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Packing Rooted Directed Cuts in a Weighted Directed Graph 

l). R. Fulkerson 

1. Introduction.  let G be a directed graph with vertex set N and 

directed edges denoted by ordered pairs of vertices, the edge {i,j) being 

directed from i e N to j e N. Let r e N be a distinguished vertex of 

G, called the root of G. (For the problems we are going to consider, we 

could assume, without loss of generality, that all edges of G incident with 

r are directed from r.) By a cut directed away from r we metn the set of 

all edges of G that are directed from a subset X c N, where r e X, to 

N - X = X, where X / 0. We denote such a cut by (X,X) and call it, for 

short, a rooted directed cut or an r-directed cut. Suppose that each edge 

(i,j) of G has a nonnegative integer weight w(i,j). By a packing of 

r-directed cuts in the weighted graph G we mean the following: Assign 

each r-directed cut (X,X) a nonnegative weight y^ in such a way that the 

sum of all the weights of r-directed cuts that contain a particular edge 

(i,j) does not exceed the weight w(i,j) of that edge. A maximum packing 

of r-directed cuts is a packing in which the sum of the weights assigned to 

r-directed cuts is as large as possible. The main problem we treat is that 

of constructing a maximum packing of rooted directed cuts. 

A spanning arborescencc in G rooted at r is a spanning tree of the 

underlying undirected graph of G having the properties (i) each vertex of 

G other than r has just one edge of the arborescence directed toward it, 

(ii) no edge of the arborescence is directed toward r. A branching in G 

is a forest of the underlying undirected graph whose edges are directed 



'"-'   "•>""•>•*'"        .     I-    l» W.li.llll .      I     .11  ^mm   .D1        iimm«..! 
"' R i.i"-•-■■■ — «mHWIUMJii-i uii.pai..,« 

1 
1 

toward different vertices.  In [2] Edmonds has described an efficient algo- 

rithm for constructing a maximum-weight b.-anching in a weighted graph, and 

has determined linear inequalities that define the convex hull of the 

(0,1) incidence vectors of all branchings in a directed graph. In [8] it 

was asserted without proof that the algorithm of [2] cam be modified to 

solve the maximum packing problem for rooted directed cuts. We shall 

describe this modification in Section 3, where it will also be shown that 

the packing problem always has an integer solution vector y whose compo- 

nent sum is equal to the weight of a minimum-weight spanning arborescence 

rooted at r.  In the context of blocking pairs of matrices or blocking pairs 

of polyhedra [6,8], if we let matrix A be the (0,1)-incidence matrix of 

all spanning arborescences of G rooted at r (rows of A) vs. all directed 

edges of G (columns of A), and similarly let C denote the (0,1)-incidence 

matrix of ail (set-wise) minimal r-rooted cuts of G vs. edges of G, then 

the max-min equality holds strongly for the ordered pair (C,A). That is, 

the linear program 

yC < w 

(1.1) y > 0 

max l'y  (where 1 = (!,...,!)) 

has an integer solution vector y whenever w is a nonnepative integer 

vector, and this solution vector y satisfies 

(1.2) l'y = min a -w, 
l<i<m 
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where matrix A has rows a ,...,a . 

The incidence matrices A and C constitute a blocking pair of 

matrices; that is, the unbounded convex polyhedra 

(1.3) C = {c > 0|Ac > 1} 

(1.4) A = {a > 0|Ca > 1} 

are a blocking pair of polyhedra. The extreme points of C are the rows of 

matrix C and the extreme points of A are the rows of matrix A.  (It 

may happen that A has no rows, i.e., the graph G has no spanning arbo- 

rescence rooted at r, in which case matrix C has just one row, all its 

entries being zero. In this case the maximum in (1.1) and the minimum in 

(1.2) are infinite. The algorithm of Section 3 will detect this situation, 

although there are easier methods to detect this case initially.) 

