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INTRODUCTION 

JL/uJw,.-... .i J Ü3 

D 

In the current literature on stopping of fast heavy particles 
the stopping power S is given by (see f0r example reference [1-5]) 

2rre?*e2»N 
i 

[In 
(2mv^2 

t-L- - 2ß2 - 2h\ - 2A2 ] (1) 
mvJ 

where e. and v are the charge and velocity of the heavy particle, m 

the rest mass of the electron, N the total number of electrons per 
unit volume^in the target, 3 = v/c and c the velocity of light. 

Y* a (1-ß2)"1. Ai accounts for the shell effect, i.e. it is a 

correction term extending the range of validity of equation (1) down 

to incident particle velocities comparable to that of the electrons 

in the target, and A2 is a correction term accounting for the 

polarization in condensed matter. I is the average ionization poten¬ 
tial and defined by (see e.g. Eq. 34 in pef 1). 

In I = T f ln I 
q q 

is the oscillator strength of the excitation energy I where f____ «_0... _ w 

the eleStronic state in the target material. 

£2) 

of 

One of the main difficulties in the theoretical estimates of 
the stopping power according to Eq, £1) is our inadequate knowledge 

of the oscillator strength f and the corresponding excitation 

energies I . The problem has been solved by Bethe [6-7] and Möller 
[8] in cas8 of hydrogen. 

Bethe [6] then sought to solve the problem for more complex 

atoms, but computation difficulties have prevented good estimates 

of the stopping power except in case of simple atoms e.g. helium. 

Bloch [9-10] sought to solve the problem of complex atoms by use 

of the Thomas-Fermi Statistical model of the atom and derived that 

the average ionization potential was given approximately by 
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I = K Z 
o (2a) 

where Kq is a constant and Z the atomic number. Jensen [11] using 
the Thomas-Fermi-Dirac model predicted that 

I = Ko (1 + koZ_2/3) Z (2b) 

where k is another constant o 

The theoretical estimates of K and k are rather poor. These con¬ 

stants have therefore been determined°experimentally. Following 

Fermi's [12-13] explanation of the effect of the polarization of 

ponderable matter by the field of the incident particle, the 

interest in determining I from the oscillator strengths and the ex¬ 
citation energies was renewed making use of these quantities, 

Stemheimer [14-18] in particular has used this approach and given 

procedures to determine the average ionization potential from our 

knowledge of oscillator strengths and excitation energies. For the 

excitation energies he used the eigen values for the energy or the 

measured ionization potentials. Sternheimer found it necessary to 

multiply the calculated logarithmic average of the ionization poten¬ 

tials of the inner states by à factor p to make the calculation 

agree with the experiment. This factor p was found by Sternheimer 

to be of the order of 1.2 to 2. The theoretical determination of I 
was thus rather inaccurate. 

A different approach for determining the average ionization 

potential is outlined by Lindhard and Scharff [19] who, guided by 

the theory for stopping power in electronic plasma, give the 

following equation for the average ionization potential I 

(2c) 

where p (r) is the electronic density function in the atom in matter, 

the integration is performed over the volume of the atom. The quan¬ 

tity X is a correction constant for estimating the effect of the 

binding of the electrons to the nucleus as compared with the inter- 

electronic forces determining the plasma frequency. They estimate 

that in the statistical model of the atom the factor x is of the 

order of / 2 , while in light atoms x is close to one. This theory 
appears to be in fair agreement with experiment (see e.g. Table 2 

of ref. [19]); However a more exact determination requires better 

estimates of x which are rather difficult to obtain. 

Lindhard and Scharff [19], Lindhard and Winther [20] and 

Bonderup [4] also give an estimate of the shell correction Aj 

which, for velocity v of the incident particle a few times greater 

than the velocity u of the electrons in the matter, is given by 
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Ai = 
< U2 > 

(3) 

tîonein 
pr0P0rtl0nal t0 Xi-tic energy of the elearo^in^the 

Ujl! ín"24t“íreÂ 
of Taflî^ë'Sria™ i'vSV2 "C°rding “ ston,l„i»,r, Eq. (1) 

■ I f, ln —fll)2*a; . 
4ne2N “ ‘h"qi)! 

