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The complementary wing approach is used to represent the relief
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This approach was applied to fixed wings by Anderson and is extended here

for application to helicopter rotors.
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ABSTRACT

A theoretical method is derived whereby the effect of the compressible =
three-dimensional relief on the torque required for a helicopter rotor E
say be calculated. The complementary wing approach is used to represent
the relief effect. The effect of the wing which complements a finite wing
to make it an infinite wing may be found as a rcductiou in the free-stream
velocity, This approach was applied to fixed wings by Anderson! and is
extended here for application to helicopter rotors. By using a simplified
. blade element analysis, the magnitude of the change in torque due to tip
rclief has been calculated and compares well with test results. The method
to use the tip relief calculation in more complex blade element computer
programs is described.
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INTRODUCTION

The present methods of calculating the performance of helicopter rotors
in the compresgible regime are not quite satisfactory., These methods are
based on the use of twoedimensional compressibdle airfoll data inserted into

strip element analyses and predict power losses higher than are actually
found from flight test date.

Though only one of many complex factors, a prime reason for this discrepancy
is the tip relief effect, i.e., the reduction in the drag of a finite tody
wvhen compared to a similar body of infinite span, due to the reduction in
local velocity near the tip., The existence of the tip relief effect has
been wvell documented for both fixed and rotary wings, and the documentetion
indicates that the tip relief effect becomes more important as Mach number
increases in the subsonic range., For the case of a wing in uniform flow,
theoretical work exists which quantifies the tip relief effect, TFurther,

a theory exists by which the drag coefficients of wings of differing aspect

ratios, up to high subsonic speeds, may be correlated by a similarity law
develoved by Anderson,!

The wrpeose of the work reported herein was to investigate whether Anderson's
work on the tip relief effect for fixed wings could be extended to rotating
wings, either by a transformation of coordinateg from uniform to rotating
fiow, or by setting up the problem directly in rotating coordinates, The

approach was suggested by Trant? zeveral years ago., The nenlifting finite

wing is renresented as & source distribution, and the actual wing is found

tc be mathematically equivalent to the superpesition of a wing of infinite
aspect ratis and of a "complementary wing" that would extend from the tin
of the actual wing to infinity; the problem is initially szt up for
incompressible flow and then transformed into a compressible flow problem,

Early in the investigation, it was found, exactlyv as theorized earlier by
Trant, that Anderson's method could be used for rotating winzs by using a
different method of averaging locally induced velocities over the wing due
to the tip effect, While Anderson finds a unique correction factor for

the free-stream velocity, one can find a spanwise varying correction factor,
which can be used in the blade element performance analvsis of rotors., Only
recently, hovever, has a full understanding of the vroblem been reeched,
after (1) the mathematical transformation of the problem from fixed to
rotating coordinates was accomplished and (2) a solution of the provlem
directly in rotating coordinates was atterpted, The limits of validity
of the solution indicated above have been established, and it has been
shown that the Trant approach is correct for helicorter rotors; in addition,
there 1s strong evidence that the mathematical formulaetion of the Anderson
problem directly in rotating coordinates is fruitless. Limited comparisons
of flight test data with a simplified blade element analysis incorporating

the tip relief effect derived theoretically in the recort show very
encouraging correlation trends.
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This report presents a detailed mathematical formulation of the tip relief
effect on helicopter rotors. The report first discusses the background to
the problem; then the calculation of the spanwise varying correction factor
to quantitatively determine the three-dimensional relief effect is given.
Whenever possible, the discussion and the derivation are ir terms of fixed
coordinates, as it is simpler to grasp nhvsically and because the
relationships between fixed and rotating coordinates are straightforward

as is shown later in this report. Next, the basic fluid dvnamic equations
of a rotor are discussed, including the derivation of the small perturbation
equations for subsonic and transonic flows to show the relation between
comuressible and incompressible flows over rotors., The source-sink
distribution method of representing a rotating blade is discussed.? Then,
use of the tip relief correction factor for compressible flow over a rotor
in blade element analysis is derived, The final chavters make a comparison

with experiment, discuss the results, and give conclusions and recommenda
tions,
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ROTARY-WIHNG PERFORMANCE CALCULATIONS

Performance prediction techniques for rotary wings are highly iterative.
Calculations for a single point on a performance curve may take a considera-
ble time on a high~speed computer using one of the more sophisticated free-
wake techni~ues, This ig clearly unaccevtable for preliminary design
purposes, and thus methods which are reasonably simple in avplication, but
not necessarily exact in the mathematical sense, are needed,

The two approaches to rotsry-wing performance calculations are the actuator
disc and the blade element theories, Since actuator disc theory assumes

an infinite number of blades, it gives nc information as to how the blades
should be d«signed and ignores profile drag, Thus it is necessarv to use
blade elenient theory, which assumes that each element can be consideread
aerodynamically as an inrdependent two-dimensional airfoil segment. The
local forces are calculated from the resultant velocities at the element,
and total forces are found by integrating the contribution of each element
along the radius and the azimuth. From these forces, the motion of the
blade is determined, but the motion in turn has an effect on the local
velocities and thus the local angles of attack. This iteration may be
avoided only by making such further assumptions as averaging the induced
velocities and assuming a constant drapg coefficient as is done in chapter 8
of the book by Gessow and Myers.“ 1ith the use of highespeed computers, the
blade element iteration is used. Some of the basic assumptions used in

the analysis and some of the suggested improvements include [for a more

thorough reviev, see Gessow and Myers“(page 198-216), Harris et al.,’
and Bellinger®]:

- The use of two-dimensional steady airfoil data is almost universsal.
The use of so-called synthesized data has been suggested and will be
discussed later in this report. There are also attempts to include
unsteady stall hysterisis in the data,® in addition to theoretical
work in the area of dynamic stall,’

-~ Tip effects are accounted for as a loss in the lifting capability
of a small percentage of the blade near the tip., Often, it is
simply taken as a constant B=0,97, but it can be calculated as &
funection of thrust coefficlent based on vortex theories developed
by Prandtl and Betz, as explained by Glauert® (page 261-269).

- The radial component of the velocity at an element is neglected, and
the analysis i based orly on the velocity normal to the blade svan.
A means of removing this limitation has been suggested by Harris,d
based on ideas of swept-wing serodynamics,

~ The induced veloeity is in many cases assumed constant. The major
problem is the prediction of the location of the trailing vortices.
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In fixed-wing aerodynamics, the trailing vortices are assumed to
trail aft in the direction of the free-stream velocitv. On a rotor,
the trailing vortices are in more or less the shave of a hellcal
sheet, due to rotation and to the nonuniform 1ift distribution.

The helical shape for the trailing vortices was first used by
Coldstein.® But the helical shave gives rise to a great deal of
ipterference which distorts the wake, as described, for example,

by Landgrebe.m’11

~ Compressibility effects are taken into account by using airfoil data
from two=dimensicnal compressible flow tests ags discussed below.

