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ASSEMBLY OF SYSTEMS HAVING MAXIMUM RELIABILITY

by

Cyrus Derman, Gerald J. Lieberman & Sheldon M. Ross

[0) SUMMARY

The first problem considered in this paper is concerned with the
assembly of independent components into parallel systems so as to
maximize the expected number of systems that perform satisfactorily.
Assoclated with each component is a probability of it performing
guccessfully. It is shown that an optimal assembly is obtained if the
reliability of each assembled system can be made equal. If such
equality is not attainable, then bounds are given so that the maximum
expected number of systems that perform satisfactorily will le within
these stated bounds; the bounds being a function of an arbitrarily
chosen assenbly. An improvement algorithm is also presented.

A second problem treated is concerned with the optimal design of
a system. Instead of assembling given units, there is an opportunity
to "control" their quality, i.e., the manufacturer is able to fix the
probability, p, of a unit performing successfully. However, his
resources are limited so that a constraint is imposed on these
probabilities. For (1) series systems, (2) parallel systems, and (3)
k out of n systems; results are obtained for finding the optimel
p's which maximize the reliability of a single system, and which
maximize the expected number of systems that perform satisfactorily out

of a total assembly of J systams,

A
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i 8 INTRODUCTION
In a previous paper [l], the authors considered the following
reliability problem. A system has n different types of components.

Associated with each component 1s a numerical value Lec

{am} (m=1.2, .n) denote the set of numerical values of the n
components Let R(al; az, ‘an) denote rhe probabilicty that the
system will perform satistactorily, 1 e . R(al, az; v ,an) 1s the
% m m m
reliability of the system Now suppose a ca; . - .a; are J
components of type m (m= 1. 2. .n) Then J systems can be

assembled from these components Let N denote the number of systems
that perform satisfacctorily N 1s a random variable whose distribution
will depend on the way the J systems are assembled The results
obtained show that if R(al; 32. ,an) has the properties of a joint

cumulative distribution function then of all different ways in which

the J systems can be assembled, E(N) 1s maximized if these J

systems have reliabilicy R(a§_ a§; ,a?) (3 =1,2,.. ,J), 1.e.,
assemble the best of each type, the next best ot each type.. ...and

finally the worst of each type

The afcrementioned results are applicable ro series svstems of
independent compcnents. but are not applicable to parallel systems of
independent components Secrion 2 of this paper treats the problem
of paraliel systems of independent components, and shows that an
optimal asrembly 13 cbcained 1f the relizbiiicty of each assembled
system can be made @qual Furthe:imcre K 1f equal reiriability for each
assembied system i1s not pocssibie, then bounds are obtained so that the

maximum expected number cf systems that perform satisfactorilv will lie
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within these stated bounds, the bounds being a function of an arbitrarily
chosen assembly  An algorichm will be presented which will produce
assemblies that result in an imprcvement in these bounds, although
will not necesszrily lead toc the ontimal assembly The resulits are not
only applicable to the aforementioned problem but are also applicable
to the asscmLly or pazailel systems of independent units,; wnere the
units in a system are interchangeable (only one type of unit i1s in the
system) The results are also valid for the interchangeable and non=-
interchangeable cases when the number of units of a given type that
must appear in a given system 1s not fixed in advance
Section 3 is concerned with a variation of the assembly problem

dealing with system design Suppose a single svstem 1s to be
constructed containing n units Attached to the mth unit is a
positive value P, which will denote the probability that the mch
unit will perform satisfactorily, and these probabilities are assumed
to be ;ndapendent, The n units are to be "manutactured",; and the
manufacturer has sutticient control of his process that he is able to
produce at an aimed at "p'" level, but his resources are limited so
that there 1s a constraint 1imposed ou the values of the p's, namely

? p = A For (l) series systems, (2) parallel systems, and (3) k
m=]1

out of n systems (the system coperates satistactorily 1f at least k
out of n units operate satisfactorily), the prcblem considered is to
find the desired p's so as to maximize the reliability ot the system.

