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ABSTRACT

7 In Part L of this report the optimum MTI receiver was derived and

analyzed for the case in which the radar pulses were emitted from the trans-
mitter equally spaced in time. For typical long range ATC surveillance radars,
aliasing of the target and clutter spectra results in detection blind speeds

at multiples of approximately 70 knots. It is well known operationally that
these blind speeds can be eliminated by staggering the transmitter PRF,
Heretofore, there has been no thorougn theoretical analysis of the effect of
staggered PRF on the spectral distribution of the target and clutter signals.
It is shown in Part II that the clutter spectral density continues to fold over
at the PRF, but that the signal spectrum becomes dispersed in frequency, some-
what 1ike an anti-jam signal. The effect that this phenomenon has on the
performance of the optimum processor is evaluated in terms of the signal-to-
interference ratio (SIR) criterion that was derived in Part I.

[t is further noted that even when the target Ocppler shifts are more
than one PRF apart, the spectra are distinguishable, suggesting that unambiguous
Doppler estimation may be possible. This concept is explored in detalil using
the MTI ambiguity function. It {s shown that good SIR performance can be
obtained by choosing the stagger parameters to minimize the height of the
subsidiary Doppler side-lobes. The resulting design problem is noted to be
similar to that of obtaining good antenna patterns fo- arvays having non-
uniformly spaced elements,
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A Theory for Optimal MTI Digital Signal Processing
Part II: Signal Design

I.  INTRODUCTION AND SYNOPSIS

In Part I of this report [1] statistical decision theoretical methods
were used to develop a raticnal basis for comparing the performance of MTI
receivers. The analysis has led to the development of a new receiver struc-
ture that is practical to implement using digital signal precessing (DSP)
techniques and achieves essentially optimum performance. All of the results
in Part | were based on the assumption that pulses leave the transmitter
uniformly spaced in time. For en-route L-~band radars in which the unambigu-
ous range must be 200 n. mi., unambiguous velocity measurements are not poss-
ible because of target spectrum aliasing at the PRF. Furthermore, the clut-
ter spectrum also folds over at the PRF resulting in "blind speeds" at which
the detection SNR of even the optimal detector is degraded below practically
useful limits. This effect is demonstrated in Figure 1. In the development
of classical MTI processing it has been found from intuitive considerations
that if the transmitter pulses are staggered in time, improved detection per-
formance can be obtained [2], [3]. However, there has been no thorough theo-
retical investigation of the exact effect that staggered PRF's have on the
underlying target and clutter models. The analysis developed in Part I is
generalized in this report to allow for the non-uniformly spaced sampling

pattern. In Section II, models are derived for the sampled-data target and
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Fig. 1. Optimum ARSR SiR performance using uniform sampling.




clutter returns that result when a ranye ring is sampled by repetitive bursts
of M non-uniformly spaced pulses. The resulting model is used in conjunction
with the decision theoretical test of Part I to derive the optimum receiver
structure. As in the uniformly sampled case,the processor consists of a
clutter rejection filter and a bank of matched filters that are in a sense
matched to the target signal over the enlarged unambiguous velocity region.
It is shown that this enlarged complex of matched filters can be realized

by making appropriate interconnections of filters that extend over only

the original ambiguous frequency interval. Hence,it may very well be
practical to implement the optimum processor using DSP techniques. The Signal-
to-Interference (SIR) performance measure is used to evaluate the performance
of the optimum detector and it is shown that reasonable detection can

be achieved at velocities that previously could not be seen by the radar.

In addition to providing better detection performance over 3 larger velocity
jnterval, the optimal processor is capable of providing velocity estimates
over the larger velocity range. Since staggering the PRF increases the
unambiguous velocity interval at the expense of a decrease in the unambiguous
range interval, it is clear that the ambiguity surface of the transmitted
waveform 1s being altered. Therefore,staggering the PRF s basically

an MTI signal design problem and hence is characterized by the range-velocity
ambiguity function. This function is evaluated along the Doppler axis

as this represents the output of the matched filters of the optimal processor.
It is shown that the M= pulse staggered waveform reduces the velocity

ambiguity at the average PRF.




II. INTRODUCTION TO MTI SIGNAL DESIGN

The analysis presented in Part I has led to the development of a
guantitative technique for evaluating optimal and suboptimal MTI receivers.
The results show that a considerable improvement in target detection capa-
bility is possibie using the matched filter receiver, The problem formula-
tion and receiver synthesis are based on the assumption that the sampling
rate is uniform. In that case, for the L-band ARSR [4], an aircraft moving
at 600 kts. induces a Doppler shift corresponding to 3000 Hz. Since the PRF
needed to obtain 200 nmi. unambiguous range is 360 pulses/sec., aliasing of
the target and clutter spectra will occur with period 360 Hz. or 72 kts.
Therefore if an aircraft is moving at a velocity + n x 72 kts. n = 0,1,2,...,
the Signal-To-Interference-Ratic (SIR) will be serfously degraded due to the
clutter aliasing. Furthermore it will be impossible to distinguish between
a target moving at velocity v and another at v + n x 72. Since staggering
the PRF has been found to improve the detection capabilities of MTI receivers
at the blind speeds [2] it is of interest to determine the theoretical basis
for this improvement and to explore its implications regarding the question
of velocity resolution. Since the underlying statistical properties of the
data samples will be affected by the non-uniform sampling pattern, it is
necessary to re-examine the basic target and clutter models that were derived

in Part I for the uniformly sampled system.




