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McCOWAN'S SOLITARY WAVE EXPANSIONS

ABSTRACT

In 1894 McCowan proposed that the structure of solitary waves be
represented by a certain series expansion; but he gave an estimate for
only the first term of this expansion, Any truncation of such an expan-
sion compromises the essential ideal of the steadiness of a solitary
wave; also, the approximations which he adopted might not be the best
ones for the diverse particular purposes for which this wave may be
used. In this paper a more precise structure of this wave is constructed
by implementing McCowan's cxpansion to higher orders, The coefficients
in this expansion are determined by minimizing a certain reasonable
measure of the imperfection of this expansion, This minimization is

done by using the FNMIN subroutine,
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INTRODUCTION

In the Theery of Water Waves there often arises the concept cof a
solitary wave, often spoken of as a 'soliton'., It is a single, two-
dimensional intumescence that propagates (over a level bottom, and with
a series of traditonal simplifyving assumptions) supposedly without any
chenge in its profile and velocity; its velocity depends upon its in-
tensitv, No exact and concise expression for the structure of such a
wave is known. Until recently, all theories of this wave have been in
the form of expansions; if these theories may have appeared to be simple,
this is so only because for various particular uses of this concept
(and specifically, for solitary waves of low intensity) the first terms
of such expansions have been considered sufficient. Any truncation of
such expansions, of course, possesses shoricomings. Thus, the popular
Boussinesq model of solitary wavesl* compromises (as shown by Munkz)
the generally presumed, Laplacian, governing equation; while the com-
monly quoted first-order variant of McCowan's theory compromises the
dynamic boundary condition on the pressure at the surface. There have
been a number of attempts to reduce such shortcomings by resorting to
different expansionss, or to higher-order terms of such expansions
(with the coefficients of such terms determined analytically); but all
such attempts drastically complicate these theories, Byat-Smith4 and
StrelkoffS have recently proposed a radical resolution of such short-
comings by obtaining the profile of this wave numerically; but this ap-
proach involves even more sophisiicated and laborious procedures (in-
volving the solution of an integro-differential equation), is not im-
mune to 'numerical! (truncation-and-roundoff) errors, and requires much

further work if the interior flow field is desired.

For certain practical purposes such as those of R« ference 6, where
in the representation of a solitary wave it is desired to select a good
compromise between simplicity and precision (or at least to inspect,
and to exhibit, the effectiveness of various tradeoffs between these

desaderata) the most efficient course appeared to be that of extending

*
References are found on prge 21,
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McCowan's theory to higher orders, with the cocfficients of the higher-

order terms determined ‘empirically' by computations.

GENERAL EXPANSION PROPOSED BY McCOWAN

McCowan originally proposed that the complex stream function of a
solitary wave (in a stationary coordinate system, at the instant when

the crest of the wave passes the plane of x = 0) be rcpresented as
beio= 1 a tanJ[-gl(z +ix)], j =1, 3, 5... (1)

where x and z, respectively, are the horizontal and vertical distances
to a water particie from the point at the bottcem under the wave's crest;
the real stream function ¥ and the real velocity potential ¢ are here
defined by the fact that the horizontal and vertical components of the

water velocity are
u = 3¢/ax = av/sz, v = 3¢/0z = - 5¥/3x, (2)

and the real constants 45 and m, as well as the wave's celerity C, re-
main to be determined. Incidentally, the parameter m can to some ex-
tent be spacified arbitrarily, since it indicates the intensity of the
wave (m is in the nature of a reciprocal of some "effective" length cf
the wave, and the more intense wave is the 'more concentrated', or the
shorter, one), The intensity of the wave, however, ma) more conven-
iently be specified by the ratio y of waveheight to undisturbed depth;
thus aj, m, and C ought to be expressed in terms of vy, It might be no-
ticed that the notation of (1) and (2), particularly well suited to this

problem, differs slightly from what would be mo:e customary today.

McCowan, however, at once in effect confined his theory to the
first term of this expansion - by using a couple of ingenious tricks
for the choice of the coefficients A, m and C. The difficuities which
he faced in his ground-breaking 1894 proposal were precisely of the type

that are readily resolvable with today's computing technology.

