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ABSTRACT

'The self-excited oscillation of a square section vertical

cantilever beam and a square section sagging suspended cable in

a uniform wind stream was investigated theoreti-ally and experi-

mentally.

IExperimental quasi-static representatlon of aerodynamic

forces was used to determine the responses theoretically. The

excitation is due to negative damping type aerodynamic forces

and the amplitude is limited as the force-, become nonlinear. The

governing equations were reduced to ordinary differential equations

by Galerkin's method and steady state solutions were determined by

harmonic balance technique.

For the cantilever beam, the solution:i agreed qualitatively
with the experimental results but failed to predict some peculiar

amplitude drop-off behav4 .or observed in the experiment. In these

cases the response was found to be very sensitive to spiall changes

in initial angle of attack.

For the suspended cable, both structural nonlinearity due

to tension and aerodynamic nonlinearity had to be considered. The

agreement between theory and experiment was good for the frequency

response but only qualitative for the amplitude response.
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a1 , a2 , bl, b 2  Coefficients of assumed solution (Eq. 3.33)

all, a1 2  Defined in Eq. 3.41
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"in Eq. 3.34
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F(a) Defined in Eq. 3.16

igl Defined in Eq. 3.6

g11 E %l2 Defined in Eq. 3.25
g 2 1 ' gF,2
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Gn Defined in Eq. 3.5

G Defined in Eq. 3.9

£ Length of Cantilever beam

L Lift force

m Mass per unit length

N Coefficients of binomial expansion (Eq. 3.23)
innP Defined in Eq. 3.27

P n, Qn Coefficients of po]ynom:al fit of CN, CC (Eq. 5.25)

Pn' Qn Defined in Eq. 2.12

%211z Dimensionless generalized coordinate (Eq. 3.19)

time

u Reduced velocity (Eq. 3.3)

uc Critical velocity

u Defined in Eq. 3.11

U Free stream velocity

UREL Relative velocity (Fig. 2c)

V, W Displacements in Y and Z directions

V, W Velocities in Y and Z directions

WT Tip amplitude of the beam

X, Y, Z Coordinate system

Zn' Yn Defined in Eq. 2.14

Zmn' Ymn Defined in Eq. 3.25

a Static angle of attack

ao Initial angle of attack

Induced angle of attack
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S0 Defined in Eq. 3.32

Integration constant (Eq. 3.7)

y Inclination of plane of motion wr.t. Z direc-

tion (Eq. 3.37, Fig. 12a,b)

Tan y (Eq. 3.47)

1 Critical damping ra'Lo

4EQ Equivalent damping ratio (Eq. 4.2)

p Air density

Mass ratio (Eq. 3.3)

T Defined in Eq. 3.28

SDimensionless time ( = wit)

Wl First mode natural frequency

Dimensionless length x/k

g(T) n(T) Def~ind in Eq. 3.14

() )( Vat

( ) d( )/dT

SUSPENDED CABLE

ao,al,bl,a 2 ,b 2  Coefficients of assumed solution (Eq. 5.23)

Sa0 ,al,0 1 ,a 2 ,5 2

A An Constants defined in Appendix D

AE Extensional rigidity

b Side of square section

B mn Constants defined in Appendix D

SiCl,'l,C2,C2 Damping coefficients (Eq. 5.16)
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CN, CC Defined in Eq. 2.41

d Mid-span sag

Dl, D2  Constants defined in Appendix D

Do 0Static drag

e Defined in Eq. 5.10

El Bending rigidity

f oo() Initial static position W o/d

f o(O), fo() Static deflection positions

f (1), fY(O) Assumed mode shapes (Eq. 5.14)
f f2m, f2(M

FYFy, FZ Aerodynamic forces in Y and Z directions

g Acceleration due to gravity

gl'gl'g2Ig2 Defined in Eq. 5.17

Z Span

r •Mass per unit length

P nQn Coefficients of Polynominal fit of CNCC (Eq.5.14)

qojio Defined in Appendix D

ql,ql;q2 ,q 2  Dimensionless generalized coordinate 'ri4. 5.14)

rI, r 2  Defined in Eq. 5.15

t Time

T Initial tension due to self wc'bht
00

T 0 Static tension

T(t) D~namic tension (Eq. 5.11)

-T t Total tension (Eq. 5.11)

T Dimensionless T(t) (Eq. 5.15)
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u Dimensionless velocity (Eq. 5.15)

u c Critical velocity

U Free stream velocity

V0 , Wo Static deflection position in Y and Z direc-

tions

V, W Dynamic displacement in Y and Z directions

Vt, Wt Total deflection position in Y and Z directions

WOO Initial static position

WM Mid-span amplitude (Fig. 24a)

X, Y, Z Coordinate system

al, a2  Constants defined in Eq. 5.15

8 Induced angle of attack

Or Constant defined in Appendix D

o Cable inclination (Fig. 20)

CoEoo Defined in Eq. 5.10

Damping ratios (Eq. 5.16)

S0Air density

Defined in Eq. 5.15

SDimensionless time ( =w Rt)

SNondimensional frequency w.r.t. woi

w R Reference frequency

wI Flutter frequency

wol First mode natural frequency at U=O (Eq. 5.22)

WlW 2 First and second mode oscillation frequency

i Defined in Eq. 5.17
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SECTION I

INTRODUCTION

Among the study of wind effects on non-streamlined struc-

tures (Refs. 1, 2, 3, 4), the self-excited oscillation of square

section, cylinder-like bodies has been a subject of research for

many years. The two basic exciting forces which act on the body

are due to

(a) The Karman-Vortex shed alternately from either

side which exert periodic forces on the body

(b) The aerodynamic lift and drag forces due to

asymmetric flow, including the effect of wake,

flow separation, reattachment, etc.

The vortex shedding is responsible for high frequency, low

amplitude oscillations often called Aeolian vibrations and has

been observed in bluff bodies with or without sharp edges such as

stretched cables, tall towers such as rockets in launching pad,

smoke stacks, etc. The oscillations usually occur when the

natural frequency of the flexible body is close to the vortex

shedding frequency (Ref. 5). Since the Strouhal number is usually

known (Ref. 6, 7, 8), this kind of resonance vibration takes place

at a known wind velocity and can easily be avoided.

The self-excitation due to the aerodynamic lift and drag

forces usually occurs in bluff bodies with sharp edges and is

commonly known as galloping. It has been observed in a space

shuttle on a launching pad (Ref. 9), tall buildings (Ref. 2) and

overhead power transmission lines during a sleet storm (Refs. 10-

13). This kind of self-excitation can take place over a wide range

of wind velocity independent of the natural frequency of the body

and is the main subject of study in the present report, using a

square section vertical cantilever beam and a suspended sagging



cable in a uniform wind stream free from turbulence.

The aerodynamic properties of bluff bodies exhibiting

galloping oscillation are such that at a certain initial angle of

attack the aerodynamic lift force induced by a small transverse

motion of the body, acts in the direction of the motion. This

results in a negative damping type exciting force. The explana-

tion was first given by Den Hartog (Refs. 14, 15). Parkinson and

associates (Refs. 16-21) have analyzed the one degree of freedom

transverse oscillation of square section prism suspended by linear

spring, using quasi-static representation of aerodynamic forces.

The resulting nonlinear equation is solved by Krylov Bogoliubov's

asymptotic method. A good theory to experiment agreement is

observed except when the structural damping is very small. Novak

applied the quasi-static theory using energy balance to a two-

dimensional body in form of a rigid square section prism pivoted

at the base (Refs. 22, 23) and obtained qualitative agreement with

the experiment and did not get the hysteresis in the experiment

originally observed by Parkinson. Working with rectangular pris-

matic pivoted cantilever, Novak again obtained qualitative agree-

ment with the experiment but observed some interesting response

characteristics (Refs. 24, 25). In all the above studies the

specimen was constrained to move only in transverse direction and

were initially kept at zero angle of attack.

In the present report, a square section cantilever beam is

considered which is free to move in any direction without twist-

ing. Quasi-static representation of aerodynamic forces is used

to determine the response at various initial angles of attack,

theoretically. Experiment is conducted to examine the applicabil-

ity of such a theory for large 3D displacement. The system is

governed by a pair of nonlinear partial differential equations.

The nonlinearity arises from nnlinear aerodynamic forces. They

are reduced to ordinary differential equations by Galerkin's

method and solved by harmonic balance technique to determine

2
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steady-state limit cycle amplitude. Qualitative agreement with
experiment is observed at low amplitudes, but as the wind veloc-

ity is increased peculiar response is observed in certain cases

which cannot be explained by quasi-static theory. The static

forces are found to be quite sensitive to slight imperfections,

sharpness of the edges and Reynold's number. It is believed that

the forces are even more sensitive to these factors when the body
is in motion and the averaged static force measurements are not

sufficient to explain them. The quasi-static representation is

explained in Section 2. Sections 3 and 4 contain the cantilever

analysis and experimental results.

The galloping of power transmission cables have been

studied by Hogg (Refs. 11-12), Richards (Ref. 13), and many other

authors. Richardson and Martuccelli (Refs. 26-29) worked out two-
dimensional, three degrees of freedom dynamics of a D section with

linear spring and piecewise linear quasi-static aerodynamics.
They also measured aerodynamic properties of two-dimensional sec-

tions of various shapes. None of these studies consider the

aerodynamic excitation of the power transmission line as a three-
dimensional catenary in writing the elastic part of the equations

In this case the tension in the cable along with the non-linear

aerodynamic forces are responsible for limiting the amplitude.
Thus structural nonlinearity arising from the tension terms is

also important in this case.

In the present report, galloping of a sagging cable of

square cross section has been obtained experimentally in a wind

tunnel. The motion is governed by two non-linear partial differ-

ential equations which are reduced to non-linear ordinary

differential equations in time using Galerkin's approximation

and are solved by harmonic balance method using only two equations.

Good agreement is obtained in the frequency of oscillations but

the amplitudes are in qualitative agreement only for two particu-

lar sags. Prom the experimental results it is observed that the



aerodynamic lift forces do not reach the values given by the

quasi-static theory due to the lack of spanwise correlation. The

cable analysis and experiment are described in Sections 5 and 6.

bl
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SECTION 2

AERODYNAMIC FORCES ON SQUARE SECTION BODY

2.1 Introduction

In this section the various aspects of flow aroung a fixed

or movable square section body and the nature of the resulting

forces has been discussed. Attention is restricted to uniform

subsonic flow. The flow around bluff bodies with sharp edges

have some different characteristics in comparison to the flow

around a cylinders. These are pointed out in Section 2,2. The
quasi-static representation of aerodynamic forces on a translating

square section body Is explained in Section 2.3 and is used in

subsequent sections.

2.2 Aerodynamic Forces

Many experimenial investigations of flow around a circular

section body have been done in the past but available experimental

results for a square section body are relatively few even though

the flow around bluff bodies with sharp edges have some interest-

ing characteristics. The basic differences between the two flow

fields are the following;

(a) In a circular body the flow separation can occur

at different locations of the body depending on

the Reynolds number and the flow condition of the

wake. In square body, separation can occur only

at sharp edges.

(b) Because of fixed separation point, there is a

stronger spanwise correlation of forces on a

square cylinder than on a round one (Ref. 33)

Thus, on square section cylinders, the overall

aerodynamic forces are stronger.



(c) When the flow is at an angle of attack due to

the asymmetry of shear layer separation from the

edges and presence of the afterbody in the sepa-

rated flow, the lift forces on the square sec-

tion are considerably greater than that for the

circular cross section (Ref. 33).