Edmonds' results in [2] fall naturally in the domain of anti-blocking 

pairs of polyhedra [7,8], rather than blocking pairs of polyhedra.  Indeed 

the anti-blocking polyhedron of the convex hull of all branchings is 

cktormined explicitly in [2]. Before describing a modification of Edmonds1 

algorithm for optimum branchings that solves the maximum packing program 

(1.1), we proceed in Section 2 to a proof that the polyhedra A and C 

defined by (1.4) and (1.3) are a blocking pair. This prcof also use.» 

results of [2]. 

mmtm mmmmmtmkmaeLiUi M 
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2. The polyhedra A and C. Let x(i,j) be a real variable associated 

with the directed edge (i,j) of a directed graph G. If X c N, Y c N, 

we use the notation 

(2.1) x(X.Y) « I    x(ij) 
ieX 
jeY 

It is proved in [2] that the extrcne points of the bounded polyhedron B 

defined by the linear inequalities 

(2.2) 

(2.3) 

(2.4) 

x(i,j) > 0,  all edges (i,j) of G, 

x(N,j) < 1,  all j •: N. 

x(X,X) <^ |x|-lf  all nonempty X c N, 

are precisely the incidence vectors of all branchings in G. (In (2.4), 

|x| denotes the cardinality of X.) 

Theorem 2.1.  The polyhedra A and C defined by (1.4) and (1.3) 

for an r-rooted directed graph G are a blocking pair. 

Proof.  It suffices to show (see (6]) that the extreme points of A 

are the incidence vectors of spanning arboresconce rooted at r, i.e., 

are the rows of matrix A, 

Let a be the incidence vector of a spanning arborescence rooted at 

r. Then clearly a c A. For each vertex j )* r of G, let X- denote 

--"- •——  



the subset of all vertices t e N such that the unique directed path from 

r to t of the arborescence contains the unique edge of the arborescence 

directed into j, and let X. = N - JT..  (In other words, if (i.j) is the 

edge of the arborescence directed into j ^ r, and if we delete (i.j) 

from the arborescence, the resulting subgraph is a branching having two 

(weak) components, one having vertex set X., with r e X., and the other 

having vertex set X. = N - X..) Then vector a is the unique solution of 

the set of equations 

(2.5)     a(i,j) = 0,  all (i,j) not in the arborescence. 

(2.6) a(Xj,X;.) = 1,  all j ^ r 

Hence vector a is extreme in A. 

Let a be an extreme point of A. Then a(N,r) = 0, for otherwise 

a would be the midpoint of a line segment joining two distinct points of 

A. We show next that a(N,t) = 1 for each t ^ r. For suppose 

a(N,t) > 1 for some t / r. Let a^-,t),.. .,a(u, ,t) denote the positive 

members of the sum a(N,t). Since a is extreme in A, we claim there 

exist r-directed cuts (X. ,X ),..., (X.,X.) suchthat (u.,t) e (X.,*.) 

for i = l,...,k and such that a(X.,X.) = 1 for i = l,...,k. For if 

this were not so, we could "wiggle" the component a(u.,t) of a by 

subtracting and adding some E > 0 to it, obtaining two points of A 

having midpoint a. Now view the vector a as a capacity vector on the 

flow network G with source r and sink t [5]. Each of the cuts 

(X.,X.) is a minimum-capacity cut separating r and t in this flow 



network, and it follows from [5, Cor. 1.5.4] that the r-directed cut 

(lJX.,nx.) is also a minimum-capacity cut separating r and t. Thus 

aOJX-.n^) = 1. Hence 

1 < a(N,t) <^a(UXi,nxi) = 1, 

a contradiction. Thus aCN.t) = 1, for each t ^ r. 

The vector a thus satisfies (2.2), (2.3).  It also satisfies (2.4), 

since for X c N, X ^ 0, we have, using a(N,r) = 0 and a(N,t) = 1 for 

t t  r. 

a(X,X) = a(N,N) - a(N,X) - a(X,X), 

<_ |N|.l - (|N|.lX|) =   |X|.l . 

Thus a e B, and hence, by Edmonds* theorem [2, Th. 2] a is a convex 

combination of the incidence vectors b ,...,b  of branchings. But since 

a(N,r) = 0 and a(N,t) = 1 for t ^ r, these same equations hold for 

each branching b ,...,b . Thus each of these branchings is a spanning arbo- 

rescence rooted at r, hence b ,...,b  are points of A. Since a is 

extreme in A, we must have a = b = ... = bn, and thus the vector a 

is the incidence vector of a spanning arborescence rooted at r. This com- 

pletes the proof of Theorem 2.1. 

It is a consequence of Theorem 2.1 and of results of [6] that the 

max-min equality holds for both ordered pairs (A,C) and (C,A). But it 

does not follow necessarily from these results that the max-min equality 

holds strongly in either case, even though both A and C are (0,1)-matrices. 



