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INTRODUCTION

Recently C.«T, Sun [1] developed a mathematical theory for a

continuum model with microstructure for laminated bezms, These

laminated beams were assumed to con:ist of many parallel alternat-

ing layers of two homogeneous, isotropic elastic materials, Each

constituent layer was treated as a Timoshenko beam, and expressions
for the kinetic and strain energies, as well as the work done by
external forces, were derived. The smoothing technique, which had
previously been used so effectively in deriving a general field
theory for laminated composites [2-5], was applied, and the equa-

tions of moticn and associated boundary conditions were derived from

Hamilton's principle, To test the accuracy of the resulting theory,

the dispersion curve for flexural waves in an infinite laminated
beam were determined from (i) the exact theory, (ii) the new theory,

and (1ii) the effective modulus thoory for a composite beam consisting

of five stiff layers and four sort layers, It was found that the

curves obtained from the exact theory and the microstructure theory

were in cxcellent agreement over the entire range of wave-number

considered, By contrast, the effective modulus theory exhibited

agreement only in the very low frequency range,
The effective modulus theory treats the laminated compositu ss

a homogeneous but transversely isotropic medium, Based on this point

of view, Brunelle {6-8] has investigated the stability and vibration
characteristics of trangverscly isotropic Timoshenko beams umderx

initial stress, He showsd that thz values of buckling loads and
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natural frequencies of vibration are strongly dependent upon the nature
of the boundary restraint and the relative degree of anisotropy, i.e.,
the ratio of the longitudinal Young's modulus to the transverse shear
modulus, Decreases in the values of the buckling coefficients and
natural frequencies of vibration relative to the classical valucs,
computed on the basis of the Euler-Bernoulli theory for besms, were
observed to be particulasly pronounced in the case of the clamped-
clamped bLeam,

The objective of the present investigation iz to extend Sun's
microstructure theory for laminated beams [1] 50 as to include the
effect of initial stresses and to solve a pair of stability und free
vibration pvohlems within the framewsrk of the resulting theory.,

The numerical results for bucki:i »~ coefficients and frequency para-
meters are compared with Brur.zile's results {6-9] daorived from

Timoshenko beam theory fox transversaly isotropic matcrials,

STATEMENT OF THE GENERAL PROBLEM

We consider an elastic solid of volume V bounded by a finite
surface S, Displacements are prescribed on the portion S, of the
surface S and tractions are applied on the remaining portion Sie
Initially the body is assumed to be at rest and is subjected to a

state of initi.) stress o.

i i, j = 1,2,3, which arises from con-

servative forces .pplied on the surface ST of V, We assume that

the perturbed and linearized field equations [10,11] ave
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where Tij denotes the perturbed state of stress, u, is the displace-

ment vector measured from the undisturbed state. F; is the body force
field per unit vclume, p is the mass density, and nj is the unit
exterior normal to the surface S, The quantity B is z parameter
associated with the magnitude of the externally applied surface
tractions, and the p; are the components of perturbations of the
applied surface tractions on S.. In (4), the general stress-strain
relationship is given., The familiar summation convention for
Cartesian tensors is employed in (1)~-(4), commas denote spatial

derivatives, and dots time derivatives.

THE VARIATIONAL FORMULATION

In order to derive a form of Hamilton's principle that will
generate (1)-(3), we multiply (1) by Sui and form the integral of

the volume V of the result:

[ vi5,5%039Y ¢ 8] gy ) sougeV + [Fy8u;dv = Jou, fuyav,
v v Vv b
(5)
Application of the divergence theorem to (5) yields
f

1
g (Tij + Bojkui,k)“jéuids - 66(W % I'BOjkui,kui,j)dv +
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v = [ pu, bu,
+ 5 F, Su, dv { pu Su, dv,

(6)
where we have exploited the symmetry properties of tij and a,

1]
to write

W = (3ls/aeij)deij = Tijaeij = Tijdui.j

0 u, . = Lé(o
2

30,k 3,0, 50

with W denoting the strain energy density, Furthermore, if we

assume that the body force vector can be represented as

Fi = fi +aijuj, fi = fi(xat)s aij(x) = aji(x)'

then

1
8 = $ - LU, U, S
Fi ui (fiui + 3 ai3u1u3)

llence, in view of (2) and (3), (6) cun be expressed as

1 1
§ [ [W+ =80, u, - £y - 5

AR T WIS Bl i iylav +

aijul 5

+ { pu. bu;dv = Gé Bp, u, dS,

T

@)
Forming the time integral of (7) and integrating by parts in the

term involving uy 6ui, we obtain

Y
s [ “Ldt = o,
ty (8)
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where

Eq. (8) represents Hamilton's principle associated with the
problem (1)-£3). In conjunction with (9), (8) can be used
effectively for the purpnse of deriving plate and beam theories

when initial stresses are present,

SOME PRELIMINARY CONSIDERATIONS FROM BEAM THEGRY

To derive an elementary theory for extensional deformations
and a Timoshenko theory for flexural deformations in beams, we

approximate the displacement field as follows:
ul(x.t) = U(Xl,t) - x2¢(xlat)a uz(xnt) = W(Xl,t)
ug (x,t) = 0,

(10)
where the x, - axis coincides with the axis of the beam which
passes through the centroid of every cross-section and the X, =
axis denotes the transverse direction. Here u is the longitudinal
deflection of the axis of the beam, w the transverse duflaction,
and ¢ the rotation of a section in the x,x, - plane, The sirains

computed from (10) are easily shown tc be

1
€11 SU " X0y fp Ty M- d), ez =eyys

(11)

€22




In the usuai manner, we shall ignore the relations ¢, 6 = ¢€,, = 0 in

22 33

favor of setting, for an isotropic material,
Typ = (2r *+ N)egp + A(e11 + 533) = 0,
Tgg = (2u + >‘)€33 + X(en + 822) = 0,
Thus, it follows that

€, = €33 = - Aell/Z(A + ), €.: = uell/(u + 1),

ii
(12)
The expression for the strain energy is
N = 3—1 € HE; :E3 3 +-]4-)\€..5..
2 ijij 135713 7 7 "Miivij
_ 2 2 2 2 2 2 1
= ule]y * €5y * €33) * 2ulepy + €13 + €55) + 3 Aey €.
(13)
Substitution of (11) and (12) into (13) leads to
1 2 2
W = =-Eef, + 2ue
2 11 12 14)

since E = u(2u+3X)/(u+d), E being Young's modulus., In the development

of the Timoshenko beam theory, it is customary to introduce a shear

correction factor x into (14)., Hence, we replace eiz by xcfz, S0 that
(14) becomes

W = %-Ec%l + Zum:%z,
or, by virtue of (11)

W= .zl.r.(uf1 - 2u g0 0 xg&fl) s %—-xu(w.l - ¢)°. )
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3 An integraticn of (15) over the cross-sectional area A of the beam
g% yields

A

k! B 1 c02 o 1oy, o1 Y

: U { WaA = 5 EAS) + S EISS, + S it ) - 95,

(16)
~"

E where I = f x%dA and f xsz = 0 since the X - axis passes through
5 I A

E the centroid of the cross-section.

