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f INTRODUCTION
.
E In conservative vibration and static buckling problems, a variety
? of methods of approximation with their theoretical foundations residing
in the calculus of variations have been applied to determine numerical
ﬁ 3 values of natural frequencies of vibration and buckling loads. The
ff familiar methods of Ritz and Galerkin are probably the most prominent,
? and the theoretical basis for the application of these methods to self-
ig adjoint boundary value problems is rather well established, The jrin-
é ciple of stationary complementary energy has also been used for such
‘§ problems, and despite the accuracy of the method, which is particularly
% advantageous in computing the lowest as well as higher eigenvalues, the
7% technique has not received widespread attention, possibly because of the
ﬁé extra effort required in computing expressions for stresses (bending
W
g moments in beam and plate problems) once an apposite set of coordinate
.
A functions has been selected.
i For nonconservative problems of elastic stability, in which
%; ; nonself-adjoint boundary value problems arise, the question regarding
'é convergence of the Ritz and Galerkin procedures has been answered in
}? the affirmative only for special, albeit fairly broad classes of
;% : problems, Indeed, the method of complementary energy has received no
% ” attention at all., This seems rather unfortunate since in nonconservae
§ tive stability problems an accurate knowledge of the variation of
:i frequency in at least the first two modes with the load parameter is
E essential for the <ffective determination of the value of the critical
; ;

g




load. In this report we shall apply to three nonself-adjoint boundary
value problems these various tcechniques in conjunction with a formal
variational expression and the so-called adjoint variational princivnle,

and their relative merits will be compared and contrasted,

BECK'S PROBLEM

Let us consider perhaps the best known problem of the theory of
stability of non-conservatively loaded structures, namely, Beck's
problem [1j, This problem consists of determining thc smallest load P
that is applied to the free end of a cantilever beam and which remains
tangent to the deformed axis of the beam throughout the process of
deformation, such that the amplitude of the resulting oscillations of
the heam increases exponentially with time., Loss of stability in this
way is often called flutter, The differential equation and boundarxy

conditions of Beck's problem are

EI 3% + P 2% + oA 2w = 0, 0<X<L,
4 -2 2
% 9X ot (1)
W(0,0) = v (0,0 = 3w (0,0 = 2% 0, = 0,
- 2 -
oxX ax 9X (2)

where w(X,t) is the transverse deflection of the beam at the point
% (0<x<2) and at time t (t>0), EI is the flexural rigidity, o the
density, A the area of the cross section, and £ the length of the

beam,
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| It is convenient to introduce dimensionless time and space

coordinates, Thus, we set

%
i‘ ;=2x, ?=ct, c2=9-2‘-:'-4-, Q=-§-i-‘i
: so that (1) and (2) may be written as
f (M +Q 2% + ! =0, 0<x<l,
ax?  ax? a? (3)
_j w(o,t) = w'(o,t) = w"(l,t) = W’J'(l.t) = 0,
@)
.é where the prime symbol ' denotes differentiation with respect to X,
>£ Next we assume that
k- Wity = yet,
k- )
ig where w .. ¢ne natural frequency parameter, Substitution of (5) into
j% (3} ané (4) yields the following nonself-adjoint boundary value
;5 problenm:
, ym(x) s Qy''m - ulyx) = o0, o<x<l,
ﬁ%. (®)
4 yo) =y @ =y"m = y''a = o,
3 (7)
;% It is our objective to determine from (6) and (7) the variation of
éf the frequency parameter w as a function of the load parameter Q. Since
i . the eigenvalues, i.e., the natura! frequencies, of nonself-adjoint
A% boundary value problems may be complex rnumbers (recall that self-adjoint
i boundary value problems can have only real eigenvalues), the phenomenon
:? of flutter can occur., This means that if the imaginary part of w is
53\ negative, then the amplitude of the oscillation will grow exponentially
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L5 ) in time, Generally, in those problems in which the kinetic method
B ! must be applied, the frequencies of the various modes are real for

sufficiently small values of Q and vary as the magnitude of the load

P

increases, the frequency of the first mode cventually increasing and

EYREEL

that of the second mode decreasing until the two coalesce at a value

"\

<
s 4 S
e F it

of Q denoted by Q.,. For Q<Q.., w is a real number, but, for PQuys
:: is a complex number and flutter occurs., Beck [1] solved (6) and

(7) exactly and found that the value of the critical load, Q.,, i3

£ DA e LA

Qe = 203172,
(8)

It shall be our intention here to apply several methods of appruxima-

Y
>

At

tion to Beck's problem in order to gain some understanding regarding

ettt

RN

the accuracy of the approximations, having available the exact value

bty

in (8) to serve as the basis for comparison. Ultimately, we will

apply those methods which appear to be more accurate or most convenient

et e
Lt E e 7

y o
IRS 2.

to two problems for which the exact values of the critical loads are

nh‘"‘

not known,

THE RITZ METHOD

[y
P AL
ok

il
SN

The methods of approximation are to be based upon certain varia-
,j tional formulaticns of the fundamental problem in (6) and (7)., Our
.- first approach will parallel variational formulations used by Leiphol:z
[2] and Mote [3]. We multiply (6) by Sy(x) and form the integral of
the result:

fl[)'m-(X) +qy ') - wzy(x)]Gy(x)dx x 0,
[o}
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Integrating by parts and using the boundary conditions (7), we obtain
.11 10,2 1.2 2.2 '
S 1'% - ")? - wyilax v @ (D) = 0,
2o )
The nonconservative nature of the load is manifested in the presence of
the variational term Qy'(l) Sy(1) in (9). A complete functional in the
usual sense does not exist here because the nonconservative l<ad Q does
not possess a potential, Relations of the type shown in (9) are often

-

called "variational principles." iis usage is not consistent with
that of the classical calcuius of variations because there is no
functional which is stationary.

