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ABSTRACT

In Part I of this report the optimum MTI receiver was derived and

analyzed for the case in which the radar pulses were emitted from the trans-

mitter equally spaced in time. For typical long range ATC surveillance radars,

aliasing of the target and clutter spectra results in detection blind speeds

at multiples of approximately 70 knots. It is well known operationally that

these blind speeds can be eliminated by staggering the transmitter PRF.

Heretofore, there has been no thorough theoretical analysis of the effect of

staggered PRF on the spectral distribution of the target and clutter signals.

It is shown in Part II that the clutter spectral density continues to fold over

at the PRF, but that the signal spectrum becomes dispersed in frequency, some-

what like an anti-jam signal. The effect that this phenomenon has on the
performance of the optimum processor is evaluated in terms of the signal-to-

interference ratio (SIR) criterion that was derived in Part I.

It is further noted that even when the target Doppler shifts are more

than one PRF apart, the spectra are distinguishable, suggesting that unambiguous

Doppler estimation may be possible. This concept is explored in detail using

the MTI ambiguity function. It is shown that good SIR performance can be

obtained by choosing the stagger parameters to minimize the height of the

subsidiary Doppler side-lobes. The resulting design problem is noted to be

similar to that of obtaining good antenna patterns fo., ar-ays having non-

uniformly spaced elements.
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A Theory for Optimal MTI Digital Signal Processing

Part II: Signal Design

I. INTRODUCTION AND SYNOPSIS

In Part I of this report [l] statistical decision theoretical methods

were used to develop a rational basis for comparing the performance of MTI

receivers. The analysis has led to the development of a new receiver struc-

ture that is practical to implement using digital signal processing (DSP)

techniques and achieves essentially optimum performance. All of the results

in Part I were based on the assumption that pulses leave the transmitter

uniformly spaced in time. For en-route L-band radars in which the unambigu-

ous range must be 200 n. mi., unambiguous velocity measurements are not poss-

ible because of target spectrum aliasing at the PRF. Furthermore, the clut-

ter spectrum also folds over at the PRF resulting in "blind speeds" at which

the detection SNR of even the optimal detector is degraded below practically

useful limits. This effect is demonstrated in Figure 1. In the development

of classical MTI processing it has been found from intuitive considerations

that if the transmitter pulses are staggered in time, improved detection per-

formance can be obtained [2], [3]. However, there has been no thorough theo-

retical investigation of the exact effect that staggered PRF's have on the

underlying target and clutter models. The analysis developed in Part I is

generalized in this report to allow for the non-uniformly spaced sampling

pattern. In Section II, models are derived for the sampled-data target and
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Fig. 1. Optimum ARSR SIR performance using unifoinn sampling.
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clutter returns that result when a range ring is sampled by repetitive bursts

of M non-uniformly spaced pulses. The resulting model is used in conjunction

with the decision theoretical test of Part I to derive the optimum receiver

structure. As in the uniformly sampled casethe processor consists of a

clutter rejection filter and a bank of matched filters that are in a sense

matched to the target signal over the enlarged unambiguous velocity region.

It is shown that this enlarged complex of matched filters can be realized

by making appropriate interconnections of filters that extend over only

the original ambiguous frequency interval. Hence~it may very well be

practical to implement the optimum processor using DSP techniques. The Signal-

to-Interference (SIR) performance measure is used to evaluate the performance

of the optimum detector and it is shown that reasonable detection can

be achieved at velocities that previously could not be seen by the radar.

In addition to providing better detection performance over a larger velocity

interval, the optimal processor is capable of providing velocity estimates

over the larger velocity range. Since staggering the PRF increases the

unambiguous velocity interval at the expense of a decrease in the unambiguous

range interval, it is clear that the ambiguity surface of the transmitted

waveform is being altered. Thereforestaggering the PRF is basically

an MTI signal design problem and hence is characterized by the range-velocity

ambiguity function. This function is evaluated along the Doppler axis

as this represents the output of the matched filters of the optimal processor.

It is shown that the M- pulse staggered waveform reduces the velocity

ambiguity at the average PRF.
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II. INTRODUCTION TO MTI SIGNAL DESIGN

The analysis presented in Part I has led to the development of a

quantitative technique for evaluating optimal and suboptimal MTI receivers.

The results show that a considerable improvement in target detection capa-

bility is possible using the matched filter receiver, The problem formula-

tion and receiver synthesis are based on the assumption that the sampling

rate is uniform. In that case, for the L-band ARSR [4], an aircraft moving

at 600 kts. induces a Doppler shift corresponding to 3000 Hz. Since the PRF

needed to obtain 200 nmi. unambiguous range is 360 pulses/see., aliasing of

the target and clutter spectra will occur with period 360 Hz. or 72 kts.

