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ABSTRACT

The self-excited oscillation of a square section vertical
cantilever beam and a square section sagging suspended cable in
a uniform wind stream was investigated theoreti-ally and experi-
mentally.

Experimental quasi-static representation of aerodynamic
forces was used to determine the responses theoretically. The
excitation is due to negative damping type aerodynamic forces
and the amplitude is limited as the forces become nonlinear. The
governing equations were reduced to ordinary differential cquations
by Galerkin's method and steady state solutions were determined by
harmonic balance technique.

For the cantilever beam, the solution:s agreed qualitatively
with the experimental results but failed to predict some peculiar
amplitude drop-off behavior observed in the experiment. In these
cases the response was found to be very sensitive to small changes
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kN in initial angle of attack.
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i For the suspended cable, both structural nonlinearity due

z

. to tension and aerodynamic nonlinearity had to be considered. The
g agreement bLetween theory and experiment was good for the frequency
é reeponse but only qualitative for the amplitude response,
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; c Structural damping coefficient
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§ D Drag force
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mn? Ymn

Defined in Eq. 3.5

Defined in Eq. 3.9
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Coefficients of binomial expansion (Eq. 3.23)
Defined in Eq. 3.27
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Defined in Eq. 2.12

Dimensionless generalized coordinate (Eq. 3.19)
time

Reduced velocity (Eq. 3.3)

Critical velocity

Defined in Eq. 3.1l1
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Relative velocity (Fig. 2¢)
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Tip amplitude of the beam
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Defined in Eq. 2.14

Defined in Eq. 3.25
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SECTION 1
INTRODUCTION

Among the study of wind effects on non-streamlined struc-
tures (Refs. 1, 2, 3, 4), the self-excited oscillation of square
section, cylinder-like bodies has been a subject of research for

many years. The two basic exciting forces which act on the body
are due to

(a) The Karman-Vortex shed alternately from either
side which exert periodic forces on the body

(b) The aerodynamic 1ift and drag forces due to
asymmetric flow, including the effect of wake,
flow separation, reattachment, etc.

The vortex shedding is responsible for high frequency, low
amplitude oscillations often called Aeolian vibrations and has
been observed in bluff bodies with or without sharp edges such as
stretched cables, tall towers such as rockets in launching pad,
smoke stacks, etc. The oscillations usually occur when the
natural frequency of the flexible body 1s close to the vortex
shedding frequency (Ref. 5). Since the Strouhal number is usually

known (Ref. 6, 7, 8), this kind of resonance vibration takes place
at a known wind velocity and can easily be avoided. '

The self-excitation due to the aerodynamic 1ift and drag
forces usually occurs in bluff bodies with sharp edges and is
commonly known as galloping. It has been observed in a space
shuttle on a launching pad (Ref. 9), tall buildings (Ref. 2) and
overhead power transmission lines during a sleet storm (Refs. 10-
13). This kind of self-excitation can take place over a wide range
of wind velocity independent of the natural frequency of the body
and is the main subject of study in the present report, using a
square section vertical cantilever beam and a suspended sagging

UGS PSRN
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cable in a uniform wind stream free from turbulence.

The aerodynamic properties of bluff bodies exhibiting
galloping oscillation are such that at a certain initial angle of
attack the aerodynamic lift force induced by a small transverse
motion of the body, acts in the direction of the motion. Thils
results in a negative damping type exciting force. The explana-
ticn was first given by Den Hartog (Refs. 14, 15). Parkinson and
associates (Refs. 16-21) have analyzed the one degree of freedom
transverse oscillation of square section prism suspended by linear
spring, using quasi-static representation of aerodynamic forces.
The resulting nonlinear equation 1s solved by Krylov Bogoliubov's
asymptotic method. A good theory to experiment agreement is
observed except when the structural damping 1is very small., Novak
applied the quasi-static theory using energy balance to a two-
dimensional body in form of a rigid square section prism pivoted
at the base (Refs. 22, 23) and obtained qualitative agreement with
the experiment and did not get the hysteresis in the experiment
originaliy observed by Parkinson. Working with rectangular pris-
matic pivoted cantilever, Novak again obtained qualitative agree-
ment with the experiment but observed some interesting response
characteristics (Refs. 24, 25). In all the above studles the
specimen was constrained to move only in transverse direction and
were initially kept at zero angle of attack.

In the present report, a square section cantilever beam is
considered which is free to move in any direction without twist-
ing. Quasi-static representatlion of aerodynamic forces is used
to determine the response at various initial angles of attack,
theoretically. Experiment is conducted to examine the applicabil-
ity of such a theory for large 3D displacement, The system 1is
governed by a pair of nonlinear partial differential equations.
The nonlinearity arises from nunlinear aerodynamic forces. They
are reduced to ordinary differential equations by Galerkin's
method and solved by harmonic balance technique to determine

[
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steady-state 1limit cycle amplitude. Qualitative agreement with
experiment is observed at low amplitudes, but as the wind veloc-
ity 1s increased peculiar response is observed in certain cases
which cannot be explained by quasi-static theory. The static
forces are found to be quite sensitive to slight imperfections,
sharpness of the edges and Reynold's number., It is believed that
the forces are even more sensitive to these factors when the body
is in motion and the averaged static force measurements are not
sufficient to explain them. The quasi-static representation is
explained in Section 2. Sections 3 and 4 contain the cantilever
analysis and experimental results.

The galloping of power transmission cables have been
studied by Hogg (Refs. 11-12), Richards (Ref. 13), and many other
authors. Richardson and Martuccelli (Refs. 26-29) worked out two-
dimensional, three degrees of freedom dynamics of a D section with
linear spring and piecewise linear guasi-static aerodynamics.

They also measured aerodynamic properties of two-dimensional sec-
tions of various shapes. None of these studles consider the
aerodynamic excitation of the power transmission line as a three-
dimensional catenary in writing the elastic part of the equations
In this case the tension in the cable along with the non-linear
aerodynamic forces are responsible for limiting the amplitude.
Thus structural nonlinearity arising from the tension terms is
also important in this case.

In the present report, galloping of a sagging cable of
square cross sectlon has been obtained experimentally in a wind
tunnel. The motion is governed by two non-linear partial differ-
ential equations which are reduced to non-linear ordinary
differential equations in time using Galerkin's approximation
and are solved by harmonic balance method using only two equations.
Good agreement is obtained in the frequency of oscillations but
the amplitudes are in qualitative agreement only for two particu-
lar sags. From the experimental results it is observed that the
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aerodynamic 1lift forces do not reach the values given by the
quasi-static theory due to the lack of spanwise correlation. The
cable analysis and experiment are described in Sections 5 and 6.
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SECTION 2

AERODYNAMIC PFORCES ON SQUARE SECTICN BODY

2.1 Introduction

In this section the various aspects of flow aroung a fixed
or movable square section body and the nature of the resulting
forces has been discussed. Attention is restrieted to uniform
subsonic flow. The flow around bluff bodies with sharp edges
have some different characteristics in comparison to the flow
around a cylinders. These are pointed out in Section 2.2, The
guasi-static representation of aerodynamlc forces on a translating
square section body is explalned in Sectlion 2.3 and is used in
subsequent sections.

2.2 Aerodynamic Forces

Many experimental investigatlions of flow around a circular
section body have been done in the past but avallable experimental
results for a square section body are relatively few even though
the flow around bluff bodles with sharp edges have some interest-
ing characteristics., The basic differences between the two flow
fields are the following:

(a) In a circular body the flow separation can occur
at different lccations of the body depending on
the Reynolds number and the flow condition of the
wake. 1In square body, separation can occur only
at sharp edges.

(b) Because of fixed separation point, there is a
stronger spanwlse correlation of forces on a
square cylinder than on a round one {(Ref. 33)
Thus, on square sectlion cylinders, the overall
aerodynamlic forcea are stronger.

wun

I R A LR A I R DR T
AR - O o s s s e e e M'

et ok G

A

LR VPN




(¢) When the flow is at an angle of attack due to
the asymmetry of shear layer separation from the
edges and presence of the afterbody in the sepa-
rated flow, the 1lift forces on the square sec-
tion are considerably greater than that for the
circular cross section (Ref. 33).

(d) Reattachment of separated flow is possible at a
certaln angle of attack and separation point can
shift from front edge 1 to the rear edge 2 at
higher angles of attack as shown here in Fig. 3
(Ref. 19). Due to considerable change in wake
width, the drag varies considerably with angle
of attack reaching minimum value at the angle
of attack when reattachment first occurs
(Fig. 3¢ ). The 1ift forces reach a maxima at
this angle.

The effect of the Reynolds number on a square section
is similar to that of circular section except for the drop in drag
at critical Reynolds number 4 x lO5 since the separation point
is fixed. However, when the edges are slightly rounded, similar
drop in drag at Re 6 x 106 (for r/b = 0.176) has been observed
by Delany (Ref. 34). The Strouhal number is 0.13 at Re = 3000
and changes very slightly with angle of attack and Reynolds number
(Refs. 6, 35).

When the bluff body 1is flexible and can oscillate trans-

versely, the spanwise correlation of forces increases even with a
circular cylinder, The shedded vortex can excite the body if the
shedding frequency 1s near its natural frequency. The oscillat-
ing body in turn exerts some control on the shedding phenomena

and the shedding frequency locks on to the oscillation frequency
over a short range of velocity instead of following the Strouhal
number relationship (Refs. 5, 20, 36). Extensive study of wake
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behind an oscillating circular cylinder has been done recently by
Toebes (Ref. 37) and Griffin (Ref. 38). The vortex shedding
frequency of the present specimen is quite high compared to its
natural frequency and thus does not affect the response appreci-

o

ably.
2.3 Quasi-Static Representation

Let us consider a square section body translating in a
uniform fluid stream with a velocity W along the Z direction av
shown 1in Fig. 2c¢c. The induced angle of attack § due to the veloc~
ity 1s given by tanp = W/U. In quasi-static representation of
aerodynamic forces 1t is assumed that the forces are the same as
if the body were at rest in a uniform stream of veloecity UREL at
an angle of attack B. Total forces normal to and along the

UREL are

L= LpU,, bCL(p) Ibs/t
D =4 pUkl b Co(f) . (2.1)

In actual flow the development of forces due to an induced angle

of attack may not be instantaneous, It may differ both in magni-
tude and phase. In quasi-static representation these «{fects are
neglected. Since no theory exists to predict the unstes?y aero-
dynamic forces on a bluff-body with turbulent wake, the unsteady
forces can only be determined by carefully conducted dyramic tests.
For square section body, no such results seem avalilable.

Resolving the forces alcng Z and Y direction which are
normal to and along the free stream direction and noting that

UREL = U SecB
Fz = zl/auzbSeczf”[-C\_Confa -G S'mf5]
2
Fy = jé-f’Uzb SecF[ CDCosF-' -~ Cy St“r-’] 12.2)

R R B P R R T ST TSR 5
R

a2y



FZ is taken positive in the direction W. To use FZ’ FY in equa-
Tions of motion 1t is convenient to express them as algebrailc
functions of ﬁ/U, i.e., as algebraic functions of tang. One
possible way 1is to define new force coefficients acting in the
direction FZ and FY such that

Fz

Lputb Cy(p)

Fy = 22U%b Cc(p) (2.3)
where Cy, C, are defined as

CulPl= ecp -ci(p) - Gotanp]

Cclp)= Sec P [ (p) — CLtomp] (2.4)

Considering the zero reference angle of attack to be the
position when one of the faces of the square is normal to the
free streum direction, CN, CC with respect to this origin can
now be determined as following. Lift and drag forces on a static
body at various angles of attack a (Fig. 2b) can be measured and
converted to CL’ CD by dividing by %‘pUzb. CN’ CC are then
computed using Eq. 2.4 ., Here B is taken equal to the static
angle of attack a at which the forces were measured. CN’ CC are
now plotted against tanp and fitted with a polynomial in the form