Leipholz [4] - [8] has demonstrated that Galerkin's procedure in

various forms can be apnlied to stability problems of the type under

consideration here, We chall assume that

y(x) = ¥(x) =

L = -4

y. (x),
p o n (10)

n
where the an's ore unknown constants and the coordinate functions Y (x)
are selected so as to satisfy all the boundary conditions in (7}, In

particular, suppose that we choose

_ n+l n+2
yn(x) = Anx + Bpx + G,

(11)

which obviously satisfy the geometric boundary conditions yn(o) =
yn'(o) = 0. The constants A,, B, C, will now be chosen such that the

natural boundary conditions

vVay = vty = o
g (12)

are satisfied,
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Supstitution of (11) into (12} vyields
n(n+l)An + (n+1)(n+2)Bn = = (n+2) (n+3)C,

(n-1)nA\, + n(n+2)Bn = -(n+2)(n+3)C,,

from which we find

. _ (n+3)(n+2) _ (n+3)
A = n(n+l) Cns Bn = -2 (n+1) Ca:

It is convenient to set Cn = n(n+1)/2, so that (11) becomes

y (x) = %-[(n*2)(n+3)x“+1-2n(n+3)xn*2+n(n+l)x"+3], n>1,
" - (13)
Let us now consider (9) and the sequence of steps followed
formally in the application of the Ritz method. If we substitute
(10) into (9), we find
3 N ln te t ot 2 t
DoLat Iyn v = Qup vy = eyg viddx + Qy (Dy(1)}8ay = 0,
n=1 k=1 o
but since the €a), are arbitrary we arrive at
E 2
a“[ +QB~"““‘C,]=00
L Mk nk nk 14)

where

AL ' 1 v
“nk=£ Yo (X (x)dx, Bnk=yn(1)yk(1)-£ ¥, ()yy (x)ex,

1
Co= [y, (®)y, (x)dx,
)
Now (14) represents a system of N algebraic equations in the N unknowns,
a,, and the condition for the existence of a nontrivial solution is that

det (A, + QB -wiC,) = 0,
nk n nk (15)

l‘ RN
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Eq. (15) was solved numerically for N = 2, The value of the
critical load parzmeter was found to be

)
Qep = 2.1937°,

(16)

which is to be compared with the exact value in (8).

THE GALERKIN PROCEDURE

We may carry the analysis forward a little more to show that for
(9) and (13) the Ritz and Galerkin methods are identical. In view of
the fact that the yn(x)'s given in (13) satisfy the boundary conditions

(7), we may integrate by parts to obtain

(1

1" e
[y @y (0)dx =
o]

Ank Yo (R)yy (x)dx,

/
(o]

By = yi Dy (1) - ﬁly;(x)ygcx)dx - {‘y;'(x)yk(x)dx.

Substitution of these last two results into (14) leads to

N 1 w e i

Lag [[IyT () + Qyy () - oy (0]y, ()dx = o,

n=l1 o
or, by virtue of (10),

1 @ AN 2

[T% + ¥ () - ¥y dx = 0,

0 (17)
which we recognize as the method of Galerkin. Eq. (17) leads to
precisely the same numerical result as did the Ritz approach as
embodied in (14)., In practice it is generally easier from the
point of view of the numerical work involved to deal with (17)

rather than (9).




LEVINSON'S METHOD

Levinson [9] obtained an approximate solutien for Beck's problem
by modifying the form of (9) and then making the numerical calculation,
We shall record here only the outline of his technique,

The identity

y (Dey() = sly' My ] - y(1)sy' (1)

is inserted into {9), the result being

2 o' H? - arh? - oByP1dx s @' (y@))- ar()ey’ (1)=0.
(o]

E: It was subsequently argued that this last equation is equivalent to
i‘ 1 1 te 2 1.2 22 ]
4 SE [Tl D - Ay )® - Wy ldx ¢ @ (Y1) =0
: o (18)
:
_i with the auxiliary condition
2
3 sy' (1) = o0,
y: a9)
% Let us assume that y(x) is again approximated by (10) and (13).
g Substitution of (10) into (18) leads to
-4 N N
S 9 1. 4 00 ' 2
- 6{%. ) ,2 a3y [ [y Yx = QpYy = @ypyyldx +
3 n=1 k=1 0
NN
‘5 '
+Q [ 1 aayMy,Mm)=o
E n=1 k=1
' f or
N N N
S 1, v 1 't 2 3
] X Z a f [y 'y, - Q.y, - u'y y jdx a +
Skl Moo MK nk nk k
b aomomlugo
+ Q a y Dy, (1)éa+Q ) sa y (1) ) ay, (1) = 0,
nel k=1 " " K el W Kk (20)

