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INTRODUCTION

Recently C.-T. Sun (1] developed a mathematical theory for a

continuum model with microstructure for laminated beams. These

laminated beams were assumed to coy.-,ist of many parallel alternat-

ing layers of two homogeneous, isotropic elastic materials. Each

constituent layer was treated as a Timoshenko beam, and expressions

for the kinetic and strain energies, as well as the work done by

external forces, were derived, The smoothing technique, which had

previously been useO, so effectively in deriving a general field

theory for laminated composites [2-5], was applied, and the equa-

tions of motion and associated boundary conditions were derived from

Hamilton's principle. To test the accuracy of the resulting theory,

the dispersion curve for flexural waves in an infinite laminated

beam were determined from (i) the exact theory, (ii) the new theory,

and (iii) the effective modulus theory for a composite beam consisting

of five stiff layers and foir soft layers. It was found that the

curves obtained from the exact theory and the microstructure theory

were in vxcellent agreement over the entire range of wave-number

considered. By contrast, the effectiv/e modulus theory exhibited

agreement only in the very low frequency range.

The effective modulus theory treats the laminated compositu as

a homogeneous but transversely isotropic medium. Based on this point

{' of view, Brunelle 16-9] has investigated the stability and vibration

characteristics of trasversc.y isotropic Timoshenko beams under

initial stress. He showed that thz values of buckling loads and

1 4



natural frequencies of vibration are strongly dependent upon the nature

of the boundary restraint and the relative defTee of anisotropy, i.e.,

the ratio of the longitudinal Young's modulus to the transverse shear

modulus. Decreases in the values of the buckling coefficients and

natural frequencies of vibration relative to the classical valuos,

computed on the basis of the Euler-Bernoulli theory for bems, were

obse•ved to be particulaL'ly pronounced in the case of the clamped-

clamped beam.

The objective of the present investigation i'-b to extend Sun's

microstructure theory for laminated beams [1] so as to include the

effect of initial stresses and to solve a pair of stability and free

vibration orohlems within the framev!•rk of the resulting theory.

The numerical results for bucki. ,- coefficients and frequency para-

meters are compared with Bru1.,Ile's results [6-9] derived from

Timoshenko beam theory fov transversely isotropic materials.

STATENT OF THE GENERAL PROBLEM

We c=onsider an elastic solid of volume V bounded by a finite

surface S. Displacements are prescribed on the portion Su of the

surface S and tractions are applied on the remaining portion S .

Initially the body is assumed to be at rest and is subjected to a

state of initi., . stress ij, , = 1,2,3, which arises from non-

servative force, .tpplied on the surface S of V, We assume that

the perturbed and linearized field equations [10,11] are

"Tijj + ? u.k). + Fi P=ui, in Vo

S(1)



ij jk i,k j ( 2 on)S
(r. .~a u )n T(2)

ui prescribed, on Su
1(3)

zij = Cijkt ', *i " (ui,j + uj~i (4)

where T.. denot6s the perturbed state of stress, u. is the displace-

ment vector measured from the undisturbed state. Fi is the body force

field per unit volume, p is the mass density, and n. is the unit

exterior normal to the surface S. The quantity B is a parameter

associated with the magnitude of the externally appliod surface

tractions, and the pj are the components of perturbations of the

applied surface tractions on ST . In (4), the general stress-strain

relationship is given. The familiar summation convention for

Cartesian tensors is employed in (l)-(4), commas denote spatial

derivatives, and dots time derivatives.

THE VARIATIONAL FORMULATION

In order to derive a form of Hamilton's principle that will

generate (l)-(3), we multiply (1) by 6 ui and form the integral of

-the volume V of the result:

ir SuidV +f (ajkui,k),j 6uidV + f F•6uidV fp~i6uidV.
V j1 V V

(5)

Application of the divergence theorem to (5) yields

S(Tij + Bajkuik)nj 6uidS - f6(W + 7. Bojkui kui )dV +
S 

V

6



+ f FiSuidV = r Pui6u.dV,
V V

(6)

where we have exploited the symmetry properties of - an. d a.

"• ~to write

6W = (alql/ac i. = T i6cij = Tijruij

ajk i,k 6uj 26 (jkUi,kUi,j)3

with W denoting the strain energy density. Furthermore, if we

assume that the body force vector can be represented as

Fi = fi + a iui fi = fi(xt), aij (x) = aji x),

then

1

F 6u. = 6(fui + 1a..uiu.).
i I 11i 2 1313

Hence, in view of (2) and (3), (6) ran be expresýsed as

2 jkUi,kui,j 1 2i 2 aijuiuj]dV

+ f Pui6uidV = 6f Bp.uidS.
V S

T (7)

Forming the time integral of (7) and integrating by parts in the

term invo]ving ui 6ui, we obtain

6 •1 dt = 0,
to (8)

7



where

V f [ PU•y~ -W - Bcjkkikuij -fiui - aijuiuj]dV

+ f•3piuidS.S (9)

Eq. (8) represents Hamilton's principle associated with the

problem (1)-(3). In conjunction with (9), (8) can be used

effectively for the purpose of deriving plate and beam theories

when initial stresses are present.

SOME PRELIMINARY CONSIDERATIONS FROM BEAM THEORY

To derive an elementary theory for extensional deformations

and a Timoshenko theory for flexural deformations in beams, we

approximate the displacement field as follows:

u (x,t) = u(xlt) - x2 C(xlt), u2 (xt) ' w(xl,t)

u3 (xt) = O,' t (10)

where the xI - axis coincides with the axis of the beam which

passes through the centroid of every cross-section and the x2 -

axis denotes the transverse direction. Here u is the longitudinal

deflection of the axis of the beam, w the transverse deflection,

and 0 the rotation of a section in the xlx2 - plane. Tht strains

computed from (10) are easily shown to be

Ill = U l - x20,1 c12 W £). C13 1 23 c22 •3 3 0.

(11)



In the usuai manner, we shall ignore the relations c22 £ C33 - 0 in

favor of setting, for an isotropic material,

T2 2  = (2)j + X))22 + X(c11 + £33) " 0,

T33 = (2ii X)+3 3 + '(cll + £22) O

Thus, it follows that

£C22 = C33 = -X£ 1 1/2(X + 1), Cii = Ucll/(P + X).

(12)

The expression for the strain energy is

W = I .-= + Lxc.iC

7- c 1  2c 22 p 2 2 +22 + 2

= U(£ + 3 + 23 + 2 + 2 + 2 3) +÷ 2XCC

(13)

Substitution of (11) and (12) into (13) leads to

2 11=T 12 (14)

since E = U(2P+3A)/(U+A), E being Young's modulus. In the development

of the Timosheriko beam theory, it is customary to introduce a shear

correction factor K into (14). Hence, we replace £12 by c2  so that12 121 ota

.• (14) becomes

1- 2 12'V = C + 2tc
2 11 12

or, by virtue of (11)

F ((u42x 01, x2 ',1  K11(w.±E~ui -xu 22 I l 2 (15)



An integration of (IS) over the cross-sectional area A of the beam

yields

U jWdA ~EAu2 + L EI 1 *2 +KUA (w 2
A 2. #1 2

(16)

where I - I x2dA and fx 2 dA 0 since the xI -axis passes through
A A

the centroid of the cross-section.

