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FOURIER-MOTZKIN ELIMINATION AND ITS DUAL 

by 

George B. Dantzig 

Research on linear inequalities systems prior fo 19A7 consisted 

of isolated efforts by a few investigators, A case in point is the 

elimination technique for reducing the ni'"ber of variables in the 

system. A description of the method can be found in Motzkin's 1936 

Ph.D. thesis.   It differs from its analog for systems of equations in 

that (unfortunately) each step in the elimination can greatly increase 

the number of inequalities in the remaining variables. For years the 

method was referred to as the Motzkin Elimination Method. However, 

because of the odd grave-digging custom of looking for artifacts in long 

forgotten papers, it is now known as the Fourier-Motzkin Elimination 

2 
Method. 

Given a system of linear inequalities: Find x = (x-, ... , x ) 

such that 

(1) _, a
1-4 

xi lbi ' i = (1 m)  . 
j=l  J 3 

One may partition it into three sets of inequalities according to whether 

the coefficients of x.. are positive, negative or zero. This permits 

rewriting (1) in the form: 

Motzkin, T. S., 1936, Doctoral Thesis, University of Basal, Beitrage zur 
theorie der Linearen Ungleichungen. 

2 
Fourier, J. B. J., "Solution d'une question particuliere du calcul des 
inegalites," 1826 and extracts from "HIstoire de 'lAcademie", 1823, 
1824, Oeuvres II, pp. 317-328 (French Academy of Sciences). 
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x1^D1(x)    / x1 < E^x)    /O^F^x) 

(2) 

X, > D (x)   \ x, < E (x)   V 0 < F (x) 
1-p        1 - q        -r 

where D (x), E,(x), F, (x) are linear functions of x = (x0, ... , x ). 
1    j     K z       n 

It may be solved by first solving the reduced system: Find x 

satisfying 

(3) 

D^x) <_ E (x)      i = (1 p); j = (l,...,q), k = (1 r) 

0 < Fk(x) 

and then finding an X-, satisfying 

(4) Max D (x) 1 x < Min E. (x) 

i      1 i      3 
» 

where x1  always exists providing there exists an x satisfying (3). 

Proof; Given any (x , x) satisfying (2), it is clear that (3) and (4) 

must hold.  Conversely, given any x satisfying (3), then Max D (x) <_ Min E (x) 

and we can always fiuc? an x.. satisfying (4); hence (x.., x) satisfies (1). 

System (3) is said to be the result of "eliminating" x..  from 

systom (2).  If p+q <_ 4, the reduced system contains one less variable 

and no more inequalities.  If p>2, q>2, r=0, however, the process of 

elimination will greatly increase the number of inequalities. This is 

the chief reason given why it is not used as a practical solution 

- 2 - 



method.  It is worth noting, however, that (3) has special structure 

and that this might be used to advantage to develop it into a practical 

computational procedure. 

Since (3) is a linear inequality system also, one could next proceed 

to eliminate x„ etc. until one has eliminated all but a single 

variable, say x . The original system is solveab.le if and only if 

the final system x < ex., x > ß., 0 < y,  for 1 - 1, ... , p', n— in— j   — K. 

j « 1, ... , q', k = 1, ... » r' is consistent, i.e., iff o^-S. ^0 

and Yu ^. 0 for all i,j,k. Another way to state this is 

Feasibility Theorem; A necessary and sufficient condition that system 

(1) is solveable, is there exist no set of weights (y.. .1 0, y- ^L 0 y .1 0) 

such that 

m m 
(5)      B yA > 0   and   J] y a  «0     for j » (l,...,n). 

i=l i-1   ^ 

Proof (Abadie): Assume a solution x to (1) exists and there exists 

weights y. ^. 0 satisfying (5), then (1) implies 

n   m m 

(6) C (E y^n^i i E yA . y.io , 
j-l i=l 1 ^ J  i.i 1 1 1 

or Ox >^ 2 y^A  > 0,  a  contradiction. Thus the condition is necessary. 