1n




But the auxiliary condition (19) leads to
3 N ,
I sa ya(1) = o0,
- n=1
3 so (20} reduces to
,’ N N 1 10 v ' 1+,
k. Lo La [y 'y dx + Qly, Dy () = [yyedx] -
E! n=l k-1 "o o
¥
2 ' -mzjl ynykdx}Gak = 0,
’ o
£
i i which is nothing more than (14),.
.‘i
3 Therefore, Levinson's method leads to exactly the same frequency
F equation as do the Ritz and Galerkin precedures, In general, it would
? seem that the Galerkin approach would be the easiest to apply, provided
5 that the admissible functions satisfy all the geometric and natural
é, boundary conditions of the given problem. Leipholz [2] has discussed
%; how the Galerkin procedure must be modified in the event that some of
%

1 the geometric or natural boundary conditions are violated by the form

of the selected coordinate functions y,(x).

THE METHOD OF COMPLEMENTARY ENERGY

Washizu [10) - [12] has applied the principle of stationary
complementary energy to some conservative vibration and stability
problems, This technique was also discussed by Reissner [13], Libby
and Sauer {14], and van de Vooren and Greidanus [15]. When applied
to conservative problems, the methed based on the principle of
stationary complementary energy, according to [12] and [15], is

really identical to Grammel's method [16], which, in theory, involves

11
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an integral equation formulation of the eigenvalue problem and the
Green's function associated with the differential operator and
boundary conditions of the original problem, Leipholz [17] - [18] has
discussed the convergence of Grammel's procedure and has presented an
extended version of it, Using a two-terr approximation in certain free
vibration problems associated with the flexural deformation of a beam,
Washizu showed that the principle of stationary complementary energy
led to an excellent approximate value for the lowest frequency and an
approximate value for the frequency of the second mode that represented
a substantial improvement relative to the corresponding value obtained
by means of the familiar Ritz procedure. Consequently, since accurate
values of both the first and second modes are required for the deter-
mination of the critical load parameter in those nonconservative sta-
bility problems in which the kinetic method must be used, it seems
reasonable to speculate that the method described by Washizu could be
a useful tool for obtaining an approximate solution of such prcblems,

In order to bring into play the concept of complementary energy,
we set

MK = -y (x),

where M(x) is related to the bending moment, so that (9) becomes

1 t ?
6k [0 - q)? - Wiyhlax » ' sy = o,
0o

(21)
under the subsidiary conditions
M) - @) el = o, o<x<1, (22)
y(0) =y'(0) =M(1) =M (1) = o, (23)

12
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Note that (22) and (23) are equivalent to (6) and (7). In (21), we
shall consider the variation of both M(x) and y(x).

For y(x) we once again intend to use (10) and (13), and the
expression for M(x) shall be obtained by integrating (22) subject to
the last two conditions in (23), Now substitution of (10) into (22)
leads to

M)

N
I aM'(x),
n=1 M1 (24)

where we define

M = @) - Wiy, M) = M) = o, o5)
In view of M(1) = M' (1) = 0, two integrations of (24) yield
N
He s n§1 (s (26)
whereas two integrations of (25) lead to
%u)=m%u)*%unbn-ygnbﬁ{ﬂ»ﬂmth
= Q £,(x) - vlg (x), o
where
n+l
£ (x) = n=(ne3)x ¢ E5= [(n42) (n43)-2n(n+3)x + n(n+1)x?],
2(3n+10)  6x  x™3 mx  n(nsl)x®
8,(X) = eE sy " A 32 (1 " el T D) (n+5)) .
Upon inserting (10) and (26) into (21), we obtain
6%% g%%fmmnwm-ngﬁu)uﬁgnnmwx+
n=1 ka1 " o
N N ,
+ Q ngl kZlanaakyn(nyku) = 0,

13




Performing the indicated variation in this last result, we find

N

Lt ] 00N ) - o (yy (0 - wlyy (x)y; (0 Jdx ¢

n=1

t
+ @y, ) = o,
The numerical solution of the above equation for N = 2 leads to

Qe = 2.0957%
(28)

for the critical load in Beck's problem, With respect to the Ritz
and Galerkin methods, the complementary energy method trades increased

complexity for possibly better results.

THE METHOD OF THE ADJOINT VARIATIONAL PRINCIPLE

In the preceding paragraphs we applied the methods of Ritz,
Galerkin, and complementary energy to a nonself-adjoint boundary value
problem by means of the variational expression given in (9). The
numerical results for the value of the critical load obtazined in this
fashion with a two-term approximation were slightly greater than the
exact value given in (8), the best approximation being given by the
method of complementary energy.