(d) Reattachment of separated flow is possible at a

certain angle of attack and separation point can

shift from front edge 1 to the rear edge 2 at

higher angles of attack as shown here In Fig, 3

(Ref. 19). Due to considerable change in wake

width, the drag varies considerably with angle

of attack reaching minimum value at the angle

of attack when reattachment first occurs

(Fig. 3c ). The lift forces reach a maxima at

this angle.

The effect of the Reynolds number on a square section

is similar to that of circular section except for the drop in drag

at critical Reynolds number 4 x l05 since the separation point

is fixed. However, when the edges are slightly rounded, similar

drop in drag at Re 6 x 106 (for r/b = 0.176) has been observed

by Delany (Ref. 34). The Strouhal number is 0.13 at Re = 3000

and changes very slightly with angle of attack and Reynolds number

(Refs. 6, 35).

When the bluff body is flexible and can oscillate trans-

versely, the spanwise correlation of forces increases even with a

circular cylinder. The shedded vortex can excite the body if the

shedding frequency is near its natural frequency. The oscillat-

ing body in turn exerts some control on the shedding phenomena

and the shedding frequency locks on to the oscillation frequency

over a short range of velocity instead of following the Strouhal

number relationship (Refs. 5, 20, 36). Extensive study of wake

6



behind an oscillating circular cylinder has been done recently by

Toebes (Ref. 37) and Griffin (Ref. 38). The vortex shedding

frequency of the present specimen is quite high compared to its

natural frequency and thus does not affect the response appreci-

ably.

2.3 Quasi-Static Representation

Let us consider a square section body translating in a

uniform fluid stream with a velocity W along the Z direction as

shown in Fig. 2c. The induced angle of attack 0 due to the veloc-

ity is given by tanp = W/U. In quasi-static representation of

aerodynamic forces it is assumed that the forces are the same as

if the body were at rest" in a uniform stream of velocity UREL at

an angle of attack 8. Total forces normal to and along the

UREL are

L oU' b C,(~ Ibs/~t

D y (2.1)

In actual flow the development of forces due to an induced angle

. of attack may not be instantaneous. It may differ both in magni-

tude and phase. In quasi-static representation these effects are

neglected. Since no theory exists to predict the unste&'y aero-

dynamic forces on a bluff-body with turbulent wake, the unsteady

forces can only be determined by carefully conducted dynamic tests.

For square section body, no such results seem available.

Resolving the forces alcng Z and Y direction which are

normal to and along the free stream direction and noting that

UREL = U SecB
Y

Uf 6 5e 2[ r CtCoi p C, S$

'ZQL~C. C~OSr CL S j

* i7

I7



FZ is taken p-1sitive in the direction W. To use FZ, Fy in equa-

tions of motion it is convenient to express them as algebraic

functions of W/U, i.e., as algebraic functions of tana. One

possible way is to define new force coefficients acting in the

direction FZ and Fy such that
S! ~F 7 = ;,fU 2 b CN(f'•)

F -L/U6cq (2.3)

where CN, CC are defined as

C() 5ec 5 [-Q~? ~~~L

Cc~) Sec C Cy (2.14)

Considering the zero reference angle of attack to be the

position when one of the faces of the square is normal to the

free stream direction, CN, CC with respect to this origin can

now be determined as following. Lift and drag forces on a static

body at various angles of attack a (Fig. 2b) can be measured and

converted to CL, CD by dividing by 1,PU 2b. CN, Cc are then

computed using Eq. 2Ai . Here $ is taken equal to the static.

angle of attack a at which the forces were measured. CN, CC are

now plotted against tane and fitted with a polynomial in the form

N

IN-

N
Cc 7, o,=ciP y (2.5)

In the equations of motion CNI CC are used as force coefficients

and tang is replaced by W/U.

8



Now let the body be initially at an angle of attack ao

with respect to the free stream and translate without rotation

with velocity components V and W along Y and Z directions as
shown in Fig. 2d. Expressing F., Fy in terms of induced angle

of attack a in the similar manner one obtains

Fj= 21PU43 6 CL(C)(-) C04f, - C D(J~O)SNfL

2 EL bE D CG~r')Co(01 - C L 0(6- ) 3H5 (.6

where

ao = Fixed angle (+Ve in the sense shown in Fig. 2d)

tanO = W/(U-V) (Induced angle of attack)

UREL = (U-V) Sec(' -

Here C (0-ca) represents static CL measured at an an&le of attack
LL

(0-ao) where zero angle of attack is the position when one of the

faces of the square cross section is normal to the free stream

direction. Introducing UREL

ry O V CDf ) -C(-X\~oMP ]$Q-CP (2.7
D CY-0) (C Lv0'b-7

Now to express the forces in terms of W and V in a convenient

form, it has to be written in a polynomial f'c-rm in tanO. This can

be done in two ways:

a) One can plot [-CL(0-a,) - CD($-ao)tanB]Sec0, and

[COD(U-ao) - CL(0-ao)tana]SecI, versus tanO at a fixed ao and fit

it with polynomials of tanO to give:

= .? 2b Q ) 2 ZYcc )
SL lo= O

t=



!I

S4 1 (2.8)

The highest order power N can be chosen for a best reasonable

SLfit but must be kept minimum to avoid unnf:cessary complexity.

This procedure is not very convenient since at every co, one h..s

to carry out the curve fitting numerically.

b) To avoid this disadvantage, it is desirable to express

Eq.2.7 in terms of CN and CC whose polynominal fit is already

known from Eq. 2.5. To do this one may write

tom(3 (tcny% cc.) + toalc.)/ (t n - P 0o~ ) tCV C4O)

4QC( = (L(X-c o) /Uc o)/( - t-o ( cf).t-• ) (2.9)

in Eq. 2.7 and combine the CL and CC ternis using the definition

(2.4) of CN and CC to get

F. -PU --. )[ CN _-cc (p- A)ti A* tcc/tQ I([ta

Fy ( (1 C,+ ',.) to)

(2.10)

This may be written in the final form as

F 2 2

F- =-LO.I)[CM (P- a.) +cwQ-) ftn wC&(C .(+ t)Con, OC.

(2.4.1)

1 0.. ) C i a I +



Now introducing Eq. 2.5 in above, one obtains

.-, + rp 6o ) - (2.12)

where P R•= •- Qy •c4,

2 U + P PVoYI-0 + tMIA+ Pnlow'a'

Eq. 2.12 can be expressed in the form (2.8) as follows. First,

one may write
I= I -(-2) mtcon-0 + (r-z)(O-) (tteto,') A

(2.13)

For example, for a square section the estimated maximum
Ita•~m~o 00 . Thus if N = 6, Just one term in the above

approximatiton needs to be retained with only 3% error. Now
using Eq. 2.13 in Eq. 2.12, expanding the numerator terms fully

and collecting the coefficients of ten(~.one obtains

"K,
Fy =

I~~~~~2 114)-() ) e
+~ ~ ~ ~ ~ I- tGA 

oCO"(.3

Here qn, Yn &re known functions of C~, Pn, Qn and can be computed
for anym0pl. Zn(, ), Yn(cO) for N s 4 are given in Appendix x.
In the equations of motion tan( is replaced by W/(U-V)

11



4. SECTION 3

CANTILEVER BEAM

3.1 Introduction

,i In this section the quasi-static representation of the

aerodynamic forces described in Section 2 will be used to

formulate the motion of a square-cross section cantilever

beam when placed in an uniform wind stream. Such a simple

structure is chosen so that the emphasis can be given to the

quasi-static representation of the aerodynamic forces and its

applicability can be examined thoroughly. The geometric non-

linearity due to large deflection of a cantilever beam is very

small and the force-deflection relation is linear up to tip

deflections of 25% of the span. Thus only the aerodynamic

nonlinearity needs to be considered here.

The beam has the same bending rigidity in all directions

and is thus free to translate in a two degrees of freedom
space. It has high torsional stiffness and does not twist

under the existing forces.

Even thoug.i the present model is free to move in any

direction, the motion is predominantly normal to the wind

stream direction when the square section beam is initially

at zero degree angle of attack. In Section 3.2 this one

degree of freedom motion is considered and solved by harmonic

balance method for initial introduction to the problem. The

solutions are compared with experimental results in Section 4.

This is the only case investigated by most authors. Moreover,

their models are constrained to move in lateral direction

only. In Section 3.3 the general case of two degrees of freedom

motion is considered and solved by harmcnic balance method. The

essential features are pointed out with a simple example and the

justification of using one degree of freedom motion at zero

initial angle of attack is discussed. The solutions are

1
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compared with experimental results in Section 4.

3.2 One Degree of Freedom Motion

Let us first consider the case when the beam is initially

at zero angle of attack with one of the sides of the square

section facing the wind stream and moves nOlr& l to the wind

direction as shown in Fig. 2c. The simple equation of motion

of the uniform beam is given by the well known expression

2 --WEIW U26 C) (3.1)

Here w(x,t) is the displacement normal to the wind stream, U is

the free stream velocity and c is small structural damping
coefficient. It is convenient to express this in the form of

viscous damping since the vibration frequency is close to the

natural frequency. In general, at low subsonic speed, the

aerodynamic forces are small compared to the inertia and

elastic forces. m is the mass per unit length, / is the den-

sity of air which is considered incompressible, b is the dimen-

sion of the side of the square, and the right-hand side repre-
sents aerodynamic :irces induced by the motion. Applying

Galerkin's approximation to reduce Eq. 3.1 into an ordinary

differential equation in time t using only one mode

W(9, t) = ( X3.2)

where f1 (7) is the first bending mode shape of a freely vibra-

ting cantilever beam as given in Appendix A, the Eq. 3.1

becomes after nondimensionalization

d? I + 2 %' + i)_0 uk C 4
d r d1 (3.3)
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where

W1 = _ --L ( First mode natural frequency )

4C, = C/20 1'M ( Damping ratio )

I' = b/ ( Mass ratio )

SU/Cob Reduced velocity )

and A1 and D1 are integrals of the mode shape and are defined

in Appendix A.

In quasi-static representation of aerodynamic forces

the static normal force coefficient CN versus tan$ curve is

represented by a polynomial in tan$ in the form Eq. 2.5

N N

CN L , ta[wPi3) = (3.4)'ý

Introducing Eq. 3.4 into Eq. 2,.3 aives

00 0 ,T

c~+ +ý c1 +ft C, (3.5)

where R A , P, S- (g) ]I+,

0( 0) d(

dt
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The numerical values of A are given in Appendix A. Subtractingn
out the static part from above and using ql to denote the dynamic

t part, Eq. 3.5 becomes

G!I + 0 (3.6)

# %=2.

where

The terms under summation sign contain all the nonlinear terms.

The solution of the linear equation is given by

= o-e Fi~ -A17 (3.7)

a and • are arbitrary constants. When gl>O, the oscillations

die out. Beyond the critical velocity uc=44i/DPl, when gl <0,

the oscillations grow and full nonlinear equation need to be

considered. If the amplitude is plotted against time in a

semi log paper from an experimental transient record, the

initial slope should be linear and equal to the ( UP1 -tl) if

the quasi-static theory works. In general fgll<<l and the

frequency of oscillation is nearly equal to the natural fre-

quency.

The solution of full Eq. 3.6 is discussed in detail by

Bogoliubov (Ref. 32), Parkinson (Ref. 18) and many other authors
using the Krylov and Bogoliubov's method of slowly varying

amplitude and phase. The equations can have stable and unstable

limit cycle solutions, depending on the values of Gn. They

appear as concentric circles in the phase plane whose origin

is an unstable focus. In this report Eq. 3.6 is solved by

15



harmonic balance method to determine the limit cycle solutions.

