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McCOWAN'S SOLITARY WAVE EXPA•NSIONS

ABSTRACT

In 1894 McCowan proposed that the structure of solitary waves be

represented by a certain series expansion; but he gave an estimate for

only the first term of this expansion. Any truncation of such an expan-

sion compromises the essential ideal of the steadiness of a solitary

wave; also, the approximations which he adopted might not be the best

ones for the diverse particular purposes for which this wave may be

used. In this paper a more precise structure of this wave is constructed

by implementing McCowants expansion to higher orders. The coefficients

in this expansion are determined by minimizing a certain reasonable

measure of the imperfection of this expansion. This minimization is

done by using the FNMIN subroutine.
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INTRODUCTION

In the Theory of Water Waves there often arises the concept of a

solitary wave, often spoken of as a ?solitont. It is a single, two-

dimensional intumescence that propagates (over a level bottom, and with

a series of traditonal simplifying assumptions) supposedly without any

chcnge in its profile and velocity; its velocity depends upon its in-

tensitv. No exact and concise expression for the structure of such a

wave is known. Until recently, all theories of this wave have been in

the form of expansions; if these theories may have appeared to be simple,

this is so only because for various particular uses of this concept

(and specifically, for solitary waves of low intensity) the first terms

of such expansions have been considered sufficient. Any truncation of

such expansions, of course, possesses shortcomings. Thus, the popular

Boussinesq model of solitary waves1* compromises (as shown by Munk 2)

the generally presumed) Laplacian, governing equation; while the com-

monly quoted first-order variant of McCowan's theory compromises the

dynamic boundary condition on the pressure at the surface. There have

been a number of attempts to reduce such shortcomings by resorting to3
different expansions , or to higher-order terms of such expansions

(with the coefficients of such terms determined analytically); but all

such attempts drastically comnlicate these theories. Byat-Smith4 and

Strelkoff have recently proposed a radical resolution of such short-

comings by obtaining the profile of this wave numerically; but this ap-

proach involves ever, more sophisticated and laborious procedures (in-

volving the solution of an integro-differential equation), is not im-

mune to 'numerical' (truncation-and-roundoff) errors, and requires much

further work if the interior flow field is desired.

For certain practical purposes such as those of RIference 6, where

in the representation of a solitary wave it is desired to select a good

compromise between simplicity and precision (or at least to inspect,

and to exhibit, the effectiveness of various tradeoffs between these

desiderata) the most efficient courage appeared to be that of extending

References are found on p-ge 21.
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McCowan's theory to higher orders, with the coefficients of tile higher-

order terms determined 'empirically' by computations.

GENERAL I-EXPANS I ON PROPOSEID BY McCOWAN

McCowan originally proposed that the complex stream function of a

solitary wave (in a stationary coordinate system, at the instant when

the crest of the wave passes the plane of x = 0) be represented as

+ i = Z a. tan' -[1(z + ix)], = I, 3, 5...

where x and z, respectively, are the horizontal and vertical distances

to a water particle from the point at the bottom under the wave's crest;

the real stream function ' and the real velocity potential ý are here

defined by the fact that the horizontal and vertical components of the

water velocity are

u = aP/•x = atP/z., v = aDi3z = - W'P/ax, (2)

Snd the real constants and m, as well as the wave's cclerity C, re-

main to be determined. Incidentally, the parameter m can to some ex-

tent be specified arbitrarily, since it indicates the intensity of the

wave (m is in the nature of a reciprocal of some "effective" length of

the wave, and the more intense wave is the 'more concentrated', or the

shorter, one). The intensity of the wave, however, ma) more conven-

iently be specified by the ratio yof waveheight to undisturbed depth;

thus a., m, and C ought to be expressed in terms of y. It might be no-

ticed that the notation of (l) and (2), particularly well suited to this

problem, differs slightly from what would be mo:'e customary today.

McCowan, however, at once in effect confined his theory to tile

first term of this expansio•n - by using a couple of ingenious tricks

for the choice of the coefficients al, m and C. The difficu ties which

he faced in his ground-breaking 1894 proposal were precisely of the type

that are readily resolvable with today's computing technology.
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REQUIRI'M:NTS UPON T[lE COEFFICIENTS IN Tile EXPANSION

An obvious reason for McCowan's choice of the basic function (the

tangent o~c the complex coordinate in a certain scale) in this expansion

is; that the first-order term alone already yields a configuration that

indeed is very similar to the ideal described by Russell empirically,

and had in mind by Boussinesq and Rayleigh. The reason for McCowan's

providing - at least in principle - the infinite number of coefficients

a. can be easily seen if we consider the requirements which a solitary

wave must satisfy.