(:N = Z Fg,(thJ,P)h’
CC = Z Q“ (tcm (5)“ (2.5)

n=o
In the equations of motion CN, CC are used as force coefficients
and tanB 1is replaced by W/U.,
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3 - Now let the body be initially at an angle of attack a,
. ? with respect to the free stream and translate without rotation
ff ! with velocity components V and W along Y and Z directions as
f’ ‘h shown in Fig. 2d. Expressing Fz’ FY in terms of induced angle
% . of attack B in the similar manner one obtains
{ ; Fz = 5P Uz b [ =CL(p-o) Confp — Cp (p-oe) SW‘P]
7 (.
: 3 2 - - 2.6
- Fy =3P U 0L GE-1)Gop - cu(p-o) Sinp) (3-8
g’ E where
g i a, = Fixed angle {(+Ve in the sense shown in Fig. 24)
é:; %’} ° []
4 f tang = W/(U-V) (Induced angle of attack)
: = (U v = ()
: ’ Uppp, = (U-V) Secp () =&
5 ; Here CL(B-ao) represents statlc C; measured at an angle of attack
% ¥ (B=0y) where zero angle of attack is the position when one of the
% f faces of the square cross section is normal to the free stream
il i direction. Introducing UREL
E vy
:f ; Fa =-2L/°(U"V) b [“CL(P—OCQ) "CD(P—céo)'tam{’J ]Sacfb
; .2 .
v : Fy =45, (U-V) b [ Cp (p-o) ——CL(g':—oco)iumF 18 (2.7)
2 !
é Now to express the forces in terms of @ and Q in a convenient

form, it has to be written in a polynomial fcerm in tanf. This can
be done in two ways:

a) One can plot [-CL(B-aO) - CD(B-ao)tanB]SecB, and
[CD(B—ao) - CL(B-ao)tanB]SecB, versus tanB at a fixed o, and fit
it with polynomials of tanB to give:

o= 3P0t (-)
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N
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= 3pUtb(-F) ) Yot Tor'p -

The highest order power N can be chosen for a best reasonabie
fit but must be kept minimum to avoid unn¢cessary complexity.
This procedure is not very convenient since at every oy, one h.g

to carry out the curve fitting numerically.

b) To avoid this disadvantage, it 1s desirable to express
Eq.2.7 in terms of CN and CC whose polynominal fit 1s already
known from Eq. 2.5. To do this one may write

tomF’= (tW“(P“"Co)“' “tomo(o)// (1t~ *.'ovn(ﬁ"‘xo) tom o)
nee = ( pec(p-,) Aﬂc%)/(l-—i‘ow(f*-%)t'm%,) (2.9)

in Eq. 2.7 and combine the CL and CC terms using the definition
(2.4) or Cy and C, to get

2= 4PUb(1- )[C~(P - %) = C (P %) tonat, ) Aecot, /(1 tom (p- ) boencts)

=3P UL(= %) [Ce (p) *+ Culp-0) tomae] 226 %/ (1 ton(8-4) forat)”
(2.10)

This may be written in the final form as
TP 2 1 - C
=5 putb (1= ) Lo (p- ) = € (p) Fomat 1 (14 Yo p tom et} Gon ot

.2
FY = %FUZB("‘ %) (_CC (P"O(o) -+ CN(P—«"") f‘omO(o]( i+ twn(b‘l‘am%)z(onaa’o
(2..1)
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- ‘ Now introducing Eq. 2.5 in above, one obtains

. .2 N n
Fa=3pUb(1-§) ol ) B, (fomp ~ tame.)
n:o

( [ + fo«m‘b tOW\O(o)n-z

N
F LU (- e Y G, Lonb fome)”

n-2
n-o <|+r0w\PrOM~(xo) (2.12)
. where Pa = Pn- Qnlbomao
’ 6“ = QV-+ Pn'('wv'Wo
: . Eq. 2.12 can be expressed in the form (2.8) as follows. First,

one may write

!
(l + fomp tom do)n-z

= |- (n-2) fmFTomo(o + (n-z;(n-n) (Twﬁfoma/,)?'_ o
(2.13)

For example, for a square section the estimated maximum

|tanp tomao| € 0.05 . Thus if N = 6, just one term in the above
approximation needs to be retained with only 3% error. Now
using Eq. 2.13 in Eq. 2.12, exparding the numerator terms fully
and collecting the coefficients of tan150ne obtains

Fz = 4pU"b(1- sztmp

nxoe

Fy

1
>
(wy
L.
{
clk-
S—

/. Y., (%) Tovn“(z’ (2.14)

flere Tn, Yn zre known functions of 0, Pn’ Qn and can be computed
for any ®o. 2,(06), Y (Xo) for N = 4 are given in Appendix c.

In the equations of motson tanP is replaced by W/ (U=V)

11
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SECTION 3

CANTILEVER BEAM

3.1 Introduction

In this section the quasi-static representation of the
aerodynamic forces described in Section 2 will be used to

formulate the motion of a sguare-cross section cantilever

beam when placed in an uniform wind stream. Such a simple

structure is chosen so that the emphasis can be given to the
quasi-static representation of the aerodynamic forces and its

applicability can be examined thoroughly. The geometric non-

linearity due to large deflection of a cantilever beam is very
small and the force-deflection relation is linear up to tip

deflections of 25% of the span. Thus only the aerodynamic

nonlinearity needs to be considered here.

The beam has the same bending rigidity in all directions
and is thus free to translate in a two degrees of freedom

space. It has high torsional stiffness and does not twist

under the existing forces.

Even thoug.s the present model is free to move in any
direction, the motion is predominantly normal to the wind

stream direction when the sqguare section beam is initially

at zero degree angle of attack. In Section 3.2 this one

degree of freedom motion is considered and solved by harmonic
balance method for initial introduction to the problem. The

solutions are compared with experimental results in Section 4.
Thic is the only case investigated by most authors. Moreover,

their models are constrained to move in lateral direction

only. In Section 3.3 the general case of two degrees of freedom

motion is considered and solved by harmcnic balance method. The
essential features are pointed out with a simple example and the

justification of using one degree of freedom motion at zero

initial angle of attack is discussed. The solutions are

1?




compared with experimental results in Section 4.

3.2 One Degree of Freedom Motion

Let us first consider the case when the beam is initially
at zero angle of attack with one of the sides of the square
section facing the wind stream and moves no¥mal to the wind
direction as showa in Fig. 2c. The simple equation of motion
of the uniform beam is given by the well known expression

o/
=
+
O
o/
I=
+
m
—t
(74

4
Y = Lputh CN(%%/U) (3.1)

Here w(x,t) is the displacement normal to the wind stream, U is
the free stream velocity and c is small structural damping
coefficient. It is convenient to express this in the form of
viscous damping since the vibration frequency is close to the
natural frequency. In general, at low subsonic speed, the
aerodynamic forces are small compared to the inertia and
elastic forces. m is the mass per unit length, P is the den-
sity of air which is considered incompressible, b is the dimen-
sion of the side of the square, and the right-hand side repre-
sents aerodynamic .Orces induced by the motion. Applying
Galerkin's approximation to reduce Eq. 3.1 into an ordinary
differential equation in time t using only one mode

W(xEt) = bj (5)q (t) §=x/1 (3.2)

where fl(a) is the first bending mode shape of a freely vibra-
ting cantilever beam as given in Appendix A, the Eq. 3.1
becomes after nondimensionalization

dz { d 1 2 \
B_'C%J’M'J% t%, = %uRL.KCN(%E)a“O“)“fHﬁ (3.3)

o
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where

wt =¢
5 D E
Wy = D El ( First mode natural frequency )
Y
4'. = C/Zw"m ( Damping ratio )
° 2
P = Pb /k“- ( Mass ratio )
w = U/w.b ( Reduced velocity )

and Al and D, are integrals of the mode shape and are defined
in Appendix A.

In quasi-static representation of aerodynamic forces

the static normal force coefficient CN versus tanf curve is

represented by a polynomial in tanf in the form Eq. 2.5
N " N n
Cn = Z P“(tamp) = ZP“(QV_V §) (3.4)
At
n=o n:o

Introducing Eq. 3.4 into Eq. 2.3 aives

o0 o ~ 2 "l o n
% +25% + % = %/ou Gn (%,/w) (3.5)
w e —_ ; N+t
her Gn = RiAn =P L LWE” de
()= 9

14
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a and ¢ are arbitrary constants.
die out,

limit cycle solutions, depending on the values of G,-

The numerical values of An are given in Appendix A. Subtracting

out the static part from above and using q to denote the dynamic
part, Eq. 3.5 becomes

(2]

%+ 1.5, -

N

fu’l} G,,(Zk‘/u) + §, =0 (3.6)

where

% = (24, - 37uPR)

The terms under summation sign contain all the nonlinear terms.
The solution of the linear eguation is given by

%2

4, = oo S (h-@ye )

(3.7)

When gl>0, the oscillations
Beyond the critical velocity uc=4c1/6Pl, when g, <0,

the oscillations grow and full nonlinear equation need to be
considered,

If the amplitude is plotted against time in a

semi log paper from an experimental transient record, the

initial slope should be linear and equal to the (%5uPl-;1) if
the quasi~static theory works.

In general |gl|<<l and the

frequency of oscillation is nearly equal to the natural fre-
quency.

The solution of full Eq. 3.6 is discussed in detail by

Bogoliubov (Ref. 32), Parkinson (Ref. 18) and many other authors

using the Krylov and Bogoliubov's method cf slowly varying
amplitude and phase.

The equations can have stable and unstable

They

appear as concentric circles in the phase plane whose origin
is an unstable focus.

In this report Eq. 3.6 is solved by

15




harmonic balance method to determine the limit cycle solutions.

The stability is checked by slightly perturbing the steady

state solution. All these methods involve the assumption that

the nonlinearity is small compared to the inertia and elasticity

terms and the oscillations are close to the sinusoidal motion

near the natural frequency. For a square section body in low

subsonic flow, these are realistic assumptions.

Let the steady state solution be given by

-—

Substituting Eq. 3.8 in Eq. 3.6, collecting the coefficients of
sint and cost and setting them to zero one obtains

SinTe
b g =z
L T a2 G o2 2\ 2
_%l;“*?/,uz :ﬁbt(a“’fbl) =0
“zalsl"
Cost: (3.9)
g5l
~ 2 ~ 2 2 2
o — 4 Gn o, (0 + b = 0
C& ‘ Z/Du un ‘( ‘ ‘)
n= 3‘5'..
where
’C;n nMm=2)(n-4) .. ... (3)(1)
(ne)y (n=1) (n=-3) (4)(2)
. 2,,2
Setting a= /a1+b1, Eq. 3.9 reduces to,
= 0 (3.10)

9,0 ~ 3w ) Gar”

1\:3'5'..

This nonlinear algebraic equation in a can now be solved to give

16
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the limit cycle amplitude at a given u and 41. Egq. 3.10 can
be expressed in another nondimensional form

T AT 5 4 L A
R Se et

,' __L(.Q..) _ e (a\" -, (3.11)
; 1 ‘u u “ "a - “

! n=13,5. ‘

< ’ where - ~

o a = a (//49%)

:

3 ‘ For a given (a/u), one can calculate U without solving Eq. 3.11
¥ for a. The resultant plot of @ vs. U serves as a master plot

if ; for a particular Cy Vs. tang data (3.4). This was suggested

% , -

d by Novak (Ref. 23). It may be noted that (a/u)=(a/u) and the

K i induced angle of attack B at the tip of the beam is given by

i tang=2(a/u) for our chosen mode shape. Thus the steady state

Z ' solution is given by

§ W

o b = 19.(5) a Sn T (3.12)

at a reduced velocity uEU/wlb. For example, for a fifth degree
polynomial fit in Eq. 3.4, Eq. 3.1l takes the form

LE) (@) + 170 @ 5 a7 ()] = 0

Eg. 3.10 gives both stable and unstable limit cycle
5 solutions so each of the solutions must be tested for stability
Giving a small perturbation to the steady state solution, %l is
ig written in the form

'a %l = (05 + ?.(-C)) S'W't C (3.13)

17
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Here a is a steady state solution satisfying Eq., 3.10 and £(<7)
is a small perturbation from the steady state solution. It is
also assumed to be a slowly varying function which means that
the increase of such a function during one period is small com-
pared to the average value for that period

£(c) 2n £ (z) 2n
e | (| _— L .
According to this assumption
§ = [a,+ E(@)| Con T
1, Les )] ? (3.15)

% = [0+ 5@]SimT + 2£8(z) Gue

Substituting this in Eq. 3.6 coefficients of sint get cancelled.
Setting coefficients of cost to zero, cancelling out the steady
state solution and keeping only the linear terms in (1), one

obtains
2&8() + 9F@) £y - o (3.16)
d Qs
where
L5 u? o n
Fla) = 23,0 — £7Ww Z G, (a/w)

It may be noted that F(as)=0 gives the steady state solution.
Thus in order that the steady state solution be stable, one

must have égéél positive at F(a)=0,.

