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INTRODUCTION

In conservative vibration and static buckling problems, a variety

of methods of approximation with their theoretical foundations residing

in the calculus of variations have been applied to determine numerical

values of natural frequencies of vibration and buckling loads. The

familiar methods of Ritz and Galerkin are probably the most prominent,

and the theoretical basis for the application of these methods to self-

adjoint boundary value problems is rather well established. The 1,rin-

ciple of stationary complementary energy has also been used for such

problems, and despite the accuracy of the method, which is particularly

advantageous in computing the lowest as well as higher eigenvalues, the

technique has not received widespread attention, possibly because of the

extra effort required in computing expressions for stresses (bending

moments in beam and plate problems) once an apposite set of coordinate

functions has been selected.

For nonconservative problems of elastic stability, in which

nonself-adjoint boundary value problems arise, the question regarding

convergence of the Ritz and Galerl:in procedures has been answered in

the affirmative only for special, albeit fairly broad classes of

problems. Indeed, the method of complementary energy has received no

attention at all. This seems rather unfortunate since in nonconserva-

tive stability problems an accurate knowledge of the variation of

frequency in at least the first two modes with the load parameter is

essential for the iffective determination of the value of the critical

3



load. In this report we shall apply to three nonself-adjoint boundary

value problems these various techniques in conjunction with a formal

variational expression and the so-called adjoint variational principle,

and their relative merits will be compared and contrasted.

BECK'S PROBLEM

Let us consider perhaps the best known problem of the theory of

stability of non-conservatively loaded structures, namely, Beck's

problem [1]. This problem consists of determining tho smallest load P

that is applied to the free end of a cantilever beam and which remains

tangent to the deformed axis of the beam throughout the process of

deformation, such that the amplitude of the resulting oscillations of

the beam increases exponentially with time. Loss of stability in this

way is often called flutter. The differential equation and boundary

conditions :f Beck's problem are

EI a4w + P a2w + PA a2 = 0,

4 -2 .22
ar. ax at()

2w3w(o,D-t)= (o,D -- iw ,t-) = a C Z,t -- 0,

aT ax a (2)

where w(x,t) is the transverse deflection of the beam at the point

x (o<x<Z) an:d at Lime t (t>o), .I is the flexuxal rigidity, o the

(tensity, A the area of the cross section, and k. the length of the

beam.
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It is convenient to introduce dimensionless time and space

coordinates. Thus, we sft

-2 -PAP 4  P
x = Ext t = cto c E-- PA

so that (1) and (2) may be written as

a4w + 32 w + 2w 0 <<1
.w÷Q +"- = 0o<x<l,

Dxl 3x2 Tt2 = (3)

w(ot) = w'(o,t) = w"(l,t) = w'9'(lt) = 0,
(4)

where the prime symbol ' denotes differentiation with respect to x.

Next we assume that

w(x,Z) = y(x)eiwt

where t ý tr.e natural frequency parameter. Substitution of (5) into

(31 qn6 (4) yields the following nonself-adjoint bounday-/ value

problem:

yvCx) ( Q y"x) - t2y(x) = 0, o<x<l,
(6)

y(o) = y'(o) = y''(l) = y (1) = 0.
(7)

It is our objective to determine from (6) and (7) the variation of

the frequency parameter t as a function of the load parameter Q. Since

the eigenvalues, i.e., the natural frequencies, of nonself-adjoint

boundary value problems may be complex numbers (recall that self-adjoint

boundary value problems can have only real eigenvalues), the phenomenon

of flutter can occur. This means that if the imaginary part of to is

negative, then the amplitude of the oscillation will grow exponentially
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in time. Generally, in those nroblems in which the kinetic method

must be applied, the frequencies of the various modes are real for

sufficiently small values of Q and vary as the magnitude of the load

increases, the frequency of the first mode eventually increasing and

that of the second mode decreasing until the two coalesce at a value

of Q denoted by Qcr" For Q<Qcr, w is a real number, but, for Q>Qcr,

,; is a complex number and flutter occurs. Beck [11 solved (6) and

(7) exactly and found that the value of the critical load, Qcr, is

Qcr = 2.0317 2 . (8)

It shall be our intention here to apply several methods of appruxima-

tion to Beck's problem in order to gain some understanding regarding

the accuracy of the approximations, having available the exact value

in (8) to serve as the basis for comparison. Ultimately, we will

apply those methods which appear to be more accurate or most convenient

to two problems for which the exact values of the critical loads are

not known.

THE RITZ METHOD

The methods of approximation are to be based upon certain varia-

tional formulations of the fundamental problem in (6) and (7). Our

first approach will parallel variational formulations used by Leipholz

[2] and Mote [3]. We maltiply (6) by 6y(x) and form the integral of

the result:

f1[yIx*(x) + Q y"(x) - w2y(x)]6y(x)dx :, 0.
0
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Integrating by parts and using the boundary conditions (7), we obtain

.1 '2 ,)2+.o.

I1 [Y)2' _ Q(y')2 y2,2 ]dx + Qy'(1)6y(l) - 0.
2 o (9)

The nonconservative nature of the load is manifested in the presence of

the variational term Qy'(1) 6y(l) in (9). A complete functional in the

usual sense does not exist here because the nonconservative load Q does

not possess a potential. Relations of the type shown in (9) are often

called "variational principles." ' ,is usage is not consistent with

that of the classical calculus of variations because there is no

functional wn!,.h is stationary.