In a similar fashion, for the kinetic energy density, we have,

in view of (10),

.1 PId u P(a22 x2;22) 1 2
2 ,ii i 2 - 242 + x2 +2

and thus

i A
T L xu dA P - pAu2 +. 1 2 A4;2).

(17)

Furthernore, we can also show that

u . (u + u2  + U2 ) + a2(u + u2  + u2
jku.,kui,j 0 o11 u' I 2,1 3,1 ,221,2 ,2 3 , 2 ) +

+a 3 3 (u2, 3 + U2 + u2) + 2c; Cu u +33 it u23 + 212VU1,2UlI

+ U2 #2 u2 ,1 + U3 , 2 U3 , 1) + 2a 1 3 (ul,,3u, 1  + u2, 3 u2,1 +

+u 3 3 u 3 1 ) + 2ao2(ul,3U + uu +U u
30 " 23 1,3 1,.2 2,.32,2 3,,3 3j,2

If we assume that all aij = 0 except all, then, in view of (10), we

have

a Ui u a 2 + U 2 2.2 +21
kUik i 1ull(U 2,+Ul) 0l1(U I" 2x2ulol+ x2?,I 1)

SI10



and

* 1 ikj 1 2 2 A 2)
Iu = u a (Au + 1 0 + Aw .

(18)

If ij = pi 0, then, using (16)-(18), we can reduce

(9) to

f= f (T - U -U)dx
0 (19)

ENERGIES FOR A LAMINATED BEAM

In this section we intend to extend the theory developed by

Sun [1] for laminated composite beams to include the effect of the

initial stress a1 1. From this theory we should be able to compute

buckling loads for such beams. We consider a composite beam con-

sisting of a large number of parallel alternating layers of two

homogeneous, isotropic elastic materials (See Figure 1). We assume

that the cross section of each layer is rectangular and of width b.

The depth of the cross-section shall be denoted by h. We shall

designate the properties of the stiff layer by the subscript 1 and

of the soft layer by the subscript 2. The thicknesses of the layers

are d1 and d2 , and the Young's moduli, shear moduli, and the mass

densities for the two types of constituents are denoted by El, u1, P1

and E2 , u2 , P2, respectively. In addition, we shall use a superscript

k to refer to the properties of the k-th stiff and soft layers.

I- -11
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According to (16), the strain energies per unit length in the

k-th stiff and soft layers due to bending, shear deformation, and

extension are

= 1  k 2 + k 1 KlplAlCwk k €kl2Ul EIAl (u 1#0 + E1£I(¢kII)2 +" ,11A (w O

(20)
Uk 1 k22u 2÷ 1 k,12 2" k, k 2

1A ),) + E22 K . 2 u2 A2 (w_ 1 - *)2

(21)

respectively, where, as is evident from Figure 1,

A bda I = bd 3/12, a = 1,2.

(22)

By virtue of (18), the potential energies per unit length due

to the initial stress are

*k .1 a k(2k,12 k Awk)2,
U 1 2 ,(A 11 [A(u1,p1) 2  IC1 l) + A1(wl 1 )

(23)

U~k = [A1 1[A2 (u2 1 )2 + 1 2 + A2(wk22 1)C2]

(24)

Similarly, the kinetic energies per unit length for the k-th

stiff and soft layers are

1k 2 ok)2 A k2Tk = • 1A(u)+I
T 1 D2 l ,(Ul)l +I1(11) + A 1( 1 ) ] (25)

Tk =1 (A 2(u)2 + I2(k)2 + A2 k)2
2 7 2 2 2 2 2~ 2 A 2  (26)

resnectively, in view of (17).

13



Sun [1] introduced an additional approximation on the extensional

components ua, namelyl)'9

u k k ý (27)Su a V(Xl 9t), a 1,l2,OL lot)#(27)

where t(x 1,t) denotes the gross rotation of the composite beam and

k the coordinates of the centroidal axes of the k-th stiff and soft

layers. Insertion of (27) into (20)-(26) leads to

k . 1E A~k)2 2 1k 2 1 k k 2
U" . 2 Eaaa ,l + E"la(a) + y aaa (Wal -

(28)
U*k a l Atk 2+I k 2

uk=1 k22 ck 2 * ()21 1 [Aa(ya) *I a aol ) a A1 (29)

1(22

2 a a a 9a a

(30)

Under the assumption that there are n pairs of stiff and soft

layers in the composite beam, the total strain, kinetic, and potential

energies per unit length can be expressed as

* 2 k k *k
(U, T,u) U (uI, Tat Ua)

k=l a-l
(31)

Still following Sun [1], we introduce a smoothing operation through

which the summation over k in (31) may be approximated by the

following weighted integrations over y:
h/2 1 2CUD T U')f -h2 Z (Ua Ta)Ua)dy,

-h/2 dl+d2  a s1

(32)

14



where y and y2 are to be re, aced by y and the superscript k is

deieted. Eq. (32) is also valid for the crse in which the number

of stiff layers is not equal to the number of soft layers.

Inserting (28-(30) into (32), we obtain

12 2 2 2 2=-- Ia [E a 1 0 0 )+ K P A (~ 'O)+(h2/12)%AaA•2O1is

(33)1 2

U* =/ ! [[h 2!12)A. +2 2 N2

(34)

z ".2 + * 2 h12l~ ý2]T 2-F •=I2 ~~2.
2 ct~i(h /12)PQA~~tj

(35)

where h = +d21 2)

The number of dependant variables appearing in (33)-(35) can be

reduced because the continuity conditions at the interface between

k kstiff and soft layers introduces two relationships involving w., C,
and ý. In terms of the discrete variables, the continuity of

displacements at the interface of the k-th pair of layers leads to

wk k anduk I k I k
1 2 2d 1  2 2

or

U k uk 1 d k'2 1 2 ac.

(36)

is



But in view of (27), (36) becomes

2 k

and since k k 1 (d +d this last result reduces to
1= 2 2 12

- no + (1-n)4k,

(37)

where

n z d 1 (d1 +d2 (.

Applying the smoothing operation to (37), we have

2 - no 1 + (1-n)4 2 .