The comblexitv of the rotating wing problem is such that oanly recently has
any real progress been made in the basic theory. In fact, Sears!? indicated
that the blade element approach is vaiid. Only in December 1070 was it
shovnl? that Sears is not necessarily valid for a finite span rotating blade.
Boundery laver calculations (such as that bv Hicks snd Nash!“and Clark end
Arnoldil®)yge the two-dimensional pressure distribution suggested ¥y tlade
element emalysis as Lile external flow. Unfortunately, very little of the
basic theoreticsal analysis is of direct vse in the design and performance
prediction of rotor systems.

COMPRESSIBILITY EFFECTS ON ROTORS

Some of the approaches to account for the compressible flow over helicooter
votors will be reviewed. 1In the early 1950's, two hasic theoretical
approaches to compressibility were made, The first was solutions to the
actuator disc problem in compressible flow,!%,17,18 This was combined with
blade element theory by Laitone!® for use with helicopters, The other
approach by Head,?0 was the use of the Prandtl-Glauert rules for the 1lift
coefticient variation with Mach number in a simplified blade element analysis.
By including a linear decrease in 1lift above the 1ift divermence Mach number
to extend the validity, the ratio of comvressible~to-incompressible thrust
coefficients and the ratio of induced and total torque coefficients for
compressible and incompressible flows are found., UNeither of these approaches
recieved much use. The actuator disc theory was not used because it does
not give any details concerning the airfoll desian; Head's report received
little circulation; and th: use of two-dimensional compresesible airfoil

data in blade element analysis was begun at the same tine,

Airfoil data obtained in two-dimensional comeressible flow in hlade element
analysis were used to find the effects of comoressibilitv and to make
corrections to the availlable incompressible rotor charts. Typically,

these were numerically integrated hy calculators and made a large number
of assumptions.?!*22 The culmination of this effort is the charts and
tahles prepared bv Tanner,23 24 yging a highly sophisticated computer
program with airfoil data from 'two-dimensional wind tunnel tests of a
production blade specimen using the NACA 0012 airfoil section.
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The ipconsistency of using two-dimensional data in rotating airfoil
groblems first came to light during propeller tests.25 The drag divergence
tip Mach number of a propeller vas found to te about 0.06 above the two=
dimensional result, and performance tests of full-scale helicopter rotors
in hover indicated the game trend,2® Therefore, Carpenter2’s2° proposed
the use of "synthesized" airfoil data, vhich are obtained by "adjusting the
airfoil data in such & manner that the calculated performance agrees
closely with the measured performanca”, He stated further on page 2 of
Reference 28 that "although the synthesized data are derived from rotor
hovering performance, it can be reasonably assuued (until proven otherwise)
that the data are equally applicable to forward flight calculations",
Charts similar to Tanner's were prepared by Kisielowski et al, 2 wusing
the synthesized data of Reference 28, but these latter charts appear to be
rarely used, It would be of interest to compare the predicted performance
using each of the two sets of charts with some actual flight test data.

The problem of helicopters at high forvard speede is that compressivility
effects and stall occur at the same time on the rotor, At the advancing
tip, the forward speed and the rotational speeds add, resulting in gpeeds

of approximately Mach one, But on the retreating side the two speeds
subtract, resulting in a region of reverse flow and areas vhere the flapving
blades are at or above the stall angle of attack., The dividing line
between stall losses and compressibility losses is not indicated by test
data,26 and both areas must be taken into account in rotor analysis.

To reduce the data and decrease tne amount of flight test required,
personnel at the Edwards AFB Flight Test Center have been developing an
aporoach, mainly empirical, to account for compressibility effects. 0-33
Drawing on fixed-wing experience, the power required is divided into two
portions: (1) the incompressible pover; and (2) an increment in power due
to compressible flow, which depends on the difference betwveen the critical
Mach number of the blade section and the Mach number of the element. The
correlation is established empirically using UH=1F and CH-LTA flight test
deta, 30931  Later reports32:33 {nclude the effects of power losses due to
retreating blade stall.

Another approach3“ to the aerodynamic problem of a rotor blade in compressi=
ble flow has been taken by Bell Helicopter Company in its design of the
Model 309 King Cobra. The rotor system embodies an asymmetrical airfoil
section and a double swept tip. The airfoil section designed by Prof.
Wortzan3S is based on the aerodynamic requirements for two-dimensional
airfoils found from besic blade element theory., Swept wings have long been
used to delay the effects of compressibility on fixed=-wing aireraft,

Similar sweeping of the leading edge of the biade tip will reduce
compresaibility effects in forvard flight,36

Thin blades near the tips to reduce the drag divergence Mach number have
alsc been considered by Bell.’® But in uniform flows, & thin airfoil has
a lower maximum 1ift coefficient end stalls et a lower angle of attack,
which in a rotor would increase the power on the retreating side. The
Sikorsky S=67 Blackhawk also incorporates the sweeping and a thimnerx
section of the blade tip to reduce compressible flow effects.
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Surprisingly, though, full-scale wind tunnel tests3? indicate that the
lifting capability of a thin-tipped bladed rotor is not compromised, while

it requires significantly less power at high advancing tip Mach numbers than
a blade with constant thickness,

THE THREE~DIMENSIONAL RELIEF EFFECT ON ROTORS

This report is concerned with one aspect of the rotor compressibility
provlem, As noted above, two-dimensional airfoil data overegtimate the
compressibility losses. One possible factor may be the reduction in drag
coefficient of a finite wing in compresgsible flow compared to a similar
tvo-dimensional airfcil, As will be described, this relief effect may be
determined in a quantitative manner and applied to tihc performance
calculation of rotary wings.

In a three-dimensional flow, the stream may deviate from the main stream
in both directions perpendicular to the body chord line. At the same time,
in two-dimensional flow, only deviation in the direction perpendicular to
both the chord end the span is possible. Theretore, lesser disturbances
are produced by three-dimensions)l bodies than by two-dimensional bodies,
(See the discussion of Figure 10,) This reduction in disturbance velocity
is also a reduction in Mach number, and thus a reduction in critical Mach
number,

That this disturdance reduction in a three-=dimensional flow increases with
free-stream Mach number was found3S8 analytically for flow vast ellipsoids
of various aspect ratios; the difference bhetveen the maximum velocity of
an elliptic cylinder (an ellipsoid of infinite aspect ratio) and a finite
aspect ratio ellipsoid was found to increase with Mach numbrr (see, for
example, Figure 13«2 of Shapiro's book,3%) On airplane wings of normal
aspect ratio at incompressible speeds, the wing is ¢onsidered to be two-
dimensional. The effect of aspect ratio is found from the Prandtl lifting
line theory as an additional angle of attack and an induced drag due to
the effect of the trailing vortices. The induced drag of the wing is found
to vary inversely as the aspect ratio,

GCoethert? extended the Prandtl-Clavert transformation between compressible
and incompressible flows to finite wings, The result is that, instead of
the simple affine transformation of a two-dimensional body to reduce it to
an equivalent incompressible flcw, for a three-dimensional body ail lateral
dimensions must be reduced by the amount 8 = vV 1 = M2, For a more
detailed discussion, see Shapiro.39 article 13-2, and Jones and Cchen 4!
pages L8-52,

But at higher speeds, not only the 1ift but the drag of the wing is affected
by aspect ratio, and the Coethert extension does not account for the three-
dimensional relief effoct. Therefore, a neans to quantitatively predict

the relief effect is needed. Anderson! developed a theory for the relief
effect on fixed wings in the nonlifting case. This theory is extended here
and is applied to rotary wings.