Í4) 

Ä/io^Ärsü i“ "sciiut“ ““h 

to 2 . w2 Ä ¿ • 
qi q 3 

4ïïe2f *N 

and a2 is given by 
m (4a) 

±--1*1 Ü!!^! 
(heu ) 2+a2 (4b) 

qx‘ 
THEORY 

tiona by BoH°/e^ í^lSa! 
formulation of the interaction phènomena in ponderable matter con¬ 

taining a'multiplicity 0^05^1^0^^5. eXtenSi°n to matter con- 

. Individual Oscillator. We may Fourier analyze the fieiH ^ 
the inci-dent partide and calculate the eneígy absorbí bí aí 
oscillator with eigenfrequency w and located at a distance n from 
the assymptote of the hyperbolicqtrack of the incident particle n 

ÎÎaîÎLdT 1^II!PaCtwParain6ter in Bohr's Annulation. The Fouíi^r analyzed field may be written in the form 
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F (ü),pj = 

e. 
i 

TTVp 

[ E“ . Kl ( E“) + i .1. Eïï. K (H)] (5) 
1 YV 1 ^ yv J y yv o ',yV/j k j 

where e^, v are the charge and the velocity of the incident particle, 

p the impact parameter, u) the cyclic frequency of the Fourier har¬ 

monic, K^_(x) and K* (x) are the modified Bessel functions, y = 

Cl-vî/c2}"1/2 and i » 
We may then let this field act on an oscillator q and the 

dynamical equation is then 

m * + a m r + m w2r = e 
qq qqq qqq q 

F (<A>,p) e icot 
(6) 

where m , is the mass associated with the oscillation, e the charge 

following that mass, r the complex distance vector of tSe charge 

from the "equilibrium'^position and f and f’ the first and the 

second time derivatives of r : a is^the damping constant. We 

assume that t « c so that^we mây disregard the magnetic field 
forces. We axso assume that the oscillations are around fixed 

position. 

The energy S absorbed by the oscillator may be derived by multiply¬ 

ing the right side of Eq. (6) by £ t (a?) and adding to that result 

2 ^ 
its complex conjúgate. An integration over t, co1, to and p may be 
performed exactly and we get: 

2*£e*N ion , ** * v<( * * * 
-^-2. [ÍZKJK0+ »Mo) - z z (Mî-KoKo)]21 (7) 

m V' 
q 

z2 

where N is the number of oscillators per cm3. K0 = K0(z) and Kj 

Ki (z) are^thç modified Bessel functions of the complex variable z 

and where z, Kq and Kj are the complex-conjugates of z, K0 and Ki. 

z is given by 

z = 
yv 

where y = 

/l-v2/c2 

and ui = /jj2 - + ia /2 qqq q 
and where w and..a are the eigenfrequency and the damping con¬ 

stant respectively of the oscillator. We- have also that 

zi = 

CO ‘Pi 
q 11 

YY 

and z2 

io #pp 
jlII 
yv 
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In the approximation of small arguments z\ and for P2 -► * we have 
that Eq. (7) is equivalent to 

sq = 

2 e^e^N 
_iJLÜ 

m V2 
q 

[In 
k2>y2y2 

Ol2 p2 
q 

] C7a) 

and where k = 1.122919 - 1.123 

This equation is identical to that deduced by N. Bohr [26] in 
a different manner. We have assumed in the derivation of Eq. (5) 
that the incident particle's track was a straight line. Bohr was 
able to correct for this and showed that classically we have 

P = 
m • Mv2 

q 

(8) 

which is valid in non relativistic limit. 