Since the applied load in Beck's problem is nonconservative, it
does not possess a potential, and thus no functional, viz. no Lagrangian
function, exists. Consequently, 2 complete variational formulation in
the classical sense cannot be stated for this problem, Incomplete

variational formulations of the type appearing in (9), while they often

14




PR 07

SRE D e R

e
S ININERE
REATING

4

2 lt‘i:d":*.x‘b"“ 4

A
Soors 233

i
‘B
.3
1N
. 9
. v
?
3
3
A

provide useful numerical schemes, as we have seen in our calculations
above, leave something to be desired in the eyss of the mathematical
purist who prefers a sensc of completeness in the theory underlying
his numerical operations. In this regard, the papers by Finlayson and
Secriven [19] and [2n] are well worth reading. Since no functional
exists for Beck's problem, we are not finding a stationary value in
(9), Eq. (9) serves merely as a systematic means for acquiring
approximate values for the critical load, As we demonstrated above,
(9) is entirsly squivalent to Galerkin's method, which is perhaps the
best known example of a class of techniques known as the method of
weighted residuals.

In the following paragraphs we shall introduce a boundary value
problem which is the adjeint of the original boundary value problem,
In terms of the original and adjoint problems, we will then be able
to state a functional, the stationary value of which, in the sense of
the caleuius of variations, vields the differential equations and
houndary conditions for both problems, In [19] it was stated that
there is some evidence that this so-called adjoint variational prin-
ciple leads to slightly better results than does the Galerkin method
and that the speed of convergence might also be better, As is perhaps
to be expected, the somewhat more acturate regsults obtained with the
adjoint variational principle are acquired at the expense of increased
complexity and labor,

The importance of tne adjoint problem in nonself-adjoint eigen-

value problems was discussed by Roberts [21], Balliv [27] - [23]

15




applied the concept of the adjoint problem to a couple of nonconserva-
tive stability problems, including Beck's problem. Nemat-Nassar and
Herrmann [24] also determined the boundary value problem adjoint to
Beck's problem, and Prasad and Herrmann [25] described the usefulness
of the adjoint problem in solving nontonservative stability problems.,
The method described in [25] has been generalized by Anderson and
Walter [26] and Anderson [27] to include the effects of internal and
external damping in nonconservative stability problems,

It was shown in [24] - [26] that the eigenvalue problem that is
adjoint to (6) and (7) is

vrr(x) +Q v"(x) - wzv(x) = 0, o<x<l,
(29)

vy =v() =v M +Qvi)y=v'""m)+ov'a) = o,
(30)

which is often called Peut's problem, Moreover, it was shown in
[25], [26}, and [28] that both the original problem (6}, (7) and
the adjoint problem (29), (30) can be generated from the variational

principle

1 40 1 t oy 2 ’
§ [y v - Qv -uwyvldx + @y (1)v(1)} 0,
0 (31)

u

where now we are dealing with the problem of finding a stationary
value ror the given functional, We shall now use (31) in place of

(9) for the purpose of determining approximate values for the critical
locad in Beck's problem, It is essential to keep in mind that the
eigenvalues of the adjoint problem are identical to the eigenvalues

of the original problem,

16
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To ot tain a suitable set of coordinate funcrions for the adjoint
problem, let us assume that
n N
v(x) = v(x) = } by, v, ().
n=1 (32)
Moreover, since the geome:ric boundary cond.tions in (30) are the sawe
as those in (7), we shall assume that the vn(x)'s are of the form shown

in (11), i.e,,

- n+l n+2 n+3
vn(x) = Anx + an + C x

n N n > 1,

(33)
If we now require (33) to satisfy the two boundary conditions at x =1
that are stated in (30), we can show, following the methcd applied
above to (11) and (12), that the coefficients A, B,, C, can be selected

such that (33) assumes the form

n+l n+2 n+3
v, (x) = a X - 28 X + Y. X,
n n n n (34)

where
iy = @ + 2@e2) Q + (1+1) (192)° (ne3),
8= Q%+ 2n(nel) Q¢ n(a+l) (142) (n+3),
v, = @+ 2(0%-1) Q + n(+1)? (ne2).

If we now sibstitute (10) and (32) into (31), we obtaiu
N N

¢ )} I ab I, = 0,
nel k=1 Mk Tk (35)

17
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where

1 ) te ! [} LY '
L) 00w -0y Gy (0-uy, GV (01 + QY (v ),

(36)
Performing the variation in (35), we find
N N
I l(a, L, 8, +by I, 83) =0,
n=1 k=1
from which, in the usual way, it follows that
] )
a I, =0, b I, =0,
asp 0 onk P (37)
The frequency equations are then
det (I.,) = 0 and det (Ik ) =0,
nk n (38)

But these equations are equivalent because the value of a determinant
remains unchanged upon interchanging its rows and colums. This is
simply a manifestation of the fact that the eigenvalues of the original

and adjoint problems are identical,

Using tne coordinate functions in (13) and (34), which satisfy all
the geometric and natural boundary conditions in (7) and (30), we may
use either determinant in (38) to evaluate the critical load, The

value reported in [25] and [28] is for N = 2

2
Qe = L9717,

(39)

somewhere lower than the exact value given in (8).

Let us go one step further without consideration of (36) and (38).
Recalling that in the application of the Ritz method with a functional

of the type given in (31), we are not, in general, required to select

18
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coordinate functions which satisfy both the geometric and natural
boundary conditions of the given eigenvalue problem, iideed, we are
really compelled to satisfy only the geometric boundary conditions,
although this usually means that the speed cf convergence of the
method is slowed somewhat depending upon the nature of the problem
under consideration., Let us now assume that the functions yn(x) and
Vi (x) in (36) satisfy only the geometric boundary conditions
¥p(0) = ¥ (0} = vy(0) = vp(0) = 0. .