[LRaR"s

i §

Anlerson's theory for the tip relief used a "complementary wing" approach,
the complementary wing being a fictitious winz extending from the actual
wing tip to infinity on either side. His basic proposition is that the
velocity at the location of a finite wing can be considered to be the same
ag for the infinite wing, reduced by the amount which would have been
contributed by portions of the infinite wing that were removed from the flow
(the complementary winge). These values can be calculated by linearired,
subsonic compressible flow theory, using a source-sink distribution to
repregent the thickness effect of a symmetrical wing. In the case of the
fixed wing considered by Anderson, the effect of the complementary wing can
be averaged over the planform area of the finite wing, resulting inh a
"ecorruvction factor" which is a function of aspect ratio but not of position,
The application of this correction factor is "that the finite wing will be
considered to experience the same static pressure to total pressure ratio at
corresponding points as the infinite wing, but only when measured at a free-
stream velocity which is greater, by the correction (factor) calculated,
than the free-stream velocity over the infinite wing". In other words, we
can make use of two-dimensional airfoil information in the calculation of
three-dimensional flows through the use of the correction in free-stream
velocity. This will be explained in more detail in the chapters which
follow.
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THE TIP RELIEF EFFECT

A quantitavive means to calculate the tip relief effect, so that it may be
applied to rotary wings, is derived in this section. The derivation will
follov the concept and the treatment proposed by Anderson,! The major

di fference between Anderson's reports and this report is that Anderson,
being interested in fixed wings, intended to obtain the correction as s
function of aspect ratio A alone, while here it is necessary to obtain
results as function of aspcst ratio and distance from the tip, so that it
nay be agpplied to rotors.

The result which will be obtained here and that found by Anderson is that
two-dimensional results, be they from theory, wind tunnel or flight test
data, may be used, through the transformation derived here, in the
calculation of three-dimensional flows.

The discussion here will be concerned with a wing in a subsonic uniform
airflow with a constent airfoil seection. The flow is assumed to be sude
critical, with no shock waves, and inviscid without ceparation, The
airfoil is asgumed to be thin; thus the thickness of the airfoll may be
represented by the linear theory distribution of sources and sinks, namely,
that the source-sink distribution is proportional to the local streamvige
slope of the airfoil, Although this i3 invalid at the leading and trailing
edges, because of the averaging process which will be discussed below, no
correction needs to te made, The discussion is further restricted to the
nonlifting came, i.e,, the effect of thickness only. It is belleved that
the major cause of tip relief is thickness, rather than angle of attack

or canbder.

The derivetion will be made for a wing in uniform flow, as the physical
characteristics can be most easily explained and the equations are more
familiar. At the end of this section it will be shown that the result is
the same for the rotating case as may be expected from the theory developed
by Sears.l?

The Goethert extension of the PrandtleGlauert rule is used {n the analysis
for applicetion to fixed wings. The factor 82 = 1 = M2 will be used to
transform Letween the compressible flow and the equivalent incompressible
flovw, rather than any of the higher order developments. Extra complexities

of the higher order theories are not justified for this application. Further

extension to rotary wvings is discussed in the next chapter.
PHYSICAL AND MATHEMATICAL MODELS FOR THE TIP RELIEF EFFECT

Consider a symnetrical airfoll wing in inviscid, incompressible flow at
zero angle of attack, Due to the principle of superposition, the velocity
at any point is the sum of the free-stream velocity and the velocity induced
by the wing. The induced velocity of a finite span wing may be represented
by & scurce=-sink distribution over the planform area of the wing. But
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because of suverposition, the
finite span wineg may also be
renresented by a similar infinite
) . span wing less "complementary
compiomentary| AT vings", The complementery wing
Wing is a similar wing extending from
the tips of the finite wing to
infinity on both sides, The
concept of the complementary wing
/ is illustrated in Tigure 1 for

o Finite Wing a wing of chord 2c and svan of
2\, 'le may write this discussion

) SRS in equation form as
(:_'_‘f_‘:,-/(.:anblpel[émeumy ¢ = U x + fo UA d (]_)
’,/ ,_, Wing ® 2 n
g yynees for the potential of a finite

ving of aspect ratio A, with flow
along the x-axis and oripin at

Tigure 1. Coordinate Tystem for a the right winm tip, where A
Tintte Ying. rerresents the source~sink

distribution integral

+c
1 Fe(g) 48
A=- 1 (2)
: J(x=6)2 ¢ {y=)Z + 22
=c

vhere the subscriot £ indicates differentistion, This coordinate system
was chosen s¢o that it may later corresnond to a helicooter rotor.

The potential of the finite wing using a vair of complementary wings is

+n - A ey
¢ = Unx *+ ‘/- UsA dn t/P UnA dn :[ UsA dn (3)

-y 0

The values 5f ¢ obtained from either equation (1) or (3) have to be iucne
ticalo

The first integral in equation (3) (with limits of vlus and minus infinity)
is simply the potentisl of an infinite or two=dimensional airfoil, and
thus can be revresented bv the symbol X o’

The last two integrals give values which varv with pogsition throughout the
flow field. If an everage value of *these two terns can be obtained, the
oroblem becomes greatly simolified. ULet
,=2) ol
C(Xyxy702) = -‘L A gy -0-6, A dq (L)
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Then equation (3) hecomes
O = Uk + by - Ut (A Xy vy2) (5)

?he velocity in the streamwise direction may be gimply written from cquation
5) as

3¢
u= rreml U, + Uy e ~UCx (6a)
or
uE U (1=6) +u (6b)
which may also be written as
du
v " -Gx ()

If an averaged value of G_ can be found (denoted bv % ), then the velocity
on the finite wing u can Be comrared to the velocity 5t an infinite wing,
but at the new free~stream velocity of Uw(l-Cx). Therefore, the finite
wing will experience the same static pressure to total pressure ratio at
corresvonding points as the infinite wing at a free-stream velocity, which
is greater than the free-stream velocitv of the infinite wing by the
correction & . Therefore, the finite and the infinite wing will exverience
the same force ver unit span when

Uw( l"cx)

finite - U | infinite (1)
wing wing

holds for the free-stream velocity,

The correction G (A) was found by Anderson! by averagfhg over the planform
area of finite wing

1 1 +c (0]
ﬁx(l) =z == = J[ J[ Gx (Xy%, vy2)dxdy (8)
-t 2X

2¢ 22

If instead the averaging is done only over the chord of the finite wing,
then a correction will be obtained which will be a function of aspect ratio
A and svan y,

+c

B, (x,v)= %b 5 O %av,2)ax (9)
-
10




With the correction as a function of svanwise pesition, it becomes
avplicable to a rotarv wing where there are major spanwise variations,

The variable z, in the airfoil thickness direction, is eliminated since the
wing is assumed to be in the z = 0 plane.