A graphical representation of the steady state solution
and stability is explained below. Using the nondimensional
notation of (3.11)

18
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Fla) = $7u| T (F) Ga(E) ]
‘n:.-.|13'5/.-

dF(a) | | d a\"

cFla} _ Ly [ L - 8 =~ (8 1(3.17)

da 2/ [ B d('o'/ﬁ){ G"‘(il) }_,

n=13%5,

Plotting ZE,(&/«;)”‘ versus (a/u), steady state solutions

at a given u are obtained from the intersection with a straight
line from origin and with slope 1/u. The solution is stable
if the slope of the straight line is greater than the slope of
the curve at the point of intersection.

Thus if the EE Gw(a/@)" plot is as shown in Fig. 16a, B
represents unstable limit cycle sclution. Fig, 16b shows the

nature of steady state amplitude variation with u. The dotted
portion represents unstable limit cycle solution.

2

At large
velocity the amplitude is asymptotic to a line of slope D.

If the Eaﬁ(a/ﬁ)”‘ plot is as shown in Fig. l6c all the
steady state solutions are stable. If this is as shown in

Figs. l6e and lég, A2 represents the unstable solution. These
different forms of amplitude response for bodies of various
cross section have been discussed by Novak (Ref. 24) and sta-
bility proven by the method of Krylov and Bogoliubov. By the
present method, the steady state ampiitude and stability can
be determined just by looking at the Zgn(a/w“ plot.

3.3 Two Degrees of Freedom Motion neld

In Section 3.2, the motion of the vertical cantilever
beam at zero initial angle of attack is assumed to be in a
plane normal to the free stream direction. This is found to
be a reasonable assumption experimentally for this cantilever
beam which has no directional preference of motion structurally.

10
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However, when the beam is initially at an angle of attack, (see
Fig, 2d), the motion is generally in a plane slightly inclined
to the z direction. This inclination is presumably decided by
the aerodynamic forces alone. Assuming that the beam can
vibrate freely in all directions with the same natural fre-
quency and does not undergo any torsional motion under the
existing forces, the equation of motion can be written in the
same form as Eq. 3.1, namely,

éLW o'w 1 2
mSH O3t FEISR = 5PUC, (B o Sifu, o)
(3.18)

a“v EY, A 1oy v

Here w(x,t) is the displacement normal to the wind direction;
v(x,t) is the displacement along the wind direction; ¢ is the
structural damping coefficient expressed in the form of vis-
cous damping; &, is the initial angle of attack and the right
hand terms represent aerodynamic forces induced by the motion.
Again, applying Galerkin's approximation to reduce Eq. 3.18
to ordinary different}al equation in time t using only one
mode for w and v

wigt) = b1 (5)q (1)
Vig.t) = b{ (8)g,(t) £ =X/L ,

where fl(g) is the first bending mode shape as in Eq. 3.2, the

(3.19)

Eg. 3.18 becomes after some nondimensionalization

%,+2¢9‘, + g zfu'fc(“’é) (?“t %)?(i)cl;

L1289, * %, =10 [0 (194 0] ) s
(3.20)
20

s =Nt
4




3

where Wwt= ¢

g = cfa2mae,

(°y = d()/dz
Other notations are the same as in Eq. 3.3. In Section 2.3 a
quasi-static representation of the motion 1nduced aerodynamxv
forces on a body translating with velocity Mland V without

rotation has been derived. Using the Eq. 2.14, Cz and C‘Y can
be expressed in the form

Cam (12f D (e (ronp)”

mzo0 (3.21)
.2 M m
Cy = (\-.%) Z Ym(do)(fmﬁ)
m:=0
for small |tanBtana, Now
. 2 m « m o \=(M-2)
(- g5t T G- )

In general, because of presence of damping due to drag, the
stream~wise motion is very small, and one may write

( -g)~(m-2)= | + (/m—z)(%) + ‘l“_%“:'_)(%)zqv (3.23)

In the present problem |V/U|<0.1. Thus if M=7, only two terms
need to be retained in the above approximation with only 4%
error .C,, CY can now be expressed in the foom

(3.24)
7 2
enfMm, o
W V
+ ) 2 2N (8) ()
™M=3 WN=0
21
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CY expression is the same as C; except Zm is replaced by Ym'
In this case Nuo=1, Nm=(m-2).Nm_=(m-2) (m-1)/2. Eq. 3.24
expresses C; , CY in terms ofg,% in a convenient form which
can be converted to ordinary different equation in time using
Galerkin's approximation. Introducing Eq. 3.24 in Eq. 3.20,
one obtains after subtracting out the static part

toade wd pe(n(a®-a(3E) Q)]

[.1-]

° o
%t 4% 1.5,

RSCI LY

where (3.25)

% (Pw Z,)
= ""‘z/’;u\(.)
Hhe = (25 + fule)




Here dyr 9, denote only dynamic terms since static parts have
been subtracted out. The terms in the square bracket contain
all the nonlinear terms. The mass and stiffness matrix are
symmetric and positive definite. Thus the instability can
arise only from the damping terms. It should be remembered
that the self-excitation is mainly due to negative 911 and not
because of interaction between a4, and d,-

First consider the linear part of the Eq. 3.25.
00 [+ [-]

0ttt v % o=o

[-X-} © o

0(z+ 714054+ %.zckz * q‘z =0

Let the solution bectfalepT, %2=a2epT. Substituting them in
Eq. 3.26 a pair of homogeneous simultaneous equations in a
and a, are obtained.

(b’l+ %\tb * I) | %Q_P Q
%, b ( b2y Cyub ¥ I) Q,

(3.26)

1

(3.27)

i
o

B For non-trivial solution, the determinant of the coefficients

§ must be zero. The variable parameter is the reduced velocity u.
? It may be noted that for a perfectly symmetric cross section
body at ao=0 g12=0 g21=0 and the linear equations are uncoupled.
Since 999 is positive, the motion in streamwise dirxection die
down. Thus if 914 is negative, the motion norimal to the free
stream direction is only excited. The equations become coupled
if the square section is a#*+ an initial angle of attack @ e OF
if P0 and Q1 are not zerxc . ao=0 (for example, if the section
is not perfectly symmetric). From experiment, it is found

that the motion for the initial angle cases is not normal to

the wind direction but in a plane inclined to it. Setting the
determinant of coefficients of Egq. 3.27 to zero a fourth
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degree polynomial in p is obtained which can be solved to give

b

i

where

*

2
20’ = _<%l\2"*'?22) -t /(—&%32}) —(%u%’zz—%tz?m) (3°28)

It can be seen that at low velocity when(gllgzz~glzg21)>0

both the values of ¢ are negative since in general (gll+922)

is positive for a square cross section body, at all velocity.
The oscillations die down. As u is increased, flutter condition
is reached when

(%ua'zz - %lz(}'zl) =0 {3.29)

which makes 0=0 and p=+i. Thus the fiutter frequency is the
same as the natural frequency Wy . It should, however, be
remembered that the self-excitation occurs because of the
negative damping term 99, and nct due to interaction of %'

and % .
2
The Eg. 3.29 can be solved for u to give the critical

velocity U,
~ (Zﬂ-ZJ + /(zx—zgz.+8(zms-ﬂﬂzg
Pue = ¢ - (3.30)
(Z'YD—Yl Zo)
ignoring the negative value.

At u>u, one of the values of ¢ becomes positive and the
oscillations grow. The motion corresponding to the negative
o die out. In general, |o|<<l and the frequency of oscillation
is close to the natural frequency. Thus

b~ ¢ + { (3.31)
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Substituting this in Eq. 3.27 and using the assumption 02<<l

A,y %2 x 6
= = - tame = -0 (3.32)
' (%27."’2"')

For the specimen used in the experiment, at low subsonic speed

o is of order 0.01 so the phase difference between 9

at low amplitude is small and the initial motion is in an

and q,

inclined plane. The phase difference between d; and q, repre-
sents an elliptic whirling motion. It should be noticed that
at critical velocity Uo»dy and q, are in phase and the motion
is purely planar.

Let us now look for steady state solution of the total
Eq. 3.25. Since the elasticity terms are linear, and the
linear and nonlinear damping terms are small, the frequency
of osciliation beyond the critical velocity are close to the
natural frequency of oscillation. Thus a steady state solu-
tion to equation (3.25) can be taken as

Cklz . S9wmT + b‘&/.\c
o= G2 IMmT + byGaT

Substituting these into Eq. 3.25, collzcting coefficients of

(3.33)

sint, cost and setting them to zero one obtains four algebraic
equations coming only from the first derivative terms.

Sim T ~Fu b “Fnb, ~ LU P (a,b,0q,b,) =0
on € : 9 0 +g Q, - 'E’fu"gm(a‘,bl,o; b)Y =0
Sin T 9,5 "%zbz — L Pu* gsz(aub.,oz)bz) =0
Con Tt %, & *%,.% —%Fu’"fcz(o‘,b,loy,bz_} =0

(3.34 a,b,c,qd)




Here fsl(al'bl’az’bZ) etc. contain all the nonlinear terms in
al’bl’cl'dl and are given in Appendix B for a general poly-
nomial fit of aerodynamic data for the case bl=0‘ In steady
state limit cycle solution, the starting point of time is
irrelevant and bl can be set to zero. Setting also b2=0

Eq. 3.34a,c are automatically satisfied and one is left

with two equations (3.,34b,d) with two unknowns ay and a,.

G, O * %102 - %Flﬁ' gc‘ (a,q) =o
~ (3.35 a,b)
%ZI O # %.LOZ '_zl/[J w fcz(o”‘ :Q’-) =0 :

which can be solved at a given u to obtain the steady state
solution.

ll

{‘(s) a, SYm T

(3.36)
{(§) @2 ST %

il

o< o|=E

The inclination of the plane of the motion with respect tc the
z axis is given by

f = fed (02/a) (3.37)

Positive y has the same sign convention as positive o_.. The

o
total tip amplitude Wi is given by
W
T = 20/ Gon¥ (3.38)

It may be noted that Eq. 3.35 can be nondimensionalized in the
special form of Eq. 3.1l.

To examine the stability of the steady state solution,
we again assume




where

%' = [le + §(T)] SinC

%, = [ @5 + M(©)] SinT

g, = [%s + §&)] Gat

Y, = [925 + M) ] Gnc

q(. =-[as + g(T)] amnt +2§(t) Gon T
q, =-L0%s + @] sinT +27(T)Cenc

in £(t) and n(t), one obtains
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(3.39)

where ajgr g are steady state solutions satisfying Eq. 3.35
and £(1), nlt) are slowly varying functions as defined in Eq.
3.14. Thus proceeding in the same manner

(3.40)

Substituting these in Eq. 3.35, the coefficients of sint get
cancelled. Setting coefficients of cogt to zero, cancelling

out the steady state solution and keeping only the linear terms

(3.41)




This gives the familiar eigenvalue problem. For stability,
the root of the characteristic egquation

A S R e aa o

2
P+ Plou+0n) + ((@n0,- 3,39 =0 (3,42

must have -ve real part. The condition is givin by
(o + Gzz) >0

(Qu Q,,~ Ol'zaz;) Y0 (3.43)

Let us now consider a simple example for which C and CE

are given by

Cy = Planp + P3twn3[b

Cc = Q, + QZTQMZF, 4 Qq‘rom“{b (3.44)

In ordexr to get a feel for the quantities involved, Pl=0.9,
P3=~8, Qo=1.24, Q2=~3, Q4=30 roughly fits the experimental data
shown in Figs. 7a, 8a up to tang=0.45 if one ignores the small
off-symmetries. In one degree of freedom case this form of

C, has the response characteristic as shown in Fig. 16c¢ in
Section 3.2, There is one stable limit cycle solution and the
limit cycle amplitude increases monotonically with u. With the
limitation ItanBtanaol<0.l, IQ/U|<0.1 the harmonic balance equa-
tions (3.35) are

3

9,8+ 9,0, P (1761 2,(2)° + 854 2, (2)(%)
+ 407 Zg (%)5 ] -5

c},Z‘Ol + 2101“%F1L1[|761Y (%_)3 + 834 Yq(%)‘t(%) (3.45)
+ 4.7 ZS(%)S] =0
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with the approximate quasi-static representation. Adopting
the nondimensional form of (3.11), Eq. 3.45 become after
division by (o./u.)

| (—111 —z.) +2%) - 176l z'f’,,(%‘)2 + 8.34 24(%‘)47
+ 417 ;_'_,,(%-')Al ]=o0
~———— (3.46 a,b)

Yo (50 20) 7 - [7a g (2) 4 834 v, (2T

+ 447 Ys(%')q] - 0
w( flae)
Q\(j;'/“z:.)

where

&l
I

o
n

gz‘ztomY:Y

Q,

Here Zo..ZS,‘{O..Yg are functions of P Pl' Py Qr Q,r Q,
and a, and are given in Appendix C. Since Cy is cubic, the
second and third terms in square bracket of Eq. 3.46a are

ol

very small compared to the first term and can he neglected.
a\*
N, + L7V Y, (=) + 4.7 Yq