The stability is checked by slightly perturbing the steady

state solution. All these methods involve the assumption that

the nonlinearity is small compared to the inertia and elasticity

terms and the oscillations are close to the sinusoidal motion

near the natural frequency. For a square section body in low

subsonic flow, these are realistic assumptions.

Let the steady state solution be given by

i 1SbZ + b1C0a 8r-(3.8)

Substituting Eq. 3.8 in Eq. 3.6, collecting the coefficients of

sinT and cost and setting them to zero one obtains

SinT:

61• + GT• 2 2 Z,•• •,-

CosT: (3.9)

- 's::-n

•: 3,5..

S~where cL, 2 GI O-t( 1(Z+ b2)

272Setting a= fa l +bl, Eq. 3.9 reduces to,

-~,. p o(3.10)

This nonlinear algebraic equation in a can now be solved to give
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the limit cycle amplitude at a given u and •I" Eq. 3.10 can
be expressed in another nondimensional form

3,5.-

where

For a given (/Ii), one can calculate u without solving Eq. 3.11

for -. The resultant plot of a vs. serves as a master plot

for a particular CN vs. tan$ data (3.4). This was suggested
by Novak (Ref. 23). It may be noted that (a/u)=(ai/u) and the

induced angle of attack 8 at the tip of the beam is given by

tanS=2(a/u) for our chosen mode shape. Thus the steady state

solution is given by

CSV (3.12)

at a reduced velocity u=U/w1 b. For example, for a fifth degree

polynomial fit in Eq. 3.4, Eq. 3.11 takes the form

I5

Eq. 3.10 gives both stable and unstable limit cycle

solutions so each of the solutions must be tested for stability

Giving a small perturbation to the steady state solution, %1 is

written in the form

(Q 5 + )(3.13)
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Here as is a steady state solution satisfying Eq. 3.10 and •(t)
is a small perturbation from the steady state solution. It is

also assumed to be a slowly varying function which means that

the increase of such a function during one period is small com-

pared to the average value for that period

It~<<) « ~(c) <)I (3.14)

According to this assumption

0

-1 = Los+ ý(C~)]i +. Z

Substituting this in Eq. 3.6 coefficients of sinT get cancelled.

Setting coefficients of cost to zero, cancelling out the steady

state solution and keeping only the linear terms in E (T), one

obtains

2•(•) + dF(Qs) 0 (3.16)
da•

where

F ~~ 2-~. o." L/4"

2 1,3,5..

It may be noted that F(as )=0 gives the steady state solution.

Thus in order that the steady state solution be stable, one

must have dF(a_ positive at F(a)=0.da

A graphical representation of the steady state solution

and stability is explained below. Using the nondimensional

nbtation of (3.11)
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YI= 1,3 5,..
I - I-ax

r- I..L d __ ' /\I (3.17)

Plotting versus (a/u), steady state solutions

at a given u are obtained from the intersection with a straight

line from origin and with slope 1/U. The solution is stable

if the slope of the straight line is greater than the slope of

the curve at the point of intersection.

Thus if the Z Gn(//f)P plot is as shown in Fig. 16a, B2

represents unstable limit cycle solution. Fig. 16b shows the

nature of steady state amplitude variation with u. The dotted

portion represents unstable limit cycle solution. At large

velocity the amplitude is asymptotic to a line of slope D.

If the 2 -,,/V)% plot is as shown in Fig. 16c all the

steady state solutions are stable. If this is as shown in

' Figs. 16e and 16g, A2 represents the unstable solution. These

different forms of amplitude response for bodies of various

cross section have been discussed by Novak (Ref. 24) and sta-

bility proven by the method of Krylov and Bogoliubov. By the

present method, the steady state amplitude and stability can

be determined just by looking at the plot.

3.3 Two Degrees of Freedom Motion

In Section 3.2, the motion of the vertical cantilever

beam at zero initial angle of attack is assumed to be in a

plane normal to the free stream direction. This is found to

be a reasonable assumption experimentally for this cantilever

beam which has no directional preference of motion structurally.
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However, when the beam is initially at an angle of attack, (see

Fig. 2d), the motion is generally in a plane slightly inclined

to the z direction. This inclination is presiumably decided by

the aerodynamic forces alone. Assuming that the beam can
vibrate freely in all directions with the same natural fre-

quency and does not undergo any torsional motion under the

existing forces, the equation of motion can be written in the

same form as Eq. 3.1, namely,

(3.18)

Here w(x,t) is the displacement normal to the wind direction;

v(x,t) is the displacement along the wind direction; c is the

structural damping coefficient expressed in the form of vis-

cous damping; a. is the initial angle of attack and the right

hand terms represent aerodynamic forces induceO by the motion.

Again, applying Galerkin's approximation to reduce Eq. 3.18

to ordinary differential equation in time t using only one

mode for w and v

\ (ý, t) = f I c•) % X

where f1 (0) is the first bending mode shape as in Eq. 3.2, the

Eq. 3.18 becomes after some nondimensionalization
00 2

00

(3.20)

20



where (41 t

(0) = dC)/dz

Other notations are the same as in Eq. 3.3. In Section 2.3 a
quasi-static representation of the motion induced aerodynamic

forces on a body translating with velocity W and V without

rotation has been derived. Using thp Eq. 2.14, C and C can

be expressed in the formM

0 ( 20 (3.21)

for small ltanltana. . Now

(AU YU 3.22)

In general, because of presence of damping due to drag, the

stream-wise motion is very small, and one may write

(o ( 6 ) m-) nlU)V~ (3.23)

In the present problem IV/UI<o.l. Thus if M=7, only two terms
need to be retained in the above approximation with only 4%

error .CZ, C Y can now be expressed in the fc-m

= + (3.24)

7 a Y

3n1=3 ±nZ 1
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Cy expression is the same as Cz except Zm is replaced by Ym"
In this case No=l, Nm,=(m-2) N,,-=(m-2) (m-l)/2. Eq. 3.24

expresses Cz , Cy in terms of 'Wk in a convenient form which
"U

can be converted to ordinary different equation in time using
Galerkin's approximation. Introducing Eq. 3.24 in Eq. 3.20,
one obtains after subtracting out the static part

08 0

+ ~ 2 /PL A ~~z~~ U- Z, +}

+7+
A1

2?

+° + 122% At Y2} "

where~~~Y 12-m ) +, Y•.A•4•(.2

0~ r+ntl

A,,•,,=ny +, [ ,•] d
/I "" .)1

%, = #•- Y%

Ch (25, • o
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Here ql, q2 denote only dynamic terms since static parts have

been subtracted out. The terms in the square bracket contain

all the nonlinear terms. The mass and stiffness matrix are

symmetric and positive definite. Thus the instability can

arise only from the damping terms. It should be remembered

that the self-excitation is mainly due to negative gll and not

because of interaction between ql and q2 "

First consider the linear part of the Eq. 3.25.0017% + = 0
o 2 _(3.26)

++TZZ + 0=

Let the solution be iafePT, a 2 a 2  Substituting them in

Eq. 3,26 a pair of homogeneous simultaneous equations in a1

and a2 are obtained.

0 (3.27)

For non-trivial solution, the determinant of the coefficients

must be zero. The variable parameter is the reduced velocity u.

It may be noted that for a perfectly symmetric cross section

body at %o=0 g1 2 =0 g2 1 =0 and the linear equations are uncoupled.

Since g2 2 is positive, the motion in streamwise direction die

down. Thus if gll is negative, the motion normal to the free

stream direction is only excited. The equations become coupled

if the square section is a+- an initial angle of attack ao, or

if P0 and Q1 are not zerc . ao=0 (for example, if the section

is not perfectly symmetric). From experiment, it is found

that the motion for the initial angle cases is not normal to

the wind direction but in a plane inclined to it. Setting the

determinant of coefficients of Eq. 3.27 to zero a fourth
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degree polynomial in p is obtained which cem be solved to give

where

( (3.28)

It can be seen that at low velocity when (gllg2 2 -g 1 2g 2 1 ) >0

both the values of a are negative since in general (g 1 1 +g 2 2 )

is positive for a square cross section body, at all velocity.
The oscillations die down. As u is increased, flutter condition

is reached when
!,7

- ,) (3.29)

which makes a=0 and p=+i. Thus the flutter frequency is the

same as the natural frequency w1i It should, however, be

remembered that the self-excitation occurs because of the

negative damping term gll and not due to interaction of

and cz"

The Eq. 3.29 can be solved for u to give the critical

velocity u_

" = (2Yo-z 1) + (,Y°-z) -o)(z.Y. - zY ) (3.30)

ignoring the negative value.

At u>uc one of the values of o becomes positive and the

oscillations grow. The motion corresponding to the negative

a die out. In general, lol<<l and the frequency of oscillation

is close to the natural frequency. Thus

4(3.31)
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Substituting this in Eq. 3.27 and using the assumption o 2<<1

C2 Ohl ±_+Le
Ci- ('•+ 2a-) e tbme=-iG (3.32)

For the specimen used in the experiment, at low subsonic speed
a is of order 0.01 so the phase difference between q, and q2

at low amplitude is small and the initial motion is in an

inclined plane. The phase difference between ql and q 2 repre-

sents an elliptic whirling motion. It should be noticed that

at critical velocity uc,ql and q 2 are in phase and the motion

is purely planar.

Let us now look for steady state solution of the total

Eq. 3.25. Since the elasticity terms are linear, and the

linear and nonlinear damping terms are small, the frequency

of oscillation beyond the critical velocity are close to the

natural frequency of oscillation. Thus a steady 3tate solu-

tion to equation (3.25) can be taken as

11 =CL, ýý C+ b,60/, Z:(3.33)
"1" =•z Q .zfc + bz 6c3

Substituting these into Eq. 3.25, col!zcting coefficients of

sinT, cost and setting them to zero one obtains four algebraic

equations coming only from the first derivative terms.

•-�.�,f (ti•, b,,oz., bz) o 0

(o , + CL _• 2f i,(at,boL ,b2) = o

I., bib 2 .2 P=2 ~,b k 0

Co C-+ , (A (o, bo,,=
(3.34 a,b,c,d)

2r5
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Here f S1 (al,bl,a2 ,b 2 ) etc. contain all the nonlinear terms in

al,bl,cl,dI and are given in Appendix B for a general poly-

nomial fit of aerodynamic data for the case b1 =0. In steady

state limit cycle solution, the starting point of time is

irrelevant and b1 can be set to zero. Setting also b 2 =0

Eq. 3.34a,c are automatically satisfied and one is left

with two equations (3,34b,d) with two unknowns a1 and a 2 .

at + - CL 1, ( Q2) o
0' • l f 2(O ) -- 0 (3.35 a,b)

which can be solved at a given u to obtain the steady state

solution.

W

SC2(3.36)

The inclination of the plane of the motion with respect tc the

z axis is given by

Y= to- C, (3.37)

Positive y has the same sign convention as positive ao0  The

total tip amplitude WT is given by

WT 2- = ( / con (3.38)

It may be noted that Eq. 3.35 can be nondimensionalized in the

special form of Eq. 3.11.

To examine the stability of the steady state solution,

we again assume

2(



I

%: [ L , •1 + ~(c) ] si C.

,. [ a.• + ' (.)1 3C~. (3.39)

SY

where als, a2 s are steady state solutions satisfying Eq. 3.35

and o2t), n('r) are slowly varying functions as defined in Eq.

