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ABSTRACT 

In c+iis paper we formulate and obtain optimal gambling strategies for 
certain gambling models.     We do this by setting these models within 
the framework of dynamic programming  (also referred to as Markovian 
decision processes)  and then utilize results in this field. 

In Section 2 we present some dynamic programming results.     In partic- 
ular we review and expand upon two of the main results in dynamic 
programming.     Loosely put these results are: 

(i)       In problems in which one  is interested in maximizing 
nonnegative rewards,  a policy is optimal if and only if 
its expected return satisfies the optimality equation,  and 

(ii)     in problems in which one is interested in minimizing 
nonnegative costs,   the policy determined by the optimality 
equation is optimal. 

In Section 3 we show how the results of Section 2 may be applied in 
some simple gambling models.     In particular we consider  the situation 
where an individual may bet any integral amount not greater than his 
fortune and he will win this amount with probability    p    or lose it 
with probability    1 - p  .     It  is shown that if    p >_ 1/2    then the 
timid strategy  (always bet 1 dollar)  both maximizes the probability 
of ever reaching any preassigned fortune, and also stochastically 
maximizes  the time until  the bettor becomes broke.    Also,   if    p  <  1/2 
then the  timid strategy while not stochastically maximizing  the 
playing  time does maximize the expected playing time. 

In Section 4 we consider  the same model but with the additional struc- 
ture that the bettor need not gamble but may Instead elect to work 
for some period of time.     His goal  is to minimize the expected  time 
until his fortune reaches some preassigned goal.    We show that if 
p < 1/2    then (i) always working is optimal, and  (11) among those 
strategies that only allow working when the bettor is broke it is the 
bold strategy that is optimal. 

In Section 5 we return to the general dynamic programming model and 
consider  the problem of determining "good" subclasses of policies. 
Two counterexamples are presented. 
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DYNAMIC PROGRAMMING AND GAMBLING MODELS 

by 

Sheldon M. Ross 

1.  INTRODUCTION AND SUMMARY 

In this paper we formulate and obtain optimal gambling strategies for certain 

gambling models. We do this by setting these models within the framework of 

dynauiic programming 'also referred to as Markovlan decision processes) and then 

utilize results in this field. 

In Section 2 we present some dynamic programming results. In particular we 

review and expand upon two of the main results in dynamic programming.  Loosely 

put these results are: 

(I) In problems in which one is interested in maximizing nonnegative 

rewards, a policy is optimal if and only if its expected return satisfies 
■ 

the optlmallty equation, and 

(II) in problems in which one is Interested in minimizing nonnegative costs, 

the policy determined by the optlmallty equation is optimal. 
. 

In Section 3 we show how the results of  Section 2 may be applied In' some 

simple gambling modelj.    In particular we consider the situation where an 

individual may bet any integral amount not greater than his fortune and he will 

win this amount with probability    p    or lose it with probability    1 - p   .     It is 

shownthat if    p  >^ 1/2    then the timid strategy  (always bet 1 dollar) both maximizes 

the probability of ever reaching any preasslgned fortune, and also stochastically 

maximizes  the time until the bettor becomes broke.    Also,  if    p  < 1/2    then the 

timid strategy while not stochastically maximizing the playing time does maximize 

the expected playing time. 
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In Section A we consider the same model but with the additional structure 

that the bettor need not gamble but may Instead elect to work for some period of 

time.  His goal Is to minimize the expected time until his fortune reaches some 

preasslgned goal.  We show that If p < 1/2 then (1) always working Is optimal, 

and (11) among those strategies that only allow working when the bettor Is broke 

It Is the bold strategy that Is optimal. 

In Section 5 we return to the general dynamic progranming model and consider 

the problem of determining "good" subclasses of policies. Two counterexamples 

are presented. 
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2.  SOME DYNAMIC PROGRAMMING PRELIMINARIES 

Consider a process that Is observed at discrete time points to be in one 

of the possible states 0,1(2, ,.. . After observing the state, one of a finite 

number of possible actions must be chosen.  If the process is in state 1 and 

action a    is chosen then (i) we obtain a reward R(i,a) ; and (11) the next state 

of the process is chosen according to the Markov transition probabilities 

(P1:j(a),i,j ^.0} . 

If R(i,a) >^ 0 for all i , a , then we say that we are in the positive case. 

A policy is any rule for choosing actions, and for each policy f we define 

Vf(i)  to be the total expected reward earned if the initial state is 1 and 

policy f is employed.  Also, let V(l) = sup Vf(i) . The following equation, 
f  t 

known as the optimallty equation, is easily established In the positive case 

(see, for example, page 121 of [11]). 

(1) V(i) - max R(i,a) + £ P  (a)V(j) . 

The major result about the positive case that we shall use is the following. 

Proposition 1: 

Assume R(i,a) >. 0 . The policy f is optimal, i.e., Vf(i) » V(l) V  1 , 

if and only if its return function Vf(i)  satisfies the optimallty equation. 

This proposition was originally proven by Blackwell [1] in a more general 

setting than the above.  A simple proof is as follows. 