Leipholz [4] - [8] has demonstrated that Galerkin's procedure in

various forms can be apnlied to stability problems of the type under

consideration here. We shall assume that

N
y(x) (x) = an YnCx),

n=l (10)

where the an's ar- anknown constants and the coordinate functions Yn(x)

are selected so as to satisfy all the boundary conditions in (7). In

particular, suppose that we choose

SAnxn+l + Bnxn+ 2 + Cnxn+ 3

y'n(X) = n + n , n>_l,
(11)

which obviously satisfy the geometric boundary conditions y n(o) =

Yn (o) = 0. The constants An, B0 Cn will now be chosen such that the

natural boundary conditions
of tits

v'(1) = Yn' (I) = 0
"n (12)

are satisfied.

7



Substitution of (11) into (12) yields

n(n+l)An + (n+1Xn+2)Bn = - (n+2)(n+3)Cn

(n-1)n.%n + n(n+2)Bn = -(n+2)(n+3)Cn,

from which we find

(n+3)(n+2 ) (n+3)

"n(n+l) Cn B = -2 (n+l)

It is convenient to set Cn = n(n+l)/2, so that (11) becomes

yn (x) .- [(n+2)(n+3)xn+ -2n(n+3)xn+2 +n(n+1)xn+3], n>l.

Let us now consider (9) and the sequence of steps followed

formally in the application of the Ritz method. If we substitute

(.0) into (9), we find

N N 1
,, ,, a f [" Y ' , Y, •af1 l [Yn 0 n Yk "l Yk dx + Q Yn'(1)Yk(l)}6ak = 0,

Sn=l k=l o nY]'

but since the 6ak are arbitrary we arrive at

N 2N an[Ank + Q Bnk - w2Cnk] =O
n=1 (14)

where

.\nk=fIynt (x)yk(x)dx, Bnk=Yn()Yk(l)-fI YI(X)Y'(X)dX,

k0 o

Cnk' f Yn(x)yk(dX

0
Now (14) represents a system of N algebraic equations in the N unknowns,

an, and the condition for the existence of a nontrivial solution is that

dot (Ank + Q Bnk - W"Cnk) = (15)

S(is8



"Eq. (15) was solved numerically for N 2. The value of the

critical load parzmeter was found to be

Qcr = 2.193n(1, (16)

which is to be compared with the exact value in (8).

TIlE GALERKIN PROCEDURE

We may carry the analysis forward a little more to show that for

(9) and (13) the Ritz and Galerkin methods are identical. In view of

the fact that the Yn(x)'s given in (13) satisfy the boundary conditions

(7), we may integrate by parts to obtain

=,1,,ynAnk f I ly'nt (x)yk (x)dx = r I x yk(x)dx,

0 0

Bnk = Yn(l)yk(1) - f yn(x)yk(x)dx = f'Jn(x)Yk(X)dx"
0 0

Substitution of these last two results into (14) leads to

X an l[y"'(x) + Q Y"(x) 2(X)dx = ,
n=l n 0 n y Yn(x)]y0

or, by virtue of (10),

fI [I(x) + Q C"(x) - W2Y(x)]Yk(x)dx = 0,
0 (17)

which we recognize as the method of Galerkin. Eq. (17) leads to

precisely the same numerical result as did the Ritz approach as

embodied in (14). In practice it is generally easier from the

point of view of the numerical work involved to deal with (17)

rather than (n).
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Levinson [9] obtained an approximate solution for Beck's problem

by modifying the fo.-m of (1)) and then making the numerical calculation.

Ive shall record here only the outline of his technique.

The identity

y (1)6y(l) = 6[y'(1)y(1)] - y(l)6y (1)

is inserted into (9), the result being

6(1 fol[(Y' )2 _ Q(y') 2 
- w2 y2 ]dx + Qy'(1)y(l)1- Qy(l)6y (I)=O.

55- It was subsequently argued that this last equation is equivalent to

-(.S{. fl[(y")2 - Q(yO) 2 
- i2y2 ]dx + Qy'(l)y(l) = 0

o0 (18)

with the auxiliary condition

6y (1) = 0.
(19)

Let us assume that y(x) is again approximated by (10) and (13).

Substitution of (10) into (18) leads to

2 1 N 1, ( anaR /lyn Yk "y %Yk w YnykJdx +
n=l k=l 2

N N

+ Q Z I afl.Ylly(~
n=l k=l

or
N N

San --O1) -it yfyk2jdx 6 a +
n=l k=l o

N NXN N
* Q Z a yn(1)yk(1)6ak.Q Z 6anyn(1) I akyk(l) = 0.

n=l k- -- n:l kl (20)

in



But the auxiliary condition (19) leads to

N
6an yn(1) = 0,

n=l

so (20) reduces to

N N
an{Jfyn Ykydx + Q[lynCY ) - f ',ndxkd1 -

n=l k-i o o

.W21l ynYkdx}6ak = 0,
0

which is nothing more than (14).