‘ﬁ In a similar fashion, for the kinetic energy density, we have,
A in view of (10),

. l . . . l_ o2 B . 2.2 '1- '2

A 7 > il = p(u 2x2u$ + x56°) ¢ = ow

?3 § and thus

.

.

b LA | [ «?

s T= f -l-ou.u.dA = -;--r>(t\u2 + I$z + AWS),

;“ A 2 11 2

(a7
i

& Furtherniore, we can also shcw that

b

o . 2 2 2 2 2 2
3 %YLK, 5 T S, Y, g ) 9l Y g g )

2 2 2 )
¥ O33(u],3 Uy g g g) +20,{u) Hup

+

) + 20

YUy a¥2,1 * U3,0Y%) 13M),3%,1 * Yg,3%,;

*u3,35,1) 2930050y, Uy, 58,0 * Us, 3¥s o)

OB LON DGR bt I ok A Ero i T et S P RO S

If we assume that all aij = 0 except 0y,, then, in view of (10), we

have

’

ey S SR

- 2 2 2 2,2 .2
ojkui,kui,j °11(“1,1 + “2,1) = 011(“,1 2x2u’1¢’1+ x2¢.1+w 1)
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and

1 1 2 2 2
U =3 £°5k“i,k“i,jdA =z oy (Auy v 1oy ¢ Ay,
(18)
1f fi = aij =p; = 0, then, using (16)-(18), we can reduce
(9) to
!' *
L= @-v-uvha,.
1
o
(19)

ENERGIES FOR A LAMINATED BEAM

In this section we intend to extend the theory developed by
Sun [1] for laminated composite beams to include the effect of the
initial stress 91" From this theory we should be able to compute
buckling loads for such beams, We consider a composite beam con-
sisting of a large number of parallel alternating layers of two
homogeneous, isotropic elastic materials (See Figure 1). We assume
that the cross section of each layer is rectangular and of width b,
The depth of the cross-section shall be denoted by h, We shall
designate the properties of the stiff layer by the subscript 1 and
of the soft layer by the subscript 2, The thicknesses of the layers
are d; and dz, and the Young's moduli, shear moduli, and the mass

densities for the two types of constituents are denoted by E;, is Py

and E,, u,, py, respectively. In addition, we shall use a superscript

k to refer to the properties of the k-th stiff and soft layers,

11
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According to (16), the strain energies per unit length in the

k-th stiff and soft layers due to bending, shear deformation, and

extension are

kK _ 1. k 2, L. .k 42,1 k k.2
5 EA (g ,) ¢ 5 B (0 7 T A oy - )

U = 2
(20)

k _ 1 k 2,1 k 21 k k\2

Uz = 3 Bty (ug, 107 3 Bp1 (8, ()7 2 kaiaho Oy ) = )
(21)

respectively, where, as is evident from Figure 1,
3

A, = bd , I“ = bd /12, e = 1,2,

(22)

By virtue of (18), the potential energies per unit length due
to the initial stress are
* o L k 2 k 2 kK |2
Uyt = gonlAy @y )+ L0 D7+ A0 )]
(23)
* . 1 k (2 k (2 k 2
Uy = 2o lR(uy 7 + 108 )7+ Aplwy 10714

2
(24)

Similarly, the kinetic energies per unit length for the k-th

stiff and soft layers are

k 1 «k.2 ok.2 o k.2

1 (25)
. k1 oky2 k(2 . k.2

resnactively, in view of (17).
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Sun [1] introduced an additional approximation on the extensional

components uﬁ, namely,

k
u}; = ")'u w(xlot)p a = 1,2,

27
where w(xl,t) denotes the gross rotation of the composite beam and
yﬁ the coordinates of the centroidal axes of the k-th stiff and soft

layers., Insartion of (27) into (20)-(26) leads to

k . }_ 2 k .2 1 k k.2
U, EgA (ya) w o‘10‘(%.1) + E-KauaAa(wa.l - 4,07
(28)
% 1 k.2 2 k .2
Uy = '2"011 [Au(ya) w,l +1 Wa 1) * Aa(wu,l) 1
(29)
1 k\ 212 ok, 2 ok 2
Ty =50, (A 0TV + 16" + A ()],
(30)

Under the assumption that there are n pairs of stiff and soft

layers in the composite beam, the total strain, kinetic, and potential

energies per unit length can be expressed as

* n k
u, T, U) = kil Zl wk, %, uiky.
- o=

(31)
Still following Sun [1], we introduce a smoothing operation through
which the summation over k in (31) may be approximated by the
following weighted integrations over y:

. h/2
1,0 e 2L (Uys T, USDdy,
h/2 d 4, ¥

(32)

14




k

k
1 and y

where y , are to be re, iaced by y and the superscript k is

deleted, Eq. (32) is also valid for the ccse in which the number

of stiff layers is not equal to the number of soft layers,

Inserting (28-(30) into (32), we obtain

2

U= -2" 5(,21 {E i (%;1) * Ka“aAa(wﬁ,l'¢a)2+(h2/12)p A W 1“
(33)

* 2 2

vt = = E’a.-§1[(h /12)A, v + 1o 1) Y 1,
(34)

o1, ¢ . 22 2 12

T = E-Euzl[qumwa + o lg8s + /12)p 8 0°T,
(353

where § = h/(dl#dzj.

The number of dependsnt variables appesring in (33)=-(35) can be
reduced because the continuity conditions at the interface between
stiff and soft layers introduces two relationships involving wz, ¢k
and ¥. In terms of the discrete variables, the continuity of

displacements at the interface of the k~th pair of layers leads to

) Bt RNAI M A A e n et w8 oo ¢ v

kK _ .k kK ok 1, %
wl = W, and u ¢ d1¢1 U, - §'d2¢2
or
uk_uks}uﬁd@k
z 12 an) @ *

(36)

e
e ¢ 5 s S




But in view of (27), (36) becomes
G-yl T oad
Yl"z 20.:1 a’q?

and since y& = yk + %-(d1+d2) this iast result reducss to

2

Vv = n¢'{ + (l-n)¢§.

(37)
where
n = d./(d.+d)).
1M1 72 (38)
Applying the smoothing operation to (37), we have
‘p = ﬂ¢1 + (l‘n)¢20
Solving for ¢2, we find
¢, = Wend)/(1-n),
(39)

where we now set ¢1 = ¢, Therefore, substitution of (39) and L

W, 2 w into (33)~(35) yields

[ =
n

1 2 .1 2, 1 2
A A UL 7 Ly [nE +(1-n)Ezly7y +

2
E I
1 2°2 2, 1 (y=n¢)
Quen——-‘(‘p "TW )+-—£KuA [w ~-—-———‘}
e S ; 0)
4

« 1 2 1 2 .1 2 soh 2
v Ly p* 7o, Mt geopher * Ton? (W =n¢ 1)

31

u
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1 «2 1 A 2 72 o o 2
T = 5 E(P1AL*PR AW s = £p 11 4%+ ——-—-2(M)2 (b-ne) +

1 .
+ 3 Ty ey + (1=me,li,
(42)

where

A = bh, I, = bhd/12,
(43)

Hence, we have now completely prepared the integrand in (19) for

use with (8).

