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1.  Introduction 

(1)        (i) 
A sample x1  , ... , x^   is drawn from the normal distribution 

(1) (2)        (2) (2) 
N(y   , E), and a sample x  , ... , x    is drawn from N(y  , E). 

/-a \ (O^S 
The p-component mean vectors y    and y    and the common covariance 

matrix £ are unknown; it is assumed that y   ^ y " and E is non- 

singular.  Another observation x is drawn.  It is desired to classify 

this observation as coming from N(y  , E) or N(y , E).  [See T. W. 

Anderson (1951) or T. W. Anderson (1958), Chapter 6.J 

The observation x may be classified by means of the classification 

statistic 

(1) W= (x^-x^V S-1 [x-|(x(1)+x
(2))] , 

Nl N2 
(2) I(1) = f I    x(1) .  x<2> = i-  I x<2> , 

Nl j=l ~J N2 j=l -J 

Nl N2 
/ON   o   V t   (D -d)% / (D -(DM x  V i   (2) ~(2K , (2) -(2),, (3) nS =  )  (x.  -x  ) (x.  -x  )  + )  (x.  -x  ') (x;  -x  )' 

j=l     J J j=l     J J 

and n = N +N - 2.  The rule is to classify x as coming from 

N(y  , E)  if W > c and from N(y  , E)  if N <_ c , where c may 

 /i \    /o\ 

be a constant, particularly 0, or a function of x  , x  , and  S. 

(D   (2) 
The distribution of W depends on the parameters y  , y   , 

and E through the squared Mahalanobis distance 

(4) .-cW-v81)' r1 (u(1)-y(2>) , 

which can be estimated by 

(5) a- ü(1) -x(2))' S"1 (x^ -x(2)) 



The limiting distribution of W as N, ->- °° and N_ -*• °° is normal with 

variance a and mean -r a if x is from N(u  , E) and mean - y a 
Z       ~ -v    ~ z 

if x is from N(yv  , 2).  Bowker and Sitgreaves* (1961) for N = N 

and Okamoto (1963) [with correction, Okamoto (1968)] gave asymptotic 

expansions of the distribution of  (W - y a)/-/a    for x coming from 

N(y( , E) and  (W + y a)/}/ä    for x coming from N(y^ \  E) to terms 

2    2        2 
or order 1/N.. , 1/3SL, and 1/n  when N. -> °°, N_ -> °°, and N./N, -»• k, 

J.     Z X        2 Z  ± 

a finite positive constant.  In particular,  Pr{w <^ 0} was evaluated. 

The statistician, who wants to classify x, may take c to be a 

constant, perhaps 0, and accept the pair of misclassification probabilities 
-i 

that result.  The asymptotic expansion of the distribution of  (W + y a) I Sä 

gives approximate evaluations of these probabilities, which are functions 

of the unknown parameter a as well as of c. 

On the other hand the statistician may want to determine the cut-off 

point c to adjust the probabilities of misclassification.  Since the 

limiting distribution of  (W-a)/^a and  (W+a)//a are N(0, 1) when 

^x = li    and  £x = y  , respectively,  a first approximation to the 

pair of misclassif ication probabilities is f(ya + c/a)    and $(- y a + cJä), 

where $(a)  is the cumulative distribution function of the standard 

normal variate.  Since a is an estimate of a, one might base his 

choice of c on the fact that the limiting distribution of  (W - y a)//i 

and (W + y a)//ä are N(0, 1) when £x = u(1) and £x = y(2), 

respectively.  In this paper we make asymptotic expansions of the distri- 

bution of  (W - y a)//a and  (W + — a)//a in these two cases, respectively. 

*The coefficients a.,,  and a„„  should be replaced by -a»,  and -a,., 
respectively. 