Therefore, Levinson's method leads to exactly the same frequency

equation as do the Ritz and Galerkin procedures. In general, it would

seem that the Galerkin approach would be the easiest to apply, provided

that the admissible functions satisfy all the geometric and natural

boundary conditions of the given problem. Leipholz (2] has discussed

how the Galerkin procedure must be modified in the event that some of

the geometric or natural boundary conditions are violated by the form

of the selected coordinate functions yn(x).

THE METHOD OF COMPLEMENTARY ENERGY

Washizu (10) - [12] has applied the principle of stationary

complementary energy to some conservative vibration and stability

problems. This technique was also discussed by Reissner [13], Libby

and Sauer (14], and van de Vooren and Greidanus [15]. When applied

to conservative problems, the method based on the principle of

stationary complementary energy, according to [12] and [15], is

really identical to Grammel's method (16], which, in theory, involves

11



an integral equation formulation of the eigenvalue problem and the

Green's function associated with the differential operator and

boundary conditions of the original problem. Leipholz [17] - [18] has

discussed the convergence of Grammel's procedure and has presented an

extended version of it. Using a two-tern' approximation in certain free

vibration problems associated with the flexural deformation of a beam,

Washizu showed that the principle of stationary complementary energy

led to an excellent approximate value for the lowest frequency and an

approximate value for the frequency of the second mode that represented

a substantial improvement relative to the corresponding value obtained

}by means of the familiar Ritz procedure. Consequently, since accurate

values of both the first and second modes are required for the deter-

mination of the critical load parameter in those nonconservative sta-

bility problems in which the kinetic method must be used, it seems

reasonable to speculate that the method described by Washizu could be

a useful tool for obtaining an approximate solution of such problems.

In order to bring into play the concept of complementary energy,

we set
I,

'1(x) = - y (x),

where M(x) is related to the bending moment, so that (9) becomes

6L f1 [&•12 - Q(y') 2 
- b2 y2ldx + Qy'(1)6y(l) = 0,

2 0(21)

under the subsidiary conditions

M of(x) - Qy''(x) + W2y(x) = 0, O<X<l, (22)

y(o) = y1 (o) = 'I(') = H'(1) 0. (23)

12



Note that (22) and (23) are equivalent to (6) and (7). In (21), we

shall consider the variation of both M(x) and y(x).

For y(x) we once again intend to use (10) and (13), and the

expression for M(x) shall be obtained by integrating (22) subject to

the last two conditions in (23). Now substitution of (10) into (22)

leads to
N

(X) a A (x) '

n=l (24)

where we define

it 2M'(1) 0
n (x) = Qyn (x) - w yn(x), Mn(l) = Mn 0 (25)

In view of M(1) = M'(1) = 0, two integrations of (24) yield

N

M(x) = n anMn(x),(
n=l (26)

whereas two integrations of (25) lead to

,nt(x) = Q[Yn(x) + Yn(1)(1-x) - Yn (1)]-w2 1x(x-t)Yn~tldt

= Q fnCx) - w2 n~x),
(27)

where

fn (x) = n-(n+3)x + 41. ((n+2)(n+3)-2n(n+3)x + n~n+l)x 2 ,

2(3n+10) 6x xn3 2x n~n~l)x

n (n÷4) (n+S) nn-4 +4 (n+4) (n+S)

Upon inserting (10) and (26) into (21), we obtain

.1 N ' 1 w x
2 a n aa f [mn (x)M - QYn w yn(x)yk (x)]dx +

n=l k=l o

N N
SQan6aYn(

n=l k=l n kyn - 0.

13



Performing the indicated variation in this last result, we find

N
L an( f1 (Mx)MNIk(x) - Qyo(x)y (x) - WYn(x)yk(x)ldx +

n=1 0

+ Qyn()y k(1)) = 0.

The numerical solution of the above equation for N = 2 leads to

|• Qc = 2"095i• 2

cr =(28)

for the critical load in Beck's problem, With respect to the Ritz

and Galerkin methods, the complementary energy method trades increased

complexity for possibly better results,

THEm METHOD OF TIE ADJOINT VARIATIONAL PRINCIPLE

In the preceding paragraphs we applied the methods of Ritz,

Galerkin, and complementary energy to a nonself-adjoint boundary value

problem by means of the variational expression given in (9). The

numerical results for the value of the critical load obtained in this

fashion with a two-term approximation were slightly greater than the

exact value given in (8), the best approximation being given by the

method of complementary energy,

Since the applied load in Beck's problem is nonconservative, it

does not possess a potential, and thus no functional, viz. no Lagrangian

function, exists. Consequently, a complete variational formulation in

the classical sense cannot be stated for this problem. Incomplete

variational Cormulations of the type appearing in (9), while they often

14



provide useful numerical schemes, as we have seen in our calculations

above, leave something to be desired in the eyes of the mathematical

purist who prefers a sensc of completeness in the theory underlying

his numerical operations. In this regard, the papers by Finlayson and

Scriven [19] and [2n] are well worth reading. Since no functional

exists for Beck's problem, wp are not finding a stationary value in

(9), Eq. (9) serves merely as a systematic means for acquiring

approximate values for the critical load. As we demonstrated above,

(9) is entirely equivalent to Galorkin's method, which is perhaps the

best known example of a class of techniques known as the method of

weighted residuals.