T~ u

THE CORRECTION FOR A SEMI=INFINITE WING

To y,nue¢m

The main effect of a complementary
wing will be felt near the tip
vhere the complementarv wing joins
the finite wina, rather than at

the ovpesite wing tip, Thus a
further simplification may be
found if the complementary wing
opposite to the tiv under consider=
ation is nepglected., The problem
may then be vosed as the complemen=
tary ving of a semi=infinite wing
(see Figure 2), Mathematically,
this removes the first term of
equation (L), In this section

the correction for the semi-
infinite wing will be derived,
______ while in the next two sections the
correction for a finite wing is

derived, and then the two correc=-
Figure 2, Coordinate System for e tions are compared,

Seni«Infinite Wing.,

s v 8 SARpNDICTIEND TR

e

Serui-Infinite
Wing

To y,nes

e

Mathematically, the problem is the
substitution of equation (2) for A
into equation (4) for the complementary wing potential and then in turn
into equation (9) for the correction, and carrying out the indicated
mathematical operations., The complementary wing potential for a semi-
infinite wing is, from equations (2) and (L),

[ ——

o +a
G(xyy,2) = = L j f Fe(g) df dn (10)
| o 0 -C Y (x=E)<+ (yen)<+ 24

Taking the derivative of G with respect to x results in

G = 2. A fu Yo FE(f) 48 dn
x o x o X f R €= L O LT
' ©  4p (11)
. ij’ FE(E) (x=£)dE dn
on 0 “Ze¢ {(x=£)2 + (v=n)2 + 27)3/2

i
i
!
{
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The integration with resrecat to n over the span (N<n<w) of the comnlemen-
tary wing through the use of integral form Petit Dois A7-1442%

[ du - u (12)
,, (AZ + u?)312 A2 VA2 + 7

" Gy LT

where u = y -
du = ~ dnp
a? = (x=£)? + 22

: , and F_(£) 1is constant with respect to the integration, Noting that the
f v upner 'limit of integration 1is

lim u -0

- " - ]

5 : ur == /A2 + 42 ®

results in

+c V=

’ 6. om FE (x=£) dE =du

[ X 27 (‘\2 + u2)3/2

: Ze .

| r+c

! - Fr(x=£)4¢

; ¢ = =L 2 y + 1]
3 X 21

(x=£)2 + 22 S(x-£)2 + v2 + 22 |

(13)

Substituting into equation (9) to obtain the average chordwise correction,
- +c +c

‘ : r © I
E G (v) = e J iy - + 1l4g ax

T 7 | Tt
=c "=c )

Evaluating at the chord lime, z = 0, equarion (14) simplifies to

e ---—1a Fg [ ! _l Id
& () Mc[ f (X_E)L/________:Jfl dg dx  {15)

* Petit Bois 67~14 indicates the l4th integral form given in Reference 42
on page 7,




; Equation (15) may be integrated with respect to x holding F¢ as a constant, é

: since F, {s a function of the auxiliary coordinate £. The use of integral ;
forms Petit Bois 1~L and U5-10 results in the following equation:

) PR ’_+c +c 3

- - i dx

B (v) = = Fel v & o A

: x(v) = o gl ————— =

. ne (X-C)./ (x__g)z + yz (x E) k
- -C -C

Cwf c=£ %

¢ 3

=1 [ Vul+y? -y 2 3

Flys + &n a

= Lne ELy 1n u : g

-c ~(c+g) -(c+g) :

+c :

-1 1+ (9% :

8(y) = == | Fgle) im == &  (16) i

- 1 +7V( y ) +1 3

To evaluate equation (16) further, a specific airfoil under consideration ;

must be given and iis slove Fr inserted into equation (16) before carrving i

out the integration., An attempt was made to carrv out this integration for E

an airfoil whose thickness is given by a simvle algebraic series, such as
the NACA four-digit series, without success. Two other aoproaches were 3
used successfullv to evaluate the integral of equation (16). The first is
numerical integration, while the second is a Taylor series exvansion which
resuits in & simple but accurate aporoximate eyuation of wide annlication,

bk

Yumerical Integration

st o i e e L

Numerical integration of equation (16) was made using Simpson's rule in a
comvuter vrogram. Thic, of course, reguires an even sSpacing of intervals,
In most instances, 30 intervals were used with the upner and lower limits
4+ 0,9999¢c to avoid possible sirgularities and division by zero within the
comvuter. To indicate the accuracy vwith the nurher of intervals, Table I
corpares the values of &y using 20 and 30 terms for a varahclic arc airfoil,

ok B
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N TABLE I. COMPARISON OF INTEGRAL ACCURACY WITH NUMBER OF TERMS

Span Posiricen Sewmi~Infinice, Farabolic Arc Wing
yle

20 terms 30 terms

-0.02184 -0.02226
-0.01041 ~-0.01058
-0.00528 -0.00537

-0.00098 -0.00101

Differences in the final change in torque due to the number of terms are
even smaller than indicated in the table.

Further discussion of results will be in comparison with other methods of
evaluating equation (16).

Taylcer Series Approximation

If the bracketed term of equation (16) is expanded in a Taylor series of £,
the airfoil slope F; will then appear in integrals of the form

+c

f Fg (£)€7dE

which, as will be shown later, may ve further reduced to

. +cC

] F(£);™Mds

~C

Anderson found! that for lhe usual airfoil section, the values of these
integrals cannot have large variations.

Therefore, we can write equation (16) as
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P P T

A S

+c . +C
1 1 Hnn (cly) n
G.= — H_(c/y) +-=H.(c F.€d6 + oo + ——————JF 5 de (18)
X 4me °( y) 4nc 1 /y) 5€ > 4nc n' 1
Ze Ze
where

I ((c- 2
HE) = 1n AT LCOIEP D Ly (ely,g = 0)

1+ / ((c+) /y)2+ 1

+ o+ 2 (ely, £= 0) (19)
n:
where
R (20)
agn

The integrals of equation (18) will be discussed in a later section on the
effect of airfoil section, while here the first three nonzero terms of the

Taylor series of equation (19) will be given.