From Eq. 3.46b
.)4
*
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In determining (El/ﬁ) by substituting (3.47) in (3.46a), one
may ignore the fourth power terms and get




( ) - (g-2) +2zX/(5+2%)

1761 { Zy - 2 z°Y3/<.—l1;+ 2\@)] (3.48)

filp)

The limit cycle solution is possible only if the term undzr the
radical sign is positive. 1If C, is antisymmetric and Cc
symmetric in 8 then at ao=0 Yys Y3/ Y5 are zero and the solu-
tion is given by

%\. = ,/(TI‘:.- Z.)/l.7s!Z3 (3.49)
hm‘x = 0

If Q4=O, one may ignore Y3r Yyr Yge Then tany is approximately
given by

tm Y, Y ( az)
LN e——————— A —— — i “o . \
! Loy, 2Y, 3 ) tom (3.50)

Thus qualitatively if no drag variation with 8 is considered
0 if the
drag decreases with 8, 02<0’ Y>ao. When Q4 is included the

then Y= i if the drag increases with B8, Qz>0, Y<a
probiem is more involved. Numerical examples are considered

in Section 4. In general, y does not affect 51 very much. El
is primarily determined by Zl and 23.
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SECTION 4

EXPERIMENT WITH CANTILEVER BEAN

4.1 Introduction

Since no purely theoretical method of predicting the aero
dynamic forces on a blunt body with a turbulent wake exists,
experimental observations form the basis of the present investi-
gation. The quasi-static representation of the aerodynamic
forces constitute one of the means of predicting the response of
a self-~-exclted square section body. So experiments have ben
conducted with a square section cantllever beam placed in a uni-
form wind stream. First the static 1lift and drag forces are
determined and are used in quasi-static theory to determine the
responses. Then tests are carried out to determine the response
experimentally with the specimen at various initial angles of
attack. Some interesting response phenomena are observed. They
are described in Section 4.3. 1In Section 4.4 the results obtained
by this quasi-static theory using the static test 1lift and drag

data are compared with experiment. Only qualitative agreement
has been observed.

A movie of the experiment has been taken, which shows the
self-excitation phenomena. The transient motion and the response
at various angles of attack can be clearly observed.

y,2 Static Force Measurement

The experiment with the cantilever beam is carried out in
al ft. x1 ft., low speed wind tunnel. The air is blown into the
tunnel by a blower and is smoothed out by a series of netting and
honeycomb mesh, The velocity is increased by the area contraction
ratio of 36:1, The flow is smooth and nearly free from turbulence.
The specimen is placed in the open jet 1.5 inches from the end of
tunnel as shown in Figs. 1 and 2a. All the velocities mentioned
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are the velocities just inside the tunnel and are used as the
reference velocity throughout the report. Before the testing
the velocity near the specimen position is measured with a pitot
tube whose total pressure holes are at 1.5 inches from the end
of the tunnel and static pressure holes 1" farther behind. In
Fig. 4, this is plotted against the reference velocity. The re-
duction in velocity at the specimen position due to the open jet
effect is found to be less than 2% at all reference speeds up to
80 ft/sec. and can be considered within tolerable experimental

error.

The specimen cantilever beam is made of 1/8 inch diameter
steel rod and is 13.1 inches long. It is coated with wax and
drawn through a square template to give it a square cross section
outside. The side of the square is 0.09 inches. The section 1is
not perfectly square but is slightly rounded at the edges. The
wax coating is thin and does not change the structural property
of the rod appreciably. Thus the rod can be assumed to have the
same area moment of inertia in all directions. It is free to
deflect in any direction without twisting and with some bending
stiffness. This simplifies the theoretical analysis considerably.
The 13.1 inches long specimen is clamped in a vertical position
and the base is bolted to the top of a turn table which can be
rotated through 360°., The orientation of the specimen with respect
to the wind stream direction and the chosen coordinate axes are
shown in Figs. 2a, 2b. The four sides are identified as side
A, B, C, D with respect to a small 120 ohm strain gage which is
placed at the root of the beam on side B to record the transient
motion. When thz side A is facing the wind stream, the general
position is termed as pcsition A and so on. The static and dy-
namic calibration of the strain gage is shown in Fig. 9 at
position A, ao, = 0 for different tip deflection wT in Z direction,
and is quite linear. 'There are small variations 1f the motlon is
slightly inclined from Z direction.
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The clamped end of the specimen is 2 inches below the wind
tunnel floor to avoid flow disturbance from the base support fix-
tures, Since there is little motion at the root, the motion in-
duced forces are negligible and the set up does not affect the
response significantly. Tests are first conducted to determine
the static 1ift and drag forces at various angles of attack. This
is done by measuring the static tip deflection in 2 and Y direc-
tions visually, at different angle of attack position a as shown
in Fig. 2b, and then calculating the force, assuming uniform load
over the span of the beam exposed to the wind, using linear force
deflectinn relation.

CL= 8E1 W /iputbe®[ 1 - g(al)?, L))

¢y = 8E1Ve/Lputbt [ - 28 ¢ (4]
(4.1)

Here A% is the portion of the beam at the root which is
outside the wind stream. For AR = 2 inches, & = 13.1 inches,
the factor [ —-g(%§)3+ L(8*)*] = 0.9955, showing that the
s Cp are computed at 37, Wy, 56, 65 ft/sec
velocity for position A and at 37, 45 ft/sec velocity for position
D, and are shown in Figs. 5 and 6. The variation in CL’ CD from
the error in measurement of deflection is less than 5%. It is
observed that while CL remains relatively unaffected by velocity,

effect is very small., C

there appears a Reynolds number effect on CD. For an increase in
Reynolds number from 1800 to 3100, Cp increases from 1.24 to 1.54
at a = 0. The square section CL is characterized by the negative
1ift curve slope in the vicinity of zero degree angle of attack.
The 1ift attains peak value near a = 12° where drag reaches a
minimum. In this vicinity the flow first reattaches on one side
and the wake has minimum width. Beyond this angle the flow is

fully attached to both the windward faces but the wake width
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increases as the square is rotated farther, and the drag increases
simultaneously. Even though the general nature of CL’ CD variation
with o are similar for the position A and D, the differences are
noticeable at small angles of attack, signifying that the static
forces are quite sensitive to the imperfections and sharpness of

the edges.

Using the CL’ CD data, CN(B), CC(B) as defined in Eq. 2.4
are computed and plotted against tanp in Figs. 7 and 8. An 8th
degree polynomial least square fit 1s shown in solid line. The
fit is good only up to tang = + 0.45 and does not fit properly
near sharp peaks. The coefficients of the polynomials Pn and Qn
are given in Table 2.

4,3 Description of Experimental Result

The first natural bending frequency of the beam is 9.4
cycles/sec. The theoretical estimation with bending rigidity for
a 1/8 inch round steel rod gives 9.5 cy/sec showing that the wax
coating does not affect the structural stiffness. First the
critical damping ratio is obtained from the dynamic decay record
by plotting the transient amplitude against time on semi-log
paper, and is shown in Fig, 10 along with a typical decay record.
The damping ratio is constant at very low amplitude but varies
linearly at higher amplitude. The constant value is due to vis-
cous and structural damping. The linear variation is due to the
aerodynamic damping as the body moves through still alr. If it
is assumed that the drag at any point of the harmonically oscillat-
ing beam is proportional to the square of the velocity at that
point, then it can be shown by equating the work done over a cycle,
the equivalent damping ratio is proportional to the amplitude of
the cycle.

= L 7
qEq“ﬁﬁ AzC

EIE

(%) (4.2)
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wT is the tip amplitude and 7, Al, Az,un are as defined in

Eq. 3.3. This is plotted in Fig. 10b from the origin for CD = 1.6
and 2. Since pg<l,w/w,~1, it can be seen that the slopes of
linear {_ . variation are much smalﬁer than the experimental plot.
For Cp = 1.6, the g, = 0.87 x 107 '(wr/p) whereas the slope of ex-
perimental linear variation f., = 3.8 x 107 (Wr/jwhich is four
times as much, It is not quite clear why this is so but one of
the reasons could be that the beam is actually not moving through
still air but sets the wind in motion as it moves through it. As
it swings back, it meets the incoming turbulent wind which in
effect doubles the net velocity and the drag is four times as
much. It should be noted that when the beam is oscillating lat-
erally in a wind stream this air damping in that direction is no
longer present. Only the structural damping which is obtained
from the intercept of the experimental curve on the &, axis, impedes
the motion in this situation. This 1s estimated to be between
»002 and ,0025 in terms of critical damping ratio. The value .002
is used for all calculations.
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The response at zero degree initial angle of attack is
measured for all the four positions A, B, C, D, i.e., with each
of the four sides facing the wind stream. The turn table is
b L clamped at the position A at zero degree angle of attack and tunnel
is turned on. At a speed below the critical velocity, there is
no response. When the beam is disturbed, the oscillations die
down. The wind velocity is then increased in small steps. At

JARTELAN

jf around 10 ft/sec, the beam begins to oscillate by itself. The
% amplitude increases slowly and then settles down to a steady state.
k To record the transient motion at a particular velocity, the beam

is brought to rest by touching it at the top and then letting go.
The Sanborn recorder which is hooked up to the strain gage is
turned on simultanecusly., The amplitude grows slowly and then
settles down to a steady state limit cycle., The final amplitude
is quite steady, signifying absence of large scale turbulence in
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the flow. 'The beam is then given a small kick to see 1if it comes
back to the same steady state value. It is then given a blg kick
? to examine if there are other limit cycle solutions at that veloc-
ity. The steady state tip amplitude is measured visually with a

E scale held on top of the tunnel outside the wind stream. Some of
: these measurements are compared with static calibration of the
strain gage done at the beginning of the experiment for various
tip deflections due to an end load, and is given in Fig. 9. They
are almost the same if motion is nearly normal to the wind stream
direction. The steady state amplitude and transient response are
recorded for the position A for velocities up to 65 ft/sec. The
velocity is then reduced in steps and the amplitudes are measured.
The process 1s repeated at zero degree angle of attack with sides
B, C, D facing the wind stream, but no transient records are taken.
The result is plotted in Fig. 1lla. wT is the tip amplitude. It
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§ is observed that even for amplitudes as large as Wr/b = 31, the

b frequency is still nearly 9.4 cycles/second as in small amplitude
.} oscillation. The steady state amplitude variation with velocity
é is more or less the same for all the four sides up to about

? 25 ft/sec. Beyond this velocity there is a marked departure. In
% position A, the amplitude levels off and then drops as the veloc-
i ity is increased to U5 ft/sec but rises again as the velocity is

increased farther. Similar response variation 1s observed for
the position B and C but the drop off and rise occurs at differ-
. ent velocities. For position D, however, the amplitude rises

f; monotonically with velocity to a large amplitude of Wi/b = 31 at
55 ft/sec. The specimen is not tested beyond this velocity to
avoid its destruction. With two dimensional square section body,
response behavior of form shown in Figs. 16a, 1l6c have been
observed but this type of behavior is rather unusual. In order
to investigate this peculiar amplitude response in position A, B,
C, further tests are conducted for the specimen position A and D
so that the basic differences can be detected.
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Now instead of keeping the specimen at zero initial angle of
of attack, it is placed at a small initial angle of attack®, as
shown in Fib. 3b for each of the positions A and D and the steady
state amplitudes are measured at various velocities., Now, however,
the motion is no longer in the Z direction but generally in a
plane slightly inclined to it. The total tip amplitude WT and
the inclination of the plane of the motion with z direction denoted
by Y , are plotted in Figs. 12a-f (position A) and 12g,h (position
D) for various initial angles of attack position &, and at differ-
ent velocities. The sign convention for )Y and &, are as shown
in inset diagram of Fig. 12a. They are both positive in the same
sense. At position A, for velocities below 25 ft/sec, the steady
state amplitudes are nearly symmetric for positive and negative
oo And goes down as &, is increased (Fig. 1l2a). It goes down to
zero in the vicinity of ®, = 10°. At &, beyond this the oscilla~
tions dle out. The plane of oscillation is however somewhat
irregular. At 17 ft/sec, the J is in opposite sense to x,. At
24 ft/sec the inclination Y are nearly zero. However beyond this
velocity, there is a marked departure from this pattern as shown
in Figs. 12c-f. The responses are no longer symmetric with re-
spect to &, and there is a larese change in amplitude and inclina-
tion of plane of motion for a small change in &, from -2.5° to
+2.5°. The peak amplitudes occur in the vicinity of 0, = +7.5°
and goes through a minima near o, = -2.5° (Figs. 12c¢,d). There
is also considerable change in inclination of plane cf oscillation
Y. At small &,, | is in the same sense as X, but bigger. Beyond
®o = +7.5° as the amplitudes drop off, Y has the tendency of going
down to zero again. As velocity is increased the response becomes
more sensitive to ®%,. At 65 ft/s (Figs. 12e,f) the amplitude has
peaks at %o, = 2.5°, +10° and drops off in between near o/, = *5°.
Near &, = +10°, the amplitude and inclination are rather large but
drops off quickly as O, increased a little farther. The same
tests are carried out with the specimen in position D, at 37 and u§
ft/sec (Figs. 12g,h). The amplitude in this case shows the
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regular trend as in Fig. 12a, with peak at a, = 0, dropping off
as 0. is increased. Oscillation ceases near 0o = th The in-
clinations are nearly zero but show trends similar to those of
Fig. i2a. Thus it can be observed that the drop off and rise of
amplitude at @, = 0 for position A (Fig. 1la) is asscciated with
large sensitivity of the response for small change in @, in the
vicinity ¢, = 0, whereas in the portion where the amplitude rises
monotonically with increase in U, a small change in ¢, from o, = 0
does not change the amplitude or inclination considrably. The
amplituue drops off quickly as ¢, is increased farthner.