Proof of Proposition 1; 

If  f satisfies the optimallty equation then it follows that using f  is 

better (in the expected reward sense) than using any other policy for exactly one 

"•——  -— ■     ■ »tu,       , ! ^tmmmmmumämmmu iali'.atilimtiA* 'uAMAWi^Ai ilMrr'M-,^ W.it tt feti>li«i(rt JWrt... 
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stage and then switching to f . But repeating this argument after the first 

stage shows that f is better than using any other policy for exactly 2 stages 

and then switching to f .  By induction, it follows that f is better than using 

any policy for n stages and then switching to f .  But as R(i,a) ^0 it 

follows that the expected return obtained from time n + 1 onward is nonnegative. 

Hence, the expected return from f is greater than the n-stage return from any 

other policy. The result now follows by letting n -> «> . 

Q.E.D. 

Remark; 

The above proof shows that it is not necessary to require that R(i,a) >_ 0 . 

A weaker sufficient condition would be that V,(i) ^ 0 .  In fact an even weaker 

sufficient condition would be that 

lim inf E [V,(X ) I X - 1] > 0 V i,Vg 
g z n ' o     — 

n 

when X  is the state of the process at time n 

If R(i,a) <^ 0 for all i , a , then we say that we are in the negative 

case. In this case it is more natural to define C(l,a) ■ -R(i,a) , so as to 

minimize nonnegative costs as opposed to maximizing nonpositive rewards. Letting 

V^ denote the infimum of the total expected cost incurred under a policy, it is 

again easy to establish the optimality equation which now takes the following form. 

(2) Vi) - min C(i,a) + £ Pli(a)Vik(j)  . 
ij 

The following proposition was originally proven by Strauch [12]. 

■         IHM ii i ■^»■^-...o...-...^...,, nir— ■  I ildii 
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Proposition 2; 

Assume C(l,a) _> 0 , and let f be a policy which, when the process is in 

state 1 , selects an action minimizing the right-hand side of the optimallty 

equation (2). Then f  is optimal. 

Proof: 

Proposition 2 is proven by noting that if f is determined by the optimallty 

equation (2) then we can get within e/2 of V.  if we use f for exactly one 

stage and then switch to a policy within e/2 of the optimal. Repeating this 

argument n times shows that we can get within -r + —r- + ... + — of V.  If we 
^   *>£ «n      " fc  2- T 

,n use f for n stages and then switch to a policy within e/2  of the optimal. 

However, as costs are noiinegatlve It thus follows that the n-stage cost under f 

is smaller than V + e and, as e is arbitrary, the result follows by letting 

n -► » . 

Q.E.D. 

Remark: 
  

The above proof shows  that  it is not necessary  to require that    C(l,a)   >^ 0  . 

It is sufficient  for    V#(i)   >^ 0  ;  and a weaker sufficient condition would be for 

lim inf EjVjX )   I  X    -  1]   > 0   V    1  . f    *    n    '    o        J — n 

Unfortunately, Proposition 1 is not true in the negative case; nor is 

Proposition 2 in the positive.  A simple counterexample to Proposition 2 in the 

positive case which is due to Strauch [12] is the following: The states are given 

by the positive integers, and when in state  1 we have the choice of either 

accepting a terminal reward 1 - 1/1 or else receiving no reward and going to state 

1 + 1 . Clearly an optimal policy does not exist and hence Proposition 2 could 

not be valid.  From the remark following the proof of Proposition 2 it does, however. 

g^atjMMMI^.|iilii.r.Y'gr-^..^ ^...>..:.,..„....... ^^gmmn^^ iMMaiiiiiiMiMiiiiii^^  —;- - .-^.■-.■-..,■.. 
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follow in the positive case 

then    f    is optimal if 

that   if    f    is chosen by  the optimality equation (1) 

Ef[V(Xn)   |  XQ » i] -»- 0    as    n -v » 

The following counterexample shows that Proposition 1 is not necessarily 

true in the negative case. 

Counterexample; 

There are two states and two actions. 

C(l,l) = 0   C(l,2)  = 1   C(2,i) - 0   i = 1 , 2 

P1)1(l) - 1   Plt2
(2) " 1   P2,2(i) ' 1   i ' 1 . 2 

Let f be the policy that always chooyes action 2. Then Vf(l) »1 , Vf(2) »0 

and 

Vf(l) < C(l.l) + Vf(l) 

Vf(2) < C(2,l) + Vf(2) . 

Hence Vf satisfies the optimality equation but is obviously not optimal. 

One sufficient condition under which Proposition 1 will be valid in the 

negative case is that the number of stages in our problem be bounded. That is, 

suppose that there exists a stopped state having the property that once the 

process enters that state it can never leave it and all costs incurred while in 

that state are 0. Then it follows from the proof of Proposition 1 that if the 

time until the process first enters the stopped state is, with probability 1, 

bounded, for each initial state and for each policy, then the proposition is valid. 

——. mmtm ■^.„^■i,...;...■-;■.>.,■■■■.. .  nJaM 
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A second sufficient condition requires the notion of a stationary policy. 

We say that a policy is stationary if the action it chooses at any time is a 

deterministic function of the state of the process at that time. If f is a 

stationary policy, we define f(i) to be the action f chooses when the process 

is in state i . We are now ready for 

Proposition 3: 

Assume that C(i,a) ^. 0 . If the state and action spaces are both finite, 

and if f is a stationary policy such that 

. 
(3) V,.(i) < C(i,a) + I  Pij(a)Vf(j) V a ^ f(i) , V i 

where Vf(i) is the total expected cost incurred under f , then f is optimal. 

