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FOREWCRD

This report presents an analytic assessment of one
type of steering law used tu control the trajectory of
giiding decelerators. The analysis is part of a continiing
effort directed toward investigating methods‘which will
improve the accuracy and disrersion characteristics of airdrop
systems.

This study was conducted under Department of the Army

Prcject No. 1Fl1 62203 AA33, Drop Zone DLispersion Studies.
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‘NOMZNCLATURE |

Magnitude of the radius vector in polar coordinates

r =

t = Time

U = Vector component of the parachute's total airspeed vector
in the horizontal plane

u = Magnitude of U

w = Magnitude of the wind speed vector ¥

X = Hovrizontal space coordinate fixed to e&rth

y = Horizontal space coordinate perpendicular to x and fixed
to earth

A = u/w wind penetration paramater

© = Azimuth angle in polar coordinates

1 = Launch

m = 'Minimum

ii
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ABSTRACT

The two dimensicnal trajectory of a radial homing gliding
parachute in a uniform wind is presented. The kinematics
of the motion is discussed generating two first order
differential equations which are separated and solved by
direct integration. The resulting expression functionaily
relates the radial pcsition of the parachute to the
instantanrous value of the azimuth angle. Utilizing this
result, an exact solution for time in terms of space coordinates
is then obtained. From geometric consideraticns, the angular
motion along the azimuth direction is found to be ;table when
the syster is flying intc the wind. The trajectory equation
shows that under the radial guidance constraint, a gliding
system without wind penetration sbility can never pass directly
over the intended point of impact. However, when the system's
glide capabilit*ty is greater than that of the wind, the para-
chute has the potential of always reaching the target, provided
there it sufficient flight time. 1In this glide reyion, the total
time to the target as a function of launch angle relative to the
wind line, generates the plane curve of a limacon. An optimum
launch point is established from this result., When a fixed
flight time is specified, the locus of points of equal time to
the target is shown to be an ellipse, This determines the

release path for the case of multiple delivery from a single

launch vehicle.
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INTRODUCTION

The most severe limitation on. parachute delivery is its
inherent inaccuracy. Descending as a static entity in an
environment which cannot be controlled or precisely predicted,
the parachuted load impact: essentially wheré the wind directs
it. Investigators, both private ana government sponsored,
recognizing the constraint imposed by the passive role of
the standard decelerator, have developed highly maneuverable
gliding canopies capable of penetrating winds in excess of
twenty five knots., In addition to their aerodynamic qualities
these flexible wings can be stowe’ and deployed ;ccording to
standard parachute methodology and thereby retain the desirable
packaging feature of conventional designs.

Deceleration systems, employing gliding cancpies, have
been extensively investigated in research and development
programs by both military and space agencies. In general,
the utilization of unmanned gliding systems for military
airdrop or for providing the terminal stage air transport
of re-entry vehicles, requires guidance and control eguipment.
Radio control guidance systems have been developed for miiitary
airdrop applications,1 and have been proposed for use in
sounding rocket payload retrieval.

In these systems the parachute's direction of flight is
controlled through a servo mechanism rigged to the suspension

lines of the canopy. Left or right constant rate turns are
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produced by retracting the appropriate control line., The
communication which activates the éontrol and steers the
3ys¥em is provided by a radio transmitter located at the
intended impact point, and a receiver with two antennas,
positioned on the suspended load. The antennas are physically
separated and are located on the load, so as to define a
plane which is perpendicular to the horizontal projection of
the parachute's total airspeed vector. With this arrangement,
signals emanating from the transmitter will appear equal in
magnitude to the separate antennas only when the system's
velocity vector is aligned with a radial path connecting it
and the target. For any other orientation, a disparity in
signal strength is perceivec which activates a control,
producing a rotation of the parachute towards the ground
based transmitter. The wind acting in conjunction with
some over control, ~rontinually disturbs the system from
fixing on a straight line codrse causing the parachute to
steadily maneuver as it seeks radial alignment. This motion
which effectively produces what might be termed a radial
homing maneuver, persists throughout the flight or until the
load passes directly over the transmitter. Upon passing over
the target the system executes an orbita’ path about the
transmitter until impact.

This paper trecats the approach portion of the trajectory
of a radial homing gliding parachute in a uniform wind.