Fig. 13 shows some sample transient records for position A,
6o = 0. They are plotted in sami-log paper on real time scale in
Fig. 14, The initial logarithmic increment in amplitude is found
to be linear. The experimental values of initial linear log
(Slope)/w, at different free stream velocity are plotted in Fig.
15 with a negative sign. According to quasi-static theory this
is the experimenta’ value of gl/2, the linear tineory - equivalent
~ damping coeficient as defined in Eq. 3.6.

All the experimental results described here have been found
to be quite repeatable.

4.4 Theory ard Experiment Comparison

Using the static aerodynamic force measuvrements it is now
possible to calculate the response characteristics using the
method described in Section 3, and compare with the experiment.
When the beam is initially at zero angle of attack, the steady
state amplitude at a given velocity is given by:

7
) ]=e

(“\ [( |+ 176! P3K..)+4|7P(_) +\132P(
(4.3)

for a cantilever beam with thz mode shape used and with a 8th
degree polynomial fit of Cy versus tanB curve. Using the 8th de-
gree polynomial fit of CN versus tanB of

s:nsm
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a) Fig. Ta, tested at 37 ft/sec in position A
b) PFig. Tb, tested at 37 ft/sec in position D

the steady state amplitudes & are plotted against W in Fig. 11lb,
along with the experimental values obtajined for the specimen

in position A and D at @, = 0. The value Cl = .002 A= 0.35):10-3
has been used. Pn are given in Table 2. It should be noted

that 2(&/u4) represent the induced angle of attack p at the tip

of the beam. Since the curve fitting is only up to tanp= 0.45,
results only up tod/z= 0.225 are valid. The results plotted are
witain this range. For a quick conversion from physical units

to nondimensional values, the following relations may be used for
P/ag,= 0.0438

U {#1/5ec) = 0.443 U = 10.1 &
Wy = Z2a = 45,60
b (4.,0)

Reasonably good agreement is observed for amplitudes up to

Wr/b = 15 . The experimental amplitude variation in pcsition D
shows similar trend but are substantially lower in magnitude. The
quasi-static theory fails to predict the drop-off characteristics
ooserved in position A and in general over estimates the steady
state amplitude.

Another way of examining the applicability of quasi-static
theory 1s to compare the ini.ial transient growth rate when the
amplitudes are small and equations are linear. To do this, the
linear theory-equivalent-damping ratio gl/2 = C;’Q25/;“-P' , as
defined in Eq. 3.6 is plotted in Fig. 15 and compared with
experimental values. Pl is the initial slope of CN curve (Fig. Ta,
U = 37F/S, 2Mg. Tb) and Cl = ,002, They are of the same order of
magnitude and trend but not close to linear with velocity as given
by the theory. It may thus be concluded that the actual aero-
dynanic forces are more complex than a simple quasi-steady descrip-
tion. The static 1lft and drag values do not contain all the
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information required to describe the dynamic forces induced by the
motion. It is probable that as the amplitude increases beyond
WT/b = 10, the flow is no longer two dimensional and a break in
the flow pattern at a part of the beam causes a flow change in

the entire portion.

The amplitude response at different @, can be compared with
the theory in a qualitative basis since in the one degree of
freedom case it has been observed that the quasi-steady theory
cannot predict accurately the amplitude response when the ampli-
tudes are large. but gives the right trend. So an approximate
fit of CN and CC data has been chosen for comparison with the
experiment (see Figs. 7, 8).

Cy= 0.9famp - 8.otam’p

(pes. A, lfom gl < 0.45)
Ce = 1.24 = 3.0 fmp + 30.0 rqm“(s

v = 1.2 tamp ~ 15.0 fom®
¥ P P (sos. D, lmpl <04 )

Ce = M1 =30 hwn2F + 3CLC>hmﬁqP
(4.5)

After a steady state solution has been obtained at a givenx, from
Eqs. 3.47, 3.48 one should check that IhvnP\MAx-k!tmmahl is less
than the 1imits of curve fit (4.5), |famp tomal, <01 , [V/Ul < 0.1
in order that the solution be valid. The CC curve fit 1is not very
good, but it is observed that the subsequent value of Y does not
affect the amplitudes substantially. The value of ¥ is however
quite sensitive to CC. The theoretical results are plotted in
Fig. 12 in broken lines for comparison with experimental values.
Results at velocity 17.9 ft/sec 1s not computed since the CC data
is not known. Amplitudes at velocities 24.5 and 37 ft/sec,
position A (Figs. 12b,c) and 37 and 45 ft/sec, position D
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(Fig. 12g,h) agree with the experiment qualitatively but the in-
clinations do not. It seems a simple quadratic CC of Eq. 3.50
can explain qualitatively the experimental behavior at small &,
since it gives ) values proportional to ®,. At low velocities
the dynamic CC possibly increases with [ which makes | go in
opposite sense tox,. At higher velocity the dynamic CC possibly
goes down with p following the initial static trend (Fig. 8a)
making Q2 negative and { goes up linearly with &, for small %,
(Fig. 12c). Same explanation apply to Fig. 12h but not tc 12g.
Thus, the aerodynamic drag forces acting on the oscillating body
seem to be rather complex and do not necesuarily follow the
static curve,

From these comparison it is observed tlat in two degrees
of freedom, motion the quasi-static theory can give a qualitative
description of the steady state amplitude response if it gives
the right results in one degree of freedom case., The peculiar
response obtained in position A (Fig. 1l2d, e, f) cannot be ex-
plained by introducing the two-dimensional motion.

From the experiment and quasi-static theory comparison it
may be concluded that the self-excitation phenomena of a square
section beam can be described qualitatively by the theory but
usually results in overestimation. Physically the beam cannot
achieve the high amplitudes predicted by theory without going
into geometric nonlinearity but below the velocity 30 ft/sec
(u = 3, Fig. 11lb) it can. Up to Wp/b = 15 (& = 0.3) the flow is
fairly two-dimensional and the amplitudes follow the guasi-static
results fairly well., As the amplitude incrcases, the top portion
of the beam moves in an arc which could be responsible for differ-
ent flow patterns and lower amplitudes. On a bluff body with
sharp edges where the flow 1is separated and the wake 1s turbulent,
the aerodynamic forces are apparently quite complex and sensitlive
to Imperfections and sharoness of the cdres, and can give rise to

unpredictable responsces,
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SECTION 5
SUSPENDED CABLE

5.1 Introduction

The galloping phenomena of overhead suspended power
cables has been a subject of research for many years. The
self-excitation is believed to be due to the negative damping
characteristic of the cable cross section. However, unlike
a cantilever beam the amplitudes can be limited by both

(a) Nonlinear aerodynamic force characteristics of

the cross section.

(b) The tension developed in the beam due tc large

deflections,
To study this, galloping of a sagging cable of square cross
section has been obtained experimentally in a wind tunnel
and is described in Section 6. Theoretical means of describing
the motion using quasi-static aerodynamic theory is discussed
here. The motion is governed by two nonlinear partial dif-
ferential equations which are reduced to nonlinear ordinary
differential equations in time using Galerkin's approximation
and are solved by harmonic balance method using only two
equations. The theory-experiment comparison is discussed in
Section 6.

5.2 Equations of Motion

Consider an uniform cable which is suspended between two
poles with a particular sag and placed in a wind stream (Figs.
17a, b). With the wind off, the cable is in a catenary shape
and the two ends are clamped in that position. The flexible
cable is of square cross section and in the suspended position
one of the flat sides face the wind stream. It is assumed
that the cable can deflect in y and z direction without twisting
(Fig., 17c) like the giant wheel riding boxes. Thus only two
degrees of freedom need to be considered in the equilibrium
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equations. Only small sags up to midspan sag/span ratio d/&
of 0.08 are considered. Thus the slopes at a deflected posi-
tion are small and the simple beam equations are adequate to
describe the cable motion. Also, for small sag it can be
assumed that the tension in the cable is constant along its
whole length and is thus independent of coordinate x. It can
be shown using catenary equations that for a simply supported
cable without bending rigidity and under constant self weight
and drag forces along the span, the tension T, at the support
and at midspan are given by

<"‘"§L)e~u = /' # (Duimg)? [+ 407y

(‘"‘;OQ> g% l+(D°/(mg)é [l + 4(d/e)z]
MiD

£ 1)

Here m is the mass per unit length, 2 is the span, d is the sag
at midspan. Dy is the drag force per unit length. For
d/%9<.080, the total variation of tension along the span is

less than 5%. For a cable with small bending rigidity it is
believed that the assumption of constant tension does not
involve error more than this.

When the wind is turned on, at low velocity the cable
leans back and takes up a stable static position until the
critical velocity i: reached. As the wind velocity is increased
beyond the critical velocity, the oscillations grow until a
stable limit cycle is reached. Thus to analyze the motion
it is convenient to subtract out the static part from the
overall equation

& We D Ywe _ Wy IV
mbtl Thaxz*‘ E]AX‘l = 'W‘C},i-F (3 ﬁ'U)
) YW DV (5.2)
Ve _ Mo _ p, +F (2 Rv
ST T‘b + Elax‘i 0 Y(m ot )




Here F, , F, represent the aerodynamic forces induced by the

motion. All the static terms of aerodynamic forces are in-
cluded in mg and Do for static analysis. Subtracting the

static equations

dW o dWolo

E15 ° T%2
Ve dV00
Eld X“ ’ Tod X2

from Eq. 5.2, one obtains

3w ( X W
m oY o _T oW
ste T (El5xa e axz)

m 5?2 ¥ (H Sxa " o éajé)

where W
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Y

(5.3)

Do

-7 32(W+W ) —-F (aw bV,U)

}xl 3t '3t

(5.4)

Taxz ——YDL ar,'U)

= W, (x) + W(x,t)

Vi = Vo(x) + V(X 1)

Tf_ = To + T(t)

The Wo(x), Vo(x) satisfy the static equation (5.3) &along with

the boundary conditions

AT x:o} Wo =

-
b=

<
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i

—
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(5.5)
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where woo(x) is the deflection shape with the wind off, i.e.,
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; Do=0' The double zero subscript will be used to refer to
quantities when the free stream velocity U=0. The W and V
satisfy clamped-clamped boundary conditions at both ends. The
bending rigidity EI is assumed to be the same for both W and
V displacements. The coupling between W and V arises from the
aerodynamic and tension terms only. It is assumed that even
after U exceeds the critical velocity, the static equations

¢ - (5.3) are satisfied and give a measure of the mean position,
\ i.e., the position if no motion induced forces were present.
Since the tension is assumed to be independent of x, at a

! fixed time t, the tension Tt can be obtained by calculating
‘ the strain in the form

Sl e

AT P

R

2
— AE
Te = Too + Ti(ds— ds) (5.6)

where

ds%  dx? 4+ dwg + dv’

2

daZ= d¥X* 4 OWe

&
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With the small slope assumption, this becomes
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i This tension term is the source of nonlinearity in the cable
3 vibration equation apart from the aerodynamic nonlinear terms.
ko Both of these are responsible for limiting the amplitudes.
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In quasi~static representation of aerodynamic forces

it will be assumed that CN and CC are in the form

CN = P‘1MP 4+ Py Tomqu (5.8)
CC = Go

where
fanf = W/(U-V) () =320

o

It is possible to work out the problem with higher order poly-

nomials for better representation of CN and CC but it would

result in added complexity without adding better insight to

the problem. Proceeding in the same manner as in Section 3.3

Fz and Fy can be written as

Fe=2p0t R ¥ (%) 4 of#)(14 %))
Fe=ppote [28 + (§) e -

for |V/y|<0.1.
is possible to

approximation.

