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INTRODUCTION

The hingeless rotor has become an attractive concept for
conventional and compound helicopters in recent years. The
primary reasons for this attractiveness lie in the anticipation
that the increased control power and angular damping of the
hingeless rotor will greatly enhance flying qualities and
maneuverability, and the simpler hub design will result in reduced
maintenance and improved reliability. The AH-56A Cheyenne is
an example of a compound helicopter using a hingeless rotor and
i is likely that at least one of the UTTAS candidate aircraft
will have a hingeless rotor. Unfortunately, experience with the
AH-56A has revealed a number of unpredicted and potentially
catastrophic rotor blade instabilities. These instabilities were not
previously encountered with conventional articulated rotor
helicopters, and can be attributed largely to the paucity of
basic research on hingeless rotors. Until their fundamental dynamic
stability characteristics are thoroughly understood, the promise
of the hingeless rotor for advanced rotary wing aircraft will not
be fulfilled.

A substantial insight into the fundamental stability char-
acteristics of the hingeless rotor may be obtained by considering
only the flap and lead-lag degrees of freedom of a single blade.
Although portions of this problem have been examined in previous
research, the effects of many basic rotor parameters are poorly
understood. The present study therefore was undertaken to provide
a rigorous formulation of the problem, and to systematically inves-
tigate the important parameters which characterize actual hingeless
rotor blade configurations. In the absence of available experimental
data a model rotor was designed and tested to validate the theo-
retical analysis. As a result of these investigations several
practical approaches can now be suggested for improving the inherent
stability of hingeles &rotor blades.
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THEORETICAL ANALYSIS

Equations of Motion
The basic flap and lead-lag deflections of a hingeless rotor

blade are measured with respect to an x, y, z, coordinate system
positioned in the undeformed blade and rotating with angular
velocity Q, Fig. 1. The axis of rotation is fixed in space and
for simplicity the blades are considered rigid in torsion. The
problem is restricted to hover in order to eliminate periodic
coefficients in the equations of motion. Although the motion of the
elastically deflected rotor blade in Fig. 1 must be described by
partial differential equations, considerable simplification can
be obtained by replacing the elastic blade with an appropriately
hinged rigid blade where spring elements are used to simulate
the elastic properties of the actual rotor blade, Fig. 2. The
problem is then simplified to one involving only ordinary differential
equations* which in turn greatly enhances the physical insight
provided by the theory.

An important feature of hingeless rotor blades is that
when the collective pitch angie changes, the elastic principle
axes of the portion of the blade oiitboard of the pitch bearing also
rotate, thus altering the relative stiffnesses in the flapping and
lead-lag directions. Furthermore, this rotation couples these
degrees of freedom elastically, t'aat is, flap deflections produce
lead-lag bending moments and vice-versa. The degree of this elastic
coupling is strongly dependent on the radial position of the pitch
change bearing, Fig. 1, or in other words the relative blade flexi-
bility occurring inboard and outboard of the pitch bearing.

The importance of this coupling requires that the flap and lead-
lag hinge springs of the rigid blade be divided intc two distinct
oithogoval systems -- one located inboard and one outboard of the
pitch bearing, as shown in Fig. 2. The degree of elastic coupling
is determined by the relative flexibilities of the two spring systems.

A:though the pitch bearing location is an important design
parameter for hingeless rotor helicopters the associated elastic
coupling effects have not been included in previous studies of
rotor blade stability nor have they been recognized as a significant
factor in flap-lag stability.

The differential equations of motion for the flap and lead-lag
angular deflections (Bz) for the rigid blade representation of the
hingeless rotor are obtained by summing the flip and lead-lag
moments due to aerodynamic, inertial, and elastic forces. A complete
derivation is given in Ref. 1. Since the equations are nonlinear,
it is advantageous to consider the stability of small deflections
from the equilibrium condition. The equations for the flap and
lead-lag perturbation deflections (A6, AC) are thereby linearized.
First, the equations for the equilibrium deflections ( o, o) are

*The exact partial differential equations have been developed and

compared with the present approximate equations in Ref. 1. The
results indicate a high degree of accuracy for the approximate equations.
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After taking the Laplace transform, the perturbation equations
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K K , K= (8)
KB + KH K B + K H (

R = K /KB = K/KB (9)