10
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REQUIREMENTS UPON THE COEFFICIENTS IN THE EXPANSION

An obvious reason for McCowan's choice of the basic function (the
. tangent of the complex coordinate in a certain scale) in this expansion
is that the first-order term alone already yields a configuration that
indeed is very similar to the ideal described by Russell empirically,
and had in mind by Boussinesq and Rayleigh. The reason for McCowan's
providing - at least in principle - the infinite number of coefficients
aj can be easily seen if we consider the requirements which a solitary

wave must satisfy,

The resort to an analytic function of a complex coovdinate at once
satisfies tho governin-y (Laslace's) equation, The choice of a function
(the tangent) such that its real part vanishes for z = 0 satisfies the
bottom boundary condition, The remaining conditions are best inspected
in a coordinate system moviny with the wave, in which the complex stream

function becomes, say
¥ + id = (y+ig) -~ C(z+ix) (3)

so that transfer to this system reduces u by C and leaves v unchanged.

In particular, the kinematic boundary coandition on a wave's surface (the
impenetrability of the free surface) then can be satisfied simply by defi-
nition: a streamline can be taken as the profile of the wave. The dy-
namic boundary condition (the continuity of pressure across the air-wiuter
interface) is further simplified because McCowan's theory is one of those
which neglect the density, and hence the pressure, of air. This condi-
tion then reduces to p = 0, and Bermoulli's equation for a water particle

at the surface takes the form

¢, * Q2/2 + gZ = constant

= C2/2 + gh as x » &

11




. . 2 . .
where h is the undisturbed depth, Q° is (U - C)2 + V2, and Z, U, V are
the surface values of z, u, v. For any instantancous functions Z(x)

and Q(x) this equation merely yiclds &_; but the solitary wave is dis-

t)
tinguished from other waves by still another, the fifth, condition, that
of its steadiness: viz., by the fact that its ¢t must vanish identi-

cally everywhere. It is in order to assure such vanishing tnat we have

been given the freedom of choosing m, C and the aj's.

A CONVENTENT CHOICE QF UNITS FOR ANALYSIS

If h and the unknown C are * iken as units of distance and velocity
(so that the unit of time is h/C; of acceleration, Cz/h; and of ¥, Ch),
this C drcps out of our analysis, but can casily be recovered. Tn lieu
of C there appears another unknown, the acceleration of gravity in these
units, viz., the quantity gM = g/(Cz/h); but this gM happens to enter
the theory in such a nanner that it is much more easily determinable than
C. Another interpretation of gM is convenient: writing its definition
as

M)-1/2

R - (g = ¢/ (g (5)

/2

and recolilecting that (;h)1 is the celerity of Airy low-and-long (or
shallow-water") waves of small amplitude, (5) is seen to correspond to
the definition of Mach number in Compressible Fluid Mechanics - whereby
the solitary wave corresponds to a shock wave. The term "Russell num-
ber", after the discoverer of this long-unrecognized wave, is suggested
for R. It should be noted that in both the 1844 empirical concepts of

Scott Russell, and in the 1871 Boussinesq theory it turns out that

R = (1+w/)1/2 (6)

—
[3%]
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- a v’lue which cur extension of McCowan's theory modifies only very

slightly (while in the original tricky version of his first-order theory
R appeared to be much smaller),

The quantities m, a4 and aj for j = 3, 5... in these units wili be
denoted by M, N/M, and AjN/M, where N turns out to be a convenient fac-
tor fer all velocities, If the tangent in (1) is T, the complex stream

2 4

function appears as (NT/M)(1+A3T +A5T +ees)e Our problem thus reduces

to a determination of such M, N, A,, AS"' and gM as would best anni-
hilate ¢t.

CRITERION FOR THE IMPERFECTION OF A SOLITARY WAVE MODEL

Given a tentative set of parameters M, N, gM, AS’ As... of a soli-
tary wave, we may computc (in a manner that will presently be shown)

for every x the quantity

D= 24 =1 - Q% - 26%z-1) %)
which we shall consider as a discrepancy, or unsteadiness., Clearly, in
order to formulate a criterion that would characterize this tentative
set of parameters without specifying x we need merely to compute D for
several values of x and do some averaging. The point is that the man-
ner of such averaging is essentially arbitrary. In particular, we find

it both informative and practical to consider, and to minimize, the

LAY
F = D" d Y 8
fo (8)

where Y = Z - 1, By viewing D as D(Y), and thus taking a set of points

positive~definite quantity

uniformly spaced in Y, we give we's,t mainly to points in the main body
of the wave, and give only small wei. at to the points in the "far
tails"; also, we take advantage of the fact that at Y = 0 (viz., at