Exact solutions completely determining the path in terms of

R AT =
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time and space coordinates are obtained. A detailed analysis
of thase equations is made leading to a comprehensive
asgessment of gliding parachute capability when operating in
a uniferm wind and constrained by fadial homing. Previous
efforts dealing specifically with wind effects upo; gliding
systems have been carried out on a numeric;1 basis and are
contained in References 3 a2rd 4. An indzpendent analytic
treatment similar in scope and applied to determining the
time required for an aircraft to execute a round trip in a

uaiform wind, may b2 found in Reference 5,

CQUATIONS FOR RADIAL GUIDANCE

Analysis

Figure la depicts the essential grometric aspects of a
radial homing giiding parachute in a uniform wind. The wind
speed is taken to be steady, to lie entirely ir the x-y plane,
and to point along the'y axis in a negative sense. There is
no loss of generzlity in the arbitrary alignment of the wind
line with the y divection, since any other selection merely
constitutes a rotation of the resulting trajactory relative
to this coordinate axis.

Under equilibrium conditions, the magnitude of the
parachute®’s velocity relative to the air mass remains constant.
The 1:ft to drag ratio is fixed, thereby, specifying the
vertical and horizontal projections of the total airspeed

vector. It is assumed that the physical act of deflecting a
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centrol line serves to change only‘th; direc«ion of the
horizontal velocity component while leaving the vertical vector
undisturbed. The motion is, therefore, separated with the
vertical mode one of steady descent. As a consequence, the
problem becomes a two-dimensional one where the radial guidance
constraint reacting to the presence of the wind, fcrcesU the
airspeed vector in the horizontal plane, to assume a continuous
orientation in the pegative radial direction. Operationally,
this motion thst ic idealized by steady modulation of the
contrcl, approximates a series of discrete actions combining
left and right turns wit" periods of straight flight.

Within the constraints specified then, the fundamental
relationship describing the motion can now be stated as a
vecter equation relating the absolute velocity of the system
relative to an earth fixed reference, to the sum >f the wind
velocity and the horizontal component of the parachute
airspeed vector U, IExpressed in polar coordinates the

scalar equations obtained from this vector equality are:

dr/dt = -(wsinO+u), LYy

and

(r)de/dt = - -wcos0O, (2)

-S¢ability Characteristics of the Wind Line

Before attempting to obtain solutions from equations

(1) and (2), some immediate informa<ion regarding the nature
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i of the angular motion of the parachute with respect to the
; wind axis can be found directly by‘examination of ecuation
! (2) in conjunction with figure 1, From (2) it is seen that
g de/dt<0, thereby, requiring @ to be a decreasing variable.

The physical ramifications of this observation can te appreciated
by noting again from equation (2) that the angular velocity
of the system relative to the fixed reference is Adue entirely

: to the wind with no contribution from the vector U. At

3

locations then on the upwind side, that is, coordinate positions
where y is a pvositive, this component of the wind velocity
will con%inually increase any misaligrment between tne wind
‘ine and the vector U, On the down-wind side, (y<0), angular

; alignment will be reinforced by this action of the wind.
Consequently, and as a figure 1 shows, approaches made alcng {
the vind axis from a down-wind position will be insensitve to |
nominal heading disturbances and are, therefore, stable while
the converse is true for the upwind case. Hence, a gliding
system which is executing a radial steering maneuver in somewhat
steady atmospheric conditions naturallv seeks and maintains
alignment into the wind. This property, that exists at least
in theory, enhances the potential application of gliding
deceleratcrs, particularly when censideration is given to
the problem of reducing and cushioning the horizontal velocity

prior to and during impact.
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Trajectory Determination

Turning now to equation {1) and (2) the r and g variables

may rexdily be separated to give; .
dr/de = r(tano+iseco); (3)

Where A = u/w is defined as the wind penetration parameter.

The expression given in (3) can now be integrated directly

yielding:

r = Kseco(seco+tamo)’; (u)
Where X, the constant of integzration, is given by:

K = rl/secel(secel+tanel)x. (s)

The basic formulation and subsequent solution to (3)
assumes initial alignment along a radial at some angular
offset from the wind line. To apply (3) the initial or
launch position wili be selected to lie along a ray between
+ 90 degrees. The situation of perfect alignment along the
wind axis at launch is a special case and cannot ba hrandled
directly with (3). Evaluation of this particular condition
is made directly in (1} by veguirinsg # to Le 90 Jdegrees.