For a series system tLhic optimel solution 1s to make aly the p's

equal to A/n  For the parallel system the cptimas sclution is to make

one of the p s equal to A and che rest 0O  For the k out of n

G0 i
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system, the results are more complex

Section &4 1s conzerned with the same problem considered in Section

kit

3, except that nJ components are to be "manufactured" and assembled
into J systrms, each being a k out of n system. Again, it is

desired to maximize the expezted number of systems that perform

faa

satisfactorily, subject to constraints on the p's A characterization

of the optimal solution is given

TR T

2. OPTIMAL ASSEMBLY OF PARALLEL SYSTEMS OF INDEPENDENT COMPONENTS
The following problem will be ccnsidered ffrst. A set of M units

are given which are numbered 1, 2, oM The M units are to be

partitioned into J disjoint systems  After completion of a partition,
the number of units contained in the jth system (j = 1,2,...,J)

J
will be denoted by nJ, with the added rest:iction that z nj = Malj

A system will perform satisfactorily if at least one of thg=lnj units
in the system performs satisfaccoriiy, 1.e ,it is a parallel system.
Attached to the mth unit, m =12 . .M, 1s a positive value P,
which will denote the probability that the mr'h unit will perform
satisfactorily, and these probabilities are assumed to be independent.
For a given pariction. the reliability ot system j (j = 1,2,...,J),

R,, 1is the prcbability thact the system will perform satisfactorily, and

jo
L

can be expressed as

1/ A partition will allow for one or more systems to contain no units
J

so long as z n =M The reliability of a system containing no units
i=1

will be taken to be zero

o
e e il




t R, =1-TT (1~p).
5 J allmin °
system j

E Let N denote the number of systems that perform satisfactorily, so

that N 1s a random variable whose distribution will depend upon a

given partition. For a given partition, the expected number of ;

systems that perform satisfactorily, E(N), 1s then seen to be

J J d
EM = ] -T@a-p)l=3- ] T Q-p). (2)
j=1 allmin j=1 all m in
system j system }

The problem treated in this section is to find the partition which

maximizes (2), or alternatively, to find the partition that minimizes

the expression

J
Tr a ., .
21 allm 4n ™ (3
J system J

vhere & = a- pm)a Henceforth, the 8 will be referred to as the
th

positiva value attached to the m unit,

In a given partition, denote the set of nj units appearing in

systam 3 (J = 1,2,...,J) by Aj and define IAjl‘to equal the

product of the values of the units in the set AJD 1f Aj is the null

set, |A1| is defined to be 1. Define

J
T = Minimum ) iAj|. (4)
J=1
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where the minimum is taken over all possible partitions of the M
units into J disjoint gets. The major result of this section shows
that for any partition Al, Az.....Aj. T satisfies the following

inequalities,
J Min IAjl < T < ] IAjlv (5)

= a

In order to prove this result, two lexmas must be verified.

Lemma 1t Let 8 aud bm (m = 1,2,...,8) be positive numbers.

If T T
a -~ b »
mel m mel =
then 8 '
m-z-l (8 /b)) 2 8. - (®
. s-1 s~1
Proof: Since aB/ba = T b / Ma 0 the conclusion of the lemma
m=l mel

will follow 1f it can be shown that

s-1 s-1 s-1
I (a/b)+ TT b/ TU a 26 (7)
nel mel mel

Now, define the function

s-1 s-1 -1
£(b)sbyseserbgy) = I (/o) + rr b/ TT 8
mel mel

. . el
~
=3
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Differentiating this function with respect to bk’ yields

Bf(bl,bz,...,bs_f 2 s-1 s-1

: ab = -ak/bk + ﬂbm/ :rT Bm. k . 1’2’900’5"1-- :
2 k m=1 m=1 { 4
] myk [
¥ i
? ) Equating these to zero, results in
‘:: . . . g . s,- - s.-l Sy s Sas s e FO— © 8 e . e MmN E bl W Mgt iangre e as 8 Casiciai bo . b
: a /b= TT b/ TT =, k=128l @) k

me=l m=1 ‘

This set of equations implies that each ak/bk equals the constant, c.

I1f all of the (s-1) terms of the left hand side of (8) are multiplied

together, then it follows from (8) that

s=1
(s-1)
ZI; (ak/bk) = c 2 (9)

However, from (8), the left hand side of (9) is alsoc equal to ¢. Hence,

¢ must equal 1.