Proof: 

We introduce a discount factor o , 0 < a < 1 , and define Vf(i) to be the 

total expected discounted cost incurred under policy f .  Since C(i,a) ^0 , 

it follows from Lebesque's monotone convergence theorem that lim Vf(i) = Vf(i) . 
o+l l r 

Hence, since the state and action spaces are both finite it follows from O)  that 

V^(i) < C(i,a) + a I  Pij(a)V*(j) V a ^ f(i) , y i 

for all a sufficiently near 1. But, as is well known, if the expected discounted 

cost from a policy satisfies the discounted optimality equation then that policy 

is discount optimal. Hence f is a-discount optimal for all a    near 1. Therefore, 

for any policy g , Vf(i) ^V (i) for a near 1 and the result follows by 

letting a ■* 1 . 

Q.E.D. 

■-■■■ -■-'-"—-■■-'■■ „, 
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A Technical Remark 

In the above formulation we have assumed a countable state space and a 

finite action space.    In the general setting of arbitrary state and action spaces 

these results are more difficult to prove.    The main difficulty lies in 

establishing the optimallty equation 

V(x)  - sup |R(x,a) +/V(y)dP(y   |  x,a)| 

The reason for this difficulty is that it is not easy, In general, to prove that 

V(x)  Is a measurable function.  However, assuming that R(x,a)  is a measurable 

function and that the probability transition density P(* | x,a)  is a regular 

conditional probability measure (this implies that g(x) = f  h(y)dP(y | x,a)  is 

a measurable function whenever h(x) is), then we can easily establish the 

measurablllty of V(x)  in the positive case as long as the action space Is 

countable. This is shown by defining 

V^x) - sup R(x,a) 
a 

Vttfl(x) - sup |R(x,a) +JVn(y)dP(y | x,a)l . 
3 

As the supremum of a countable number of measurable functions is Itself measurable, 

it follows by induction that    V (x)     is a measurable function.    Also, as    V (x) 
n n 

is the optimal expected return function for an n-stage problem it follows. In 

the positive case, that 11m V (x) =■ V(x) .  For any policy f , since the n-stage 
n '- 

return under f is less than V  , we have that Vr(x) < 11m V (x) .  On the other 
n z n 

n 

hand, since rewards are nonnegative we may, for any e , define a policy f 
n 

such that V, (x) > V (x) - e . Hence, V(x) < lim V (x) < lim V£ (x) + e < V(x) + el 
r— n                    —    n—     r       — j 
n                             n             n J 

The measurablllty of V now follows from the fact that the limit of a countable 

jjltfyjjjjigtfltfjjiljjllijlggi^^ '""i MlililililiiiliiiMn^Mi i~i.n"iiii  mil  km'  amum 
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number of measurable functions Is Itself measurable. 

In the negative case It Is not necessarily tvue that    11m V  (x)    Is equal to 
n 

V(x)   .    However,  If In addition to assuming that the action space Is countable 

we also assume that the one-stage costs are bounded then we can again easily 

establish the measurabllity of    V(x)   .    This is done by introducing a discount 

factor    a , 0 < a < 1 .    Define    V (x)    to be the optimal discounted cost function. 

By the same argument as given in the positive case it follows that    V (x)    is 

measurable.     (Since costs are bounded the discount factor assures us that the 

optimal n-stage discounted cost function will converge  to the optimal infinite 

stage discounted cost function.)    The measurabllity of    V(x)    now follows since, 

by Lebesque's monotone convergence theorem,    V(x)  ■ 11m V    . (x)   . 
n-i n-Ko   
n 

As long as the action space is countable, and V(x) is measurable then 

Propositions 1 and 2 go through exactly as before. For the analysis in the most 

general cases the interested reader should consult Blackwell [1], [2], and Strauch 

[12]. 

t 
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3.    THE RED-BLACK GAMBLING MODEL i 
! 

The  red-black gambling model  is concerned with Che following situation.    An 

individual enters a gambling casino that allows any bet of  the following form: 
i 

If you have a fortune of i units then you are allowed to bet any positive 

integral amount less than or equal to i . Furthermore if you bet j then 

you either win J with probability p or lose j with probability q = 1 - p . 

The first problem we shall consider is that of maximizing the probability 

that an individual will attain a fortune of N before going broke.  This problem 

fits the framework of positive dynamic programming since if we Sjuppose that a 

terminal reward of 1  Is earned if we ever reach state N and all other rewards 

are zero, then the expected total reward equals the probability of ever reaching 

state N .  In order to determine an optimal policy we first note that if our 

present fortune is 1 then it would never pay to bet more th^n N - 1 . Hence, ' 

from proposition 1 it follows that a policy f will be optimal if and only if 

Its return satisfies 
i    ' ! ' ' 

I 
I 

(A) V (1) > pV (1 + k) + qV (1 - k) , 0 < 1 < N , 
k ^ mln(l, N - 1) 

Define the timid strategy to be that strategy which always bets    1 .     Under 

this strategy the game becomes  the classic gamblers'   ruin model and    U(i)   ,  the 

probability of reaching    N    before going brdke when you start with    1  , 0 <  1 < N  , 

Is given by 

1 " M^l        p ^ 1/2 
i - (q/pr 

(5) U(l) 

1/N p - 1/2 

Theorem 1: 

If    p >^ 1/2    the  timid strategy maximizes the probability of ever attaining 

ÜHMim '~~"—^~-'   .. ^riaaiMM^. i   iiiffliMiiiiMlii^^M^itilii  i   ' .-^.-^.^^ 
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a fortune of    N . 