Actual values of V/y are still smaller and it
neglect the underlined terms within the present

5.3 Solution of Static Equations

The static equations (5.3) along with the boundary con-
dition (5.5) can be solved exactly if T_ were known.

In order
to determine T

o it has to be expressed in terms of the dis-

placements in the form (5.7). This makes Eq. 5.3 nonlinear and

can only be solved approximately.
Solving Eq. 5.3 in terms of T

o with the boundary con-
dition (5.5), one obtains

§-ilren-e(Reomfan g-) - sme))
Vo - Dol 4

% ?ﬁd[ (\- )+e°{coth ((O,,ki )—Sanhgc}] (5.10)
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The double zerc subscript refers to quantities when the wind
is off, For these cables, Eo<E <0.1, Thus

Using this approximation Eg. 5.10 simplifies to

.y

;i e = qu [E(l -E) - {%O(I—Z&)—-l}{ eg"_l}]

oo 2 = [E(t-s)+c°{ a—t”

and
._E
Woo N“# Q [ |~ { —
-2 = -+
. 7 E(v-¥) 2e2 ~ (5.11)
1 , The above is valid for 0<£<.5, and the functions are assumed
) . symmetric on the other half of the span. Now initial tension

7 Too can be determined by setting Woo=d at £=0.5 and then solv-

5 ing for Too with the above approximation, to get

t

Too. 4 [ E] d]

= 2|1 - 6a=1.9 :
"‘é

The effect of bending rigidity is to reduce the tension from

the average 'Catenary analysis'value of mglz/ed. In the present
case EI/mg23=0.01, so the correction is of the same order as
the approximation involved in the analysis. Now the static

} tension TO at a particular velocity U can be determined by

substituting Egqs. 5.11 in the expression for To in Eq. 5.7 and

A W1

- N gt o s i 2 SN - T v
e, L A Y LA e e, F L 2o A e N ,

P ;7—-. om 2ed BFARA Y e L R ﬂ‘f””—e&‘é&c R s PRSI N A NS S R

AR . R i t—— —




i
Bu:
e
4

ot

‘r
.2

‘.-.e_,.’:.-t»_f. i

LY

e
TR E

53

\ s - T e PR
. B i Sty s b
R A L LN s

A nonlinear algebraic equation

carrying out the integration.
Sub-

in To/Too is obtained which can be solved by iteration.
stituting them back in Eq. 5.11 would give the static deflec-

tion shapes WO(E), Vo(g).
with wind velocity U is in

The variation of To/Too
For a simply-supported cable

general as shown in Fig. 19.
with no bending rigidity the problem is statically determinate

and can be solved exactly using the 'Catenary equations' to

give

ol

%o = [l + (Do/"“%)lJ (5.13)

This is compared with the present results in Fig. 19 and is
Using Eg. 5.11 one can obtain

One such plot
For a simply~-

found to give higher values.
the static positions at different velocity.
for d4/4=0.059, Co=l'4 is shown in Fig. 20,
supported cable the static positions are given by straight
lines inclined to the vertical at an angle tan—l(q/mq). The

nclinations are found to be close to the present case but the

static positions are not.

5.4 Harmonic balance solution

Using Galerkin's approximation Eg. 5.4 is reduced to
ordinary differential equations in time assuming W and V in the

form
wo= a{ L@ W + Leg,m]

d{ hmg ) + {’z(e)ﬁjz(t)}
W, = d f (5) (5.14)
Yo = d ?O(E)
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Here fl(a), f2(£) are first and second bending mode shape of

a freely vibrating clamp-clamped beam and are given in Appendix
D. fo(a), %0(5) are static deflection shapes given by Eq. 5.11.
It may be noted that fl(g), fo(E), fo(g) are symmetric functions
about midspan while f2(€) is an anti-symmetric function. Under
the existing forces the four modes are sufficient to describe
the motion. Hore (Ref. 31) have analyzed the free vibration of
a similar flexible sagging cable using the present mode shapes

and have obtained good theory-experiment agreement.

In nondimensional form, the ordinary differential equa-
tions can be expressed as

a;l + r|?_%|+ O("_r-(051+(k°) =2L/’3'u'l[ %.361

3 2y T = Lzl 26 &
Ckl+ r‘z%z+alT%z _E v_[_—_’a%z]
(5.15a,b,c,d)
where Wt = ¢ (°) = d0)
ac
= 7 512 2 2 ~ A~
T = 0‘! + %u -+ FP(%;. + Qb)_ ) + Z%lcko‘? 2%|%o]

T
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The time is nondimensional with some reference frequency Wype
The definition of §, u are slightly different than those used
in Section 3. A__, Bll’ Bzz, Dl’ D2, Br are constants and are

mn

given in Appendix D. q_, Qo are a measure of static position

o
of the cable. They vary with velocity as shown in Fig. 21.
Their definition are also given in Appendix D. It may be

noted thac ry, I, also vary with velocity.

So far no structural damping terms have been included.
There is a certain amount of uncertainty in its actual values.
Experimentally with the wind off the cable can be given small
tapping in first or second horizontal bending mode and the
amplitude decay recorded. The slope of the transient amplitude
plotted against time in a semi-~log paper is found to be linear.
From this viscous damping coefficients 61, 52 can be evaluated.
Assuming cl=8l, c2=52 the structural damping can be expressed
as a viscous damping for theoret%cal convenience by adding
the terms (C\/Yn&)z)ah ,(Z',/mw,z)'q;i , (Ca/mwg) sz ete. to
Egqs. 5.15. However, with the wind on, the cable will oscillate
at a higher frequency and it is not known how much is the actual
ctructural damping then. To overcome this difficulty Cq El
etc. can later be set to zero and the resulting change in
responses compared since the structural damping are usually




small. Let us denote
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1 Cfmwg = 21, E/mug= 2%
: (5.16)
'\ Cz/’mwg = 24'2 Ez/mwl?. = 22':2.
% Let ns first examine the linear equations
t o ° 2 r~
bt oot e ag, =0
:é ~ ~Nw ~ Ll
%l-{-a‘%l + J\_qi + ﬂ_‘f(sl =0
; o0 o 2 (5.17a,b,c,d)
, I A S =0
:' 9\2 ~r © ~
'; ah +(}zctz+ " 057- =0
where
-~ ~7 ~
ot = n*romq’ A= v 2ag?
[ (]
X -A- = ZO(.Cto ,o
G = 26- bR G o= 2fepues
. = 26,.- ZL/I;MP' iz = 24, +Pua.

The first and second mode equations decouple. The stiffness
matrix of (5.17 a,b) is symmetric and positive definite. So
the instability can only arise from negative damping terms
9, and 9ye

Considering Eq. (5.17 a,b), the critical velocity and
the frequency of oscillation at the critical velocity can be
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determined in the usual manner by introducing %:(Le s %‘=o,e
1

and setting the condition of condition of existence of non-
trivial solution of the resulting homogeneous algebraic equa-
tions. This gives

~ 2
wa_ - “Q" jl + _ﬂ_| 3’| (5.19)

at a velocity which makes

TR g [0

4+

%

ﬂ
—— | =0 (5.20)
T

% +
? +
since 0, , N\ Y,/ io are functions cof velocity (Fig. 21), no
explicit expression for critical velocity can be obtained, and
u, has to be determined by plotting (5.20) for various u

U)F,

until it becomes zero. Coxrresponding w, will give the flutter

frequency. ’
The Eq. (5.17 c,d) are unccupled from each other. The

critical velocity for %z mode will ke given by 92=0. The

£flutter fregquency is r

qz_will die out.

9 Since §2 is positive at &all velocity

For the solution of entire non-linear equation let us

take only Egqs. 5.15 a,b assuming no second mode is present.

The eguation has gquadratic and cubic nonlinear terms in Ck and;%r
e 9 ~
9+ 905 - 27 A(R)7 4 aly « Ag,
(A ~ ~ &2
+ o“(ﬁ%aq“ —-[-7_%0%‘%'-&- Ckoct\ )+ 0(‘% (OSI +CL )=
%+§\Qﬁl + A q‘\ - 7.%.'
~ ~ ~ 7z, o2 _
+dl(3%°%‘+2q€ %Ck\.;. ckoq(.z)_‘—a‘ Ckl<%!¢q5'>—

(5.21)




The reference frequency w, is chosen equal to the linear first

R
mcde natural frequency at u=0, i.e.
wr= W, =1f 4 El Too 2 (5.22)
ot { Azg[ Y?\I:Q‘D\ + Y_Y\Iz b"]} -

So at u=0 rl=l in Eq. 5.15.

To get an idea of the nature of the solution of Eg. 5.21
is first integrated numerically using predictor corrector
scheme with an error bound 10-4. Some results are shown in
Fig. 25. For small initial displacements the amplitudes grow
initially than settle down to a steady state amplitude. An
estimation of induced angle of attack shows that the induced
angle of attack f is well within the linear range of Cy’
according to the quasi-static theory. Thus to evaluate the
steady state amplitude by harmonic balance it is sufficient
to assume (Ref. 293)

it
!

be + b, GrWT + @ SmwZ + b,on2wT + 0,5 20T

T, + B lorwe + Cu3mwT + §,6n20T + G, Sin 20T

(5.23)

R Sub-
stituting (5.23) in Eg. (5.21), keeping only the coswt, sinwT,

w is the nondimensional frequency with respect to w

cos2wT, sin2wt terms and setting their coefficients and the
constant terms to zero one obtains 10 nonlinear algebraic egua-

tions in 12 unknowns bo' bl...é and w,u. Since in steady

state solution absolute phase ii unimportant, él is set to zero
and nquations are solved by Newton-Raphson iteration procedure
for the 10 unknowns w, bo’ bl"’gl’ 52, 52 at a given u. The
algebraic equations and details of iteration procedure aie
given in Aprendix E. Some of the solutions are shown in

Fig. 24 and are discussed in Section 6.3. The solution of

the form (5.23) represents large swinging motion of the cable.

Since the cable swings way up above the X-Y plane (Fig. 17 b,c),




cos2wT terms come in for representing the motion in the dqr
dl cartesian coordinate. From the polar coordinate point of
view the frequency of oscillation of the physical cable is w.

Assuming the quasi-static representation of the motion
induced 1lift forces are correct, theoretically the amplitude
is limited by the tension together with the §2 damping term
which becomes important when the cable moves against the wind
stream at the end of the larg: swinging motion.

(3)|




SECTION 6

EXPERIMENT WITH SUSPENDED CABLE

6.1 Introduction

To analyze the galloping phenomena of suspended power
cable, tests are first conducted with a uniform sagging cable of
square cross-section in a wind tunnel., The cable is flexible
but with a definite but small btending rigidity. Large and
rather violent self-excited oscillations are observed. When a
cable of circular cross~section is placed in the wind tunnel no
such self-excitation is obtained. Thus the galloping phenomena
is found to be due to negative damping type aerodynamic forces
typically assoclated with bluff bodies with sharp edges. The
cable begins to oscillate by itself beyond a certain critical
velocity but finally settles down to a steady state amplitude.
The experiments are conducted with different sag/span ratios of
d/¢ = 0,080, 0.059, 0.043, 0,029, 0.020 and 0.011l and the results
are described in Section 6.2. Theoretical solutions using simple
quasi-static theory are compared with the experimental results
in Section 6.3.

6.2 Description of Experimental Results

The experiment is conducted in a 5 ft x 7 £t closed circuit
low~speed wind tunnel. The specimen is made from a 0.045 inch
diameter flexible cable. It is coated with wax and drawn through
a template with a square hole to give it a 0.09 inch square sec-
tion outside., Care is taken to avoid twisting of the cable during
the drawing process., Because of this construction procedure the
uniformity is not perfect and the edges are somewhat rounded. The
extension rigidity EA of the bare cable has been measured by
Hore (Ref. 31) and is used here assuming that the wax coating does
not affect it appreciably. The bending rieidity EI is determined by
measuring the tip deflecltion due to self-weirht of a portion of the

(s44




cable cantilevered at one end and using the linear force deflec-
tion relation EI = Ynﬂ}lf/sg where § 1s the measured tip de-
flection. There is certain amount of scatter and the mean value
is taken. The numerical values of the cable parameters are given
in Table 3.