On the other hand, if we introduce in Eq, (7) the quantum 
mechanical limitation that the angular momentum changes such that 
p • ACmyv) ■ h, where A (myv) is the change in momentum of the 
incident particle, then we may derive Bethe's equation in the 
usual form, which assumes that the average energy transfer AE is 
uniquely defined by AE = [A(myv)]2 /2m. 

We have then 

ftu 
Pi or zi 

/ImT 2,,2 

P?. = 

q max 

ÏÎ 

/2y»i„ 

or 

2my2v 

fid) 
_a 
E 

q 

(9) 

(10) 

where Tmax is the energy transferred. For heavy incident • * imax • , particles we have 

T V = 2m y2v2 max . qT 

The minimum energy T . transferred is mm 

in) 

(E -E )2 
mo' 

min 

E2 

2m^y2v2 2m ÿ2v2 
(12) 
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If we impose the quantum mechanical limitations given by Eqs. (9), 

(10), (11) and (12) on the impact parameter in Eq. (7) we get 

« J. !.. o o. 
2we'Í,eaN 

S = ü-a [in 

where 

m V 
q 

C2my2v2) 2 
-. b ] 

h2w2*62 c2 ^ 
q q 

(7b) 

6 = 
q 

expCz2-Ko(z2)*K1(z2)) 

b = 1 - ClKjCzz)! KoCz2)I2 ) 

and z. 
q q 

For E = ñu we have 6 = 1.1474 and b = 0.815. For hydrogen Bethe 

found^an avSrage 6 to^be 1.103. Eq. Í7a) was deduced by disregard¬ 

ing the magnetic fSeld, and is valid for spinless particles. Bethe 

[7] showed that for protons with spin 1/2 an additional term -v2/c2 

must be added inside the brackets of Eq. (7a). For the interaction 

of incident electrons we must also make adjustment for spin, ex¬ 

change effects and Paulis exclusions principle as shown by Möller 

18]. 
The quantum mechanical probabilities for transition from state 

n to state m may be derived using similar methods and by replacing 

T_by E_and E by E_, where E_is the energy difference 

‘^ween ti?e two s?ates.m 

We have assumed in the formulation above that the incident 

particles velocity is large compared to velocity of the atomic 

electrons. When this assumption is not valid an adjustment must be 

made. This adjustment is the shell correction. In Bethe's formu¬ 

lation this correction results from the fact that the momentum of 

the oscillating electron or its energy after the collision is not 

uniquely defined by the momentum transfer. In the parametric 

formulation above, the shell correction arises because the single 

parameter p does not define well the Fourier harmonics at the place 

of the electrons, since during the collision the atomic oscillators 

are moving on their own. On similar grounds we may argue that the 

largest impact parameter corresponding to z2 = hcu /E is also not 

well defined, and the value z2 ■= hw /hw = 1, an upper limit 

usually used by Bohr, may be a betteS* average upper limit corres¬ 

ponding to the average oscillator frequency cu . 

We may compare the use of these two z2 values with experiments 

and more detailed calculations. In the hydrogen molecule the 

binding energy for the two atoms is approximately 4.52 eV and the 

binding energy of the two electrons then 2 • 13.6 + 4.52 = 2 • 
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15.86 or 15.86 eV per electron which is close to the ionization 
threshold 15.6. We have then that E = Rw and therefore the 
average excitation potential I = l9.86 -^1.147 = 18.2. The 
preferred experimental value is I = 18.7 corresponding to 6 = 
1.179. In helium the average rotational frequency is approximately 
given by hco = 13.6 (2 - 5/16)2 = 38.73 eV while the ionization 
potential i§ E = 24.46. We then have hto /E = 1.583 and ô = 0.96 
and I = 38.73 • 0.96 = 37.18 while 6 =ql.Î474 result in qI 
38.73 • 1.1474 = 44,45. The preferred experimental value for av 
helium is 42 eV [5] corresponding to 6 = 1.084. This adjustment of 
<5 however does not depend (or only ve?y slightly depends) on the 
energy of the incident particle. For sparse matter, we will there¬ 
fore consider the adjusted 5 as constant for each electron and 
independent of the velocity 8f the incident electron. 