3.14. Thus proceeding in the same manner
0

OIs+ c(c) cy C01

0

c ~ + 1(C)
00

is + ~(c)f +-c A 2()G,-c
00

00~j2s 5 1(Z) SLnC 2± CCo
(3.40)

Substituting these in Eq. 3.35, the coefficients of sinT get

cancelled. Setting coefficients of cosT to zero, cancelling

out the steady state solution and keeping only the linear terms

in ý(t) and n(t), one obtains

[ ]+ [0 aI j 1 = 0 (3.41)

0 12

_•. ~where CI 1 /I••-'

OLC t I Ifec"

72, 14CL A 0It"

02 OZ = 5
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This gives the familiar eigenvalue problem. For stability,
the root of the characteristic equation

+ I( O. + a20 + ( i11 1 02-z - % z2 ) 0 (3.42)

must have -ve real part. The condition is givt-.r by

(a,, + 12.1.) > 0

(Q11 01-2,- O012021z) > 0 (3.43)

Let us now consider a simple example for which CN and CC

are given by

CW= P Itoimf + P, toin2"

CC = GL' + a-Z Qa/P + Qo to (3.44)

In order to get a feel for the quantities involved, P1 =0.9,
P 3=-.8, Q0 =1.24, Q2=-3, Q4 =30 roughly fits the experimental data

shown in Figs. 7a, 8a up to tans-0.45 if one ignores the small

off-symmetries. In one degree of freedom case this form of

CN has the response characteristic as shown in Fig. 16c in
Section 3.2. There is one stable limit cycle solution and the
limit cycle amplitude increases monotonically with u. With the

limitation ItanatanoI1<0.1, IV/UI<O.l the harmonic balance equa-

tions (3.35) are

a, a AA [,.7, z3(•)• + 1.6 +)

+ A.7 z(a1)5 ] = o

1 I-7GI 'Y(Wf2± 84 3' (3.45)

4- 1A7 z 5(j] -
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with the approximate quasi-static representation. Adopting

the nondimensional form of (3.11), Eq. 3.45 become after

division by (o.,/i0.,)

+ UZ~ [.61 (~2+ Y.~

+ -7Z 5  = O
(3.46 a,b)

+ -1.17 y5 ('
where q =

_, = tO =
0.t

Here %.Z5' Z o..Y5 are functions of Po, PI' P3' Qo' Q2' Q4
and a and are given in Appendix C. Since CN is cubic, the

second and third terms in square bracket of Eq. 3.46a are

very small compared to the first term and can be neglected.

From Eq. 3.46b

,.. xl' -+ 1. 7 C1 "(3 +, -A" .17 Y5

Y = Y =IL - - 51JL(3.47)(J-+2•Yo) - g3t¥(.)

In determining (al/i) by substituting (3.47) in (3.46a), one

may ignore the fourth power terms and get



24Y/(+ 2Y0)

3- 2=L + 2 (3.48)K_ _ _YO-

The limit cycle solution is possible only if the term undcer the

radical sign is positive. If C. is antisymmetric and C.

symmetric in $ then at co=0 Y1, Y3 ' y5 are zero and the solu-

tion is given by

f Jý V (3.49)

If Q4=0, one may ignore Y3 ' Y4 ' y.. Then tany is approximately

given by

t.+"YY "" ýZ- " ,) t., ,Xo (3.50)

Thus qualitatively if no drag variation with 6 is considered

then yz o; if the drag increases with 8, Q2 >0, Y<a 0 ; if the

drag decreases with 8, Q2<0 y>a 0 . When Q4 is included the

problem is more involved. Numerical examples are considered

in Section 4. In general, y does not affect a very much. a

is primarily determined by Z1 and 3.



SECTION 4

EXPERIMENT WITH CANTILEVER BEAN

4.1 Introduction

Since no purely theoretical method of predicting the aero

dynamic forces on a blunt body with a turbulent wake exists,

experimental observations form the basis of the present investi-

gation. The quasi-static representation of the aerodynamic

forces constitute one of the means of predicting the response of

a self-excited square section body. So experiments have ben

conducted with a square section cantilever beam placed in a uni-

form wind stream. First the static lift and drag forces are

determined and are used in quasi-static theory to determine the

responses. Then tests are carried out to determine the response

experimentally with the specimen at various initial angles of

attack. Some interesting response phenomena are observed. They

are described in Section 4.3. In Section 4.4 the results obtained

by this quasi-static theory using the static test lift and drag

data are compared with experiment. Only qualitative agreement

has been observed.

A movie of the experiment has been taken, which shows the

self-excitation phenomena. The transient motion and the response

at various angles of attack can be clearly observed.

4.2 Static Force Measurement

The experiment with the cantilever beam is carried out in

a 1 ft. x 1 ft. low speed wind tunnel. The air is blown into the

tunnel by a blower and is smoothed out by a series of netting and

honeycomb mesh. The velocity is increased by the area contract±on

ratio of 36:1. The flow is smooth and nearly free from turbulence.

The specimen is placed in the open jet 1.5 inches from the end of

tunnel as shown in Figs. 1 and 2a. All the velocities mentioned
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are the velocities just inside the tunnel and are used as the

reference velocity throughout the report. Before the testing

the velocity near the specimen position is measured with a pitot

tube whose total pressure holes are at 1.5 inches from the end

of the tunnel and static pressure holes 1" farther behind. In

Fig. 4, this is plotted against the reference velocity. The re-

duction in velocity at the specimen position due to the open jet

effect is found to be less than 2% at all reference speeds up to

80 ft/sec. and can be considered within tolerable experimental

error.

The specimen cantilever beam is made of 1/8 inch diameter

r• steel rod and is 13.1 inches long. It is coated with wax and

drawn through a square template to give it a square cross section

outside. The side of the square is 0.09 inches. The section is

not perfectly square but is slightly rounded at the edges. The

wax coating is thin and does aot change the structural property

of the rod appreciably. Thus the rod can be assumed to have the

same area moment of inertia in all directions. It is free to

deflect in any direction without twisting and with some bending

stiffness. This simplifies the theoretical analysis considerably.

The 13.1 inches long specimen is clamped in a vertical position

and the base is bolted to the top of a turn table which can be

rotated through 3600. The orientation of the specimen with respect

to the wind stream direction and the chosen coordinate axes are

shown in Figs. 2a, 2b. The four sides are identified as side

A, B, C, D with respect to a small 120 ohm strain gage which is

placed at the root of the beam on side B to record the transient

motion. When the side A is facing the wind stream, the general

position is termed as position A and so on. The static and dy-

namic calibration of the strain gage is shown in Fig. 9 at

position A, ao = 0 for different tip deflection WT in Z direction,

and is quite linear. There are small variations if the motion is

slightly inclined from Z direction.
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The clamped end of the specimen is 2 inches below the wind

tunnel floor to avoid flow disturbance from the base support fix-

tures. Since there is little motion at the root, the motion in-

duced forces are negligible and the set up does not affect the

response significantly. Tests are first conducted to determine

the static lift and drag forces at various angles of attack. This

4 is done by measuring the static tip deflection in Z and Y direc-

tions visually, at different angle of attack position a as shown

in Fig. 2b, and then calculating the force, assuming uniform load

over the span of the beam exposed to the wind, using linear force

deflection relation.

CL =8F-1 WTft[I_ 4
*2 + ]

(4.1)

Here At is the portion of the beam at the root which is

outside the wind stream. For At = 2 inches, Z = 13.1 inches,

the factor [i - (A)'+ •,'-iy ] 0.9955, showing that the

effect is very small. CL, CD are computed at 37, 44, 56, 65 ft/sec

velocity for position A and at 37, 45 ft/sec velocity for position

D, and are shown in Figs. 5 and 6. The variation in CL, CD from

the error in measurement of deflection is less than 5%. It is

observed that while CL remains relatively unaffected by velocity,

there appears a Reynolds number effect on CD* For an increase in

Reynolds number from 1800 to 3100, CD increases from 1.24 to 1.54

at a = 0. The square section CL is characterized by the negative

lift curve slope in the vicinity of zero degree angle of attack.

The lift attains peak value near a = 120 where drag reaches a

minimumi. In this vicinity the flow first reattaches on one side

and the wake has minimum width. Beyond this angle the flow is

fully attached to both the windward faces but the wake width
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increases as the square is rotated farther, and the drag increases

simultaneously. Even though the general nature of CL, CD variation
r with a are similar for the position A and D, the differences are

noticeable at small angles of attack, signifying that the static

forces are quite sensitive to the imperfections and sharpness of

the edges.

Using the CL, CD data, CN(a), CC($) as defined in Eq. 2.4

are computed and plotted against tanr in Figs. 7 and 8. An 8th

degree polynomial least square fit is shown in solid line. The

fit is good only up to tano = + 0.45 and does not fit properly

near sharp peaks. The coefficients of the polynomials Pn and Qn

are giv.-n in Table 2.

4.3 Description of Experimental Result

The first natural bending frequency of the beam is 9.4

cycles/sec. The theoretical estimation with bending rigidity for

a 1/8 inch round steel rod gives 9.5 cy/sec showing that the wax

coating does not affect the structural stiffness. First the

critical damping ratio is obtained from the dynamic decay record

by plotting the transient amplitude against time on semi-log

paper, and is shown in Fig. 10 along with a typical decay record.

The damping ratio is constant at very low amplitude but varies

linearly at higher amplitude. The constant value is due to vis-

cous and structural damping. The linear variation is due to the

aerodynamic damping as the body moves through still air. If it

is assumed that the drag at any point of the harmonically oscillat-

ing beam is proportional to the square of the velocity at that
point, then it can be shown by equating the work done over a cycle,

the equivalent damping ratio is proportional to the amplitude of

the cycle.

EA - Z C,( (4.2)
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WT is the tip amplitude and -, A,, A2, w, are as defined in

Eq. 3.3. This is plotted in Fig. 10b from the origin for CD = 1.6

and 2. Since l,&/tj, it can be seen that the slopes of

linear ýF variation are much smaller than the experimental plot.

For CD = 1.6, the iz 0.87 x 10- (WT/b)whereas the slope of ex-
perimental linear variation •,, 3.8 x 10- 4(W/b)which is four

times as much. It is not quite clear why this is so but one of

the reasons could be that the beam is actually not moving through

still air but sets the wind in motion as it moves through it. As

it swings back, it meets the incoming turbulent wind which in

effect doubles the net velocity and the drag is four times as
much. It should be noted that when the beam is oscillating lat-

erally in a wind stream this air damping in that direction is no

longer present. Only the structural damping which is obtained

from the intercept of the experimental curve on the <,axis, impedes
the motion in this situation. This is estimated to be between

.002 and .0025 in terms of critical damping ratio. The value .002

is used for all calculations.

The response at zero degree initial angle of attack is

measured for all the four positions A, B, C, D, i.e., with each

of the four sides facing the wind stream. The turn table is

clamped at the position A at zero degree angle of attack and tunnel

is turned on. At a speed below the critical velocity, there is

no response. When the beam is disturbed, the oscillations die
down. The wind velocity is then increased in small steps. At

around 10 ft/sec, the beam begins to oscillate by itself. The

amplitude increases slowly and then settles down to a steady state.
To record the transient motion at a particular velocity, the beam

is brought to rest by touching it at the top and then letting go.

4The Sanborn recorder which is hooked up to the strain gage is

turned on simultaneously. The amplitude grows slowly and then

settles down to a steady state limit cycle. The final amplitude

is quite steady, signifying absence of large scale turbulence in
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the flow. The beam is then given a small kick to see if it comes

back to the same steady state value. It is then given a big kick

to examine if there are other limit cycle solutions at that veloc-

ity. The steady state tip amplitude is measured visually with a

scale held on top of the tunnel outside the wind stream. Some of

these measurements are compared with static calibration of the

strain gage done at the beginning of the experiment for various

tip deflections due to an end load, and is given in Fig. 9. They

are almost the same if motion is nearly normal to the wind stream

direction. The steady state amplitude and transient response are

recorded for the position A for velocities up to 65 ft/sec. The

velocity is then reduced in steps and the amiplitudes are measured.

