re- 
cording of patient electrocardiogram and chamber ores- 

iolTn   S aVailaWe °ther tim-^chron0us WW tion of diagnostic importance. 
The most tedious aspect of this analysis is the detection 

nd tracing of the chamber boundary as outlined by he 
mjected contrast medium. Several research approaches 

taken show promise of an eventual solution However 
most of them still require varying degrees of human inter- 
action •*-»■ Some recent work suggests that it may be 
possible to automate this boundary detection com- 
pletely'» thus permitting rapid calculation of heretofore 
difficult-to-acquire diagnostic information such as ore. 
sure-volume   loops   and   ventricular-mass   estimates 
Figure 4 shows several digitized cinefilm frames of a 
left ventricle ,n the right anteri •- oblique position An 
example of completely automated ventricular boundary 
tracing using color displays appears on page 21 Volume 
estimates obtained from the outlined end systolic and 
d.astol.c ventricular cavity shown are less desirable than 
a complete volume-time curve.  However these two 
volume estimates are often the only diagnostic informa- 
ion currently extracted manually from the film  From 

these two outlines the end systolic and end diastolic vol- 
umes, ejection fraction, and stroke volume are easily 
estimated.13-15 • y 

Computer image restoration 

Thus far in this article we have been discussing various 
echniques for processing images for coding and detec- 

tion. However, possibly the most exciting aspects of 
computer image processing are those of image restora 
ton. Traditionally, the computer has been used to "re- 
store  an image to its original quality according to some 
mathematical manipulation that is intended to invert 
some physical degradation phenomenon experienced in 
the formation of the image in the first place. Thus the 
concept of image restoration is one of attempting to re- 
cover losses suffered in the optical imaging system due 
to a variety of degradations, which can be modeled-from 
the very simple to the extremely complex 

Linear-shift-invi riant phenomena. Probably the sim- 
plest mathematical model of the imaging process was 
that given earlier where the image /(*, y) is the output of 
a linear system whose input was an object o(x, y) The 
object suffers degradation introduced by a systems re- 
sponse Hx, y, f, „) and for isoplanar systems the image is 
the two-dimensional convolution of the object and a 
point-spread function. Ideally, it is desirable that the 
point-spread function be a Dirac delta function, in which 
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f(x, y) = i(x, y) r(x, y) log f(x. y) = log i(x, y) + log r(x, y) 

/ 

H(u, v) F [log f(x. y)] h(x, y) . log f(x, y) 

F[log f(x. y)] = F[log i(x. y)] + F[log r(x, y)] f (x, y) = exp [h(x, y) • log f (x, y)] 
= exp [h(x, y) • log ijr y) + h(x, y) »log r(x. y)] 

FIGURE 6. Homomorphic filtering technique. 

case the image equals the object. In fact, such is not the 
case and the power of linear systems theory can be 
brought to bear on the problem of restoring the image 
to as close a representation of the object as possible. 
Thus, for isoplanar degrading phenomena such as de- 
focus, certain linear motion, simple spherical aberrations, 
certain atmospheric degradation, and additive noise the 
mathematical tools are available for computer correction 
of such processes. Inverse and linear least-square filters 
are typically employed for image restoration; gradients, 
Laplacians, and higher-order spatial derivatives are 
often useful approximants. Finally, it is possible, within 
the linear theory, to investigate resolution beyond the 
diffraction limit by using the tools of analytic continua- 
tion and extrapolation. Figure S displays an example 
of inverse filtering according to Eq. (6), where H(u, v) was 
modeled as 

/(*.. y) = Ox, y) r{x, y) (15) 

H(u, v) = e-"
iut+'t) (14) 

indicating that the point-spread function tended to roll 
off in spatial frequency according to a two-dimensional 
Gaussian surface. The two originals (Figs. 5A and 5C) 
are digitized X rays of normal and abnormal patients, 
the latter exhibiting a 'ever.; case of pneumoconiosis 
(black lung disease).19 The enhanced images make this 
fact a bit more evident. The same images are then used 
in a pseudo-color experiment to be described in the next 
section. 

Linear-shift-varying phenomena. For more complicated 
processes, the anisoplanar model may be more relevant, 
in which case the point-spread function h(x, y, £, JJ) is 
different at each point in the two-dimensional plane. 
Consequently, the convolution equation is invalid and 
we must revert to Eq. (1) for our model and our integral- 
equation definition. Phenomena describable under these 
assumptions include geometric-distortion correction, 
nonuniform and turbulent atmosphere; nonlinear-motion 
degradation, coma, tilt in cylindrical lenses, and many 
others. Often it is possible to find nonlinear transforma- 
tions that map the image into a space in which linear 
systems theory can then be utilized to correct for the 
degradation, allowing an inverse nonlinear transforma- 
tion to describe the restored image.20 

Nonlinear model. Possibly a more relevant mod;l for 
certain imaging situations is that of a multiplicative 
process, in which the image is assumed to be comprised 
of the product of an illumination function and a reflected 
function. The power of homomorphic filtering can then 
be enlisted to separate the processes and filter multi- 
plicative noise in the traditional linear-systems technique. 

If the image, f(x, >•), can be considered to be the 
product of an illumination term and a reflected term, then 

and if the spatial frequency response of the illumination 
term is lower than that of the reflected term, then linear 
filter theory can be uti)'""f :~ remove the illumination 
degradation. ** r-Jcr to separate out the multiplicative 
process, a logarithmic operator can be applied followed 
by the linear filter for linear-shift-invariant processes, 
Eq. (6), followed by an exponentiator; see Fig. 6. Signifi- 
cant restorations have been accomplished with this 
technique.21 

Computer image enhancement 
The computer can be used to "improve" the quality of 

an image without recourse to knowledge of degrading 
phenomena rt suiting in the concept of image enhance- 
ment. Both mathematical and heuristic techniques are 
utilized in this process, with major emphasis upon the 
"viewing" of the image for extraction of information 
that may not have been so readily apparent in the pre- 
enhanced original. 

Psychophysics of vision. Although the computer can be 
used quite successfully to "restore" images due to some 
correctly modeled degrading phenomenon, its power 
does not stop here. Specifically, it is possible to model the 
human viewing process in such a way that an optimum 
display is computed for the human as a communication 
sink.22 Work is still somewhat limited in this area, but 
certain combinations of logarithmic, linear, and ex- 
ponential processes seem to provide more pleasing view- 
ing than would normally be expected. Indeed, if a viable 
fidelity criterion could be developed for the human eye, 
then all the powers of information and communication 
theory could be directed towari optimal use of that 
channel bi/ween the computer image and man. This 
topic has interesting biological as well as engineering 
ramifications, for if we could mathematically understand 
the human viewing mechanism we might then add in- 
sight into the biological processes, and vice versa. Given 
a proper fidelity criter m for human viewing, "optimum 
image coding" could be envisioned in which image data 
not relevant to the viewing process could be eliminated 
before transmission, thereby saving channel bandwidth. 