THE EQUATIONS OF MOTION

If we now substitute (40)~(42) into (19), we obtain

- (1 2 1 2 1 o2 .
Z - £ [3Eap" +58a50" v+ 58 agb -8 a6~

2 1 o, 2
& al + anA)w.1 + £ a3w’1¢ + L azlpw’l - 55(35*‘314“1:33,1‘

2 v

1 2 1
'2'€ 36‘1’ + & 38w¢ + £ 8.7 (1¢°11/E2)‘b.1¢’1 - 2 £ 312¢

1 2

(44)

where

a) = KuiAp + Kolphy = kb (uyd) + uady),
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where Ky = Ky

K unA,/(1=n) = xbuy(dy + dj),

KjHyAy = KaMyA./(1=n) = kbd)(4y = up)

plA1 + pzA2 = b(pyd; + pzdz)'

Ep0y/ (1-n)? + ME I /6 + (1-mE,R, /¢

(6/12) [Epdy(dy + dp)% + h2(Eydy + Epdp)],

ag/(1-n) = (/dy)eu, (dy + dy)%,

nEyI,/(1-n)2 = (b/12)Epdqdy(iy + dy),

nag = (b/dy)kuydy (d) + d3),

0212/(1-n)2 + npyI/6 + (1-n)pplp/E

(®/12) [ppd, (4 ¢ dz)"‘ + h¥(oyd) + padal],

nogla/ (1-n)2 = (b/12)ppdydy (dy + d)),

By I+ nEyly/ (1-m)? = (0/12)d% (Byd; + Epdp),
KAy + KanPughy/ (1-n)? = (B/d;)kd, (uyda * uzdy),
pyl; + nlopL,/(1en)? = (/12)d2 (ayd) + 0pdp),
L's + L/0-m? = ®/12)(d) + d) (W% + d,(d) + dp)i,

[+l (P = O/12)d5(d) + ),
(45)

= x = 0,822 for a rectangular cross-section,

18




é.

jf Insertion of (44) into Hamilton's principle (8) leads to the

§§ following system of displacement equations of motion in o<x1<z:

}‘_ .

~ (al + OllA/E)W.ll - 82‘1’.1 - 8.3¢’1 = a4w,

[ (46)

.

b aw ¢ (ag + a14°11)¢',11 - agy - a;(1 + on/Ez)¢.11+

%‘ (47)

e

agi = ag(l + 0))/E))¥ 1y + agh + (a1 + 235011)¢ 11 -

4 a VAT RS T D

,g 1 1 1 48)

?; with the boundary conditions

(1) either (a; + 0))A/E)W - 80 = agp =0 or &w=0,

b (ii) either (Ag + 2;4071)¥,1 - a7(1 + °11/EZ)¢43 =0 or &=0,
]

§: (iii) either (a;;+ a15°11)¢,1 - ap(1 + cll/Ezjw’l =10 or §= 0,

(49)

on xy = 0,2, If we set gy; = 0 in (46)-(49}, then iness equations
become identical to Sun's equations (45)-/50) in [1] in ths absence
of surface and end loads,

Let us now suppose that a compressive load P is applied along the

axis of the beam, so that o)A = - P, Then (4¢)-(48) become

(b =Aby)w" * (x,1)=F" (x,T)=b38" (x,T) = byaw(x,T),
(50)

19




W' (x,1) + Cb4-kb5)$5'(x.f) - bgﬁYX.T) - b7(1-1b8)3”'(x.7) +

+ bgF(%,7) = b1gb(x,7) - bycd(x,1),

(51)
bW (x,7) = by(1-Xbg)¥** (x,7) + bg¥(x,7) + (byg=3by )" (x,7) -

- b8 (x,1) = bygh(x,1) = byg¥ix,t),
(52)

1/2 -
where X = xllz, T = (uz/pzzz) / t, ¢ = 20, ¥ = L, primes and dots

now refer to derivatives with respect to x and v, respectively, and

p(r/m)2 ' b4 Hipd, 1+yd
A = et » Dl = = »
52 Ib Mo (d1+d2) 1+d
5 2
E,(mh/8)*  s(ng)” dily=ap)  d0r=D)
bZ = = R bS = = ’
12“’2 12x uz(d1+d2) 1+d

Eyd, (4 +dp)2h (Bydy ) 'cﬁnwwwg%f}

b =
4 126182 (d; +d,) 12 {1+d)
e /0% snig?
by = i [h2+d,(d)#d,)] = —— [148,(R) + B,)],
5 l44<u2£2 212 144x 271 "2

bg = (d) +dp)/dy =1+d, by = Eydidy/12cuye? = 68,850%/12¢,

by = /0212 = @)?/12, by = dy/d, =4,

20




with

14

b
15

16

(d1/£)2(51d1+52d2) 6(;81)2(1+ed)

12<u2(d1+d2) 12x (1+d)

E,(dy/0)2(mh/e)?  a2egdct

144Ku2 144«
dl(u1d2¢u2dl) ) d (y+d)
uzdz(d1+d2) 1+d
0 d1+ozd2 ) 1 + 8d
= ’
sz(d1+d2) k(1+d)
2 B
p,d, (d;+d,) +k% (0 d1+0dy) _ t2[82 (1+d) 2+1+40d]
2
12k2 pz(d1+d2) 12c (1+d)
2
dle ) 4 8182
2 - ’
12k2™ 12x
2 2.2
d1(01d1+02d2) ) 8-z (1+6d)
- »
12K2202(d1+d2) 12x (1+d)
EI/EZ’ Yy = ul/uz, d = dl/dZ’ g h/%,
hz/uz, 8 DI/DZ’ Ba = da/h’ 1,2,

21
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SOLUTION OF THE FIELD EZQUATIONS

The Hinged-Hinged Beam

We now consider the motion of a beam that is hinged at the ends

x = 0,1, According to (49), the boundary conditions are

w o= (bA-AbS)EW - b7(1-xb8)$W = b7(1-xb8)iﬁ = (byp=2b;)%' = 0

(53)

at x = 0,1, It is a simple matter to verify that the functions
w(x,T) = A} sin (nmx) cos wr, V(x,1) = A, cos (amx) cos ut,

$(x,7) = Ag cos (amx) cos wr, n=1,2,3,..,
(54)
satisfy the boundary conditions (53) identically. Substitution of
(54) into the equations of motion (50)-(52) yields the homogeneous

algebraic system

e~
]
>
"
(=}
-

(55)

where

]

_ 2 ? =
Azg = bjguw” = by, ~ (nn) (blo-xbll), u12 = a,; =n

Q2
N
7]

i

= a3 = by + (m%b;(1-bg) - byew?, o = nnby,

13 %31

(56)
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biaw? = ()20 <Aby),  agy = bygu? - by = @n)Z(by-rbg),
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If (55) is to have a nontrivial solution, we must require that

det (a;.) = O,
* (s7)

The values of the natural frequencies w, and of the critical load

parameter A .. (w=0) will be computed from (57).