Target Model

It was shown in Section Il of Part I, that if the aircraft induced a
Ooppler frequency v and was located at azimuth ¢ = Twgs then uniformly spaced
transmit pulses led to target samples at a range cell given by 1 I-(14), namely

jerunT
s(nT sa) =y g(nT =) e P (1)

where g(t) is the two-way antenna voltage gain pattern and Tpis the uniform
interpulse period. In the derivation of this target model,it was assumed
that the transmitted pulses were narrow compared to the Doppler period and

to antenna pattern variations. In other words,the physical sampling was done
by modulating a continuous phenomenon by a train of sampling pui#es. A nseful
idealization is to represent the sampled data sequence as the continuous time

function as follows:

s(tig) = s(tia) > §(tenT ) (2)
N=-w
where
Jamut
s{tia) =vglt-t) e (3)

Then the Z-Transform of the uniformly sampled sequence is related to the

Fourier Transform as follows:

! The notation 1-(14) refers to equation (14) in Part I.
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= Fs(ti)] = ¢ DS(f - F) (a)
P o p
where
S(fia) = F [s(t;a)] (5)

Equation (4) shows the foldover of the target spectrum every llTsz.

When a two-pulse staggered PRF sampling pattern is used, samples of
the target environment are taken at times 0, = (Tp -€), & ZTD. & (3Tp - €},

+4 Tp. ..., a5 shown in Figure 2. In this case, the sequence of samples has

values
. s(a).s(Tp-a).s(2Tp).s(3Tp-c).s(4Tp). - {6)

These numbers correspond to sampling s(t) at times ... O, ZTp, dTp. 6Tp. cees

p? 7Tp, «»+, A continucus time
representation of the sampled-data waveforta for the two-pulse staggered

and sampling s{t-c) at times ... Tp, 3Tp. 57

algorithn is therefore:
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Fig. 2. Two=pulse staggered sampling pattern,




s(tig) = s(tig) ) 6(t-2nT ) + s(t-es) > alt-(zn-)T]  (7)

NSwco NSew

For the M-pulse stagger sampling pattern,

s(t) is sampled at O, MTP, ZMTp, .
s{t-g;) 1s sampled at T , (MH1) T p’ (2M+1) T s oo
s(t~e2) is -a., 'ed at 2T y (M*2 )T , (2M+2) T

- i - ’ ar * - 3 s 8
s(t eM—l) is sampled at (M l)Tp {2M-1) Tp (3M-1) Tp (8)

from which it is possible to deduce the following continuous time representa-

tion of the sampled-data waveform:

M @
5(t-g i) z S[t-(ntim)T ] (9)

m=0 N==00

;(tﬂl

The Fourier Transform of this function isz:

M-1
" — { =jenf - JjenfmT
S(fig) = ) [e e S(f,a)*[w}—z '
P =

m=0

P s(f - ﬁ!};)” (10)

2 The asterisk will denote convolution.




Use will be made of the following identity

© . © M-1 . -
°. jenfmT Jemfmi iM-k
Ze pS(f-ﬂTn——) =z ze pG(f-—M'T—')
f=wo P j=-0 k=0 P
w  M-1 .. iM-k
- 32n~ﬁT-mT M_
=) e p P o(f - Ik
j=ew k=0 P
@ M-1 ., km
~J2my— M-
=y e M og(r - Mk (1)
1Zeee k=()
In addition, for the target signal of interest
1 "jZ‘ﬂ'fT
S(fia) = v Fg(f-v) e (12)
: J2mrvr
where Fg(f) is the Fourier Transform of g(t) and Yy =ye . Using
(12) and (11) in (10), the target spectrum becomes
S(fa)
M-1 . . ) M-1 km
Lo -jenf(re ) [ . ~Jemy= iM-k
=y D {Fy(F) e Ml 2 D e T os(r - K
m=0 P j=e0 k=0 P
o M-1 M= km k i )
V@ - -j2 -Jon(figr - ) (r¥e, )
Y l S‘ej'ﬂ‘ﬂ"ej'n'( b T;TSmF(f-V+—k,—-~i-—)
T ML 4 g M]D Tp
P jseew k=0 ms0
(13)
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Since the target is sampled only at discrete instants, the delay parameter t
canx be escimated only to within an interpulse period. Therefore, it can be

assumed that

= I(1) Tp (14)
whare I{t) is s me wuknown integer. Then (13) becomes
S(f30) =
. 0 M- 1 kI(T km k 1
vo.jonfr , =32 ~j2my- '32“(f+MT”"T—
Y ko
T_e > i2e Vz PP Fylfvigr-- 1
P iz-nl k=0 p p_’
€15)
-JZﬂfem

Since the term e changes slowly relative to the width of the function

Fg(f-v), then to a good approximation
‘Janem

e Fg(f-\)) x> e

-jemv
“m F(f ) (16)

and (15) can be written as

2 12 ki e e T "g‘f‘“*n'%--};)

- f*
rl
$
b
u
(=)
=2
]
o
b

(17)
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It is appropriate to define the coefficients