2’0«0’
approach zero or infinity, f(bl’b2'°°"bs-l) is minimized when its

Since f(bl’ b bs-l) approaches infinity as one or more of the b's

partial derivatives vanish. Thus, it attains it minimum when a = bm

(m=1,2,...,8~1), and f(bl,bz,un“,bs_l) > s so that the lemma is

proved.

Lemma 23 Let Al, Az,n“.AJ be a partition such that
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A = Ay = ¢v m |a;]. Then T = jja
optimal,

li’ i.e., this partition is

Proof: Consider any other partition - say B 2,,..,BJ. Using set

theoretic identities, it follows that

_1_1_1'
Iy Bl

o a=e

B, -

are the complements of Aj and Bj’ respectively. Hence,

to prove the lemma it is sufficient to show that

JAJl/lAJle) 24

Inequality (10) follows from iemma 1 by noting that

because both terms are equal to

i<U A

B.)|.
a1 13

Theorem 1.

For any partition A., A T

10 2,MH,AJ, satisfies the following




inequalities
J4
IMin A} ST < Y jA

Proof:

Suppose that iAk| = m1n|Aji. It then follows that the units in
the sets A,, j # k have values, a associated with them such that
IAjI > IAkI. Now, consider a new set of M units. These units are
partitioned in the same manner as the original units. The values
associated with the units in set Ak are the same as those in the
original set. However, the values associated with the units in set
Aj, j # k are all less than or equal to the corresponding a's in
the original set, but are such that ]Aji now equals |Akf for all
j¥ k. For this new set of M units, let To denote the minimum
% IAjl’ where again the minimum is taken over all possible partitions
gflthe M units into J disjoint sets. However, from Lemma 2, the
given partition must be the optimal one for the new set of units, and
furthermore, T, = JIAki. Since, the function T 1s obviously a

monotone increasing function of the set of values {al, a2,...,aM}, it

follows that
T>T, = JfAki =J miniAJi.

iA | is obvious. Hence, the

g1

[ I &

The other iaequality, i.e., T <
theorem is proved.

The theorem indicates that the maximum expected number of systems
that perform satisfactorily wili lie within the stated bounds, these

9

l
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bounds being a function of the chosen partition. Furthermore, 1f a

partition can be found that makes each system have the property that

the product of the probabilities of each unit failing, i.e., the

a's,

equal, then this partition is optimal in that E(N) 1is maximized.

These results lead to questioning whether or not an algorithm can be

obtained which will determine the optimal partition. Unfortunately,

the authors have been unable to find one, bur an algorithm will be

presented which should lead to a ''good" solution; but not necessarily

an optimal one.

A given partition results in a sequence of sets Al, AZ”"’

(each set representing a system) and a corresponding iA1|, iAzi,...,IAJI.

It can be assumed that the |A|'s are not equal; otherwise, an optimal

partition has been obtained. Choose any two systems vhose iAi's

not equal and without loss of generality, denote them by A, and

1
with |A2i > iAli. It will be shown that under certain condition

units of one can be interchanged with units of the other, thereby

resulting in a new partition with sharper bounds than given in (5). Let
a denote the product of the values which are attached to those units

which are to be removed trom A, and placed into AZ’ Similarly, let

1

a, denote the product of the values which are attached to those units

which are to be removed from A, and placed into A

2 Thus, in

lo

new partition, the |A|'s are given by (azlal)iAli, (ul/az)IAzi,

|A3I,,,.,|Auig The main result to be obtained is that if

. , ) : ) i K .o . B il
|A2| > lAl| and n(ul/az)lAzi - (azlal)|Al|" \"|A2| - |A1|H,-/

1/ The symbol “ZH reads the absolute value of Z.

10

Aj

are

A2,
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[a)] + jayi > (ay/ap) |A)] + Cayiuy) Ay (11)

Before proving this result, two lemmas are required.

Lemma 3: 1If |A2| > [agl, then [A] + jA)] ~ (o,/0)) A+ (ag/ay)(A,]

< IAli/|A2i < ayfa, <1,
Proof: It is evident that |Ali + ]Azi 5 (azlal)lAli + (ul/az)|A2i
> (a, - a)l]a)f/ay - [a;l/a;] ~ 0. If |A)[/]a)] ~ ay/ay <1, then

(o, - “1)[IA2i/°2 - IAli/ul] > 0.

