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ABSTRACT

An efficient contour-plotting routine is discussed which
is based on a scanning algorithm of Cottafava and LeMoli and
employs bi-linear interpolation. An auto-interpolation scheme
is developed which automatically adjusts the number of inter-
polations in any data square to produce smooth line segments.
A program listing and examples are given,
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INTRODUCTION

There are many approaches to producing contour maps on a
digital computer. Several of these are described by Cottafava
and LeMoli (1969). Ideally, a contour routine should be efficient
on both computer and plotter, but most seem to possess only one

kind of efficiency. For quite a number of reasons, including
plotting efficiency, algorithms of the "1ine-following" type
are preferable for use with mechanical plotters. Cottafava and
LeMoli present a scanning algorithm of this type which is also
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very efficient on the computer.

In their prog:am (Cottafava and LeMoli, private communica-
tion) thoy assumed a linear variation between points, but did
not do any interpolation in the interior of the data square
(defined by four contiguous data points as vertices). Thus a
plot produced with their routine consists entirely of straight

RS

line segments joined together, the coarseness depending on the
spacing of data points, To remedy this, the author developed an
autointerpolation scheme employing bi-linear jnterpolation for
use in the interior of the data square. With this scheme,
described in the present paper, the number of interpolations

1¢

BRERREE

s

used in crossing the data square is automatically adjusted to
produce a smooth curve, the number required depending on the
curvature of the line segment, This method requires no additional
storage and is very fast.

=

TR

While the interpolation does indeed produce smooth line

segments, slope discontinuities sometimes occur on the edges ﬁg
(of the data squares). This is a limitation of the bi-1inear %
interpolation law. An easy and economical solution to this :é
problem is to obtain a finer data mesh by performing a higher- %
order interpolation before entering the contour routine. This 3
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may also be done when the data are not given as a set of
equally-spaced points,
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SCANNING ALGORITHM

The scanning algorithm used is that of Cottafava and
LeMoli, with several modifications by this author. A more
complete discussion than will be given here can be found in
the paper cited. For each contour value, the procedure is to
scan the entire data array to find which line segments are
intersected by the level 1line and to store the information as
flags within the data words themselves, A horizontal and
vertical segment are associated with each data point as shown
in Figure 1 (the y-axis is given its normal sense here;
Cottafava and LeMoli reverse it).

I
|
l
l
l
l
|
' -
|
l
P |
II

Figure 1., Intersection flags

The flags are stored as bits in the upper part of the integer

word, the data being normalized to positive integers by a linear
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transformation. (In deference to readers with machines which
cannot perform masks, the use of masks in the programs has
been limited to an inessential role, where they can easily be
replaced by a test and subtract. Where masking statements are
available, the flags can be conveniently stored as the least-
significant bits of the floating-point mantissa of each data
word. This results in a considerable simplification of the
program. )

The contours are traced in a second scanning operation,
each flag being erased as it is found. This procedure makes it
easy to find all tke branches of the contour level and is in
large part responsible for the efficiency of the program. Each
line is traced square by square by a local scan which checks
~all the edges of the data square'in fixed order (counter-
clockwise beginning with the right edge) to find the contin-
uation of the line. This procedure runs into trouble only in
the case of an interior saddle point (square crossed twice by
the same contour), and in this case there is an -easy solution
based on the interpolation method.
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INTERPOLATION

In order to define the behavior of the contour line
inside each data square, we must make an assumption about the
behavior of the function inside the square. Lacking any special
information in the general case, we assume bi-1inear variation
as the simplest general variation. (Using a higher order inter-
polation here would also cause serious difficulties with the
scanning procedure.) That is, we assume

F(x,y) = A+ Bx + ay + &xy (1)

o]

referred to a local coordinate system with origin at A, as
shown in Figure 2,

_h‘
) =2

fe.ne -~ -~ D
# s
Fal |
r
O
! |°'

l/ ' “Fix.y)

\
. ] = X
A > - 2

(0.0) ﬁ (r.a}

Figure 2. Interpolation conventions
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Equation (1) is the Lagrange 2 x 2 interpolation formula and
is also equivalent to a Taylor's series expansion, with the
assumption of constant first derivatives on each edge, Making
our square of unit dimensions, the derivatives are

o = C=A
B = B=-A
(2)
y = D-C
§ = y-B

With these definitions, it is easy to see that (1) reduces to
the correct values at the corners and reduces to ordinary
lTinear interpolation on each edge. Our contour segment is
therefore the locus F(x,y) = v, the value of the contour.
From (1) we obtain either

_ v=A-Bx
Y < SEex B

or

x = YzA-ay (8)

i

with 0<x<1 and 0<y<l. These expressions are easily computed.
In practice, we choose the number of interpolations, subdivide
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Ax or Ay, and use either (3) or (4), respectively. It is
convenient to use (3) for a line terminating on a vertical
edge, and (4) for a line terminating on a horizontal edge.
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AUTO-INTERPOLATION