Therefore if an aircraft is moving at a velocity + n x 72 kts. n = 0,1,2,...,

the Signal-To-Interference-Ratio (SIR) will be seriously degraded due to the

clutter aliasing. Furthermore it will be impossible to distinguish between

a target moving at velocity v and another at v + n x 72. Since staggering

the PRF has been found to improve the detection capabilities of MTI receivers

at the blind speeds (2] it is of interest to determine the theoretical basis

for this improvement and to explore its implications regarding the question

of velocity resolution. Since the underlying statistical properties of the

data samples will be affected by the non-uniform sampling pattern, it is

necessary to re-examine the basic target and clutter models that were derived

in Part I for the uniformly sampled system.
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Trarget Model

It was shown in Section II of Part I, that if the aircraft induced a

Doppler frequency v and was located at azimuth ý = TWs, then uniformly spaced

transmit pulses led to target samples at a range cell given by I 1-(14), namely

j2rrvnT
s(nTp ;q_) =y g(nTp-i) e p (1)

where g(t) is the two-way antenna voltage gain pattern and Tp is the uniform

interpulse period. In the derivation of this target modeljit was assumed

that the transmitted pulses were narrow compared to the Doppler period and

to antenna pattern variations. In other wordsthe physical sampling was done

by modulating a continuous phenomenon by a train of sampling pulses. A tiseful
S~idealization is to represent the sampled data sequence as the continuous time

function as follows:

Co

s(t;q) s(t;o) { 6(t-nTp) (2)

n=

where

j2wvt
${t;a) =yg(t-.r) e (3)

Then the Z-Transform of the uniformly sampled sequence is related to the

Fourier Transform as follows:

The notation I-(14) refers to equation (14) in Part I.
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j27rfTp
Zs(e ;a) - Z [s(nTp ;a)]_ z= e P

F[s(t;)] p (4)

TPn=-• p

where

S(f;ci) F [s(t;a_)] (5)

Equation (4) shows the foldover of the target spectrum every lI/Tp Hz.

When a two-pulse staggered PRF sampling pattern is used, samples of

the target environment are taken at times 0, (T - 2), p arp, • (3T -P ),

14 Tp. ... , as shown in Figure 2. In this case, the sequence of samples has

values

s(o) ,s(Tpoc) s (2Tp s(T-,s(T) (6) )'

p p' p p

These numbers correspond to sampling s(t) at times ... 0, 2TV, 4Tp, 6Tp, *, I
and sampling s(t-c) at times ... Tp 3Tp. 5Tp, 7T A continucus time

representation of the sampled-data waveform for the two-pulse staggered

algorithm is therefore.

6
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s(t;c_) - s(t;A) I S(t-2nT ) + s(t-s;ci)Z 6[t-(2n-l)Tp] (7)

For the M-pulse stagger sampling pattern,

s(t) is sampled at 0, MTp, 2MTp

s(t-el) is sampled at Tp, (M+l) Tp, (2M+l) T ..$

s(t-Y2 ) is *a;.., 'ed at 2Tp, (M+2)T 1, (2M+2) T ...

s(t-eM.l) is sampled at (M-l)Tp, (2M-1) T (3M-I) Tp (8)

from which it is possible to deduce the following continuous time representa-

tion of the sampled-data waveform:

M-1

m-0 n=_-0

The Fourier Transform of this function is2:

A 14-1 1 J2rfe _ 1~ "i2~rfmT, 6(f n(10)S(f;a.) M e S(f;a_)* I r _ e W-fm p -

m=O P n=f

2 The asterisk will denote convolution.
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Use will be made of the following identity

•i.CO M-1
- 2TrfmT i 2 e2f1Tp

>-e 6 (f M) 6(f iM-k
- n=-• P i=-co k=O

M-1 iM-k-

e. i~'p f M-k
-- " p 6(f-- MkTR

i=-o' k=O

Go M-1 2m_'M 6( iM-k)
e- T•e 6(f (11)Si:- k=O

Tn addition, for the target signal of interest

-j2TrfTS(f;c) y F (f-v) e (12)
g27TVT

where F (f) is the Fourier Transform of g(t) and y y e .Using_ e9
(12) and (11) in (10), the target spectrum becomes

S(f;cS)

• {CMO M-1 km
M- 1 "j 22rf(T+C(

•# m=O i - k=OP

00 -lM-lejk" e21(f+Mp1 kmk i
.-- •j 274- j 2k1Omf __M0 T-)'(T+E:m, )

e- e- p Fg (f-v + k T

-- p. i =.0 k- 0 ' =

(13)
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Since the target is sampled only at discrete instants, the delay parameter T

can• be estimated only to within an interpulse period. Therefore, it can be

assumed that

S1(-) T (14)
p

'vhere l(t) is s-•e 6,known integer. Then (13) becomes

S(f;00)

-j27fT -DJ- -kI(T) ,M- j k -j1-
.,ee e e p g(f2f

3_T [Rmf 0-P (fH

pi=- k=O =p P

(15)

Since the term e changes slowly relative to the width of the finction

F (f-v), then to a good approximation
g

-J2Tf en -j 27rvm

e Fg(f-v) e F (f V) (16)

and (15) can be written as

S(f;c_)