Heuristics. Heuristic techniques, for lack of ' t/etter 
description, for improving the quality of images have 
been developed with some success. Onsharp masking,28 

contrast enhancement, and crispening have all been 
utilized in computer image processing. Most such tech- 
niques are linear and shift-invariant and, therefore, fit 
well into the linear-filter theory but are not necessarily 
designed to correct for a specific degradation. Simply 
stated, the eye appears to respond well to high spatial 
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FIGURE 7. Demonstration of the histo- 
gram-equalization technique, which can 
be employed to aid in the viewing of com- 
puter-processed images. A—Original 
histogram (a probability density func- 
tion). B—The same histogram after 
application of the equalization tech- 
nique. C—Original X-ray photo of a 
dog's heart. D—Equalized image of the 
dog's-heart photo. E—Original illustra- 
tion of a tank, photographed through 
cheesecloth. F—Equalized image of 
tank-and-cheesecloth photo. Note that 
the equalized images shown here pro- 
vide more content than the originals. 

best av^ilabie_cowr_ 

FIGURE 8. Nonlinear-transform filtering. A—Block diagram of the process. B— 
Original tank image. C—Defocused tank image. D—Defocused tank image after 
processing (Fourier transform with a = 0.5). E— Defocused tank image after pro- 
cessing (Fourier transform with a = 0.7). 

F(u, v) = log|F(u,v)|e'*(u,v) 

F(u, v) = |F(u, v)|e'*(u'v) or F(u, v) = |F(u, v)|V*(u'v> 

f(x, y) 
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FIGURE 9. Schematic diagram for the generation of 
pseudo-color images. 

frequencies, which is what these techniques tend to em- 
phasize. In addition, some nonlinear averaging combined 
with thresholding24 can be utilized in an anisoplanar 
filter for local region correction and variation. One par- 
ticularly exciting technique that aids th^ human in view- 
ing computer-processed images is the use of his .ogram 
equalization; see Figs. 7A and B. Here it is argued that 
as many shades of gray as possible should be used in the 
display of an image. Such a criterion, equivalent to 
maximizing the zero-order entropy of the output display, 
indicates that the gray shades would be uniformly dis- 
tributed. The technique is equivalent to a nonlinear op- 
erator on the intensity scale, which is position-invariant. 
Figures 7C-F present examples of computer processing 
of images according to the scheme. In some sense, it is 
evident that the equalized images provide more content 
than the originals. Equalization is particularly im- 
pressive with X rays or images with heavily biased histo- 
grams toward one end or the other of the gray-scale 
range.25 The technique can be interpreted as making 
subtle changes more evident in the regions for which 
such changes occur most frequently, while losing subtle 
intensity changes hi less frequently occurring grayscale 
regions. 

A second technique, which has become somewhat 
useful for investigating small variations in usually high- 
frequency regions of an image, is to employ what could 
be considered the inverse of the homomorphic filter 

FIGURE 10. Chromaticity triangles. Left: Maximum 
energy constraint. Right: Maximum component con- 
straint. 

shown in Fig. 6. Indeed, it has been found that a nonlinear 
filter in the transform domain that tends to suppress 
large-valued terms (thereby nonlinearly enhancing small- 
valued terms) results in rather amazing image recon- 
structions. Because most of the energy of an image is 
concentrated in the lower-frequency portion of the Four- 
ier domain or in the lower-sequency portion of the 
Walsh domain,2' if a logarithmic nonlinear device is 
used the smaller values are less significantly reduced 
than the larger. These small-valued coefficients occur in 
the higher-frequency or higher-sequency regions. To be 
sure, noise and weak signals are both enhanced at the 
expense of reducing the dominant portion of the lower 
and more uninteresting frequencies. The examples of 
Fig. 8 illustrate the point of nonlinear suppression in the 
transform domain. Note, carefully, that although the 
image quality has been changed, it is now possible to view 
details that were not available in the original or in the 
defocused version. (The wheels of the tank are particu- 
larly significant.) 

The role of color in digital image processing and pseudo 
color. Virtually all research in digital image processing 
to date has involved only intensity or black-and-white 
images. The human eye, however, perceives color as well 
as brightness information, and it is evident that the 
processing techniques should eventually include color 
images as well. We can envision many fields where color 
information may be of particular value; however, we will 
restrict our attention to a specific area—which, we be- 
lieve, has significant benefits. This processing technique 
involves the use of color in the prc?entation of intensity 
images; hence the name "pseudo color." The pseudo- 
color experiments described here were conducted re- 
cently at the University of Southern California's Im- 
age Processing Laboratory. 

It is well kn*/.vn that most spectral colors can be repro- 
duced to the human viewer by an additive color system 
consisting of three primary colors such as red, green, and 
blue. Consequently, for the appropriate color computer 
processing, the image is represented by three intensity 
matrices, In(x, y), Io(x, y), and lB(x, y), where x, y are 
the spatial locations and the subscripts R, G, and B de- 
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FIGURE 11. "Simple" pseudo color for biomedical images. 
Left: Normal lung enhanced. Right: Lung with pneu- 
moconiosis, enhanced. 
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FIGURE 12. 
gram. 

Input 

"Conventional" pseudo-color schematic dia- 

note red, green, and blue primary components respec- 
tively. 

Let us assume that each primary component can be 
represented by 64 intensity levels. (The hardware device 
used to display the color images corresponds to this 
assumption.) Clearly, each pixel (picture element) can 
assume 643 distinct values,, corresponding to all color 
and intensity combinations. Consequently, expanding this 
argument, the amount of information that an image can 
convey to the observer can be expanded 642- or 4096- 
fold using the indicated hardware device as compared 
with similarly quantized black-and-white images. 

Does the human eye accept this simple mathematical 
argument? The fortunate fact that the answer is affirma- 
tive provides the basic motivation for research in pseudo 
colors. Numerous experiments have indicated that al- 
though the human eye can differentiate only perhaps 

FIGURE 13. "Conventional" pseudo color for biomedical 
images.   Left: Original.   Right: Histogram equalized. 
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FIGURE 14. Processing for spatial-frequency pseudo-coloiing. 

FIGURE 15. "Unconventional" pseudo-color generation for tank image. Upper left: Com- 
posite image. Upper right: Green »»rimary. Lower left: Blue primary. Lower right: Red 
primary. 
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FIGURE 16. Spatial-frequency content of the tank-and-cheesecloth image.   Left: Composite 
image with red content removed.   Right: Composite image. 
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two or three dozen brightness levels in an image, it is 
able to separate thousands of various colors.27 

The schematic diagram of pseudo-color generation is 
shown in Fig. 9. The "process and decompose" step 
essentially includes a digital computer, where the ap- 
propriate algorithms are implemented. To reiterate, the 
objective is to aid human interpretability by representing 
a black-and-white irmge in color and hence take ad- 
vantage cf the innerem capab'Uty of the human visual 
system to absorb color information. This technique 
actually generates color where none exists. 

