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ABSTRACT

In this paper we formulate and obtain optimal gambling strategies for
certain gambling models. We do this by setting these models within
the framework of dynamic programming (also referred to as Markovian
decision processes) and then utilize results in this field.

In Section 2 we present some dynamic programming results. In partic-
ular we review and expand upon two of the main results in dynamic
programming. Loosely put these results are:

s

1) In problems in which one is interested in maximizing
nonnegative rewards, a policy is optimal if and only if
its expected return satisfies the optimality equation, and

S T T

(ii) 1in problems in which one is interested in minimizing
nonnegative costs, the policy determined by the optimality
equation is optimal.

In Section 3 we show how the results of Section 2 may be applied in
some simple gambling models. In particular we consider the situation
where an individual may bet any integral amount not greater than his
fortune and he will win this amount with probability p or lose it
with probability 1 - p . It is shown that if p > 1/2 then the
timid strategy (always bet 1 dollar) both maximizes the probability
of ever reaching any preassigned fortune, and also stochastically
maximizes the time until the bettor becomes broke. Also, if p < 1/2
then the timid strategy while not stochastically maximizing the
playing time does maximize the expected playing time.

In Section 4 we consider the same model but with the additional struc-
ture that the bettor need not gamble but may instead elect to work

for some period of time. His goal is to minimize the expected time
until his fortune reaches some preassigned goal. We show that if

p < 1/2 then (i) always working is optimal, and (ii) amcng those

3 strategies that only allow working when the bettor is broke it is the
g bold strategy that is optimal.

In Section 5 we return to the general dynamic programming model and
consider the problem of determining ''good" subclasses of policies.
Two counterexamples are presented.

i
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by 3

Sheldon M. Ross

1. INTRODUCTION AND SUMMARY

In this paper we formulate and obtain optimal gambling strategles for certain

gambling models. We do this by setting these models within the framework of

i B oo

dynamic programming ‘also referred to as Markovian decision processes) and then
utilize results in this field.
In Section 2 we present some dynamic programming results. In particular we

review and expand upon two of the main results in dynamic programming. Loosely

kst SordlN S - i

put these results are:

(1) In problems in which one is interested in maximizing nonnegative
rewards, a policy is optimal if and only if its expected return satisfies
the optimality equation, and

(i1) 1in problems in which one is interested in minimizing nonnegati.e costs,

the policy determined by the optimality equation is optimal,

In Section 3 we show how the results of Section 2 may be applied in' some
simple gambling models. In particular we consider the situation where an
individual may bet any integral amount not greater than his fortune and he will
win this amount with probability p or lose it with probability 1 - p . It is
shownthat if p > 1/2 then the timid strategy (always bet 1 dollar) both maximizes
the probability of ever reaching any preassigned fortune, and also stochastically

maximizes the time until the bettor becomes broke. Also, if 5 < 1/2 then the

timid strategy while not stochastically maximizing the playing time does maximize

the expected playing time.
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In Section 4 we consider the same model but with the additional structure 4
that the bettor need not gamble but may instead elect tov work for some period of

time. His goal is to minimize the expected time until his fortune reaches some ]

e e g

preassigned goal. We show that if p < 1/2 then (i) always working is optimal,
and (1i) among those strategies that only allow working when the bettor is broke
it is the bold strategy that is optimal.

In Section 5 we return to the general dynamic programning model and consider 3
the problem of determining "good" subclasses of policies. Two counterexamples

are presented.
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2. SOME DYNAMIC PROGRAMMING PRELIMINARIES

Consider a process that is observed at discrete time points to be in one
.
of the possible states 0,1,2, ... . After observing the state, one of a finite
number of possible actions must be chosen. If the process is in state i and
action _a 1is chosen then (i) we obtain a reward R(i,a) ; and (1i) the next state
of the process is chosen according to the Markov transition probabilities

{p,,(a),i,} > 0} .

13
if R(i,a) > 0 for all i, a, then we say that we are in the positive case.
A policy is any rule for choosing actions, and for each policy f we define

Vf(i) to be the total expected reward earned if the initial state is i and

policy f is employed. Also, let V(i) = sup Vf(i) . The following equation,
f

known as the optimality equation, is easily established in the positive case

(see, for example, page 121 of [11]).

1) V(1) = max IR(1,a) + ] Py, @V,
a i

The major result about the positive case that we shall use is the following.

Proposition 1:

Assume R(i,a) > 0 . The policy f is optimal, i.e., Vf(i) = V(i) v i,

if and only if its return function Vf(i) satisfies the optimality equation.

This proposition was originally proven by Blackwell [1l] in a more general

setting than the abova. A simple proof is as follows.