Now suppose that (az - al)[|A2|/a2 - |A1|/al] > 0. This implies that

if a, -2

hold because a, - @

1€ 0, then [iAZl/aZ - IAli/al] < 0. However, this cannot
1 0 and iA2| 5 iAll implies that

[|A2i/a2 - IAli/al] ~ 0. Hence, (a2 - ;) > 0 and consequently,
[|A21/a2 - iAl|/al] * 0. Therefore, iAll/iAzl < al/a2 < 1, and the

Lemma is proved.

Lemma 4: 1If §A2| > iAli and ]Ali + |A2i . (a2/al)iAli + (al/az)iAZI,

then "]Azl - |A1|H : H(al/az)iAzi - (azlal)iAlIH,

Proof: Define the function F(x) = x|A2| - (l/x)lAli, 0<x<1,
end note that it 1s monotone increasing from F(0) = - » to

F(1) = [A,)] - iAll, with F(IAll/iAzl) = {A)| - |a,]. Therefore, for

11




oo sl

all x such that |A1|/|A2| <x <1,

Ixla,| - (1/x)lAl|“ <“iAzl - |Ali“. (12)

However, from Lemma 3, |Ali/]A2i < al/cv.2 < 1. Thus, inequality (12)

is satisfied for x = ul/az, and the lemma 1s proved.

The copnverse of Lemma &4 is stated as Theorem 2.

Theorem 2:

it Ayl > [al and [(ay/ap) |ay1 = Copfap Ay <flayl - a1}

then
A ] + (a0 = (/o (Al + (ay/a,) |4,

Proof: From the monotonicity of the function, F, defined in the

proof of Lemma 4, and the values of F(]Ali/iAzi) and F(1) given in

the proof of Lemma 4, it follows that (12) is satisfied for only those

values of x such that |Ali/iA2| < x ¢ 1, It is then clear that

|Al‘/|A2| < allaz ¢ 1 1is implied by the hypothesis of the theorem,

The conclusion of the theorem follows from Lemma 3.

Corollary 1:

For a given partition, if iA,I is the miniAj|, 3= 1,2,0005J,

and |A2i is any other, |A2i E iAli, and a1 ay are such that

Theorem 2 holds, then min{(az/ul)IAli, (alfu2)|A2i ¥ iAl|. This

12
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implies that the new partition results in a higher lower bound than

that given in (5).

Proof:

From the conclusion of Theorem 2, |A1| + IAZi"(azlul)lAl. + (al/a2)|A2|.

But from Lemma 3, this implies that
[All/lAZI Ca /oy < L.

Now, min{(azlul)lAli, (Gllﬂz)lﬂzl} ) iAll

(a2/a1)|A1| > ]All and (al/az)lAzi > ]Ali. But these latter require-

if and only if
ments are precisely the inequalities of Lemma 3, 1.e., |A1|/iA2|<01/a2 <1,

Theorem 2 and Corollary 1 show that one iteration can sharpen both
the upper and lower bounds given by (5). In fact, heuristically, one

's, and this can be done

seeks partitions that tend to equalize the iAi
systematically by interchanging units from one system with units from
another system; these units satisfying the conditions ol Theorem 2,
e.g., interchanging units within the highest and lowest iAi's. The
algorithm would be continued until there are no pairwise interchanges
satisfying the conditions of Theorem 2. When this occurs, the solution
is "good" but not necessarily optimal. This can be seen by examining

the following counterexample. Suppose there are 9 units with associated

a's to be divided into three systems as follows:

13

gl o r ) S

e Sh RN S s

i

siboc AL




T T a z skt a0 e aE N it

System 1: .09, ,0501, .03; ja;i = .00013527
System 2: .06, .20, .02; |a,| = .000240
System 3: 12, .1001, .015; IA3I = ,00018018

For this partition iAl| + |A2| + |A3| = ,00055545, end cannot

be improved by pairwise interchanges. However, consider the following

partition:

System 1: 12, .0501, .03; |A1[ = ,00018036
System 2: .06, .20, .015; [A&I = ,000180
System 3: .09, .1001, .02; |A3i = ,00018018

For this partition, which is, in fact, optimal, iAll + |A2| + |A3| = ,00054054,

Since the aforementioned algorithm only allows for pairwise interchanges,
it need not lead to optimal solutions.