The Clamped-Clamped Beam

For combinations of boundary conditions other than those of the
hinged-hinged c.-e described above, simple expressions of the form
(54) for the solution of (50)-(52) cannot be found. Nonetheless, we
can obtain the values of the natural frequencies and critical loads
for these more difficult cases by following a procedure described by

Jones [12], If we insert

w(x,T) = w(x) cos wt, V(x,T) = P(x) cos wr,

$(x,7) = ¢(x) cos wt,

into (50)-(52), we find the following set of ordinary differential

equations:

1
(=]
-

CWtx) +epk(x) = ¥t (x) - c ot (x)
WH(X) + cgb!t(x) + cg¥(x) - ca9''(X) 4+ cgb(x) = O,

c4w'(x) - 07‘1’”(’() + Cs"’(x) + cg¢”(x) & C10¢(X) = 0,

(58)
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where

2
¢y = bl-kbz, ¢, = byzu”, cq = bs, g = b4-xbs,
2
cg = bgulebg, ¢y = by(1-dbg),  cp = bg=byzu’,
Sy = b1o=M31s €0 = bigu? = byae

(59)

For the case of buckling, we set w=0, so that (58) reduces to
cwt(x) - v (x) - c¢'(x) = 0,
WH(x) + cg¥' T (x) + cb(x) - egbtt (x) ¢ cgd(x) = 0,

cdw'(x) - c7¢"(x) + csw(x) + c9¢"(x) + c10¢(x) = 0,
(€0)
where now

c, =0, Co = = b6, Cg = bg, S0 * - b12'

Since the equations in (58) and (60) possess constant

coefficients, we seek a solution in ti'e form

W) = AeS,  w(x) =B Y, 4(x) = Ce'N.
61)

Substitution of (61) into (58) yields the following homogeneous
svstem of algebraic equations in A, B, C:
(Cl‘i‘z + Cz)A - TB - TC4C = 0’

XA + (cXZ + c)B + (cg - eI = 0,

= 72 %2 -
CyAA + (cR c7A )B * (ch » clo)c C. 62)

24
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This system of equations will have a nontrivial solution provided that
the determinant of the coefficient matrix vanishes, Expansion of the
determinant leads to the following polynomial of degree six in %

Gicubic in X2y:

2
°1(c5C9 - c7)76 + [clcsc10 + ¢ (czc5 + Clcﬁ) + 2c4c7 +

2 2
+CCg = CyCy + 2c1c7c8 + cg]xn + [c2c6c9 * S (czcS + c1c6) -

2 2 2y .-
- 2c4c8 + c4c6 - Cicg ¢ 2c2c7c8 + cm]'x2 + cz(c6c10 - c8) = 0,

(63)
But with w=0, (63) reduces to

2
T'z{cl(csc9 - ¢:7)X'4 + [cl(csc10 * CeC + 2c7c8) + 2c4c7 +

2 &2y . 2
+ C4Cs + cglr2 + cl(c6c10 cs) 2c4_c8 + c4c6 + clo} = 0,
(64)
A numerical study of (64) has revealed that, for the range of
interest here (numerical values for the laminate's parameters are

given in the next section), the roots of (64) may be expressed as

‘x- = 0’ 0, : inl : nz’
?

>0, i = (-n!/?

.

i
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forms:

Consequently, the functions stated in (61) now assume the following

w(x) = Al + Azx + Ascosnlx + A4sinn1x + Ascoshnzx + A6sinhn2x,

v(x) =B

1 ¥ Bax ¢+ Bycosmyx + Bysinn)x + Bgcoshn,x 4 Bgsinhn,x,

9(x) = C; + Cyx + Czcosnyx + C4sinn1x + Cscoshnzx + C6$inhn2x.

(65)

2 ‘{.‘1":‘}( .,?‘,,‘ X

The eighteen constants Aj’ Bj, Cj' j=1,2,3,4,5,6, in (65) are
interrelated. Substitution of (65) into (60) yields a set of a dozen
relationships among these coefficients, It is a straightforward

algebraic exercise to demonstrate then that

"~

A_=RC A

2 31 174°

Ag = R,Coy By = S.C

10

o
L]

4™ 51Cq Bg = - S,Cc,

=~
-
H

-1 2
Al [cs-c4c6*(c7*c4c5)n1],

wn
R

("1/A1)[°4*°1°8*°1°7“§]'

=
]

2
1 "1[1 + c1(°6 - csnl)],

= 2 - > -
R3 (c3 c6c,10)/(c4c6 c8),

3= RC Ay = = RC A
Bz.o’ Bs"'SC

B6--SC

5 * RyCes

173?
1°3?

276’

=~
"

-] 2
, = 45 [c4c6-c8+(c70c4c5)n2].

wn
L]

2 = (n/8y)[egveqcg-c cndl,

o>

nall + ¢, (cq + csng)],

5" (c10 - c4c8)/(c4c6 - c8).

l] TR



Consequently, {(65) may now be expressed as

w{x) Al + Rsclx + R1C4cosn1x - R1C351“71x + R2C6coshn2x +

+ R2C551nhn2x,
. ! - - - 3 - - < .
v(x) = 33C1 S1C3°°s"1x §1C4sinnyx Szcscoshnzx 52C6$1nhn2x,
o(x) = C, ¢+ cscosnlx + Cdsinnlx + Cscoshnzx + C651nhn2x.
(66)

If both ends cf the beam are clamped, then, in view of (49) the

boundary conditions are

.
a
1%
Py
Lo
s
34t
i
X
>
\d
o
F,
‘i
e
EY
n-
B
i
h
p
e
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et
X
b
)
e

2

e
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Ww(0) = ¥(0) = ¢(0) = w(l) = v(1) = ¢(1) = O.