Proof of Proposition l:

If f satisfies the optimality equation then it follows that using f 1is

better (in the expected reward sense) than using any other policy for exactly one

e} A ety d e e A ek V] SRR T Sbe bl
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stage and then switching to f . But repeating this argument after the first
stage shows that f is better than using any other policy for exactly 2 stages
and then switching to f . By induction, it follows that £ is better than using
any policy for n stages and then switching to f . But as R(i,a) > 0 it
follows that the expected return obtained from time n + 1 onward is nonnegative.
Hence, the expected return from f is greater than the n-stage return from any
other policy. The result now follows by letting n » = .,

Q.E.D.

Remark:

The above proof shows that it is not necessary to require that R(i,a) > 0 .
A weaker sufficient condition would be that Vf(i) > 0 . In fact an even weaker
sufficient condition would be that

limninf Eg[Vf(Xn) | X, =11 >0V 1,V g

when Xn is the state of the process at time n .

If R(i,a) <0 for all i, a, then we say that we are in the negative
case. In this case it is more natural to define C{i,a) = -R(i,a) , so as to
minimize nonnegative costs as opposed to maximizing nonpositive rewards. Letting

V, denote the infimum of the total expected cost incurred under a policy, it is

*
again easy to establish the optimality equation which now takes the following form.

(2) V,(1) = min JC(i,a) + ] Py @V, (Y
a 3 ]

The following proposition was originally proven by Strauch [12].
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Proposition 2:

Assume C(i,a) > 0 , and let f be a policy which, when the process is in
state 1 , selects an action minimizing the right-hand side of the optimality

equation (2). Then f 1is optimal.

Proof: ~

Proposition 2 is proven by noting that if f is determined by the optimality
equation (2) then we can get within €/2 of V, if we use f for exactly one
stage and then switch to a policy within €/2 of the optimal. Repeating this

argument n times shows that we can get within + J% gr 1000 +'J% of V, 1if we

*
2 2
use f for n stages and then switch to a policy within E/Zn of the optimal.

N fjm

However, as costs are ncunegative it thus follows that the n-stage cost under f
is smaller than V,+ € and, as € is arbitrary, the result follows by letting
n-+o,

Q.E.D.

Remark:

The above proof shows that it is not necessary to require that C(i,a) > 0 .

It is sufficient for V*(i) > 0 ; and a weaker sufficient condition would be for

limninf Elvy(x) | X =41 >0 V 1.

Unfortunately, Proposition 1 is not true in the negative case; nor is
Proposition 2 in the positive. A simple counterexample to Proposition 2 in the
positive case which is due to Strauch [12] is the following: The states are given
by the positive integers, and when in state 1 we have the choice of either
accepting a terminal reward 1 - 1/i or else receiving no reward and going to state
i+ 1. Clearly an optimal policy does not exist and hence Proposition 2 could

not be valid. From the remark following the proof of Proposition 2 it does, however,

bR Ol e & i o bl ot s
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follow in the positive case that if f 1s chosen by the optimality equation (1)

then f 1is optimal 1if

V(X)) | X, =110 as n~=

The following counterexample shows that Proposition 1 is not necessarily

true in the negative case.

Counterexample:

There are two states and two actions.

[N
[}
[
N

c(,1) =0 c(1,2) =1 c(2,i) =0

Pl,l(l) =1 P1’2(2) =1 Pz’z(i) =1 i=1,2

Let f be the policy that always chooses action 2. Then Vf(l) =1, Vf(2) =0

and

V(D) < e, + V@)

V(2) £C2,1) + V(@) .

Hence Vf satisfies the optimality equation but is obviously not optimal.

Cne sufficient condition under which Proposition 1 will be valid in the
negative case is that the number of stages in our problem be bounded. That is,
suppose that there exists a stopped state having the property that once the
process enters that state it can never leave it and all costs incurred while in
that state are 0. Then it follows from the proof of Proposition 1 that if the

time until the process first enters the stopped state is, with probability 1,

bounded, for each initial state and for each policy, then the proposition is valid.
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A second sufficient condition requires the notion of a stationary policy.

We say that a policy is stationary if the action it chooses at any time is a

deterministic function of the state of the process at that time. If f 1s a

stationary policy, we define £(1) to be the action f chooses when the process

is in state i . We are now ready for

Proposition 3:

Assume that C(i,a) > 0 . If the state and action spaces are both finite,

and if f 1is a stationary policy such that

(3) V.(1) <C(i,a) + ) P, (a)V.(j) V a# f(i) , V i
f j ij f

where Vf(i) is the total expected cost incurred under f , then £ 1s optimal.