The terms associated with aerodynamic forces are the Lock

number y, profile drag coefficient cdo, lift curve slope a, and the

induced inflow parameters A, C which are approximated using momentum

theory, Ref. 2. a

A = T2 i + - - , C A= (10)
au~

The collective pitch angle is given by e. The Coriolis and cent-

rifugal inertial forces arise from the equilibrium flap deflection or
coning, 00 . The remaining terms involve elastic forces which are
unique to the hingeless rotor. The non-rotating flap and lead-lag
frequencies J8 and broadly define various classes of hingeless

rotor blade configurations. For instance soft inplane rotors are

characterized by 9 < 1.0* and stiff inplane rotors by a r, > 1.0**.
The parameter R is used to define the degree of elastic coupling.
For R = 0.0, the blade flexibility is located inboard of the pitch

bearing and no elastic coupling is Introduced as pitch angle is

increased from zero. The converse is true for R = 1.0 and inter-
mediate values of R define varying degrees of elastic coupling.

The small perturbation stability of flap and lead-lag motions

defined by these equations will be examined for three distinct

cases: 1) basic flap-lag coupling (R = 0.0), 2) the effects of

variable elastic coupling (R # 0.0), and 3) the influence of

kinematic pitch-lag coupling.

Basic Flap-Lag Stability
The homogeneous portion of Eq. (2) governs the basic flap-lag

stability of hingeless rotors. For R = 0.0, the only coupling

between the flap and lead-lag degrees of freedom is due to aerodynamic

and inertial forces, the single underlined terms in Eq. (2). The

damping in the lead-lag equation is inherently very small since it

consists of only profile drag 'lamping, induced inflow damping, and
16nr

structural damping (m m). Under certain conditions, the product
of the basic aerodynami and inertial flap-lag coupling terms is

destabilizing and may provoke an instability of the weakly damped

lead-lag mode. This is shown in Fig. 3 which is a locus of roots

of the flap-lag characteristic equation plotted in the complex

plane. The locus for several configurations (, = 0.7, 0.9, 1.10,

* i.e., the Bolkow BO-105, w = 0.7

** i.e., the Lockheed AH-56A Cheyenne, w = 1.4 - 1.6
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1.15, 1.20, 1.40) traces the roots as collective pitch is increased
from 0.'0 to 0.5 rad. When W is close to the rotating flap

frequency (p = vZ47 = 1.1547), the lead-lag mode becomes unstable.
Although the unstable configurations do not represent typical

designs (other constraints preclude the w = p configuration)
these results do afford new insight into Ehe physical mechanisms
which govern the stability of hingeless rotor blades. For instance,
Routh's criterion for the neutral stability condition can be used
to derive a formula for the lowest collective pitch angle at which
the rotor blade becomes unstable. Thus we have

(0-A) 2 = 2 D + (D+Ae)(P-W)2
where -A) 2(P-I)(2-P) (y/8)2 [W+P(D+AO)] (l+D+AO) (11)

where

D2 cd ;2 Pp 2 ;(12)D = 2 Cd+ ; p = p2 ; W =  2()
[a yj

Since D 0 and A6 0, it follows that a necessary (but not
sufficient) condition for instability is that 1 < p2 < 2. This
indicates that simple articulated rotors cannot be unstable since
p = 1. In addition, for a given flapping frequency, p, the minimum
collective pitch for neutral stability, 0min, occurs when w = p.

(0 -A)2  p2Dmi 2(P-!)(2-P) (13)

For p = an absolute minimum occurs in the collective pitch
for neutral stability. This value, referred to as 0* is

(0*-A)2 = 4D = 8 [ Cdo + 163 (14)

These simple and concise relations learly show the dependence
of flap-lag stability on the basic system parameters and design
variables.

Both profile drag and structural damping are stabilizing, as
is the induced inflow represented by the parameter A. Since
induced inflow increases with rotor solidity, a, increased blade
chord or number of blades is stabilizing. When p # w the stability
depends on the combination of p and w , together with the Lock
number. This dependency is shown in Fig. 4, which maps the neutral

stability boundaries as a function of flap and lead-lag frequencies.

For a particular collective pitch the region of instability lies
within the respective contour. These results illustrate the

occurrence of 0min for a given value of p when w = p, and 0* when

p = /473 as indicated by Eqs. (3) and (14).