(67

Inserting (66) into the first three boundary conditions in (67), we

SR RS

=
S

obtain
Al + R1C4 + R206 = 0,
b S4C; = 5,Cy = 5,C5 = 0,

Cl"’C?’*’Cs = O.

e

v

"3t the help of these relationships, we can write (66) as

Bl b il

wix) = R1(°°s"1x - l)C4 + (R3521x + Rlszzsinnlx +

? E + stinhnzx)cS + Rz(coshnzx - 1)C6,

27




y(x) = - S C

1 4sinnlx + (83521 + 51532°°’“1x - Szcoshnzx)cs -

- SZCGSinhnzx,

¢(x) = CASinnlx + (91 - 532°°s"1x + coshnzx)cs + Cﬁsinhnzx,
with

Substitution of (68) into the last three boundary conditions in

(67) leads to the following homogeneous system of algebraic equations
Ai C 3 = 0, i,j = ]-’2’3’
3 My (69)
where
Ajy= Ry(cosny - 1}, Alz " R3£21 + Rlaszsinnl + Rysinhn,,
Al3 a Rz(coshnz - 1), A21 * - Slsinnl,
A33 » sinhnz.
The system of equations (69) will have a nontrivial solution if and
only if

Det (A;,) = O,
1] (70)

28




Expansion of the determinant in (70) yields the rulatively simple

relationship
2R2(cos}m2 - l)sinn1 + 2R1£32(1-cosn1)51nhn2 +

+ R.£,,8inn, sinhpn, = 0,
3»21 1 2 7

However, if we introduce the identities

sinnl = Zsin(nl/Z)cos(nI/Z), sinhnz = Zsinh(nZ/Z)cosh(nZ/Z),
l-cosn = 2sin’(n,/2), coshn,, - 1 = sinhz(nz/Z),

into (71), we obtain, after some rearrangement,
sin(nl/Z) sinh(n;/2) [Zthanh(nz/Z) + 2R1£32tan(n1/2) +

+ RSEZIJ = 0,
As in the case of the Timoshenko theory (see the Appendix) the
smallest positive value of Aoy Can be shown to arise from

$in (n1/2) = 0,

Thus, ny = 2n, and since in (64)')'\"2 T - ni 2 (2#)2, we find that the

value of A .. is to be computed from
c, (c.¢ -cz)(Zn)4 - [ey(c.c,n + €. C. + 2c.C,) + 2C,C, + czc +
1'°59 77 1*75710 69 778 477 45

2 2 ~2 =
+ cg](Zn) + cl(c6c10 - c8) - 2c408 + L4C6 * ¢y * 0,
(72)
or the expanded form of this result which can be shown to be a poly-

nomial of degree three in A, A discussion of the numerical results

obtained from (72) will be given in the next section,
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Let us next address the vibration problem for a clamped-clamped
laminated beam, For w0, we must use (63) to compute the character-
istic exponents X, Considering (63) as a cubic in Xz, we have been
able to show that, for the range of interest here, (63) has either
one negative root and two positive roots or two negative roots and

one positive root. For the present we confine our attention to the

case
R<o, ToToo,

Now let
S A S

it being understood that nj>0, j = 1,2,3, Therefore, (61) leads to

w(x) = Ajcosnyx + A,sinnyx + Ascoshnzx + A4sinhn2x +

+ Ascoshnsx + Agsinhn.x,

P(x) = Blcosn X + stinnlx + Bscoshn2 + B4sinhn2x +

1
+ Bscoshnsx + Bgsinhnzx,

$(x) = Cicosn;x + Casinn;x + Czcoshnyx + Chsinhnox +

+ Ccecoshn,x + Cesinhn.x
S 3 6 K 2
(73)

Proceeding as we did with (65), we can show that

Ay = RiCy  Ap == RiCp,  Ag mRCy, Ay = RyCy,

A = ReCq, Ag = RsCc, By = 5,C, By = S1Cys

= §_C B4 = S BS = SSCS, B6 = SSCG.

274
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Ry = (n/8)) [e,eq = cg = (c4c5 + c7}n§}3

Ry = (np/85) [e e = cg + (cqes + c7)n%].

R3 = (n3/83) [c4c6 - cg * (cqcg + c,)ni].

5, = 471 [cyc n4 + (¢4 + Cycy = C,C )n2 - c,Cc.l
"1 70 1T 47 7178 T Retriy T Matete

S| 4 2
S, = AZ [c1c7n2 - (cq * cycg - CyCyIN5 = c2c8],

! 4 2
S3 = A3 [c1c7n3 (c4 . clc8 c2c7)n3 - czc8],
A, = cyc n4 - (1 +c¢c,c. +c,cC )nz +cc
1 = ©1%5M 1% * ©2%/M T S5

- 4 2

By = epegny + (1 + cycq + cycelny + cpcq,
A, = c,c n4 + (1 +#¢c,c. +c.C n2 + CyC

3 1°5"3 196 ~ ~275'3 2°6°

Therefore, (73) becomes

w(x) Rl[czcosnlx - clsinnlx] + Rz[c4coshn2x + cssinhnzx] +

+ R;[Cgcoshngx + cosinhnsx],

b (x) Sl[Clcosnlx + Czsinnlx] + Sz[Cscoshnzx + C4sinhn2x] +

+ szcscosnnzx + C6$inhn3x],

$ (x)

]

Clcosnlx + Czsinnzx + Czcoshnz + C4sinhn2x +
+ CScoshn3x + C6sinhn3x.

(74)
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| Invoking the first three boundary conditions in (67), we can

reduce the number of corstants in (74) to three:
4 ' .
ii w(x) = Rle(coshnzx - cosnlx)C4 + [RI(S3 - §y)sinmx +
Re * . '
;f *+ Ry(S3 - Sl)s1nhn2x + (S1 - Sz)Rssinhnsx]C5 +
k! '
”i' *+ RyRz(coshnzx - cosnyx)Cc,
- ; t .
L% v(x) = (SZR151nhn2x - Slkzsinnlx)c4 + [S;(5, - Ss)cosnlx +
# L}
f *+ 5,(55 - Sy)coshnyx + 83(81 - S5)coshnzx]Cg +
I + (5;R;sinhn.x - Slesinnlx)Cg,
??
- 1)
- o(x) = (Rlsinhnzx - stinnlx)c4 + [(S2 - Ss)cosnlx +
3
;j + (83 - Sy)coshnyx + (5 - Sz)coshnsx]cg +
. '
;f + (Rlsinhnsx - R3sinn1x)c6,
:i where we have set
' ' '
&
E: The frequency equation is now derived by inserting (75) into the
s
3 last three boundary conditions in (67). In the usual manner, we
” again obtain (70), where now
‘é All = Rle(coshnz - cosnl).
.
E: i i
E A12 = Rl(Ss-Sz)sinn1 + RZ(SS-Sl)smhn2 + (SI-SZ)R351nhn3,
% Als = Rle(coshn3 - cosmy), Ay * Slesinhn2 - Sleslnnl,
f-’j Ayy = S1(Sy-S;)cosny + S;(S3-S)coshn, + S5(S)-S,)coshns,
A

50 ok
L 5

» 'fj;""‘f.ﬁ i
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23 83R151nhn3 - Slkss1nn1. Agy = Rlsinhn2 - st1nn1,