In particular, we are assuming now that y, (x) and vn(x) ¢re not
necessarily the functions defined above in (13) and (34).

Integrating by parts and using (40), we can essily demonstrate
that

' | 1 [ ] Tt
£1y; (v Wax = [y, @ Wy vy, Gm @),

1y ' - 1 oy eyt
{muwgnu--ggcnuuma y, (v, (1),

so that (36) becomes
1 _Il, R L 2 v (d ”1 ' XX ) )
nk = ! Oy (x)+Q - (x)wy (Y vy Cidxeyy (v (WD=yn (D)vy (1)

Therefore, the first rela:ionship in (34) can be written as

N 1 ) " ' 1
1l sy, (x)-u?yy () Tvy (K)dxey” (v ()= " (1)vy (1))=0

19




or, equivalently

1 4" e A
%W + Q¥ 00 - FF v o s
o

¥ vy -y a ay = o,
(413

Eq. (41) bears a very strong resemblance to the so-called semi-exiended
Galerkin equations for nonself-adjoint eigenvalue problems as discusssd
by Leiphol:z [2]. Note that here, however, the weight functions are thco
coordinate functions of the adjoint problem Qk(x) rather than the
coordinate functions of the original eigenvalue problem, The presence
of the terms 9"(1)v£(1) -~ ?"'(l)vk(l) in (41) serves to compensate
for the fact that the coordinate functions yn(x) do not satisfy the
natural boundary conditions y"(l) = y"'(l) = (0 of the original
cigenvalue problem, llence, (41) may be considered a generalization
of the results presented in [2],

If the coordinate functions yn(x) satisfy the natural boundary

conditions of the original proh>lem, then (41) reduces to

' %@+ oy @) - ol M = o,
o (42)

which is analogous to the classical form of the Galerkin equations.

To this point we have assumed that the weight functions vy (x) satisfy
only the geometric boundary conditions of the adjoint prob.em, The
question of whether the procedure embodied in (42) converges requires
further study. If thic procedure deoes converge, it is very probable
that it will converge even more rapidly if the vk(x)'s are also -e-

quired to satisfy the naturai boundary conditions of the adjoint problem.

20
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if yn(x) and vn(x) are defined by (13) and (34), then (42) is
equivalent to (37). In general, the numerical work is less complicated

in (42) then in (37) with Ink given by (36).

THE COMPLEMENTARY ENERGY AND ADJOINT VARIATIONAL METHODS

Now let
Mx) = - 7' (X)), NEx) = = v (%)
(43)
so that (31) can be expressed as
UM MEONG) - Q@ y OV (x) - wly(x)v(x)]dx +
[o]
Qy ()v()} = o.
(44)
The "bending moments'" M(x) and N(x) are subject to the auxiliary
conditions
M) =y () - ey,
M(1) =M (1) = o,
(45)
N = Qv ) - wPvix),
N = Qwel), N'(1) =Qv ().
(46)

Because we have introduced the adjoint problem and consequently a

variational principle, we may view (44) as a replacement for (21) with
(45) and (46) being introduced in analogy with (22)-(23). References

[101-]i2] have again supplied the motivation fcr this type of analysis,
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We shall again assume that the coordinatc functions y,(x) and
vn(x) are those given in {13) and (34). Since (24)-(27) are still
applicable, we need only derive an expression for Nn(x) before pro-
ceeding to the numerical work, To this end, we find, after integrat-
ing the first equation in (46) and imposing the boundary conditions
in (46),

N(x) = Q v(x) - w® [* (x-t)v(t)dt.
1

[f we insert (32) into this last result, we obtain

N
N(x) = ] by Ny(n),
n=1 (47)
where
Np(x) = Q vp(x) - ¥ X (x=t)v, (t)de
1
_ 2
= Q vy (x) - o hy(x),
(48)
with
< 2[Q%+3 (n2+n-4)Q+2 (a+1) (n+2) (n+3) (3n+10) ]
h (x) = [7 (=t)v,(t)dt = -
1 (n+3) (n+4) (n+5)

2x[Q2+3(n-1) (n+2)Q+6 (n+1) (+2)° (ne3)]
(n+2) (n+3) (n+4)

. N3 an _ 28X Ynx2 )
(n+2) (n+3) (n+3) (n+4) (r+d) (n+s) /

22
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Substitution of (26), (47), (10), and (32) into (44) yields

I
8 an by J = 0,
n=l k=1 k “nk (49)

where

e
"

1 ' ' '
ak * 1 M 00N (0-Q v v (x)-u’y_ (x)v, ()]1dxsQ y! 1)V, (1)

un

£1{Mn(x)Nk(X) + [Q y;'(X)-wZ.HCX)]vk(X)}dx.