Proof; 

If p - 1/2 then U(i) - 1/N trivially satisfies (4).  When p > 1/2 

we must show that 

, i - WP?  > 
1 - (q/p) 

N - 
i - (q/p) 

i+k 

1 - (q/p) 
N + q i - (q/p) 

i-k 

L 1 - (q/p) 
N 

or equivalently that 

! 

(q/p)11 p(q/p)i+k + q(q/p) 
i-k 

or 

Iip[(q/P)k+ (p/q)11"1! 

Note that the above holds for k - 1 and the result will be proven if we can 

show that f (x) a (^ j + (^)    is an increasing function of x for x >. 1 when 

p > 1/2 .  This however follows immediately upon differentiation. Q.E.D. 

Theorem 1 seems to be one of those results that are well-known but never 

seem to have been specifically proven in the literature. Of course, timid play 

was known to be optimal among the class of strategies that always bet a fixed 

amount at each stage. 

Define the bold strategy to be the strategy which, if our present fortune 

is i 

bets   i   if i 1 N/2 

bets N - i if 1 > N/2 

In [6] Dubins and Savage have shown that the bold strategy maximizes the 

probability of ever attaining a fortune of N when p <_ 1/2 .  Their approach 

was similar in that they proved this result by showing that the return from the 

J- ■■ - - mtummammm 
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bold strategy satisfies the optimality equation (4) whenever p _< 1/2 . 

However, as opposed to the timid strategy case it is not possible to easily 

obtain an exact expression for the return from the bold strategy and Dubins 

and Savage had to resort  to a quite Ingenious proof to establish (4). 

Thus when p <_ 1/2 bold play is optimal while if p >_ 1/2 then it is 

timid play that is optimal.  (When p « 1/2 it follows from Martingale Theory 

that any strategy that never bets to strictly exceed N is optimal.) Also 

by regarding your losses as the winnings of your opponent it follows that if 

p ^ 1/2 then your worst possible strategy is the timid strategy and if p >_ 1/2 

then your worst possible strategy is the bold one (assuming, of course, that 

you would never consider betting more than N - i when your present fortune 

Is 1). 

Suppose now that our objective is not to reach some preassigned goal but 

rather is to maximize our playing time. We now show that if p ^ 1/2 then 

timid play stochastically maximizes our playing time. That is, for each n , 

the probability that we will be able to play n or more times before going 

broke is maximized by the timid strategy. 

Theorem 2; 

If    p >^ 1/2    then timid play stochastically maximizes our playing time. 

Proof; 

By assuming that a reward of 1 is attained if we are able to play at least 

n times, we see that this problem also fits the framework of the positive case. 

Hence we must show that starting with 1 , it is better to play timidly than it 

is to make an initial bet of k. , k _< i , and then play timidly.  However this 

follows since, by Theorem 1, the timid strategy maximizes the probability that 

we will get to i + k before i - k and it takes at least  one unit of time. 

More formally, letting U (1) denote the probability that we will 

MBttiili 
- .i I   mi» .MUM—IIMI^ 
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be able co play at least n times given that our initial fortune Is i and 

we play timidly, we obtain  by conditioning on the time T that our fortune 

reaches either 1 - k or 1 + k and the value X that is reached we obtain 

Un(i) - EIU _(X)] 
n       n-i 

> F.[U .(X)] 
—   n~i. 

- U    ,(i + k)P{X - i + k} + U    ,(i - k)P{X - i - k} 
n-l n~i 

>  pU    . (i + k) + q\3    , (i - k) 
—     n-i n-x 

The first inequality follows from the fact that U (1) is a decreasing function 

of n and T ^ 1 , while the second inequality follows since P{X - i + k} ^ p 

by Theorem 1 and U . (i + k) > U . (i - k) . Q.E.D. 
n-l      — n-l 

In [9] Molenaar and Van Der Velde considered a gambling casino that 

accepted any (k, c) bet when k and c are integers. A (k, c) bet would 

c k 
win k with probability -r-r— and would lose c with probability T—T— . 

Note that these are all fair bets in the sense that the expected gain is zero. 

They proved, by a concavity argument, that the timid strategy (always bet (1,1)) 

stochastically maximizes the bettors playing time before going broke. This result, 

however, also easily follows by our approach since playing timidly is better than 

making any initial (k, c) bet and then following this initial bet with timid 

play. This is true since under timid play we would also reach 1 + k before 

1 - c with probability r—7— and the amount of time until reaching either 

value is at least  one.  (Here, of course, 1 is the bettors initial fortune.) 

■ 

It turns out that if p < 1/2 then the timid strategy does not stochastically 

maximize our playing time. For suppose p - .1 and we start with an initial 

fortune of 2 . The probability that we will be able to play at least 5 games 

if we play timidly is  1 - (.9)2 - 2(.9)3(.l) - .0442 . On the other hand if 

, . 

^■'1i,^i.nt1ii,..i.li,i,i'ts^.i,,l-l,n^.,tll1l<.,,lh..,.ii,llr'vl..-,-l ■ , -.„«nmmtmM..,,, -MVM^^UUI^^^,,,,^^^, ,, „,,      .  - .. ~M 



n 1W „.„„»w^,,.,,. „ ■,.»,,,«. .ll'i|.iwniiiPi-.l.iili.,Milin|inmpiii iiiiliiii.il «fm.mnvwmm, ■H»-   i.iiiiiiiii|iii<i.iaimn!     im 

14 

we bet 2 initially and then play timidly then the probability of playing at 

least 5 games is .1 .  It it* however true that timid play maximizes our 

expected playing time. 