I• e e e ml F (f-v+ - T4-)
i=-• k=O LM= O J

(11)

10



.--. . . . . . - I"-- .'' - "_" . ... "* . . .. . " II +

wi

It is appropriate to define the coefficients

ak(T) e (18a)

M-1 km1-I _j27 Mk~ .j2ffem

bk(v) = ~ e e (18b)

m=O

Ck(T)v) ak(T)bk(V) (18c)

k = 0, 1, ... , M-l

as this leads to the following convenient expression for the Z-Transform of

the target:

J2TrfT -j21tTf ýI M-V(e ;C) y . e I-k( v)Fg(f -v+ k i 9

Clutter Model

In Section II of Part I, it was shown that each clutter scattering

center could be treated as a point target having zero Doppler. Therefore, as

in I-(15), the nth scatterer at azimuth 0n in the particular ring of interest

generates the clutter signal return

C(tk) = Yn g(tk -Tn) (20)

11



where Tn- mAT/2, yn An eJen and tn represents the times the

samples are taken. As before, An is related to the scattering cross-section

of the nth scatterer and n the carrier phase it introduces. From scan-to-

scanthe shift in transmitter phase and the jitter in the antenna rotation

render 6n and An random variables, but over any one scan, (20) represents

a deterministic signal return. Hence, the analysis used to derive the

Fourier Transform of the non-uniformly sampled target return is directly

applicable to (20). The using (15) the transform is

ACn.(f) -

Yn "j2nfn M-1J2 kI(Tn) M-1 -J2 -jkm (f7V-) kf

T_ e ? 1  e 1 e e p p F (f wj}
Sin-- ka0 M=0

(21)

Equation (21) 1- derived from (15) rather than (19) because the latter

equation has made use of the approximation in (16). Since clutter returns

can be orders of magnitude greater than the signal returns, approximations

cannot be made unless they can be justified on the basis of signal-to-clutter

ratios. The total clutter return is due to a finite number of scatterers,

hence

C(tk) = Cn(tk) (22)
n

12



AA•.• and the Fourier Transform of this aggregate of returns is

C(f) = ý Cn(f) (23)

n

"Therefore, the energy spectral density of the clutter measured over a single

scan is

C(f) 2  1 >1 ~ ) (f) (24)
nI n2 n 2

This is a random process in the sense that after each scan the valiies of

An and on change in a random fashion. Then the average power spectral density

of the clutter is

s M . ) Cn n2 (f (25)
c ~ ~ SnI nn1 n2

where T is tIle scan time and the bar denotes statistical averaging over thes

random variables An and on.

Since the amplitudes, phases and azimuthal locations of the scatterers

are independent, each of the random variables in (25) can be averaged

-eparately. Furthermore, it follows that

_YnI Yn2 6 nI n2 (26)
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ri
and since the frequency extent of F (f) is narrow relative to a separation

k/MTp,

F(f + 1  1 ( * k2  2 ' 1 i[ 1k
- ) F + f- M Tkl + 'i

gp p p p P p p l2 l 2

(27)

Substituting (21) in (25) and using (26) and (27), it follows that

0 M- M-1 km
Scf ns T p i=-w =O - m=O p PP

(28)

where

Am(f) e Fg(f) (29)

In (29), I/Em is generally much greater than the frequency extent of the

clutter and it is reasonable to assume that

-j2rfcme Fgf F(f) F (30)

Since the clutter signals can be many orders of magnitude greater than the

signal, this approximation must be undertaken with care in each application.

An example of the analysis needed to Justify (30) is given in a later para-
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graph for.the two-pulse staggered case. Assuming that this approximation

is valid then the average power spectrum of the clutter process can be

written as:

(31)

where

o2 I772 (32)
n

denotes the average clutter pcwer per range ring. It is shown in the

Appendix that

"1m- 1 (33)gP e M=k,O

m:O

hence, the clutter spectrum reduces to

2 (34 ) ki
I I T - ~ 1F(f1

Receiver Noise Model

It follows directly from I-(36) that staggering the transmitter PRF

has no effect on the receiver noise ducecess. Therefore, it remains a zero-

mean white noise pro-cess with spect-rar deriity 2No.

ei



Two-Pulse Staggering

In order to gain some physical understanding of the mathematical

expressions for the target and clutter spectra the special case of a two-pulse

stagger will be studied. This is illustrated in Figure 2. Using M = 2,

-0 = , el = e in (18) and (19) the transform of the target signal is

S(fc = }e Jsnf( -v +

(35)

where

COU(,V) (I + e )/2 (36a)

C, k,,V) P) ( 01I (1 - e -2TE)/2 (36b)

Hence the spectrum of the target return is

Cosa~f .lx4- F> (cSiV (f-V Tr-~)i + (sin rrvz) F (f-v + _12
Tp i P-

(37)

Typical plots of the target spectrum are illustrated in Figure 3. There are

two significant observations to be made: (1) whereas in the uniformly sampled

case all of target energy is located at PRF multiples of the true Doppler,

staggering causes the energy to be split into two pieces separated by one-half

16
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the PRF, and the pair folds over at the PRF, and (2) whereas in the uniformly

sampled case targets moving at dopplers greater than a PRF led to spectra that

were indistinguishable, now the fundamental ambiguity occurs with a period

2/c. This shows that staggered PRF's provide a basis for unambiguous velocity

estimation.