Effect of Variable Elastic Coupling
The elastic flap-lag coupling terms are doubly underlined in

Eq. (2). They are roughly proportional to the collective pitch

angle, the elastic coupling parameter R, and the difference between

the flap and lead-lag nonrotating frequencies (W
2 - W2). The
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importance of these terms for hingeless rotor blades is immediately

apparent by comparing the locus of roots with elastic coupling in

Fig. 5 with the previous case, Fig. 3. Only three lead-lag frequencies
are shown, which typify practical soft-inplane W = .7 and stiff-

inplane = 1.4 rotor blade configurations. The third case,

W 1.1, is included for comparison. The stiff inpiane rotor blade
i highly unstable for small values of R, while the lead-lag damping
of the soft inplane rotor blade is increased. Values of R near

1.0 are highly stabilizing in both cases, particularly for the stiff
inplane configuration. Stability boundaries as a function of lead-

lag frequency and Aastic coupling are shown in Fig. 6. This plot
illustrates that the minimum pitch angle for instability is determined

by a specific relationship between the lead-lag frequency and R.
Routh's criterion may again be used to investigate this case.

For small pitch angles (62 << 1) the pitch angle for neutral stability

is given by

(0-A)
2 =

([DA) (eA= 21 p F(O+A)(W-P) _RO(W-P+l)l2~
; p2 4 2W-P)2

)

2(P-l)(2-P) D ( (15)

Since 0 : R 1, elastic coupling can only be destabilizing when
W > P or W < P - 1. This explains why only stiff inane rotor
blades become unstable in Figs. 5 and 6. When p = /4/3, the value

of R corresponding to the least stable value of lead-lag frequency

may be obtained from the following relation.

*+A (w - 4/3)
2R * / (16)

It is of interest that the pitch angle for this condition is
precisely that given by Eq. (15) for basic flap-lag instability,

i.e., 0*, which explains why the minimum pitch angle for instability

in Fig. 6 was independent of R and W

The practical importance of elastic coupling is that while

small values of R are potentially dangerous for stiff inplane rotor

blades, large values of R provide a means of greatly increasing the

inherently weak lead-lag damping of both soft and stiff inplane

rotor blades. In the present state of the art of hingeless rotor

design, no sound rationale exists regarding the influence of pitch

bearing location and elastic coupling on rotor blade stability

characteristics. Present design philosophy is largely based on

intuitive tradeoffs between blade stresses, bending torsion coupling,

and rotor control power. Therefore, the present analysis could

provide a basis for a rational approach toward eliminating hingeless

rotor instabilities.
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Pitch-Lag Coupling

Coupling between the blade pitch angle and the lead-lag
deflection can be caused by either control system kinematics or

coupled bending-torsion of the rotor blade. The former effect is
a well known cause of articulated rotor instability. However, both
factors are significant for hingeless rotors and are not yet well

understood. The present perturbation flap-lag equations including
the nonhomogeneous terms may be used to investigate this subject.
The necessary equation for pitch-lag coupling is given by A6 = 0 g
where 6C is the magnitude of the coupling. In particular the

combined effects of elastic coupling and pitch lag coupling will
be examined. The results are given in the form of stability
boundaries for a soft and a stiff inplane configuration in Fig. 7.
For the soft inplane (w = .7) case, the result is similar to an
articulated rotor, positive 0 is destabilizing, and the effect
of variable elastic coupling is found to be slight. The stiff inplane
configuration (w = 1.4), however, exhibits entirely different
behavior. With no elastic coupling, negative O produces instability.
Elastic coupling, however, is strongly stabilizing for negative ec,
but becomes progressively destabilizing as R increases and 0
becomes positive. Therefore, potential instabilities exist ior
several combinations of pitch-lag coupling and elastic coupling.
These results further emphasize the need for a rational approach
to hingeless rotor design if instabilities arising 'rom complex
coupling effects are to be avoided.

EXPERIMENT

The theory discussed above shows that flap-lag coupling can
destabilize rotor blade lead-lag oscillations. As previous
experimental work to support this conclusion is absent, an
experimental model was designed and tested to determine if the
reduction in damping predicted by the basic flap-lag theory did
indeed occur for a real system. To accomplish this validation it
%ar necessary that the experimental model reproduce the theoretical
model as closely as possible. In addition, it was necessary that
thp hinge stiffnesses be chosen so that the region of minimum stability
could be examined.