As an example of the range of color variation that is 
possible by our display device (essentipllv a digitally con- 
trolled color television monitor), the two chromaticity 
triangles of Fig. 10 were generated. At the left all 
possible colors are shown, subject to the energy con- 
straint that jhe triplet of values for each pixel, repre- 
senting primary components, add up to a constant. 
This constraint is changed so that without altering the 
ratio of primary component values we scale each pixel 
in such a way that the largest of the primary components 
has the same value for each pixel, as shown at the right. 
Thus the second triangle contains all possible colors at 
the maximum brightness level consistent with the capa- 
bility of the display device. T'..^ v^.tices of the two tri- 
angles, which are identical, represent the three primary 
colors. Despite the severe energy constraint imposed 
on these chromaticity triangles, more than 2000 distinct 
pixel values are contained in-each triangle. In contrast, 
the black-and-white images discussed previously consist 
of only 64 levels of gray. 

Historically, the earliest implementation of pseudo 
color can be found in cartography. We rarely appreciate 
how difficult, if not impossible, it would be to create a 
complex map without the use of color. Computer im- 
plementation of pseudo color is limited only by the 
capabilities of the display device and ihe imagination of 
the researcher. The approaches may vary from the very 
simple to those for which computer implementation is 

mandatory. One very simple technique, which does" not 
mix the primary colors, involves mapping a separate 
portion of the gray scale into maximum brightness for 
each primary component. Figure 11 shows examples 
for this case. It is interesting to compare these X-ray 
images of a normal and a diseased lung with their black- 
and-white counterparts (Figs. 5B and 5D). 

A somewhat more complex pseudo-color gen°ration 
technique, still in the realm of the conventional approach, 
is indicated in Fig. 12. Mixing of the primary components 
in this case is performed according to the indicated map- 
ping. Here, the pure primaries occur only at the extreme 
ends and exact center of the gray scale. Figure 13 shows 
the appropriate examples and should be compared with 
Figs. 1C and 7D. 

If maximum entropy is the objective, as in the case of 
histogram equalization of black-and-white images, a 
rather complex experiment must be performed.28 A step 
in this direction is indicated in Fig. 14. The final display 
of this experiment (see Fig. 8B) is shown in Fig. 15. Note 
the emphasis of the wheels and the separation of the in- 
focus foreground from the blurred background. As a 
final example, Fig. 16 utilizes the same pseudo-color 
technique to demonstrate the spatial-frequency content 
of the image of Fig. 7E. 

Clearly, a great deal more research is required before 
the potentials of pseudo-color displays can be realized 
fully. More hardware development is also required. How- 
ever, the superior capability of the human visual system 
to perceive color differences provides a very strong in- 
centive to continue research in this field. 

In conclusion 
It should be emphasized that only a few examples of 

computer techniques in image processing have been pre- 
sented in this article. Many other existing applications 
have been excluded either for space reasons or because 
of the authors' technical limitations in certain fields. 
However, it should be apparent that, with powerful 
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digital computers, more and more image-processing 
applications will arise in areas yet untouched by the 
techniques covered here.*' 
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is called the signal process and v(k) the noise process. Given z(k), 

k=l». . ., N, the problem is to decide on the presence or absence of 

the signal. 

In formulating the detection problem let H   be the hypothesis 

that the signal is present,  and H   be the hypothesis that the signal is 

absent. 

H,    :   z(k)=y(k) + v(k) 

H     :   z(k) = v(k) 
o 

K=1,...,N 

Define f., j=0, 1 as the joint probability density of z(l),. . ., z(N) when 
J fl 

H. is true and define the corresponding likelihood ratio as t(N)=ln —— 
o 

If t(N) exceeds somt appropriate threshold, H   is accepted; other- 

wise H   is accepted.    Formulation of t(N), for the case where f   and 

f   are Gaussian, leads to t(N) =    Z        ^-^~       [z<k) - y(k)J 
O ,     , c _ L L 

k=l      a L   + a 

where y(k) is the Bayes estimate of y(k) obtained recursively [l,2], 
2 2 

o    is the noise variance, and L   is the estimated signal variance.    The 

required threshold can be obtained from specification of error proba- 

bility (false alarm and miss) and p(t |H ) and p(t IH^), where p is the 

probability distribution of t given H., j=0, 1.    The errors corresponding 

to wrong decisions will then be found from: 

false alarm =   J     p(t JH ) dt and 

error of second kind = J     n   p(t JH  ) dt. a   • •   ■    l' 
The above procedure has been applied to a number of pictures 

under very low signal to noise conditions (peak to peak signal level/vari- 

ance of noise of about  — ).    This is far below the level where a human 

observer can detect the presence of signals.    The preliminary results have 

been very encouraging.   Attempts are being made to use the detection 

process in conjunction with estimation to improve the image enhancement 

process beyond what is achievable by linear estimation. 
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5.2 Edge Detection Techniques 

Charles B. McGregor and Richard P. Kruger 

A fundamental process in pattern recognition and image process- 

ing is the detection of edges in a scene.   An investigation of edge detec- 

tion techniques applied to continuous motion images has been undertaken. 

The problem undei study consists of identifying and measuring the area 

of a brightened region on an image frame and tracking this area as it 

changes from frame to frame.    The work performed to date has con- 

sisted of an examination of differentiator and tracing types of edge de- 

tectors. 

Differentiating Edge Detectors.    The computation of edge elements by 

differentiation on a discrete image takes the form of simple additions and 

substractions of pixel intensities.    The simplest such differencing oper- 

ation takes the form: 

d.   .   =   a.   .   -   a.   .   . 
i.J i.J i-l.J 

Other forms which have been used include the gradient  [l, 2j 
2 2 

d.   .   =   (a. -a.   .)     +   (a.       .-a.   .) 
i,J i.J + 1      i,J i-l.J    i.J 

and the Roberts gradient 

d.   .    =    |a.   .-a -,,1 + la-   ■,,-*•_,,   -I 
i.J i.J     i+l, J + l i.J + 1     i+l,J 

Variants on these basic approaches,  including the Laplacian,  have been 

reported in the literature. 