ASZ = (SZ--S:.,)r:.osr\1 + (S:,,--Sl)c:oshn2 + (Sl-Sz)coshnS,
%; Azz = Rysinhng - Rsinn,
| : Expansion of the determinant in (70) leads to the frequency equation
ﬁé 2R1R2y23y31(1-cosn1 coshnz)smhn3 + 2R2R3y12y31(1-coshn2
3%} coshn3351nn1 + 2R1R3712723(1-cosn1 coshn3)51nhn2 +
2,2 _ 2.2 _ p2.2 yes ;
£ + (Rly23 RSYIZ R2y31)sxnn1 51nhn2 sinhn3 = 0,
i (76)
i i where
1
| Y23 = Sz = 539 Y351 253 =51, Y= 8 - 5,
.
i g
3 | If the value of w® is such that ng assumes a negative value,
i
i then we set ng = - ﬁg. With the identities
¥ U
% 2 sinh (1n2) = i sin nz. cosh (1n2) = €08 1,
£ 4 we can now express (76) in the form
B
¥
.43 - - -— . L - - -—
4 é 2R1R2Y23Y31(1 cosny cosnz)smhn3 + 2R2R3712y31(1 £oSn,
-
e | . - - s -
;g ; coshn3)51nn1 + 2R1R3712x rl—cosn1 coshns)smn2 +
Yl B
S 2 2 222 L w22 ysi i si
: 2 - =
3 : + (R1 Y33 R3 712 + RZYSI)Slnnl smn2 s1nhn3 0

77
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% where
3 I
B ! -4 -2
. T = -
i 2 = €S0, a1+ clc6 + czcs)nz + c2c6,
£
i R, =

2 (;2/3-2) [0406 - cs it (c4c5 + C7)F§],

LT -l - =2
§é K} lejeqny + (c4 * € Cg = GyCoumy - c,¢51,
i
; Y. - g - by = -
; Y23 = 52 - S3 Y2 = 8175

For a certain set of values of mz, say w:, n=1,2,3,..., the

. left side of (76 or 77) will vanish, In the numerical vork we assign
fi a value to w’ and compute the nj‘s (i.e., the f}'s) from (63). The
ii value of wz and nj are then inserted into (V6 or 77), We evaluate

5% the left side of (76 or 77), and if its value is differtit from zero

a new value is assigned to v’ and the process is repeated until a

value of wz that causes the left side¢ of (76 or 77) ¢o vanish is

found,

R Ty
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A NUMERICAL RESULTS

|

f* Sun [1] compared the dispersion curves obtained fro- the effective
iﬁ medulus theory and the microstructure theory for laminated beams, using
QE the following numerical valuos for the parameters:

£ Yy = 100, 6 = 2, n = 0.8,

A

~ 5 = 408’ Vl = 002» Vz = 0035.

(78)
;éf 34
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The values of n and £ given in (78) correspond to a composite beam
consisting of five stiff layers and four soft layers. We shall also
use these values here as well as other values of £, i.e., the number
of layer pairs in the composite will be varied,

The numerical results obtained here from the microstructure
theory are compared with the corresponding results obtained from
the effective modulus theory (see the Appendix), which is comprised
0of Timoshenko beam theory, with effective moduli and density,
including the efrect of a uniform axial compressive load, For a
two- phase composite medium of the type under consideration in this
investigation, Sun [1] assumed the effective Young's modulus,

effective shear modulus, and effective mass density to be
E= nE1 + (lmn)Ez, Moo= omuy 4 (1~n)u2,
p =np, + (1-n)p,,
1 2 (79)

respectively,

The iiinged-Hinged Beam

The critical value of the buckling parameter A and the natural
frejuencies of vibration are computed from (57) for a hinged-hinged
beam, For a compressive load P applied in a conservative manner, we
may calculate the value of Aer from (57) by setting the frequency

parareter w equal to zero and n=1 in (56).
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In Figure 2, the variation of the critical load coefficient,

xcr’ is plotted against the depth-to-length ratio, g, over the range
0<§<0,2, The corresponding results obtained from the effective
modulus theory (see the Appendix) are also shown. The microstructure
and the effective modulus theories are in rather close agreement for
relatively long.beams. However, as the values of ¢ increases, the
values of Aoy 85 calculated from the effective modulus theory decrease
relatively slowly, whereas the values as computed from the microstruc-
ture theory decrease very rapidly, At ¢ = C,2, the microstructure
value is approximately 38% of the effective modulus value, The effect
of increasing the number of layer pairs is also shown in Figure 2,
Increasing the number of layer pairs beyond twenty has a negligible
effect on the value of lcr' The values of xcr for the beam consisting
of only five stiff layers and four soft layers are only a few percent
greater than those for a beam consisting of a large number of layer
pairs,

Eq. (57) may be considered as a pulynomial of degree three in
wz. Hence, for each choice of the integer n, (57) will yield three
braaches on a frequency plot, and these branches may be labelled the
(i) flexural, (ii) thickness-shear, and (iii) microstructure rotational
branches., Since this third branch is associated with relatively high
fzequencies, we shall concentrate our attention in this study on the
more important flexural and thickness-shear branches, In Figures 3-5,
the variation of w, with ¢ for the first three flexural modes (n=1,2,3)

with » = - 5,0,5, is plotted for a beam made of five stiff layers and

36




Ay *;2‘.?5‘.

G
S AN K b

Nt

‘.‘
PRRSRRY

3 3
5
B¢ ¢ ;
by %
o %
?7; { /;

, .

oA a2 b ot e e

PN IER PR R T
%

e

100

EFFECTIVE MQODULUS THEORY

o s R
.aﬂ,\ A2

Syt
ey

80

[ L
S e

P
TERR

w”
SNk
B o b AL A ]

s

S STIFF LAYERS
4 SOFT [.AYERS

o ,_;w( -1
TIER
YR o

g,
[
{ }’ 60
b
é 7
% i
2 : =
o % %
40
é:"}

20 AND loog_
_ LAYER PAIRS

20 -

Sy
S P B B R Tiasy T N

1 A ] i | |\ ) i 1

O 002 004 006 008 0.0 02 014 016 0.8 0.20

S

tgure 2. Variation of the critical load coefficient A'r with
: depth-to~length ratio & for a hinged-hingad Geam.
t

P R .+

37

oty A
4

P

R 7.




e e e S Y e

AR
LR AR

e

Ltarses o ot
"W ey !

four soft layers, For small values of g, i.e,, relatively long beams,
the effective stiffness and microstructure results are in excellent
agreement, however as the value of { increases the microstructure fre-
quencies are considerably less than the effective modulus frequencies,
the magnitude of the effect increasing with the mode number n. °s is
to be expected, the presence of a tensile load (negative ) tends v
increase the natural frequency, whereas a compressive load (positive A}
tends to decrease it relative to its value in the absence of an axial
load.