Solving for ¢2, we find

2 C(39)

where we now set -= Therefore, substitution of (39) and wI -

w B w into (33)-(35) yields

22

1 E2 12  
2,1 -n 2

S (-) 2  2 2u22 '-n
(40)

a 1 2 + 1 cl Aw21 2 + 11a 2 1)2

2 i1 1 2(1_n) 2  X, P,)

(41)

16



);2+ .2 1 ýP 02+ P 2 122- (pAl+P2A2) 2* 2-•p1 1 2 - p -i__)
2(1-n) 2 (.)

+ 'Ib [npI + (l-n)p 2 ]$2,

(42)

where

A = bh, Ib z bh 3/12.

Hence, we have now completely prepared the integrand in (19) for

use with (8).

THE EqUATIONS OF MOTION

If we now substitute (40)-(42) into (19), we obtain

1 .2 12 1 2

0 [ 2 a 4w 2 ÷ +a13,P 2 a1 0iao

"a a 1 1A)w2,1 + a3w, 1 0 + & a2 ".1 w " ( 4 l

1 a6 P2 + ý a8  * + a7 (1÷0 1 1/E 2 )> 1 ý, 1  a12-2

1 jj)2
"2 (a'11÷as1a]dxl,

(44)

where

a1  = cluA 1 + K2 u2 A2  = Kb (uldI + VAL

17



a2  K2 U2A2 /(1-n) - KbU 2 (d1 + d2)8

a3  K I fIA l - K 12A2 /(1-T)) ,Kbdl(ul- 12)

a4 = P1A + P2 A2  = b(pld1 + p2d2)p

a5  = 212/2 -n) + nEII b/ý + (1-n)E 2 b/

(b/12) [E2d2(dl + d2)2 + h 2 (E1 dl + E2d2 )]#

a6  a2 / (1-n) r (b/d 2 )KU2 (d, + d2)2

a7 = nE 2 12/(,-n) 2  u (b/12)E 2dld2. 1 + d2)p

a8  a naa6  = Cb/d 2 )KP2 dI (d, + d2 )s

29 = P2 12/(l-n) 2 + nplIb/ + (l-n)P2Ib/A

- b/12) [0 2d2 (dI + d2 )2 + h2(pldl + P2d2 )],

a10  = nP21 2 /l-n) 2  - (b/12)P2 dld2 (dI + d2)0

a E I + n2 E/1 ln) 2  a Cb/12)d2(E di d

812 1 1 . 2 /ln

Sa,2 = ljljAI + K 2n 2 J2 A21(1-n)2 - (b/d 2 )Kdl ( uid 2 + 02d,),

! ~a1 = oilI + n2p2z/1-n2 . (b/12)d2 (old, + p2d2)

a13  = 11 nP 2 I 2/(l-n) ~ b 12d 2),1

a 1 4  Ib + I,,/(I-n)2 = (b/12)(dl + d2 )[h 2 + d2 (d, + d2)4 ,

a1  I = 11 ÷ n12 /(1-n)2 (b/12)d (d + d

(45)

where K1= 2 S 0.822 for a rectangular cross-section.

18



Insertion of (44) into Hamilton's principle (8) leads to the

following system of displacement equations of motion in O<xI<1 :

(a1 + OllA/)w Il - a2ý.i - a30.1  = a4w,

(46)

a 2 w * + (a 5 + a1 40ll)* ii - a60 - a 7 (l + all/E2)€ oi+

+ a80 = a9. - a10ý*

(47)

a3 w1 - a7 (l + 011 /E 2 )P 11 + a3q + (all + a15 o1 1 )0 11 -

- a 1 2  ' a l3 w - alO , (48)

with the boundary conditions

(i) either (a 1 + o1 1A/ý)w 1 - a2j - a.3€ = 0 or 45w = 0,

(ii) either (As + a14 o11 )P, 1 - a7 (1 + all/E2)64 = 0 or 6f= 0,

(iii) either (all+ a15 11)0 1 - a7 (1 + Ol= 20 or 60= 0#

(49)

on x= 0,9. If we set ll = 0 in (46)-(49)1, t-hen ,neo equations

become identical to Sun's equations (4S)-10) in (1] in the absence

of surface and end loads.

Let us now suppose that a compressive load P is applied along the

axis of the beam, so that OlA = - P. Then (4Q)-(48) become

(b1 -)b 2 )w" (x,T)-" (xT)-b3s' (X,r) = b (XT)

(50)

19



w (X,,T) + (b 4 -)bS)PT'CX,,T) -bj(XTxr) - b 7 (I-b8)T''(X,T) +

9+ XT bl47(xST) - b15$C~r)

b3w'CX,T) - b7(-b 8  '(X#T) + b WX#T) + (bOA1 bl-)Pb1  I '(x,r)-

- bl2T(X,T) m bl j(Xsr) bl- b;(x#T), 52

where (11T 2/P2 2/to to k 4, 24 primes and dots

now refer to derivatives with respect to x and To respectively, and

2b

b - 8 bi =
2 12i2  1 2b 92d~ 2)a( 1 +d) d

E 2d2(7dhdZ) 6010 CE +2 d2  d 6[1(.0 d+C81+82y-)]
b 20 1 - a

b412K'0 2R Z(d1 +d 2) 121c (ld)

bs=2 Lis +d 2(d1+d 2)j - [1+8 2 (S1 + a 2)10
144ý 2 z144K

b6= (di + d2)/d 2 =1 + do b 7 :xEd~d/l2KUV2  66421K

b8  -(1Thf1) 2 /12 = (Tr4)2/120 b9  ?2dl/d 2  d
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2 21e)'(dl/z) (Eld÷+E2d2) _ _l)2 (__cd)_
b10 - 12K2= +d 12K(l+d)0 1

b -

11,144KI 2  144K

d1 (i'ld 2 .u2 d1 ) d(y+d)

u2 d2 (dl+d2 ) 1+d

o d +p d 1 + Od
b - 1 2,2 -13 •:2 (dl +d2) K~l+d)

p 2 d2 (dI+d2 ) 2 +h2, (p 1 dl,+o2 d2 ) 42 2 (1+d) 2 +1+0d]

b14 1 2 K9,2 p2 (d l1+d 2) 12 K:(l+d)

d I d 28 a

b dd 2 -2-
is 12KZ 2  12K

d•(C 1 d 1 +d2 d2 ) 822 ( 1+od)

16 12'KZ P2 (d1 +d2 ) 12K(1+d)

with

c E 1 /E 2) = "'/02, d -d/d=2) = h/to

/P/ P 2P Pa d/h, a = 1,2.
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SOLUTION OF TU'E FI EQUATiONS

The _Hinged-flinged Beam

We now consider the motion of a beam that is hinged at the ends

x 0,1. According to (49), the boundary conditions are

w %- (b,j-Xb 5)'- b 7(l-Xb 8 )-' = b 7 (1-Xb 8 )7' - (bl 0 -Xb1 1 )p' = 0

(S3)

at x 0,1. It is a simple matter to verify that the functions

w(XT) = A, sin (nvx) cos wT, (x,,r) = A2 cos (nrx) cos WTO

¢(xT) = A3 cos (nvx) cos w'r, n = (,2)3,...,
i (54)

satisfy the boundary conditions (53) identically. Substitution of

(54) into the equations of motion (50)-(52) yields the homogeneous

algebraic system

3
.. A. =0,

L ~j=l

where

a0 1) 1bj)2  (nTr- (b b 2~ 2 (13 n) 2 (b-Xb2) 22 4
2 -b 6 - 7(n•)2 4 -xbs),

2a33 bl 6 w b12 - (nn)?(o-bll) a 21 niT,. aS =b16•,-012 012 1

a23 032 =b 9 + (n'•) bT(1b 8 ) " b 2  013 031 =

(56)
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If (55) is to have a nontrivial solution, we must require that

det (aij) = 0.
(57)

The values of the natural frequencies wn and of the critical load

parameter Xcr (-=O) will be computed from (57).