A fundamental problem occurring with simple differencing techniques 

is that in real images large differences may occur on a pixel to pixel basis 

at points both interior and exterior to a desirad edge.    This causes dif- 

ficulty if a threshold criterion is to be used to collect the set of edge points 

from the differentiated scene.    One approach to this problem is the use of 

heavy smoothing in the computation of the differences,   eg: 
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d.   .   =   (a.       .+...+a.   .   .) - (a.   .+...+ a.,_   .) 
i.J 1-4, j l-l, y        1,3 1+3, j' 

where the superscript indicates the number of elements included in each 

of the averaging sums.   A further refinement involves the use of a pro- 

duct of terms: 

A -Al-AZ-A4- d.   . - d       d     d      ... 
i.J 

While this product edge detector does succeed in removing many unde- 

sired detections from the results, it does so at the price of lost resolu- 

tion and the generation of a set of sequencies at which the detector is 

totally blind to periodic edges.    The blind sequency effect can be seen 
N from Figure 1.      Consider the edge detector d.   . .   As this detector is 
i.J 

translated along the x-axis, it can be observed that any waveform which 

causes the integral under the positive and negative cusps of the detector 

to vary identically will not contribute to the detector output.    There exists 

a broad class of periodic waveforms having period equal to N/k (k an 

integer) which possess this property.    Thus, for example, the detector 
g 

d    is blind to waveforms with sequencies of 8,   16, 32, . . .    While such an 

effect is acceptable in situations in which the data is known to have no 

spectral components at the blind sequencies,  it is totally unacceptable for 

cases in which the spectrum of the data is unknown.    While further pro- 

ceedures might be developed, possibly using different values of N with 

suitable combining logic, the growing complexity of the detector becomes 

unattractive for an operation which must be repeated on each pixel of a 

scene. 

In the presence of noise, the performance of the differentiating 

detector is severely degraded.    Noise will increape the number of 

randomly distributed points which cross the derivative threshold,   causing a 

rough, thickened edge region rather than the desired thin line.    As the 

differentiating detector does not label interior points in the desired set,  edge 

tracer techniques as described in the next section are not implemented as 

effectively as with threshold detection processing. 

Threshold-Tracing Edge Detectors.    The determination of the edge 

of a set defined by threshold criteria begins with the comparison of each 
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Figure  5.2-1.    Blind sequency effect in edge detector 
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Figure 5. 2-2.     Unit  radius "circle"  used by bug 

•96- 



pixel with a threshold.    Pixels below the threshold values are set to zero 

and those exceeding the threshold are set to a uniform value.    Thus the 

data is initially compressed to a one-bit representation on the intensity 

axis before further processing.    The threshold for this comparison may 

be either externally specified or computed by seeking an extremum of the 

histogram of the scene.    The output from this process will contain iso- 

lated and discontinuous sets of points,  similar to the output of a differ- 

entiating edge detector.   At this point,  continuity of the edge is invoked 

and an algorithm which seeks connected points on the frontier of the set 

is used.    In topological terms, this algorithm seeks points which (1) are 

adjacent to previously determined perimeter points and (2) are the centers 

of unit rr-dius neighborhoods containing points of both the circumscribed 

set and its complement. 

The operation of this algorithm is best described by ascribing 

its attributes to an intelligent bug which walks about the image plane per- 

forming the tracing [3].    Initially, the bug is either placed on a known 

boundary point or it is caused to enter the scene along a suitable horizontal 

or vertical line and proceeds until it identifies an edge point.    One typical 

procedure defines the initial edge point as the first interior point of the 

set which is followed by a continuous line of N points also belonging to 

the interior.    When thus initialized, the bug looks toward the interior of 

the set and begins searching a unit radius path in a clockwise direction 

until it locates a point belonging to the complement of the set.    Having 

found such a point, the bug continues its scan from that, point until it 

encounters the first member of the desired set.    The bug then moves to 

the new point and enters it into a list of perimeter points.    Next,  it looks 

back to the previous point and begins the search for an exterior point,  re- 

peating the above procedure.    The bug repeats this procedure,  moving in 

a clockwise direction around the desired set until it returns to the initial 

point.    Having traced a closed path, the bug retires.    It is noted that the 

bug lives in a square world and considers the eight elements shown in 

Fig.  2 as belonging to a neighborhood of unit "radius".    Since the bug 

moves in fixed length steps, a complete record of its path consists of 
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the coordinates of the initial point and the series of directions it moves 

on each succeeding step.    This highly compact representation of the 

perimeter is known as a chain code  [4].    This encoded data contains all 

information necessary to compute the enclosed area and the moments of 

the traced centour [ 5 J. 

In the presence of noise, the bug algorithm performs admirably 

since it only senses and reacts to noise elements which lie within a 

unit radius of a perimeter point.    Further the probability that the bug 

will deviate from the desired perimeter by N units equals the pro- 

bability that a chain of N adjacent noise elements will occur with one end 

adjacent to the perimeter.    This probability varies with the Nth power 

of the probability of a single noise element.    The only restriction on the 

tracing of closely adjacent set perimenters is the probability the noise 

will bridge between the perimenters,  causing two sets to appear as one. 

An Experimental Edge Detection Study.  The performance of the 

threshold-tracing edge detector has been evaluated using radiographic 

films of the human heart.    The cardiac catheterization procedure used in 

the evaluation of severe cases of heart disease involves injection of radio- 

opaque dye into the left ventricle (the output pumping chamber) of the heart 

while motion pictures are made of the flouroscopic image of the heart. 

From these films, the opaque image of the ventricle can be traced to show 

its contraction as a function of time while the heart beats.    From the cross 

sectional area shown, the volume may be estimated as a function of time 

and the volume of blood expelled by the heart per beat can be computed for 

diagnostic use.   At a motion picture rate of thirty frames per second, a 

manual processing of these fifty images requires ten to twelve hours of a 

skilled technician's time.    Thus a need for computer data processing arises. 

The experimental data consists of strip? of 35 millimeter film which 

have been scanned in a flying spot scanner.    A view of the heart with no dye 

injected is available to allow subtraction of background opacity from the 

frame to be processed.    A frame of film showing a ball of known diameer 

in the position later occupied by the heart is available for calibration pur- 

poses. 
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Initial processing consists of subtraction of the background 

picture from the first image to be processed and computation of a 

gray level histogram for the resulting pr"**ure.    A bimodal histogram 

is assumed and a curve is fit^.d to the valley   >f the histogram.    The 

central minimum of this curve is used as the threshold for edge de- 

tection.    After extensive investigation,  a version of the bug which does 

not require prior thresholding of the data has evolved.    This bug ac- 

cepts threshold levels from the calling program and makes the nec- 

essary threshold comparisons as it traces its path through a field 

of unthresholded data.    This procedure reduces the threshold com- 
2 

parisons from N    to approximately 16N operations and allows the data 

to be viewed with the threshold tracing superimposed.    A typical trac- 

ing is accomplished in 0. 8 seconds.    Examples of raw data and the data 

with an edge tracing superimposed are shown in figures 3 and 4. 

Points of Departure.    The next task in applying the contour tracing to 

frame to frame tracking involves reducing the large amount of data 

present in a chain-encoded contour to a few descriptive paramenters. 

An initial approach will use a Fourier expansion on the closed boundary. 

The minimum number of Fourier coefficients needed to approximate the 

boundary within an area errov limit will be established.    A parallel 

investigation is underway which may result in the integration and chain 

code processing portions of this project being used with manual Graf- 

pen input of data to a time-sharing computer system for interim man- 

machine data processing. 
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Figure 5.2-3.     Diastolic (dilated)   Ventricle,   raw data 

Reproduced from 
best available copy. 