For the Taylor series, the derivatives of the logarithm terms, which are of

the form
1a(l + Y pZ+ 1) (21)
are found as follcws:
First Derivative
:5(£n(1+m))=,p +11+1%6§p+_1p.
__p 1-4A/7+1
p

,62 + 1 (22a)

15
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Second Derivative

4 B IATL L op AT e/ BTFD- (- T 02/ 24T ¥ B

- (- )= -
& P /pT p? (p?+1)
=-(2') il (22b)
3/2 )
Pl e e
Third Derivative
2 i . n D
d [_ ‘P_') (2% _-1)] - - p'a[pipz+l)4p-(2r>‘+l) 2(p%+1) + 3p) _
ae L o] p2paany3ne p*(p2+1)? p’
U 3 4 2
= (P) | GptopTH2 -z] (22¢)
P (p2+1)5/2
Fourth Derivative
'3 “45p2+
B I TR SR
14 p3 (p2+1)5l2
512 5/2 R 3/2
ol PR3 (24p3+10) - (6p*45p2+ 2) (3p2(p%41) + pPS(pPH1) p) 6
=p - T —
pe(p2+l)5 p“
3p' | 8p® + 8p* + 7p2 + 2
-k | 7P P -2 (22d)
p! (p2+1)7/2
Fifth Derivative
Y [ LR LS Y
12 p" (p2+ 1)7/2 }
16
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H
=

Y¢n Y/ 5 3
3p'5[p (p2+1) T 48p5+32p3+1 ) - (BpS+8pH+7p242) (4p? (p7+1) Prp" 7 (p2+1) 5%y 8
§ -

3

3p'5[ 40(pB+pf) + 63p“+36p2+ 8
- + 8
(p2+1)%/2

The terms of the Taylor series are then found by evaluating at £ = O.

that there are two terms of the form of e
quation (21) with =
Py = (=+£)/y. Further note that ) P1

p' =-—dﬁ = _dpz = '
1 TE T Tw TR Ty

First Term

L+ V=T
Hy(c/y,6 = 0) = in v+l

(22e)

Note
(c-€)/y and

e er T N
Second Term
Kl (c/y 6 = 0)= - (1/y) }____-__\/(c/y)2 + 1 . (-1/y) 1 - J(c/y)? + 1
(c/y) J/lcIy)Z +1 (c/y) Y/iy)Z + 1

3[/(c/y)2 T1-1

L SemT 1 (23)
Third Term
W Cely 6 = 0) = - (1/y)%] _ 2(c/y)? + 1 1/ 2(cfy)? + 1

/2| (e/y)? + 1)¥2

) (c/y,e = 0)

n
o

Fourth Term

6(c/y)* + S(c/y)? + 2

H' (c/y,6 = 0) = 4-2
( (c/y)? + 1)3/2

17

(c/y)2 | ( (c/y)? + 1)%2 'J
J

(23¢)

(23d)
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Fifth Term
E'V(c/y,6 = 0) = 0
Sixth Term

40 {(c/y)® + (c/y)Pl  + 63(c/y)" + 36(cly)? + 8
HV(C/)M£=O) = %S 8 - 6 [C y C/y ] y Y

(23e)
( (c/y)2 +1)%/2 -

Therefore, the correction factor may be written in terms of a Taylor series
expansion for the first three nonzero terms as

G = , 3 5

Gx (1/4m¢) (hlIl/c + h212/c + h3I3/c ) (24)

where we have defined

hy = E'(c/y,6 = 0)
h, = H"(c/y,E = 0)/3! (25)
hy = H'(c/y,g = 0)/5!
+c
I, =)' F £de
-C
+c
= 3
I, J:CFgg e (26)

.

+c
= 5
I, = '[Cprg de

THE CORRECTION FOR A FINITE WING

The derivation for a finite wing follows a very similar pattern to that

presented for the semi-infinite wing. The complementary potential for a
finite wing is

-c =2\
1 r
G(A,x,y,z) = - ; J
v}
+c ~©

F. df dn
¢ 9t

V(%=§)7 + (y-n) % + 2°

e 0w
F 4¢ dq
- ?L [ b @7
n J V@-0)T + (y-)7 + 2?
+c 0

18
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Differentiating with respect :o x,

+c =2)
c ‘Tl" Fg (x-£) d§ dny
¥ oo ( =5)2 + (y=n)?2 + 22)¥/2
-c -
+e¢ -
) Fg(x-i) dg dn
e (28)
" ( (x=£)% + (y-m)? + 2%)372
-c o]

Integrating with' respect to n over (~» <n <-2)) and (0<n<» 3 in the same
manner as equation (13) was obtained:
+c

L2 i y ; 22y
x 27

(x-€) | V(x=8)7 + y°

+2] d¢ (29)
V(x-£)7 + (2A-y)7

Averaging in accordance with equation (9) and evaluating at z = 0,

+c +c
F -
g, ==L /— £ Y - 227y +2ldc o)
bnec (x=£)| /(x=6)7 + y< V(x=£)2 + (2x-y)°
-C -C

Carrying out the integration in the manner used to obtain equation (16)
results in

+c
-1 1+ Jui + 1 1+ Jua + 1
Gy (y) = e Fg in + &n dg (31D
me 1+ Ju% + 1 1+ Ju% +1
where
u; = (e=8)/y
uy = () /y
(32)
uy = (c-§)/(y=-21)
u -9

4 = (D) /(y=20)
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We may compare equation (31) for the finite wing with equacion (16) for the
seni-infinite wing, As mav be cxpccted, the curreciion factor for the
finite wing is the sum of the correction factor for a gsemi-infinite wing
with its tip at the origin going toward positive infinity, given by the
first term (u, and “2) of equation (31) and another semi-infinite wing
with its tip at y = -2), going toward negative infinity, given by the
second term (u3 and ua) of equation (31). In a similar manner, the Taylor
serles expansion terms given by cquations (23) are

finice
wing

- Hil (cly = cly) + H, (c/y = c/(2x-y) )
SI SI

(33)

where SI indicates semi-infinite wing. The forms of equations (24) and (25)
will thus hold for finite wings.

AIRFOIL SECTION CHARACTERISTICS

The integrals of equation (26) may be simplified and use made of the
equation for the airfoils rether than the airfoill slope, by setting up
these integrals using the method of integration by parts (fudv = uv-/vdu).
The first integral in equation (26)

+c +c +c +c
Il = ng;dg = gF - Fde = - Fd¢ (34a)
- -c -c -c
since
dF
dF
2. u-=g§ dv = ngé =—E€ dE = dF
du = d¢§ v=T

3. F=0 at & =t ¢, 1.e.,the thickness 1s zerc at both
leading and the trailing edges.

Staterents 1 and 3 will hold exactly fgr the other ggg integrals, and
statement 2 will be similar with u = £ and du = n§ ~dé§.
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r 1, -{ Fpe’ dg = -3 vg' dg (34b)

7 JI‘-C -C

; and +c +c

£ I, = F£g5 4 = - 5 Fe“ dg (34¢)
-C -C

The limitation on these integrals may be found from comparing the actual
profile to a rectangle enclosing the profiie. Comparing the areas of the
rectangle and the profile,

+c

2 F d¢ = area of airfoil

-c
4tc = area of rectangle
Let +c
8, = 2 Fdg/4tc (35a)
-c
then +c
-Il = Fdg =%6A4tc% -§—= ZGA-E- c.c (35b)