.. kKI{T
‘JZW—W%“l
e (18a)

ak(T) =
M-1 ., km
-j2 -j2
by (v) = 514" Z e M J2moey (18b)
m=0
Ck(TsV) = ak(T)bk(V) (]SC)

k=0,1, -+, N1

as this leads to the following convenient expression for the Z-Transform of

the target:

M-

jonfT v ~jeufy > o .
ot Pdey e - Y N oyl s g - ) (9)
P {aw Lk=0 PRy

Clutter Model

In Section Il of Part I, it was shown that each clutter scattering
center could be treated as a point target having zero Doppler. Therefore, as

th

in I-{15), the n™" scatterer at azimuth ¢, in the particular ring of interest

generates the clutter signal return

clty) = v, 9ty -1,) (20)

"




where T = ¢n/w§ - maT/2, Y ® An ejen and tn represents the times the
samples are taken., As before, An is related to the scattering cross-section
of the nth scatterer and en the carrier phase it introduces. From scan-to-
scangthe shift in transmitter phase and the jitter in the antenna rotation
render 8, and An random variables, but over any one scan, (20) represents

a deterministic signal return. Hence, the analysis used to derive the
Fourier Transform of the non-uniformly sampled target return is directly

applicable to (20). The using (15) the transform is

Calf) =

o (M kI(x. ) [ M- km k
y, -Jenfr -j2 n A 32 (Fhme- )
LR Dl ' TR

FolFopt 1)
P ja-x | ka0 =0 p P

(21)

Equation (21) is derived from (15) rather than (19) because the latter
equation has msde use of the approximation in (16). Since clutter returns
can be orders of magnitude greater than the signal returns, approximations
cannot be made unless they can be justified on the basis of signal-to-clutter
ratios. The total clutter return is due to a finite number of scatterers,

hence

Gt = D Colty) (22)

12




and the Fourier Transform of this aggregate of returns is
) = C(f (23)

Therefore, the energy spectral density of the clutter measured over a single

scan is

E(f)‘z D) En1(f) En;(f) (24)
MM

This is a random process in the sense that after each scan the values of
An and 84 change in a random fashion. Then the average power spectral density

of the clutter is

s.(0) = 4= [COF =N N (e () (25)
S n‘ 7\2 2

where TS is the scan time and the bar denotes statistical averaging over the

random variables An and Gn.

Since the amplitudes, phases and azimuthal locations of the scatterers
are independent, each of the random variables in (25) can be averaged

separately. Furthermore, it follows that

»
Yoy Yo, © |Yn][2 én‘ n, (26)

13
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and since the frequency extent of F_(f) is narrow relative to a separation

g
k/MTp,
ke i ko i, ke
1 h_» 2 1y B RT
F(f""“"‘“" —) F (f+_'— = [F (F+ogm— -} 8 ., & »
My Tp ¢ T g M T Ty Tk,
(27)

Substituting (21) in (25) and using (26) and (27), it follows that

> -2
5.(f) = < [ [2>-l—— " (o - 1|2
AL A ;; n sz ;2;» k«Ol 2 An > i:;‘
(28)
where
-jZTrfem
A(f) = e Fylf) (29)

In (29), 1/am is generally much greater than the frequency extent of the

clutter and it is reasonable to assume that

-jenf
e o m Fyl) = F(F) (30)

Since the clutter signals can be many orders of magnitude greater than the

signal, this approximation must be undertaken with care in each application.

An example of the analysis needed to justify (30) is given in a later para-

14




graph for_the two-pulse staggered case. Assuming that this approximation

is valid then the average power spectrum of the clutter process can be

written as:
2 : o M-1 : M-1 jzﬂ}?ﬂ
=g . ) 1 i
Sc(f) T, 72 > X { ,F(“MT -|?
p  ie=wl k=0l m=0 P
(31)
where
T 12
5= 2 Ynl (32)
denotes the average clutter pcwer per range ring. It is shown in the
Appendix that
M-1 ., km
- ",27{“"‘
i‘i }. ¢ "8, o (33)
m=0 '
hence, the clutter spectrum reduces to
S(f)ﬂ-— —? E 12 (f—r)l (34)

p ie-

Receiver Noise Model

It follows directly from I-(36) that staggering the transmitter PRF
has no effect on the receiver noise process. Therefore, it remains a zero-

mean white noise process with spectal dersity ZNO.

15




Two-Pulse Staggering

In order to gain some physical understanding of the mathematical

expressions for the target and clutter spectra the special case of a two-pulse

M

stagger will be studied, This is illustrated in Figure 2. Using M = 2,
g =0, g =€ in (18) and (19) the transform of the target signal is

T T T 7 T T TR RS e
o -

A 1 “jZTffT 1 o i 1 i
S(fsa) =y e T; 12 Co(T’\))Fg(f -y - T;) + C](t-v)Fg(f-\ﬂ‘zT; - 1;)
(35)
where 2
Colv) = (14 e )72 (362)
-32
() = (DI 0 e (36b)

Hence the spectrum of the target return is

|§(fig)

e =
2 J_H_ S [(cosam)‘pg(f-\,. };)i'c‘ + (stn’rve) [Fo(f-y + ?}; - .‘r‘;)lzl
Y

{z-

(37)

Typical plots of the target spectrum are illustrated in Figure 3. There ave
two significant observations to be made: (1) whereas in the unfformly sampled
case all of target energy is located at PRF multiples of the true Doppler,
staggering causes the energy to be split into two pieces separated by one-haif

16
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R

the PRF, and the pair folds over at the PRF, and (2) whereas in the uniformly
sampled case targets moving at dopplers greater than a PRF led to spectra that
were indistinguishable, now the fundamental ambigquity occurs with a period
2/e. This shows that staggered PRF's provide a basis for unambiguous velocity

astimation.