Proof:

We introduce a discount factor a , 0 <a < 1 , and define V:(i) to be the

total expected discounted cost incurred under policy f . Since C(i,a) >0,

it follows from Lebesque's monotone convergence tlieorem that lim V;(i) = Vf(i)
a1

Hence, since the state and action spaces are both finite it follows from (3) that

VE() < C(1,2) +a § Pij(a)v‘;(j) V af#f(1) ,V i

for all a sufficiently near 1.
cost from a policy satisfies the discounted optimality equation then that policy

is discount optimal. Hence f

for any policy g , Vz(i) :_Vg(i) for o near 1 and the result follows by

lettiag o » 1.

Q.E.D.

But, as is well known, if the expected discounted

is a~discount optimal for all o near 1. Therefore,

il sl
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! A Technical Remark

In the above formulation we have assumed a countable state space and a

TR

finite action space. I[n the general setting of arbitrary state and action spaces
these results are more difficult to prove. The main difficulty lies in
establishing the optimality equation
V(x) = sup {R(x,a) +.[ V(y)dP(y | x,a)} .
1 a
The reason for this difficulty is that it is not easy, in general, to prove that

V(x) 1is a measurable function. However, assuming that R(x,a) is a measurable

function and that the probability transition density P(+ | x,a) 1is a regular

P T I T Y T T TN TS

conditional probability measure (this implies that g(x) E.f h(y)dP(y ] x,a) is
a measurable function whenever h(x) 1s), then we can easily establish the
measurability of V(x) in the positive case as long as the action space is
countable. This is shown by defining

Vl(x) = sup R(x,a)
a

Vpp (0 = sup {R(x,a) + v (arty | x,a)} .

As the supremum of a countable number of measurable functions is itself measurable,
it follows by induction that Vn(x) is a measurable function. Also, as Vn(x)

is the optimal expected return function for an n-stage problem it follows, in

the positive case, that lim Vn(x) = V(x) . [For any policy f , since the n-stage
n

return under f 1is less than Vn ,» we have that Vf(x) < lim Vn(x) . On the other
n

hand, since rewards are nonnegative we may, for any € , define a policy fn
such that Vf (x) 3_Vn(x) - € . Hence, V(x) < lim Vn(x) < lim Vf (x) + e <V(x) + e].
n n n

The measurability of V now follows from the fact that the limit of a countable
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number of measurable functions 1s itself measurable.

In the negative case it 1is not necessarily true that lim Vn(x) is equal to
n

V(x) . However, if in addition to assuming that the action space is countable

we also assume that the one-stage costs are bounded then we can again easily
establish the measurability of V(x) . This is done by introducing a discount
factor .a , 0 <ca <1 . Define Va(x) to be the optimal discounted cost function.
By the same argument as given in the positive case it follows that V“(x) is
measurable. (Since costs are hounded the discount factor assures us that the

optimal n-stage discounted cost function will converge to the optimal infinite

stage discounted cost function.) The measurability of V(x) now follows since,

by Lebesque's monotone convergence theorem, V(x) = lim Vn_l(x) s
ne —
n

As long as the action space is countable, and V(x) is measurable then
Propositions 1 and 2 go through exactly as before. For the analysis in the most

general cases the interested reader should consult Blackwell [1], [2], and Strauch

[12].




10

3. THE RED-BLACK GAMBLING MODEL : ' ‘ | ‘

The red-black gambling model - is concerned with the following sitﬁat#on; (An

individual enters a gambling casino that allows any bet of the following form:
|

If you have a fortune of i wunits then you are allowed to bet any positive
integral amcunt less than or equal to 1 . Furthérmoresif you bet ’j then
you eifher win j with probability b or lose j with probability q =1 ~-p .

The first problem we shall consider is that of.haximiaing the probability |
that an individual will attain a fortune of N 'before going broke. This problem

)

fits the framework of positive dynamic programming since 1f we quppose:that a
terminal reward of 1 1is earned if we ever redch state N and all ;ther rewvards
are zero, then the expected total reward equals the probability of ever reaghing
state N . In order to determine an optimal policy we first noge that if our
present fortune is 1 then it would neéet pay to bet more than N -1, ﬂencé,’
from proposition 1 it follows that a poiicy f will be optimal if and oniy if

its return satisfies

(4) Vo) > pV (L + k) +qV (1 -k) ,0<1 <N,
k < min(i, N - 1)

|
Define the timid strategy to be that strategy which always bets 1 . Under

this strategy the game becomes the classic gamﬂlers'gruin model and. b(i) s the

probability of reaching N before going brdke when you start with { , 0 <1 <N,

is given by
i N
l_:_£3l22ﬁ p % 1/2
1 - (q/p)
(5) u@d) =
i/N p=1/2

Theorem 1:

If p > 1/2 the timid strategy maximizes the probability of ever attaining

I
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a fortune of N.