~C

Nondimensionalizing by defining the leading and trailing edges at + 1
(chord length = 2, ¢ =1),

I, - =25, 1 (35¢)
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bz The definiton of 6§, 1is the
-c +c ratio of the area of the profile

to the area of the rectangle. It
t F(&) may be seen from Figure 3 that

i _s. the ratio of these two areas
will not vary greatly for the

T usual airfoll sections. In a

similar manner, the mcment of

inertia of the profile and the

Figure 3. Geometrical Relationship. enclosing rectangle may also be

compared:

e .
2 ~£2 F £2 d¢ = moment of inertia of the profile

(2t)(2c)3/12 = moment of inertia of rectangle

Let
6, = Jfg 2 F&de / (4ec3/3) (36a)
When nondimensionalized, I2 becomes
= ¢ 3 a -
I, = fOreda 26,1/3 (36b)

Again by inspection of Figure 3, the ratio of the moment of inertia of the
profile to that of the rectangle will nol vary by much, Unfortunately,
there is no similar physical argument for the third integral.

The values of the integrals of equation (34) were calculated for some
airfoils. Table II shows these calculated values for an airfoll approximated
by an ellipse for the nose section and a parabolic arc for the rear

portion (from reference 1), and a parabolic arc airfoil.

It should be pointed out that §, and é_ arc independent of the coordinate
system and are dimensionless, wiiile thé values of the integrals do depend
on the coordinate system, and the values given in the table should be used
only for the case where the length is measured in terms of the semichord
as is done in this report (see Figure 3.)

22




.
£
1

TABLE II. AIRFQIL CONTANT,L /1

n E;iiggiicNgzir Parabolic Arc
5 . -1.434 ~1.333
é, ‘ 2 -0.989 -0.80
‘ 3 - -0.571
]

CHARACTERISTICS OF THE CORRECTION FACTOR

A simple computer program was written to calculate Ex go that its
characteristics may be studied. The rrogram integraited equations (16) and
(31) numerically for &, and calculated Gx as a Taylor series expansion
(see equation (24) for both the finite and the semi-infinite wing). From
these calculations, the plots presented in Figures 4 through 8 were made.
The comparisons made in this section are for a 10% thick parabolic arc
airfoil section, but the general trends will apply for other sections.

Fizures 4 aud 5 show the coefficients of the Taylor series for a semi-infinite
wing (Figure 4) and wings of aspect ratio 2,3 and 4. The following observa-
tion may be made:

The coefficients decrease at a fairly rapid rate near the tip.
-~ The first term is dominant by far over the full span.

- The second coefficient becomes negative about one-half semichord
from the tip, has a negative maximum at about 0.9 semichord, and
then becomes asymptotic to zevo. For y>2.25, the sbsolute value
of the second coefficient is less than one-tenth of the first
coefficient,

- The third ccefficient is negative in the range 0.25<y/c<1l.2, with a
negative maximum at about y = 0.45c. After becoming positive at
y/c~l.2, a maximum occurs at y/cvl. 5, but at this maximum the
ratio of the first term to the third term is about 1/100. Above
y/c>0.1, this term is less than one-tenth of the first term.

- The second and the third terms are more nearly equal in magnitude,
and thus one should not be neglected in favor of the other.

- At the wing tip, the limiting values are:
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- These observations hold for the three finite aspect ratios and for
the semi-infinite wing. The similarities of the shapes of the curves
and the magnitudes are obvious.

The correction factor G, is shown in Figures 6, 7 and 8. Figures 6 and 7
compare the three means of calculating the correction factor:

1. using the first term of the Taylor seriec only
2,using the first three nonzero terms of the Taylor series

3.using a numerical integration scheme with 30 terms from ~0.9999c¢
to 0.9999%9c with Simpson's rule.

In addition, Table III tabulates the data used for Figure 7 and includes a
column showing 8x calculated using two terms nf the Taylor series. Except
within the 0.2 semichord near the tip, all of the means of calculating the
correction factor are in good agreement. The three-term approximation is
in good agreement with the numexical integration calculation even closer
to the tip.

As would be expected, the correction factor decreases rapidly as the distance
from the tip is increased. The correction factor G, is the change in
velocity (AU_) between the two-dimensional and the three—dimensional flows.
At the tip, for a 10X thick airfoil, 4U,/U, is about 3.0%, while one
semichord inboard it is reduced to 0.15%.

The magnitude of AU /U, is indicative of the accuracy required in calculating
Gx' Since 4U,/U, is of the order of one percent, a ten-percent error in C
results in only a one-tenth of one percent error in U,.

The effect of aspect ratio on the correction factor may be noted in Figure 7.
Here the aspect ratio effect is seen on the magnitude of the distributlon

<G x? especially at the wing center line, where differences in Gx for the
vatious aspect ratios are seen to be important for the small aspect ratios
consldered.