From (31), the exact form of the clutter spectrum reduces to

S2~ (1 Cw2if 1V12 J

p p p p)

Since the frequency extent of F (f) is very narrow relative to liTp it can
gp

reasonably be assued that

(s2 f)r(~2 g(TO0 yf)j 2  (3-)gb
(sin WE1Jg~) 2 I E)2j MfI

Using these approximations the clutter spectra can be sketched as shown in

Figure 4 from which it is observed that as for the target spectrum the clutter

po•er also splits into two pieces, one piece being located at DC, the other

at - 1/2 Tip with the aggregate folding over at the PRF. The simple sketch

18



Sc (t 166~o L~s

II

2 4t
oo 2T . 2 T 2T7

p P 2 9  T T P

Fig. 4. Typical clutter apechrol density foa two-pulse sto-ger.

19



has been drawn to indicate that the clutter power at 1/2 Tp is significantly

smaller than that at DC. A quantitative measure of the relative power in each

of these terms can be found by integrating (39a) dnd (39b). This has been

done for the sii x/x antenna pattern and ARSR system parameters and it was

found that the clutter power at 1/2 T p 56 dB down from that at DC. Since

10 bit A/D converters correspon!d to a subclutter visibility no greater than

40 dB, the effect of the clutter power at 1/2 Tp is negligible, hence justi-

fying the assumptions leading to the clutter spectrum in (34).

Therefore, ne implications of the staggered PRF are now clear: Whereas

the energy of a moving target return splits into two pieces, the clutter power

continues to fold over at multiples of I/T . Hence, if the target Doppler is

also c mt'tiple of l/Tp, namely a former blind speed, then although one por-

tion of the target energy is masked by the DC clutter, the other portion is

located in a relatively clutter-free area at 1/2 Tp. This is the reason

staggered PRF enhances target detection. However, if in addition, filters

that are matched to the target spectrum are constructed, then it appears

that Doppler estimation over a frequency interval larger than one PRF is

possible. Although the topic is discussed in more detail in Section IV we

briefly discuss the implementation of the filter matched to the two-pulse

staggered signal spectrum.

Matched Filter Roalization

From the preceding discussion it is shown that the target spectrum is

a unique function of the true target Doppler over an interval that can be

20



many times larger than the PRF. If a matched filter bank could be construc-

ted then not only would the detection performance be optimized but unambigu-

ous estimation of target Doppler would be possible.

Let us suppose that we require the resolution of veloci.y to within

the interval tv = I/NT . Then each PRF interval can be quantized into N

subintervals and we can then express the true target Doppler as

io no
1= 0+ n0

p p

From (35) the signal spectrum for the two-pulse stagger is

no i-i°

S(f;a) = yI Co0(Tv)Fg(f- W7~p + Tl•F~- p -p

+C (T,v)F If n0 i 0 +1

p p

The infinite sum shows the periodic foldover of the target spectrum at the

PRF. From a measurements point of view, nature allows us to observe this

function only in the interval [0, l/T ] . Then we see only the function

S(f;a) =Yc (T~v)Ff' 0) ~ vF r
p ~ p

We can readily construct a bank of filters that extend over the [0, lI/T J

21



range where each filter is tuned to the function Fn(f- ,nO,l,...,N-l.g
p

By themselves, these are not matched to the specified signal. To accomplish

this, we combine weighted pairs of filters that are separated by 1/2T Hz.
p

For the filters tuned to n/NTp and (n-l/2)/NTp we apply the weightsp p

Co p p p+ n ) for i=O,+I,+.2,..., +M. For each value of

i, this gives rise to another filter with transfer function

* n n
H. (f) =NCo(; p+ H)Fg(f-)

p p p p
+ *( i +-n F n 1

i=o,+,..., +M, n-O,1 ,... ,N-l

When i=io, n=no, this filter is matched.to the two-pulse staggered signal.

From a practical point of view, the sub-bank of filters

F9 N-) can be formed by taking an N-point Discrete Fourier Trans-
Sn=O

form (DFT) of the received signal. The super-bank'of filters is then ob-

tained by multiplying the nth DFT coefficient by Co(T; L + n and the

n)th 117 coefficient by C* ( p + p p
(n-2 1by TCIT for iO,, +1 +M. Therefore,

p p
an N-point IF. :ives rise t, a bank of 2MN matched filters that extend over

the frequency interval [ - simply by combining the outputs of the DFT

coefficients in the right way.