Experimental Design
A sketch of the model hub is shown in Fig. 8. Flapping and

lead-lag flexibility is contained in separate flexures, located as
close to the hub centerline as possible. The hub and blade are
designed for maximum stiffness outboard of the flexure. This design
closely approximates the theoretical representation of a centrally-
hinged, rigid blade with spring restraint. The only damping in

the model hub is the structural damping in the flexures. The blade

pitch angle is changed outboard of the flexures to avoid elastic

coupling of flapping and lead-lag motions as pitch angle is changed.

Torsional stiffness is provided by the flap flexures. The resulting

torsional natural frequency is approximately twenty times as large
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as either the flapping or lead-lag natural frequencies, which
effectively decouples the torsional degree of freedom. The flapping
stiffness, KO, and lead-lag stiffness, K , were selected so that
the region of minimum stability could be penetrated. Fig. 4 shows
this region as a function of nondimensional flapping and lead-lag
frequencies, where

Kf _ K

p = 1 + i-2  ;' 2 (17)

By simply varying the rotor speed, Q, it was possible to change
p and w simultaneously, an thereby traverse the region of minimum
stability. The blades were made of balsa wood with an aluminum
spar. The major rotor parameters are

Lock number , y 2.525
solidity , a 0.0602
radius , R 2.97 feet
blade chord , c 0.281 feet
thickness ratio 12%
twist -0.3035 deg/in
Reynolds number 1.0 - 2.5 X 105

The hub and blades were mounted on a rigid test stand as shown
in Fig. 9, and driven by an air motor. To measure damping of the
lead-lag motions, the rotor was excited with an electrodynamic shaker
in the nonrotating system, and the transient decay of the blade
lead-lag oscillaticns was recorded after turning the shaker off.

Instrumentation
The blade root flexures were instrumented with strain gages

to measure the flapping and lead-lag bending moments of both blades.
In addition, the flap flexures on one blade were strain gaged to
measure torsion moments. All gages were calibrated with applied
moments so that angular deflection could be related directly to
strain. The strain gage signals were removed from the rotating
system with a forty channel set of slip rings (Fig. 9). The rotor
speed was determined with an inductive pickup. Stand accelerations
were determined with an accelerometer mounted below the hub. All
output signals were recorded on an oscillograph and magnetic tape
(for subsequent data processing), and an oscilloscope was used to
monitor significant parameters.

Nonrotating Tests
Nonrotating tests were run to determine rotor stiffness and

inertia characteristics. With the rotor hub locked to prevent
rotation, flapping and lead-lag motions were excited separately
for each blade (opposing blade removed), and their natural frequencies
of oscillation were measured. In repeating these tests over a range
of pitch angles from -2 degrees to 90 degrees, a small variation
in the flapping and lead-lag natural frequencies was discovered
as the pitch angle increased (Fig. 10). This variation results
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because the rotor blade is not perfectly rigid outboard of the pitch

change bearing, and therefore the flapping and lead-lag motions are
elastically coupled. The degree of elastic coupling, R, can be

determined from any three experimental points. Using this value
and the theoretical model for elastic coupling, the predicted

frequency variation is as shown in Fig. 10.
The structural damping of the lead-lag oscillations was

measured, and was invariant for 0* S 0 S 180. The structural
damping is 0.11% critical damping.

Rotating Tests
Rotating tests were run in order to examine both steady

state and transient operation. Steady values of blade coning and
profile drag coefficient were measured to compare with theoretical

predictions, A.d to estimate the limits of linearized theory.
Fig. 11 shows the steady coning as a function of collective pitch,
where the coning angle has been normalized to remove the effect

of rotor speed. The coning angle significantly departs from linear

theory as the blade enters a stalled condition for collective
pitch angles in the range of 12 o 14 degrees. Blade stall was

observed experimentally in this region using wool tufts under

stroboscopic lighting for flow visualization. This low stall angle

is due to the low Reynolds number, and is predicted reasonably
well by two-dimensional airfoil data, Ref. 3. As blade coning

determines the extent of inertial flap-lag coupling, it is expected
that the theory will overpredict the coupling effects at collective
pitch angles above stall.