Assume no solution x to (1) exists, then note each system 

generated by the elimination process, for example (3) from (2), is formed 

- 3 - 
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by non-negative linear combinations of the inequalities of the previous 

syatem which in turn were formed by non-negative linear combinations 

of the system one before that, etc., back to the original system (1). Thus 

the condition for non-solveability, a.-3. < 0 or Yi, < 0 for some i,j 

or k (referred to earlier) could be derived directly by some non-negative 

linear combination of the inequalities of the original system. 

This remarkably simple proof of the feasibility theorem based on 

Fourier-Motzkin elimination is due to Jean Abadie.  From it one can 

derive easily (by trivial algebraic manipulations) the fundamental Duality 

Theorem of linear programming, Farkas Lemma, the various theorems of 

the alternatives, and the well known 

Motzkin Transposition Theorem;  Given the dual homogeneous linear 

program in partitioned form 

(7) Primal:  A
T
X
T 

+ ATTXTT = ^ ♦ (Xj, Xjj) > 0 

Dual; yAi ^ 0, yAII < 0 , 

then either there exists a solution to the dual such that yA < 0 

(i.e., holds strictly in all components) or there exists a solution 

to the primal such that x ^ 0. 

- 4 - 
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Proof; A solution to the dual such that yA < 0 implies there exists 

a y such that 

(8)        yAj 1 -e , e = (1, 1 1) 

yAII<0 . 

If no such y exists satisfying (8), then by the feasibility theorem, 

there exists weights x >^ 0, x^ >^ 0 such that A^ + AJJX^ = 0 

and -ex < 0, i.e., x- t  0. 

The Dual of Fourier-Motzkin Elimination.  Suppose we are given the 

homogeneous linear program 

(9) 

[■"■ 

Dix >  0 i =   (1,   ...   ,  p) 

Ex _> 0 j   =   (1,   ...   ,   q) 

Fkx>0 k =  (1,   ...   ,  r) 

where x - (x,,. ... . ^  and D^ E j, Fk are 1 x n. The elimination 

of x,  from (9) yields 

(10) (E,-Di)x >_ 0 for all i.j 

F, x > 0 for all k 
k — 

On the other hand the homogeneous dual of (9) is: To find u >^ 0, 

v. > 0, Wv, > 0 such that j -    K — 

- 5 - 



... 

(a)      ij u, - C v4 = 0 

(11) 

(b)      - £ u ü + ?; v E + f; w F = o 
i=i 1  l   j=i J J    k=i  ^ K 

and the homogeneous dual of (10) is: To find X,. > 0, w, > 0 such 
ij - ' k - 

that: 

(12)        £  t   ^i^i'V + S wkF 
1=1 j=l ^  J  1   k=l  K K 

= 0 

Since (9) and its eliminated form (10) are in a sense equivalent 

systems, it seems natural to expect that their duals (11) and (12), 

are also equivalent in the same sense; i.e., from any solution to (11) we 

can derive a solution to (12) and conversely. Note that (11) has 

n equations corresponding the the n components of x. whereas (12) 

has n-1 equations but would have (in general) far more variables. 

This suggests we have at hand a technique for reducing the number of 

equations in a linear program. Let us give a direct proof of this for 

the non-homogeneous system; 

Find u. > 0, v. > 0, w > 0 satisfying: 
i -   1 -   k- 

(13) 

(a) £ u "- £ v =0 
i=l     j=l 2 

(b) - £ u D + £ v E. + £ w 
i=l      j=l J ;|  k=l 

^ = g 

- 6 - 
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Let us  introduce    pq    new variables       ^• il 0    by setting 

(14) 

u    -    ä    X i =   d P) 
1       j-l    ij 

v,   -    V   X j  «   (1,   ...   ,   q) 

Note that if u  and v  satisfy (j.3)(a), it is always easy to find 

u  > 0 satisfying (14). Even if u > 0 and v > 0 are constrained 

to be integers, it is easy to find integer X  >^ 0 satisfying (14). 