We approximate our ideally smooth curve by a series of
chords. If we choose the number of chords in each square so
that the maximum deviation from the ideal curve is on the
order of the basic plotter increment, then we obtain as smooth
a curve as we can with no wasted time. We take as our auto-
interpolation criterion, the maximum perpendicular distance
from the curve to the straight line between the end points.
The perpendicular distance from a point to a line is

e(x) = (y - mx-b)/'V/m2+] (5)

from elementary geometry. We consider the case of a segment
terminating on the left edge of the square, and for this casc
there are just two distinct possibilities, as shown in Figures
3 and 4., A1l other possibilities can be found by reflections
and a rotation,

o
9
Ay
ms=
Nx
[ 2 " ]
F ] g .
Figure 3., Case I Figure 4, Case II
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For case I the slope is

mo=ca/ o= -Y/e

For case II,

- v=A-B8 _ v-A _ §{v=-A) + aB

ma a+s o - alo+d)

For both cases the intercept is b = (v-A)/a. The "brute force"
calculation of the maximum of (5) is messy, hut a transformation
simplifies the algebra. Define

_ 8(v-C)

= oy

n, = §/a | (6)
(v-C)/v, case I

n = % Ax where Ax =
1, case II

Then
S(v-A - v=C -
L A IR IR I R IR
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which leads to the relation
m2‘(1+n2) = my(1+nq)

It can a]so be shown that

i} m](1+n])

y=b X

]+n2x
and

m](]+n])

yos .

(1+n2X)2

The location of the maximum of (5) is given by the condition

(hats will be used to refer to the maximum), i.€.,

m](]+n])
(]+n2§)2

-10-
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Thus

y-b = m(1+n2§)§

or

where X is found from (8). For case I, m = mys and
S -
x]-nz\ﬁrﬁ; 1]

For case II, m = m,, and using (7) in (8) gives

X2

1
" \ﬂ+n2 - 1]

which has the same form. Putting these results in (9) gives

=11=

(9)




~ 2
€ = m2 -:-]-; V1+n - 1]
Vm©+1

for both cases. This is conveniently written in the form

A | 2
£ - _Ax Ay {% T -1) ) (10)

VAx2+Ay2

Since (10) is symmetric in x and y, it can be easily seen to
apply to the cise of a segment terminating on the bottom edge
of the square also, provided that we define n = SAy/B in this
case, Thus all possible cases are contained in (10)., A bound
can be placed on € by considering n+= and Ax-+Ay-+1, namely
€<1// 2, which agrees with geometrical intuition.

Knowing how to calculate the maximum deviation of the curve
from the straight line between endpoints, we use this to estimate
the number of segments needed to approximate the curve to any
desired accuracy. To do this, we consider the case of a circular

arc, Figure 5,

Figure 5., Deviation from a chord
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It is easily shown that d:L2/8r. provided L/r<<1, the important
point being the proportionality d « L2. Since L = 1/N, approximately,
where N is the number of segments needed in that square, we take

N =] +/|e|7a.

where d equals the allowable deviation, For plotters with a 2.5 mil

increment, d = ,001" is satisfactory. This auto-internolation
scheme appears to work quite well,
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SINGULARITIES AND SADDLE-POINTS

Evidently something peculiar happens with (10) if n+1<0,
This can be seen to be connected with a singularity in y or x,
equation (3) or (4). The existence of a singularity in y(x)
within the interval 0<x<1 is implied by the condition that (D-8B)
and a have opposite signs, and the existence of a singularity in
x(y) within the interval O0<y<1 is implied by the condition that
y and B have opposite signs., If both singularities exist, then
the square has an interior saddle point located at the inter-
section. An example is shown in Figure 6. A very convenient
criterion for making connections in a saddle square is that
contours should never cross a singularity. The condition
n+1<0 can be easily shown to imply a wrong connnection in a
saddle square., By far the easiest solution to this problem is
just to check for a wrong connection and to resume scanning
the square if it exists. At most three tries will be necessary
to make the correct connection, and since saddle-points should
be relatively rare, this is a small price to pay for such a
simple procedure that guarantees correct connections.

Xb="¢‘/s
b= - /8

u
AT AN

Figure 6. Contours in a saddle square
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RECTANGULAR MESH

Should it be desired to plot data cells as rectangles
instead of squares, this is easily done by stretching one axis
in the calls to PLOT, Defining r as the ratic of x to y scale
factors, i.e. the rectangle has length r in the x-direction
and 1 in the y-direction, elementary trigonometry gives for the
modified deviation

2, .2, 2
< [1+r°m AXT+r©A
=e \[—5—=c¢ -——1r-~%—

V1+m Ax“+Ay

S R R L R T

m

«]5=
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EXAMPLES

Two simple examples of plots produced by the routine
are shown in Figures 7 and 8., Figure 7 was produced from real,
deterministic, data, and Figure 8 from random numbers. Data
points are marked by ticks along the borders of the plots. Each
plot is based on only 24 data points, and the large number of
slope discontinuities indicates the need for a more refined
data mesh,
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APPENDIX
PROGRAM LISTING

Written in FORTRAN-63, a programming lTanguage of the
CDC 1604 computer. Integer words assumed at least 33 bits long.
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