In the following paragraphs we shall introduce a boundary value

problem which is the adjoint of the original boundary value problem.

In terms of the original and adjoint problems, we will then be able

to state a functional, the stationary value of which, in the sense of

the calculus of variations, yields the differential equations and

boundary conditions for both problems. In [19] it was stated that

there is some evidence that this so-called adjoint variational prin-

ciple leads to slightly better results than does the Galerkin method

and that the speed of convergence might also be better. As is perhaps

to be expected, the somewhat more accurate results obtained with the

adjoint variational principle are acquired at the expense of increased

complexity and labor.

The importance of the adjoint problem in nonself-adjoint eigen-

value problems was discussed by Roberts [21], Ballio (2?] - [23]

• 15



applied the concept of the adjoint problem to a couple of nonconserva-

tive stability problems, including Beck's problem. Nemat-Nassor and

Herrmann [241 also determined the boundary value problem adjoint to

Beck's problem, and Prasad and Hlerrmann [25] described the usefulness

of the adjoint problem in solving nonconservative stability problems.

The method described in [25] has been generalized by Anderson and

Walter [261 and Anderson [27] to include the effects of internal and

external damping in nonconservative stability problems.

It was shown in [24] - [26] that the eigenvalue problem that is

adjoint to (6) and (7) is

v IT'(x) + Q v(x) - w2v(x) = 0, o<x<l,
(29)

v(o) = v (o) = v (I) + Qv(l) =v (I) + Q v(1) = 0,
(30)

which is often called P-ýut's problem. Moreover, it was shown in

[25], [26], and [28] that both the original problem (6), (7) and

the adjoint problem (29), (30) can be generated from the variational

principle

1'~y ,, ,t , -jy

f 6{ f iy v Qy v - 'vjdx + Qy'(l)v(l)} = 0,
o (31)

where now we are dealing with the probltm of finding a stationary

value tor the given functional, We shall now use (31) in place of

(9) for the purpose of determining approximate values for the critical

load in Beck's problem. It is essential to keep in mind that the

eigenvalues of the adjoint problem are identical to the eigenvalues

of the original problem.

16



To oLtain a suitable set of coordinate functions for the adjoint

problem, let us assume that

N
v(x) = v(x) = I b n v nxS).

n=1 (32)

Moreover, since the geomezric boundary condltioins in (30) are the saire

as those in (7), we shall assume that the vn(x)'s are of the JForm shown

in (11), i.e.,

Vn(x) = Anxn+l + Bnxn+ 2 + Cnxn÷S, n >.3)

If we now require (33) to satisfy the two boundary conditions at x = 1

that are stated in (30), we can show, following the method applied

above to (11) and (12), that the coefficients An, Bn, c•T, can be selected

such that (33) assumes the form

v (x) = ax n+- 2 xn+2  n+"" nC n 2n YnX ( 34)

where

an 2 + 2n(n+2) + (n+l)(n÷2)2(n÷3),

Sn = Q2 + 2n(n+l) Q + n(n+l)(n+2)(n+3),

Yn = Q2 + 2(n2_1) Q + n(n+l) 2 (n+2).

If we now sbstitute (10) and (32) into (31), we obtaih,

N N
1 1 afnbk ink = 0,

n=l k=l (35)

17



where

-f Y,, ()k, , ( , (x) .,y k)V
Ink- ny' (x)v''(x)-Q yn(X)V• (x)'dx + Q Yn(1)Vk(1).

(36)

Performing the variation in (35), we find
N N
I (a~ nInk 6b k +b n I Y 6a.ý) = 0,

n=l k=l

from which, in the usual way, it follow-: that

N N
--- '(• •an Ink = O, •bn ijn= OSn=l nn 20 n=l n .(37)

The frequency equations are then

det (Ink) = 0 and det ( 1kn) = (38)

But these equations are equivalent because the value of a determinant

remains unchanged upon interchanging its rows and columns. This is

simply a manifestation of the fact that the eigenvalues of the original

and adjoint problems are identical.

Using tne coordinate functions in (13) and (34), which satisfy all

the geometric and natural boundary conditions in (7) and (30), we may

use either determinant in (38) to evaluate the critical load. The

value reported in [25] and [28] is for N = 2

Qcr = 1.971w2
(

somewhere lower than the exact value given in (8).

Let us go one steD further without cunsideration of (36) and (38).

Recalling that in the application of the Ritz method with a functional

of the type given in (31), we are not, in general, required to select
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coordinate functions which satisfy both the geometric and natural

boundary conditions of the given eigenvalue problem. 1inded, we are

really compelled to satisfy only the geometric boundary conditions,

although this usually means that the speed of convergence of the

method is slowed somewhat depending upon the nature of the problem

under consideration. Let us now assume that the functions y n(x) ane,

vk(x) in (36) satisfy only the geometric boundary conditions

y(0) =Vn(o) =v = 0(Yn~o)= Yn(40)

Integrating by parts and using (40), we can e°sily demonstrate

that

l , ,I ( x off
fyn(X)Vk (x)dx f Yn (X)VkX +yn (")Vk(1)'Yn (l)vk(l)'