The mean profile drag coefficient calculated from the steady

data is shown in Fig. 12. The two-dimensional drag coefficient

data of Ref. 3 is shown for comparison. The damping of the

lead-lag motions is strongly dependent upon the mean profile drag

coefficient, which is assumed to have a constant value in the

linear theory. For higher collective pitch angles it is expected

that the linear theory will underestimate the amount of drag

damping present.
The transient motion of the rotor blades during rotating

tests was investigated by exciting the fixed hub in a direction

parallel to the plane of rotation with an electra,:ramic shaker

at a frequency of Q + w . In the rotating sy3'_tm, this excitation

occurred'at the lead-lag natural frequency, w. When the lead-

lag oscillatory amplitude was sufficiently large, excitation was

terminated and the damped transient motion of the oscillations

were recorded on the oscillograph and magnetic tape record.

Measurements of lead-lag damping were made over a range of collective

pitch angles and blade natural frequencies. Figure 13 shows the

experimental nondimensional damping as a function of nondimensional

lead-lag natural frequency for a collective pitch angle of 11.95

degrees. The theory without flap-lag coupling simply shows the effects

of structural, profile, and induced drag damping which increase

the lead-lag damping as the pitch angle is increased. The effect

of flap-lag coupling, however, is to significantly reduce the damping

for nondimensicnal lead-lag natural frequencies near the flapping
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frequency. The experimental data confirm the predicted reduction
due to aerodynamic and inertial flap-lag coupling. The effect of
the small degree of elastic coupling is to shift the lead-lag
frequency for minimum damping away from the frequency where p = .
The scatter in damping values at each lead-lag frequency is
indicative of the difficulty in measuring very small values of
damping (less than 0.4% critical damping). For w 1.2, the test
stand was not sufficiently rigid and its natural frequency coupled
with the blade lead-lag motion to augment the lead-lag damping.

Figure 14 compares the experimental and theoretical lead-lag
damping as a function of collective pitch angle for w = 1.278.
This is the approximate frequency for minimum stability. The
theory without flap-lag coupling shows a steady increase in damping
with collective pitch and does not correlate with the measured
data. The linear flap-lag theory, however, correctly predicts the
decrease in damping that occurs as collective pitch is increased
to the stall angle. Beyond stall the linear flap-lag theory
continues to predict a reduction in the lead-lag stability, however,
if modified to include the experimentally determined profile drag
coefficient, the theory then correctly shows the strongly stabilizing
effect of the profile drag damping of the stalled zotor. The data
in Fig. 14 clearly confirm the necessity of including the flap-lag
coupling terms in order to predict rotor blade stability.

Concluding Remarks
Several general conclusions may be summarized from these

results.
1. The theoretical analysis has given significant insight into
the stability characteristics of hingeless rotor blades primarily
because it is simple enough to comprehend while szill retaining
the essential degrees of freedom. Instabilities were shown to be
the result of aerodynamic and inertial coupling of the flap and
lead-lag degrees of freedom.
2. For the basic flap-lag case, the least stable condition
occurred when the lead-lag frequency was equal to the flap frequency
and the flap frequency was /4/3. It was found that profile drag,
structural damping, and aerodynamic induced drag were stabilizing.
3. An experimental investigation confirmed that the theoretically
destabilizing effects of aerodynamic and inertial flap-lag coupling
actually occurred in a real system. Nonlinearities resulting from

-i blade stall at high collective pitch angles increased lead-lag
damping. The theory was also able to account for these nonlinearities.
4. The inclusion of flap-lag elastic coupling and kinematic pitch-
lag coupling were found to have an important influence on the rotor
blade stability. The elastic coupling is structurally inherent
in all hingeless rotor blades but has not previously been recognized
as an important factor for stability. The present theoretical
analysis indicates that the degree of elastic coupling, depending
on the lead-lag frequency, determines whether the rotor blade
will be stable or unstable. The degree of elastic coupling is also
shown to be dependent on several rotor blade design parameters,
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such as pitch bearing location and flexibility distributions.
5. In practical terms the present results are encouraging
because they permit a much needed understanding of hingeless rotor
blade stability and should provide the basis for a rational approach
to the design of hingeless helicopter rotors. For instance,
configurations providing a high degree of elastic coupling can
significantly improve lead-lag damping and a judicious choice of
pitch-lag coupling can also be very beneficial.

The present work has stimulated the continuation of this
research and several areas are currently under study. Experimental
verification of the high damping afforded by elastic coupling
is presently underway while theoretical efforts are aimed at studying
the important effects of the torsional degree of freedom.
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