PONDERABLE MATTER WITH MULTIPLICITY OF OSCILLATOR TYPES. 

Interaction of incident charged particles with ponderable 
matter containing a multiplicity of oscillators is of greatest 
importance. While the^theoretical results derived above for sparse 
matter are in general agreement with current theory, the following 
results for stopping in ponderable matter deviate considerably from 
the current theory. 

Using procedures similar to those used in deriving Eq. (7a), we 
find that the energy absorption by the oscillator q is given by 

21162. eaN * * * 
Sq-[(z* Kj- Kq+ z KlKo)]Zl 

^ m • vz M x9 ^ J 
q ¿ 

where K = K (z) and K = K (z) are the modified Bessel functions 
and where 

Rw 
z I = (16) 

2myv2 

Ku 2 • y 
*2 = —^-= y (17) 

hu qs 
in Eq. (17), as argued before, we have replaced E in Eq. (10) by 
hoi . In ponderable matter, however, we get z2 = qy instead of z2 = 
1 Sn sparse matter. 

This simple form of Eq. (15) results from the fact that at the 
resonance frequency we have: 

F = 1 - e = 1 
qa 

(18) 

where e is the dielectric constant at the resonance frequency 
(0 qa 
qa 
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The dielectric constant is given by 

l- 

e - 1 + 
oj^-üí^+ia to 
J2_EL. 

(19) 

i-i 

b • A 
—E_L 

a)£-tü2+ia u) 
P P 

where A = 4ïïN • e2/m 
P P P P 

and the summations are made over all the p oscillators in the 
medium. N is the number of oscillators of type p per cm3. The 
shielding constants b , in the derivation of Eq. (15), are assumed 
to be real and we equate them to 1/3 for all inner electrons and 
for the outer electrons in amorphic matter and matter with cubic 
lattices, while b = 0 for the conduction electrons. 
The resonance frequency ^ for energy absorption is given by 

j 
q2 

= /w2 a 2/4 ' 
q 2 

+ ia /2 
qa 

(20) 

where 

(0 u 
q2 

Ü)2 + 

, r C1'V AJl i + y _—t1 

(21) 

and 

i» 
q2 

cl'ba3VvV 

. a 
q2 

= a + 
q 

q q ’ H - 2 
(22) 

[1*1 

” “q23 

The value of C in Eq. (IS) is 

C = -3—S2_ 

^ an (“n ) <12 q2 

[1*1 
w„2-ia 
„.g? q? q? 

][i *1 

(b -bj A, 

id?- (D_2+ia a) 
I_,02_ik q? (23) 

[1*1 ][ 1 *[ 
(1-ba3 \ 

W0 " 1Ct W £ q2 q¿ q2 
w?-w 2+ia a) 
* q2 q2 qa 
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The summations in Eqs. (21) C22) and (23) are made over all the 
oscillators Ä ^ q. 

For fast incident particles we may use the logarthimic 
approximations and we derive 

S = 
q 

2ïïe*eaN 
_LiLfl In 

(2myv2) 

m v‘ 
q 

h2w 26 2 
qa qa 

(24) 

where 
exp(z2 ^1(22)- Ko(22)) 

qa 
(25) 

and k = 1.123. The total energy absorption by all of the oscilla¬ 
tors is derived by summation of expressions of the form of Eq. (15) 
or its approximation, Eq. (24). 

There are actually more absorptions frequencies, i.e. mathe¬ 
matical singularities or poles, besides w . These frequencies are 
close to w , but the correspondent C ^àre so small that we have 
found it reasonable to disregard them 3n ordinary matter. 