 ■•" - -"""l «"»W-'i'w-.—■• 1 ,^^_™ rr-™~-*~ 

l 
l 

i 

W»- M"1!,! I|II|!1IPH1HIII]I,IIIII,|! ,1» 

In the next section we shall prove that the max-min equality does hold 

strongly for (C,A) by a modification of Edmonds1 algorithm for optimum 

branchings [2]. Edmonds has subsequently proved the very interesting result 

that it also holds strongly for (A,C) [3.4]. That is, the linear packing 

program 

(2.7) 

yA < w 

y ^ 0 

max l-y 

always has an integer solution vector   y   whenever   w   is a nonnegative 

integer vector, and this integer vector   y   has component sum equal to the 

weight of a minimum-weight r-directed cut, 

(2.8) l-y =    min    c^-w, 
l<j<n 

where matrix C has rows c ,...,cn. Results of [6,8] would imply only 

the existence of a rational vector y satisfying (2.7) and (2.8). 

A further consequence of Theorem 2.1 and of [6] is that the min-min 

inequality holds for the matrices A and C. (This is the analogue of the 

length-width inequality for paths joining two terminals of a graph and cuts 

separating the terminals [1,9].) The min-min inequality for A and C 

asserts the following. Let i-    and w be two nonnegative vectors, each 

having one component for each edge of an r-rooted directed graph. Then 

the inequality 
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always holds, where A has rows a ,...,am, and C has rows c ,...,cn. 

In other words, the weight of a minimum-weight spanning arborescence rooted 

at r, computed using the weight vector i,    times the weight of ?. minimum- 

weight r-directed cut, computed using the weight vector w, is at most 

equal to the inner product of vectors I    and w.  (cor an example of (2.9), 

see Figure 2.1, where the components of H   and w are recorded as first 

and second members, respectively, on the edges. Each side of (2.9) is equal 

to 12 in the example.) A direct proof of (2.9) would prove Theorem 2.1. 

Figure 2.1 

3. Algorithm and example.  The algorithm for constructing a maximum pack- 

ing of r-directed cuts in a weighted graph is extremely simple. It has 

the very nice feature that nonnegative weights (components of y in (1.1)) 

are assigned to certain r-directed cuts sequentially, and that once such a 

weight has been assigned, that weight is never changed subsequently in the 

course of the algorithm. (Positive weights can be assigned in the algorithm 

to r-directed cuts that are not set-wise minimal, but this does not matter. 
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Such weights could be transferred to rows of matrix C if desired. We shall 

not bother to do so.) 

The proof that the algorithm does construct a maximum packing of 

r-directed cuts is somewhat more involved. It requires showing that the 

algorithm can be continued (see 1.3 of [2]) to produce a minimum-weight 

spanning arborescence rooted at r whose weight sum equals the packing sum. 

The complete algorithm for constructing both a maximum packing of r-directed 

cuts and a minimum-weight spanning arborescence rooted at r is a modifica- 

tion of that described in [2]. It is simpler, however, particularly in the 

assignment of (what may be regarded, fvom the point of view of constructing 

a minimum-weight spanning arborescence rooted at rl optimal dual variables, 

which here solve the packing problem (our primal problem) but which in [2] 

solve a certain covering problem (the linear programming dual of (2.2), 

(2.3), and (2.4)). 

After describing the algorithm, we shall apply it to an illustrative 

example, the weighted graph of Figure 3.1 below, with vertex 1 as the root. 

Figure 3.1 

 i I i  .^— ..  
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Begin by selecting, from each bundle of inwardly-directed edt'es 

(N-t,t) at each t / r, one edge having least weight among all edgvs in 

(N-t,t). For each vertex t / r, assign the r-directed cut (N-t,t) the 

packing weight y  equal to the weight of the edge selected from this cut, 

and reduce all weights of edges in this cut by y , obtaining a new non- 

negative weight vector w" on edges. If any one of the r-directed cuts 

(N-t,t), for t / r, is empty, stop. (In this case the maximum packing 

value is infinite and G has no spanning arborescence rooted at r.) 

Otherwise the subgraph of selected edges has |N)-1 members; if this sub- 

graph has p (weak) components, then it has precisely p-1 directed cir- 

cuits, one in each component not containing the root r. If p = 1, stop. 