In view of (13), (27), (34), and (48), the coefficients Jox Mmay now be
considered completely known. Proceeding with (49) as we did with (35),

we tind
§
a, J = 0,
n=1 n “nk

and consequently

det (J,) = 0,
nk (50)

Numerical calculations with (50) yield, for N = 2,

2

Q., = 2.0617°,

¢ (51)

the most accurate of all the approximate calculations performed here.
To summarize the numerical results obtained by the various methods
describad above, the values of ch are now tabulated in Table I along

with the percentage of error relative to Beck's exact value,
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TABLE 1 - COMPARISON OF THE VARIOUS METHODS

"
EQUATION NUMBER QC{h“ % ERROR
(8) Exact 2,031 -
(16) 2.193 7,98
(28) 2.095 3.15
(39) 1,971 -2.96
(51) 2,061 1.48

Examination of Table I reveals that the Ritz procedure based upon
the variational equation in (9) yields the poorest result, which is
almost 8% greater than the exact value for Qerpe Using the variant (21)
of (9), i.e., the method of complementary energy, we obtain a much bet-
ter approximation, namely (28), which is about 3% greater than the exact
value, A slightly better approximation, (39), was obtained by means of
the Ritz method based upcn the adjoint variatioral principle in (31),
llowever, the best approximation of all, (51), was cbtained through a
scheme which combined the methods of the adjoint variational principle
and the complementary energy. In this later case, the approximate value
of Q.r was only about 1 1/2% greater than the exact value, It rust be
admitted that the improved value given in (51) was obtained at the
expense of (i) introducing the adjoint problem (29) - (30) and the
adjoint variational principle (31), (ii) selecting a set of coordinate
functions for the adjoint problem (34), and (iii) deriving expressions
for the "bending moments" Mn(x), Nn(x) by integrating (45) and (46).

It might be argued from the standpoint of the labor involved that it is

more efficient to use the ordinary Galerkin procedure (17) with N>3,
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HAUGER'S PROBLEMS

In the previous paragraphs we discussed Beck's problem for which
it is possible to obtain the exact value of the critical load. Using
certain methods of approximation, we calculated anproximate values
for ch and compared these results with the known exact value, In
many nonconservative stability problems it is a very difficult task
to solve the differential equations of motion exactly, and consequently
the value of the critical load parameter can be found only with consid-
erable effort. This is particularly true for differential equations
that have variable coefficients. In such cases the methods described
in the preceding paragraphs offer rather efficacious tools for solving
nonconservative stability problems. Hauger [29] considered problems
of this type, namely, he computed approximately the critical loads for
beams subjected to (i) uniformly distributed and (ii) linearly distribe
uted tangential compressive loads,

We shall concern ourselves here with two problems studied by Hauger
in which a linearly distributed tangential load is acting along the
length of the beam, If the boundary conditions for the beam are either
one end clamped - one end free or one end clamped - one end hinged, then
the kinetic method must be used to determine the critical load because
these systems become unstable through flutter. The equation of motion
is

4 2 2

) - 2
El — + 3-qo(ﬁ-x) aﬁ‘; + oA 9:‘;- = 0.
3X 2 X ot (52)

25




Here a, denotes the intensity of the tangential load and the remaining
quantities are identical with those defined in (1). If we introduce
the same length and time parameters that we used to derive (3), then
(52) can be expressed as

4 2. .2,

9
?--g-+ Q(1-x)2 -—g-+ -—-5- = 0, o<x<1l, t>o0,
X X ot (53)
where
4

qoz
Q = =——,

2E1

Setting w(x,t) = y(x) eimt, we reduce (53) to the following ordinary

differential equation with variable coefficients:

yr[(x) + Q(l»x)2 y"(x) - wzy(x) = 0, o<x<l],

(54)
For a clamped-free beam the boundary conditions are
v =y (@ =y"m=y"@® = 0
(55)
and for a clamped-hinged heam they are
y(0) =y' (@ =y =y"'() = 2,
(56)

Henceforth, we shall refer to (54) subject to (55) as Hauger's first
problem or Problem I and to (54) subject to (56) as Hauger's second
problem or Problem II, :

Because of the difficulty of solving these two boundary value

problems exactly, llauger resorted to Galerkin's procedure in its

classical form, employing clamped-free and clamped-hinged beam modes

26
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(obtained from (54) - (56) with Q = 0) for the coordinate functions,
According to Leipholz investigations [4] - [7], this procedure should
converge to the exact value of the critical load intensity Q., pro-
vided that a sufficient number of terms is taken in the approximation
for y(x). Hauger used only two-term approximations and calculated the

following values for the critical load intensity parameter

2
Qey = 8.01n°  and = 20,3802,

Q
cr (57)

for Problems I and II, respectively,

It is our intention here to reconsider these problems and to
demonstrate by numerical calculation that these values are, respec-
tively, 4,98% and 28,3% greater than the correct values, In view
of the outcome of the calculations tabulated in Table I for Beck's
nroblem, we shall elect to introduce the appropriate form of the
adjoint variational principle for Hauger's problem, The numerical
calculations to be presented here will be based on the methods of
Galerkin and complementary energy in conjunction with the adjoint

variational principle.