0 0

so that (36) becomes

'nk = JLYn (x)+Q "n (x)." Yn. ' k(:. (dxxynvk)Yn

Therefore, the first rels;-ionship in (34) can be written as

N 1 2, , ,,
I a{f [y (x)+Q Yn (x)-w Yn(x)]vk(x)dx+yn(1)Vk lYn l

n-l o
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or, equivalently

rty"(x) + Q (x) - y(x)]vk(x)dx +

0

., ,
+ y (1)vk(1)-y (1)vk(1) = (.1 (1)_'\"(41)

Eq. (41) bears a very strong resemblance to the so-called semi-ex',vnded

Galerkin equations for nonself-adjoint eigenvalue problems as discvsu._d

by Leipholz [2]. Note that here, however, the weight functions are the

coordinate functions of the adjoint problem vk(x) rather than the

coordinate functions of the original eigenvalue problem. The presence

of the terms y (1)vk(1) - y l()Vk(l) in (41) serves to compensate

for the fact that tie coordinate functions yn(x) do not satisfy the

natural boundary conditions y" (3) = y (I) = 0 of the original

eigenvalue problem. Hence, (41) may be considered a generalization

of the results presented in [2].

If the coordinate functions yn(x) satisfy the natural boundary

conditions of the original problem, then (41) reduces to

f1 (% (x ,,()_w,,, (x,)Ivk.

fl y y y( k 2 v(x)dx = (,,,o (42)

which is analogous to the classical form of the Galerkin equations.

To this point we have assumed that the weight functions vkGx) satisfy

only the geometric boundary conditions of tne adjoint prob'em. The

question of whether the procedure embodied in (42) converges requires

further study. If this procedure does converge, it is very probable

that it will converge even wore rapidly if the Vk(x)Is are also -e-

quired to satisfy the natural boundary conditions of the adjoint problem.
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If y n(x) and v n(x) are defined by (13) and (34), then (42) is

equivalent to (37). In general, the numerical work is less complicated

in (42) then in (37) with Ink given by (36).

TIlE COMPLEMENTARY ENERGY AMD ADJOINT VARIATIONAL METHODS

Now let

Wtx) :- y W(x), N(x) =- v( x)
(43)

so that (31) can be expressed as

S{flf[Ni(x)N(x) - y' (x)v' (x) - w2y(x)v(x)]dx +
o

Q y'(l)v(l)} l 0.
(44)

The "bending moments" M(x) and N(x) are subject to the auxiliary

conditions

M oI (x) = Q y(x)- ,

SM(1) = M (1) = 0,
(45)

N"t(x) = Qv''(x) - W2V(x),

N(l) Q v(1), N'() Q v'(1).
(46)

Because we have introduced the adjoint problem and consequently a

variational principle, we may view (44) as a replacement for (21) with

(45) and (46) being introduced in analogy with (??)-(23). References

[101-[i2] have again supplied the motivation for this type of analysis.

21



We shall again assume that the coordinat( functions Yn(x) and

vn(x) are those given in (13) and (34). Since (24)-(27) are still

applicable, we need only derive an expression for N (x) before pro-
n

ceeding to the numerical work. To this end, we find, after integrat-

ing the first equation in (46) and imposing the boundary conditions

in (46),

N(x) Q v(x) - 2 fx (x-t)v(t)dt.
I

If we insert (32) into this last result, we obtain

IN
N(x) I bn Nn(-x),

n=1 (47)

where

Nn(X) = Vn(x) - u2 fx (xt)vn(t)dt
1

= vn(x) - w2hn(x)(
(48)

with

X ()()d 2[q2 +3(n2+n-4)Q+2(n~l) (n+2) (n+3) (3n+lO)]hn(x) = fx :_)n td =... .. ,

1 (n+3) (n+4) (n+5)

22x[Q +3(n-l)(n+2)Q+6(n+l)(n+2) 2 (n÷3)] +

(n+2) (n+3) (n+4)

+ xn+3 f n -
2 nx Y÷ x

(n+2) (n+3) (n+3)(n+4) (n÷4)(n+5)
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Substitution of (26), (47), (10), and (32) into (44) yields

N N
j I a b knk = 0,

n=l k=l (49)

where

Ank - f [Mn(x)Nk(X)-Q Yn~ vk(x)'''n 'n] n1k(I)
0

(m (xI)N (x) + (Q y x) -W2  (X)]V(x))dx
n n n (x]k~x}x

In view of (13), (27), (34), and (48), the coefficients Jnk may now be

considered completely known. Proceeding with (49) as we did with (35),

we find

N
I a nink =O

n=l

and consequently

det (J = (0.

Numerical calculations with (50) yield, for N = 2,

Qcr = 2.06lhr 2, (

the most accurate of all the approximate calculations performed here.

To summarize the numerical results obtained by the various methods

described above, the values of Qcr are now tabulated in Table I along

with the percentage of error relative to Beck's exact value.
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TABLE I COMPARISON OF THE VARIOUS METMODS

EQUATION NUMBER Qc/n % ERROR

(8) Exact 2.031 --

(16) 2.193 7.98
(28) 2.095 3.15
(39) 1.971 -2.96
(51) 2.061 1.48

Examination of Table I reveals that the Ritz Procedure based upon

the variational equation in (9) yields the poorest result, which is

almost 8% greater than the exact value for Qcr Using thc variant (21)

of (9), i.e., the method of complementary energy, we obtain a much bet-

ter approximation, namely (28), which is about 3% greater than the exact

value. A slightly better approximation, (39), was obtained by means of

the Ritz method based upon the adjoint variatioral principle in (31).