Figure   5. 2-4.    Data of  Figure   3  with  edge traced 
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6.    Image Processing Support Projects 

The following sections describe the  status oi the U. S. C. 

image processing research facilities with particular emphasis on 

th* progress  icv/ari making the image processing hardware  and 

software facilities  available over the ARPANET.    A report is  also 

given on the initial steps towards the  establishment of a standard 

set of original  images for the image processing research  commu- 

nity. 

6. 1    U. S. C.   Image  Processing Hardware  and Software  Facilities 

Richard P.   Kruger 

Image  Processing Hardware Facilities.    Figure   1  is  a gen- 

eral block diagram depicting the hardware facilities utilized by the 

U. S. C.  Image Processing Laboratory (IPL) for various image acqui- 

sition,   computation,   and display  operations.     The IPL facility con- 

sists  of a Hewlett-Packard  2100  which is used to  command and  con- 

trol the image acquisition and display devices,   and an Interdata IV 

which is used for simulation of image processing  systems. 

At present a conventional flying spot scanner is used for image 

digitization and hard copy display of color and monochrome images  on 

photographic prints.      The device can raster  scan transparencies up to 

70 millimeters  square with resolutions up to   1024 by   1024 pixels.     The 

scan time varies,   but is usually less than 1  minute per frame.     Normal 

analog to digital conversion is eight bits.     Display is usually on Polaroid 

or 35 mm film.       Color digitization and display is accomplished  serially 

under computer  control using a  color filter wheel. 

The Muirhead color facsimile device is  a two unit drum trans- 

mitter  and  receiver.     Its capabilities include   100 line per inch  resolu- 

tion with  simultaneous ten bit per color quantization as  well as display 

of the three primary colors on an 8 by 10 inch print.    The  scan time for 

this  device is 12 minutes.     While the maximum scan or display  size is 
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fixed on an 8 by 10 inch field,   options  exist for scan or display of any 

2. 5 or  5. 0 inch  square portion of a larger field at resolutions of 256 by 

256 or 51? by 512 pixels. 

The real time display of monochrome and color digital images 

is accomplished using an Aerojet General display device.     This device 

utilizes a  standard shadow mask CRT with 576 horizontal and 525 ver- 

tical lines  of resolution.    A digital disk is included with the device which 

makes possible  a refresh  rate of 60 fields per  second at 64 quantization 

levels for each of the red,   green,   and blue primaries. 

An Optronics flat bed scanning microdensitometer is  scheduled 

for delivery by  1  January  1973.     A  specification of the unit is enclosed 

as  an appendix to this  report.    The Optronics unit will  scan and display 

16,   35,   and 70 millimeter color or monochrome  roll film on a registered 

transport under  computer control as well  as provide prints or transparen- 

cies up to   10 inches  square.    Specifications call for a minimum aperture 

size of 2 microns  square,   12 bits or precision,   a scanning velocity of 8 

inches per second in the direction of travel and a 0 to 4 specular density 

range.     Color digitization and display is sequential using a color wheel un- 

der program control. 

The IPL computers  and peripherals  are hardware interfaced to 

the Engineering  Computer Laboratory (ECL) IBM  360/44.    Images may be 

transferred from the disk on the HP  2100 to  a disk on this machine,   pro- 

cessed and then transferred back to the HP 2100.     Work is  continuing  on 

an operating  system that will provide  remote job entry between the HP 2100 

and the IBM 360/44 for image processing tasks.     The IBM 360/44 is  opti- 

cally linked to the University Computer  Center (UCC)  IBM 370/155 for re- 

mote job entry between the machines.      The IBM 360/44 also acts  as the 

U. S. C. host computer for the ARPANET using a TIP interface. 

Image Processing Software Capability.    Image  processing tasks 

on the IBM 370/155 are performed with conventional FORTRAN based soft- 

ware  and a processing software package  called VICAR.     The  VICAR sys- 
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tern is also being implemented on the IBM 360/44.     The VICAR (Video 

Image  Communication and Retrievel)  system was  acquired from the Jet 

Propulsion Laboratory,   and a modified form has been operational at U. S. C. 

for the past year. 

The purpose of VICAR is to facilitate the acquisition,   digital pro- 

cessing,   and recording of image data on a production basis by scientific 

personnel not familiar with  systems programming,   applications program- 

ming,   and problem programming.     The system programmer requires know- 

ledge of applications  and problem programming only in a global sense.     The 

applications programmer is capable only of using existing problem programs 

and requires no knowledge of either system or problem programming.     The 

results of processing  an image with problem programs,   GRID,  MAPGRID 

and CONCAT are  shown in Figure  2a,   b and c.     The problem programmer 

must have knowledge of application program protocol but need not have 

system programming knowledge.    From a  system viewpoint,   the opera- 

tion of VICAR is very similar to that of a standard utility program.      The 

application programmer  submits  a card deck containing    a limited number 

of VICAR control  statements to define the processing tasks.     These state- 

ments  include READ  and WRITE tape  instructions in 7  or  9 track,   6  or  8 

bit formats,   disk data set RESERVE  cards and program EXECUTE  cards. 

All tape and disk labels  and job control statements are  generated so as to 

be transparent to the user.     Up to 14 simultaneous  I/O requests can be  made. 

User labels  as well as history and  system labels,   are  routinely placed at 

prescribed locations  preceding  the  image  data  on a tape  or  disk file.   This 

information  can  be retrieved  and used for picture  annotation  purposes such 

as   shown in  Figure 2d.     This  is  one  display option  of the problem program 

MASK.     Labels   can be deleted  in total  or  in  part  at  the user's  option.      The 

problem programmer unlike the applications  programmer  can  add programs 

to the  program library which  can be executed by himself or  by  an  appli- 

cations  programmer.     A problem program  can be written   either in  Fortran 
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(a)     Output of GRID 

I ■■"*£. 

/- **! 

fc „'-.-.   L.. 

A 

(b)     Output of MAPGRID 

(c)   Output  of  CONCAT (d)    Output  of MASK 

(e)     Original  Image (f)     Image  processed   by Gaus- 
sian isotropic high   frequency   em- 
phasis   filter   followed by histo- 
gram   equalization. 

Figure 6. 1-2.      Examples   of  Processed   Images 
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or Assembly Language and differs from a normal  subroutine only in 

its I/O structure.    In addition to i.ormal Fortran I/O which is option- 

al,   several VICAR I/O statements must  be included.    Most existing 

conventional subroutines can be easily converted to VICAR problem pro- 

grams through a modification of its I/O structure.    At present VICAR 

contains over 30 application programs which perform such varied tasks 

as Fourier transformations, picture annotation, line plotting and filter 

design.     An updated version of VICAR with block I/O transfer has been 

installed at UCC.     This modification will decrease I/O time and signi- 

ficantly reduce I/O costs involved in image processing on that machine. 