Figure 8 compai:: the spanwise variation of the correction factosr near the tip
for several aspect ratios. It is seen that the differences are rather small.
The difference between the aspect ratio 20 and the semi-infinite wing could
not be shown on the plot as it is a difference of one in the third significant
place. The effect of aspect ratio on the value of the correction factor
near the tip 1s thus small, as any effect is due to the complementary wing
associated with the opposite tip, and since it is far away, it has only a
small effect.
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Figure 8, Effect of Aspect Ratio on the Correction Factor
Calculated by the First Term of the Taylor Series.
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TABLE IIl. CORRECTION FACTOR FOR A SEMI-INFINITE WING
TERMS OF THE TAYLOR SERIES
INTEGRATED
SPAN FIRST SECOND THIRD USING 30 TERMS
0,30%023000 «2,0211143%7 v2,02529505 «@,227068%2 e, 229Y4518
0,c1000009 =9,02100848 nE,22%12%31 «@,72685334 .2,02870782
2,01500000 .@,02090240 »0,22495562 e@,22663823 ~”?,02018282
_B,p02002002 =0 ,02279439% v, 02470000 w3,72642328 «*, 227708379
¢,02%502000 «9,02069233 »0,02453648 -0,726228%3 -7y"2725842
2,9%002000 -3,02216297 e0,02377112 ", 72513926 -7, 22531827
8,1008080200 “3,081912914 «?,82210093 «?,22304137 «,02220477
0,1%000000 *0,21807279 ~2,02047623 =0,22103217 “?,21906488
9,20000002 ~2,0170986%6 ~2,21891626 "@, 71914564 -f,P17RH822
0,2%000000 «2,8160739} «@,0174365%6 n®, 21742849 el 1621632
2,30000002 ~0,01512296 D, 25604843 nB3,21982454 -7, 114778170
2,3%0000200 «0,01421042 »2,21479888 "0, 714472584 -2,01352551
0,400000200 °y,013339%2 e0,213%7291 a,21314358 =7,71242437
2,4%000000 =3,01251246 w0 ,01240410 ~R,21222747 e2,11144918
9,500000200 9,211730%¢Q *0,01149%27 «?,211243026 -?,01758282
©,5%000000 0 ,21099403 *0,04099927 v0,01217477 2, 72982226
?,s80020000 =2,01238273 .2 ,00978982 o?,0294r718 3, 22013248
2,6%000000 0 ,20065%66 ed,00009918 -2,22872597 22047272
2,70080030 -0,00925142 *0,0004005%% w?,02811844 -2, 02789841
0,75208000 ~3,00848827 «0,802780649 «?,0275737¢ -1, 20737844
9,00000000 0 ,00796423 «2,20727012 =P, 00728272 2, 10690471
_2,900020020 | ~3,02702479 | «2,026345%2 o?,20623272 A2 ,22697564
1,800002908 2,00621939 °D,2029%5828¢ =0,n8852272 «?, 22537351,
41,00999999 0 ,00854969% «0,00494742 “2,/i1492161 «2,22478721
4,20000000 0 ,204918%0 d,00441262 o? . 27440762 -7,22428485
1,29999999 v0,00442066 -2,803988%7 »2,00396482 -7?,72384772
 1,39900999 -0,0039%272 *Q,003%0860 e, 20358102 «?,22347242
1,500800000 *0,00356403 *0,00323283 | «2,20324672 |  <n, 22334629
{,7500008¢ e0,00279%97 “d,002%6672 ?,20258049 «?,20249822
1,99999999 «23,00224033 2,00208102 »Q,22209084 -2,22202332
2,25000000 0,20182898 *0,20171683 .0, P0172329 -2,02166724
2.9500000080 «0,00191777 *0,00143714 nd, 02344455 «?,00139445
2,74999999 °8,00127762 2P,20421863 «f,02422459% «f, 22118155
_3,00000004 | 200108898 | «2,20124526 | ~0,00104705 |  -7,32121263
3, 5000060} "0, 00081649 «2,00079092 | =0.00679187 | ~2,20076573
J.99999999 2,000633580 °?,000617084 °0,000561632 - ,20059784
4,49999999 «2,00050533 *d,00049515 o0, 02049542 w0 ,20247895%
3,00000000 ~3,80041209 *?,00040524 .8, 22040539 -2,een39192
6, 0000000 o0,08028873 *P,000285832 °0,000285%37 =2,22227585
_7,90999997 | ~0,00046387 | 0,00016273 | «0,00016276 | «0,7Q213732
“40, 00000000 3, 00C10931 | «0,0001048% ?.0P01748S M, UEP10134
19,999990082 w3, 00002648 nd,200Mm2645 v, 00002645 «?,0020255%6 -
:39,60000008 ng, 02000424 *0,0000042¢ o0 ,0000042¢ -2,02202440"
Airfoil Section: Parabolic Arc
Thickness: 10%
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Thus a result to be found later may be anticipated. In a rotor, which is

a blade of large (on the order of 15 to 20) aspect ratio, a large part of the
forces are near the tip, and this is where most of the correction needs to

be applied. But near the tip, the actual aspect ratio has a second-prder
effect. Therefore, for rotary-wing calculations, the simplified semi-
infinite wing correction factor will be found satiafactory.

CORRECTION FACTOR FOR A ROTATING WING

Sears,12 in 1950, derived the relationship between the incompressible veloci-
ties on a rotating blade and on a similar cylinder in plane steady flow.
The relation of the potentials is

¢ = Qy(s; - x) (37)

where p1s the potential of the rotating blade &nd 41 is the potential of
the blade in uniform flow at unit velocity.

The velocities in the transverse (to the span) plane are identical in the two
cases. The spanwise component of the velocity is given by a very simple
formula, and for an infinite circular cylinder this velocity is zero on the
surface and therefore makes no contribution to the forces.

A recent paper extending Sears by Goorjian and McCroskey13 indicates that

for finite span rotating blades, there is a finite spanwise potential
velocity at the surface. While this component is important in boundary layer
calculations and thus affects the separation line, its contribution to the
pressure in the linearized case being applied here is of the same order of
magnitude as other terms which are neglected.

Therefore, for a rotating blade, we may write, from equation (37) and the
discussion for fixed wings,

Qy  (x-£)dS
u=-Qy+ f o F£ ——03 (38)

planform
where
D? = (x-§)2 + (y-n)2 + 22 (39)
and
48 = dtdp (40)

In a manner similar to that used for the fixed-wing case, the integration
over .the finite planform may be split up as integration over the infinite
bplade less the integral over the complementary blade. Averaging over the
chord results in
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+c +cC
( I{- f Fé; (x~£)d&dndx
u =9yl 1+ —— 3 + u N (41)
Jl J 1% 1 D A=
-¢ ~C tip

where u, _  is the velocicy due to the infinite blade. The spanwise coordi-
nate y in equation (38) may be brought outside of the integral sign since it
is invariant with respect to each of the three variables of integrations.
This equation is identical to the result obtained for the semi-infinite wing
(equation (6b) with the averaging given by equation (9) and the integrand in
equation (11)). Thus it has been shown that the correction facter in the
case of a rotating blade is given by the same equation as for a fixed wing.

CORRECTION FO THE CHANGE IN DYNAMIC PRESSURE

The correction factor is the difference between the velocities of a finite
wing and an infinite wing* having the same potential. This in turn means
that the two wings have the same static-to-total-pressure ratio and therefore
the same force acting,

D , =
finite wing Dinfinite wing (42)
with the velocity condition of equation (7), which requires different
dynamic pressures. Thus, since the reference areas are also the same,

but neither CD nor q is the same. Thus

A
¢, =¢Cp /1 +—;‘ ) (44)
FW A= ®

or by logarithnic differentiation of (43)
ACD/CD = - A q/q (45)

The correction gives the change in velocity and thus the change in dynamic
pressure. Since the drag is a function of Mach number, the change in velocity
must be applied not only as a change in drag coefficient but also as a change
in Mach number as will be shown in Figure 10J. It is more convenient to

expresas both of these changes in terms of the frec-stream Mach number,

In the introduction, the explanation of the tip relief effect was made on
the basis nf deviation allowed of the stream. Consider a representative
stream tube as it passes over a finite and an infinite wing illustrated in

* While the discussion here talks about wings, since the correction factor
was derived as it varies along the span of a finite wing, the discussion
presented here is just as valid for a spanwise element of the wing located
a given distance y from the tip.
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Figure 9, Distortion of a Stream Tube Over a Finite and an Infinite Wing.

Lt uld R

Figure 9. 1In the case of the infinite wing, the stream tube cross-sectional
area is decreased and displaced due to the displacement effect of the wing.
But for the finite wing, the stream tube may also expand laterally; thus the i

cross-sectional area is decrrased by a lesser amount.

ey

The flow in both of these stream tubes is isentropic, and thus the usual
: quasi-one-dimensional isentropic, compressible flow analysis may be used.
i Since both stream tubes have identical conditions at infinity, they may be
considered as part of the same stream tube. In the usual application of
this analysis, the area changes are known. In this case, however, the
velocity changes are given by the correction factor, while the area change

in quantitative terms is immaterial. It is desired to find ACD/CU and ;
AM/M in terms of &U/U ;-cx, with the appropriate compressible transformation.

ol 41 1.