Theorem 3; 

If p < 1/2 then timid play maximizes our expected playing time. 

Proof: 

Let U(i) denote the expected number of bets made before we go broke 

given that we start with i and always bet 1 . To calculate U(i) , let 

th 
X.  denote your winnings on the j bet and let T denote the number of 

T 
bets you make before going broke. Then, since l   X = - i we have by Wald's 

1-1 3 

equation that 

- i - EX ET 

or 

U(i) - ET 
1 - 2p 

Since maximizing our expected playing time falls under the positive case (we 

receive a reward of 1 each time that we are able to continue playing) the 

result follows since 

U(i) >. 1 + pU(i + k) + qU(i - k) , 1 £ k <. i 

follows by direct verification. Q.E.D. 

Theorem 3 remains true in more general gambling models. Consider a gambling 

casino that allows you to make any Het such that, when your present fortune is 

i , the outcome of the bet is an integer valued  random variable X satisfying 

(i) X >_ - i with probability 1 

(ii)  |X| ^ 1 with probability 1 

(iii)  EX < a - 1 

u^A^ 
  _   

.—... .^-n^ ^^. ^,-„...■....„ . „...-.A 
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'■' 

where a Is some fixed positive number less than 1 . It follows now in the 

same manner as in Theorem 3 that the timid strategy which always bets  * to 

either win or lose 1 with respective probabilities a/2 and 1 - a/2 maxi- 

mizes your expected playing time. This Is true since U(i) - . _   is easily 

shown to satisfy 

U(i) 11 + EU(i + X) 

whenever X satisfies (1), (11), and (ill). 

The above also shows that playing in an unfair game with a minimum bet 

will eventually break you and in a finite expected time (compare with Breiman 

[4] p. 101). 

»ta**«*««* marmii i m 11' ■mmmmMmmma^tiMlimiilliimm '■■•'"■■■■ ■ .■-..-^-...J..».-:.,,.,.,.     | l      ,    , 
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4. A GAMBLING-WORK MODEL 

In this section we consider the following variation of the red-black 

gambling model. We again suppose that a bettor whose fortune Is 1 may bet 

any amount j » j .1 1 and win or lose j with respective probabilities p and 

q = 1 - p . However, we now suppose that the bettor need not place any bet at all 

but rather may elect to work. If he decides to work then he works for c units 

of time and earns 1 dollar. Assuming that each gamble takes 1 unit of time the 

problem Is to determine a strategy that minimizes the expected time until our 

worker-gambler attains a fortune of N dollars.  (The worker-gambler must work 

when he Is broke.) 

Theorem 4; 

If p <_ 1/2 then the strategy of always working minimizes the expected time 

until a fortune of N Is attained. 

Proof; 

The expected time to reach N If we start from 1 and always work Is 

given by U(i) = (N - l)c .  Since the above Is clearly a problem of minimizing 

nonnegative costs we shall apply Proposition 3.  Hence, we need show that 

U(i) < 1 + EU(1 + X) 

or equivalently 

(N - i)c < 1 + cE(N - 1 - X) 

or 

0 < 1 - cEX 

which follows since EX , the expected gain of a bet, Is negative. In fact, since 

jumugg—^J...^^....      | i  Il)iitlllllill inm 
..■■J....J. —-.-i ^  ■^.-■. .'. ^ -^ ■■ir.-itftiul 
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EX £ 2p - 1 , the above shows that always working Is optimal for all values of 

c + 1 
p such that p < 

2c 

Q.E.D. 

Thus for p <_ 1/2 the optimal strategy Is always to work. However, let us 

now consider this same problem but under the assumption that the gambler will only 

work when broke and thus will gamble at all other times. Under this condition we 

shall show that It Is the bold strategy that Is optimal. 

Let us suppose that each time the gambler reaches a fortune of N he gives 

that amount away and then starts to play again. That is after reaching N he 

then works for c units of time and then starts gambling again with a fortune of 

1 dollar. Let us say that a cycle Is completed each time the gambler's fortune 

reaches 0 or N . Letting X. denote the time of the 1th cycle and letting T 

denote the number of cycles that it takes our gambler to reach a fortune of N 

we have that the expected time until the gambler reaches N Is given by 

T 
. Now If the gambler Is initially broke and he employs a stationary E 

1-1    X 

strategy then the random variables   X1,X-,   ...    are independent and identically 

distributed.    Hence, by Weld's equation the expected time until the gambler first 

reaches    N    is given by    EXET .    However,    T    is a geometric random variable with 

mean    1/a   where    a    is the probability that starting with 1 the gambler will 

reach   N   before 0.    Hence, by the Dubins-Savage result it follows, since    p <_ 1/2, 

that   ET    is minimized by the bold strategy.    Therefore, as we know by Proposition 2 

that an optimal stationary strategy exists, we can show that the bold strategy is 

optimal if we can show that it minimizes    EX .    That is we need to show In the 

original red-black model that the bold strategy minimizes the expected time until 

the gambler reaches a fortune of either 0 or    N .    In fact, we shall establish 

this by proving  the stronger result that the bold strategy minimizes    E[min  (X,n)] 

for all    n .    That is,  if the bettor is allowed to play at most    n    stages and if 

-       mmm 



" -MW»»-!-"«™—-»l^»-—"——T~—T-™*™ 

18 

he stops before this If he ever reaches 0 or N then the strategy minimizing 

his playing time, is the bold one. The reason for considering this modified 

problem is that it is a problem with a bounded number of stages and thus we would 

only need show that the expected playing time under the bold strategy satisfies 

the optimality equation. 