Proof:
If p=1/2 then U(i) = 1/N trivially satisfies (4). When p > 1/2

we must show that

i i+k

Ji=@/p_, |1z /p)

1- (q/p)N -l - (q/p)N

1 - (g/p)i*
1- (q/p)N

+q

or équivalen‘tly that

@/m?t < pa/p) ™ + gt
or |

1< plia/m* + /¥

Note that the above holds for k = 1 and the result will be proven if we can

r _ x x-1
show that f(x) = (%) + (%) is an increasing function of x for x > 1 when

: p' > 1/2 . This however follows immediately upon difterentiation. Q.E.D.

Theorem 1 seems to be one of those results that are well-known but never

seem to have been specifically proven in the literature. Of course, timid play

1
§

was known to be optimal among the class of strateglies that always bet a fixed

amount at each stage.

Define the bold strategy to be the strategy which, if our present fortune

is 1

bets i if 1 < N/2
bets N -1 i1if { > N/2
In (6] Dubins and Savage have shown that the bold strategy maximizes the

probability of ever attaining a fortune of N when p < 1/2 . Their approach

vas similar in that they proved this result by showing that the return from the

9 b i) F'n"}y,!!',’.u Uaterh tharil ot iiiatt topasaadioast el i e e aliibn auits (i aiadl b danii ciad i h i et s 4 Raol ko ko myrT i L d
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bold strategy satisfies the optimality equation (4) whenever p < 1/2 .
However, as opposed to the timid strategy case it is not possible to easily
obtain an exact expression for the return from the bold strategy and Dubins
and Savage had to resort to a quite ingenious proof to establish (4).

Thus when p < 1/2 bold play is optimal while if p > 1/2 then it is
timid.ﬁiay that is optimal. (When p = 1/2 it follows from Martingale Theory
that any strategy that never bets to strictly exceed N is optimal.) Also

by regarding your losses as the winnings of your opponent it follows that if

p < 1/2 then your worst possible strategy is the timid strategy and if p > 1/2

then your worst possible strategy is the bold one (assuming, of course, that

you would never consider betting more than N - i when your present fortune

is 1).

Suppose now that our objective is not to reach some preassigned goal but
rather is to maximize our playing time. We now show that if p > 1/2 then
timid play stocﬁastically maximizes our playing time. That is, for each n ,
the probability that we will be able to play n or more times before going

broke is maximized by the timid strategy.

Theorem 2:

If p > 1/2 then timid play stochastically maximizes our playing time.

Proof:

By assuming that a reward of 1 is attained if we are able to play at least
n times, we see that this problem also fits the framework of the positive case.
Hence we must show that starting with i , it is better to play timidly than it
is to make an initial bet of k , k < i , and then play timidly. However this
follows since, by Theorem 1, the timid strategy maximizes the probability that
we will get to i + k before i - k and it takes at least one unit of time,

More formally, letting Un(i) denote the probability that we will

el
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be able ¢o play at least n times given that our initial forture is 1 and
we play timidly, we obtain by conditioning on the time T that our fortune

reaches either 1 -k or 1 + k and the value X that is reached we obtain
U (1) = E[U__ (X))
> E[u _, ()]
=U _@+KP(X=1+kl+U (- kP{EX=1-k}

2P0 _ (4K +aU_ (- k)

The first inequality follows from the fact that Un(i) is a decreasing function

of n and T > 1, while the second inequality follows since P{X = i + k} > p

by Theorem 1 and Un_l(i + k) 3_Unm1(i - k) . Q.E.D.
In [9] Molenaar and Van Der Velde considered a gambling casino that

accepted any (k, c) bet when k and c are integers. A (k, c) bet would

c
k +c¢

Note that these are all fair bets in the sense that the expected gain is zero.

win k with probability and would lose ¢ with probability " : c

They proved, by a concavity argument, that the timid strategy (always bet (1,1))
stochastically maximizes the bettors playing time before going broke. This result,
however, also easily follows by our approach since playing timidly is better than
making any initial (k, c¢) bet and then following this initial bet with timid

play. This 1s true since under timid play we would also reach 1 + k before

c
k +c¢

value is at least one. (Here, of course, 1 is the bettors initial fortune.)

i - ¢ with probability and the amount of time until reaching either

It turns out that if p < 1/2 then the timid strategy does not stochastically
maximize our playing time. For suppose p = ,1 é&nd we start with an initial
fortune of 2 . The probability that we will be able to play at least 5 games

if we play timidly is 1 - (.9)% - 2(.9)°(.1) = .0442 . On the other hand if




X, denote your winnings on the jt

(b Lo M i ot sl oot dogen dt
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we bet 2 initially and then play timidly then the probability of playing at

least 5 games is .1 . It is however true that timid play maximizes our

expected playing time.