From (31), the exact form of the clutter spectrum reduces to

e1

S.(f) = %'3 g 12 [coszv(ff- %;)e] [Fy(f - };){2
p Te®@

2 1 142
+ lsin‘n(f + - )e] F (f + - v} (38)
[ "’?’?‘3119 5*3‘3'

Since the frequency extent of Fg(F) is very narrow relative to IXTD. it can

regsonably be assumed that

2&

(cosatfe)]Fg(f)

2 .
sg(f)] (39a)

!
(sia’ste)|f (017 = (sie)?]r (11} | (39b)
Using these approximations the clutter spectra can be sketched as shown in
Figure 4 from which it is observed that as for the target spectrum the clutter
power also splits into two pieces, one piece being located at BC, the other
at - 1/2 Tp. with the aggregate folding over at the PRF. The simple sketch

18
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has been drawn to indicate that the clutter power at 1/2 T_ is significantly

smalier than that at DC. A quantitative measure of the re?ative power in each
of these terms can be found by integrating (3%a) and (39b). This has been
done for the sin x/x antenna pattera and ARSR system parameters and it was
found that the clutter power at 1/2 Tp i« 56 dB down from that at DC. Since
10 bit A/D converters correspord to a subclutter visibility no greater than

40 dB, the effect of the clutter power at 1/2 Tp is negligible, hence justi-

fying the assumptions leading to the clutter spectrum in (34).

Therefore, ne impiications of the staggered PRF are now cleér: Whereas
the energy of a moving target return splits into two pieces, the clutter power
continues to fold over at multiples of 1/Tp. Hence, if the target Doppler is
2130 a m'tiple of 1/Tp, namely a former blind speed, then although one por-
tion of the target energy is masked by the DC clutter, the other portion is
located in a relatively clutter-free area at 1/2 Tp. This is the reason
staggered PRF 2nhances target detection. However, it in addition, filters
that are mutched to the target spectrum are constructed, then it appears
that Doppler estimatior over a froquency interval larger than one PRF is
possible. Although the topic is discussed in more detail in Section IV we
briefly discuss thc implementation of the filter matched to the two-pulse

staggered signal spectrum.

Matched Filter Realization

From the preceding discussion it is shown that the target spectrum is

a unique function of the true target Doppler ovar an interval that can be

20
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many times larger thar the PRF. If a matched filter bank could be construc-
ted then not only would the detection performance be optimized but unambigu-

ous estimation of target Doppler would be possible.

Let us suppose that we regquire the resolution of velociZy to within
the interval pv = I/NTp. Then each PRF interval can be quantized into N

subintervals and we can then express the true target Doppler as

i n
0 0
\)=T--+NT—
p p

A it n i-1
) =y ) [tlefy(r - 12)

j=wo0

{ " 1
+C~l (Ts\))Fg \f" NT; - "T—"'p + 'Z'Ir:)
The infinite sum shows the periodic foldover of the target spectrum at the

PRF. From a measurements point of view, nature allows us to ovserve this

function only in the interval [0, I/Tp]. Then we see only the function

~ n n
S(F3) = v | ColraaIFglf- b + €y (eaw)Fy(f- gr + r)

We can readily construct a bank of filters that extend over the [0, T/Tp]

21




range where each filter is tuned to the function F;(f- N%—J, ns0,1,...,N-1.
P

By themselves, these are not matched to the specified signal. To accomplish

this, we combine weighted pairs of filters that are separated by 1/2Tp Hz.

For the filters tuned to "/NTp and (n-]/Z)/NTp we apply the weignts

C;(T, %—-+ ﬂ$~) ' C;(r,%—-+ N%—) for 1=0,#1,+2,..., M. For each value of

i, this gives rise to another filter with transfer function

H1,n( ) = Co (T, T"' NT—)F (f- NT"4

+c’{(T‘ T)F;(f- W 5_.};)

i=°’i’o “ay iM, n’=0,] 9o e ,N"']

When i=io, n=n s this filter is matched to the two-pulse staggered signal.

jﬁg From a practical point of view, the sub-bank of filters

izé F;(f NTp) :—; can be formed by taking an N-point Discrete Fourier Trans-
'éf form (DFT) of the received signal. The super-bank‘of fi]ters is then ob-
%% " tained by multiplying the nth pFT coefficient by C (T, T N%—) and the

p
b (n- g)th T coefficient by C](Ts s NT'Q for i=0, +1,..., +M, Therefore,
i?? an N-point 7 ~ives rise t. a bank of ZMN matched filters that extend over

the frequency interval [— #—37—] simply by combining the outputs oF the DFT

p
coefficients in the right way.

el e
TR

B Tty T ey
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In Section IV we return to thic discussion in more detail when we
consider the MTI ambiguity function. In Section III,a quantitative measure
of the improvement in detection performance will be evaluated using the

Signal-to-Interference Ratio (SIR) that was derived in Part I.