However, the best approximation of all, (51), was obtained through a

scheme which combined the methods of the adjoint variational principle

and the complementary energy. In this later case, the approximate value

Of Qcr was only about 1 1/2% greater than the exact value. It must be

admitted that the improved value given in (51) was obtained at the

expense of (i) introducing the adjoint problem (29) - (30) and the

adjoint variational principle (31), (ii) selecting a set of coordinate

functions for the adjoint problem (34), and (iii) deriving expressions

for the "bending moments" Mn(x), Nn(x) by integrating (45) and (46).

It might be argued from the standpoint of the labor involved that it is

more efficient to use the ordinary Galerkin procedure (17) with 14>3.
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HAUGER'S PROBLEMS

In the previous paragraphs we discussed Beck's problem for which

it is possible to obtain the exact value of the critical load. Using

certain methods of approximation, we calculated approximate values

for Qcr and compared these results with the known exact value. In

many nonconservative stability problems it is a very difficult task

to solve the differential equations of motion exactly, and consequently

the value of the critical load parameter can be found only with consid-

erable effort. This is particularly true for diffeTential equations

that have variable coefficients. In such cases the methods described

in the preceding paragraphs offer rather efficacious tools for solving

nonconservative stability problems. flauger [29] considered problems

of this type, namely, he computed approximately the critical loads for

beams subjected to (i) uniformly distributed and (ii) linearly distrib-

uted tangential compressive loads.

We shall concern ourselves here with two problems studied by Hauger

in which a linearly distributed tangential load is acting along the

length of the beam. If the boundary conditions for the beam are either

one end clamped - one end free or one end clamped - one end hinged, then

the kinetic method must be used to determine the critical load because

these systems become unstable through flutter. The equation of motion

is

-- --4w 1 qo(.)2 2w + oA -- 2 W 0.-R4 2 0{ ;2 (52)
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Here q denotes the intensity of the tangential load and the remaining

quantities are identical with those defined in (1). If we introduce

the same length and time parameters that we used to derive (3), then

(52) can be expressed as

S+ Q(l-x)2 W 2 0, o<x<l, t>o,
xx4 3x2  ýt2  (53)

where

qoZ
4

2El

Setting w(x,t) = y(x) eiut, we reduce (53) to the following ordinary

differential equation with variable coefficients:

y (x) W Q(l-x)2 y"(x) - W2y(x) = 0, o<x<l.
(54)

For a clamped-free beam the boundary conditions are

y(o) = y'(o) = Y"(1) = y (1) = 0
(55)

and for a clamped-hinged beam they are

y(o) = y'(o) = y(l) = y(1) = .

(S6)

Henceforth, we shall refer to (54) subject to (55) as flauger's first

problem or Problem I and to (54) subject to (56) as flauger's second

problem or Problem II.

Because of the difficulty of solving these two boundary value

problems exactly, ifauger resorted to Galerkin's procedure in its

classical form, employing clamped-free and clamped-hinged beam modes
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(obtained from (54) - (56) with Q = 0) for the coordinate functions.

According to Leipholz investigations [4] - [71, this procedure should

converge to the exact value of the critical load intensity Qcr pro-

vided that a sufficient number of terms is taken in the approximation

for y(x). Hauger used only two-term approximations and calculated the

following values for the critical load intensity parameter

Qcr = 8.01n 2 and Qcr = 20.38n(2,

for Problems I and II, respectively.

Ic is our intention here to reconsider these problems and to

demonstrate by numerical calculation that these values are, respec-

tively, 4.98% and 28.3% greater than the correct values. In view

of the outcome of the calculations tabulated in Table I for Beck's

A, nroblem, we shall elect to introduce the appropriate form of the

adjoint variational principle for flauger's problem. The numerical

calculations to be presented here will be based on the methods of

Galerkin and complementary energy in conjunction with the adjoint

variational principle.

THE GALERKIN PROCEDURE AND THE ADJOINT VARIATIONAL PRINCIPLE

It was shown in [27] that the differential equation that is the

adjoint of (54) is

+Q[(l-x)(x)]' - w v(x) = 0, o<x<l,
(58)while the boundary conditions for the adjoint problem are identical

to (55) and (56) for Problems I and II.
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Furthermore, it was shown that these two boundary value problems may

be generated from the variational principle

6f {y,,(x)v,'(x) - Q y'(x)[(1-x) 2v(x)]'-W 2y(x)v(x)ldx = 0.
0

(59)

We next assume that

N N
y(x) = y(x) a• anWnCX), w(x) - x) = V bnVn(x),

n=l n=l W

(60)

where, for the present, the coordinate functions Yn(x), vn(x) are

assumed to satisfy only the geometric boundary conditions of a given

problem. 1hus, for Ifauger's first problem, we assume that

Yn(°) = y(n) = vn(o) = vn(o) = 0,

(61)

whereas for Hauger's second problem

Yn(O) = y'(O) = Yn(l) = Vn(O) Vn'(O) = Vn(l) = 0.
fl = (62)