X = * «) D vanishes, In this connection it shculd be noted that one

13
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of McCowan's 'tricks' was the basically-arbitrary, and unnccessarily

i

E stringent, requirement as to the manner in which D > 0 as x » + «: he

;; required that the curve of D(Y) be tangent to the Y-axis at the origin

ﬁ (at Y »~ 0). He uscd this condition to determine the celerity C of the

% solitary wave. Unfortunately, this method amounted to determining €

‘i from the behavior of the "far tails" (which may be of little interest in
% such a context as that of Reference 6); and to disregarding the rela-

f tively large discrepancies D which thereby result in the main body of

; the wave, If his requirement on the manner of the vanishing of D at

fﬁ Y - 0 is relaxed, much smaller F can be achieved, even when only the

g first term of (1) is used; and in particular, this reduction of F means
% that the Jynamic boundary condition is more necarly satisfied in the main
zi body of the wave,

:

% COMPUTATION OF THE IMPERFECTION CikITERION

5 Computation of D for usc in (8) requires a determination of x for
; a prescribed Z, viz,, the determination of the wave's profile; for once
'% x(Z) is known, U, V and Q can be gotten by use of (2). In the moving

:; coordinate system the ical stream function is ¥ = ¢ - z; and at the sur-
§ face, at x > + o (where z 7 Z = 1 and $ = 0) this ¥ becomes - 1, Wave's
f% profile thus is the strcamline of ¥ = -1, whereby p = ¥ + 2 =2 - 1=1Y,
§§ Thus by equating the real part of (1) to Z - 1, viz,, by writing

4

v (x,2) = Y (9)
7 where Z and Y are prescribed, we have an cquation for determining x(Y).
%' Th: two end points in the range 0 ¢ Y g vy afford simplifications: x(y)
,% is simply 0, while x(0) is of no interest since it yields D = 0. For

other values of Y the equation (9) can rcadily be solved by the Newton-
ian iterations. In such iterations the first approximation for x(Z) can
of coursc be taken as that obtained with scme preceding tentative set of

the paramcters M, N, gM, AS’ Agooss incidentally, V appears as a byproduct
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of these iterations. With x(Z) known, the determination of U by (2}, D

by (7) and F by (8) is straightforward,

The minimization of F - and hence, the determination of the best
set of the wave's parameters for a given y - is in practice made possi-
ble by the existence of the FORTRAN subroutine FNMIN ('function minimi-
zation without taking the derivatives!). The value of F computed for a
tentative sct of parameters is simply returned to that subroutine -
which then decides what alternative combination of parameters is to be
tried next, and the scarch continues until the subroutine is sgtisfiod,

viz,, until all parameters are optimized to a prescribed precision,

STRUCTURE OF THE REFINED SOLITARY WAVE

Results of our minimization of F can be expressed by a statement
of the values of parameters M, N/M, AS’ AS... and R for a series of
values of y, Figure 1 shows the behavior of the function D(Y) for dif-
fereat models of a wave of y = ,5, Table I shows the wuave parameters
for this y for a series of models of this wave, and also shows the pre-
cision criterion F, and the number, n, of intervals into which the range
of Y has been divided in this computation. The expansion (1) is scen
to be not of the 'orthogonal' type, in that the passage to the next-
higher-order model does modify the cocfficients that enter into the pre-
ceding model; but there is a2 modicum, so to say, of ideal orthogunality
in that such modification is relatively minor. The inclusion of a jth
term in (1) seems to contribute a ripple of (j+1)/2 humps that attempts,
o to say, to fill in the imperfections in the profile of the wave that
are left by the (j-2) th-order model., Tahle IT shows the coefficients
in (1) for the 1st, 3rd, and 5th order models. An inspection of this
table6 suggests that for the larger values of y a grecater number of
terms in (1) ought to be considered; in particular, it has shown that
for vy = .5 the cxpansion (1) ought to be extended at least to the 9th
order. Table III, in particular, shows that the cclerity of the soli-
tary wave is much closer to its classical estimate by (6) than to

McCowan's estimate,

15




The background, the theory, the limitations - and further numerical
illustrations - of this extension of McCowan's theory of solitary waves
are given in greater detail in Reference 6, In particular, we purposely
refrain here trom considering the much-discussed question of the esti-
mate of the upper limit of y for the solitary wave. For the higher ¥y
the crest of this wave sharpens, and the approach along the lines of
(1) becomes awkward; but there arc other rcasons for believing that such
a limit is a phantom, for most of the classical assumptions postulated
in all theories of solitary waves would cease to be applicable long be-

fore such a limit is approached.
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