The èerenkov Radiation 

The derenkov radiation consists of those Fourier components of the 
incident particles field that are too slow to keep up with the 
particle. The energy contained in this field may be integrated 
and we get 

2 U) 

k 
A In 

P 
JU 

^.2+¾2 
kill*-ln(l-ß2)-ß2 + fe£2?a2](26) 

ce 
2v2 I A [A 

where 

A_ = 4tre2 N /m„ 
P P P P 

(27) 

and where a2 is determined by 

. ApCag+a2) 

¿ (hip2*a2)2-a2a2 1*B2 _ 

b A (W2+aZ) 
1 . J -P-P..-.P- 

(28) 

(w2+a2)2.a2a2 

where ß2* v2/c2 
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The^iimation in Eqs. (27) and (28) are made over all the p oscilla¬ 
tors. The first and the last term in the bracket of Eq. (26) 
correspond to the polarization terms given by Eq. (4) according to 

'’i’ • Tht 1= to partly to the ,or. Satt 

and nr^ref en i°f^LOrentZ' correction of the dielectric constant 
and partly to a slight error in reference [14]. (Eq. (52) of this 
re erence has the correct value 1. which corresponds to our defini¬ 

te!! ?f ‘'K in 2Ur E?.’ C22)' whiie E£l- CD of reference [14] 
kl* Vi ^ fi' whlch we believe is incorrect.) The difference 
betweeri Eq. Î28) ànd (4b) is due to better treatment of Lorentz* 
correction, m the present calculations. 

The Total Energy Loss 

l0f fon|lsts of the energy absorptions by the 
A osc^llators and the verenkov radiation emitted by the^ 

incident particle. We derive 

S = 
2ïïe^e2N 

mv2 
anVii. (2) 62 . 24i . 242. 2ij. 2iJ 

I2 
2 (29) 

where 

In 12 = I / m R2W(12 

= the usual shell correction 

2 ii wA2kt 4ire2N 

a3 1 y -3_, 
2 L N 

f (1-c ) 
In (2mYV2)2 

h2u 26 2 

¿4 = Z2- Kjiza) • Ko(z2) - In k 

and z2 = y and k = 1.123 

(30) 

(31) 

(32) 

(33) 

(34) 

“n2 = W2 + 
^2 q 

2 ¿JCJ - 4) 2 

q?- 
4ïïe2 f^/m and is the effective number of electrons 

(35) 
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ay differ from N , the actual number of electrons q, because of 
transfer of oscillator strength, b and b are equal to 1/3 for 

e mner electrons and for the valince electrons in amorphic 
dielectrics and matter forming cubic lattices but b = 0 for the 
conduction electrons. Further we replace Eq. (283 8y the approxima. 

I 
<u2+a2 

b A 

uj2+a2 

C36) 

The summation is made over all p oscillators. C is given by Eqs. 
(22) and (23). But according to Eq. (22) we expSct a = a and we 
will approximate C by qa 

q 

M , Cbq-bÄ3AA [1 + I —2—L £ ] 

C = 
q 

Ui"Wn2 
—— 

r r C1-V\ 
U + I -]2 

to2 -w 2 l q2 

(37) 

The Energy Loss in Aluminum 

For theoretical calculations of the stopping power in aluminum 
we have used Eqs. (29) - (37). J 

We have used the tabulation provided by Herman and Skilman [27] 
to derive the field potentials and then used these to calculate the 
rotational frequencies" w . To improve the accuracy we have used 

the measured ionization poïentials, E . to calculate the field 
potentials from the tables rather thaS the theoretical ones cal¬ 
culated by Herman and Skillman. In Table I we list the measured 
ionization potential E . from reference [28], the calculated rota¬ 
tional frequencies ho. ^in units of eV, and the plasma related 
frequencies h m (eV)2 where A. is given by Eq. (27). We show 
also the frequencies hu> in eV is given by Eq, (21) and . ., :-——- “wno "“oxo w - is given oy ho, 
m the last column we snow the value of*2(l-c )where C is 

q q 

Km 
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Table I 

hw hzA hdJ 
q2 

i - c 

1S2 
2S2 
2p6 

ss2?1 

1559.6 

117.7 
73.1 

C4.08) 