Substituting (14) into (13) we note that (13)(a) is automatically 

satisfied and we obtain the reduced system: 

Find X,^ > 0, w. > 0 such that 
ij —   k — 

as)        £  ä vw+ ^ wkFk = 
i=i i-i ^ J x   k=i K 

Conversely note that if we have a solution to (15), we can by regrouping 

the terms and substituting u  and v  for the resulting expression 

X  , obtain a solution to (13).  The solution will be in integers if 

X   is integral. 

To apply the technique to a system of equations in non-negative 

variables, it is necessary to have one equation with a zero constant 

term to play the role of (13) (a) or to create an equation with a zero 

constant term by replacing one of the equations by some appropriate 

linear combination of the equations of the system. This will yield an 

equation of the form 

- 7 - 
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£ a  u - £ b v = 0 
i=l i 1  i=l J  ;l 

(16)        C «.".-£ ^ Vj = 0 ^i ± 0. ßj 1 0 . 

and we could obtain a system of form (13) by a change of units. This 

may conveniently be done by replacing (1^ by 

(17) 

a. u. = IJ 1 "i   ^J ^i-«  •        ^ = ^» '•' » P' » 

2      i«l 
Jj VJ  _  C.I      ^±A » j - (1»  •••  » Q)  » 

where a >^ 0, ß > 0, X  > 0, u. ^ 0, v > 0. 

Application of the Dual of the Motzkin Elimination to Integer 

Programs; As long as a = 1, ß = 1 for all i,j we have, as 

pointed out earlier, a reduced system of equations (16) in Integer 

variables ^j 2. ^ ^ ui    an^ v4 are Integers. In general, however, 

for the case where a. > 0 and 3 > 0 are integers different from 

unity, we have to resort to more complicated substitutions. This will 

be illustrated below for a simple example.  Suppose we have 

(18) (u1 + 2ii2) - (v1  + v2 + v3) = 0 

Let us rewrite this 

(19) (u, + u, + u ) - (v. + v, + v-) = 0 , 

- 8 - 
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where u_ " u, and set as above 

i  - (1. 2. 3) 

(20) 

E A^ » 
i=l ij 

i = (1, 2,  3) 

The resulting integer reduced system is in    *.. ü 0    (as 

before) except we have the additional condition    u- = u-    which in terms 

of    A    , becomes 

(21) (X21 + A22 + A23) -  (X31 + A32 + X33) = 0 

But (21) is in exactly the form we need for the integer reduction. 

We accordingly can introduce additional integer variables u.. ^0, where 

(22) 

A2i = £ Mij  ' 
j=l  J 

i = 1, 2, 3 

A3J " ^ ^ij ' 
j = 1, 2, 3 

Back substituting into (20), we have the desired integer substitution 

in terms of 12 auxilliary variables. 

- 9 - 
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3 3  3 
u = £ X u (= u») - 2  2 U±A     • 
i  j=l i:l 1=1 j-1  J 

3       3 
v = X  + £ y + 2 uil 
1   ii  j=l iJ  1=1 

(23) 
3       3 

Z   i^  j=l  ^  1=1  Z 

3       3 
v3 = X13 + £ y31 + 2 U13 ->   J-;>  j=l  ^  1=1 

By setting i^ + y21 = y12> ^3 + M31 = p^, ^33 + u23 = ^33 we 

could simplify the above substitution to one Involving nine non- 

negative integer variables A..., u..,  y.. where i,j = 1, 2, 3 and i ?* j. 

The problem in general of finding substitutions to replace (17) 

so as the reduce a linear system in non-negative integer variables to 

fewer equations is under study and will be the subject of a subsequent 

paper. 
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