The cable is suspended in the wind tunnel from two rigid
1.5 feet long 0.75 inch diameter poles fixed to the floor of the
tunnel (Fig. 17a). The cable is suspended at a particular sag
and is clamped at two ends in such a manner that the cable
assumes a natural catenary shape and one of the sides of the
square faces the wind stream. Because of flexibility and clamped
edge condition the cable can deflect in Y and Z directions (Figs.
17b,c) without any apparent rotation like the riding boxes of a
giant wheel. The posts are long enough so that the entire cable
is outside the wind tunnel boundary layer. There is some inter-
ference at the endc because of the clamps and the posts. At
the beginning of a test run at a particular sag, the first hori-
zontal mode natural fre. iency of the cable is measured by slightly
tapping the cable. This frequency gives the experimental value
of linear first mode natural frequency at U =0 as given in
Eq. 5.22 and 1s denoted by Wy
At several different sag positions decay ~a¢.rds for small
horizontal oscillations are obtalned using 2 smail strain gage
at one end of the cable., The strain pgave signals for small mid-
span deflections are linear. From ‘uc . lope of the transient
amplitude plotted against time on : - ' -log paper, the critical
damping ratio &, = €, /2mw,, can be obtained as a
function of amplitude. The E& 1s found to be constant for
simall amplitudes., Sone Zi values measured at different d4/% are
shown in Fig. 18 alony with a typical record. At d/% = 0,059 a
second mode damping ratio is measured and is found to be E} = 0,018.




When the wind is turned on, at low velocities, the cable
bends back and assumes an inclined static equilibrium position.
Any disturbance imparted on it quickly dies down. An eye estima-
tion of the cable inclination is made from outside the wind tunnel
using a transparent protractor fixed to one of the clamped ends.
This is shown in Fig. 20, for d4/% = 0.059, For other sag ratios
the same type of variation is observed with little scatter. The
solid lines give the theoretical values calculated from Eq. 5.11
which will be discussed later. The wind velocity is increased
in small steps and beyond a certain critical velocity, the cable
begins to osclllate by itself., The amplitude increases until a
steady state value ic reached. The mid-span amplitude is meas-
ured by a vertically travelling telescope from outside the tunnel
by focussing near the midspan and freezing the motion of the
cable by a strobe light which is also used for measuring the fre-
quency. The velocity is increased !n small steps to about
100 ft/sec and then decreased. The frequency and midspan ampli-
tudes are ecstimated at each velocity, and are shown plotted in
Fig. 22a,b,

At low velocities, the cable first begins to oscillate in
second bending mode with the cable at blown back position. As
velocity is increased, it begins to oscillate in first bending
mode in a swinging motion. At a nigher velocity, the second mode
appears again. The cable oscillates primarily in the first mode
with small second mode superimposed, giving the appearance of a
travelling wave across the span, A brief outline of the response
description is given in Table 4., At mode transition points and
when both the modes occur together, the second mode has approxi-
mately twice the frequency of the first mode,

It is observed that the frequencies measured with velocity
increasing and decrcasing, follow the same path but the amplitude
measurements show a certain amount of hysteresis. The arrows in
Fig. 22a show the patlh with velocity increasing. The first mode




; frequencies, nondimensioned by W1 and the amplitudes nondimen-

4 sioned by sag d are plotted in Fig. 23. For d4/% = 0.080, 0.059,
& 0.043, 0.059, 0.043, 0.029 the nondimensioned frequencies seem to
collapse into a single line and increase almost linearly with

ﬁ veloclity. As for the amplitudes there is no general pattern. For
b d/e = 0.059 the amplitude is quite large and cable swings in an
almost 180° arc with a near horizontal mean position. For higher
d/% = 0,080 the amplitudes are lower but still quite large. With
reappearance of small second mode near 70 ft/sec, the amplitudes
tend to go down. For lower d/g = 0.043 the amplitude response is
similar. With reappearance of strong second mode near 90 ft/sec
the amplitudes go down rapidly. At very low d/% = 0,020, 0.011
the amplitudes are quite large compared to the sag and increase
rapidly with velocity.
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5 These are two pessible reasons for the irregular amplitude
%v responses at different sag ratios. As seen in Section 4, the

4 aerodynamic forces are quite sensitive to small imperfections at
°§ the edges of the cable and since no specific side of the square
%: was chosen to face the wind, two different sides facing the wind
:; at two different sag can give unexpected different results, Sec-~
ondly, since the cable is not entirely free from small initial
twist at the clamped ends, it can affect the amplitudes to a cer-

tain extent,

6.3 Theory and Experiment Comparison

The static aerodynamic force data measured for the square
section cantilever beam and described in Section 3 can be used for

the cable since both are of same cross-section shape and the ex-
periments are in the same Reynolds number range. For numericai

%5 calculation an average representation of CN and CC has been used.
Cy = Lo tbﬂ\P - 10.0 Tam3’5
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For different values of Pl and Qo in the range obtained in the
test, the solutions given by Eq. 5.21 changes slightly but the
nature of the solution remains unchanged.

To check the static representation of the cable one can
compare the linear first natural frequency at zero velocity given
by Eq. 5.22. This 1is simply the frequency of small horizontal
oscillation of the sagging cable,

a/% 0y (Theory) w1 (Expt.)

0.080
0.059
0.043
0.029
0.020
0.011

They are found to be in good agreement except at small sag ratios.
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The static positions at different velocities are computed
from Eq. 5.11 and plotted in Fip. 20 for 4/% = 0.059. The top
picture shows the side view of the cable position, and these are
similar to those observed during the experiment. The inclination
of the cable from the vertical is also shown in the lower picture
and is found to compare well with the experimental observations.
For other d/% ratios the results are found to be similar.

The steady state amplitudes are calculated from Eqs. 5.21
by harmonic balance methicd, assuming no seccond bending mode 1is
present. The results for d/¢ = 0.059, 0,043 are shown in Figs.
2hba,b, An estimation of maximum induced angle of attack from the
frequency and amplitude shows that it 1s well within the i.inear
CN range. Since the structural damping is not truly represented
by the critical damping ratios &, , £, the solutions with

S, » 2} = 0 are also shown in Fig., 24a. Exclusion of structural
Aamping does not change the amplitude substantially except near
Jhe ceritical velocity. ‘The frequencies agree quite well with
the experimental values. The amplitudes are only in qualitative
agreement for these two sag ratios. Theorctical results for
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other sag ratios give frequencies which are close to the experi-
mental values and the amplitudes follow the same theoretical trend

e

as for d/t = 0.059 and are in disagreement with the experimental
values except for the similar trend of large increases in amplitude

,
i
i
¥
B

near the critical velocity. From the experimental results it is
observed that the aerodynamic 1lift forces do not reach the values
given by the quasi-static theory due to the lack of spanwise

% correlation.
Y
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e SECTION 7

CONCLUSIONS

The present report has investigated the self-excitation
characteristics of a square section body in the form of a vertical
cantilever beam and a sagging suspended cable when placed in an
uniform wind stream. The self-excitation is due to negative damp-
ing type aerodynamic forces induced by .ransverse motion of the
body. Unlike the vortex excited oscillation, this kind of self-
excitation can take place over a wide range of velocity, inde-
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pendent of the natural frequency of the body.

Since no purely theoretical method of predicting the aero-~
dynamic forces on a bluff body with turbulent wake exists,

i experimental quasi-static representation of aerodynamic forces
% was used to determine the responses theoretically. They were
tf compared with experiment to examine their applicability for large

three dimensional displacements.

Experiments were conducted with a square-section flexible

cantilever beam, free to deflect in any direction without twist-
ing, and placed at various initial angles of attack. The static
aerodynamic forces were measured for use in the quasi-static
theory. The dynamic responses and transient motions were recorded,
The steady state amplitude in general increases monotonically with
the wind velocity but in certain cascs the amplitude drops off
over a range of velocity (Fig. 1la). In these cases the response
was found to be very sensitive to small changes in initial angle
of attack ®, (Fig. 12). The linear equations give unbounded
solution beyond a certain critical velocity and the amplitude of
oscillation is limited by nonlinear acrodynamic forces. The
theorcetical solution for the steady state amplitude agreed only
qualitatively with experiment, generally overestimating the values
and failing to predict the peculiar amplitude drop-off behavior
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b | (Figs. lla,b). When the beam was at an initial anpgle of attack o,

5 | the agreement was again qualitative (Figs. 12b,c,s,h). The

i ‘ discrepancies were protably due to imperfecticns of the beam,
i

’f ! unsteady aerodynamic forces and Reynolds number effects.

; : Experiments were also conducted with a square section,

% ‘ sagging suspended cable, Large self-excited oscillations were

i observed and the amplitude and frequency of steady state oscilla-
ticns were recorded (Fig. 22). The frequency response showed a
regular trend but the steady state amplitude values varled widely

§ with different sag of the cable. In the equations of motion, the
% tension in the cable as well as aerodynamic forces contribute to
i' the nonlinearity and can affect the steady state amplitude. 1In

E the first mode oscillations, the motion remained in the linear

b range of aerodynamic forces and the amplitude was limited by the

tension forces together with the damping forces due to the drag.
i Reasonably good agreement between theory and experiment was obtain-

4 ed for the frequencies, but the steady state amplitudes were in

? qualitative agreement only for two particular sags (Figs. 24a,b).

a Again, these discrepancies were probably due to imperfections of

'gf the cable, unsteady aerodynamic fcrces and Reynolds number effects.
45' : Thus, the aerodynamic forces acting on an oscillating bluff
; body with sharp edges were found to be rather complex and quite

sensitive to small imperfections and sharpness of the edges,
giving rise to unexpected responses. The actual motion induced
forces do not reach the values given by quasi-static theory due

- to imperfections, lack of spanwise correlation and unsteady aero-
dynamic effects.

A The results obtalned here may be of interest in understand-
%? ing the wind induced cscillations of tall towers, buildings, launch
§ vehicles on the ground and power lines. To understand thoroughly
% the unsteady aerodynamic forces acting on bluff bodies with sharp

edges, more dynamic tests need to be conducted.
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APPENDIX A

CANTILEVER MODE SHAPE

The first bending mode shape of the uniform cantilever

beam fl(E) of Egs. 3.2 and 3.19 is chosen so as to satisfy
the free vibration equation and all the boundary conditions

(Ref. 30).
fn(«‘?) = CoshnE ~ Cos E,& ~ %n (SinhEng ~ Sinéng )

For first mode & = [.875] x, =0.734| & f,(‘)=2

b

' it
The integral An = ;!{‘ y H‘(g)] dg are evalu-
o .

ated numerically using Waddel's rule of integration.

A= ) e =

A, = 1,478
2.348

=
]

>
L

6.673

>
[

20.71

>
"

9 67.73

4.648

>
il
o™
e
SIS
e’
[~
Q.
N
i

12.362

o
i
S
L
l Q.
[
fsg =
e
N
Q-
%11
1l
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APPENDIX B

HARMONIC BALANCE COEFFICIENTS
(FOR CANTILEVER BEAM)

0
The functions tg (@, b, 02, by)  glc, are obtained

from the integrals

4 ’imv\ m
‘¥5‘ (Qt,b;, Qg, bz) = -7‘7 I Z men (— b‘ SnT + & G:/)’C)

-7 m=3 n=20

n
x(~b, ST 4 0, @T) SinTde

| 35 !
fc, (al,b,’ Qa, bz) = 3 j —-E:n(_b'sﬂn’c + Q. Cor:t)
- - M=3 n=0
. n
x(.- sz'm’L‘+ Qz(on’C) GnT d’t
and similarly for 'rsz (ai, b, a,, b,) and

P td

]QCQ. (Q" bl , Qg , b2> by replacing Zmn by ?my\_ .

If b,== ) it 1s possible to get a general ex-

pression for these integrals as given below.

Case I (m + n) even

O

it

'f$| (QU o, 07: bz)

Pc; (a‘lol @z, bz) = 0

oo




A%

i

3 Oadiebl f:.,*,;“ oo

Case II m even, n odd

n-{
;51 (G.. 0, Gy, 2) Z z Zy:ll (m)mZ “C,. (-bl ;)"('UL)PGMP

m=4,¢.. 0= {,3.. ¥>0,2,4

(o0t = 5 E ?‘-’m L@l (o:'i?—beW

Tz 4,§.- n=2Y,3

P=0,2,4-

Case III m odd, n even

h@oae)=y § Ime }: (o (5) @G

m=35. n=24. =135

D (a,0,anb,) = Z z )Z Ce (st‘—z“bz)PHmnw

Mm=35.. h=2,4- v=0,2,4.-

nl

rl (h-v)]

Gwne = 2 ,[(m“’“')(m*ﬂ)-- 3] [(nr)lnerz) o g
[(YIHY\H) (man~)(min-3) ... 4.2
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_ Z’[k(K~2‘J(’<~4J w3 ][0 (r-3) .- 3.0
[(m-mm) (m+‘n—l)(m+h—3) 4,2]

HM‘-‘\Y’

Hevre kK= m+n-v

If any factorial or first bracketed term are negative, they are

set equal to unity. Also O! =1 .

