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FOURIER-MOTZKIN ELIMINATION AND ITS DUAL
by

George B. Dantzig

Research on linear inequalities systems prior to 1947 consisted
of isolated efforts by a few Investigators. A case in point is the
eliminatiaon technique for reducing the nuv~ber of variables in the
system. A description of the method can be found in Motzkin's 1936
Ph,D. thesis.l It differs from its analog for systems of equations in
that (unfortunately) each step in the eliminatiun can greatly increase
the number of inequalities in the remaining variables. For years the
method was referred to as the Motzkin Elimination Method. However,
because of the odd grave-digging custom of looking for artifacts in long

forgotten papers, it is now known as the Fourier-Motzkin Elimination

Method.2

Given a system of linear inequalities: Find x = (xl, 500 0 xn)
such that

>b 2 i=(1, .--,m) .

1) aij By 2 by

WL-1s

j

One may partition it into three sets of inequalities according to whether

the coefficients of x, are positive, negative or zero. This permits

rewriting (1) in the form:

1Motzkin, T. S., 1936, Doctoral Thesis, University of Basal, Beitrage zur
theorie der Linearen Ungleichungen.

2Fourier, J. B. J., "Solution d'une question particuliere du calcul des
inegalites," 1826 and extracts from "HIstoire de 'lAcademie", 1823,
1824, Oeuvres I1I, pp. 317-328 (French Academy of Sciences).
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x; > Dy (x) x, = E () 0 < Fy (%)
2) : : :
x> np(i) X < Eg (x) 0 < F_(x)

where Di(x), Ej(x), Fk(x) are linear functions of x = (x2, 40 I8 xn).
It may be solved by first solving the reduced system: Find x

satisfying

E, (x) i= (Q,00ayp); 3= (Lye0039)y k= (1y000,r)

D, (x) 3

| A

(3)

o
A

<R (&)

and then finding an X1» satisfying

(4) Max Di(§_) < % < Min E x
i 3
where Xy always exists providing there exists an X satisfying (3).

Proof: Given any (xl, x) satisfying (2), it is clear that (3) and (4)

must hold. Conversely, given any x satisfying (3), then Max Di(;) < Min Ej(;)

and we can always fin? an x, satisfying (4); hence (xl, x) satisfies (1).

1
System (3) is said to be the result of "eliminating" 3 from

system (2). If ptq < 4, the reduced system contains one less variable

and no more inequalities. If p > 2, q > 2, r = 0, however, the process of

elimination will greatly increase the number of inequalities. This is

the chief reason given why it is not used as 4 practical solution

-9 =
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method. It is worth noting, however, that (3) has special structure
and that this might be used to advantage to develop it into a practical
computational procedure.

Since (3) is a linear inequality system also, one could next proceed
to eliminate Xy etc. until one has eliminated all but a single
variable, say X . The original system is solveable if and only if

the final system XS0y X >

> BJ, 0 < vy for 1i=1, ..., p',
j=1, «o. , q', k=1, .., , r' 1is consistent, i.e., iff ai-Bj >0
and Y 2 0 for all 1i,j,k. Another way to state this is

Feasibility Theorem: A necessary and sufficient condition that system

(1) is solveable, is there exist no set of weights (y1 >0, Yy 2 0,...,ym > 0)

such that

m
(5) J, y,b, >0  and [‘, y,a,, =0 for § = (1,...,n).
i=1 i1 i=1 171j
Proof (Abadie): Assume a solution x to (1) exists and there exists

weights Yy > 0 satisfying (5), then (1) implies

m

(6) ( y.a 2 y;b, » y, 20 ,
g’l 1§1 119" 1g1 11 1=

or Ox Z_E]yibi > 0, a contradiction, Thus the condition is necessary.
Assume no solution x to (1) exists, then note each system

generated by the elimination process, for example (3) from (2), is formed

=17 -
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by non-negative linear combinations of the inequalities of the previous
system which in turn were formed by non-negative linear combinations
of the system one before that, etc., back to the original system (1). Thus
the condition for non-solveability, ai-Bj <0 or Vi < 0 for some 1i,j
or k (referred to earlier) could be derived directly by some non-negative
linear combination of the inequalities of the original system,

This remarkably simple proof of the feasibility theorem based on
Fourier-Motzkin elimination is due to Jean Abadie, From it one can
derive easily (by trivial algebraic manipulations) the fundamental Duality
Theorem of linear programming, Farkas Lemma, the various theorems of

the alternatives, aud the well known

Motzkin Transposition Theorem: Given the dual homogeneous linear

program in partitioned form

(7) Primal:  Apx, + A x,.. =0, (%75 %47} 20

Dual: yAI.i 0, yAII =0
then either there exists a solution to the dual such that yAI <0
(i.e., holds strictly in all components) or there exists a solution

to the primal such that X # 0. )




Proof: A solution to the dual such that yAI < 0 implies there exists

a y such that

A

(8) yAI < -e, e=(1,1, ... , 1)

yAII <0 .