23

T i v d———t o ————




ITI. SIR PERFORMANCE ANALYSIS FOR STAGGERED PRF

The SIR for an arbitrary linear, sampled-data filter when sampled at

time 1 was given-by I-(72), viz.

1/27
P jZTTfT jZn‘fT janr
D[ HE Pzl Pigae ) df'2
-]/ZTp
P J2nfT 2 JjenfT
i IH(e MIZ1s (e Py+ o | df
-1/2Tp | Cc 0

(40)

Even though the transmitter PRF is staggered, the sampled-data processor
operates on the samples of the signal and noise and it matters not when those
samples were taken, Therefore, (40) applies to the present problem, although
it is noted that the signal spectrum will be different, due to the non-uniform
sampling. As before, 1t is noted that only those fregquency terms in the in-
terval (-1/2 p* I/ZTD) are of interest. This is consistent with (19) since
the frequency dependence shows up only in terms like Fg(f-u + §§; - };)

which is folded over every I/Tp hz.

Using the Schwarz inequality it is easy to show that (40) is maximized
by choosing
jerfT
st e Pig)
Hle Py e
JonfT

p
Sc(e ) + ZNO

(41)
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which Is the clutter filter, matched filter cascade combination. When this

is done, the resulting maximum value of the SIR is

L (42)

p
-]/2Tp Sc(e )+ 2No

jonfy

The aliased clutter spectrum is given by (34), but since the integration ex-
tends over the (- 1/2Tp, i/ZTp) frequency interval, only the term about OC
need be taken. Taking the squared magnitude of (19) and using the approxima-
tion in (27), the target spectral density reduces to

N-1
ianfT - k i.]2
!Zs(e l-L j} \> ‘ck(ra.vo) 2 'Fg(f -, * -y
Ty o k=0 P
(43)
Using these results and the fact that
etz = [a ] = oyo) (44)
which follows from (18), then the SIR in (42) becomes
kK142
H-1 var @'Fg(f Yo TR ‘r’)l
) = P2 S ntsp "
Popt'¥e’ T Yol Z %'V S "
k=0 2, T |rg(f)l * AT
(45)




Rather than attempt a rigorous evaluation of (45), it is easier to draw upon
the physical understanding of the target and clutter spectra to simplify the
SIR expression., It was shown in the last section that the M-pulse staggered
PRF causes the target energy to split into M components that are folded over
into the (-1/2Tp, 1/2Tp) interval, while the clutter was distributed about
DC. Since the frequency extent of Fg(f) is narrow relative to the window
1/MTp. there are values of Vo for which there is no interaction between the
clutter and target spectra. In this case, for each Vo there is a value of i

k i . ,
that puts Fg(f -yt HT; - T;) within the (-I/ZTD. 1/2Tp) interval and

v, Y [Fylf = vy ﬁ§; . }2‘2 var
1}2r 7 1 A2 o = gy | IFQ(f Syt )| o
azer ot 0'p _y P p
2 » ng(f)| T et
E
an'p (46)
where
e, l
Ly 2 T
6" ng(f)l df (a7)
AVer,




In the Appendix it is shown that

M-1
|2 (o) = 1 (48)
k=0

whence it follows that

2

Yol E

op

Popt (Vo) (49)
This is, of course, just the coherent integration gain provided by matched

filtering the target out of the white noise background.

The SIR degrades from this optimum value when any cne of the M
components of the target spectrum interacts with the clutter spectra. The

worst case occurs when, for some k and i, ko and io say,

&

i
-V + -090 (50)
o WL

In this case, since the clutter-to-white noise ratio is very large,

K,
A L R 1
Pig 0 T T
™ ! L (51)
o

3
i 2
i, § lsg(f)! v W

For the remaining M-1 components of the target spectrum that are located
within the (-I/ZTD. 1/2Tp) interval, there is little interaction with the
cluiter spectra. Heace, for those values of k # ko (46) holds and the SIR

/4




can be written as

o) i 3 [

k#ko
2
zl%o_l:_g l'b (v)l[ -Z-NTIE-H
o p
(52)
2.
. Lol g i 2
0 D 'bko(vo) ]

where the last approximation follows from the fact that the clutter to
receiver noise ratio is > 1. This expression for the SIR holds for values

of \b given by

v =@ + (53)
o FOT

where first a value of L is chosen and then for each LW ko = 0,1,2,° ,N-1.

Then the optimum SIR performance curve can be sketched by using the formula

? m, i:o
() R R L
_.L_;g-— ko 0 0 p )
'|Y0\ Eq
N, 1 otherwise




For the case of a two-pulse stagger, M = 2, ko

’ 2
Ibo(vo)f = cos“m e
[b](vo)ﬁ = sinznvoe
so that
( i 2
sin“mv e
o (%) o
E - 2
lYo‘ g } cos®mu e
ZNO Tp
1

Whereas when no pulse staggering is used (¢ =

= 0orl and
(55a)
(55b)
mo
if v =
o™ Ty
m
0 ]
if v = +
0 T;' ?T;
otherwise
(56)

0), the SIR is essentially

zero at multiples of the PRF, staggered pulse transmissions lead to mean-

ingful detection performance, especially at higher Doppler velocities.

price paid for this enhanced performance at the blind speeds {s a degradation

in the SIR performance at intermediate Doppler

are summarized in the SIR performance curve plotted in Figure 5.