The process is repeated at zero degree angle of attack with sides

B, C, D facing the wind stream, but no transient records are taken.

The result is plotted in Fig. lla. WT is the tip amplitude. It

is observed that even for amplitudes as large as WT/b = 31, the

frequency is still nearly 9.4 cycles/second as in small amplitude

oscillation. The steady state amplitude variation with velocity

is more or less the same for all the four sides up to about

25 ft/sec. Beyond this velocity there is a marked departure. In

position A, the amplitude levels off and then drops as the veloc-

ity is increased to 4 5 ft/sec but rises again as the velocity is

increased farther. Similar response variation is observed for

the position B and C but the drop off and rise occurs at differ-

ent velocities. For position D, however, the amplitude rises

monotonically with velocity to a large amplitude of WT/b = 31 at

55 ft/sec. The specimen is not tested beyond this velocity to

avoid its destruction. With two dimensional square section body,

response behavior of form shown in Figs. 16a, 16c have been

observed but this type of behavior is rather unusual. In order

to investigate this peculiar amplitude response in position A, B,

C, further tests are conducted for the specimen position A and D

so that the basic differences can be detected.
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Now instead of keeping the specimen at zero initial angle of

of attack, it is placed at a small initial angle of attack o as

shown in Fib. 3b for each of the positions A and D and the steady

state amplitudes are measured at various velocities. Now, however,

the motion is no longer in the Z direction but generally in a

plane slightly inclined to it. The total tip amplitude WT and

the inclination of the plane of the motion with z direction denoted

by Y , are plotted in Figs. 12a-f (position A) and 12g,h (position

D) for various initial angles of attack position No and at differ-

ent velocities. The sign convention for Y and CO are as shown

in inset diagram of Fig. 12a. They are both positive in the same

sense. At position A, for velocities below 25 ft/sec, the steady

state amplitudes are nearly symmetric for positive and negative

Uo and goes down as 0O is increased (Fig. 12a). It goes down to

zero in the vicinity of Oo = 100. At0OC beyond this the oscilla-

* tions die out. The plane of oscillation is however somewhat

irregular. At 17 ft/sec, the Y is in opposite sense to Mo. At

24 ft/sec the inclination Y are nearly zero. However beyond this

velocity, there is a marked departure from this pattern as shown

in Figs. 12c-f. The responses are no longer symmetric with re-

spect to 0 o and there is a large change in amplitude and inclina-

tion of plane of motion for a small change in %0 from -2.50 to

+2.50. The peak amplitudes occur in the vicinity of OJo = +7.50

and goes through a minima near mo = -2.50 (Figs. 12c,d). There

is also considerable change in inclination of plane of oscillation

•. At small Uo, ris in the same sense as Vo but bigger. Beyond

Wo = +17.50 as the amplitudes drop off,ý has the tendency of going

down to zero again. As velocity is increased the response becomes

more sensitive to Mo. At 65 ft/s (Figs. 12e,f) the amplitude has

peaks at D0 = 2,50, +100 and drops off in between nearc~o = +50.

Near C40 = +100, the amplitude and inclination are rather large but

drops off quickly as 0o. increased a little farther. The same

tests are carried out with the specimen in position D, at 37 and 115

ft/sec (Figs. 12g,h). The amplitude in this case shows the
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regular trend as in Fig. 12a, with peak at ao = 0, dropping off

as a, is increased. Oscillation ceases near ao = +7. The in-

clinations are nearly zero but show trends similar to those of

Fig. 12a. Thus it can be observed that the drop off and rise of

amplitude at ao = 0 for position A (Fig. lla) i1 associated with

large sensitivity of the response for small change in ao in the

vicinity ao = 0, whereas in the portion where the amplitude rises

monotonically with increase in U, a small change in ao from ao = 0

does not change the amplitude or inclination considrably. The

amplituue drops off quickly as ao is increased farther.

Fig. 13 shows some sample transient records for position A,

ao = 0. They are plotted in sami-log paper on real time scale in

Fig. 14. The initial logarithmic increment in amplitude is found

to be linear. The experimental values of initial linear log

(Slope)/Wo at different free stream velocity are plotted in Fig.

15 with a negative sign. According to quasi-static theory this

is the experiments' value of gl/2, the linear theory - equivalent

- damping coeficient as defined in Eq. 3.6.

All the experimental results described here have been found

to be quite repeatable.

114.4 Theory ar.d Experiment Comparison

Using the static aerodynamic force measurements it is now

possible to calculate the response characteristics using the

method described in Section 3, and compare with the experiment.

When the beam is initially at zero angle of attack, the steady

state amplitude at a given velocity is given by:

. 7 .76 + -. 17 5 .32

(4.3)

for a cantilever beam with the mode shape used and with a 8th

degree polynomial fit of CN versus tanO curve. Using the 8th de-

gree polynomial fit of CN versus tanO of
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a) Fig. 7a, tested at 37 ft/sec in position A

b) Fig. 7b, tested at 37 ft/sec in position D

the steady state amplitudes d are plotted against; Fin Fig. 11b,

along with the experimental values obtained for the specimen

in position A and D at co = 0. The value ] = .002 -3= Q.35x10 3

has been used. Pn are given in Table 2. It should be noted

that 2(E/11) represent the induced angle of attack P at the tip

of the beam. Since the curve fitting is only up to tanp = 0.115,

results only up toa/a= 0.225 are valid. The results plotted are

wit.iin this range. For a quick conversion from physical units

to nondimensional values, the following relations may be used for

)P54,= 0.0 438

U (:-T/5sc) o.A13'W = io.1

WT -4.

Reasonably good agreement is observed for amplitudes up to

WT/b = 15 . The experimental amplitude variation in position D

shows similar trend but are substantially lower in magnitude. The

quasi-static theory fails to predict the drop-off characteristics

ooserved in position A and in general over estimates the steady

state amplitude.

Another way of examining the applicability of quasi-static

theory is to compare the ini.ial transient growth rate when the

amplitudes are small and equations are linear. To do this, the

linear theory-equivalent-damping ratio gl/2 = 0-O.25 ý'u. P, , as

defined in Eq. 3.6 is plotted in Fig. 15 ant' compared with

experimental values. P1 is the initial slope of CN curve (Fig. 7a,

U = 37F/S, 2ig. 7b) and = .002, They are of the sanit order of

magnitude and trend but not close to linear with velocity as given

by the theory. It may thus be concluded that the actual aero-

dynariic forces are more complex than a simple quaZi-steady descrip-

tion. The static lift and drag values do not contain all the

.1n
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information required to describe the dynamic forces induced by the

motion. it is probable that as the amplitude increases beyond

W WT/b = 10, the flow is no longer two dimensional and a break in

the flow pattern at a part of the beam causes a flow change in

the entire portion.

The amplitude response at differentso can be compared with

the theory in a qualitative basis since in the one degree of

freedom case it has been observed that the quasi-steady theory

cannot predict accurately the amplitude response when the ampli-

tudes are large, but gives the right trend. So an approximate

fit of CN and CC data has been chosen for comparison with the

experiment (see Figs. 7, 8).

CN 0. 3 tom-j 8. otcikn>

C I.A 3. 0 + 20.Otir 1 f

C N 1. 2 ý - 15.} (pos. A ,Ir o 1 ( )

cc•= . 30• vn P +30. o A ) .
(4.5)

After a steady state solution has been obtained at a given 0o from

Eqs. 3.47, 3.118 one should check that Ito/A P IMAX^ + ItoA(l is less

than the limits of curve fit (4.5)v It-'/PctoIw C(o.l , '/L7 < (o.1
in order that the solution be valid. The CC curve fit is not very

good, but it is observed that the subsequent value of Y does not

affect the amplitudes substantially. The value of Y is however

quite sensitive to CC. The theoretical results are plotted in

Fig. 12 in broken lines for comparison with experimental values.

Results at velocity 17.9 ft/sec is riot computed since the CC data

is not known. Amplitudes at velocities 24.5 and 37 ft/sec,

position A (Figs. 12b.,c) and 37 and 45 ft/sec, position D
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(Fig. 12g,h) agree with the experiment qualitatively but the in-

clinations do not. It seems a simple quadratic CC of Eq. 3.50

can explain qualitatively the experimental behavior at small co

since it gives I values proportional to oo. At low velocities

the dynamic CC possibly increases with P which makes j go in

opposite sense too o. At higher velocity the dynamic CC possibly

goes down with P following the initial static trend (Fig. 8a)

making Q2 negative and ' goes up linearly with M. for small 0%

(Fig. 12c). Same explanation apply to Fig. 12h but not to 12g.

Thus, the aerodynamic drag forces acting on the oscillating body

seem to be rather complex and do not neces-oarily follow the

static curve.

From these comparison it is observed th:at in two degrees

of freedom, motion the quasi-static theory can give a qualitative

description of the steady state amplitude response if it gives

the right results in one degree of freedom case. The peculiar

response obtained in position A (Fig. ]2d, e, f) cannot be ex-

plained by introducing the two-dimensional motion.

From the experiment and quasi-static theory comparison it

may be concluded that the self-excitation phenomena of a square

section beam can be described qualitatively by the theory but

usually results in overestimation. Physically the beam cannot

achieve the high amplitudes predicted by theory without going

into geometric nonlinearity but below the velocity 30 ft/sec

(U = 3, Fig. llb) it can. Up to WTA/b = 15 (T = 0.3) the flow is

fairly two-dimensional and the amplitudes follow the quasi-static

results fairly well. As the amplitude increases, the top portion

of the beam moves in an arc which could be responsible for differ-

ent flow patterns and lower amplitudes. On a bluff body with

sharp edges where the flow is separated and the wake is turbulent,

the aerodynamic forceu are apparently quite complex and sensitive

to imperfections and sharoness of the edges, and can give rise to

unpredictable responses.
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SECTION 5

SUSPENDED CABLE

5.1 Introduction

The galloping phenomena of overhead suspended power

cables has been a subject of research for many years. The

self-excitation is believed to be due to the negative damping

characteristic of the cable cross section. However, unlike

a cantilever beam the amplitudes can be limited by both
(a) Nonlinear aerodynamic force characteristics of

the cross section.
(b) The tension developed in the beam due tc large

deflections.

To study this, galloping of a sagging cable of square cross

section has been obtained experimentally in a wind tunnel

and is described in Section 6. Theoretical means of describing

the motion using quasi-static aerodynamic theory is discussed

here. The motion is governed by two nonlinear partial dif-

ferential equations which are reduced to nonlinear ordinary

differential equations in time using Galerkin's approximation

and are solved by harmonic balance method using only two

equations. The theory-experiment comparison is discussed in

Section 6.

5.2 Equations of Motion

Consider an uniform cable which is suspended between two

poles with a particular sag and placed in a wind stream (Figs.