Following Dubins and Savage (Chapter 5 cf [6]) we first generalize the model 

i 
as follows: We suppose that the initial fortune may be any number in (0,1) 

■ 

and that the bettor stops playing either when his fortune reaches 0 or 1 or when 

he has already played n times. We shall refer to this as the n-stage red-black 

model. 

Define the bold strategy to be the strategy which, if the bettors present 

fortune is r and he is allowed to bet 

beta   r   if r <_ 1/2 

bets 1 - r if r > 1/2 . 

Let U (r) denote the bettors expected playing time in the n-stage red-black 

model if the initial fortune is r and the bold strategy is employed.  By 

conditioning upon the outcome of the first play we obtain 

Un(r) - { 

(7) 

fl + pU 1(2r)   0 < r < 1/2 
n-i       —  — 

1 + qU _1(2r - 1)   1/2 < r < 1 

Un(l) - Un(0) = 0 , Uo(r) - 0 , 0 < r < 1 . 

Theorem 5; 

In the n-stage red-black model, among those strategies which, when the bettor's 

fortune is r , never bet an amount greater than 1 - r , the bold strategy minimizes 

the bettor's expected playing time. 

'■---"-"■"-lilMXT i    ._„, „      
   ^j ,..,„_,„,,.. 
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(8) U (r) < 1 + pU ^r + s) + qU^ .(r - s) 

for all O^s^r.s^l-r. A number of the form -s- where i and k 

k 2k 

are nonnegative integers such that 1 £ 2  will be said to be of order at most k 

For example 0 and 1 are of order at most 0; 0, 1/2, 1 are of order at most 1, etc. 

We first show, by induction, that (8) holds for all n whenever r and s are 

of order at most k . 

Since U (0) - U (1) - 0 it follows that (8) holds for all n whenever 
n      n 

r and s are both of order 0 . So assume that (8) holds for all r and s of 

order at most k and suppose that r and s are of order at most k + 1 . We 

first note that if x is of order at most k + 1 then 

2x is of order at most k when x ^ 1/2 

2x - 1 is of order at most k when x > 1/2 . 

There are four cases we need consider. 

Case 1; r + s <_ 1/2 , s <^ r 

In this case we have by (7) that 

i 

Un(r) - pU^Cr + s) - qU^r - s) - 1 

- 1 + pUn_1(2r) - p - p
2Un_2(2r + 2s) - q - qpUn_2(2r - 2s) - 1 

- Ptun_l
(2r) " pün-2(2r + 2s) " qUn-2(2i: " 28)] " ! • 

i 

f. 

But 2r and 2s are both of order at most k and so the above is nonpositive 

by the induction hypothesis. 
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Case 2:    r - s > 1/2 

The proof Is just as In Case 1, except that the second functional equation 

of (7) id  used Instead of the first. 

Case 3; r < 1/2 < r + s , s < r 

From (7) we have that 

(9) 

U (r) - pU    ,(r + s) - qU    ,(r - s)  - 1 n n—J. n~i 

i + Pu
n_i(2r) ' p " pqUn-2(2r + 2s - i) - q - qpV2(2r - 2s) - 1 

Now, since r > s , It follows that 2r > r + s > 1/2 and thus 

s 
(10) U A2T)  - 1 + qU ,(4r - 1) . n—j. n-z 

Also, since 2r - 1/2 < 1/2 we also have that 

(11) Un_1(2r - 1/2) - 1 + pUn_2(4r - 1) 

Thus from (10) and (11) we obtain that 

pUn_1(2r) - p + q[Un_1(2r - 1/2) - 1] 

Inserting this Into (9) yields that (9) is equal to 

(12) 

p + qU 1(2r - 1/2) - q - pqü ,(2r + 2s - 1) - qpU 0(2r - 2s) - 1 n-x n—^ n~i 

' q[Vl(2r " 1/2) " pUn-2(2r + 2s " i) " Pun-2
(2,: ' 2s) - 1] + p - 1 

Now, If s >^ 1/4 then, since p >_ q , we have that (12) is less than or equal to 

q[U  (2r - 1/2) - pU ,(2r + 2s - 1) - qU ,(2r - 2s) - 1] + p - 1 n~"x n-^ n—z 

which is nonpositive by the induction hypothesis since both    2r - 1/2    and 

2s - 1/2    are both of order at most    k .    On the other hand,  if    s < 1/4    then since 

iiTmii',TJ°'° IIIMMf ■nil mn ■■'-'''-'■' 



I' ' ■ '   ^•^^^^•^^•^ 
— 

21 

p >_ q we have that (12) Is less than or equal to 

q[Un_1(2r - 1/2) - pUn_2(2r - 2s) - qün_2(2r + 2s - 1) - 1] + p - 1 

which Is nonpositive by the induction hypothesis since 2r - 1/2 and 1/2 - 28 are 

both of order at most k . 