2. The Asymptotic Expansion 

The statistics x, x  , x  , and S are independently distri- 

buted according to N(y, 2), N[y(2), (1/lOZ], N[y(2), (1/N„)E], and 

W(Z, n) , respectively; here y = Ibx and W(E, n) denotes the Wishart 

distribution with n degrees of freedom. We write 

(6) 

Then 

W-|a= (x^ -I<2>)' S"1 (x-x(1)) 

(7)  Pr 

T,     1 W-¥a r 
_-   < u) - Pr / (x(1)-x(2))' S_1 (x-y) 
/a   — l \ ~   ~     ~   ~ ~ 

< u P^Vs-1^1^?5) + (x-^-x^rs-^-y) 

—(1) —(2) 
Since x has the distribution N(y, £) independently of x  , x  , 

and S, the conditional distribution of  (x^ -x^ ')'S~ (x-y)  is 

N[0, (i(1)-x(2)) »S"1^"1^15-^25)] , and 

(8) 
(x(1)-x(2))'S 1(x-y) 

r = 

^1>-x(2>)'S-1ES-1(x<1)-x(2>) 

has the distribution N(0, 1). Then (7) is 

I.W- 2 a 
(9) Pr< =— < u^> =Pr(r< 

L & 

u/g^>-x(2))'s-1(x(1>-f(2>)+(x<
1>-x(2>)'s-1(x(1)-y) 

= £§ 
u/(x<1>-x(2>)'S-1(I(1)-I(2)) + (x^-x^V^-y) 

/(x(1>-x<2>)'S-1ES-1(x<1>-x(2> 

where the expectation is with respect to x^ , x  , and S. 



The distribution of W and a is invariant with respect to the 

*1» 
* *(1)     (1) transformations x =. A x + b, x.   = A x. + b, j = 1, ... , N-, and 

*N» *S* .' "*r «j> «V< "I -V l-wi "I *u 

*(2)     (2) 
x.   = A x;  + b , where A is nonsingular.  The maximal 

invariant of these transformations is the distance a, given by (4) We 

can choose A and b to transform £ to I, y_ —y0 to <5 = (A, 0, ... 0), 

where A = •a, and y,  to 0. We shall first treat the case where ]i =  p.. ~x     ~ ~  ~x 
—(1)     —(2) 

The vectors x    and x    and the matrix S are distributed 

independently.  The distribution of [ (x(1^-x^) ' s x
(1^']'  is 

(10) N 

li k+ k 
kl- 

1   -r 

Let Y, Z and V be defined by 

(11) 

(12) 

I(D^(2) . fi + JL Y , j(D 

S = I+-V 

Then the joint distribution of     (Y',  Z')'     is 

(13) N 

\9. 

n(N^ + l: 

^-1 

Ä 

a-x\ N 

n 
N, J 



Then   (9)  is 

W--a 
(14)       Pr < — £ u 

£§ 

u/( (6  + — Y)' (I + — V)"1(6 +~Y)+ -~(8 +4Y)'(1+- V)_1Z 
Ä /ri /ri vn ^ 

/(6  + — Y) ' (I + — V)   2 (6  + — Y) 
Vn /n " /n 

We can write 

(15)     (I + — V)"1 T _     L v + I v2 _ _1      v3 + 1    v4 _ 
n ~ 3/2 ~ 2  ~ 5/2 

n n n /n" 

15 1-1 
VD   (I + — V)  L   , 
~       ~       /n" " 

(16)     (I + — V)"2 = i- — V+-V2- -|^ V3 + -|-nr V4 

y^n" 
^ ~      n ~ 3/2 ~     '     3/2 
yn n n 

1        (6 V5 + — V6) (I + — V)"1   . 5/2 n /n" /n 

Then   (as Taylor series expansions) we have 

(17) (fi + — Y)*(I + — V)_1(6 + — Y) 
7n /K &~ 

1/2 

6'6 +— (26'Y-6'V6) +- (S'V2<5 + Y'Y - 2<5'VY) + r.   (Y,Z,V) 
/n 

1/2 

=   A + —-— (26'Y - 6'V8) + - 
2AÄ n 

-~ (S'V26 + Y'Y - 26'VY) 