The

frequencies., These results

It is

worth noting that similar results can be obtained for the pulse canceller

clutter filters by working directly from (40) using the appropriate filter

transfer functions. The SIR performance of the

stagger algorithm is shown in Figure 6.

ASR-7 that uses a 6-pulse
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IV. STAGGERED PRF AMBIGUITY FUNCTION

In Section II, the target spectrum resulting from a staggered PRF
transmission sequence was derived and, for the two-puise case, illustrated in
Figure 3. It was noted that the spectra for targets separated by Doppler shifts
greater than one PRF were not identical as was the case when uniform sampiing was
used. This indicates that it may well be possible to estimate target Doppier
ynambiguously. This gquestion is most easily examined by evaluating the
ambiguity function of the staggered PRF pulse train. The calculation is not
conceptuaily difficult but it can become tedious. In order to develop some

intuition, the clutter-free ambiguity function will be computed first and then

generalized to the situation in which the clutter filter is present. In the

RIS

former case the ambiguity function is the delay-Ooppler distribution of the

output of the matched filter. It is denoted by |E(a.a )| where

3 ’ ZAN

s ’ ',

gyl = I . (Fig) 2.(Fiq) df

; ~1/2 T? (57)

3 Rather than attempt to evaluate (57) by direct substitution it is easier and

wore instructive to draw heavily upon the physical interpretation of the

AL At
S e g

: correlation operation implied by this squation. The necessary intuition can
?: be developed by studying the transmitted signal for the three-pulse staggered

3 case. From (18) and (19) the transform of the target signal is

O Pt
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DN ERCRINCRLA SR .};)

+ ay ()b (9 Fg (F = vy + g1 - 1)

p

b
b=

+ a1 )bp Vg )F (F = v + 33,1; - };) (58)

The magnitude characteristic of this function is illustrated in Figure 7a.

It will be assumed that T, L and v, are fixad so that the correlation opera-
tion in {57) can be studied as a function of v. Making use of the 1/Tp
periodicity in the target spectrum, the integral in (57) can be evaluated

using

o bendia s try e
<

§ (Tv Toe Yy V ) = j Z;(f; YaV) ZS (f; ‘\0’ Uo}df
vo-l/Tp

(59)

The first situation of interest occurs when v = Yo in which case the Doppler

coefficients line up exactly. Equation {59) becomes




l bo("o)i _ ‘bo("o” Tra-m-gse-t]
|
:‘i [y (v |y )|
| A
i
:'; Ibz(vo)l 'bz(vo), ';\\
' “ ’ A\ 4' \\
b
i A | l I\ ik
1 ] v, 2.1 1 .+.1
V, = V,~g=— V- ° V-t Y- +
° T, 3, 031’; ] I, T, 3, T,
This triple folds over every l/Tsz
R |8 +34)] |Bfro+3,)|
3 |, (v, +3,)| ‘,"“ |B,(vo+8,)|
| &%f :"Il ‘; |\ |b2\v°+8,)| |b2(l'°*‘8,)'
L A A
£ Nl 1 1 i
; ”'e"‘fl" v, ¥, +8,
s ;
ol {bi
. ) Fig. 7. (o) Typical target spectrum for three-pulse stagger; (L) Shiited target
> spectrum for three~pulse staggar.
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o .
IY l * jenf(r-1,)
£ (TaTgavgaVy) = z Ubo(vo)lz f 3, (t)ao(ro)gf’g(f-vo) 2 ¢ O af
T
p -
Vo 'I/Tp
Yo
jenf{t-1.)
2 * 1 2 Y 0
# o S 8y (e ()| Fytfov, *31;)’ e df
\)O-I/Tp
Yo
* jonf(t-1.) ]
O | S A O TRC R AR 3%),2 e °dr
vo~]/Tp
(60)
Assuming the v takes on only integral values of T_, then from (18a)
ak('r) = e = e P
(61)
It then follows that
Yo
* jenf(t-1.)
E [ ol @ a)|Fylv, + ﬂﬁ) 2 ¢ o gf
. ?.1 vo-l/Tp
Jemv (1-1.)
- 0" o -
-4 e Rg(r "ro)
-y (62)

AY
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where
1/2T
P 7 jerfr
Ry(1) = |Fg(f)| e df (63)

—1/2Tp

In Part 1 it was shown that this function was precisely the autocorrelation

function of the two-way antenna pattern. Then the ambiguity function when

the signals are matched in Doppler is

E(T’TO’VO’VO)

= J%[RQ(T-TO) [Ibo(\)o)iz + lb}(\)o)lz + 'bz(\)o)lz] (64)

where from (18b)

-jom -j2mve
b, (v) =1ﬁ E e e m (65)
m=0

M-1
E 2
lbk(v)l = 1 (66)
k=0
hence
N lYol
&(T.To.vo.vo)' s ” Rg(r-ro) (67)
TP
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a result which is intuitively satisfying.