In Figures 6-8, the first three flexural frequencies for A = 0
are again plotted, however now the effect of the number of layer
pairs on the frequency is demonstrated. An increase in the number
of layer pairs tends to decrease the value of @ the difference
becoming more pronounced as ¢ and the mode number n increase, For
sufficiently small values of 7 the effect of increasing the number
of layer pairs is virtually negligible, In addition, increasing

the number of layer pairs beyond twenty has very little effect upon

the values of the wn's.
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In Figure 9, the lowest thickness-shear frequency is plotted

e
BE,
st
%
2
b
ks
B,
ke
3

as a function of ¢, In the range |A|<5, the calculations performed

here were virtually insensitive to the values of A, The effective
modulus theory leads to values for W that are again greater than
the thickness-shear frequencies computed from the microstructure

theory. Based upon the microstructure theory, the frequencies

for the first three thickness~-shear modes were determined, and

their variation with t is shown in Figure 10,
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The Clamped-Clamped Beam

The criticél values of the buckling coefficient A are calculated
from (72). In Figure 11, the variation of Acr is plotted as a funce
tion of ¢ over the range 0<3<0.2. Results of the microstructure
calcalations, (72), and the effective modulus calculations (see the
Appendix) are shown. For very long beams both theories predict
essentially the same values for Acr' but as f increases, i.e., as
shorter and shorter beams are considered, the microstructure theory
predicts much lower values for the critical load coefficient than
does the effective modulus theory. In fact at § = 0,2, the micro-
structure value for A,. is approximately one-sixth of the effective
modulus value,

Using the frequency equations (76) and (77) in conjunction with
the characteristic polynomial (63), we have computed the frequency
parameters w,, n=1,2,3, for the lowest three modes in a clamped-
clamped beam, These results are shown in Figures 12, 13, and 14,

It is evident that the values obtained from the effective modulus

and microstructure theories agree only for small values of y, For
£>0,02 the respective curves diverge, and the values of w predicted
by the microstructure theory are conside¢rably less than the correspond-
ing values computed from the effective modulus theory. In order to
show the effect of initial tensile or compressive axial loads, we have
plotted the values of w, as functions of ¢ for \ = - 150,0,150 for the

effective modulus theory and for A = - 50,0,50 for the microstructuss
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theory, Indeed, it should be observed in Figure 12 that for A = 50

g the value of the frequency parameter w; starts at zero for ¢ = 0 and
increases to a maximum as ¢ increases and then decreases to zero as
% increases to ¢ = 0,1945, Since wy = 0 for A = 50 and ¢ = 0,1945,

this value of { corresponds to the value o3 the critical buckling

Waam
PO gty

'?2 g coefficient for a clamped-clamped beam, the length-to-depth ratio
Eﬁ : of which is 0.1945 (compare Figure 11), The curves for w, and w3
é% with A = S0 show similar characteristics but approach :ero at

i

higher values of g,
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CONCLUSIONS

S

Based upon the numerical results reported herein for the buckling
coefficients and natural frequoncies of vibration of a laminated beam
subject to either hinged-hinged or clamped-clamped end conditions, it
is evident that the effective modulus theory, i.e,, Timoshenko beam
theory for a transvexrsely isotropic bar subject to initial axial stress,
appears to be reliable fur engineering design purposes only in the limit
of fairly long beams, The extended version of the microstructure theory
that was developed and investigated in the present study predicts much
lower buckling coefficients and natural frequencies in laminated beams
with depth-to-length ratios of moderate size, the magnitude of the
effect being more pronounced in the case of the clamped-clamped beam.

In view of the dispersion curves reported by Sun [1], this was to be
expected,

Based upon the effective modulus theory, the results reported in
References [6]-(9] for buckling coefficients and natural frequencies
indicated much lower values than those predicted by the classical
Euler-Bernoulli beam theory, which dees not account for the disparity
in the longitudinal and transverse elastic moduli, Indeed, the results
become more and more divergent as the ratio of the transverse Young's
modulus to the longitudinal shear modulus, E/G, increases, the effects
being particularly pronounced when E/G exceeds, circa, 50, The numeri-
cal results presented in this report indicate still lower values for

the buckling coefficients and the natural frequencies, even though the
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E/G ratio was only slightly greater than 3, Consequently, the validity
of adopting a transversely isotropic beam to model a laminated beam
must be seriously questioned and challenged.

It is currently being proposed at the Watervliet Arsenal that an
experimental study of the buckling and vibrational response of
laminated beams and plates be initiated, Such a study will provide a
vasis for rendering further judgment on the ranges of applicability of

both the microstructure and effective modulus theories,
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APPENDIX

EFFECTIVE MODULUS THEORY

With the aid of (16)-(19), the fundamental differential equatiocns

for the effective modulus theory may be derived in a very simple
“ashion, In view of the studies reported in [6]-[9], it is known
that the extensional deflection u(xl,t) in the beam is uncoupled

from the transverse deflection w(xl,t) and the rotation ¢(x1,t).

Hence, the function u(xl,t) may be neglected, Thus, we replace

(16)-(18) by

R 2
7 [EIoTy + xub(v | = 9)71,

U =
(A-1)
T = o1 4+ A,
(A-2)
Woe Ao, (167 s el
‘o 4 ,1 ,1 (A-3)
respectively,

Therefore, application of (19) in the familiar manner leads to

the following equations of motion:

bh(v ,, - - Pw ., -opbhw = 0
Ku (\ ’11 ¢’1) .11 o] » (A-4)

(E<P/AYL, 6 1, + kiA(W { ~ ¢) = pLé = 0
e, 11 ,1 b ’ (Ae5)
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with the boundary conditions
(i) either ”“A(",l - 9) + Pw.l =0 or w = 0

(ii) either (E-P/A)lb¢ 1 = 0 or &8s O
H

(A-6)
on xl = 0,2, We have set 01 = P/A,
—-— i 2
Setting X, = 2X, ¢ = ¢/%, and t = (pzzz/uz)ll T, We can 2xpress

(A-4) and (A-5) as follows:

(bl - )‘bz)w”(x"") - bl.';' (xy7) = bls;;(xt'r)o

(A-7)
@ - » -— ' o - * -
(] = Ab1 )" (x,7) *+ by Ey; bl $%sT)s

(A-8)

vhere by, by, and by; are given in the text and

. 6% (14ed) . enig . 2 1+ed
b S-———-—-—. z-u—-—' b B esaewes S —— .
10 2k (1+d) o aa 16 12¢ 144

For simply-supported ends, the boundary conditions for the beam

are w = ¢' = 0 at x = 0,1, If we insert

w(x,t) = A sin nmx cos wt,  (x,t) = A,COS nAX COS wT

1 2

into (A-7) and (A-8), we obtain, after some manipulation, the
frequency equation

. 4 2 " * * * 2
bysbien’ = (b bygeam)? o b+ b by~ A, b] s bl Nl +

+ (nn)z[(nn)z(b;()- Ab;l)('bl- Ab,) = Abby] = 0

(A-9)
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The frequencies for the flexural and thickness-shear modes may be
obtained from (A-9) with the aid of the quadratic formula. Numerical
results calculated in this manner have been plotted in Figures 3-5
and 9,

In the case of buckling, the value of the criticai load

coefficient is obtained by setting w=0 and n=l1 in (A-9):
2., % * -
L (bm- )\bn) ('bl- Abz) - Ablb2 0.