22



In Section IV we return to this discussion in more detail when we

consider the MTI ambiguity function. In Section III,a quantitative measure

of the improvement in detection performance will be evaluated using the

Signal-to-Interference Ratio (SIR) that was derived in Part I.

23



III. SIR PERFORMANCE ANALYSIS FOR STAGGERED PRF

The SIR for an arbitrary linear, sampled-data filter when sampled at

time " was given-by I-(72), viz.

p /T j2irfT J2,rfT j 27rf T
/ H(e p)Zs(e P; %o)(e )df 2

P() T-1/ 2T I

-1/2T0

-l/2Tp t [Sc(eP) + 2N] df

p

(40)

Even though the transmitter PRF is staggered, the sampled-data processor

operates on the samples of the signal and noise and it matters not when those

samples were taken. Therefore, (40) applies to the present problem, although

it is noted that the signal spectrum will be different, due to the non-uniform

sampling. As before, It is roted that only those frequency terms in the in-

terval (-112T , 1/217 ) are of interest. This is consistent with (19) since
p p

the frequency dependence shows up only in teruvs like F (f-V f -
p p

which is folded over every ilT hz.
p

Using the Schwarz iftequality it is easy to show that (40) is maximized

by choosing

*j2wfT
j2vfT Z (e fP; p )

H(e ) -)f (41)

SC S(e ) + 2N0

24



which Is the clutter filter, matched filter cascade combination. When this

is done, the resulting maximum value of the SIR is

j 2nfT

1/2T z (e
Popt T p f p df (42)

-1/2p S(e P) + 2No
-1/2T pc o

The aliased clutter spectrum is given by (34), but since the integration ex-

tends over the (- 1/2T', 1/2T ) frequency interval, only the term about DC
p

need be taken. Taking the squared magnitude of (19) and using the approxima-

tion in (27). the target spectral density reduces to

SM-1
1~fT 2 N-o 1

Iz (e P ;%)2L4- > Ick(ro-vo)I' jFg(f v. + --

p i k=O p p

(43)

Using these results and the fact that

! Ck(-'.v)l I iak()b k(v)l = b,(v)l (44)

which follows from (18), then the SIR in (42) becomes

k i J2
1/2 NI(f -V + k-

p p1-1"Pp 1yol i 2v)G df
k~~O -1/2T- r r F9 (f) f2  NT

(45)
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Rather than attempt a rigorous evaluation of (45), it is easier to draw upon

the physical understanding of the target and clutter spectra to simplify the

SIR expression. It was shown in the last section that the M-pulse staggered

PRF causes the target energy to split into M components that are folded over

into the (-1/2Tp, 1/2Tp) interval, while the clutter was distributed about

DC. Since the frequency extent of F (f) is narrow relative to the window
g

I/MTp, there are values of vo for which there is no interaction between the

clutter and target spectra. In this case, for each v there is a value of i

that puts Fg(f-v +V k ) within the (-1/2T , 1/2T ) interval and

p p

1/2T ~ Fj ~(f - V+ k~ .4) 1 12

/ =' p~" p --df P, F ~(f IV + k 4)1 df
io2 PFg(f) + 2N O -1/2T- -

E

(46)

where

! l112Tp

-1/2Tp

26



In the Appendix it is shown that

M-1

>• bk(Vo)12 1 (48)
k=Q

whence it follows that

j 12EPop (0) o (49)

opt---o) p

This is, of course, just the coherent integration gain provided by matched

filtering the target out of the white noise background.

The SIR degrades from this optimum value when aqy one of the M

components of the target spectrum interacts with the clutter spectra. The

worst case occurs when, for some k and i, ko and i0 say,

"-o+ 0 0 (50)
p p

In this case, since the clutter-to-white noise ratio is very large,ko io I2

1/21T IF (f -V +k0. O12
p 1 gf T-- Ts

f 2 (51)
-l/2Tp p-. IF (f)I2 + 2NoTPis

For the remaining M-I components of the target spectrum that are located

within the (-1/2T1p, I/2Tp ) interval, there is little interaction with the

clutter spectra. Hence, for those values of k # k (46) holds and the SIR

27



can be written as

k=1
popt (v)=[0  [E ik(vo)I2 k 0Ib (vo)]

ktko

(52)

ko p

where the last approximation follows from the fact that the clutter to

receiver noise ratio is >> 1. This expression for the SIR holds for values

of vo given by
0

+ (53)
po mp

where first a value of mo is chosen and then for each mo, ko 0,1,2',M-I.