The problem considered to date has been in the context of taking M
units and partitioning them into J disjoint systems, with units being
interchangeable and the number required for each system not specified.
Suppose the problem is now changed so that each system contains n
different (non-interchangeable) types of components and J systems have
to be assembled from the M = nJ units, i.e. there are J units of each
type available. Again, each system operates as a parallel system, and
as before the objective is to find the partition that maximizes the
expected number of systems that perform satisfactorily. How does this
new problem compare with the problem previously treated? Fortunately,

the admissible partitions for this new problem is a subset of the

14




partitions of the original problem, and furthermoce, none of the results

depended on the number of units assigned to each system., Hence, all

the results previously obtained are applicable to the new prcblem, Of

b

4 course, similar comments can be made for the case ot 1nterchargeable ]

components, but where each system must contain n = M/J units,

E 3. SINGLE SYSTEM PROBLEM

Another variation of the assembly problem is concerned with system

MR e

design., Suppose a single system 18 to be constructed containing n
units. Three cases will be considered, namely (1) the system will

perform satisfactorily 1t all of the n units performs satisfacrorily,

Dt Sol Sl e s S

i.e., it is a series system; (2) the system will perform satisfactorily

if at least one of the n units pertorms satisfactorily, 1.e., it 1s

a parallel system; and (3) the system will perform satistactorily if

at least k > 1 wunits pertorms satisfactorily, 1.e , 1t 1s a k out

of n system. Attached to the mth unit 1s a value Pps M = 1,2,...,n,
which will denote the probability that the mth unit will perform

satisfactorily, 0 Pn ~ 1, and these probabilities are assumed to

be independenc. The n wunits are to be "manuractuced", and the
manufacturer has sufficient control of ii1s process that he is able to
produce at an aimed at '"p" level, but his resources are limited so

that there 1s a constraint imposed cn the values of the p's, namely
n

p. = A, where A is a fixed positive number. The problem 1s to

mel
find the desired p's so as to maximize the reliability of the system.




Case 1: Series System
For a series system, the problem is to find the Pys PyseeesPy

which ma2ximizes the reliability, R, where

n
1 R =1 p, >
| me]l

.
il Sk S

subject to

n
0O<p <1, m=1,2,...,n and 2 Py = &,

- m=1i

It can be assumed that A < n, otherwise the solution is to choose

n
each P, = 1. The problem is equivalent to maximizing z log Pn

m=1
subject to the same conditions. Since 1logz Py 1s a concave function

and ignoring the constraints P, < l, m=1,2,...,n, it is well known
* = g mecem PR =

that the optimal values of Py» Pys---»P, are p} = p} pi A/n.

Since A < n, the ignored constraints are satisfied. Hence

pi = pg Mmoo g p: = A/n is Optimal-

R N W Lo
A A e - R A /IR A Pt

Case 2: Parallel System

For a parallel system, the problem is tc find the Pys» PyseeesPy

; | which maximizes the reliability R, where
e
4 n
: R‘l'Tr (l’Pm)s
' m=1

subject to

n
<l,m=1,2,,..,n and J P, = A
m=]

0 f_pm

§
5
|
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It can be a.. _..¢d that A i, otherwise the optimal solution 1s to

choose at least one of the p's equal to 1 a&nd the rest arbitrary (but
n

subject to the constraint that Z P, " A). The problem 1s equivalent
m=l

to minimizing

n
| 2 log(l - Pm):
k ) msi
k' ' subject to
3
3 o

p, 20, m= 1,2, ..,n, and 2. Py = A
ms )

The constraint Py <l, m=1,2,. .,n 1s supertluous since A - 1.

n
The functions log(l - pm) ace concave. Theretore 2 log(l - pm)
m=1
is a concave function in (Pl' pz,...,pn) with the minimun ac an
n
extreme point of ) ENE A, P B 0 (m=1,2,. ,n). Each extreme
m=1

point has one Py, = A and the remaining equal to zero. Thus, in

particular, pi = A, pg = pg = cnm p; =0 1s optimal.