The resulting soLutﬁon is the physicdl case where the
parachute either closes with, remai=ns stationary, or departs

from the target along a strajght line path coincident with

the wind line.
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A rectangular form for equation (4) can ke obtained by

defining:

p = x/k, ‘ (6)

and

0
1]

y/XK. (7)

Making the appropriate substitutions in (4) yields:

@ = (U2 (DA (-1 eE)

For the special case of X = 1 this expression reduces to:
qa = (1/2)(p3-1). ' (9)

Hence, when the vind speed is equal in magnitude to the
parachute's horizontal airspeed component u, the ground
track of a radial homing gliding system will be parabolic.
This result will be seen to be of practical significance
when trajectories with larger values of ) are examined.

It is now rossible to obtain an integral relationship

for time by ccmbining equation {(2) with the expression

in {(4). This givese:
t = (—Kx/u)fsecze(sece+tane)Xde. (10)

Equation (10) can be interrated by parts to give the

general expression for time;
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£ = 0/u0’ 1) r (A-sin0;)-r(A-sin0)}. (11)

However, for the special case of ) "= 1, (11) dees not hoid

requiring evaluation directly from (10). Thus when X = 1;
)

t = (-Kx/2u){sece(sec9+tan0)+ln(sec9+tane)ﬂé_- (12)
4

At this point, the trajectory of a radial homing gliding
parachute operating in a uniferm wind is completely specified
by equatioms (&), (5), (11), and (12).

TARGET LIMITS WITH RADIAL HOMING

The Case of )«<l.

Equation (4} is graphically represented in figure (2)
for the circumétance where A<l, A unit launch nadius is
assumed and curvas are generated for a selected value of
the initial azimuth angle. The nature of these curves indicate
that r never becomes zero. Instead, the path lines appear to
bend away causing the parachute to pass through what appears
to be a minimum radial‘position relative to the aiming point.

The first of these observations can be verified directly
by examining equation (4) when r is required to be zero. This
leads to the expressicn;

0 = {(1+sin@)* 1/(1-sing)**1)1 2, (13)
This relationship cannot he satisfied when A<l for values of

® in the range, -90<6<90 degrees. Consequently, r can never

be zero when A<l.
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The existence of in extremum can now be investigated
by applying maxima and minima theory of differential calculus
to (4). That is, dr/d0 i{s szt equal to zero yielding the

requirement that:
either r = 0, (14)
or sin®d = -1, (15)

The first of these results has been previously dealt with
thereby designating (15) as the appropriate condition. Since
(15) can be satisfied for A between 0 and 1 the existence of
a relative minimum r has been verified. The magnitude of

the minimum radius can now be evaluated as;

r. = (/)Y haaM? (16)

When 6= 6 =  Arc sin (-21) . (17)

The velocity components at this position are given by;
dr/dt = 0, (18)
and  (r)d/dt = -w(1-2%)1/2, (19)

Equations (16) and (17) completely designate what
might be called the perigee of the homing orbit when 2i<l.
However, some restrictions are in ord . -oncerning the application
of (16) regarding the quantity K. The constant of integration

K is seen, from (5) to bf a function of 6, as well as ).

11
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Intuititively, it would be expected that for fixed valuesof
x,rm would tend to increase as 91 takes on values further

away from the 90 degree ray. This will be true in (16) up

to the puint where;
01 = Arc sin (-=1) . (20)

Beyond this condition (i.e. launch angles less than those
given by equation (20))the equality required in (15) cannot
be met, since, 0 being a decreasing variable prevents counter
clockwise rotations., Physically then, there will be no

relative minimum point along the path when O, <Arec sin (-1)

1
and, a system launched at these coordinates will‘be on a
course of ever increasing radius.

From the treatment thus far, some conclusions regarding
the accuracy potential of radial homing systems is apparent.
A gliding system with X<l can never fly directly over the
target. Its closest‘penetration will be given by (16)
provided the launch is effected such that @llﬁrc sin (-1).
If this condition is not met the parachute will be on a
divergent path with the launch radius (rl) its minimum point

relative to the target.

The Case of A:}.

Much of the previous analysis has laid the foundation

for treating this particufﬁr case. Returning to equation (13)

12
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it is seen that when 0 = -90 degrees, r wiil be rmero for all
values of 1> . The requirement in' (l4) is now met, thereby
establishing the obvious fact that r = 0 is a minimuam.

Figure (3), which is a plot of equation (u4), visually verifies
thete observations again, for the conditions of a unit launch
radius and a selected initial angular <oordinate.