17a, b). With the wirnd off, the cable is in a catenary shape

and the two ends are clamped in that position. The flexible

cable is of square cross section and in the suspended position

one of the flat sides face the wind stream. It is assumed

that the cable can deflect in y and z direction without twisting

(Fig. 17c) like the giant wheel riding boxes. Thus only two

degrees of freedom need to be considered in the equilibrium



equations. Only small sags up to midspan sag/span ratio d/£

of 0.08 are considered. Thus the slopes at a deflected posi-

tion are small and the simple beam equations are adequate to

describe the cable motion. Also, for small sag it can be

assumed that the tension in the cable is constant along its

whole length and is thus independent of coordinate x. It can

be shown using catenary equations that for a simply supported

cable without bending rigidity and under constant self weight

and drag forces along the span, the tension T at the support

and at midspan are given by

'T " --- f ln v~ +i + 1 (d / e )2 j

Sd +~0 '~~L

Here m is the mass per unit length, Z is the span, d is the sag

at midspan. Do is the drag force per unit length. For

d/t<.080, the total variation of tension along the span is

less than 5%. For a cable with small bending rigidity it is

believed that the assumption of constant tension does not

involve error more than this.

When the wind is turned on, at low velocity the cable

leans back and takes up a stable static position until the

critical velocity i.• reached. As the wind velocity is increased

beyond the critical velocity, the oscillations grow until a

stable limit cycle is reached. Thus to analyze the motion

it is convenient to subtract out the static part from the

overall equation

Tt + D. FY
)((42



Here F., Fy represent the aerodynamic forces induced by the

motion. All the static terms of aerodynamic forces are in-

cluded in mg and D for static analysis. Subtracting the
0

static equations

Sld x¢' d X¢ =2d

d4 V. (Y) d2 V0.60) (5.3)
E- I-T dxa = DO

from Eq. 5.2, one obtains

ýL + El- LW To-T
-T ) -T _I( vW=z(2wL

!-' -• + L / • T. •I " - T x'(v+ = Fy Lv u )

where /t = WOI(X) + W(×,t)

Vt Vo(X) + v(x,t)

Tt T, + T(t)

The W (x), V (x) satisfy the static equation (5.3) along with

the boundary conditions

AT Y=O W. 0
Sd W__O dW__.

y dx (5.5)

Vo 0
d vo
dx

where W (x) is the deflection shape with the wind off, i.e.,
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Do =O. The double zero subscript will be used to refer to

quantities when the free stream velocity U=O. The W and V

satisfy clamped-clamped boundary conditions at both ends. The

bending rigidity El is assumed to be the same for both W and

V displacements. The coupling between W and V arises from the

aerodynamic and tension terms only. It is assumed that even
after U exceeds the critical velocity, the static equations

(5.3) are satisfied and give a measure of the niean position,

i.e., the position if no motion induced forces were present.

Since the tension is assumed to be independent of x, at a

fixed time t, the tension Tt can be obtained by calculating

the strain in the form

A FrTt, = Too + Aj(d5- d6) (5.6)
0

where

1 2.

d5= dx2 + dWt + dvtz

d62"= dx I- + Woo

With the small slope assumption, this becomes

Tt T0  + T(t) %5.7)

where
To = T0o + ( [ ('Y-° :- (isT/ 2+wV002] dx

2t J0  ( L xX,\ci XdV ) j-x

Tt =AE N )',(V)'+2 WdW_ Od

TE 5- 5 XdaX ýXd C1X

This tension term is the source of nonlinearity in the cable

vibration equation apart from the aerodynamic nonlinear terms.

Both of these are responsible for limiting the amplitudes.

1 5
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In quasi-static representation of aerodynamic forces

it will be assumed that CN and Cc are in the form

C RP ioOAI + PtOalI
N (5.8)

where
to," \k(

It is possible to work out the problem with higher order poly-

nomials for better representation of CN and CC but it would

result in added complexity without adding better insight to

the problem. Proceeding in the same manner as in Section 3.3

F• and Fy can be written as

2 ?, U 6p • [- P, i Q+o-(V
~p 2b 1 (5.9)~

V/U 10 1.Q

for 1ý1ul<0.1 Actual values of V/U are still smaller and it

is possible to neglect the underlined terms within the present

approximation.

5.3 Solution of Static Equations

The static equations (5.3) along with the boundary con-

dition (5.5) can be solved exactly if T were known. In order

to determine T0 it has to be expressed in terms of the dis-

placements in the form (5.7). This makes Eq. 5.3 nonlinear and

can only be solved approximately.

Solving Eq. 5.3 in terms of T with the boundary con-o

dition (5.5), one obtains

d 2TT0' 26i C-. .IA

D 
(5.10)
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and
J; +o~ E..~ e_ IS i

d L, + L -, - s2G,,o
where

e- 2- G.. tov%6 E- 0

The double zero subscript refers to quantities when the wind

is off. For these cables, e 0 <C0 o<0.l. Thus

Using this approximation Eq. 5.10 simplifies to

d M d -To C

d 2T. d

and

d Td LLi.(5. 1)

The above is valid for 0<g<.S, and the functions are assumed

symmetric on the other half of the span. Now initial tension

T T can be determined by setting Woo=d at ý=0.5 and then solv-

ing for T00 with the above approximation, to get

S (5.12)
CM8d -Y 3L•

The effect of bending rigidity is to reduce the tension from

the average 'Catenary analysis' value of mg 2/8d. In the present
3

case EI/mg£3 =0.01, so the correction is of the same order as

the approximation involved in the analysis. Now the static

tension T0 at a particular velocity U can be determined by

substituting Eqs. 5.11 in the expression for T0 in Eq. 5.7 and
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i i carrying out the integration. A nonlinear algebraic equation

in T o/T is obtained which can be solved by iteration. Sub-

stituting them back in Eq. 5.11 would give the static deflec-

4< !tion shapes WO(c), VO(•).
0 0

The variation of T /T with wind velocity U is in

general as shown in Fig. 19. For a simply-supported cable

with no bending rigidity the problem is statically determinate

and can be solved exactly using the 'Catenary equations' to

give

f =. (5.13)

This is compared with the present results in Fig. 19 and is

found to give higher values. Using Eq. 5.11 one can obtain

the static positions at different velocity. One such plot

for d/Z=0.059, CD=1.4 is shown in Fig, 20. For a simply-

supported cable the static positions are given by straight

lines inclined to the vertical at an angle tan-l (/mg). The
inclinations are found to be close to the present case but the

static positions are not.

5.4 Harmonic balance solution

Using Galerkin's approximation Eq. 5.4 is reduced to

ordinary differential equations in time assuming W and V in the

form

[W
i ~ ~wo = d csJ4

W. d (5.14)
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Here fl(0), f 2 ( ) are first and second bending mode shape of
a freely vibrating clamp-clamped beam and are given in Appendix
D. f (0), fo () are static deflection shapes given by Eq. 5.11.

It may be noted that f1 (0), fo(F.), fo (E) are symmetric functions
about midspan while f 2 (F) is an anti-symmetric function. Under

C •the existing forces the four modes are sufficient to describe
the motion. Hore (Ref. 31) have analyzed the free vibration of
a similar flexible sagging cable using the present mode shapes
and have obtained good theory-experiment agreement.

In nondimensional form, the ordinary differential equa-

tions can be expressed as

jo ++ +

00

,+1 + T 0' + 2- -/-

6 7-

-I-~ ~ Aq +cJ(, A)22_t34-2

00

I - .2

Swhee 6~t =• I ( ) •C__)(5.15a,b c,d)
0d

S = [ a W T

0_ OZ

+. 42c0(2.cpT

r~z [Elb)•+J a• T ]/A 0 2  ,•

"h9



IL U b

42 _Oc A 2 C
2Ynl(2-) A 2

Ao0 5 1,

The time is nondimensional with some refercnce frequency w

The definition of ý, u are slightly different than those used

in Section 3. Amn, B B 22, D1, D2 , or are constants and are

given in Appendix D. qo0 qo are a measure of static position

of the cable. They vary with velocity as shown in Fig. 21.

Their definition are also given in Appendix D. It may be

noted that rI, r 2 also vary with velocity.

So far no structural damping terms have been included.

There is a certain amount of uncertainty in its actual values.

Experimentally with the wind off the cable can be given small

tapping in first or second horizontal bending mode and the

amplitude decay recorded. The slope of the transient amplitude

plotted against time in a semi-log paper is found to be linear.

From this viscous damping coefficients 'c can be evaluated.

Assuming c1 =C1 , c 2 =a 2 the structural damping can be expressed

as a viscous damping for theoretical convenience by adding
the terms (c,/ne), /m.) -C2/Y&JR) 0 ec.. to

Eqs. 5.15,. However, with the wind on, the cable will oscillate

at a higher frequency and it is not known how much is the actual

.'tructural damping then. To overcome this difficulty c1, cl

etc. can later be set to zero and the resulting change in

responses compared since the structural damping are usually

k 50



small. Let us denote

(5.16)

C rmWg v, 24 Cl/LJ W =

Let ns first examine the linear equations

00

00 0

+ + k =0

(5.17a,b,c,d)

00- b~=

+

where

•,= r_€,-1-p =o
22

1,=A24 +bLQ0

z=

The first and second mode equations decouple. The stiffness

matrix of (5.17 a,b) is symmetric and positive definite. So

the instability can only arise from negative damping terms

gl and g2 "

Considering Eq. (5.17 a,b), the criticai velocity and

the frequency of oscillation at the critical velocity can be

5].
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determined in the usual manner by introducing %=oae. e
and setting the condition of condition of existence of non-

trivial solution of the resulting homogeneous algebraic equa-

tions. This gives

-at~ - i*iI (5.19)

at a velocity which makes

Z4 2 + f,•. +%- t +TII,..n _ :o•.o
Z 1 6q + ± , (5.20)

Since fL,, iii, 0 , are functions of velocity (Fig. 21), no

explicit expression for critical velocity can be obtained, and

WF' Uc has to be determined by plotting (5.20) for various u
until it becomes zero. Corresponding wF will give the flutter

frequency.

The Eq. (5.17 c,d) are uncoupled from each other. The

critical velocity for 1z mode will be given by g 2 =0. The

flutter frequency is r2. Since g2 is positive at all velocity
Swill die out.

For the solution of entire non-linear equation let as

take only Eqs. 5.15 a,b assuming no second mode is present.

The equation has quadratic and cubic nonlinear terms in and

00 0
0- 1)

A00 0

++ -

A+ C _- , -1 0 _ + n" "
ýO (5.21)



The reference frequency w R is chosen equal to tht linear first

mode natural frequency at u=O, i.e.

WR= °= o I -1 E1 + • (5.22)

So at u=0 r 1 =l in Eq. 5.15.

To get an idea of the nature of the solution of Eq. 5.21

is first integrated numerically using predictor corrector

scheme with an error bound 10 . Some results are shown in

Fig. 25. For small initial displacements the amplitudes grow

initially than settle down to a steady state amplitude. An

estimation of induced angle of attack shows that the induced

angle of attack a is well within the lineaz range of CN,

according to the quasi-static theory. Thus to evaluate the

steady state amplitude by harmonic balance it is sufficient

to assume (Ref. 23)

6o b , G/-) W~C + Cli iACJZ: + b2 C01)~3 + 0-V Or

bo= + b1 Coowc+ a1 , 5 4b.t + b2 C Z + z Or

(5.23)

w is the nondimensional frequency with respect to wR' Sub-

stit'ating (5.23) in Eq. (5.21), keeping only the coswT, sinwT,

cos2wT, sin2wT terms and setting their coefficients and the

constant terms to zero one obtains 10 nonlinear algebraic equa-

tions in 12 unknowns b0 , b ... 52 and w,u. Since in steady

state solution absolute phase is unimportant, al is set to zero

and equations are solved by Newton-Raphson iteration procedure

for the 10 unknowns w, b0, b1 ...b1 , b2 1 a at a given u. The

algebraic equations and details of iteration pzocedure aia

given in Appendix E. Some of the solutions are shown in

Fig. 24 and are discussed in Section 6.3. The solution of

the form (5.23) represents large swinging motion of the cable.