Case 3: k out of n System

For a k out of n system, the system wiil perform satisfactorily
1f at least k out of n units perform savistfacto-ily. Let Xm,
m=1,2,...,n, be independent Bernoulli random variables with parameter
Py let Y = Xl + X2 +ory Xn, Then the reiiability R can be

expressed as

R = P{Y > ki.




et e Nl . i e

it A

The problem is to maximize R subject to

n
<1, and Z P, £ A
m=1

0« Pp

R et Y o £ it i sl VYTTRTIOTY,

It can be assumed that A < k, otherwise the optimal solution 1is to

choose k of the p's equal to 1 and the rest arbitrary. If the

constraints Py < 1 are ignored, the Kuhn-Tucker conditions indicate

that 1f pi, pi,..o,pg are optimal, then there exists a number

A* > 0 satisfying the following:

If pt=0, then —— P{Y >k} - A% < 0 at p_ = p¥,
m - - m pm

apm

for m= 1,2,..,,n,

If p>0, then 2 Py >k} - A= 0atp = p*

apm

for m=1,2,...,n,

n
1f A% ~ 0, then z p* = A.
m
m=1

Suppose there are r variables which are greater than zero in the

optimal solution and denote them by p{, pE,...,p:a

be expressed as

The P{Y > k} can

P({Y > ki = Py F(pz, p3,,,n,pn) + (1 - pl) G(pz, p3.=o-'Pn).

where the function F is P{X2 + X3 oot Xn_z k - 1} and the function

18
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F
E
i

G 18 P{X, + Xy + ot X > k}.

Hence,

3 =
Fl P{Y _>.k} = F(Pz’ p3,-pco,pn) S E G(pZ’ p3,-ua,pn) = H(p2’ p3,--.,pn)-

Therefore, H(pg, pg,,...pg) = 1% can be solved uniquely for pg as

a function of pg, pz,,".,pg and A%,

Similarly,

d “ Lt} a = )
E P[Y;k} H(Plg P3s--=,Pn) A%

can be solved uniquely for p* as the same function of p¥%,p%¥,...,p*
1 374 n

and A* so that pi = pgn In the same manner, it can be shown that

pi = pf meoes p: , and furthermore, 1t is clear that p: = Afr,

i{i=1,2,,..,r. 1f '%.i 1, then the ignored constraints are satisfied.
This is easily shown to be the case. It is clear that r > k since if

more than (n - k) p's are zero, then P{Y > k} = 0, which cannot

be a maximum. Therefore %‘:_%-‘ 1, so that the ignored constraints

are gatisfied. The foregoing results do not indicate how to determine

r. One way is to evaluate P{Y > k} with p; = Afr, 1= 1,2,...,r1,

choosing that value of r = r* which maximizes
(;)(%}3 (1- %)"3 for r=k, k+1,...,n. (13)

r
P{Y >k} = §
=k




Some insight is obtained by replacing the right hand side of (13)
by the normal or Poisson approximation, depending upon which is
appropriate. When r 1s large and A/r 1is near 0 or 1 the Poisson
is appropriate; when A/r is 'near" 1/2, the normal is appropriate.
For either case, k (and consequently r) and n should be large.

For the normal approximaticn r = r* 1is to be chosen which maximizes

2 2,
1 22 4. 1272 g, )
. Pn v2n
k-2(Alr) *°° k-A "
vr(A/r) (1-A/r) yA(l-A/r)

For r =k, k+l,...,n Since k-A > 0, clearly r* = n. Thus,
% = =,..,= x = 1
p} p5 =...= p* A/n. (15)
If the Poisson approximation is used for the smaller values of A, the

right hand side of (13) yields

P{Y >k} = 1- J e
3=0 3!

which is independent of r. That is, approximately speaking, the
choice of r has very little influence on the left hand side of (13).

Therefore, it can be said that if n and k are both large, an

20



approximately optimal solution is given by (i5).

The results given in (15) are .onsistent with the n of n case

(series system). It does noc appear to be consistent with the 1 of
n case (parallei system)., However, this 1s not unexpected since k
must be large in order for the approximation to be good.

The solution given in (15) 15 easiily shown to be exact and optimal

if the problem considered is tc maximize the variance of the random
variable Y, the number of units that pertorm satisfactorily, subject
tc the usual constraints (Since A -k and A 18 the expected

number ot components that funcrion satisfactorily, maximization of the

variance 1is desired.)

4, MULTIPLE SYSTEM PROBLEM
The problem considered in this section is the same as that

considered in Section 3, except that nJ ccmponents are to be

"manutactured" and assembled into J systems. Each system performs

satisfactorily 1f at least k out or n units pertorm satisfactorily.