APPENDIX 

Specifications for Proposed Microdensitometer 

Film Scan and Playback System 

for 

University of Southern California Image Processing Laboratory 

A.    Digitizer/Display Specifications 

1. The ability to scan and playback  sprocketed roll film transparen- 

cies of  16,   35,   and 70 millimeter  sizes using an index registered 

automatic film transport which may be advanced or reversed manu- 

ally and under program control an arbitrary number of frames. 

The transport device must provide frame to frame registration 

error of not greater than +_ 12 microns perpendicular and parallel 

to direction of film travel. 

2. The ability to directly digitize  and playback  sheet film photographic 

transparencies  of opacities (prints)  up to a maximum size of 25.6 

cm square. 

3. Color separation by means  of a 3 primary color wheel under manual 

and program control to digitize or playback color images in a  se- 

quential mode. 

4. The  capacity to digitize and playback images in a  range from 0 to 
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4 specular sensity units (0 -   100% transmittance)  with at 

least  12 bit A/D and 10 bit D/A conversion with at least 8 

bits of significance minimum in any application.      |Of course 

film has» fog and maximum density sensitivity wil"'  affect 

particular applications.) 

5. Linearity of + .02 specular density units  (+ .5 percent trans- 

mittance)  over the above  stated range and half  the above varia- 

tion over any 2 density unit window within the 0-3 density unit 

range. 

6. Stability of less than +_ .02 density unit drift (+  . 5 percent trans- 

mittance)  after one hour of warm up to be sustained for at least 

10 hours. 

7. Repeatability of 4_ .01 density units or less after one hour of 

warm up. 

8. Optical  system depth of focus to  exceed 250 microns at all aper- 

ture  sizes or a means whereby the transported roll film or mounted 

sheet film curvature will not exceed the depth of focus at the film 

plane for any selected aperture. 

9. Square apertures  capable of 256,   512,   and 1024 line  resolutions for 

a square frame  scan or replay on all types  roll film as well as for 

sheet film sized of 4,   5,  8,  and   10 inches square with no aperture 

overlap.     (It is  expected that  standard apertures  available with the 

device will also be included and that other apertures may be easily 

added in the future.) 

10. X and Y axis   spatial  repeatability of less than or equal to +   1 

micron. 

11. X and Y axis   straightness of travel variation less than or equal to 

+_ 5 microns. 

12. X and Y axis  orthogonality of 4_ . 5  seconds of arc. 

13. Position accuracy of  1 micron RMS in  X and Y direction in 25.6  cm 

of travel.   (6 micron peak to    peak) 
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14. Digitization or replay speed variable from approximately 5 to 

20 cm/second minimal. 

15. Peak signal-to-noise ratio    exceeding  50 db in large aperture 

clear field operation and to exceed 40 db under all operating 

conditions. 

16. Photomultiplier surface material must be capable of extended 

red wavelength  response to provide minimum signal-to-noise 

ratio    requirement for color image scanning.     It is  suggested 

that S-20, S-25,  or Gallium Arsenide photosurfaces with a thermal 

electric PMT cooler be investigated to meet this  specification. 

B.    Other Specifications 

1. A viewing  screen for accurate manual film positioning as well as 

a means for viewing small portions of the film piane. 

2. Switchable logarithmic converter. 

3. Direct digital display of  film density information. 

4. Console display with convenient  switches and indicators  such as 

end of scan light,   etc. 

5. Means for accurate initial and interval calibration of instrument to 

ensure  continuing densitometer accuracy. 

6. The proposed  system will be interfaced to a Hewlett-Packard 2100 

with   16 bits   in and out,   flag in and out configuration.    A typical 

I/O  card for this purpose is the microcircuit interface card No. 

12566.     Cooperation with our computer  staff and Hewlett-Packard 

will be available to aid in software development and consultation. 

7. Switching  circuitry to  allow bit packing into  a density or transmit - 

tance range existing within a particular transparency or print  so 

that the potential exists for full  register length usage. 

8. A complete maintenance manual  so that our laboratory staff can 

perform all  repairs and periodic  adjustments. 

9. Scan and  replay  capability in  a normal room light  environment. 
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6.2   USC/ ARPANET Image Processing System 

Richard P.   Kruger and William K.   Pratt 

The University of Southern California image processing hard- 

war? and t'Oit-ÄTüre facilities previously discussed will soon be available 

for use over the ARPA computer network.     A remote site user may: 

(a) read an image from an image file and transfer the 

image to the remote site; 

(b) store an image,   transferred from the remote site, 

on an image file; 

(c) display and make a hard copy of an image  stored on 

an image file; 

(d) digitize a hard copy image and store on an image file; 

(e) execute _« VICAR language image processing program. 

The use of the USC/ARPANET image processing system by a remote site 

user requires,   as a minimal configuration,   a computer terminal connected 

to a  TIP.     With this configuration image processing jobs can be initiated 

from the remote site with operations performed on previously stored images 

and hard copy image results  returned to the user by mail.     The next level 

of capability entails the addition of an image recording device at the re- 

mote site for display of processed images.    A complete remote site sys- 

tem would also include an image  scanner and digitizer for supplying input 

images. 

Figure 1 contains  a block diagram describing the information flow 

in the USC/ARPANET image processing system.     In operation a user at a 

remote  site  establishes  a  connection with the USC network  control program 

and notifies the NCP that an image processing job is to be executed.     A 

data transfer program receives a  request for an image processing job from 

the NCP and then acts as a monitor for control of the job   instructions  and 

data.     The remote user's job parameters,   consisting of instructions defin- 

ing the image processing operations to be performed and image data loca- 
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tions,   are stored in a job file preparatory to execution.     If the user sub- 

mits a VICAR program,   the source program is stored on a mass image 

file.    When the remote user's job is ready for execution the data transfer 

program transfers the appropriate image data and instruction to the pro- 

cessors.     For example, if a VJCAR job if to be performed the data tians- 

fer program transfers the remote user's VICAR language source program 

and the input images to be processed from the image files to the VICAR 

language processor on the IBM 370/155.     After the VICAR processing is 

completed,   the output image is returned to the image file,   and subse- 

quently returned to the remote site through the TIP. 

The majority of messages transmitted over the network are of 

short length and can be placed in a single packet.    However,   bulk files 

such as digital images usually exceed the packet length,   and therefore, 

must be partitioned for transmission.     The partitioning is automatically 

handled by the host and user network control programs,   and is not of con- 

cern to the user.     For digital image processing operations,   images are 

usually coded with eight bits (one byte) ner picture element.     Further- 

more,   images are often restricted in size to a binary integer,   e.g.  (256 

by 256,  512 by 512,   etc.)  in order to take advantage of fast  computational 

algorithms which impose this restriction.    In the interest of standardiza- 

tion,   the USC/ARPANET image processing system has been designed to 

handle image files with a record length of 256N bytes per record where 

N is an integer.    The number of records in a file  can be specified by the 

user, and is not restricted to a binary integer.    At present the fastest 

transmission speed over the ARPANET is  50kbs.     Considering the trans- 

mission control data that automatically is added to each message packet 

and transmission delays encountered at each node,  the average user data 

rate is likely to be about 25kbs.    At this  rate the time required to trans- 

mit a  256 by 256 byte image is about 21  sec.    A 1024 by  1024 image re- 

quires about  5. 6 min,  for transmission.    Plans are underway to provide 
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a higher speed transmission service to the network.     Also,  image band- 

width reduction techniques  are being considered to decrease the transmis- 

sion time. 