8A 
^ (26'Y - 6*V6)21    + r_   (Y,Z,V)   , 



(18) — (5 + ~ Y)T(I + — V)_i Z = -^ <S'Z + - (Y'Z - <5SVZ) + r0 (Y,Z,V) , 
vn Vn /n /n 

(19)   | (6 + — Y) • (I + — V)~2(<5 + — Y)l 
I  ~     j-   ~     ~      r- ~      ~      7- ~ J 

-1/2 

L~  Ä /n "       vn 

8'6 + — (26'Y-26'V6) +- (36'V (5 + Y'Y - 46'VY) + r. (Y,Z,V) 
1/2 

/n" 

- - -~—  (6'Y-6'V6) - - -~ (36'V26 + Y'Y - 46'VY) 
A  A3 ^    n [2A3  

3 (6'Y-6'V6)2 

2A" 
+ r  (Y,Z,V) 

jn ~ ~ ~ 

Here r. (Y,Z,V)S j = 1, ... , 5  is a remainder term consisting of 1/n 

times a homogeneous polynomial (not depending on n) of degree 3 in the 

2 
elements of Y, Z, and V plus 1/n  times a homogeneous polynomial of 

-5/2 
degree 4 plus a remainder term which is 0(n   )  for fixed Y, Z, and 

V. 

The argument  of    $(  )     in   (14)  is the product of 

3/2 

(20)      uA+-     — [(26'Y-6'V6)+6'Z] +-[•£- (6'V26+Y'Y-26'VY) 7—       ZA       ~  ~  ~  — ~ n    zA    ~  ~  ~  ~  ~     ~ -— 
vn 

8A 
\ (26'Y-6'V6)2 + Y'Z-6'VZ] + r,   (Y,Z,V) 

and   (19), which is 

(21) u + — (—- &'V8 + Y 6'Z) + - [\ (6'Vy-6*V26) + ~ (-6'Y6'V6 + J (S'V6)2) 
vn    2A i. A A 

+ A Y'Z - \ 6'VZ - —- Ö'YZ'Ö + \ 6'Z6'V6]  + r7   (Y,Z,V) 

= u + — C(Z,V)  + i D(Y,Z,V)  + r_   (Y,Z,V) r-      ~~        n      ~ ~ ~ /fn~~~ 



say [as the definition of C(ZSV)  and D(Y,Z,V)]  and r, (Y,Z,V)  and 

r., (Y,Z,V) have the same properties as  r. (Y,Z,V), j = 1, ... , 5. 
/n ~~~ jn ~ ~ ~ 

A Taylor series expansion of $( )  in (14) gives 

(22)      *[u + — C(Z,V) + - D(Y,Z,V) + r7 (Y,Z,V)] 
/n 

= *(u) + <(»(u) {—  C(Z,V) + i [D(Y,Z,V) -|u C2(Z,V)]; 

n n 

where rQ(Y,Z,V)  is a homogeneous polynomial (not depending on n but 
Q   -j   *v       "*s 

depending on u) of degree 3 in the elements of Y, Z, and V, r0(Y,Z,V) 

is a polynomial of degree 4, and r . (Y,Z,V)  is a remainder term, which 

-5/2 
is 0(n   )  for fixed Y, Z, and V  (and u). 

Let J  be the set of Y, Z, and V such that  |y.| < 2/log n, 

|zil < 2/log n, i = 1, ... , p , and  |v± | < 2 log n, i, j = 1, ... , p. 

As shown in the Appendix, 

(23) Pr{Jn) = 1 - o(n~
2) . 

i 

The difference between £$( ) and the integral of $( )  times the density 

-2 
of Y, Z, and V over J  is o(n )s because 0 < $( ) < 1.  In J 

~ ~      ~        n —    —        n 

each element of Y, Z, and V divided by /n is less than a constant 

times  (log n//n) .  Hence 

,     5 
(24) r10n(Y,Z,V) < constant x (*££-£ ) ) 

/n 

-2 
and the integral of this times tne density of Y, Z, and V over J  is o(n ) 

~ ~      ~       n 



Since fourth-order absolute moments of Y, Z, and V exist and are 

bounded, the integral of rg(Y,Z,V)  times the density of Y, Z, and 

V over J  is bounded; hence, the contribution of this term (with the n 
-2        -2 

factor n ) is 0(n ). 