Case 4; r - s ^ 1/2 £ r 

The proof for this case is similar to that of the preceding ones and the 

induction is completed. 

Thus, when p ^ 1/2 , we have proven (8) whenever r and s are binary 

rationals.  (That Is, numbers of the form i/2 .) By considering a second player 

whose initial fortune is 1 - r , and by viewing the winnings of the first 

player as the losses of the second one and vice-versa, It follows since both 

players play the same amount of time that this result Is also true when p <_ 1/2 . 

It thus remains to establish (8) when r and s are not binaries. We 

will do this by showing that U (r) is continuous at r whenever r is not a 

binary rational. Then by letting {r.,j >_ 1} and {s.,j >_ 1} be sequences of 

binaries such that r. •*• r and s. -*- s it follows by continuity that (8) holds 

for all 0<^s£r,s<^l-r. The following lemma thus completes the proof. 

Lemma 6: 

U (r) is continuous at r whenever r is not a binary rational. 

Proof: 

Let    B   denote the set of binary rationals, and define 

s    « supremum lim sup  |u (r ) - 
n^j' {r  ,r},n       j 

rrr" 
rlB 

supremum lim sup  |u (r.) 
(r. ,r},n       j 

r^B 

Un(r) 

"„(Dl   • 

run MM mmm**M**tmtmm "—i'ii ■ ■ in« in ■iiiiiTiiii.iai M ii 



[«IIJItllMlilMIUIIi^,,!,,,»^^^  _     

22 

That is,    s"    and    s      measure the worst possible discontinuity of any of the 

functions    U (r)    when    r    is not binary.    Note that since there is a positive 

probability of at least    min (p,l - p)    that play will end at each stage when the 

bold strategy is employed,  it follows that    U(i)  <_ m^'n/p x - p)   •    Hence    s      and 

8+    are both finite.    Note also that    U (r)    is continuous at all    r ^ B    if n 

and only if    s" - s    ■ 0 .    We show this by contradiction.    Assume, for instance, 

that   s' > 0 .    Let    n ,  {r.}  , r , be such that 

r. -»■ r"   , r ^ B , lim sup  |u (r ) - U (r) |   > s    max  (p,q)   . 
j J "    J " 

There are two cases. 

Case 1: r < 1/2 

In this case 

Un(rJ) - 1 + pUn.1<2rj) 

Un(r) - 1 + pUn.1(2r) 

Therefore, 

lim sup |U 1(2r,) - U .(2r)| - lim sup |u (r ) - U (r)|/p 
.   ' n-1  j    n-1 .   ' n J    n 

> s p/p 

which is a contradiction since 2r ■*■  2r  and 2r ^ B . 

Case 2; r > 1/2 

In this case for all j  sufficiently large (so that r > 1/2) 

W - 1 + ^n-l^'j " l) 

U (r) - 1 + qU 1(2r - 1) n n—i 

----- ■ ■■ MHÜ 
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Implying that 

llm sue   III    ,(2r. 
j n-1      J 

- 1) - ün-l(2r 1)|  - lim sup   |Un(r  )  - Un(r)|/q 

>   8 " 1 

which is a contradiction since    2r. - 1 ->■ (2r - 1)~    and    2r - 1 ^ B . 

i 
V Q.E.D. 

Hence    s      must be 0.    A similar argument holds for    s      and hence the 

Lemmu 1 and thus Theorem 5, are proven. 

Applying Theorem 5  to the red-black gambling-work model yields the 

following. 

Theorem 6; 

In the Red-Black Gambling-Work model if the gambler will only work when 

his fortune is zero then the bold strategy minimizes the expected time until he 

reaches his goal. 

I' 

• 

Proof; 

This theorem has already been proven (see the remarks following Theorem 4) 

when the gambler's initial fortune is zero. For an arbitrary initial fortune 

the pnof is exactly as before; we let X. denote the length of the ith cycle 

and T the number of required cycles. Then X..,X.t ... are independent 

(though X. has a different distribution from the others). From Wald's equation 

T T 
EX 

1  * 
By the expected time until the gambler reaches N is E £ X.  " E ^ 

1-1       1-1 

the Dublns-Savage result,    ET    Is minimized by the bold strategy and by Theorem 5 

EX      is minimized, for all    1  ,  also by the bold strategy. 

Q.E.D. 

"'--^-—       i   —- i^.■,:,:,.!    ,.Mkimtflfji,-^n^jnfn ,-iniv^iiii.„ij^iI,',     iinifa. 
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We have not obtained any general results for the work-gambling model when 

p > 1/2 . There are, however, reasonable conjectures that may or may not be 

true. For Instance if we are always free to either work or gamble then it seems 

reasonable that the optimal strategy could be chosen so as to have the following 

3-region structure 

i I 

Optimal Strategy i 

Work Gamble Work 

0 Fortune N 

Th  Is we should work when our fortune Is either near 0 or hear N and gamble 

otherwise (of course, any of these regions may be vacuous). For example, suppose 

that c , the unit of work time, is 1. Then it is obvious that it Is optimal to 

work when our fortune is quite small (for Instance 1) or quite large (for instance 

N - 1), and the conjecture is that you should gamble with an in-between fortune. 

Of course, the amount gambled remains to be determined. 