The Clamped-Clamped Beam

For combinations of boundary conditions other than those of the

hinged-hinged c,_:e described above, simple expressions of the form

(54) for the solution of (50)-(52) cannot be found. Nonetheless, we

can obtain the values of the natural frequencies and critical loads

for these more difficult cases by following a procedure described by

Jones [12]. If we insert

w(x,r) = w(x) cos WT, T(x,r) = P(x) cos wT,

(xST) = 4(x) cos WT,

into (50)-(52), we find the following set of ordinary differential

4 equations:

y clW"(x) + c,w(x) - t'(x) - c 4'(x) = 0,

Mw'(x) + c5 ''(x) + C6 W(x) - C7 x''(x) + cs#(x) 0 0,

c4w'(x) - c7 '"(x) + c8'P(x) + c9 0"(x) + clo0 (x) = 0,

(58)
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.9 where

c1 a bI- Xb2 , C2 a b1 3 ' , c4 * b 3 , C5  b4 -Xb 5 ,

C6 = b 14 w2-b 6 , C7 ' b 7 (1-4b 8 ), C b8 -b1w 2

C j C9 = blo')b1ll cIO = b16w
2 - b 12 0

4 (59)

For the case of buckling, we set w-O, so that (58) reduces to

Ai clw" Cx) - t'(x) - C 0'(x) a o,

w'I(x) + CsI''(x) + c6 4(X) - cy@"(x) + C8 €(X) * 0,

C 4w(x) - c7 4"(x) + c8 *(x) + c90"(x) + clOt(X) 0,

(60)

where now

c 2 =0, c6  b6  c8  b9  b b 12

Since the equations in (58) and (60) possess constant

zoofficients, we seek a solution in t",e form

• Xx BXx cex.

w(x) ' Ae 4(x) = B(x) Ce
(61)

Substitution of (61) into (58) yields the following homogeneous

system of algebraic equations in A, B, C:

(C'X + c2 )A- XB -c 4C 00

XA + (c 5 - + C)B+ (c 8 -ix )C a 0,

c VA + (c c )B+ 2 cA + = 0.
7 A ) (62)
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This system of equations will have a nontrivial solution provided that

the determinant of the coefficient matrix vanishes. Expansion of the

determinant leads to the following polynomial of degree six in

(bicubic in T2)-

2

cI(c 5 C9 - c7),X6 + c1c5c10 + c9 (c2 cS + c1c6 ) + 2c 4c7 +

+ c24c - c2 c2 + 2cLc 7 c 8 + C9]T + [C2c 6c 9 + c1  (c 2c +cc) -

- 2c 4 c8  c2c - CC2 + 2cc c+ OC]72 + c2(cci c) = 0.
4 8 4c6 18 27810 2 61 8

(63)

But with w=0, (63) reduces to

T2{C -( c )1 + [Cl(csClo + c6c9 + 2c 7 c8) + 2c 4c7 +

+ c~cs + c9172 + •ccc - c2) - 2c c + c2 c + c .

4 c5 +c]+c( 6 c1 0  8 4 8 4 6 +c 1 0 ) *0

(64)

A numerical study of (64) has revealed that, for the range of

interest here (numerical values for the laminate's parameters are

given in the next section), the roots of (64) may be expressed as

08 = , O, in, +12,

n 1, n2 > , i1/2,

25
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Consequently, the functions stated in (61) now assume the following

forms:

w(x) = A1 + A2 x + A3cosnlx + A4 sinnIx + A5 coshn 2 x + A6sinhn2 x,

ý(x) = B1 + B2 x + B3 cOsnlx + B4 sinnlx + Bscoshn 2 x + B6 sinhn2 x,

O(x) = C1 + C2 x + C3 cosnlx + C4 sinn1 x + C5 coshn 2 x + C6 sinhn2 x.

(6S)

The eighteen constants Aj, Bj3 C, j a 1,2,3,4,5,6, in (65) are

interrelated. Substitution of (65) into (60) yields a set of a dozen

relationships among those coefficients. It is a straightforward

algebraic exercise to demonstrate then that

A 2 a R3 C1, A3 n R1 C4, A4 a - R1 C3 0 A5 a R2C60

A6 = R2C50 B1 - S C 1  B2 a 0, B3 a - S1 C3 V

B4 Z - S 1 C4 , B5 a - S2 C5 , B6 - - $2 C6, C2 a O,

I where

R C ') 2 ],R A-( cC)n2
1 R 1= 8- [cl-c 4 c 6 ,(c 7 +c4 5 )i 1 2] 2I A 4 6. 8,(C7,C4.2I

S1 (n/Al)[c4 +cic 8 +clc 7 r2] n 2 S (nC/A 2 )& c 4 +clc 8 "cln ].

i A, =11 + c c1 -c6  n 2 Ax A n211 + cl(C6 + c2n )10

R C3= 6 - 10)/c 4c6 - 8 S3 1(c10 4c8)/(c48 c 6 " 8
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Consequently, (65) may now be expressed as

w(x) = A + R3 Cx + R1C4cosn1x - RIC3sinnlx + R2 C6 coshn22x +

+ R2C5sinhn2x

A(x) = S3C1 - SIC3cosnlx - SiC4 sinnlx - S2C5 coshn 2x - S2C6 sinhn2 x,

ý(x) = C1 + C3 cosnl1x + C4 sinnIx + C5 coshn 2x + C6 sinhn2 x.

(66)

If both ends of the beam are clamped, then, in view of (49) the

boundary conditions are

w(O) = (0O) = 0(0) = w(1) ,(1) = *(1) - 0.

(67)

Inserting (66) into the first three boundary conditions in (67), we

obtain

Al + RIC4 + R2C6  =O

$31C - SIC3 S 2C5  0"

C1 + C  5 + C = 0.