THE GALERKIN PROCEDURE AND THE ADJOINT VARIATIONAL PRINCIPLE

It was shown in [27] that the differential equation that is the
adjoint of (54) is
vy + Q [A-0)2v)) " - wZV(x) = 0, o<x<l,
(58)

while the boundary conditions for the adjoint problem are identical

to (55) and (56) for Problems I and II.
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Furthermore, it was shown that these two boundary value problems may

be generated from the variational principle

1
sy v ) - @y 0% ey (v dx = 0.
[0}
(59)
We next assume that
N N . N
y(x) =yx) = [ay (x), wkx) =vx) = ]byv (x),
n=1 n=1
(60)
where, for the present, the coordinate functions y (x), v,(x) are

assumed to satisfy only the geometric boundary conditions of a given

preblem, Thus, for Hauger's first problem, we assume that

¥p(0) = ¥ (0) = v (0) = vp(0) = 0,

(61)
whereas for Hauger's second problem
Yn(©) = y.(0) = ¥y(1) = vy (0) = vpl0) = v (1) = O,
(62)
Substitution of (60) into (59) yields
D Tawy SO0 cov! ’ 2, 0]
s b vy (v (x)-Qy (x)[(1-x)V, ()] -
n=1 k=1an k o " k n k
2
-w yn(x)vk(x)}dx = 0.
(63)
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Integrating by parts, we can easily show that

1
J yEov de + v v ) -y v ),

(Problem I)

1 (K]} te
£ yn (x)vk (x)dx =

f v (x)v, (dx + y " (v (1),
(Problem II)

fyleora-ot mi'e = - [1 0% oy s,
o) [¢)

where we have imposed the geometric boundary conditions (61) and (62).

Inserting these last two results into (63), we obtain

N N
) kZ anbx {f LIy, ()] ()dx + v (v =y " vy (1)) = 0
n=] 1
(64)
and
*Z Eaka Lly, () ]v, (x)dx + ¥ ' (1)v, (1)} = 0
n=1 k=1 (65)

for Prohlems I and 1I, respectively, where

LIy, (x)] = (X) + Q(1- X)zy"(XJ - w? Y, (x)s

Proceeding with (64} and (65) in the usual fashion, we arrive at

\
1 1 ' tey
nzlan (7 Ly G s ¢y, v ) -y Wy () =
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and
N 1
[N ] 1
nzlan {£ LIy, () ]v ()dx + v " (v, (1)} = 0
or equivalently

L LBeivemdx + 3 vl - ¥ v ) = o,
o} (66)

and

Lol + ¥ v = 0
0 (67)

for Problems I and II, respectively. Eqs. (66) ard {(67) are in the
"semi-extended" form of Galerkin's procedure as described in [2]
except that the weight functions, vk(x), here are the coordinate
functions of the adjoint problem rather than of the original problem
as is normally the case,

Because the speed of convergence is faster, in general, when the
coordinate functions are selected so as to satisfy all the geometric
and natural boundary conditions of a given problem, we shall elect to
meet this requirement, thereby reducing (66) and (67) for both

Problems I and II to

Lol e = o
° (68)

foraover, since the boundary conditions of the original and adjoint
problems are identical, we shall select th? yn's and v,'s to be
identical, Then (68) becomes

M LFmly e = o, (69)
which is tge Galerkin procedure in its familiar form, Our numerical

calculations will be based upon (69),
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For Problem I, the clampcd-free beam, the coordinate functions in
(13) are again suitable, Numerical calculationc were performed with
(695 and (10) for N = 2,3,...,7, and the results are shown in Table II,

TABLE II ~ THE CRITICAL LOAD INTENSITY

FOR HAUGER'S FIRST PROBLEM

N Qer/n?

7.5776
7.7830
7.6446
7.6310
7.6318
7.6314

NV NN

For Problem II, the clamped-hinged beam, the set of polynomial
coordinate functions
yn(x) = (n+2)xn+1- (2n+3)xn+2+ (n+l)xn‘3, n>l

(70)
satisfies all the geometric and natural houndary conditions in (56).

Again using (69) and (10), we obtain the results exhibited in Table 1II,

TABLE III - THE CRITICAL LOAD INTENSITY

FOR HAUGER'S SECOND PROBLEM

N o/
2 19.698
3 16,525
4 16,315
5 15,914
6 15,886
7 15,885
)
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THE COMPLEMENTARY ENERGY METHOD

Before commenting on the numerical results presented in Tables II
and III in relation to Hauger's values in (57), we shall re-solve these
problems using now the method of complementary energy. Introducing

again (43), we may express (59) as

Gfl{M(x)N(x)-Q y' ) [(1-x)%v(x)] " -e?y (x)v(x) }dx = O,
0

(71)
with the auxiliary conditions
M = Q-0 ) - Wiy (),
. AT (72)
N (x) = Q[(=-x)v(x)] =~ uv(x),
subject to
M(1) = M'(1) =N() =N'(1) = 0
(73)
for Problem I and
M(1) = NQ1) = 0
(74)
for Problem II, which are consistent with (54) - (56), (58).
For Hauger's first problem we shall assume that
i j
y(x) = ay.(x}, v(x)= b Yn(X),
n=p M " n=l " (75)

where the y,(x)'s, which satisfy all the boundary conditions in (55),

are given in (13). By virtue of (72) and (73), we may also write

b (X),

3
[ e 4
—

N
M(x) = Zlanmn(x). N(x) =
n=

(76)
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where
M) = Q-0 -ty 0, MM =) =0,
(77)
Np' () = QEA-0 %y, (0] -y (0, N (1) = N Q) = o,
Integration of (77) yields
My (x) = QLU= () + 2062)5, (x) - 65, (0] - wlg (0), o8
78
Ny () = 00102y () - g, (x),
" n " (79)
where

o)
X 6 xnre n(n+1) 2
rn(x) = { ,n(t)dt = - ;:Z-* 5 ( n+3 - 2nx + — X R

X +10 n+3 1
s _(x) = f tyn(t)dt z - 2(3n ) + X (n+2 - 2n(n+§l>x+p(n ) xz .
n ) (n+4) (n+5) 2 oA =
2 n+3 2
= - = 20n10) 6% X _2px , n(n+l)x )
En () = i (-5, () (n+4) (n+5)  n+d * 2 ( n+d M+ (n+5y )