Then the optimum SIR perfonmance curve can be sketched by using the formula

2 M'
¼0

v (o) I- bko if V 0 1p

0p pyo Eg

oT otherwise

(54)
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For the case of a two-pulse stagger, M = 2, ko 0 or 1 and

fbo(V) = cos 2"o (55a)
0 0 0

Ib,(NO)12  = C (55b)

so that

20
sin nV if V 0 =-T

2IE 2 M
o cos o if 0 p

Sl otherwise

(56)

Whereas when no pulse staggering is used (e 0), the SIR is essentially

zero at multiples of the PRF, staggered pulse transmissions lead to mean-

ingful detection performance, especially at higher Doppler velocities. The

price paid for this enhanced performance at the blind speeds is a degradation

in the SIR performance at intermediate Doppler frequencies. These results

are suniarized in the SIR performance curve plotted in Figure 5. It is

worth noting that similar results can be obtained for the pulse canceller

clutter filters by working directly from (40) using the appropriate filter

transfer functions. The SIR performance of the ASR-7 that uses a 6-pulse

stagger algorithm is shown in Figure 6.
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IV. STAGGERED PRF AMBIGUITY FUNCTION

In Section II, the target spectrum resulting from a staggered PRF

transmission sequence was derived and, for the two-pulse case, illustrated in

Figure 3. It was noted that the spectra for targets separated by Doppler shifts

greater than one PRF were not identical as was the case when uniform sampling was

used. This indicates that it may well be possible to estimate target Doppler

unambiguously. This question is most easily examined by evaluating the

ambiguity function of the staggered PRF pulse train. The calculation is not

conceptually difficult but it can become tedious. In order to develop some

intuitionthe clutter-free ambiguity function will be coutputed first and then

generalized to the situation in which the clutter filter is present. In the

forwir case the ambiguity function is the delay-Doppler distribution of the

output of the matched filter. It is denoted by Jý((c,)j) where

1/2 T

. z,*(f;ct) Z5 s df

-1/2 TP (57)

Rather than attempt to evaluate (57) by direct substitution it is easier and

=ore instructive to draw heavily upon the physical interpretation of the

correlation operation implied by thbis equation. The necessary intuition can

be developed by studying the transmitted signal for the three-pulse staggered

case. From (18) and (19) the transfom of the target signal is
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Z (f;YO) j 21e fT0  a (To)bo(vo)F (f •v -

+p 0 0

+ al( To)bl(vo)F (f - + '

+ a2 (To)b 2(vo)Fg(f vo +• " ) (58)

The magnitude characteristic of this function is illustrated in Figure 7a.

It will be issu.ed that T, t and v. are fixed so that the correlation opera-

tion in (57) can be studied as i function of v. Making use of the I/Tp

periodicity in the target spectrum, the integral in (57) can be evalhated

using

v0
1"

(('(To* v. vO) j Zs (f; v) Zs (f; '0, vo)df

vo-lT p

(59)

The first situation of interest occurs when v = v in which case the Doppler

coefficients line up exactly. Equation (59) becomes
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This triple folds over every I/TpHz

(a)

I (Y€ +V)o b0(Y0 +8

II:' ~( Al llbo~,) I(V(o a,

I'

J oI - "0 &V0

(b)

Fig. 7. (o) Typicol target spectrum for three-pulse staggeri (L6) Shii ted target
spectrum for three-pulse stagger.
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(,v~ SV V "1 Ilbo(v)I' a a(T)a (T )fF (f-vo )t2 e jTf(- 0 )df
0 00 10 0 0 0~ 00

T 2 f 
e

p vo0-1/17p

S~vo~i/TpV O

'2 r 2i 1'2 J2rrf(rT'T~

+ 1b 2(v.)12 f a 2 (T)a 2(-o)iFg(f-v o + ) e df
0 p

v 0-l/Tp

600

V0 --
j

+ b(. 2 fc 212 i2r~- 0 )dk*(T )a: F e(fV + r-) e f
0 p

(60)

Assuming the T takes on only integral v:alues of T then from (18a)

-j27r ~~ -JMT

(61)

It then follows that

•Fk 2 j2Trf(T-T )df

f agk (T)ak(To)Fg(f-V o 0 t-) e 0

V 0 °I/TIp p

J27rv 0( T-T 0) R ( -
9 0 (62)
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where

1/2Tj

Rg f p FgM 2e df (63)

-1/2T
p

In Part I it was shown that this function was precisely the autocorrelation

function of the two-way antenna pattern. Then the ambiguity function when

the signals are rwatched in Doppler is

J NeLIgO1 R ) {Ib(,v0)j12 + tb,(vO) 2 + lb,(v 0)l2j (64)

where from (18b)

M- 1 J2 km j 2 Tv e

bk(v)= • e e (65)

It is shown in the Appendix that

M-1

I bkv 2 =1 (66)
k=o

hence

I 1(iLo oo I .. Rg(- o0 ) (67)
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a result which is intuitively satisfying.