Theorem 3:

If p < 1/2 then timid play maximizes our expected playing time.

Proof:

Let U(i) denote the expected number of bets made before we go broke

given that we start with 1 and always bet 1 . To calculate U(i) , let

2 bet and let T denote the number of

3

T :
bets you make before going broke. Then, since Z Xj = -1 we have by Wald's
=1

equation that

- 1= EX ET

or

i
U(i) = ET 1-2p
Since maximizing our expected playing time falls under the positive case (we

receive a reward of 1 each time that we are able to continue playing) the

zesult follows since
U(L) > 1 +pU(L +k) +qu(L - k) ,1 <k<1i

follows by direct verification. Q.E.D.
Theorem 3 remains true in more general gambling models. Consider a gambling

casino that allows you to make any het such that, when your present fortune is

i1 , the outcome of the bet is an integer valued random variable X satisfying
(1) X > -1 with probability 1

(11) |X| > 1 with probability 1

(111) EX <a -1

»
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where a 1s some fixed positive number less than 1 . It follows now in the

same manner as in Theorem 3 that the timid strategy which always bets . to

either win or lose 1 with respective probabilities a2 and 1 - a/2 maxi-

mizes your expected playing time. This is true since U(i) = 1 f = is easily

shown to satisfy

U(4) > 1 + EU(L + X)

whenever X satisfies (1), (1i), and (ii1i).
The above also shows that playing in an unfair game with a minimun bet

will eventually break you and in a finite expected time (compare with Breiman

(4] p. 101).
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4, A GAMBLING-WORK MODEL

In this section we consider the following variation of the red-black
gaubling model. We again suppose that a bettor whose fortune is 1 may bet
any amount j , j <1 and win or lose j with respective probabilities p and
q =1-p . However, we now suppose that the bettor need not place any bet at all
but rat;er may elect to work. If he decides to work then he works for c¢ units
of time and earns 1 dollar. Assuming that each gamble takes 1 unit of time the
problem is to determine a strategy that minimizes the expected time until our
worker-gambler attains a fortune of N dollars. (The worker-gambler must work

when he is broke.)

Theorem 4:

If p < 1/2 then the strategy of always working minimizes the expected time

until a fortune of N 1s attained.

Proof:

The expected time to reach N 1f we start from 1 and always work is
given by U(i) = (N - i)c . Since the above is clearly a problem of minimizing

nonnegative costs we shall apply Proposition 3. Hence, we need show that
U(1) <1+ EU(1 + X)
or equivalently

(N-1)c <1+ cE(N-1i - X)

0 <1~ cEX

which follows since EX , the expected gain of a bet, 1s negative. In fact, since

R
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EX < 2p - 1, the above shows that always working is optimal for all values of 1

c+ 1
2¢ '

p such that p <
Q.E.D.
Thus for p < 1/2 the optimal strategy is always to work. However, let us

now congider this same problem but under the assumption that the gambler will only

work when broke and thus will gamble at all other times. Under this condition we

shall show that it is the bold strategy that is optimal.

Let us suppose that each time the gambler reaches a fortune of N he gives

|
1

that amount away and then starts to play again. That is after reaching N he
then works for ¢ units of time and then starts gambling again with a fortune of
1 dollar. Let us say that a cycle is completed.each time the gambler's fortune
reaches 0 or N . Letting xi denote the time of the ith cycle and letting T

denote the number of cycles that it takes our gambler to reach a fortune of N

Soidadiia.

we have that the expected time until the gambler reaches N 1is given by

S T n

i T
E 2 Xi] . Now 1f the gambler is initially broke and he employs a stationary
i=]

strateg,; then the random variables xl,xz, ... are independent and identically
distributed. Hence, by Wald's equation the expected time until the gambler first

reaches N 1is given by EXET . However, T 1is a geometric random variable with

e i

mean 1l/a where o 1is the probability that starting with 1 the gambler will

reach N before 0. Hence, by the Dubins-Savage result it follows, since p < 1/2,

e e e

that ET 1is minimized by the bold strategy. Therefore, as we know by Proposition 2

that an optimal stationary strategy exists, we can show that the bold strategy is : |

Foza s

optimal if we can show that it minimizes EX . That is we need to show in the

i

original red-black model that the bold strategy minimizes the expected time until

e

the gambler reaches a fortune of either 0 or N . In fact, we shall establish ]

this by proving the stronger result that the bold strategy minimizes E[min (X,n)]

S e e

for all n . That is, if the bettor is allowed to play at most n stages and if
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he stops before this 1f he ever reaches 0 or N then the strategy minimizing
his playing time is the bold one. The reason for considering this modified
problem is that it is a problem with a bounded number of stages and thus we would
only need show that the expected playing time under the bold strategy satisfies
the optimality equation.