(The present packing is maximum.) If p > 1, contract each of the p-1 

directed circuits to a new vertex in a new directed graph G', i.e., contract 

each edge of G that joins two vertices of one of these p-1 directed cir- 

cuits. Edges of G' have weights given by w'.  (G* may of course have 

several edges directed from one vertex to a.iother vertex, even if G did 

not. We can replace srch multiple edges by one edge whose weight is equal 

to the least of these weights.) 

The process is now repeated with G' and w1, but in doing so, we 

only look at the new vertices of G'. 

Eventually we find either an empty r-directed cut or p = 1. 

Figures 3.2 to 3.5 below show the construction for the example of 

Figure 3.1. Selected edges ar« bold in the figures. Multiple edges have 

been replaced by one edge. Each new vertex of G' is identified by the 

set of vertex numbers of G that corresponded to the vertices of G con- 

tained in the directed circuit of G that was contracted to form the new 

^ 
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G and w' 

P = 3 

_y 

10 

10 

i 

Edge-list 

A 

I! 

1,2 
3,2 

1,3 
7.3 

1.4 
3.4 
8.4 

1,5 
4.5 

2,6 
3,6 

4,7 
6,7 
8.7 

5,8 
9,8 

2.9 
5,9 
6,9 
7.9 

w^ 

l/ 

v^ 

•" 

l-^ 

l^ 

^ 

10 
10 

15 
5 

9 
2 
0 

19 
10 

20 
1 

3 
0 
4 

2 
5 

4 
1 
3 
2 

0 
0 

10 
0 

9 
? 
0 

9 
0 

19 
0 

3 
0 
4 

0 
3 

3 
0 
2 
1 

11 

Figure 3.2 

G' and w" 

P = 2 

3 

Edge-list 

'(1,4) 
(3,4) w" 
.(9,8) 

w' 

19 
3 

10 

9 
2 
3 

16 
0 
7 

7 
0 
1 

Figure 3.3 
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vertex. The construction is shown in both edge-list form and in diagram form 

in the figures. 

In Figure 3.3, we have generated two new packing weights: 3 on the 

(nonempty) cut (X,X) with X = {3,6,7} and 2 on the (nonempty) cut (Y,Y) 

with Y = {4,5,8}, Since p = 2, we contract the unique circuit of bold 

edges to obtain G" shown below in Figure 3.4. 

G" an 

P = 

L 

1 

Edge-list 

r(1.3) 
(2.6) 

1(9,8)^ 

w" 

7 
16 
1 

w"' 

6 
15 
0 

Figure 3.4 

The only new packing weight obtained from Figure 3.4 is 1 on the (non- 

empty) cut (Z,Z), where Z = {3,6,7,4,5,8}. Again p = 2 and we contract 

to obtain Figure 3.5. 

G*' and w"" 

p = 1 

Figure 3.5 

Edge-list    vT 

(1.3) 
(2,9)w^ 

6 
3 

w 

3 
0 
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At this stage,    p =  1    and we are done, having generated one new pack- 

ing weight of 3 on the  (nonempty) cut     (W,W),    where    W =  {3,6,7,4,5,8,9}. 

The total packing value is 38. 

It is clear that the algorithm produces an integer packing of r-directed 

cuts.     It remains to show that this packing is maximum.    To accomplish this, 

one can work backward in the sequence of graphs produced by the algorithm 

(from Figure 3.5 to Figure 3.2 in the example) to produce a spanning arbo- 

rescence rooted at    r   whose weight is equal to the packing value.    The 

backward process retains certain selected edges and deletes others.    The proof 

that it constructs a spanning arborescence rooted at    i    is like the proof 

given in [2] that the similar procedure there constructs a branching,  the 

main difference being that we start with a spanning arborescence rooted at 

r,    and thus retain this property inductively.    The idea of the inductive 

step is simply this.    Suppose we have a spanning arborescence rooted at    r, 

with certain non-root vertices being distinguished  (e.g.,  the "large" vertices 

of Figure 3.6). 

Figure 3.6 

If we replace each of these distinguished vertices by a directed circuit 

(e.g., as shown in Figure 3.7) and then delete, for each of these circuits, 

the unique edge of the circuit that is directed toward the same vertex as 

*m*mm .*.   .■ ....... 
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one of the old edges, the new graph is again a spanning aiborescence rooted 

at    r. 