When the gambler is only permitted to work when broke, the problem is to 

determine how much he is to gamble at each fortune.: In [3] Breiman has showh 

that In the pure gambling red-black model if one is allowed to bet any fraction 

of his fortune (and not Just integral amounts) then the strategy that aaymptotiaatly 

minimizes his expected time to reach some preassigned goal is the Kelly strategy 

which always bets the fixed fraction p - q of your fortune. Of course Breiman*s 

model does not allow you to work when broke and thus rules out any such strategy 

as the bold one (which would have an Infinite expected time). Nevertheless, 

assuming that we change the model so as to allow us to bet i any fraction of our 

fortune then it may turn out that the Kelly strategy would remain, in some sense, 
i 

asymptotically optimal. 

^i». - -..,.—-J-J....—...--li.-^.i.-..-.--....— 
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5.  Some Counterexamples In Dynamic Programming 

In this section, we return to the general dynamic programming model consisting 

ofia countable state space and a finite action space, and in which the objective 

is to maximize nonnegative rewards (i.e., the positive case).  In most instances 

when a specific model (such as the gambling models of Sections 3 and 4) is 

analyzed within this framework, it turns out that we need only consider stationary 

policies.  However, this is not always the case (though Blackwell [2] did show that 

if ^n optimal policy exists then there is a stationary optimal policy) and it is 

Worthwhile to try to determine some subclass of policies such that for any arbitrary 

policy there necessarily exists a policy within this subclass which performs at 

least as well. We now define certain subclasses of policies. 

A policy is said to be 

(1) Btationary,  if the action it chooses at any time is a deterministic 

function of the state at that time. 

(2) randomized stationary,  if its action at any time is a randomized 

function of the state at that time. 

(3) Markov  or memoxyless,  if its action at time t is a deterministic 

function of the state at time t and t . 

(4) randomized Markov  or randomized memoryless,  if its action at time t 

is a randomized function of the state at time t and t . 

i It follows from results presented by Derman and Strauch [5] that if the 

initial ^tate is fixed then we need never go outside the class of randomized 

memoryless policies.  That is, for any policy f and initial state  1 , there 

exists a randomized memoryless policy f'  such that 

i 

V ,(1) >,V.(1) . 

f 

MMMM 
_ :-...■ ...st..^^ ^^ 
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They prove this by showing that the class of randomized memoryless policies is 

large enough so that, for any policy f , there exists a randomized memoryless 

policy    f    such that 

Pf{Xt - j,at - a | X0 - 1} - Pfl{Xt - J,at - a |  XQ - 1} 

which,  of course, implies that    V-(i)  - Vfl(i)   . 

We now show, by counterexample,  that we cannot generally restrict attention 

to either  the class of randomized stationary policies or to the class or. 

memoryless policies. 

The first counterexample shows  that we cannot always restrict  attention to 

the memoryless policies. 

Example 1; 

Let the states be given by 0,1,1',2,2*   State 0 is an absorbing 

state and once entered can never be left, i.e., 

P00 " 1 ' 

In state n,n > 0 , there are 2 possible actions having respective transition 

probabilities 

Pn,iH.l(1) -Vn'^-1 '   n>0 

In state b' ,n > 0 , there is a single available action, having transition 

probabilities 

V^n-l)'"1   n>1 

p
i',o-1  n-1- 

The rewards depend only on the state and are given by 

- ■ —■  ..■^^^-^.^  ,.  MIliiiMiiliMlililllMlillniifiriiriir mi     -,,*.„ „,«^,i*,.m~„n n»   rr,   immliMi ■V.i 
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R(n) - 0        n >_ 0 

Rdi1) - 1        n > 0 . 

Suppose the initial state is state 1. It is easy to see that under any memory less 

rule the total expected reward will be finite. However the randomized stationary 

policy which, when in state n , selects action 1 with probability a  and 

action 2 with probability 1 - a  has an infinite expected return when the an 

are chosen so  that 

■ 

it a. ->• 0 as n ->■ o0 

i-1 1 

and 

n-1 i-1 

for the first condition implies that a primed state will eventually be reached 

with probability 1 while the second condition implies that the expected number 

of this first primed state is infinite. 

The second example shows that we cannot always restrict attention to the 

randomized stationary policies. 

Example 2: 

The states are given by    1,2,3,   ...,*.    In state    n   there are 2 possible 

actions having respective transition probabilities 

Pn,x*l(1) " ' 

State °° is an absorbing state, i.e.. 

1 < n < » 

p„ i(2) " an " 
:L " pn «(2>   1 < n < » . n,i     n      n,00       — 

...^^MMMamiMitai^-......  ... fl .„^ 
    1  
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P  « 1 . 
«as 

The rewards depend only on the state and are given by 

R(l) - 1 

R(n) - 0   n - 2,3 " . 

The values    a      are chosen to satisfy n ' 

(13) IT    a    > 0   , 
n-1 

a    < 1    all    n . n 

Suppose that  the initial state is  state  1.     It is easy to see that under any 

randomized stationary policy  the expected number of visits  to state 1 is a 

geometric random variable with finite means, hence the total expected return is 

finite.     However,  consider the policy which en its nth return to state  1 chooses 

action 1    n    times and then chooses action 2.     Since, by  (13)  this policy has a 

positive probability of visiting state  1 infinitely often,  it has an infinite 

expected return. 

mm ^mmmmmmmm^m^immmtm^^mmmmmm mmmtim^i^mmmmmmitm     ■     "^ 
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