0
sz(C‘-\»O, Q,, bz) 3 ¥c2 (Cl:, 0, &,, b;) are given by

the same expression after replacing ?m,, by V,,,,., .
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APPENDIX C

FORCE COEFFICIENTS

The quantities Zo,Z,'Z5 , Yo,Y.,"'Ys used in

Eq. 3.46 are defined as below for Ifomp ton oc,l { ol

Let Po = (Pn—Gntona) Gnia.
Gn = (Qn + P toman) Gola
Zo= | P, - P, foma, + Py tamot, — B, tom oo + %, Tom"o(o]
— B [ag [ag A 2 ~ t_ 2 +t_ 4&)
Zi= | 2(F-Bllmeae + B (1- tomi) + s ( 3tomete + tom'a,

~ P (Atom’w, + 2fom®s) |

Z'l = [ Ef‘arfo{o'*‘ ’{s’l“amqo'*‘ fp"z —3’53( ‘.qu'*' ‘-m3do) + 34 (6 "O/':'ldo"\' 8 l'OM‘m]
Z3= [ By 01+ 3l‘mm1do) - PL( atomea, 4+ 12 T’om3o(0)1
Z

Cad P 1
4= [-Patomwo + & (1+8 rom «,)]

=[-%5 (2tan O(o)J
Yo, Y, -Ys are same as above if Py P.--P, e replaced

by 60, a"..'aq .

M
o
I

IV e




APPENDIX D
CABLE MODE SHAPE
The mode shape ‘?.(%) s "2 ({-‘) used in Eq.(5.1%)

are the first and second bending mode shapes of a freely

vibrating clamped-clamped beam (Ref. 30).

Lz = l 5188[ Cosh&i§ - Gsé&® ~ & (Sinhe g - Simég)]
{32(5) - [ Gsh €8 — Gn €, 5 -~ (Sinh &F -Sin 6, 2)]
& = 473 x,= 0.9825 ?,(0.5)= l.o
€y = 7.853 o= . 0007

The Amn , By, B2, D, D,, ﬁ,. are mode shape

Integrals as defined below.

>
[w]
N
il
—

l ™m n
Apn = A—{-—Jr fll’ﬂ')] [fz(s}] dg
20 Yo
BN HICE M R ROIAEL
6 mn d,Pm(E) d Pn (%)




Dn

i 174
fo & (8 ba(® ds
?p = 522/5;:

i NG ~
L5 gt

a0
)
1
2|

¥ - L' 4be dh(s
%o L dg 'd§' Jg

It may be noted that B, =0 has been used in the formu-

lation. Bu, D, , etc. are tabulated in Ref. 30.

Bu = 4,877 Dl = ‘98-46
By = 46.05 D, - 3803.5

The Amn are evaluated by numerical integration by using

Waddel's rule,

Ay = 0.396 Ao 0.734 Arp =1.11

1]
[
(o)}
(o]
O
=

~

4

€9




APPENDIX E

HARMONIC BALANCE EQUATIONS

For the harmonic balance solution of Eq. 5.21, it is

convenient to make a change of variable

Pi= 9 + %

Pr = g, +7,

Eq. 5.21 reduces to simply

*0 o ) )
bm+%,m‘:‘m+y\)m+o('bm(bl+bz)—gn\:O m=14,2
— 2 2 -~ 2
B I R
%ﬁ = ﬂ,
2 5 ~
S( = 0 jo 82 = <}c
For convenience all ~  sign are replaced hy a first subscript 2.
Thus
Pl- 3 = b‘o + b“CCV)Q)t + a’"w wlT + b{g_(OfJ 20T + O|'25ih2w’c
1o
e by GrwT + G SinwZ + b,,ke2wl Qg5 Sin ZW7T

replaces Eq. 5.23 .

The algebraic equations to be solved are
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Constants:
2 e l
? i Z i_ hﬂoﬁno * 2 ( mem + amA"‘ + b’“’- bnﬂ- ¥ Qme Anz)}
% hat
: Cos wt: 2
(Y-w*)by, + w9g_ O + o (b' B, + b, B
R mi im ™My t ™m0 Dy, ™ no)
5 -
: 4] =
’ 'i(bm Baz + OmiAn, bmzﬁhl + OmaAng 4 bm,_Bng N OMzAn3‘)} =0
i Sin QT
51 —— 2
- j’?‘ 72 v
:‘ (Y"’ &J ) am‘ bt w?m bml + 0(; Z {(bfmoA'\l + QM(Bno
Fi. nsy
|
: +—< "
3 2 bmt AY‘2+ Q'“-Em "'lean -'bm'z. Am +bm2Ah3 =~ Gmz 5"3)}20
* Cos 2wT:
2 »
— 4t
; 4 (Y 4w)bmz + &)‘}m sz o, Z{<Bm° B"'l + bngno)
1
+2.(5m3m ~ QmiAny + bl’hlgn3+ QmiAng + by By g + Q“"?-A““)} =0
( j 1)0 N ! -
=4w") Gmy ~ 7#\ ma T &y (OmoAnz+ qmle’no)
"

L
+ Z(l)’mAn‘ + GWUBYH +bW\lA“3 ‘-Om‘b"3 +bm2An4 - OmlanQ)} =0

m=1,2
h
where gmo o b 4 g,
Bro = b* " 4+ L(bm+ad +b2 4 Gz )
Bae = th,o bn, + bm bviz t Oni Gno

An = Zb*noﬂm + men'z. - an.Q-nl
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Brney = Zb*hobn—;_ 4 %( b:; - G“\l)

Any = Zb’no Gnyz + bpy Ons
Bny = baba, -~ 0OwOnz
Any = bn Ong 4+ On bnz
Bra = 4 (bay~ Owi)
‘g = baz Qn,

Newton Raphson's iteration scheme for solving a set

of algebraic equations.

gl - o0 = ¥ + [J]n AX WHERE [J]=[%§)‘<]

J N+t n n
One assumes a trial solution {x,] and at cach step
n
solves the equations
[JJnAx“”]e X1 =3ixt + {ax
n N+i
Convergence criteria |AXJ' \gsd-q Xj is of order 1.
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N &

s

. vate
M4

CANTILEVE

Length 1
Side of square b
Mass/length It
Young's modulus E
E

TABLE 1

R BEAM

I/mgl3

PARAMETER

= 13.1 inches
= 0,09 inches
= 0,01233 1b/ft

= 30 x lO6 psi (steel)

9.58 (From w, )

= 9,74 (I for round rod)

First bending mode natural frequency

77

w = 9.4 CPS (Theory 9.5 CPS with I for round rod)




TABLE 2

oo
LRy RSES

Ao

POLYNOMIAL COEFFICIENTS

The following table gives the coefficients Pn’ Qn of
7 8th degree polynomial fit of Cy, Co Vvs. Tanf curve of Fig. 7,

A 8 respectively.

SR s

CN vs., TanB

=

bl

Posiftion A A D

37F/S

e,
o
N
G
~
W

Velocity 3TF/S

f P 0.025 0.025 -.007
P 0.88 0.62 1.35
0.25 0.07 ~0.7
K P ¥.37 7.67 Z1h.7
g P ~10.0 ~3.9 -4.3
- P ~151.8 ~181.6 ~18.3
”% Pe 117.2 52.0 83.9
P, N5k .7 526.2 172.8

E ~340.0 ~144.5 -263.8

3

¢ = P Paltonp) fonp | ¢ 045

nso
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Co vs. TanB
Position A
Velocity 37F/S
Qo 1.24
oo -0.3
Qo -9.8
Q3 7.9
Qq 200.1
QS -66.7
Qg -1208.4
Qq 159.5
Qg 2434, 2

8
Co = nz Qn (tamP)n

0

TABLE 2 (Continued)

255.1
-60.4
-1471,1
123.1

2890.0

37F/S

1.07
0.2
-3.1
1.1
115.5
-12.4
~-789.2
24.9

1699.0

HMF’I < .45




TABLE 3

CABLE PARAMETER

Span 1 =13.02 ft
Square section side b = 0,09 inch
Weight/length mg = 0.00675 1lb/ft
Bending rigidity EI = 0.0019 lb—ft2
Tensile stiffness AE = 7090 1bs

E I/mg13 = 0.01

AE/mgl = 0.3478 »x 106




TABLE 4

CABLE RESPONSE DESCRIPTION

U = Free stream velocity in FT/SEC
w, = 1st mode oscillation frequency in CY/SEC
Wy, = 2nd mode oscillation frequency in CY/SEC
e = Inclination in degrees (see Fig. 20)
WM/d = Midspan single amplitude/span {(see Fig. 24)

1BM, 2BM - 1lst and 2nd bending mode

d/% = 0.011

E gl f{ E Yﬂfﬁ Remarkg

0 5.5 - 0 - -

20 - 16.3  30° - Small 2BM

26 - 17.5  35° - "

29 9.5 19.0 hoo 0.4 1BM, Small 2BM
39 13.2 - T65° 0.95 1BM

51 14.8 - ~80° 1.02 1BM, Small 2BM
71 18.6 - - 1.6 "
61 16.3 - - 1.3 "

34 12.0 - ~60° 0.7 "

26 - 18.0 koo - Small 2BM

©\




§
;
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TABLE 4 (Continued)

-
Phats
i — —————— s PRI DL

d/& = 0,02

0 WM/d Remarks

29 - 13.8 - Small 2BM

36 7.8 1 65° 0.16 Small 1BM & 2BM
3 39 8.2 17.0 70° 0.2 "

E 47 10.3 - 78° 0.28 1BM, Small 2BM

60 13.5 - 85¢° 0.57 "

B AL o

73 16.0 - - 0.74 "

g

81 17.8 - - 0.85 "

59 13.3 - ~80° 0.58 "

4

.
q 15 10.0 20,0 ~75° 0.21 "
4 27 - 13.0 ~50° - .
2

'».
E
r
-8
§4.
i
"a

23

82

At TG MY o e ST rew - TR MWW}"?’?&,,W ST R SRR
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Nty SR J T S 4T

B S el f

v omewa .

M R e e L )

a/% = 0.029

s
50

68

88
99
75
56
50
b2

36

TABLE 4 (Continued)

“1 “2
4.0 -
8.3 -

11.0 -
12.5 -
14,2 28.4
15.7 31.3
12.2 -
9.2 -
8.3 -

Wy/d Remarks
- Small 2BM
- Small 1BM & 2BM
0.23 1BM
0.25 1BM, Small 2BM
0,12 1BM, 2BM
0.06 2BM, Small 1BM
- "
0.14 1BM, Small 2BM
0.24 "
0.09 Small 1BM
- Small 2BM
- Quiet
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d/% = 0.043

U

0
28
39
55
58
65
76
88

100
94
82
69
54

k7

7.5
7.8
8.6
10,0
11.3
13.8
12.3
10.5
9.2

7.“

TABLE 4 (Continued)

8.8

11.0

13.0

00
57°
72°

~87°

~80°

84

0.0n

0.4

%]

5.6
.65
0.43
0.53
0.64
0.6

0.49

Remarks

Small 2BM

"

Small 1BM
1BM

1BM, Small 2BM

"

1BM & 2BM

1BM, Small 2BM

Small 2BM
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6.9
T.7
9.1
9.8
7.9
6.7
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TABLE 4 (Countinued)

- -
- -
- -
— -
- -
- -
- -

10.5 775°

9.3 T60°

0.52

0.66
0.74
0.74
0.74
0.68

0.4k

Remarks

Quiet
Quiet
Small 2BM

1BM, Small 2BM




TABLE 4 (Continued)

/2 = 0.08
E vy ) i Wy/d Remarks
0 2.5 - 0° - -
38 - T.7 ~62¢ - Small 2BM
k7 - 9.2 ~75° ~ "
50 4.7 - “78° 0.36 1BM
63 5.8 - ~80° 0.51 "
70 6.5 - ~85° 0.52 1BM, Small 2BM
83 7.8 - - 0.48 "
99 9.3 - - 0.31 "
93 8.8 - ~ 0.33 "
76 7.1 - - 0.44 "
54 h.9 - ~ 0.34 "
47 - 9.2 T70° - Small 2BM
24 - - 30¢ - "
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