't'i thc help of these relationships, we can write (66) as

w(x) = RI(cosnlx - 1)C4 + (R3&2 1x + R1 3 2sinnlx +

SR2sinhn2 x)C5 + R2 (coshn 2x - ')C6#
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1 I C 4 $innI'x * CS3ý2 1 * SIý 32 cosnlx - S2 coshn2 x)C5 -

- S2 C6 sinhn2x,

*(x) W C4 sinn x + (t2l - • 32 cosnlx + coshn2x)C5 + C6 $inhn 2x,

with

"21 s - s ÷ l' 232 " (s 3 + S2 )/(S 3 + Si).

Substitution of (68) into the last three boundary conditions in

(67) leads to the following homogeneous system of algebraic equations

in C4 , C5 , and C6 :

Aij CJ+ 3 = O, ij ,2,3, (69)

where

Alin R1 (cosnI - 1), A12 a R3 &2 1 + R1 32 sinnI + R2sinhn2 ,

A1 3 = R2 (co~hn 2 - '), A2 1  -Ssinn,

A22 " $3ý21 + S5132 cosnl - S2 coshn2 , A2 3 - . S2 sinhn2,

A31 ' sinnl, A3 2 " ý21 - &32 cosnl + coshn 2 ,

A3 3 a sinhn2.

The system of equations (69) will have a nontrivial solution if and

only if
Det (Au) 0. 

(70)
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Expansion of the determinant in (70) yields tho rulatively simple

relationship

2R2 (coshn 2 - 1)sinn! + 2R 32(1-cosnl)sinhn2 +

+ R,&2 1sinnI sinhn2  = 0(71)

However, if we introduce the identities

sinn1 = 2sin(nl/2)cos(nl/2), sinhn2 = 2sinh(n 2 /2)cosh(n 2/2),

1-cos 2si n2(n/2), coshn 2 - 1 = sinh2(n2/2)0

into (71), we obtain, after some rearrangement,

sin (ni/ 2 ) sinh(r 2 /2) [2R 2tanh(n 2 /2) + 2R l& 2tan(ri/2) +

+ R3 • 2 1j = 0.

As in the case of the Timoshenko theory (see the Appendix) the

smallest positive value of Acr can be shown to arise from

sin (n /2) u 0.

Thus, n, = 2w, and since in (64)2 = - - (2r) 2, we find that the

value of Xcr is to be computed from

c (c5 c9 "c)(2)4 - [cl(c 5c + C6 c9 + 2c 7 c8 ) + 2c 4 c7 + c2c +
1 5) 9c6 7)2w 5 0 69 7

+c 9 ](2r) 2 + c c6 ci 0 - C) - 2c c + c + c 0,48 46(72)

or the expanded form of this result which can be shown to be a poly-

nomial of degree three in A. A discussion of the numerical results

obtained from (72) will be given in the next section.
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Let us next address the vibration problem for a clamped-clamped

laminated beam. For #O, we must use (63) to compute the character-

istic exponents T. Considering (63) as a cubic in 7, we have been

able to show that, for the range of interest here, (63) has either

one negative root and two positive roots or two negative roots and

one positive root. For the present we confine our attention to the

case

13 2

Now let
1/2

1 . 2 2 , 3 .3 9

it being understood that n.>O, j - 1,2,3. Therefore, (61) leads to

w(x) - Alcosnlx + A2 sinnlx + A 3coshn2x + A4sinhn2x +

+ Acoshn 3x + A6sinhn3 x,

b(x) = B1 cosn + B2 sinnix + B3 coshn 2 + B4 sinhn2 x +

+ B5 coshnS3x + B6sinhn3x,

¢(x) X C1 cosnIx + C2 sinnjx + C3 coshn 2 x + C4 sinhn2 x +

+ Cscoshri3x + C6 sinhn3x.

Proceeding as we did with (65), we can show that

A1 = R1 C2 , A2 z - RIC1, A3 - R2 C4 , A4 = R2C34

A5 = R3C6, A6 = R3C5 , B1 a SIC1 , B2 - S1C2,

B3 = S2 C3, B4 = S2C4, B5 a S3C5 , B6 = S3C66
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where

R1=~~~ (r 1 A)[ 6 - c8 -(c 4 c5 + C7 ) ni~

2 (n2/A2) (c4c6 - c8 + (c4 c5 + * nl

3 c - C8 +* (c4 cS + Cn1

S1  = A- r c7  4 + c c c ')n2  c c I t]
1 flc~i +(C4 + cl - 2 .

S Ac1 c 4)n 2 - c~c]
2 = 2 icc7n2 Cc4 '+ clc 8 - c2c7)n2 2-

34 273 28

1 S ~f1 - 1 + 6  2 c 5) 1  2 6c

2 ClC nl4 + +1 c+ C1 C6  n c 2cr1
A3  c1 Sn 3 1+ c 6  2 C 2 C3 + c2c6 ,

Therefore, (73) becomes

w~x) = R l(C 2 cosnlx - cl sinn 1x] + R 2(c4coshri2x + c~sinhri 2 x] +

+ R 3(C 6 coshri 3x + c5sinhri3x],

Op(X) S S1[Clcosrjlx + C2s innlx] + S 2r[Ccoshri2x + C4 sinhn2x]

+ S rc~coshn3x + C6 sinhn 3x],

=Ccosn x + C sinr)2 x + G coshrn2 + C4sinhri 2 x +

+ Cscoshn3x + C6sinhnix

(74)
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Invoking the first three boundary conditions in (67), we can

reduce the number of cornstants in (74) to three:

w(x) -, R1R2 (coshn 2 x - cosnlx)C4 + [RI(S 3 - SI)sinnlx +

+ R2 (S 3 - S1 )sinhn2 x + (S1 - S2 )R3 sinhn3 x]C5 ÷

+ R1R3 (coshn 3x - cosnlx)C6.

'(x) = (S2 R1Sinhn2x - S1 R2 sinn1x)C 4 + [Sl(S2 - S3 )cosnlx +

+2(S3 - S1)coshn 2x + S3 (S1 - S2 )coshn 3x]CS +

+ (S3R1sinhn 3x - S1R3sinnlx)C'6

O(x) = (R sinhn2x - R2sinnix)C' * "(2 - S3)cosnlx +

+ (S3 - S1)coshn 2x + (S1 - S2 )coshn 3 x]C5 +

+ (Rlsinhn 3x - R3sinnlx)C6,

where we have set

C4 - RIC4, C6 = RIC6 Cs - (S1 - S2 )C .