From Figure (3) it is noted that the parabclic path (the
special case of A=1), provides a border to all trajectories
with higher values of A launched from the same zosition.
Extending the tail of this reference parabola effectively produces
a boundary containing all paths initiated at the nominal
reference radius and at some angular coordinate between the
wind line and the selected reference angle. The impact
points of all radial homing systems launched under these
conditions will be found interior to the envelope defined by
the reference parabola and the wind axis. If then, equation
(12) is utilized, the above definjtion of required drop
zone area can be further refined.

In sammary then, the analysis of the case where )>1

has demonstrated that a radial homing gliding system with
some wind penetration ability, has the potential of always
reaching the target provided there is sufficient flight time.
It has also been shown, through equation (13), that ideally

the system will achieve alignment into the wind the moment

it arrives over the target. This, of course, is the
/
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optimum landing configuration for considerations of !=mpact.
The special circumstance where X = 1, the case of a parabolic
path, is seen to provide a tool for estimating the required

drop area when certain nominal launch conditions are spzcified,

LAUNCH CRITIRIA

Fixed Radiﬁs of Launch

Turning now to equation (11), flight time recuirements
for radial homing gliding systems will be investigated for
the case where A>l. Target acquisition implies the physical
attainment of coordinates r = 0, and g9 = -90 degrees.

.

Imposing these conditions on (11) yields:

ut/r 4 1= (A/2%-1)O-sine)). (21)

As might be expected, the time necessary to reach the
zero radius position is a function of the launch coordinates
as well as the penet;ation ability of the gliding system.
When 0, is taken as the independent variable, ¢ a non
dimensional time quantity as the radial position coordinate,
and ) considered to be a parameter, the plane curve generated by
(21) is recognized as a special form of the limacon of Pascal.
Figure (4) is a graphical presentation of equation (21).
Physically, the situation that is being considered, is the

case wlere a circle is imagined to be drawn about the

/
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A UNIT CIRCLE CENTERED AT THE IMPACT PCINT.
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intendec impact point and the required flight time trom various

locations on the circumference is to be determined. In this

;E
E
£

discussion it is assumed, of coursé, that the launch is a

premediatated one, and that the question of where to initiate

N PP,

the trajectory is being addressed, The form of (21) is a

e

convenient one for handling this analysis since the quantities
capable of independent variatiocn will represent changes in

wind heading and intensity. In practice it may be conceivable

to exercise tight control over the in-flight positioning of
the launch platform, as well as the sequence involving the
deployment and inflation of the gliding device. However,
control over environmental conditions obviously is beyond the
realm of practical consideration. All that can reasonably

be expected concerning the wind, is knowledge of its nominal
magnitucde and direction at some time close to the actual
launch., The determining factor then regarding accuracy, will
be the wind velocity. It is, therefore, extremely desirable
if possible to select én initial launch position which is
relatively inseansitive to tolerable fluct-uations in wind
speed or direction.

From Figure (4) the manner in whiclh the time of flight
curves tend tc¢ flatit~n and collect near the 90 degree ray
lends to the tentative conclusion that this is the optimum
azimuth position.‘ To substantiate this observation

analytically, the change in 1t due to independent variations

in A and 9, is investigat;d through equation (21). Consider then;

dr = (31/3X)dx+(36/361)d01; (22)

17
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Where,
2 2 2
(3t/32) = {(a +l)sin91-2x}/(x =5l ) £23)
and,
(3t/30,) = -Acosol/(x2-l). : (24)

The most desirable circumstance in (22) would be for dr

to be zero for all allowable variations in dX or del. This
requires both (23) and (24) to vanish simultaneously,
However, for A>1 there is no unique launch azimuth which
will satisfy this condition. The objective then will be

to locate the value of 0, which makes the respective
coefficientsof d\ and del as close to zero as possible.

In this manner the absolute value of dtv is in a sense,
minimized. To determine 9, the algebra of vectors and vector
space will be useful. From equation (22) dt can be thought
of as a scalar quantitf generated by the dot product of

two vectors. These numerical vectors are derived in turn
from the sensitivity coefficients 3tv/3x andarlael, and the
error terms dX and del. Utilizing this notion, the Schwartz

q q . 6 q q q
inquality criterion <c¢an be applied directly to eguation

(22) yielding the requirement that;

ldrl:((af/ax)‘+(ar/aol)2}1/?{(dx)?+(d01)2}1/2. (25)




From this result them it is seen tnat in order for |dv|to
remain small, while the direction and intensity of the wind is
all;wed to vary in an independent and uncontrollable fashion,
the value of {(BT/BX)2+(31/361)2}1/2 must be minimum. This
condition is met when 6 * 90 degrees for all positive
A<100.