In order to evaluate the ambiguity function at other values of v, it

is useful to think of gradually increasing v from its value at Yo+ For

example, when v, < v < 1/3 Tp, the absolute value of Zs(f;t,v) is shown in

Figure 7b. When the correlation operation is performed to evaluate (59)

for these values, there will be no spectral overlap and the ambiguity function

will essentially be zero. No significant contribution will be made to the
ambiguity function until v = vo ¥ 1/3Tp. In this case, different frequency

coefficients line up and (59) becomes

Yo
Jonf(x- )
E(ritgevy * o) %[b, (% * 3505 f BN T
-1/T
%o jonf(t-t,)
* MTLT=-T
+ bz'k(\:O + 5-}-‘)-)b] (vo)f a, (jr)a] ('ro)ng(f - vy t ) )|2 e 0%df
vo-llTp
Vo
2 jonf(t~t )
+ b0 (vo T—)b (v )f a (T)az(‘t )|F (f - v, * )l f]
-1/T

(68)

From (61) it follows that
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§
]

k(r-ro) T
. Jon—gr= e~
a () = e P e P (69)

and therefore

v

0 ( Jp  denfleet)

j. ak+1(T)ak(To) Fg(f -v, * NT;) e df
vo-llfp

=g e P Rg(r-ro) (70)

The ambiguity function is then

. Y -
ﬁ(r.xo.vo + §%;,vo)l= l;Qg Rg(t-ro)['b] (vo *-5;;)bo(vo)
p

* L
+ bZ (vo §Tgﬁb1(vo)

+ b, (v, * T};)bz(vo)” (1)

The next step is to set v = Vo + §$-and repeat the above operations. In this

case, the coefficients are displaced by two and the ambiguity function becomes




D—J(, R (t-1,) [Ibz (v, + 3,,.-)b (v,)

T

E(tatgov, + 3%;’“0)

+b, (v 57—)b (v,)

| oo

This process continues ad infinitum and it is possible to deduce a rule for

+ by, + fr;)b2<vo>

generating the ambiguity function. In the M-pulse stagger case, it becomes

M-1
Y aat » 4 M
E(Tgavg * Eﬁ?s““o) N l;QL Rg""o":i I m;?")bk(vo) (73)
p kao p

where for positive values of n = 0,1,2,"°", m takes on the values
me 0,1,2,°" ,M-1, and for negative values of n = -1,-2,..., m = M=1, N-2, 0.
In (73) use has been made of the fact that

b +m(v) = b(k+m) (v) (74)
modulo M

which follows directly from (€5). It is shown in the Appendix that (73) can be
reduced to
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1 SogrT e ) (75)

= Fg—l-Rg(t-'ro).}];{l::z] e P
P

=0

m+nM
E(T.ro.vo + ‘MT;’\’O)

which is a function only of the differences, =T, and V-0 and the stagger
parameters ARE N -1 It can be deduced immediately that the ambiquity
function is unchanged if € = 0s hence for an M-pulse stagger there are M-}

parameters that can be chosen to shape the ambiguiily surface.

For the special case of a two-pulse stacger (75) reduces to

h 1114 PP n
. l cns : ’i-f v \)0 + T'p
2 o -
!E(r-to,v-vo)! i——z-LRg(\ ro) { 2 ]. |
P }sinn"i-e ffvey +0 -
k ?Tp o Tb ?Tp
(76)

and this is sketched in Fijure 8a and compared with the ambiguity function
for the uniformly sampled case in which ¢ = 0, in Fiqure 8b. It is clear
therefore that Doppler :esolution 1. theoreticaliy possible. Whether or

not the stagger parameters can be chosen to force the subsidiary side-lobes
below a practically useful leva2l is, however, a separate question. It is of
interest to examine the ambiguity function of higher order stagger sequences
that are currently used in practice. The results for the ASR-7 radar, that

uses a G-pulse stagger are shown in Figure 9.
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(a) Two=pulse staggered PRF.
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(b) Uniform PRF.

Fig. 8. MTIl ambiguity function.
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The Matched Filter-Clutter Filter Ambiguity Function

In the preceding section, the ambiguity function for the clutter-free
case was derived. This is a useful characterization when the signal is
designed to function in only a white-noise environment as it is then clear
that all of the side-lobes should be made uniformly low. The more typical
situation for MTI requires a characterization that includes the clutter in
the analysis. If the ambiguity function is viewed as the delay-Doppler
energy distribution of the signal out of the optimum processor, then it is
clear that the effect of the clutter is to add notch filters at multipies

of the PRF's. Then the more general ambiguity function {s given by

1/27
flagy) = [ WOL (Fio)zfig )of (77)
~1/2Tp

As in the clutter-free problem the general result will be obtained by extending
the arguments made for the three-pulse staggered case. This is most easily
done by writing a general expression for (60) and (68) from which the

ambiguity function is deduced. This expression is

menM

C(T.tauvo + "m*‘.vo) s

P :
Yo © jenfiz-t ) |
2D oy, * &Qﬁ)bk(v ) / e 8 (1) 7 F v + m-’ W (fe 0gr
P k=0 Vo -l/T

p (78)




Ty
B ey e i

O R R A e

For the purpose of this discussion it is reasonable to assume that the
clutter filter transfer function changes siowly cover the width of the signal

spectrum, hence allowing the following approximation for the last term in

(78)
j2af{te1)
C(m-)[ 8, G v +w—)’2 g
v l/T,
K 32nv {t-1 ) iz"ﬁf
= Hc(“o°ﬁf') Pr (t*T ) (79)
p

where the last equation follows from a generalizaticn of (60) and (68). Then

the ambiguity function is

- menM
§lrargavg ¢+ -ﬁfg.vo)] =

H-Y

}-{R(TT)IL km(\) + -
P k=0

m*n

)bk(’ M vy~ ﬁf~)| (80)

To evaluate (80) it is assumed that the clutter filter is well wodelled by a
notch at OC as well as at all multiples of the PRF, The approximation was

developed in conjunction with the evaiuation of the SIR for staggered PRF's.