Since the cable swings way up above the X-Y plane (Fig. 17 b,c),

5



cos2wT terms come in for representing the motion in the ql'

Scartesian coordinate . From the polar coordinate point of

view the frequency of oscillation of the physical cable is w.

Assuming the quasi-static representation of the motion

induced lift forces are correct, theoretically the amplitude
is limited by the tension together with the g2 damping term

which becomes important when the cable moves against the wind

stream at the end of the largz swinging motion.

r;
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SECTION 6

EXPERIMENT WITH SUSPENDED CABLE

6.1 Introduction

To analyze the galloping phenomena of suspended power

cable, tests are first conducted with a uniform sagging cable of

square cross-section in a wind tunnel. The cable is flexible

but with a definite but small bending rigidity. Large and

rather violent self-excited oscillations are observed. When a

cable of circular cross-section is placed in the wind tunnel no

such self-excitation is obtained. Thus the galloping phenomena

is found to be due to negative damping type aerodynamic forces

typically associated with bluff bodies with sharp edges. The

cable begins to oscillate by itself beyond a certain critical

velocity but finally settles down to a steady state amplitude.

Tlie experiments are conducted with different sag/span ratios of

d/I = 0.080, 0.059, 0.043, 0.029, 0.020 and 0.011 and the results

are described in Section 6.2. Theoretical solutions using simple

quasi-static theory are compared with the experimental results

in Section 6.3.

6.2 Description of Experimental Results

The experiment is conducted in a 5 ft x 7 ft closed circuit

low-speed wind tunnel. The specimen is made from a 0.045 inch

diameter flexible cable. It is coated with wax and drawn through

a template with a square hole to give it a 0.09 inch square sec-
tion outside. Care is taken to avoid twisting of the cable during

the drawing process. Because of this construction procedure the

uniformity is not perfect and the edges are somewhat rounded. The

extension rigidity EA of the bare cable has been measured by

hlore (Ref. 31) and is used here assuming that the wax coating does

not affect it appreciably. The bending rigidIty EI is determined by

measuring, the tip deflection due to self-weirlht of a portion of the



cable cantilevered at one end and using the linear force deflec-

tion relation EI - 1  /8S where 6 is the measured tip de-

flection. There is certain amount of scatter and the mean value

is taken. The numerical values of the cable parameters are given

in Table 3.

The cable is suspended in the wind tunnel from two rigid

1.5 feet long 0.75 Inch diameter poles fixed to the floor of the

tunnel (Fig. 17a). The cable is suspended at a particular sag

and is clamped at two ends in such a manner that the cable

assumes a natural catenary shape and one of the sides of the

square faces the wind stream. Because of flexibility and clamped

edge condition the cable can deflect in Y and Z directions (Figs.

l7b,c) without any apparent rotation like the riding boxes of a

giant wheel. The posts are long enough so that the entire cable

is outside the wind tunnel boundary layer. There is some inter-

ference at the enda because of the clamps and the posts. At

the beginning of a test run at a particular sag, the first hori-

zontal mode natural fre,.jency of the cable is measured by slightly

tapping the cable. This frequency gives the experimental value

of linear first mode natural frequency at U = 0 as given in

Eq. 5.22 and is denoted by wol"

At several different sag positions decay -ea.rds for small

horizontal oscillations are obtained uL•inv a smail strain gage

at onB end of the cable. The strain ga'r'e signals for small mid-

span deflections are linear. From , lope of the transient

amplitude plotted against time on 1-.,log paper, the critical

damping ratio ', = C, /2m6Jo, can be obtained as a

function of amplitude. The is found to be constant for

sitall amplitudes. Some C 1 values measured at different d/1 are

shown in Fig. 18 along with a typical record. At d/t = 0.059 a

second mode damping rabio is measured and is found to be •2 = 0.018.
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When the wind is turned on, at low velocities, the cable

bends back and assumes an inclined static equilibrium position.

Any disturbance imparted on it quickly dies down. An eye estima-

tion of the cable inclination is made from outside the wind tunnel

using a transparent protractor fixed to one of the clamped ends.

This is shown in Fig. 20, for d/9 = 0.059. For other sag ratios

the same type of variation is observed with little scatter. The

solid lines give the theoretical values calculated from Eq. 5.11

which will be discussed later. The wind velocity is increased

in small steps and beyond a certain critical velocity, the cable

begins to oscillate by itself. The amplitude increases until a

steady state value is reached. The mid-span amplitude is meas-

ured by a vertically travelling telescope from outside the tunnel

by focussing near the midspan and freezing the motion of the

cable by a strobe light which is also used for measuring the fre-

quency. The velocity is increased In small steps to about

100 ft/sec and then decreased. The frequency and mi.dspan ampli-

tudes are estimated at each velocity, and are shown plotted in

Fig. 22a,b,

At low velocities, the cable first begins to oscillate in

second bending mode with the cable at blown back position. As

velocity is increased, it begins to oscillate in first bending

mode in a swinging motion. At a higher velocity, the second mode

appears again. The cable oscillates primarily in the first mode

with small second mode superimposed, giving the appearance of a

travelling wave across the span. A brief outline of the response

description is given in Table 11. At mode transition points and

when both the modes occur together, the second mode has approxi-

mately twice the frequency of the first mode.

It is observed that the frequencies measured with velocity

increasing and decreasing, follow the same path but the amplitude

measurements show a certain amount of hysteresis. The arrows in

Fig. 22a show the path with velocity increasing. The first mode
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frequencies, nondimensioned by w 01 and the amplitudes nondimen-

sioned by sag d are plotted in Fig. 23. For d/Z = 0.080, 0.059,

0.043, 0.059, 0.043, 0.029 the nondimenstoned frequencies seem to

collapse into a single line and increase almost linearly with

velocity. As for the amplitudes there is no general pattern. For

d/! = 0.059 the amplitude is quite large and cable swings in an

almost 1800 arc with a near horizontal mean position. For higher

d/Z = 0.080 the amplitudes are lower but still quite large. With

reappearance of small second mode near 70 ft/sec, the amplitudes

tend to go down. For lower d/Z = 0.0113 the amplitude response is

similar. With reappearance of strong second mode near 90 ft/sec

the amplitudes go down rapidly. At very low d/I = 0.020, 0.011

the amplitudes are quite large compared to the sag and increase

rapidly with velocity.

These are two possible reasons for the irregular amplitude

responses at different sag ratios. As seen in Section 4, the

aerodynamic forces are quite sensitive to small imperfections at

the edges of the cable and since no specific side of the square

was chosen to face the wind, two different sides facing the wind

at two different sag can give unexpected different results. Sec-

ondly, since the cable is not entirely free from small initial

twist at the clamped ends, it can affect the amplitudes to a cer-

tain extent.

6.3 Theory and Experiment Comparison

The static aerodynamic force data measured for the square

section cantilever beam and debcribed in Section 3 can be used for

the cable since both are of same cross-section shape and the ex-

periments are in the same Reynolds number range. For numerical

calculation an average representation of CN and CC has been used.

CN =1.0 10.0r - 10.

CC 1.4 (6.1)
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For different values of P1 and Q in the range obtained in the

test, the solutions given by Eq. 5.21 changes slightly but the

nature of the solution remains unchanged.

To check the static representation of the cable one can

compare the linear first natural frequency at zero velocity given

by Eq. 5.22. This is simply the frequency of small horizontal

oscillation of the sagging cable.

d/I W 0 1 (Theory) W 1 (Expt.)

0.080 2.5 2.5
0.059 2.86 2.8
0.043 3.3 3.3
0.029 3.9 4.0
0.020 5.2 11.6
0.011 6.1 5.5

They are found to be in good agreement except at small sag ratios.

The static positions at different velocities are computed

from Eq. 5.11 and plotted in Fig. 20 for d/. = 0.059. The top

picture shows the side view of the cable position, and these are

similar to those observed during the experiment. The inclination

of the cable from the vertical is also shown in the lower picture

and is found to compare well with the experimental observations.

For other d/I ratios the results are found to be similar.

The steady state amplitudes are calculated from Eqs. 5.21

by harmonic balance methcd, assuming no second bending mode is

present. The results for d/I = 0.059, 0.0113 are shown in Figs.

24a,b. An estimation of maximum induced angle of attack from the

frequency and amplitude shows that it is well within the i.near

C range. Since the structural damping is not truly represented

by the critical damping ratios • the solutions with

= 0 are also shown in Fig. 211a. Exclusion of structural

r'amping does not change the amplitude substantially except near

.he critical velocity. The frequencies agree quite well with

the experimental values. The amplitudes are only in qualitative

agreement for these two sag ratios. Theoretical results for
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other sag ratios give frequencies which are close to the experi-

mental values and the amplitudes follow the same theoretical trend

as for d/t = 0.059 and are in disagreement with the experimental

values except for the similar trend of large increases in amplitude

near the critical velocity. From the experimental results it is

observed that the aerodynamic lift forces do not reach the values

given by the quasi-static theory due to the lack of spanwise

correlation.
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SECTION 7

CONCLUSIONS

The present report has investigated the self-excitation

characteristics of a square section body in the form of a vertical

cantilever beam and a sagging suspended cable when placed in an

uniform wind stream. The self-excitation is due to negative damp-

ing type aerodynamic forces induced by uransverse motion of the

body. Unlike the vortex excited oscillation, this kind of self-

excitation can take place over a wide range of velocity, inde-

pendent of the natural frequency of the body.

Since no purely theoretical method of predicting the aero-

dynamic forces on a bluff body with turbulent wake exists,

experimental quasi-static representation of aerodynamic forces

was used to determine the responses theoretically. They were

compared with experiment to examine their applicability for large

three dimensional displacements.

Experiments were conducted with a square-section flexible

cantilever beam, free to deflect in any direction without twist-

ing, and placed at various initial angles of attack. The static

aerodynamic forces wore measured for use in the quasi-static

theory. The dynamic responses and transient motions were recorded.

The steady state amplitude in general increases monotonically with

the wind velocity but in certain cases the amplitude drops off

over a range of velocity (Fig. lla). In these cases the response

was found to be very sensitive to small changes in initial angle

of attack %O (Fig. 12). The linear equations give unbounded

solution beyond a certain critical velocity and the amplitude of

oscillation is limited by nonlinear aerodynamic forces. The

theoretical solution for the steady state amplitude agreed only

qualitatively with experiment, generally overestimating the values

and failing to predict the peculiar amplitude drop-off behavior



(Figs. lla,b). W•hen the beam was at an initial angle of attack ao

the agreement was again qualitative (Figs. 12b,c,g,h). The

discrepancies were probably due to imperfections of the beam,

unsteady aerodynamic forces and Reynolds number effects.

Experiments were also conducted with a square secLion,

4 sagging suspended cable. Large self-excited oscillations were

observed and the amplitude and frequency of steady state oscilla-

tions were recorded (Fig. 22). The frequency response showed a

regular trend but the steady state amplitude values varied widely

with different sag of the cable. In the equations of motion, the

tension in the cable as well as aerodynamic forces contribute to

the nonlinearity and can affect the steady state amplitude. In

the first mode oscillations, the motion remained in the linear

range of aerodynamic forces and the amplitude was limited by the

tension forces together with the damping forces due to the drag.

Reasonably good agreement between theory and experiment was obtain-

ed for the frequencies, but the steady state amplitudes were in

qualitative agreement only for two particular sags (Figs. 211a,b).

Again, these discrepancies were probably due to imperfections of

the cable, unsteady aerodynamic forces and Reynolds number effects.