The differences between n"1'2 £C(Z,V),  n""1 [£ D(Y,Z,V) - \ uC2(Z,V) ] 

-3/2 -1/2 
and n    r0(Y,Z,V)  and the integrals over J  of n    C(Z,V), a ~ ~ ~ n ~ ~ 

n_1[D(Y,Z,V) -iuC2(Z,V)]  and n~3/2 rQ(Y,Z,V)  times the density of 

_2 
Y, Z, and V, respectively, are 0(n ).  Thus 

(25) Pr/ — < uV = $(u) + (ji(u) <{— ^C(Z,V) +i [£D(Y,Z,V) -f £c2(Z,V)]j ^  ^   ~ f j/s;    ~ ~   n        2 f 

+ ^TJ £ r8(Y,Z,V) + 0(n"
2) 

n 

= *(u) + <j)(u) {— t C(Z,V) + i { &D(Y,Z,V) 
j/n 

- j £c2(Z,V)j} + 0(n~2) . 

because the third-order moments of the elements of Y, Z, and V are 

-2 
either 0 or  0(n ). 

Since C(Z,V) is linear and homogeneous, j£C(Z,V) = 0.  Since 

(Y,Z) and V are independent 

(26) |D(Y,Z,V) = - ~ g6'vV+|-\ 2(<S'V6)2+x ^Y'Z-~ £6'YZ'<5 
A A A 

- -\A2(p+l) +|   \2A4 +i^p -\A2§- 
A2 8    A4 A Nl A3        Nl 

= -cp-!)u + (P-Df-i 
i 



since 

(27) £6'V26 =£6'W'S = A2 t   X  Vli = A ^ VH + X   ^^  = A (P+1) ' 

(28) £(f'Y$)2 = A4 ^VII = 2A4 

We have 

(29) gCZ(Z,V) u .2 . 1 
. gOS'Vör + ^ö £6'ZZ'6 

4A4        A2    

u   _.4 , 1 n  .2  1 2 , n 

4A4       Az wl     z     wl 

Thus 

(30)  £D(Y,Z,V) -f ?C2(Z5V) = (p-1) |-i- (p - f+ f f- )u -^u3 

Replacing n/N.  by its limit 1+k, we have 

(p-D (31)  Pr< —< IA = $(u) +- <Ku) si~ J 
when     $ x = y       .     Interchanging    N      and    N„     gives 

r 

(l+k) - (p-i + lkh-iu3 
+ 0(n A) 

p-1   /i,l\,/ 1   •   1  \     ,   1    3 
^=- Cl + P + (P - 4 + 2k)v + 4 V 

/a 

when    £ x = ]i 
m 



3. Discussion 

If N-. = N„  and costs of misclassification are equal, the minimax 

classification procedure is defined by the cut-off point 0 for W; a 

cut-off point different from 0 will increase one probability of mis- 

classification and decrease the other.  The inequality W <_ 0 is 

1    /—    IT—        1 r- 1 — 
equivalent to  (W - y a)//a ^_ - y va  , and - —  /a estimates - — /a 

= - y A.  For most purposes, then, one is interested in u _< 0.  Then 

the correction term to $(u)  is nonpositive; use of the normal approxi- 

mation alone tends to underestimate the probability of misclassification. 

The correction term decreases as the distance A between the two popula- 

tions increases if p > 1 and for nonpositive u the correction term 

increases with the number of coordinates p  (for fixed A). 