Foilowing Dubins and Savage (Chapter 5 cf [6]) we first generalize the model
§ as follows: We suppose that the initial fortune may be any number in (0,1)
and that the bettor stops playing either when his fortune reaches 0 or 1 or when
he has already played n times. We shall refer to this as the n-stage red-black
! model.
Define the bold strategy to be the strategy which, if the bettors present

fortune is r and he is allowed to bet

bets r if r <1/2

bets 1-r if r > 1/2 .

Let Un(r) denote the bettors expected playing time in the n-stage red-black
model if the initial fortune is r and the bold strategy is employed. By

? conditioning upon the outccme of the first play we obtain

1+pU ,(2r) 0<r <1/2
U (o) =
¢ 1+ qUn_l(Zr - 1) 1/2 <r <1

Un(l) a Un(O) =0, Uo(r) =0, 0<rc<l,.

Theorem 5:

In the n-stage red-black model, among those strategies which, when the bettor's

fortune is r , never bet an amount greater than 1 - r , the bold strategy minimizes

the bettor's expected playing time.

= il
S, syt
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Proof:

Assume first that p > 1/2 . It suffices to prove that

(8) U () <1l+pU (r+s)+ qu _,(xr - 8)

for all_ 0 <s <r , 8 <1-r . A number of the form !t vhereg 1 and k
are nonnegative integers such that 1 :_2k 2
For example 0 and 1 are of order at most 0; 0O, 1/2, 1 are of order at most 1, etc.
We first show, by induction, that (8) holds for all n whenever r and s are
of order at most k .

Since Un(O) = Un(l) = 0 it follows that (8) holds for all n whenever
r and s are both of order 0 . So assume that (8) holds for all r and s of

order at most k and suppose that r and s are of order at most k+ 1 . We

first note that 1if x 18 of order at most k + 1 then

2x 1is of order at most k when x < 1/2

2x - 1 1is of order at most k when x > 1/2 ,

There are four cases we need consider.

Cace 1: r+s8<1/2 ,8<r

In this case we have by (7) that

Un(r) - pUn_l(r +8)-qUu_ . (r-38) -1

n-1
) 2
=]+ pUn_l(Zr) -p-pP Un_2(2r + 28) - q - qun_z(Zr -28) -1

~ p[Un_l(Zr) - pUn_z(Zr + 2g) - qUn_z(Zr -28)] -1.

But 2r and 2s are both of order at most k and so the above is nonpositive

by the induction hypothesis.

will be said to be of order at most k .

T -

i oo i
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!
Case 2: r - s > 1/2 ;
b [
E The proof is just as in Case 1, except that the second functional equation
| of (7) is used instead of the first.
b
i Case 3: r<l/2<r+s,s<r
Frém (7) we have that %

Un(r) - pUn_l(r + s) - qUn_l(t -8) -1
€))

=1+ pUn_l(Zr) -p- qun_z(Zr +28-1) -q - qun_z(Zr -2s) -1,

Now, since r > s , it follows that 2r > r + s > 1/2 and thus

(10) U _,(2) = L+qu_,(4r - 1) .

Also, since 2r - 1/2 :_1/2 we also have that
(11) Un_l(Zr -1/2) =1+ pUn;z(br -1) .
Thus from (10) and (11) we obtain that

pUn_l(Zr) =p+ q[Un_l(Zr -1/2) - 1] .
Inserting this into (9) yields that (9) is equal to

p+aqu _,(@r-1/2) -q- qun_z(Zr +2 -1) - apU__
(12) .
=qlu _,(2r - 1/2) - PU_,(Q2r + 25 - 1) - PU _,(2r - 28) - 1] +p-1.

2(2r - 2s) -1
Now, 1f s > 1/4 then, since p > q , we have that (12) is less than or equal to

qfb_,(2r - 1/2) - pU__,(2r + 25 - 1) - QU _,Q2r - 28) - 1] +p -1

which is nonpositive by the induction hypothesis since both 2r - 1/2 and

2s - 1/2 are both of order at most k . On the other hand, if s < 1/4 then since
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p > q we have that (12) is less than or equal to

QU _,(2r - 1/2) - pU__,(2r - 28) - qU _,(2r+2s - 1) - 1] +p -1

which is nonpositive by the induction hypothesis since 2r - 1/2 and 1/2 - 23 are

both of order at most k..