Substitution of (60) into (59) yields

N .vy
6 anb ~ j"y( (lx)[ Vk(X))

ank fl{yn (x)vk (x-Q Yn(X[1x2k(x)]

n=l k=l 0

- W•o v xV )dx = 0.r " O (63)
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Integrating by parts, we can easily show that

fyn (x)VkX)dx + yn'(1)Vk(l) - (1)Vk(1),
0 (Problem I)

fIyn'(x)vk, (x)dx=

0

f|1V (x)v (x)dx + I '(l1v 1), I
0o'n kxd Yn lJ k (Problem II)

fP y(x)f(l.x) 2 vk (x)] dx = - f1 (1-x)2y 'n(x)vk (x)dx,
o 0

where we hnve imposed the geometric boundary conditions (61) and (62).

Inserting these last two results into (63), we obtain

N N
6 anbk {JI l,[ (X)]vk(x)dx + yn(1)Vk(1)n I(1)VkOW = 0
n=l k=l o

(64)

and

N N 1
I I anbk {f L[yn(x)Ivk(x)dx + )n (1)Vk(1)) = 0

n=l k=l o (65)

for Problems I and II, respectively, where

2 iw 2L[y n(x)] = yn(X) Q(1-x) Yn x) - W2yn(x).

Proceeding with (64) and (65) in the usual fashion, we arrive at

a {f1 L[y(X] x Yn (1)vk(1) - Yn (1)Vk(1)) = 0

n=l n 0.

21)



and

N
aa {f L[yn (x)]Vk(I dx ( yn (1+ Vy(1) ) =v

n=l 0

or equivalently
L[y(x)]vk(x)dx y k(1)v y Cl)vk(l) 0,

o (66)

and

fl Liy(x)]vk(x)dx + y (llVk(1) = 0
o (67)

for Problems I and II, respectively. Eqs. (66) and (67) are in the

"semi-extended" form of Galerkin's procedure as described in 12]

except that the weight functions, vk(X), here aec the coordinate

functions of the adjoint problem rather than of the original problem

as is normally the case.

Because the speed of convergence is faster, in general, when the

coordinate functions are selected so as to satisfy all the geometric

and natural boundary conditions of a given problem, we shall elect to

meet this requirement, thereby reducing (66) and (67) for both

Problems I and II to

fl L['(x))vk(x)dx = 0.
o (68)

Mloreover, since the boundary conditions of the original and adjoint

problems are identical, we shall select the yn's and vn'S to be

identical. Then (68) becomes

fl Lf'(x)]yk(x)dx = 0, (69)
0

which is the Galerkin procedure in its familiar form. Our numerical

calculations will be based upon (69).
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For Problem I, the clamped-free beam, the coordinate functions in

(13) are agnin suitable. Numerical calc.ulationr were performed with

(69) and (10) for N = 2,3,...,7, and the results are shown in Table II.

TABLE II - THE CRITICAL LOAD INTENSITY

FOR HIAUGER'S FIRST PROBLEi,1

N Qcr/,l
2

2 7.5776
3 7.7830
4 7.6446
5 7.6310
6 7.6318
7 7.6314

For Problem II, the clamped-hinged beam, the set of polynomia]

coordinate functions

Yn(x) = (n÷2)xn+1- (2n+3)x n+2 (n+])x n,3 n>l (70)

satisfies all the geometric and natural boundary conditions in (56).

Again usinp (69) and (10), we obtain the results exhibited in Table I11.

TABLE III - TIiE CRITICAL LOAD INTENSITY

FOR HAUGER'S SECOND PROBLEM

N Qc/Tr2

2 19.698
3 16.525
4 16.315
5 15.914
6 15.886
7 15.885
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THE COMPLEMENTARY ENERGY METHOD

Before commenting on the numerical results presented in Tables II

and III in relation to Hauger's values in (57), we shall re-solve these

problems using now the method of complementary energy. Introducing

again (43), we may express (59) as

65f (M(x)N(x)-Q y'(x)[(l-x) 2v(x)] -w 2y(x)v(x)}dx 0,
o (71)

with the auxiliary conditions

M''(x) = Q(1-x)2y'it W -y2y(x),
, 2 (72)

N (x) = Q[(l-x)2v(x)]'' - J r(x),

subject to

MCI) = M'1() = N(I) = (1) = 0
S~(73)

for Problem I and

M(l) = N(l) = 0

(74)

for Problem II which are consistent with (54) - (56), (58).