It has been established from the above discussion, that

flight time requirements as determined from equation (21)

for g = 20 degrees will be insensitive to minor wind anomalies.

Since wind changes cannot be controlled or anticipated in
the manner ‘1hat other variables may be influenced, a releacse
position accurately located according to this criterion will

result in the smallest dispersions at the impact point.

Fixed Time of Flight

Again considering the case of a premediatated launch
where ) >1, the circﬁmsfance very often occurs where it is
desirable to deliver multiple loads in some sequential fashion
from a single launch vehicle. If a gliding decelerator
homing according to some steering law, is empioyed for this
application phasing of the individual deployments becomes
critical. This problem can be addressed, that is in an
analytical sense, by attempting to determine for the particular
guidance routine bcing used, the locus of points about the

target which have equal flight time. For the particular

case of radial guidance, this curve can be generated by
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requiring both t and A to be fixed in.(21) and solving for the

Jaunch radius rl in terms of Gl.

When this is done, it is observed that;

r, = J/{l—(l/l)sinol} : (26)
¥here,
2 2
Ja (ut)(W"-1)/2 . (27)

Since 1/X 1is always positive and less than 1 for all A>1,
and J is a positive constant, equation (26) is identified as
1he polar egquation of an ellipse. The focus of the curve
becomes the target and the wind line the major axis.

Equation (26) is a surprisins and potentially useful
result. Radial homing gliding systems whose trajectories
are initiated at different points along this elliptical path
will have equal flight time requirements relative to reaching
their common aiming point. Consequently, when this launch
profile is executed the time increment between successive
items discharged from an aircraft in motion no longer beccmes
a significant factor affecting the dispersal of individual

loads at the impact point.
CONCLUSIONS

The attributes of one type of steering technidue used
for guidirz aerodynamic dgcelerators capable of independent
motion through the air has been discunsed by examining the

close form solutions to the equations of motion when a constant

20
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wind velocity is assumed. Analysis of the trajectory equation
shows that except for perfect alignmart alorg the wiad line,

a gliding system maneuvering according to a radial aiming
schéma, must have a horizontal air;peed component greater

than the wind speed in order for it to reach the homing
transmitter prior to impact. This result egsentially defines
the 1ift to drag requirements for the radial homing system
designed to function in some specified nominal or extreme

wind environment.

The parabeclic ground track which occurs fer the special
case where the magnitude ¢f the parachute's intrinsic
velocity ir precisely matched by the wind speed, is an in-
teresting result which may be usefyl in establishing physical
requirements for a target area, That is, assuming that a
particular gliding system will ornly be employed in conditions
wheré it can penetrate the wind and if tolerance limits are
then assigned to positipning errnrs at the release point,
2long with estimates of wind variabilicy in the time span
surrounding the mission, a region with high impact
probability can be determined from the trajectory of a
reference parabola derived from calculaticns based on the
extrzme launch points.

Impact, particularly with high horizontal veloacities,
is a procblem of concern with any ajirdrop system. A very

desirable feature of the radial zuldance scheme regarding its
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poteitial for attenuating velocities imparted by the wind
is the apparent stabilizing influence of the wind line. That
is, the interaction between the radial constraint and the
wind velocity essentially forces the system to seek alignmant
into the wind, and resist disturbances from this position
once it is established. 1In effect, a natural mechanism is
provided which attempts to minimize the ground speed while
restricting the direction of the net horizontal motion to
one dimension,

Launch criteria, for radial homing systems have been
identified through analysis of the time solution derived
from basic considerations. Two developments have been
presented. The first deals with individual load accuracy,
and demonstrates that in order to minimize errors at the impact
point due to variations in wind velocity, the release point
should be located up-wind along the nominal win¢ axis. Since
no physical control over the wind velocity is possible, this
result establié%es the optimum launch position. The second
development . addresses the circumstance requiring the delivery
of multiple loads which are individually discharged from a
single vehicle at discrete points along its flight track.
In this case, the problem is exparded from *the determination
of a single release point to the determination of a release

path. For the radial steering procedure an elliptical pata,
Y
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derived from nominal wind conditions will define the locus

of points from which the flight tiﬁe necessary to reach the
target is constant. That is, the ability to land at the
designated impact point is 1ndepeﬁdent of the launch position
along this curve., From this result a flight program can be

developed for the accurate delivery of multiple loads,
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