Case 4: r-s<1l/2<r

The proof for this case is similar to that of the preceding ones and the
induction is completed.

Thus, when p > 1/2 , we have proven (8) whenever r and g are binary
rationals. (That is, numbers of the form 1/2k .) By considering a second player
whose initial fortune is 1 - r , and by viewing the winnings of the first
player as the losses of the second one and vice-versa, it follows since both
players play the same amount of time that this result is also true when p < 1/2 .

It thus remains to establish (8) when r and s are not binaries. We.
will do this by showing that Un(r) is continuous at r whenever r 1s not a
binary rational. Then by letting {rj,j > 1} and {sj,j > 1} be sequences of
binaries such tlat r, - r and sj + 8 it follows by continuity that (8) holds

3

for all 0 <s<r,s <1-r. The following lemma thus completes the proof.

Lemma 6:

Un(r) is continuous at r whenever r 1is not a binary rational.

Let B denote the set of binary rationals, and define

s = supremum lim sup |U (r,) - U_(r)|
{rj,r},n j nd 2
rj*r'
r{B

+
8 = supremum lim sup |U (r,) - U_(r)]| .
{r,,r},n j nd = |
I
rj-ﬂ.'
r¢B

T T

it bt ol i
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That is, s and s+ measure the worst possible discontinuity of any of the

functions Un(r) when r is not binary. Note that since there is a positive

SRR s e

5 probability of at least min (p,1 - p) that play will end at each stage when the
1 S
] bold strategy is employed, it follows that Un(.) :-min(p,l =il Hence s and
] s’ are both finite. Note also that Un(r) is continuous at all r ¢ B if
and only if g = s+ = 0 . We show this by contradiction. Assume, for instance, %
that s >0 . Let n, {rj} , t , be such that |
r,>r ,réB, lnsup |U(r,) -U(r)]| >s max (p,q) . :
3 j n j n ]
|
£
There are two cases. ]
Case 1: r < 1/2 .
In this case Z
Un(rj) =1+ pUn_l(zrj) %

(r) =
U (r) = 1+pU__,(2) .

Therefore,

lim sup |Un_1(2rj) - Un_l(Zr)I = 1lim sup IUn(rj) - Un(r)I/p
3 h| :

> 8 p/p

which is a contradiction since er +2r and 2r ¢ B .

Case 2: r > 1/2

In this case for all j sufficiently large (so that rj > 1/2)

Un(r ) =1+ qUn_l(er - 1)

3

Un(r) =1+ qUn_l(Zr ~ 1)




& implying that

lim sup |Un_1(2r

j gD -y, 1)| = 1im sup |U (r

j) - Un(r)l/q

]
1 5 3 3- S
q

which 1; a contradiction since 2rj -1+ (2r-1) and 2r-1¢B.

Hence s must be 0. A similar argument holds for s+ and hence the
Lemmua 1 and thus Theorem 5, are proven.
: Q.E.D.
: Applylng Theorem 5 to the red-black gambling-work model yields the

following.

Theorem 6:

In the Red-Black Gambling-Work model if the gambler will only work when
his fortune is zero then the bold strategy minimizes the expected time until he

reaches his goal.

Proof:

é This theorem has already been proven (see the remarks following Theorem 4)
when the gambler's initial fortune is zero. For an arbitrary initial fortune

: ;i the prnof is exactly as before; we let Xi denote the length of the ith cycle
A ¥

f and T the number of required cycles. Then xl,xz, .+. are independent

(though Xl has a different distriburion from the others). From Wald's equation
T T

the expected time until the gambler reaches N is E Z X, =E ) EX, . By
i=1 i=1

the Dubins-Savage result, ET 1is minimized by the bold strategy and by Theorem 5

EXi is minimized, for all 1 , also by the bold strategy.

Q.E.D.
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We have not obtained any general results for the work-gambling model when
P > 1/2 . There are, however, reasonable conjectures that may or may not be
: true. For instance if we are always free to either work or gambleithen it seems ,i

§ reasonable that the optimal strategy could be chosen so as to have the following .