The resort to an analytic function of a complex coordinate at once
satisfies the' governin; (Laplace's) equation. The choice of a function

(the tangent) such that its real part vanishes for z = 0 satisfies the

bottom boundary condition. Te remaining conditions are best inspected

in a coordinate system moving with the wave, in which the complex stream

fumction becomes, say

T + iot = (4+iý) - C(z+ix) (3)

so that transfer to this system reduces u by C and leaves v unchanged.
In particular, the kinematic boundary condition on a wave's surface (the

impenetrability of the free surface) then can be satisfied simply by defi-

nition: a streamline can be taken as the profile of the wave. The dy-

namic boundary condition (the continuity of pressure across the air-water

interface) is further simplified because McCowan's theory is one of those

which neglect the density, and hence the pressure, of air. This condi-

tion then reduces to p - 0, and Bernoulli's equation for a water particle

at the surface takes the form

t + + gZ = constant

= C 2/2 + gh as x ÷ +

11



2 2 , n , U rwhhere h is tile undisturbed depth, Q C) + v2, and Z, U, V are

the surface values of z, u, v. For any instantaneous f,:nctions Z(x)

and ,(x) this equation merely yields it; but the solitary wave is dis-

tinguished from other waves by still another, the fifth, condition, that

of its steadiness: viz., by the fact that its 4 must vanish identi-t

cally everywhere, It is in order to assure such vanishing tnat we have

been given the freedom of choosing m, C and the a. 's.
J

A CONVENI[NT CHOICE 3F UNITS FOR ANALYSIS

If h and the unknown C are , iken as units of distance and velocity

(so that the unit of time is h/C; of acceleration, C 2/h; and of Y., Ch),

this C drcpft out of our analysis, but can easily be recovered. In lieu

of C there appears another unknown, the acceleration of gravity in these
h\ 2 Nh

units, viz., the quantity g =g/(C /h); but this g happens to enter

the theory in such a "ianner that it is much more easily determinable than

C. Another interpretation of g is convenient: writing its definition

as

R 7 (gM)-l/ 2 = C/(gh) 1 / 2  (5)

and recollecting that (,h)1/2 is the celerity of Airy low-and-long (or

"shallow-water") waves of small amplitude, (5) is seen to correspond to

the definition of Mach number in Compressible Fluid Mechanics - %%hereby

the solitary wave corresponds to a shock wave. The term "Russell num-

ber", after the discoverer of this long-unrecognized wave, is suggested

for R. It should be noted that in both the 1844 empirical concepts of

Scott Russell, and in the 1871 Boussinesq theory it turns out that

R :(I+y) 1/2 (6)

12



- a v:lue which our extension of McCowan's theory modifies only very

slightly (while in the original tricky version of his first-order theory

R appeared to be much smaller).

The quantities m, a1 and aj for j = 3, S... in these units wilH be

denoted by M, N/M, and A.N/M, where N turns out to be a convenient fac-J

tor for all velocities. If the tangent in (1) is T, the complex stream
2 4function appears as (NT/M) (1+A3 T +A T +...). Our problem thus reduces~ M

to a determination of such M, N, A7 , A5... and g as would best anni-

hi late 4 t

CRITERION FOR THE IMPERFECTION OF A SOLITARY WAVE MODEL

Given a tentative set of parameters M, N, g , A3 , A5... of a soli-

tary wave, we may compute (Nn a manner that will presently be shown)

for every x the quantity

D = 2,V = 1 - Q2 _ 2g (Z-]) (7)t

which we shall consider as a discrepancy, or unsteadiness. Clearly, in

order to for'mulate a criterion that would c'haracterize this tentative

€,. set of parameters without specifying x we need merely to compute D for

several values of x and do some averaging. The point is that the man-

ner of such averaging is essentially arbitrary. In particular, we find

it both informative and practical to consider, and to minimize, the

positive-definite quantity

F =f y 2 d Y (8)