It 18 desired to maximize the expected number ot systems that perform
satisfactorily, E(N), subject to constraints on the p's.

Motivated by the results cbtained in Section 3 using the
approximation, it will be assumed 1initialiy that the probability of
each .unit pertorming sacisfactorily within the system will be equal,
i.e., all units 1in the Jth system have probability pJ of

functioning. The problem 1s to determine Py» Pyaci 5Py tO maximize

'§ ? (n'pi(l -p )n-i

-

Ly 1
J;l 1=

D(pla P’wa’pJ/l = 3 3

21
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subject to

injf_l, J=1,2,...,J
and

J .

Y np, < A, where 0 < A < nJ,

i=1

The Kuhn-Tucker conditions indicate that if p*]*.. pg,...,pg are
optimal, then there must exist numbers A* > 0, ug >0, i=1,2,..:4m,

satisfying the following:

If pj = 0, then 3:_5 DBy sPyse s sPp)-nA% - uf < 0 at py = pi,

for j = 1,2,...,J. (17a)
a E =
If pg > 0, then -ap—J D(pl,pz,....pJ)-nA* - u:*I‘ 0 at p:l pg,
for j = 1,2,...,J, (17b)
If u; = 0, then p3*_<_ 1 for § = 1,2,...,J. (17¢)
1f ui‘ >0, then pt =1 for 3 =1,2,...,J. (174)
J
If A% = 0, then nj p§_<_A. (17e)
i=1
22
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J
If A% >0, then n) Py = A (17£)

i=1
Now, _8D _ o=l k-1 _ n-k
apj n(n-k pj (l pj)
aD
so that EN >0 for O E.PJ <1 and equal to zero when Py = 0 or 1.
h| :
If u* >0, then p*=1. When p* =1, o0, 0 sc that (% = —ni%
] J ] 9 I J
from (17b); this is a contradiction, and hence, u%* =0 for all j,

]
j=1,2,...,J. Now 1f any p} = 1, then from (17b) i* = 0, so

* must be zero or one (from 17a or 17b) since U 0

3 9P
only at these values of p. If 0 < pj <1, then from (17b)

that every p

) -
3] pga - o e

For a given )* the equation has at most two possible roots in the

range 0 < pJ < 1., Therefore, an optimal solution is of the form

* = Besem DR = * n pX By, & =] 5
Py pE Py 0, and Pyr1 Px+2 px+y P»
px+y+1’ px+y+2""’pJ = ;, for some x and y, where 5, ; are

solutions to

n'(ﬁ:; pk‘l (1 - p)n-k = A%, for some \* > 0 (18a)
’ = A
and yp+(J-X"Y)P"ﬁ" (18b)

An optimal solution may consist of [s] p's each having value

one and (J - [8]) p's each having value zero, where [s] 1s the
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greatest integer less than or equal tc A/n. But this is consistent

with the given form when y = 0, ; = 0, ; = 1,

n .
The curve z (:)pi (- p)n-1 being s shaped 18 concave over
1=k
the range %E%'i.p 2 1. It 1s evident that if A/n) satisfies

k-1 A A
— —_— X = E SRR R & -
T RS 1, then P = P3 Py = o 18 optimal.

When k = n, the series case, the optimal sclution is to have pjsl
for 3 =1,2,. .,(a/n}, Piajnlel © A/n - [A/n], and Py = 0 for
j = {A/n]+2, ..,J. This 1s immediate from convexity arguments,
independent of the foregoing argumenc.

At the outset of this section it was assumed that the probability
of each unit performing satistactorily within a system was equal. This
may not always be reasonable. In Section 3, it was evident that when
A > k, the optimal solution was to choose k of the p's equal tol
and the rest 0. In the problem encountered in this section where nJ
units are to be assembled into J systems, it may very well be that
allocating k of the tocal resources to a system is appropriate even
if A : kJ and hence, the initial assumpticn about equal probabilities
within a system may not be valid Thus, any algorithm which seeks an
optimal solution tc this problem requires a consideration of such
possible systems, and their contribution to the total of the expected

number of systems that perform satisfactorily as weli as allocating the

remaining resources so as Lo maximize D 1in equation (16).
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