The frequency equation is now derived by inserting (75) into the

last three boundary conditions in (67). In the usual manner, we

again obtain (70), where now

A 11 = R1R2 (coshn 2 - cosnl),

A12 = Rl(S 3 -S 2 )sinn 1 + R2 (S3-S 1 )sinhn2 + (S 1 -S2 )R3sinhn3V

A13 * R1R3 (coshn 3 - cosnl), A2 1 ' S2RIsinhn 2 - SiR2sinnl,

A2 2  S1 (S2 -S 3 )cosn 1 + S2 (S3 -S1 )coshn 2 + S3 (Sl-S 2 )coshn 3 ,
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A2 3 a S3 RIsinhn 3 - S 1 R3 sinnl, A3 1 - Risinhn2 - R2 sinn1,

A3 2 = (S 2 -S 3 )cosn 1 + (S 3 -S 1 )coshnI2 + (S 1 -S 2 )coshn 3 ,

A3 3 = R1sinhn 3 - R3 sinn1,

lExpansion of the determinant in (70) leads to the frequency equation

2RIR2Y23y31(1-cosnI coshn2)sinhn3 + 2RRR3Y12Y31(1-coshr2

coshn 3 )sinnI + 2R 1 R3 y1 2y 2 3 (1-cosn 1 coshn 3)sinhn 2 +

232 2 312 2 )sinn1 sinhn2 sinhn3  0,1 R123 - 3Y12 2 312

(76)

where

Y2 3 =2 " S 3 0 Y3 1  3 " S Y2 S " 2 .

2 2 2

then we set n2 n- 2 With the identities

sinh (i = i sin T, cosh (iv) c 2

we can now express (76) in the form

2R I R2Y23Y31 (1-cosnl cosnsinhn3 + 2T2 R3712Y31 Cl-r-osn2

coshn 3 )sinn1 + 2R 1 R3 Y1 27 (l-cosn1 coshn 3 )sinn2 +

+ (R 1 Y2 R3Y1 + R 2 Y 1 )sinn1 sinr;2 sinhn 3 0

(77)
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where

-4 -clcSn- (1 + Clc + c c )n + cc
2o 1 cer1i6 2 S 2 2s6,

R 2  nd [c e hc (c h + C )2 2n 2 46 a 8 e 4t 72

-4 -2
2 2 cd 1 C 7r (c 4n+d 4 1t8 vu dC7 ije'2  c2 f 83

~'2 S3Y S -2

Y2 '2 312 1-2

For a certain set of values of w 2 say w2, n re2e3aedut the

left aide of (76 or 77) will vanish. In the numerical work we assign

value to w and compute the rn's (i.e., the otined)from (63). The

2
value of w and n. are them inserted into (7y6 or 77). We evaluate

a new value is assigned to w oand the process is repeated until a

value of wthat causes the left side, of (76 or 77) to vanish is

found.

NUMERICAL RESULTS

Sun [1] compared the dispersion curves obtained frog.7 the effective

modulus theory and the microstructure theory for laminated beams, using

the following numerical valuos for the parameters:

y - 100, 0 a 2, n = 0.8,

= 4.8, V1 W 0.2, V2 = 0.35.

(78)
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IiThe values of n and C given in (78) correspond to a composite beam

consisting of five stiff layers and four soft layers. We shall also

use these values here as well as other values of , ie. the number

of layer pairs in the composite will be varied.

The numerical results obtained here from the microstructure

theory are compared with the corresponding results obtained from

the effective modulus theory (see the Appendix), which is comprised

of Timoshenko beam theory, with effective moduli and density,

including the effect of a uniform axial compressive load. For a

two- phase composite medium of the type under consideration in this

investigation, Sun [1] assumed the effective Young's modulus,

effcctive shear modulus, and effective mass density to be

SE = nEI + (l-n)E2 , r = Ul + (l-n)'i 9 ,

0 = noI + (l-n)P2,1

respectively.

-r he Hinged-Hinged Beam

The critical value of the buckling parameter X and the natural

freiuencies of vibration are computed from (57) for a hinged-hinged

beam. For a compressive load P applied in a conservative manner, we

may calculate the value of Xcr from (57) by setting the frequency

parameter w equal to zero and n=l in (56).
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In Figure 2, the variation of the critical load coefficient,

Acr' is plotted against the depth-to-length ratio, ý, over the range

0<V<0.2. The corresponding results obtained from the effective

modulus theory (see the Appendix) are also shown. The microstructure

and the effective modulus theories are in rather close agreement for

relatively long beams. However, as the values of ; increases, the

values of Xcr as calculated from the effective modulus theory decrease

relatively slowly, whereas the values as computed from the microstruc-

ture theory decrease very rapidly. At ; - 0.2, the microstructure

value is approximately 38% of the effective modulus value. The effect

of increasing the number of layer pairs is also shown in Figure 2.

Increasing the number of layer pairs beyond twenty has a negligible

effect on the value of X * The values of X for the beam consistingcr cr

of only five stiff layers and four soft layers are only a few percent

greater than those for a beam consisting of a large number of layer

pairs.

Eq. (57) may be considered as a polynomial of degree three in

2W . Hence, for each choice of the integer n, (57) will yield three

braaches on a frequency plot, and these branches may be labelled the

(i) flexural, (ii) thickness-shear, and (iii) microstructure rotational

branches. Since this third branch is associated with relatively high

f-equencies, we shall concentrate our attention in this study on the

more important flexural and thickness-shear branches. In Figures 3-5,

the variation of wn with 4 for the first three flexural modes (n=1,2,3)

with X = - 5,0,5, is plotted for a beam made of five stiff layers and
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['igure 2. Variation of the critical load coefficient X , with
depth-to-length ratio c for a hinged-hinged eam.
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four soft layers. For small values of t, i.e., relatively long beams,

the effective stiffness and microstructure results are in excellent

agreement, however as the value of ; increases the microstructure fre-

quencies are considerably less than the effective modulus frequencies,

the magnitude of the effect increasing with the mode number n. Is is

to be expected, the presence of a tensile load (negative X) tends t

increase the natural frequency, whereas a compressive load (positive A)

tends to decrease it relative to its value in the absence of an axial

load.

In Figures 6-8, the first three flexural frequencies for A = 0

are again plotted, however now the effect of the number of layer

pairs on the frequency is demonstrated. An increase in the number

of layer pairs tends to decrease the value of w , the difference

becoming more pronounced as ý and the mode number n increase. For

sufficiently small values of 4 the effect of increasing the number

of layer pairs is virtually negligible. In addition, increasing

the number of layer pairs beyond twenty has very little effect upon

the values of the wn's.
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Figure 3. Variation of the fitst flexural frequency w(n=l) with the
applied load parameter X and the depth-to-length ratio •
for a hinged-hinged beam.
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Figure 4. Variation of the second flexural frequency w(n=2) with X
and ý for a hinged-hinged beam.
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In Figure 9, the lowest thickness-shear frequency is plotted

as a function of ý. In the range JXJý5, the calculations performed

here were virtually insensitive to the values of A. The effective

modulus theory leads to values for w that are again greater than

the thickness-shear frequencies computed from the microstructure

theory. Based upon the microstructure theory, the frequencies

for the first three thickness-shear modes were determined, and

their variation with 4 is shown in Figure 10.
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The Clamped-Clamped Beam

The critical values of the buckling coefficient X are calculated

from (72). In Figure 11, the variation of A is plotted as a func-cr

tion of ; over the range 0<40.2. Results of the microstructure

calculations, (72), and the effective modulus calculations (see the

Appendix) are shown. For very long beams both theories predict

essentially the same values for A cr but as I increases, i.e., as

shorter and shorter beams are considered, the microstructure theory

predicts much lower values for the critical load coefficient than

does the effective modulus theory. In fact at ; = 0.2, the micro-

structure value for Xcr is approximately one-sixth of the effective

modulus value.