1895 

210 
131 

166.153 

166.153 

498.46 

249.23 

1895 -3,41 

210.726 -3.29 

132.336 -1.07 

15.61 +6.41 

iol 

10-2 
10 4 
10‘? 

calculated according to Eq. (37) The last row of Table I is cal¬ 

culated assuming that there are 3 conduction electrons in aluminum 

We may then use Table I and Eq. (30) to calculate the average 
ionization potential, and we get I2 = 130.65. 

Table II 

Proton 

Energy 

in MeV 

1 

2 
3 

4 
5 

6 
8 

10 
12 
15 

20 
30 

100 
300 

1000 
3000 

10000 

A] • 100 A2 • 100 A3 • 100 A4 

23.4 

20.0 
16.6 

14.0 

12.4 

11.2 
9.14 

7.74 
6.74 

(5.42) 
(4.09) 

(2.77) 

(0.92) 

(0.40) 

10.17) 

(0.17) 

0.17 

0.00 
0.01 
0.01 
0.01 
0.02 
0.02 
0.03 
0.03 

0.04 

0.05 

0.08 

0.13 

0.71 
3.77 

18.80 

59.31 
177.5 

4.67 

4.99 
5.18 

5.32 
5.43 

5.51 

5.65 

5.75 
5.84 

5.94 
6.07 

6.27 

6.82 

7.30 

7.79 

8.22 
8.73 

a. See reference [29] 

b. See reference [30] ,iAverage,,I 
respectively 

100 
Ini1 

theory 

Ini' 

exp 

exp 

13.74 

13.64 
13.59 

13.55 

13.49 

13.44 

13.34 
13.23 

13.13 

12.98 

12.72 

12.20 
8.59 

+ 1.39 

- 8.70 

-11.43 

-11.59 

5.290 

5.259 
5.226 

5.201 
5.185 

5.174 

5.154 

5.140 

5.130 

5.116 
5.102 

5.086 

5.042 

5.001 

5.053 

5.434 
6.621 

5.202' 

5.186' 

5.172* 

5.I6I; 
5.147' 

5.140' 
5.135' 

(5. lOOj^ 
(5.081)° 

(4.997)C 

at 35-50 MeV and 50-75 MeV 

c. See reference [31] "Average" 1' at 338 MeV 
exp 

In Table II we list the values Aj, A2j A3, and'A4 as functions of 

the proton energy in MeV. A! is from the calculations of Bonderup 
[4] .. for Iav = 158. We extrapolated his calculations beyond 12 
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MeV by using the equation 

constant 

th 

ln r¿h ln lo + Ai + A' 

where v is the velocity of the incident particle. To calculate A- 
from Eq. (31) we determine first a2 by successive approximations 
inserting the values from Table I in Eq. (36). A3 is calculated 
by inserting the values from Table I in Eq. (32). A4 is deter¬ 
mined from Eqs. (33) and (34). In the last two columns we list 
the value of In and ln I* where exp 

The corresponding experimental value ln I * as determined by 
different authors, is listed in the last column. The last three 
experimental values in Table II are in parentheses because they 
are derived from the experiments in accordance with the old theory 
and should for exact comparison be reevaluated in light of the 
present theory. However, because the range is mainly determined 
by the high energy portion of the incident particles track, the 
comparison is still fairly good. It is interesting to note 
that the experimental results by Mather and Segrè [50] are now in 
good agreement with the theory and with the many other experi* 
ments. The experimental results by Vasilevskii et al. [32] appear 
also to be in general agreement with the above theory. It is of 
interest to note that the shell corrections which are based on the 
work of Lindhard and Winther [20] and Bonderup [4], at least for 
aluminum, agree well with the present theory and experimental 
results. 
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