6. 3    Development of Original Images for Image Processing 

William K.   Pratt 

A master  set of three monochrome and two natural color images 

has been assembled as  a provisional  standard for image coding  studies. 

The following  sections describe the  original master  set.     It is  antici- 

pated that  future master  sets will contain  a wider variety of imagery, 

useful for image coding,   restoration,  enhancement,   etc.     studies,   and 

that the  subject pictures will be better calibrated,  analyzed,   and documented. 

General  Picture Description.  All test pictures  contain  256 by  256 

pixel points.     The luminance  (intensity) at each pixel point has been li- 

nearly quantized into  256 levels  and binary coded into the  range (0, 255). 

The test pictures  are listed below: 

File    # Name 

1 girl -   red tristimulus value 

2 girl -   green tristimulus  value 

3 girl -  blue tristimulus value 

4 couple -   red tristimulus  value 

5 couple  -   green tristimulus value 

6 couple -  blue tristimulus  value 

7 girl -  monochrome luminance 

8 couple  -  monochrome luminance 

9 moonscape   -  monochrome luminance 

The monochrome luminance picture of the girl and couple have been ob- 

tained from the natural  color  representation through the  coordinate con- 

version 

YT  =   .299RT +  . 587GT + . 114BT 
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where Y_ = image luminance in integer form (0 < Y_ < 255) 

R_, G_,   B    =  red,   green,   blue image tristimulus 

value in integer form (0 < R_ < 255), 

(0< GT< 255),   (0 < BT< 255). 

The moonscape image is a picture of the moon taken from a 

spacecraft and subsequently processed by the Jet Propulsion Laboratory 

to enhance its  subjective qulaity.    No information is  readily available 

as to characteristics of the image sensor or the post processing algo- 

rithms. 

The color images have been scanned by Kodak from color slides 

distributed by the Society of Motion Picture and Television Engineers 

(SMPTE).     The digital tapes and supporting documentation were  supplied 

to USC by Dr.   Oleh Tretiak of M. I. T.    In the  scanning process, the 

scanner output (nominally photographic density)  was linearly quantized 

to  256 levels.    System calibration curves were then generated to relate 

a     scanner digital number to true density and true transmittance. At 

USC the calibration curves were used to  convert the  scanner digital num- 

bers to  a set of digital numbers linearly proportional to the transmittance 

of the test slides for each tristimulus value.     The resulting transmission 

scale between 0.  and 0. 6 has been linearly quantized to 256 levels.    The 

SPMTE slides were  scanned over an equi-space  raster of 520 lines  and 

780 pixels per line.     The  couple picture  of the master  set was obtained 

from the  scan of SMPTE  set  #2 by extracting the center 512 by 512 pixels 

and  spatially averaging the  corrected   transmittance in groups of four 

pixels to obtain a  256 by 256 pixel image.      The girl picture of the master 

set was  obtained by extracting a  256 by 256 pixel  area of the  same  digi- 

tized SMPTE slide #3. 

Statistical measurements have been performed on the master 

set images.     These measurements include: 
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mean,   variance,  standard deviation 
row and column covariance 
grey scale histogram (64 levels) 
first order entropy 
second order row and column entropy 

For  storage of images on magnetic tape,  the tape format is: 

2400 ft.  reel 
9 track 
800 bpi 
one pixel per byte 
256 bytes per record 
256  records per file 
no tape label 
record gap after each record (IBM compatable) 
file mark after each file (IBM compatable). 
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7.     New Research Projects 

The following are summary descriptions of new research studies 

that will be initiated during the next six months in addition to the continu- 

ation of topics presented earlier. 

7. 1  Interframe Coding of Television Signals 

Ali Habibi 

The con• our tracing algorithm has been employed as a technique 

of encoding two dimensional digital data by tracing the contours of equal 

gray levels and transmitting the addressing information that enables the 

receiver to reconstruct these contours.    This technique relies upon 

the spatial correlation to reduce the data redundancy.    It is proposed to use 

the   contour tracing algorithm to encode interframe differential pictures. 

These pictures are created by taking the difference of two successive 

frames in the television signal and indicating the change along the tem- 

poral axis.    The proposed technique reduces the redundancy in both 

sptaial and temporal domains,  therefore achieving a further   reduction 

in the redundancy than is possible with either one of the techniques.    Its 

potential use includes coding both monochrome and color video signals. 

Preliminary results indicate that good coding capabilities may be 

achieved by combining unitary transformations with a DPCM encoder. 

Using this technique for intraframe coding,  first a one dimensional uni- 

tary transformation is used to obtain the transform of each line of a 

still picture.    This gives a signal in the transform domain which has 

a strong correlation in the vertical direction,  then this signal is coded by 

a DPCM coder taking advantage of this correlation. 

It is planned to extend this technique to interframe coding by taking 

the two-dimensional unitary transform of each frame and then applying 

the DPCM encoder to code the transformed data in the temporal direction. 

Such a system will explore the correlation of moving pictures in spatial 

as well as temporal directions and allow a parallel operation that can be 

used to implement real-time interframe coders. 
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7.2 Space Variant Point Spread Functions 

Harry C. Andrews 

Due to the increase in computing technology,  it is becoming 

feasible to consider the task of computationally implementing image 

restoration systems degraded by space variant point spread functions 

(SVPSF).    Five specific areas of investigation under this subject are: 

1. Object dependent SVPSF's 
2. Eigenfunction Analysis 
3. Degree of Freedom and SVPSF's 
4. Gaussian Kernel SVPSF's 
5. Atmospheric degradating SVPSF's 

Each one of these areas is being investigated with respect to analysis 

and computational implementation.    The object dependent SVPSF is 

modeled after the equation 

g(x, y) //«?., ) h(x.y, §,   T), f) d§dT] 

An approach to the solution of this equation is a Taylor Series expan- 

sion of h(. ) about f(. ).    The Eigenfunction analysis utilizes the equation 

\       *       (x, y) 
nm   nm 

00 

// nm (§, T)) h(§, T),x,y)  d§dr| 

to develop a system of Eigenf unctions (if they exist) for expansion of the 

image function. 

The degrees of freedom    analysis results in a four-dimensional 

singular valued decomposition to desc    he h(x, y, §, r\) more efficiently 

for computational inversion.    The Gaussian kernel SVPSF analysis 

attempts to invert a point spread function given by 

h(p,q)= A(p) exp -   { (p - q)   K   X(p)(p - q) j 

where 

£ = (x, y) 

a= <§.*!) 

Various simplications are introduced for computational simplicity. 