Using the frequency equations (76) and (77) in conjunction with

the characteristic polynomial (63), we have computed the frequency

parameters wn, n=1,2,3, for the lowest three modes in a clamped-

clamped beam. These rewults are shown in Figures 12, 13, and 14.

It is evident that the values obtained from the effective modulus

and microstructure theories agree only for small values of ;. For

c>0.02 the respective curves diverge, and the values of .i predicted

by the microstructure theory are conside.ably less than the correspond-

ing values computed from the effective modulus theory. In order to

show the effect of initial tensi3e or compressive axial loads, we have

plotted the values of wn as functions of 4 for A X - 150,0,150 for the

effective modulus theory and for A = - 50,0,50 for the microstructuc

4

T. . . .. .. 48



• ~ ~400 ...... .....

EFFECTIVE MODULUS THEORY

300

io
C', 200 -MCOTUTR

100-

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0,20

Figure 1i. Variation of the critical load coefficient X withj the
depth-to-length ratio C for v clamped-clampe• beam.

49



12

X-150
I 1

I0
EFFECTIVE X=

MODULUS
9 THEORY

44-150

X6•150
A6.

5

4

3 X5

2!; 2L._.MICROSTRUCTURE

S~THEORY

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 OJ8 O.z0

Figure 12. Variation of w1 with ý and X for a clamped..clamped beam.

.so



I

theory. Indeed, it should be observed in Figure 12 that for A = 50

the value of the frequency parameter w, starts at zero for -= 0 and

increases to a maximum as 4 increases and then decreases to zero as

4 increases to C = 0.1945. Since wI = 0 for X = 50 and r = 0.1945,

this value of 4 corresponds to the value oj the critical buckling

coefficient for a clamped-clamped beam, the length-to-depth ratio

of which is 0,1945 (compare Figure 11). The curves 1or a2 and w3

with A = SO show similar characteristics but approach zero at

higher values of 4.
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CONCLUSIONS

Based upon the numerical results reported herein for the buckling

coefficients and natural frequencies of vibration of a laminated beam

subject to either hinged-hinged or clamped-clamped end conditions, it

is evident that the effective modulus theory, i.e., Timoshenko beam

theory for a transversely isotropic bar subject to initial axial stress,

appears to be reliable foy engineering design purposes only in the limit

of fairly long beams. The extended version of the microstructure theory

that was developed and investigated in the present study predicts much

lower buckling coefficients and natural frequencies in laminated beams

"with depth-to-length ratios of moderate size, the magnitude of the

effect being more pronounced in the case of the clamped-clamped beam.

In view of the dispersion curves reported by Sun (1], this was to be

expected.

Based upon the effective modulus theory, the results reported in

References (6]-(9] for buckling coefficients and natural frequencies

indicated much lower values than those predicted by the classical

Euler-Bernoulli beam theory, which does not account for the disparity

in the longitudinal and transverse elastic moduli. Indeed, the results

become more and more divergent as the ratio of the transverse Young's

modulus to the longitudinal shear modulus, E/G, increases, the effects

being particularly pronounced when E/G exceeds, circa, 50. The numeri-

cal results presented in this report indicate still lower values for

the buckling coefficients and the natural frequencies, even though the

54



E/G ratio was only slightly greater than 3. Consequently, the validity

of adopting a transversely isotropic beam to model a laminated beam

must be seriously questioned and challenged.

It is currently being proposed at the Watervliet Arsenal that an

experimental study of the buckling and vibrational response of

laminated beams and plates be initiated. Such a study will provide a

oasis for rendering further judgment on the ranges of applicability of

both the microstructure and effective modulus theories.
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APPENDIX

EFFECTIVE MODULUS THEORY

"With the aid of (16)-(19), the fimdamental differential equations

for the effective modulus theory may be derived in a very simple

*>ishion. In view of the studies reported in [61-[9], it is known

that the extensional deflection U(Xl,t) in the beam is uncoupled

from the transverse deflection w(xl,t) and the rotation ,(Xl,t).

Hence, the function u(xl,t) may be neglected. Thus, we replace

(16)-(18) by

U = i -(Eil I + <zA(w 1 - 2

(A-1)

1 (i$2 + Aý21'
2 (A-2)

a,1 l€2 + Aw2

(A-3)

respectively.

Therefore, application of (19) in the familiar manner leads to

the following equations of motion:

ciibh(w 1 - 1 - Pw - pbhw 0, (A-4)

CE-P/A)Ih ý, Il + KiA(w, I - P- = 0 0 (A- 5)
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with the boundary conditions

(1) either KPA(wi - + Pwl = 0 or 6w = 0

(ii) either (E-P/A)1b0,l = 0 or 6ý - 0

(A-6)

on 0,x.. We have set a,, = P/A.

Setting xI i 2x, * = F/i, and t = (P2 1 2/ T. we can oxpress

(A-4) and (A-S) as follows:

(b, - Xb2 )w" (x,t) - bT' (x,r) = blw(x,), A-7)

(b* -)b 1 )(x ,-r) + b1C(w' b * b t6 (x,, -AC)10 16(A-8)

where bl, b2 , and b 1 3 are given in the text and

224 2
6C2 (l+cd) . C • l+d

bl0 = , =b1  -= b 16
12K (l+d) 144K 12K l+d

For simply-supported ends, the boundary conditions for the beam

are w = P = 0 at x = 0,1. If we insert

w(x,r) = A sin nnx cos wT, *(x,T) - A2 cos nrx cos WT

into (A-7) and (A-8), we obtain, after some manipulatt.on, the

frequency equation

b b*. 4  [bb b 3 (nn)2 [bbo+ b b6" (bl3b11+b2 b*6  
2 +

13 46 i1  13 1310 1 16 131 1 6

(ni)2 [(n) 2 (b1 - Ab1l)(b 1 - Xb2)-Xblb2 ] = 0

(A-9)
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The frequencies for the flexural and thickness-shear modes may be

obtained from (A-9) with the aid of the quadratic formula. Numerical

results calculated in this manner have been plotted in Figures 3-5

and 9.

In the case of buckling, the value of the critical load

coefficient is obtained by setting w-0 and nul in (A-9):

2?9*

'2(b 0 " Xb11 )(bl- Xb2 ) - Xblbb2  0.