Thus, the aerodynamic forces acting on an oscillating bluff

body with sharp edges were found to be rather complex and quite

sensitive to small imperfections and sharpness of the edges,

giving rise to unexpected responses. The actual motion induced

forces do not reach the values given by quasi-static theory due

to imperfections, lack of spanwise correlation and unsteady aero-

dynamic effects.

The results obtained here may be of interest in understand-

ing the wind induced oscillations of tall towers, buildings, launch

vehicles on the ground and power lines. To understand thoroughly

the unsteady aerodynamic forces acting on bluff bodies with sharp

edges, more dynamic tests need to be conducted.
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APPENDIX A

CANTILEVER MODE SHAPE

The first bending mode shape of the uniform cantilever

beam fl(•) of Eqs. 3.2 and 3.19 is chosen so as to satisfy

the free vibration equation and all the boundary conditions

(Ref. 30)

For first mode c5 1.8751 CX, = 0.7341 & =1(t)=2

The integral A = -I are evalu-

ated numerically using Waddel's rule of integration.

SAI= Lf[1(•)]• •
A 2 = 1.478

A3 = 2.348

A = 6.673
5

A - 20.71
7

A9 = 67.73

Sd

•"4 6"8
d2
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APPENDIX B

HARMONIC BALANCE COEFFICIENTS

(FOR CANTILEVER BEAM)

V

The functions '(o.., b, a%, b26) , C. are obtained

from the integrals

7T

•s, ( 1 bb, Oat, b2) -2_"

-ar A=3 )Vo

and similarly for f52 ( a' b, , a 2 , and

-rc2. (as, b , . 2 (, b 2 ) by replacing Z by Yi.

If [31 0 it is possible to get a general ex-

pression for these integrals as given below.

Case I (m + n) even

.L, (a.(, 0,a, b2 2 o

cI (at,, a2 0

--4



Case II m even, n odd

LA

=~e (o,,4 (b)

Case III in odd, n even
II-

h= , -- ir 3,

)~0 7, -(C L

where

.4Y

I -I 
--------
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HQ 't'e. k= Y+fl

If any factorial or first bracketed term are negative, they are

set equal to unity. Also O 1

1� ( a,,, ,b ) , 2.. (Co, 0, b2 ) are given by

the same expression after replacing EMM by Y"".

4r
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APPENDIX C

FORCE COEFFICIENTS

The quantities Zo, Z 5 , Y,Y1 ,"'Y 5  used in
Eq. 3.46 are defined as below for tm o0.1

Let t

SQ~ + F"v t"roo C0A.0

L --, , t,.'c0 +t 2 ' Pt~4+4tw~l('~~tY C( -. + ['-•< -+"'Y -., ++ "ý t-,,,,,1,

"F 0 , Y, ,'"..Y3  are same as above if" P,0 ,'- P4~ are replaced
2 by Qo,- ( j,"" •

POP

P4. + .b54

VTh"

+ CM t

P3 tV10 1ý6



APPENDIX D

CABLE MODE SHAPE

The mode shape 2 2 (•) used in Eq.(5.14)

are the first and second bending mode shapes of a freely

vibrating clamped-clamped beam (Ref. 30).

=2 L...[ 2 c0 i.C-ý?o(Sh4Ye 16 &6i2eý

E = '.73 ,X,=. o.5825 {,(o. 5)= 0.

7. a 53 o22= 1. 0007

The A , , , 611.., 2 D 1 are mode shape

integrals as defined below.

A20J

A02 = j [f, ]z J•

A Yn Y.% 0
=Ao2 {,o

Tn d a g)



I-I Jeý n

S -
d

Bi

q_ (9)' di

It may be noted that 0= has been used in the formu-

lation. E¾1i , 1, , etc. are tabulated in Ref. 30.

E)(1= 4.877 ,= 1IS.1S 6

e)22 =. 46-05 D2  3203.5

The A nn are evaluated by numerical integration by using

Waddel's rule.

A2 0 = 0.396 A40 = 0.734 A2 2 = 1.11

A02 = 1.0 Ao= 1.689 A 22= 0.44



APPENDIX E

HARMONIC BALANCE EQUATIONS

For the harmonic balance solution of Eq. 5.21, it is

convenient to make a change of variable

Eq. 5.21 reduces to simply

Srs+ rn+ Y n+ C43l j+ r) - ) 1, 2

where .,•i - (+go)

-* For convenience all sign are replaced by a first subscript 2.

Thus

P1- = c + 61 O/ + a, +u 61.GCo,32COZ +4 0 12 5hiZCot

ý23o Zo- b2 1.o + iGa' - Oz Sin WZ + 62ZO'W -O7Sv W

replaces Eq. 5.23

The algebraic equations to be solved are
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Constants:

OLtI O~l 6~ 5 + 6mi + C' An + Q&vvizAnz4

Cos Wr:-

+

+ (6mij~na+ 0%,An2 6 Sni + Q b 2fl3 Omz An)o

Sin WEt:

-Y )CM Y m + o04 6Z +

+~(b An2-j + A2 - Cl7lfl2 - bmZAhl 4. mzAn 3  - r12. Prn3)} 0

Cos 20.t:

)156~b1 +n +l 1)

Sin 2(ot:+ wA 4 ) o
(Y 40 Con 6 , +aIs nl o2

where +
6m 6m +ly

B 0  6* 'A 6n'i+ an' Mt.b 2

26o= + 6n ,2+ ovtCn.

Ant n, + bn, Q,2. -by, .)Ln
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A ,2. 2 2 b6o ,, ÷ b+ - a,")
S

Newton Raphson's iteration scheme for solving a set

of algebraic equations.

, 1/1, yI WHER

One assumes a trial solution x j)h and at eachi step

L 1+

Convorgence critria lk.Xl .<,10 Xj Is of' or-der 1.
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TABLE 1

CANTILEVER BEAM PARAMETER

Length 1 = 13.1 inches

Side of square b = 0.09 inches

Mass/length r= 0.01233 lb/ft

Young's modulus E = 30 x 106 psi (steel)

EI/mgl = 9.58 (From w, )

= 9.74 (I for round rod)

First bending mode natural frequency

1 = 9.4 CPS (Theory 9.5 CPS with I for round rod)
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TABLE 2

POLYNOMIAL COEFFICIENTS

The following table gives the coefficients Pn" Qn of

8th degree polynomial fit of CN, CC vs. Tana curve of Fig. 7,

8 respectively.

CN vs. Tana

Position A A D

Velocity 37F/S 65F/S 37F/S

P0  0.025 0.025 -. 007

P1 0.88 0.62 1.35

P2  0.25 0.07 -0.7

P3  4.37 7.67 -14.7

P4 -10.0 -3.9 -4.3

P5  -151.8 -18a.6 -18.3

P6  117.2 52.0 83.9

454.7 526.2 172.8

P -340.0 -144.5 -263.8
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TABLE 2 (Continued)

CC vs. TanO

Position A A D

Velocity 37F/S 65F/S 37F/S

Qo 1.24 1.54 1.07

Q1 -0.3 -0.47 0.2

Q2 -9.8 -14.5 -3.1

Q3 7.9 9.1 1.1

Q4 200.1 255.1 115.5

-66 -60.4 -12.4

-1208.4 -1471.1 -789.2

Q7 159.5 123.1 24.9

Q8  214311.2 2890.0 1699.0

.7r)



TABLE 3

CABLE PARAMETER

Span 1 = 3.02 ft

Square section side b = 0.09 inch

Weight/length mg = 0.00675 lb/ft

Bending rigidity El = 0.0019 lb-ft 2

Tensile stiffness AE = 7090 lbs

El/mg1 3  
= 0.01

AE/gl = 0.3478 x 106
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TABLE 4

CABLE RESPONSE DESCRIPTION

U = Free stream velocity in FT/SEC
i 1 ist mode oscillation frequency in CY/SEC

2 = 2nd mode oscillation frequency in CY/SEC

e = Inclination in degrees (see Fig. 20)

WM/d = Midspan single amplitude/span (see Fig. 24)

IBM, 2BM - 1st and 2nd bending mode

d/£= 0.011

U 1 02 e WM/d Remarks

0 5.5 -

20 - 16.3 300 - Small 2BM

26 - 17.5 350 It

29 9.5 19.0 400 0.4 1BN, Small 2BM

39 13.2 - -650 0.95 IBM

51 14.8 - ~800 1.02 IBM, Small 2BM

71 18.6 - - 1.6

61 16.3 - - 1.3

34 11.0 - 600 0.7

26 - 18.0 40 - Small 2BM



TABLE 4 (Continued)

d/. = 0.02

1 I 2 e WM/d Remarks

0 4.6 - 00 -

4 29 - 13.8 - Small 2BM

36 7.8 i[ 3 650 0.16 Small IBM & 2BM

39 8.2 17.0 700 0.2

47 10.3 - 780 0.28 1BM, Small 2BM

60 13.5 - 850 0.57 "1

73 16.0 - - 0.74 it

81 17.8 - - 0.85

59 13.3 - -800 0.58

115 10.0 20.0 -750 0.21

-7 13.0 -50oc I
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TABLE 4 (Continued)

d/k 0.029

U l 2 2 WM/d Remarks

0 4.0 o 00 -x 
-

32 700 - Small 2BM

45 - 85 - Small IBM & 2BM

p 50 8.3 - - 0.23 IBM

68 11.0 - - 0.25 IBM, Small 2BM

78 12.5 - 0.12 IBM, 2BM

88 14.2 28.4 - 0.06 2BM, Small IBM

99 15.7 31.3

7 75 12.2 0.14 IBM, Small 2BM

56 9.2 it0.24

50 8.3 0.09 Small IBM

42 
Small 2BM

S36 - 780 Quiet

Li

if



TABLE 4 (Continued)

d/t : 0.043

U 1 w2 6 WM/d Remarks

0 3.3 - 00

28 - 8.8 57°0 Small 2BM

39 - 11.0 720 -

55 7.5 - 870 0 Small IBM

58 7.8 - 0.±i IBM

65 8.6 ".5 IBM, Small 2BM

76 10.0 0.6 "

88 11.3 - '.65 IBM & 2BM

100 13.8 - 0.43 "

94 12.3 - 0.53

82 10.5 - - 0.64

69 9.2 - 0.6 IBM, Small 2BM

54 7.4 - - 0.49 "

47 - 13.0 80° - Small 2BM
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TABLE 4 (Cointinued)

Sd/j 0.059

U W 0 WM/d Remarks

0 2.8 - 00 -

29 - - 450 - Quiet

41 - - 700 - Quiet

61 - 13.8 - - Small 2BM

62 6.9 - - 0.52 IBM, Small 2BM

* 73 7.7 - - 0.66 if

83 9.1 - - 0.74

90 9.8 - - 0.74

73 7.9 - - 0.74

61 6.7 - - 0.68

49 5.5 - - 0.44

46 - 10.5 -750 Small 2BM

36 9.3 o600

/

Or-



TABLE 4 (Continued)

d/Z =0.08

U I 9 e W /d Remarks

0 2.5 - 00

38 - 7.7 -620 - Small 2BM

47 9.2 -750 it

50 4.7 - 780 0.36 IBM

63 5.8 - 800 0.51 "

70 6.5 - 850 0.52 IBM, Small 2BM

83 7.8 - - 0.48 "

99 9.3 - - 0.31 it

93 8.8 - - 0.33

76 7.1 - - o.144

54 14.9 0- 0.34

47 - 9.2 700 - Small 2BM

24 - - 300 - "
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FIG. la OVERALL VIEW OF TEST SET UP

FIG. lb CLOSEUP VIEW OF SPECIMEN BEAM
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