Figure 3.7 

Thus, in the example, we work backward in this manner from the spanning 

arborescence rooted at 1 of Figure 3.5 as follows: 

.© 

(1)     (3,6,7.4,5.M) 

Figure 3.5' 

3,6.7.4,5.8^ 

Figure 3.4* 

I 
I 
I 

Figure 3.3' 

Figure 3-2* 
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Figure 3.21 shows the spanning arborescence rooted at 1 of the original graph 

that is obtained, together with the original weights on arborescence edges. 

The total weight is 38. 

The backward replacement process can also be viewed globally, rather 

than sequentially, just in terms of the list of selected edges and the list 

of subsets X of the r-directed cuts  (X,X) that produced 1 he selected 

edges, one for each cut.  (See Figure 3.8 below for the example.) 

Edges Subsets    X c N 

(1,2) 2 
(7.3) 3 
(8.4) 4 
(4.5) 5 
(3.6) 6 
(6,7)»/ 7 
(5,8)^ 8 
(5.9) ^ 9 
(4.7) 3.6, 
(3.4)/ 4,5 
(9.8) 3,6, 7.4. 
(2.9) 3.6, 7,4.5, 

Fi igure 3.8 

Start with the last member of the edge-list, look for all preceding 

r-directed cuts containing this edge, and delete their corresponding edges 

in the edge-list. Repeat this procedure.  (In Figure 3.8, edge (2,9) 

knocks out (5,9), edge (9,8) knocks out (3,4) and (5,8), edge (4,7) knocks 

out (6,7). The remaining edges form the spanning arborescence of Figure 

3.2'.) 

An important point follows from this: Any r-directed cut  (X,X) 

produced in the packing has just one edge in common with the spanning 

arborescence rooted at r that is constructed. Thus 
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(3.1) y_>0=»a.c =1, 

where yy. is the packing weight assigned to (X,X), c is the incidence 

vector of the cut (X.X), and a is the incidence vector of the spanning 

arborescence rooted at r. 

It is also clear that the sum of the weights yy- on cuts (X,X) that 

contain a given edge of the arborescence is equal to the weight of that 

edge. Thus 

(3.2) a(i.j) > 0 =0> _l y7
=  w(i.3) 

(x,x)3(ij) 

Together (3,1) and (3.2) show that the integer packing of r-directed 

cuts is maximum, the weight of the spanning arborescence rooted at r is 

minimum, and the packing value is equal to the arborescence weight. Thus 

Theorem 3.1.  The max-min equality holds strongly for the ordered 

pair of incidence matrices (C,A). 

ithm picks out a square submatrix of the incidence matrix 

C of r-directed cuts vs. edges of G, which has one row for each cut 

selected in the algorithm and one column for each edge selected, and 

simultaneously arranges this submatrix in upper triangular form T, with 

1's along the diagonal. T is thus nonsinf  r.  In the fxrst part of the 

algorithm, the equations 

yt = w. 

i 
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where y(w) denotes the vector of the appropriate components of y(w) are 

solved, producing a nonnegative integer solution (and the inequalities 

yC «^ w, or yC' <^w, are not violated). The second part of the algorithm 

solves the equations Ta = 1, and the resulting (0,l)-solution vector a 

is the incidence vector of a spanning arborescence rooted at r. (See Figure 

3.9 for the example.) 

a 

10 
5 
0 
10 
1 
0 
2 
1 
3 
2 
1 
3 

2 
3 
4 
5 
6 
7 
8 
9 

3,6.7 
4,5.8 

3,6,7,4,5,8 
3,6,7,4,5,8,9 

1 1 1 0 0 1 0 1 1 

(1,2)(7,3)(8,4) (4.5) (3,6)(6.7) (5.8)(5.9)(4,7)(3,4)(9,8) (2.9) 

i   1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 

i   0 0 1 0 0 0 0 0 0 1 0 o   1 
0 0 0 1 0 0 0 0 0 0 0 o   1 
0 0 0 0 1 0 0 0 0 0 0 0 

1   0 0 0 0 0 1 0 0 1 0 0 0     j 
.     0 0 0 0 0 0 1 0 0 0 1 0 

0 0 0 0 0 0 0 1 0 0 0 1   1 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 1 o   1 
0 0 0 0 0 0 0 0 0 0 1 o 
0 0 0 0 0 0 0 0 0 0 0 1   1 

10 0  10 

w 

Figure 3.9 

Thus, in linear programming terminology, the cut packing program (1.1) 

always has an optimal basis which is triangular. 
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