where Y 7 Z - 1. By viewing D as D(Y), and thus taking a set of points

uniformly spaced in Y, we give wei'.t "ainly to points in the main body

of the wave, and give only small we. to the points in the "far

tails"; also, we take advantage of the fact that at Y = 0 (viz., at

x = ' o) D vanishes. In this connection it shciold be noted that one

13



of McCowan s 'tricks' was the basically-arbitrary, and unnecessarily

Stringent, requirement as to the manner in which 1) - 0 as x , " (,: he

required that the curve of D(Y) be tangent to the Y-axis at the origin

(at Y -, 0). lie used this condition to determine the celerity C of the

solitary wave. Unfortunately, this method amounted to determining C

from the behavior of the "far tails" (which may be of little interest in

such a context as that of Reference 6); and to disregarding the rela-

tively large discrepancies D which thereby result in the main body of

tthe wave. If his requirement on the manner of the vanishing of D at

Y - 0 is relaxed, much smaller F can be achieved, even when only tie

first term of (1) is used; and in particular, this reduction of P means

that the dynamic boundary condition is more nearly satisfied in the main

body of the wave.

COIPjUTVI'ION O0: 'nin lI MPERFICrION CRIiTERION

Computation of D for use in (8) requires a determination of x for

a prescribed Z, viz., the determination of the wave's profile; for once

x(Z) is known, U, V and Q can be gotten by use of (2). In the moving

coordinate system the ieal stream function is Y = ' - z; and at the sur-

face, at x - t (where z 7 Z - 1 and 1p -) 0) this Y becomes - I. Wave's

profile thus is the streamline of T = -1, whereby p = Y + Z = Z - 1 = Y.

Thus by equating the real part of (1) to Z - 1, viz., by writing

s (x,Z) = Y (9)

where Z and Y are prescribed, we have an equation for determining x(Y).

Th. two end points in the range 0 e Y < y afford simplifications: x(y)

is simply 0, while x(O) is of no interest since i- yields D = 0. For

other values of Y the equation (9) can readily be solved by the Newton-

ian iterations. In such iterations the first approximation for x(Z) can

of course be taken as that obtained with some preceding tentative net of

the parameters M, N, g M, A3, AS...; incidentally, V appears as a byproduct

1,4



of these iterations. With x(L) kniown, the determination of U by (2), D

by (7) and F by (8) is straightforward.

The minimization of F - and hence, the determination of the best

set of the wave's parameters for a given y - is in practice made possi-

ble by the existence of the I:ORTRM subroutine INMIN ('function minimi-

zation without taking the derivatives'). The value of F computed for a

tentative set of parameters is simply returned to that subroutine -

which then decides what alternative combination of parameters is to be

tried next, and the search continues until the subroutine is satisfied,

viz., until all parameters are optimized to a prescribed precision.

STRUCTURE OF THE REFINED SOLITARY WAVE

Results of our minimization of F can be expressed by a statement

of the values of parameters M, N/M, A3, A5 ... and R for a series of

values of y. Figure 1 shows the behavior of the function D(Y) for dif-

ferent models of a wave of - = .5. Table I shows the wave parameters

for this y for a series of models of this wave, and also shows the pre-

cision criterion F, and the number, n, of intervals into which the range

of Y has been divided in this computation. The expansion (1) is seen

to be not of the 'orthogonal' type, in that the passage to the next-

higher-order model does modify the coefficients that enter into the pre-

ceding model; but there is a modicum, so to say, of ideal orthogbnality

in that such modification is relatively minor. The inclusion of a jth

term in (1) seems to contribute a ripple of (j+l)/2 humps that attempts,

.f' to say, to fill in the imperfections in the profile of the wave that

are left by the (j-2) th-order model. Table II shows the coefficients

in (1) for the 1st, 3rd, and Sth order models. An inspection of this

table6 suggests that for the larger values of y a greater number of

terms in (1) ought to be considered; in particular, it has shown that

for y = .5 the expansion (1) ought to be extended at least to the 9th

order. Table Ill, in particular, shows that the celerity of the soli-

tary wave is much closer to its classical estimate by (6) than to

McCowan's estimate.
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The background, the theory, the limitations - and further numerical

illustrations - of this extension of McCowan's theory of solitary waves

,are given in greater detail in Reference 6. In particular, we purposely

refrain here from considering the much-discussed question of the esti-

mate of the upper limit of y for the solitary wave. I-or the higher Y

the crest of this wave sharpens, and the approach along the lines of

(1) becomes awkward; but there are other reasons for believing that such

a limit is a phantom, for most of the classical assumptions postulated

in all theories of solitary waves would cease to be applicable long be-

fore such a limit is approached.
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