4

3-region structure

! 1

Optimal Strategy : 1

Work | Gamble | Work
0 I Fortune I N ‘

Th 1s we should work when our fortune is either near O or near N and gamﬁle

otherwise (of course, any of these regions may be vacuous). For example, suppose

that ¢ , the unit of work time, is 1. Then it is pbvious that it is opFimal to
work when our fortune is quite small (for instance 1) or dqite large (for instance
N - 1), and the conjecture is that you shouldigamble with an in-between fotrtune.
0f course, the amount gambled remains to be determined. ‘

When the gambler is only permitted to work when broke, the problem is to
determine how much he is to gamble at each fortune. In [3] Breiman has shown

that in the pure gambling red-black model if one is allowed to bet any fraction

of his fortune (and not just integral amounts) then the strategy that asymptotically
] minimizes his expected time to reach some preassigned goal is the Kelly strategy
] which always bets the fixed fraction p - q of your fortune. Of dourselBrelman's
model doeg not allow you to work when broke and 'thus rules out any such strategy
as the bold one (which would have an infinite expected time). NeveFtheléss,

assuming that we change the model so as to allow us to bet:any fraction of our

fortune then it may turn out that the Kelly sirategy’vould remain, in some sense,
1

asymptotically optimal.




; :
R R = , : v rROR AT e

5. Some Counterexamples in Dynamic Programming

"In this gection, we return to the general dynamic programming model consisting
of 'a countable statelspace and a finite action space, and in which the onbjective
is to maximize nonnegative rewards (i.e., the positive case). In most instances
when a ?pecific model (such as the gambling models of Sections 3 and 4) is
analyzed within this framework, it turns out that we need only consider stationary
policies. However, this is not always the case (though Blackwell [2] did show that
;f if an optimal policy exists then there is a stationary optimal policy) and it is
;; Worthwhile to try to &etermine some subclass of policies such that for any arbitrary

policy there necessarily exists a policy within this subclass which performs at

E;; least as well. 'We now define certain subclasses of policies.

A policy 1is said to be

(1) stationary, if the action it chooses at any time is a deterministic

function of the state at that time.
(2) randomized stationary, if its action at any time is a randomized

function of the state at that time.

R s i e

(3) Markov or memoryless, if its action at time t is a deterministic

nﬂ ; ‘function of the state at time t and t .

(4) randomized Markov or randomized memoryless, if its action at time t

is a randomized function of the state at time t and ¢t .

| It follows from results presented by Derman and Strauch [5] that if the

initial state is fixed then we need never go outside the class of randomized

1 f memoryless policies. That 1s, for any policy f and initial state i , there
!

g ' ‘
1 exists a randomized memoryless policy f' such that

Ve (1) 2 V(1) .
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They prove this by showing that the class of randomized memoryless policies is

large enough so that, for any policy f , there exists a randomized memoryless

policy f' such that

PAX =J,a =a | Xy=1} =P (X =},a

. =a | X, = 1}

t

-

which, of course, implies that Vf(i) = Vf,(i) .

We now show, by counterexample, that we cannot generally restrict attention
to either the class of randomized stationary policies or to the class of
memoryless policies.

The first counterexample shows that we cannot always restrict attention to

the memoryless policies.

Example 1:

Let the states be given by 0,1,1',2,2', ... . State O is an absorbing

state and once entered can never be left, i.e.,

Poo =1,

In state n,n > 0 , there are 2 possible actions having respective transition

probabilities

P "B @D =1, n>o0.

In state n',n > 0 , there is a single available action, having transition

probabilities

Pn',(n—l)' = ] n>1

P = ] n=1,

1',0

The rewards depend only on the state and are given by
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R(n) = 0 n>0

R(n') = 1 n>0.

Suppose the initial state is state 1. It is easy to see that under any memoryless
rule the total expected reward will be finite. However the randomized stationary
policy which, when in state n , selects action 1 with probability a, and

action 2 with probabiiity 1 - a has an infinfte expected return when the a

3 are chosen so that

_ n
4 b ai +0 as n+ o
f i=]1
; and
i © q
ﬂ a -
n=1 {=1 1

for the first condition implies that a primed state will eventually be reached
with probability 1 while the second condition implies that the expected number

of this first primed state is infinite.

The second example shows that we cannot always restrict attention to the

randomized stationary policies.

Example 2:
The states are given by 1,2,3, ..., ® . In state n there are 2 possible
actions having respective transition probabilities
Pn,n+l(1) =1 l<n<=

Pn,l(z) N = 1- Pn

State « 1is an absorbing state, i.e.,




The rewards depend only on the state and are given by

R(1) =1

{ R(n) =0 n=2,3 ..., @,

The values a are chosen to satisfy

(13) T a >0, a <1 all n.
n n
n=1
Suppose that the initial state is state 1. It is easy to see that under any

randomized stationary policy the expected number of visits to state 1 is a

geometric ranuom variable with finite means, hence the total expected return is

finite. However, consider the policy which ¢n its nth return to state 1 chooses
action 1 n times and then chooses action 2. Since, by (13) this policy has a
positive probability of visiting state 1 infinitely ofteu, it has an infinite

expected return.
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