In order to evaluate the ambiguity function at other values of v, it

is useful to think of gradually increasing v from its value at vo. For

example, when v < v < 1/3 Tp, the absolute value of Zs(f;T,v) is shown in

Figure 7b. When the correlation operation is performed to evaluate (59)

for these values, there will be no spectral overlap and the ambiguity function

will essentially be zero. No significant contribution will be made to the

ambiguity function until v 5 vbo + 1/3T p. In this case, different frequency

coefficients line up and (59) becomes

2 j2e2f(.-TO)* o)kb*f3p)I 2 *e 0

E(To9Vo + 'V ) M Tp 1*(vo + bo(vo) f al*(T)ao(To) g(fvo) e

Vo-l/T p

+br -)bl(v)f a 2 *(T)al(T O) Fg(f V + 112 •

p PVO -l/T p

V f¶

I~ 1O 2 2je J2lrf(T-T )
b o +5oP)b 2 (vo)f ao0 (T)a 2 (To) Fg(f Vo0 + -p e dfj

vo-l/T p

(68)

From (61) it follows that
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k(T-T ) T

k+1(T)ak(TO) - e e 6

and therefore

VO .. v + e J2Tf(T- 0)

f Wkl(T)a k(TO) lFg~ "v + Wp) ed

Vo-1I/T

j2nvo(.To) J2 p
0 0

Re e Rg(t-T) (70)
g 0

The ambiguity function is then

+ h.0 ) y 04. R9 r ) [Ijb, (vo + b ,o
pp p

PP

+ b2 (vO + )b (VO7

0 o + . bvo) (71)

2
The next step is to set v vo +" 3- and repeat the above operations. In this

p
case, the coefficients are displaced by two and the ambiguity function becomes
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+ 2 ,V0  YO R (T-T ) [I2' b ')b (v)

jr11 d! 10 *V T

010 p 0 T 9 0p

+ b(v + 2 b(v)

p

+ b (V + b2 (vo)j] (72)

This process continues ad infinitum and it is possible to deduce a rule for

generating the ambiguity function. In the 1-pulse stagger case, it becomes

M-1
+ ninM 1yo d m

F.T- %+ -W!Ivo -7)j T- bk.(o !!±)bk (vo)j (73)pTP k-o MT p

where for positive values of n - 0,l,2,'", m takes on the values

m t O,1,2,-",M-l, and for negative values of n = -1,-2,..., m M-.l, M-2, 0.

In (73) use has been made of the fact that

bk+n(v) - b(k+m) (v) (74)

modulo m

which follows directly from (65). It is shown in the Appendix that (73) can be

reduced to
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,v+ Rr~o iLRT ).]M-l e i2ir••-.( kT~ +•k) (75)00 M'p T(g5)
C•(Tj O'VO + o/I= '!1(o T)' Il e P

p k=o

which is a function only of the differences, T-T and v--)o, and the stagger

parameters c ' M-l It can be deduced immediately that the ambiguity

function is unchanged if o= o, hence for an M-pulse stagger there are M-1

parameters that can be chosen to shape the ambiguity surface.

For the special case of a two-pulse stacger (75) reduces to

Trne n

I IO p p
0 0 2-

P sin:1p if v V + n lr 6

(76)

and this is sketched in Fijure 8a and comp.ared with the ambiguity function

for the uniformly sampled case in which t o, in Figure 8b. It is clear
therefore that Doppler ••-esolution i'b theoreticaliy possible. Whether, or

not the stagger pararatters can be chosen to force the subsidiary side-lobes

below a practically .iseful level is, however, a separate question. It is of

interest to examine the ambiguity function of higher order stagger sequences

that are currently used in practice. The results for the ASR-7 radar, that

uses a 6-pulse stagger are shown in Figure 9.
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The Matched Filter-Clutter Filter Ambiguity Function

In the preceding section, the ambiguity function for the clutter-free

case was derived. This is a useful characterization when the signal is

designed to function in only a white-noise environment as it is then clear

that all of the side-lobes should be made uniformly low. The more typical

situation for MTI requires a characterization that includes the clutter in

the analysis. If the ambiguity function is viewed as the delay-Doppler

energy distribution of the signal out of the optimum processor, then it is

clear that the effect of the clutter is to add notch filters at multiples

of the PRF's. Then the more general ambiguity function is given by

1 / 2T

H ) ~)Z [PaZs(f; d (77)

-1/217

As in the clutter-free problem the general result will be obtained by extending

the argunents made for the three-pulse staggered case. This is most easily

done by writing a general expression for (60) and (68) from, which the

ambiguity function is deduced. This expression is

S~m+nMv
C-?-[.1""%0 0 + • O)

, N P Ov) f- 10. k(
T Vo"o 4 p 1
P k=o 'I10 /T

S43 (78)



For the purpose of this discussion it is reasonable to assume that the

clutter filter transfer function changes slowly over the width of the signal

spectrum, hence allowing the following approximation for the last term in

(78)

k P k )12 jt2f(m"i )
Hc(vo -FIr -) j ak .m +..)a ), ( -2+

--.. p •o'~~0-I/T p L,)'f"o fp ed

- k j~r0(- 0) i P~ (19-Hc (o.k-IT-)e e R(t-ro0 (79)
p§ 0

"where the last equation follows from a generalization of (60) and (68). Then

the ambiguity function is

0,\o+ V wv)l

YO~ R9( 0 ib$v (k0

p kop

To evaluate (80) it is assumed that the clutter filter is well modelled by a

notch at DC as well as at all multiples of the PRF. The approximation was

developed in conjunction with the evaluation of the SIR for staggered PRF's.
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Suppose now that