The expansions of Pr{ (W - y \/a)/\/a <_ u|y=y  } and Pr{ (W + y /ä)/^ä 

<_ u|y=y  } given by Okamoto (1963) can be obtained by the method of 

this paper.  It is interesting that the expansions for (W + y /a)//a here 

are much simpler than the expansions for  (W + y \/ä)l-Ja    as given by 

1        1  7- 
Okamoto. At y = -yA = -y/a (corresponding to the cut-off point 0) 

1 j—     — 
the correction term of order .1/n to the probability for  (W + y /a)//a 

2 

is about y as much as for  (W + — /a/v^a. 

As indicated in the introduction, the statistician may want to use the 

evaluation of     Pr{(W - — /a)//a <_ u} in order to set the cut-off 

point c = ui/a + y -/a    in order to obtain a specified probability of 

misclassification or at least approximate a specified probability.  The 

crudest approximation is to take u so $(u) is the specified probability. 

10 



This approximation» however, is not very good; the error of the approxi- 

3/2 
mation is evaluated above to order 1/n  . The error depends on the unknown 

parameter if p > 1. To get a better approximation let $(u+Au) be the 

specified probability, where 

.     1  (p-1)(1+k)   .        1 . 1 . .   13 
Au = -^——  - (p - y + — k)u -• T u 

Jl 424 

Then the actual probability is the specified one with an error of order 

—3/2 r~ 7— —1/2 n     (because /a is /a with an error of order n   ). 

For further discussion, see Anderson (1972). 

Acknowledgements. The author is indebted to John Miller and Fred 

Nold for assistance in preparing this paper. 

11 



APPENDIX 

To control the errors of approximation\e  define the set J  by 

|y | < 2/log n,  |.z | < 2/log n, j =1, ... , p, and  |v  | < 2 log n, 

—2 
i, j = 1, ... , p.  We want to show Pr{j } = 1 - 0(n ). 

We have when E = I 

_ I 
(A.l) Pr(|y.| > 2^i~n"} = —    f  e 2 dv 

2 /2ir 2/log n 

- j (2/IoTT)2 

< e          

/2TT log n 

n /2ir log n 

= o(n  ) 

by use of Mill's ratio. Then 

(A.2)      Pr{|y.| < 2/log n, |z.| < 2 log n, j = 1, ... , p} 

= 1 - o(n"2) . 

Now consider V = (v..). The moment generating function of nS 
ij 

when  E = I is 

tr0nS     nT. ? , 6. .sJ# 
(A.3) U~~-   U    X'3ml      3    2 

= ii - 20r 1/2 n 

where 0=0'. We use the Tchebycheff-type inequality [Chernoff (1952), for 

example] for an arbitrary random variable X and 0 > 0 

12 



,. ,v -8a ,, 9X   f  9(X-a.) .•„.;,.  -. 
(A.4) e   p,e      =   fie _> TriX j> a} . 

Then 

(A.5)       Pr{v.. > 2 log n} = Pr{^n s±±  - /n > 2 log n} 

= Pr{n s. . > n + iJix  log n} 

< (1-29)"1/2 n e~Q(-n+2^ lo§ n) 

for 0 < 0 < j.  Let 6 = k/v'n, where k > 1.  For n > 4k 

(A.6)      Pr{v.. > 2 log n} < (l-2k/^)~1/2 n e"2k log n_k^ 

<^ constant x e     ° 

= 0(n-2k) 

= o(n ). 

—2 
Similarly Pr{-v. . > 2 log n} = o(n ). We have for i =f  j 

(A. 7) Pr{v.. > 2 log n} = Pr{v£" s.. > 2 log n} 

= Pr{n s.. > 2/n log n} 
1J 

K  e-92^n" log n (1_e2)-l/2 n 

1 2 
for 0 < 9 < —.    Let 8 = k/Vn, where k > 1. For n > 4k 

(A.8)        Pr{v, . > 2 log n} _< constant x e     s 

= o(n ). 

Similarly Pr{-v.. > 2 log n} = o(n ). Then 

-2 
(A.9)     Pr{|v  I < 2 log n, i, j = 1, ... , p} = l-o(n ) 

13 
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