It is easily shown that

2 =
21 1by Ay = 7 (b, 10 +b b 110 * b,

2 2
- {[= (b2b10+ b bll) + byby]” -

- 4ﬂ4b1b2b10b;1}1/2
(A-10)
Numerical results derived from (A-10) hiave been plotted in
Figure 2,
Let us consider the buckling and vibration of a clamped~clamped
beam separately, In the former we may assume that w and ¢ are

independent of time v, so that (A-7) and (A-8) reduce to the follow-

ing pair of ordinary differential equations:

(b~ X' (x) - b, (x) = 0,

1 (A-11)

(b] = Aby)F ' (x) + by W (x) - F(0] = O,

10 (A-12)
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The sclutions of (A~11) and (A-12) are easily found to be

F(x) = Aj coshx + A, sinkx + Ag,
(A-13)
w(x) = Ag + Ax + (c/A)A; sinhx - (c/A)A, ccshx,
3 1 2 (A-14)

where

2 * *
¢ =b,/(by - Aby), A° = Abyby/(by = Aby) (oY= Aby).

The boundary conditions for a clamped-clamped beam are

$=w=0 at x=0,1.
(A-15)

Substitution of (A-13) and (A-14) into (A-15) leads to a system of
homogeneous algebraic equations in the A, i = 1,2,3,4, which, in
the usual fashion, leads tc the equation
sinA = 2(c/A) (1-cosA),
(A-16)
from which we can calculate the value of the critical load coefficient,

Using the trigonometric identities

sinh = 2 sin (A/2) cos (A/2), cosh = 1 - 2 sin®(A/2),

we can verify that (A-16) leads to

sin (A/2) = 0 and tan {A/2) = A/2c,
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The smallest value for Aoy is found to originate from sin (A/2) = 0,

i.eq, A = 2w, Now in view of the definition of A% above, it is a

straightforward matter to demonstrate that Acr is to be computed

from .

bob*. A2 bY 4 b.b* ¢ b.b./ar2)A _ + bob, 0
2211 Xer = (Bybyg + bybyg + Byb/ATTIA L+ Dby = 0,

Numericzl results obtained from this expression have been plotted
in Figure 11,

To determine the frequencies of vibration of a clamped-clamped

beam, we consider (A-7) and (A-8) subject to (A-15). Inserting

e

w(x,T) = W(X) cos T, $(x,1) = ¢(x) cos wr

into (A-7), (A-8), we have

(b = Aby)u'* (x) = o' (x) = - blswzw(x),

3
3
:
i
13
H
4
{
3

(A-17)
* * . . _ - * 9
Brp = M018" () + by W00 = 6] = - byguerd.
]
: If we introduce a new dependent variable ¥(x)}, according to
: p(x) = ¢'(x),
; then, without loss of generality, (A-i8) can be replaced by
‘ * # . * :
_ (byo = Aby¥' () + b [W(x) - (0] = = buPp(x),
whemnce
b () = (5, = b3 (x) = (0Fy = Xb. )9’ (x)
M - oy 16 210 11 . (A~19)




Substitution of (A-19) into (A-17) leads to

G ¢ By 00 - p i) = o,
(A=20)

where

= FyfF @ p =T,

2
b b
bl

12

- 2 2 - * * PRy 2
Po = r MUY By = i o ppemy bl 2P b, (102,

16 16

- * * 2 _ % 2

However, it can be shown that (A~20) may be represented as

@ + )% + fw = o, D d/ax,
(A-21)
where, with a = 1,2,
2 _ 2 2 a . 2.4 2 2
248" = ¢)0° + ¢, (1-0%) « (a1 [c}97 + 2¢,0°(1-0") +
1/2
+ 2 a-ah?’e,
(A-22)
with
b bv * * 2 b2b 3
€1 = —l:ia-(b10~kbll) + bl’ c, = Ablbz, ¢y = -l;l—~,
b16 b16

Q
1

* *
4= By =) By -2y,

2
b, .
¢, = Absz + L3 @), - X (2 by - by,
16
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It is now important to observe that

h)
5; 50 for 9> 0
and tha:
<0 if 0<Q<1
2 .
62 =0 if Q=1

(A-23)

The significance of the simm of 63 in the two frequency ranges rests
in the fora of the solution of (A-21)., By the principle of super-

position in the theory of difrerential equations, we can replace

(A-21) by
2
@+ dy ) = 0, O+ 60, = 0,
1 (A-24)
with
P(x) = Wl(x) *\"z(x)-
(A-25)

It is evident from (A-23) and (A-24) that wl(x) will always be given

by
¥, (x) = A; cos 6;x + B, sua §.x,
1 1 1 1 (A-26)
whereas wz(x) will have the form
¥.{x) = A, cosh &,x + B_ sinh 3§ x, 0 <<,
2 2 S 2 (A-27)
with 33 T - 6%, or the form
¥,(x) = A, cos §_x + By sin & x, 1 <9Q,
? 2 2 (A-28)

63




In terms of our present notation, the boundary conditions

(A-15) can now be expressed as

i w = w' = 0 at x = 0,1,
(A-29)

The second condition in (A-29), in view of (A-25), leads to

¢
at x = 0,1,
(A-30)

By virtue of (A-24) and (A-25), (A-19) becomes

PR
wx) = 1~ 0%+ gﬂ.(blﬂ - Xbll) wl(x) +
1
+ 1\.n2+f§.(b".>‘b*) v, (x)
b 10 11 r A
1 (A-31)

Thus, the first boundary conditions in (A-29) become

Fl‘Pl + szz = 0 at X = 0.1,
(A-32)

where
a = 1,2,

- - 2 2 * _ *
Fo = 1= 8%+ (65/b) (01, = A0y)),

Consequently, we have e¢stablished that the boundary conditions for

the clamped-ciamped beam may be expressed as (A-30) and (A-32).

64




Case I, 0 < <1, In this case 5§<0, S0 we set 3% = - 63.
Then

T - _-2_—2 *‘ *
F, = 1-22- (@m) by - »]))e

Substitution of (A-26) and (A-27) into (A-30) and (A-32) leads to a
system of homogeneous algebraic equations in the coefficients Ay, B,

a = 1,2, from which we can derive the frequency equation

Sinh 3‘2 = 0.

- 2 =22, .
: - ccsh §. - 3
2 FIFZGIE;(I cos &, cosh T,) + (F} Eg F263)sin 6

(A-33)

Case II. 1 < @, In this situation, (A-27) is replaced by
(A-28), and the analysis of the previous paragraph is repeated.
Because 32 = - §2 (62>0), we have 8, = is§_, i = (-1)1/2 and

2 2 2 2 2
s =#+1, Now

T =1 - a2 2 *
Fy =1 =82+ (85/b)(byy = Mby))

and

cosh 62 =  coS 62, sinh 62 = 1is sin 62.

It is next easy to verify that (A-33) becomes

ZFIF 6,6, (l-cos§ . cosé

) - (F%62 + F26%)siné. siné. = 0
212 1 2 172 271 2 !

1
(A-34)
for 1 < Q. Upon computing the value of  from (A-33) or (A-34), we

can determine w from

1/2
w = Q (bl/bib) .
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