V- k n k oWo,1,-",-l (81)
p p

holds for every n, then

c - q-) ai (82)
p

and (80) reduces to the clutter-free ambiguity function. If for some value

of k, k' say,

¶ ?- (83)

for some value of n, then

H ) (v
~p

and (80) reduces to

+ - 'iV0 NI ' Rg(i-~T 0 )f b( 0 + ibk v)0.1 MT 0 k- mo NoD
pp km~o

(85)

This function is much more difficult to plot as it depends on the true target

Doppler rather than just the difference between the true and tested values.
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In fact, for an M-pulse stagger, (14+1) cuts of the ambiguity function are

needed to describe it completely.

MTI Signa1 Design

In the clutter-free case, it iS clear that the stagger parameters

* should be chosen tc' produce an ambiguity surface sith uniformly low Doppler

* side-I1:tbes. From (73) this reduces to the problem of picking the stagger

parameters eo, E" ". e4_I so that

M- ~Tm+nM k +C(G6)

where for 20dB sidelobes 6 would be -1, etc., This signal design problem

*" has a.rh in coizDon with design of anteotra patterns using an array wit'i non-

uniformly spaced elenents. This is a difficult proble-m to solve and it is

expected that when the clutter fllter is added, it would be even more difficult

to siaIltaneousl) design the (K+l) folds of the cluttered ambiguity function.

A simpler design strategy can be obtained from the SIR atalysis in Section III

where it was shown that the degradation in the performance was given by (50).

From this expres:ion it is clear that dhe stagger parameters could be chosen

to minimize the depths of te notckhs by minikiziri.g the functLios
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M-l mk m+nM (87)

* I~bm ( )=~ e ep
k=o

which follows from the definition of bm(v) in (65). This expression can

easily be manipulated to take exactly the same form as that in (86). This is

interesting as it shows that the simple criterion of uniformly low sidelobes

is a good signal design strategy in the cluttered as well as the white noise

environments.

Unfortunately, time did not permit the thorough examination of these

signal design problems. Therefore, as of this writing, their solution

remains an unanswered question and it will be necessary to be content to use

the HT! ambiguity function as a tool for signal analysis, and only indirectly

for signal synthesis.
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APPENDIX

In order to evaluate the MTI ambiguity function it was claimed in

(75) that

M-1 m+nMb + m+nM
(v~ 0 MT_)bk(vo) = 0

I 'kt~ p pk=o

M-1 j2 +-M kTp+e)
e P m =0 ,,",M- (A-I)

k=o

where from (65)

M-l kj2r -j27rv

bk(v) = e9(A2
p=o

It is the purpose of this section to prove (A-l) and hence deduce that

M.1
2 (A-3)

k-o

as stated in (48 and (66). To begin, vectors and matrices are defined as follows:

e():('2T€ J~ -j21TvCMl)'

", e, " , e - (A-4)

m() {bm(v), bm+ 1(,) ", bll,+M.1 (v (A-5)
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-21T(k+m)P

(M)kp =e (A-6)

where m, k and p take on values O,1,2,'",M-l. First, from (A-2) it is noted

that

M- 1 2  ) -j2v cp

bk+m(v) R e e
p=o

M-1

p=o

Xk,(V) (A-7)

where use has been made of the fact that

j ~ bk+m(v) = b(k+m) (,)(A-8)

modulo M

Hence

x %(m)(V) Mmj_(V) (A-9)

(in
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If <u, v> denotes the inner product in CM, then

Sm+nM : < . m( + m+nM
MTh 3 0) ~. 0 + -m 0h)XCap p

-- ••"m+nM 0
= < Mo+ ,vp),M_(v_)

p

=< M0 m 15(v0 + (A-10)
p

where * denotes conjugate transpose. Now let

Qm =MoMm (A-kl)

Then

M-1

Q I (MO*) kp(Mm)p

p=o

M-1

p=o

1 1

p=o
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e- T [,ý(A-1 2)
p=o

If k = then

~kk 2 e- (A-1 3)

For the case when kt 9 the second term i n (A-1 2) can be eval uated by setti ng

v = e jg(-)(A-14)

and noting that

M--l j2 M(kg) M-1
M p 1-vM

p=O p=o

Hence QflM, = 0 when kft. and therefore the matrix Qm is diagonal for all m

Using this result in (A-10) yields

ý + m[kk INVo m+nM M'''+I.(O

M- 2mk
M-l' j2R- + m+nM

4..d Bk o + m')ak(vo)
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M1 mk m+nM

M-1 m27nM + r--Ek)

k=o

as required
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