{

If no such y exists satisfying (8), then by the feasibility theorem,

there exists weights xI > 0, X1y 2 0 such that A Xy + AIIXII 0

and -ex, < 0, i.e., X # 0,

The Dual of Fourier-Motzkin Elimination. Suppose we are given the

homogeneous linear program

{ x -Dx>0 i=(, ... , p)
9) <’ -x; + ijio j=(@Q, «e. , qQ
\ Fk§ >0 k=(1, ... , 1)

where x = (x2, 200 xn) and Di’ Ej’ Fk

of Xy from (9) yields

for all 1i,j

v
o

(10) (E;-Dy)k >

Fkx 0 for all k .

jv

On the other hand the homogeneous dual of (9) is: To find u; > o,

v._j >0, wy > 0 such that

are 1 x n. The elimination

TR
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(a) ) u - f; v, =0

1=] =
(11)
une fyye B
® - = o j)Z’l i) kg‘l i e T

and the homogeneous dual of (10) is: To find Aij > 0, Wk > 0 such

that:

r

(12) igl jgl My (Ej—Di) + kgl v F =0
Since (9) and its eliminated form (10) are in a sense equivalent

systems, it seems natural to expect that their duals (11) and (12),

are also equivalent in the same sense; i.e., from any solution to (11) we

can derive a solution to (12) and conversely. Note that (11) has

n equations corresponding the the n components of xj whereas (12)

has =n-1 equations but would have (in general) far more variables.

This suggests we have at hand a technique for reducing the number of

equations in a linear program. Let us give a direct proof of this for

the non-homogeneous system:

Find ug > 0, Vj >4 95 wkz_O satisfying:

(a) u, - §§ v, =0

(13)

|
oo

B
() - i u;D; + i vjEj + k='1 w F =

- R P g
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Let us introduce pq new variables A, > 0 by setting

ij
3’ i=Q )
= , e LD
i jta ij
(14)
= g’ A = 1, sese )
vy RISt 3 i={ q

Note that 1if uy and vj satisfy (13)(a), it is always easy to find

Uiy > 0 satisfying (14). Even if u >0 and v

to be integers, it is easy to find integer A

> 0 are constrained

3
1 > 0 satisfying (14).
Substituting (14) into (13) we note that (13)(a) is automatically
satisfied and we obtain the reduced system:

Find Alj >0, vy > 0 such that t

B‘ r
(15) » Ay (E,=Dy) + P wF =8
=1 g=1 W kel <K
Conversely note that if we have a solution to (15), we can by regrouping
the terms and substituting u, and v, for the resulting expression

]
Aij’ obtain a solution to (13). The solution will be in integers if

Aij is integral,

To apply the technique to a system of equations in non-negative
variables, it is necessary to have one equation with a zero constant
term to play the role of (13)(a) or to create an equation with a zero
constant term by replacing one of the equations by s;me appropriate

linear combination of the equations of the system. This will yield an

equation of the form

e T
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o
<4

(16) 5&u-§]bv=0 a, >0, 8, >0,
T T S~ I i i

and we could obtain a system of form (13) by a change of units. This

may conveniently be done by replacing (14, by

au:;e_‘;)‘ ’ = (ls .. » P) 6
S
a7
ijj-i=,1 )‘ij s J = 0 s 5 G)
where ai_>_0, Bj:O, )‘ij 2 {0 “110’ vjz_O.

Application of the Dual of the Motzkin Elimination to Integer

Programs: As long as a, =1, 8

i =1 for all 1,j we have, as

3
pointed out earlier, a reduced system of equations (16) in integer
variables )‘ij >0 if uy and vj are integers. In general, however,

for the case where a, > 0 and Bj > 0 are integers different from

unity, we have to resort to more complicated substitutions. This will

be illustrated below for a simple example. Suppose we have

(18) (u1 + Zuz) - (vl +v, + v3) -0 .

Let us rewrite this

(19) (u1 + u, + u3) = (vl + vy + v3) =0,



where u, = u and set as above

2 3
3
ui = jgl )‘ij . j=0Q, 2, 3
(20)
r
Vj = igl )\ij o i=14(, 2, 3)

The resulting integer reduced system is in A, > 0 (as

ij
before) except we have the additional condition U, = ug which in terms
of Aij' becomes
(21) 0‘21 t A, t )\23) - (A31 + gy + A33) =0

But (21) is in exactly the form we need for ~he integer reduction.

We accordingly can introduce additional integer variables uij > 0, where i
3 H
x21=j§1 big o i=1,2,3 *
(22) 3
3 i
by B by i=1,23

i=1

PSS~ SR
i

Back substituting into (20), we have the desired integer substitution

VRS TR

PEESROTTRS

in terms of 12 auxilliary variables.




3 33
lw] ul
u = ) A, u,(=u) =) Y ou ,
1 e} 1j 2 3 i=1 §=1 ij
3 3
Vi Tt jga byt iZ% b1y
(23)
3 3
V2=t jza Moy t 12& Mi2
L8
V3T Mt jga i TR

By setting iy + iy = Hyg, byg ¥ gy T ipg dgy *lpy = lpy Ve
could simplify the above substitution to one involving nine non-

negative integer variables where 1,j =1, 2, 3 and i # §.

Mir Mige gy
The problem in general of finding substitutions to replace (17)
so as the reduce a linear system in non-negative integer variables to

fewer equations is under study and will be the subject of a subsequent

paper.
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