Suppose now that
. S k= 0,1,""" N1 (81)
\)0 m— r sty f L
p p
holds for every n, then
Mol - ) ] (82)
c'e qu

and {80) reduces to the clutter-free ambiguity function. If for some value

of k, k' say,

kl

= n-‘
Yo " AT T (83)
for some value of n, then
H(v - Ev) =0 (34)
c''o 'ﬁT;
and {80) reduces to
2 M-
. o | _ Yo U mtaM
§(zat 0y, ¢ 'T(T;'Vo’ T2 Ry(7-1,) ‘\/_' BV * -ﬁg;)bk(\'o)
p =
kit

{85)

This function is much more difficult to plot as it depends or the true target

Doppler rather than just the difference between the true and tested values.
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In fact, for an M-pulse stagger, (M+1) cuts of the ambiguity function are

needed to describe it completely.

MTI Signal Design

In the clutter-frae case, it is clear that the stagger parameters
should be chosen to produce an ambiguity surface with uniformly low Doppler
side-13bes. From (73) this reduces to the problem of picking the stagger

parameters e, €. "7, gy SO that

‘o, NN ;
Huig Jau—m;(kTp ve,) (86)
L | * ¢
k=0

where for 2048 sidelobes 6 would be -1, etc. This signal design probiem

has swoh in comnon with design of antenra patterns using an array with non-
uniformly spiced elements. This is 3 difficult problem to solve and it is
expacted that when the clutter Tilter is added, it would be even more difficult
to simultaneousl) design the (M+1) folds of the cluttered ambiguity function.

A simpler design strategy can be obtained from the SIR amalysis in Section 1]
where it was shown that the degradation in the performance was given by (50).
From this expression it is clear that (he stagger parameters could be chosen

to minimize the depths of the noutchss by mininizing the functions
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M-1 -Jzﬂgl‘ﬁ -jzn%k (87)

R
k=0

which follows from the definition of bm(v) in (65). This erpression can
easily be manipulated to take exactly the same form as that in (86). This is
interesting as it shows that the simple criterion of uniformly low sidelobes
i5 a good signal design strategy in the cluttered as well as the white noise

environnents.

Unfortunately, time did not permit the thorough examination of these
signal design problems. Therefore, as of this writing, their solution
remains an unahswered question and it will be necessary to be content to use
the NT1 ambiguity function as a tool for signal amalysis, and only indirectly

for signal synthesis.
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APPENDIX

In order to evaluate the MTI ambiguity function it was claimed in

(75) that
M-1 . (v + "H'"M)b (v.) L yly + m+nM )
Z.Dk.*.mv -Fﬁ_k\) =w\)o "M‘rp" \)o
k=0
+nM
3M;1 3214"—T-(kT +em
=-M-‘ m=0919...iM-] (A-])
k=0
where from (65)
-j2 -Jvae
o 15 w2
P=0

It is the purpose of this section to prove (A-1) and hence deduce that

M-
2

k=0

(A-3)

as stated in (48 and (66). To begin, vectors and matrices are defined as follows:

§ “f2rve, 32 : |
glv) = (e o e T g jzm""‘) (A-4;
.. X_m(\)) = [bm(\))' bm+] (V). ...’ "H_M_] (\))] (A'S)
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where m, k and p take on values 0,1,2,°"",M-1.

that

.~ kR ,
R IM-l -32n5~—ﬂlg -Jlnvep

p=0

M-1
= 2 MIEPBP(\))

p=o0

= ka(V)

where use has been made of the fact that

Shsn®) = Ofgamy )
modulo M

(A-6)

First, from (A-2) it is noted

(A-7)

(A-8)




If <u, v> denotes the inner product in cM, then

m+nM

m+nM m
n <X (\)o + -—ﬁg), Xo(\’o)

W(VO + —HT; ,vo)

"

< Mmg(vo + mﬁ-?%), MO_B_(vO)

mtnM

< MO Mg(v, + BT 8 (v,) > (A-10)
P

where * denotes conjugate transpose. Now let

(A-11)

. - . i
g o g 2 " : "o §.
et ki W N ATt T e e G T e s e ey s P




R S SRR S s

=\ e el e (A-12)
i} g,
If k =g, then
-j2 mk
Oy - Le L (A-13)

v=e (A-14)

and noting that
k-

Mal jopiiad M-1

st M M

A = p . lv = -
Ze 2" 1-v 0 (A-15)
p=0 p=0

Hence Q'ER = (0 when k#¢ and therefore the matrix Qm is diagonal for all m.

Using this result in (A-10) yields

M-1

‘P(\)o + m&?’%’vo) = kz [Q?(‘kﬁk(\)o + mﬁ’?%)}* Bk(\)o)
Eh)
M-1 Jznﬁﬁ

= ﬁze 8:(\)0 + mﬁ%%)ﬁk(vo)

K=0




M-1 jZnﬁk Janﬁ¥me

e

k=0

. +nM
M-1 j2na™ kT + ¢ )
15 p Pk
ML ©
k=0

as required,

(A-16)
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