For llauger's first problem we shall assume that

N Ni:y~x) = I a nYn~x), v(x) = I b nyn x),
n=l n=l (75)

where the Yn(x)'s, which satisfy all the boundary conditions in (S5),

are given in (13). By virtue of (72) and (73), we may also write

N N
M(x) I anMn(x), N(x) I bnNn(x),

n=l n=l
(76)
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where

(X 2
1% (X) Q(l-x) y. (x-W yn(x), 0,()= Dl

3 (77)
Nn((x) = Q(l-xr2yn(x)I -_4;y CxN()=N()=0'

Ln (),Nn n)

Integration of (77) yields

Mn(x) = Qý[Cx)2v (x) +2(x+2)rn(x) -
6s~() 2

(78)

Nn(x) = ()(,X)2y Ynx) W- n~)

(79)

,:here

rx 6 xn+ n( 2n (n+l) x2)rn(x) fxJy,,,(t)dt + ~'- In3-2x.
1nf+4 2 n+4 /

s = (td (3+0 + - n+3 2nn3 - n(n+1) x2)sn(x) f tyn(~d n(+20 ~ 3  
e

(n+4) (n+S) 2n+4 n+5

gn x) =xr n (x)-s n (x) _I __ _ -n++ -6x x+ n(n~e1)x'
(n+4)(n+S) n+4 2 +4 n4- (n +S)~~

Substituting (75) and (76) into (71), we find

N N
a afb kI k 0,

n=l k=1

where

I nk f"[kn(x)Nkx = Q(-x) 2 '(x)v, Cx) -2n()Y x x0 n~x QIc YnJn~J X

This leads to3

a 0

*rne numerical results obtained from (80) are shown in Tablc IV.

33



TABLE IV - THE CRITICAL LOAD INTENSITY

FOR HAUGERIS FIRST PROBLEM

2 7.573
3 7.653
4 7.631
5 7,631

For Hiauger's second problem we may again adopt (75), however now

the coordinate functions will be those which appear in (70). Then

with (70) and (75) integration of (72) subject to (74) leads to

%I (x) = a0 (X-l) + a nMn(x),
n= l

(8])

N(x) = bo(x-l) + I bnNn~x),
n=l

where

a. - N1 (1), bo = N1(1),

and Mn(x) and N n(x) are given by (78) and (79), respectively, with

r(X) = fxyn(t)dt = + x+2 1 + (n+l) x2

n 1 (n+3) (n+4) nl+3 nl+4

sx x y (t)dt - (3n+7) n+3/n+2 2 n+3 X + x )
n(x) = f n (n+3) (n+4) (n+5) y x - n+4 x +7 -
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X)3n+7 3x
gn(X) = x rn(x) s (x) = 3

(n+3)(n+4)(n+S) (n+3)(n+4)

xn+3(1 (2n+3)x (n+l)x 2

n+3 (n+3) (n+,4) (1+4) (n+S)

Inserting (75) amnd (81) into the variational principle (71), we

find
N N N N

(I"aobo- ao I bKr - bo I anJ + a I I anbk =nk} 0,3 n=l n=l n=l k=l
(82)

where

I f'eI (X)NkcX) + Q(l.-x) 2,is ) 2y MY (x))dx0n k vn (x)Yk(X)-w 'n x)k()d.
0

I rj = f (1-x)kl (x)dx, K =j (lX)N
0 0

But (82) leads to

I N N N
-a Z anJn 6bo + I I an Ink aoKk +bkn=1 k=l n= k

N N N

+ bo . 1 1nK 6ao + I bk Ink- boJ 6an 0.
n=l n=l k l 0

(83)

In the usual fashion, we obtain from (83)

S~N
a 3 anJn = 0 an Ink aoKk 0,0 n=- n=l

(84)
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plus two additional equations which can easily be shown to be equivalent

to (84). Eliminating a0 between the two equations in (84), we arrive at

N
San [Ink - 3 Jn Kk] = 0.

n=1 (85)

The numerical calculations obtained from (85) are shown in Table V.

TABLE V - THE CRITICAL LOAD INTENSITY

FOR IIAUGER'S SECOND PROBLEM

N Qcr/'2

2 16.522
3 16.012
4 15.929
5 15.884

Therefore, in view of Tables II - V, we conclude that accurate

values for the critical load intensity parameter, Qcr' are

2

Qcr = 7.6311 and Qcr = 15.88Ti 2

for Hauger's first and second problems, respectively. These results

are 4.98% and 28.3% lower than the corresponding numerical values

reported by 1lauger (see Eq. 57) who used a two-term Galerkin approxi-

mation with clamped-free and clamped-hinged beam modes as coordinate

functions. iHere for coordinate functions we have used polynomials

that satisfy all the geometric and natural boundary conditions of the

.1spective problems in (i) the Galerkin procedure and (ii) the method
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of complementary energy in conjunction with the so-called adjoint

variational principle to calculate approximate values for Qcr" The

:aplication of these processes was continued by successively increas-

ing the number of terms included in the approximation functions until

the numerical values appeared to converge to the correct value for

Qcr" In both cases it appears that the method of complementary energy

converged at a somewhat faster rate than did the' Galerkin procedure.

IM~e r~ethod of complementary energy requires extra effort to apply

relative to the Galerkin method since the "bending moments" must be

obtained by integr'.ting an elementary second order linear differential

equation. Trhe q;alcrkin procedure offers the advantage that the numeri-

cal calculations may be set up in a rather straightforward fashion.

\t .Peast in the numerical computations reported here, the application

of the Galerkin procedure offered no computational hardships as the

value of the integer N increased because all the integrals involved

were evaluated very efficiently on the computer by means of a double

precision subroutine based upon the Gaussian quadrature technique

which evaluates integrals of polynomials exactly. Another subroutine

was used to evaluate the various determinants that arose, and a root

finding scheme determined the value of the load intensity parameter

for a given value of the frequency of vibration of the system.
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