The atmospheric degradation SVPSF is really a phase sensitive SVPSF 
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system in which the image and point spread function phases are particularly 

significant.    Phase unwrapping and phase filtering will probably be re- 

quired for such restoration processes. 

7. 3  Fast Recursive Restoration for Two Dimensional Images 

Anil K.  Jain 

The standard methods used for recursive image restoration have 

the following difficulties: 

a) The filters are not isotropic,  i.e.,  the improvement in 

the S/N ratio depends considerably on whether the image is scanned 

horizontally or vertically; 

b) The computation time for large images is considerable; 

c) Vector scanning gives a better S/N ratio but increases dimen- 

sionality which leads to large storage requirements. 

A second order vector Markov model for two-dimensional images 

has been developed and it is believed (based on some initial results) that 

an isotropic filter with scalar filter equations (for vector scanning) cen 

be developed leading to a fast recursive restoration algorithm [ 1 J. 

Reference 

1.     E. Angel and A.K. Jain, nA Nearest Neighbors Approach to Multi- 
dimensional Filtering," Conference on Decision and Control,  New 
Orleans,  December,   1972; also to    ppear in IEEE Transactions Aut. 
Control, April,   1973. 

7.4 Pseudocolor Mapings Via Color Distance 

Anil K.  Jain 

This project under consideration will deal with the determination 

of hue and saturation distribution as functions of illuminance (or intensity) 

of a black and white image so that a suitably chosen criterion in terms of 

color distance  [ 1 ] is satisfied. 

Reference 

1.     A.K.  Jain,  "Color Distance and Geodesies in Color-3 Space", to 
appear in the Journal of the Optical Society of America. 

-117- 

i i" i iiir ii'mriMiiffi ■ ii   1*1— "- MMt—i' nr--inhi-«iiV ■-■■■'- - - ,   irr-r iiiüii'iiinr 



7. 5 Image Registration 

William K.  Pratt and Alexander A.  Sawchuk 

A common image processing problem is that of spatially reg- 

istering a pair of images from the same scene.    For example,  one 

image may be from a visible wavelength image sensor and the other 

from an infrared sensor.    The general problem is to spatially reg- 

ister the images and compensate for translation,  rotation,  and mag- 

nification differences in the presence of sensor noise and sensor non- 

linearities. 

A preliminary approach taken to the problem has been the 

development of an N-dimensional correlation function expressing the 

N degrees of freedom of misregistration.    This technique has been 

implemented by software for translation errors with good results. 

The unique feature of the program is its utilization of the spatial 

correlation of each image plane. 

Further studies will expand the correlation technique for mag- 

nification and rotation.   Also,  consideration will be given to sequential 

search techniques. 
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8.     Publications 

The following is a list of papers,   articles,   and reports pub- 

lished or  accepted for publication during the past  six months, that 

have resulted from ARPA sponsored research. 

H.   C.   Andrews, A.   G.   Tescher,   R.   P.   Kruger,   "Image Processing 
by Digital Computer,"    IEEE Spectrum,   Vol.  9,   No.   7, July,   1972. 

H.   C.   Andrews, "N Topics in Search of an Editorial:    Heuristics, 
Superresolution,   and Bibliography,"   Proceedings IEEE,   Vol.  60,   No. 
7, July,   1972. 

L.   D.   Davisson, "Rate-Distortion Theory and Application,"    Proceed- 
ings IEEE,   Vol.  60,   No. 7, July,   1972. 

A.   Habibi, "Two-Dimensional Bayesian Estimate of Images,"     Pro- 
ceedings IEEE,   Vol.   60, No.   7,   July,   1972. 

A.   Habibi, "Coding Color Images by Differential Pulse Code Modula- 
tion,"     to be published in Proceedings International  Telemetering Con- 
ference,   October,   1972. 

A.   Habibi, "Quantization Errors  and Entropy Considerations,"    Proc. 
Conf. on Computer Image Processing and Recognition, University of 
Missouri at Columbia,   August,    1971. 

A.   K.   Jain,   "Color Distance and Geodesies in Color 3 Space,"  to be 
published in the J.  Opt.   Soc.   Am. 

A.   K.   Jain,   "Linear and Nonlinear Interpolation for  Two-Dimensional 
Image Enhancement,"   to be presented at  Conference on Decision and 
Control,   New Orleans,   December,    1972. 

A.   K.   Jain  and W.  K.   Pratt,   "Color Image Quantization,"     tobe pub- 
lished in  Proceedings of the National Telecommunication Conference, 
Houston,   Texas,   December,    1972. 

N.   D.   Mascarenhas,   "Suboptimal Generalized  Wiener  Filters,"     Proc. 
Conf.   on  Computer Image  Processing  and Recognition,   University  of 
Missouri  at  Columbia,  August,    1971. 

N.   E.   Nahi  and T.   Assefi,   "Bayesian Recursive Image  Enhancement," 
IEEE  Transactions on Computers,  July,   1972. 
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N.   E.   Nahi,   "Role of Recursive Estimation in Statistical Image En- 
hancement,"     Proceedings IEEE,   Vol.  60,   No. 7,  July,  1972. 

J.   Pearl,   H.   C.   Andrews  and W.   K.   Pratt,   "Performance Measures 
for Transform Data Coding,"     IEEE Transactions on Communication 
Technology,   June,   1972. 

W.   K.   Pratt, "Walsh Functions in Image Processing and Two-Dimen- 
sional Filtering,"    Symposium on Applications of Walsh Functions, 
March,    1972. 

W.   K.   Pratt, L.   R.   Welch and W.   Chen, "Slant Transforms for Image 
Coding,"     Symposium on Applications of Walsh Functions,   March,   1972. 

W.   K.   Pratt, "Generalized Wiener Filtering Computation Techniques," 
IEEE Transactions on Computers, July,    1972. 

W. K. Pratt, "Binary Symmetric Channel Error Effects on PCM Color 
Image Transmission," IEEE Transactions on Information Theory, Sep- 
tember,   1972. 

W.   K.   Pratt and R.   P.   Kruger,   "Image Processing Over the ARPA 
Computer Network,"    to be published in Proceedings International Tele- 
metering Conference, October,    1972. 

C.   Reader,   "Spatial Sub sampling for the  Transform Coding of Images," 
Symposium on Applications of Walsh  Functions,   Washington,   D.   C. , 
March,   1972. 

A.   A.   Sawchuk,.   "Linear Space-Variant Motion Degradation and Restora- 
tion,"     Spring Meeting of the Optical Society of America,   New York, 
April,    1972. 

A.   A.   Sawchuk,   "Space-Variant Image Motion  Degradation  and Restora- 
tion,"     Proceedings IEEE,   Vol.   60,  No.   7,   July,   1972. 

A.   A.   Sawchuk,   "Coordinate   Transformations  in  Space-Variant Image 
Enhancement  and  Restoration,"     Fall Meeting of the Optical  Society 
of America,   San Francisco,  October,    1972. 
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