It is easily shown that

21f2 b*lb t (b b + -

11 2 cr b2b10  b1 1 1  b1b2

- [•n2 (b2 blo+ blbll) + blb2]2

4 *4b *o 1/2
4fb1 b2 b10 b11

(A-in)

Numerical results derived from (A-10) Nave been plotted in

Figure 2.

Let us consider the buckling and vibration of a clamped-clamped

beam separately. In the fornier we may assume that w and " are

independent of time T, so that (A-7) and (A-8) reduce to the follow-

ing pair of ordinary differential equations:

(bI- Xb2 )w"(x) - bl'(x) = 0, (A-11)

(bo )b 1)$"(x) 0 b1 [w1(x) - (x)] (A-12)
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The solutions of (A-11) and (A-12) are easily found to be

O *(x) = A1 cosAx + A2 sinAx + A3,

w(x) = A4 + A3x + (c/A)A 1 sinAx - (c/A)A2 ccsAx,

(A-14)

where

c bl/(bI - A 2 Ab b -bb 2)(b2- Xb*).

The boundary conditions for a clamped-clamped beam are

=w = 0 at x = Ol.

(A- 15)

Substitution of (A-13) and (A-14) into (A-15)leads to a system of

homogeneous algebraic equations in the Ai, i - 1,2,3,4, which, in

the usual fashion, leads to the equation

sinA = 2(c/A) (1-cosA),
(A-lb)

from which we can calculate the value of the critical load coefficient.

Using the trigonometric identities

sinA = 2 sin (A/2) cos (A/2), cosA r 1 - 2 sin (A/2),

we can verify that (A-16) leads to

sin (A/2) - 0 and tan (A/2) = A/6c.
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The smallest value for A., is found to originate from sin (A/2) 0,O

i.e., A = 2fr. Now in view of the definition of A2 above, it is a

straightforward matter to demonstrate that A) is to be computedcr

from

b 2 b* b 2 *bb cr lbl + bb b /7b)bA = 0121'll 210 1 2 cr 110

NumeriLal results obtained from this expression have been plotted

in Figure 11.

To determine the frequencies of vibration of a clamped-clamped

beam, we consider (A-7) and (A-8) subject to (A-IS). In3erting

w(x,T) = w(x) cos WT, *$(x,T) = *(x) cos WT

into (A-7), (A-8), we have

(bCO - Xb2)w" (x) - bl•' (x) b 13 bl•2(x),
- (A-17)

* * *2cb - (b)€" (x) + b, [wt (x) - *(x)] = - b W10 11 (A-18)

If we introduce a new dependent variable P(x), according to

i ¢(~*x) = •()

then, without loss of generality, (A-18) can be replaced by

* * * 2
(b10 - bll)"1 1 (x) + bI [w(x) - ¢(x)] = . b 16w •'(x),

whence

hbw(x) - ( )b - Xb )Vbl (x).
16A-19)
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Substitution of (A-19) into (A-17) leads to

• (x) + p2 ý,,(x) - P P(X) 0,
(A-20)

where

P 2 - 2 /F4 andp.F/4

b2b
Sbb bb,l 13 ~ 2 ,r2 b b 11 2*

"jJ- - * *~Lij •2 P4 CL 
J2).0 ,l),= 1 UI /b1.Di.S

0+b b* bA b U11
16 D 16

P (bl -Ab )fl* - bn b /l

(A-21)

whrwith ai = 1,2,

with

bb " 2 b2b(b = - oX bll) + b 2t C bb 2 , C3b =-LI.
Sb16S16 

b1

c4 = (b1  Ab2 ) * - Ab

3 b2b
c. = Xbb + I L (0 Xb (2 b - Ab2 )

16
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It is now important to observe that

6" :'0 for S1 > 0
I

and tha:

62 0 if O<fl<
2

> 0o if I <a.
TftotrA-23)

"lie significance of the si•-n of 62 in the two frequency ranges rests

in the form. of the solution of (A-21). By the principle of super-

position in the theory of differential equations, we can replace

(A-21) by

(D2 + 62) WX = 0, (D2 + 6 2 )2(x) = 0,
2 (A-24)

with

SW(x) + ýl(x) (A225)
• (A- 25)

It is evident from (A-23) and (A-24) that ý1(x) will always be given

by

Y x1(X) = A , cos &1x + BI si n 61x, (A -26)

whereas ý 2 (x) will have the form

$2(x) = A2 cosh 7'2x + B sinh T2x, 0 < .Q < 1,
f2 22 2 (A-27)

with 2 "--62 or the form
2 20

2(x) + B2 sin 6 x, 1 < $1.
A2 cos 6 x 2 (A-28)
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In terms of our present notation, the boundary conditions

(A-15) can now be expressed as

Iw = 4' 0 at x = 0,1.
(A-29)

The second condition in (A-29), in view of (A-2S), leads to

4I + ý2 - 0 at x - 0,1.
2' (A-30)

By virtue of (A-24) and (A-25), (A-19) becomes

62

w(x) = 1 - n 2 + .1 (b - Xb*bI) (x() +
b1

32

+I -112 + 6 blO- Xb*) Y,(x).
b 1 10 11(A-31)

Thus, the first boundary conditions in (A-29) become

SFI1 + F2 ?2 = 0 at x = 0,1,

where

Fa = 1 - S12 + (62/b ) (bl - Xbll), a = 1,2.

Consequently, we have astablished that the boundary conditions for

the clamped-clamped beam may be expressed as (A-30) and (A-32).
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Case I. 0 < 4 < 1. In this case 62<0, so we set 6 - 62
22 2'

Then

: 2 = I - 12 - (6 /bl) (b1 0 - Xb1 1 ).

Substitution of (A-26) and (A-27) into (A-30) and (A-32) leads to a

system of homogeneous algebraic equations in the coefficients Aa, Bat

a =1,2, from which we can derive the frequency equation

2 PF6 (1-cos 6 cosh T-) + (F 2  
- jsn6 ih 0

1212 1 " 12 2  ) 1 s 2

(A-33)

Case II. < S1. In this situation, (A-27) is replaced by

(A-28), and the analysis of the previous paragraph is repeated.

Because T2 = - 62 (62>0), we have T = is6 i = (-l)1/2 and
2 2 2 2 2'

Ss= + 1. Now

F2  1 - '+ (6 /bl)l(b* 0 X )

and

Scosh 62 = Cos 620 sinh 62 = is sin 62

It is next easy to verify that (A-33) becomes

2FF2)6 2(l6 cs cO s62)- (F162 + F262)sin6 sin6 0
12.1 21 2 1 2 2 12

(A-34)

for 1 < S1. Upon computing the value of fl from (A-33) or (A-34), we

can determine w from

w= (bi/1 6 ) 1/2
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