Substituting (75) and (76) into (71), we find
Iy
s ab I = 0,
n=1 k=1 nk nk

where

Ly = L0600 = 000, 0y, () - wdy, (0] ex.

This leads 1o

N
La i = 0. (80)
n=1

Tne numerical results oktained from (80) are shown in Table IV,
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TABLE IV -~ THE CRITICAL LOAD INTENSITY

FOR HAUGER'S FIRST PROB.EM

2
N ch

2 7.573

3 7.653

4 7.631

5 7.631

x>

or Hauger's sccond problem we may again adopt (75), however now
the coordinace functions will be those which appear in (70). Then

with (70) and (75) integration of (72) subject to (74) leads to

N
M(x) = a_(x-1) + N a M (x),
n=1
(81)
N
N(x) = by(x-1) + § boN(x),
n=l
where
a, <M (1), b, = N' (1),

and Mn(x) and Nn(x) are given by (78) and (79), respectively, with

X -
a0 = Lo = S 2 G, 0 2)),
n 1" (n+3) (n+4) n+3 n+4
X -(3n+7) n+3(n+2 2n+3 usl 2)
Sp() = { t ¥a (84t = Ty nvd) (e5) (n+3 T AT [
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3n+7 3x

B (¥) = X T () - s () = )

(n+3)(n+4)(n+5)- (n+3) (n+4)

. x"+3(1~- 20+3)x . (n+1)x? >
N*> (n+3) (n+d) (7+4) (n+5)

Inserting (75) and (81) into the variational principle (71), we

find
1 N N N N
S agby -3, Ib K -by faJd o+ [ 7§ ab, 14} =0,
- n=1 n=} n=1 k=1
(82)
vhere
L= 00N () + QUex)Zy!! 2 (x)}d
nk =) My CONL (X)) + QML) Ty (XD (%) -w Yn (xJy, (x) }dx,
J = [1 (1-x)M_(x)dx k = [} a XN (x)dx
2 "—o " ’ n'é “%n *

But (82} leads to

N N N
1 | ;
T3 " ) ad, by + ) a Ik = 3K, 5b, +
n=1 k=1 n=li
\ N N N
* $hy - Ih K osa g+ ¥ Lbg 1y = body da, = 0,
n=] n=1 k=l
(83)
In the usual fasiiion, we obtain from (8%)
N N
a -3 X apdy, = 0, z an Iy - aoKk = 0,
o n=1 n=1
(84)




plus two additional equations which can easily be shown to be equivalent

to (84). Eliminating a, between the two equations in (84), we arrive at

N
Ya [, -3Jy K] = 0.
n=1 n o 0k (85)

The numerical calculations obtained from {85) are shown in Table V,

TABLE V. - THE CRITICAL LOAD INTENSITY

FOR HAUGER'S SECOND PROBLEM

2
N ch/n
2 16,522
3 16,012
4 15,929
5 15,884

Therefore, in view of Tables II - V, we conclude that accurate

values for the critical load intensity parameter, Q.., are

2 2
ch = 7,631n and Q. = 15.88n

for Hauger's first and second problems, respectively, These results
are 4,98% and 28,3% lower than the corresponding numerical values
reported by Hauger (see Eq, 57) who used a two-term Galerkin approxi-
mation with clamped-free and clamped-hinged beam modes as coordinate
functions, ilere for coordinate functions we have used polynomials
that satisfy all the geometric and natural boundary conditions of the

.4spective problems in (i) the Galerkin procedure and (ii) the method




of complementary energy in conjunction with the so-called adjoint
variational principle to calculate approximate values for Q... The
application of these processes was continued by successively increas-
ing the number of terms included in the approximation functions until
the numerical values appeared to converge to the correct value for
Qcre In both cases it appears that the method of complementary energy
converged at a somewhat faster rate than did thr Galerkin procedure,
The rethod of complementary energy requires extra effort to apply
reclative to the Galerkin method since the '"bending moments" must be
obtained hy integrating an clementary second order linear differential
equation. The falerkin procedure offers the advantage that the numeri-
cal calculations may be set up in a rather straightforward fashion.

\t !east in the numerical computations reported here, the application
of the Galerkin procedure offered no computational hardships as the
value of the integer N increased because all the integrals involved
werc evaluated very efficiently on the computer by means of a double
precision subroutine based upon the Gaussian quadrature technique
which evaluates integrals of polynomials exactly, Another subroutine
was used to evaluate the various determinants that arose, and a root
finding scheme determined the value of the load intensity parameter

for a given value of the frequency of vibration of the system,
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