The equation of continuity for a stream tube may be written as either

¢UA = Const (46) i

or b
|

E

k
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where A is the area and Lhe starred quantities represcnt conditions at a
sonic point as a reference. Also Bernoulli's equation is

UdU + dp/p = 0 (48)

Logarithmic differentiation of equation (46)

= 0 (49)

M2- 1) ===== (50)

used so often in describing the difference between subsonic and supersonic
flow. Using the relations from iseniropic flow

* 1/
-2 ! (51)
1/
e . 2 v-1
o ((Y—l)Mz T 2) (51b)
M*2 =._(_Y.-_1—)Mz—.. (5lc)
(y - 1)M%+ 2

Equation (47) results in, after some manipulation,
x+1

AM ( ———— = constant (52)
(y=- LM + 2
Logarithmnic differentiation gives
dA 2 - ) aM
da ( ) (53)

A ((y-M%2 +2) ™
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Combine equations (49) and (53):

aM -1 du
M 1+ 7 M ) U (54)

which is the relation between the velocity change as given by the correction
factor and the resulting Mach number change.

Since q = sU%/2, logarithmic differentiation gives

dq dc du
< = o + 2 0 (55)

Combining with equation (49) gives

dg dA dU  _du du dA
e TR TUYTTU " a (36)

Substituting from equation (50) and then from equations (54) and (45),

dg  du . .du qu

—  e— - o _— = M2y ==

T - - )T (57
ac dq 2-M? dM

-——P— = et 2 - M (58)
Cp q 1 +X=he

As previously noted, the derivation here is applicable to a segment of a
wing or to a full wing, depending on how the correction factor is derived.
In fact, equations (54) and (58) are given by Anderson.! But since he did
not give thelr derivation in detail or explain them in a physical manner,
and since they are unusual in form, it is felt that presenting their

derivation in detail would be useful in clearing up some misunderstandings.

Figure 10 iilustrates the application of equations (54) and (58). The
correction factor used here was from Reference 1 and for aspect ratio 3 wing
with NACA 0012 airfoil with two-dimensional drag vs. Mach number
characteristics approximated by two straight lines as proposed in Reference 55.
A point on the two-dimensional curve is displaced horizontally in accordance
with equation (54) and then vertically as per equation (58) to obtain the
taree-dimensional characteristic,

In reading th's plot, the drag of the three-dimensional wing is seen to be
less than the drag of the corresponding two-dimensional wing at the same
Mach number.
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Experimental verification of the basic theory for fixed wings may be found
in the report by Anderson and carroll.“3 Wings of various aspect ratios
at high subsonic speeds are correlated both for the casc of nonlifting
wing and for the lifting case with 1lift coefficients up to 0.3.

The corrected drag coefficient as calculated for Figure 10, requires the
usc of appropriate transformation between the incompressible theory

as derived here and the compressible flow considered. For this fixed wing
case the direct Prandtl-Glauert transformation is used. For rotary wing,
the extension discussed in the next chapter must be made to apply the
transformation shown in equations (105) to (110).

0.08

0.0¢

—a—— Two Dimensional Airfoil

0.02 Three Dimensional Wing With-
— —~ Mach Correction Only

~=—=— Mach and Drag Correction

0,860 0.v0
tach Number

1.uy

Figure 10. Theoretical Correction of the Drag Coefficient vs. Mach Number
for an WACA 0012 Airfoil From Two-Dimensional Data to an
Aspect Ratio of 3. (Note Displaced Origin.)
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BASIC EQUATIONS QF A ROTOR IN COMPRESSIBLE FLOW

Having derived a tip relief correction for a fixed wing, the next step is
the problem of applying this correction to a helicopter rotor. To do this,
the basic fluid mechanic equations of a rotor have to be examined. There~

fore, in this section the Navicr-Stokes equations for a rotor in compressible
flow will be written.

The usual approach to compressible flows is the small perturbation frheory,
and this derivation will be presented. In fixed-wing usage, the result is
the Prandtl-Glaucert transformation. It will be shown here that further
assumptions are needed so that a Prandtl-Glauert type transformation between
compressible and incompressible flows may be made for a rotor.

Previous work on the representation of a rotor in compressible flow by a
system of sources and sinks was done by Sopher.3 This work will be
thoroughly reviewed to show how it is connected to the present presentation.

The similarities and differences will be discussed, along with where each
approach is useful.

FLUID DYNAMIC EQUATIONS FOR A ROTOR

Consider a coordinate systew with a fixed origin O rotating with angular
velocity 2. The absolute velacity is ?, while the velocity relative to the
rotating frame is U'.* The relation between the two velocities is

=V Oxt (59)

The equations relative to the rotating frame are the same as for a fixed
frame except for the acceleration term

%%-+ VW e+ xV (60)
With some vector identities, we have
DV =@V +H x v (61a)
3V _ av!
at ot (61n)
a - ES
—_ N xr) =20 (61c)
or

* This discussion is taken, to a large extent, from Hughes and Gaylord."*
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Therefore, the equation of momentum is

| ] - s o
%%?+ VOV + 20 x V'+ 8 x @ x¥) = - Vp (62)

where the last two terms on the left-hand side are due to the Coriolis and
the centrifugal forces. Let the velocity {' have components v_, VagrV, in
a cylindrical reference frame, and define the axis such that rotation fs
only about the z-axis. Further assuming, for convenience, steady flow
with rotatinq coordinates, the three components of the momentum equation
are

v v, 3v v, vgl :
r gt r r ‘ot 2 1 23p
+ —_— —_——— - Q0 - g 4
Vr ar r 46 Ve dz r 2VB rf p 9dr (63a)
v Vo, OV v v 3
ot Vor 9Vor r o¥r _ 1 ap .
VeTar T x 98 T Vpz Tor YR T TLY e (63b) 1
v, V. 3V, v 1 3p ;
Vv, +— — + v IR o 63c
r ar r 238 z 32 p 3z (63¢)

The equation of continuity is identical in rotating and stationary frames
of reference:

av A v v v a0 Vo dp Vg 3p
or r 46 97 r [} ar pr 98 p 0z
Further, the speed-of-sound relation is 9
(3p/30) = a? (65)

To combine equations (63), (64) and (65) by multiplying each of the
equatlons in (63) by v_, vy, and v, and by using equations (64) and (65) 3
to put the pressure and the densi%y in terms of the speed of sound givec . L

av 1 5v v v
v 2—32 ____.!- + 2_ 2 — _.1-;+ 2.. 2 _—Z - _F. 2v —a2 - v er
( r ) ar (vec a®) r 3za (vz a )dz r( 6t ) r
1 3Ve  3Vat Ve BV, M 1,
— ——— — — —_—) + — e —— = O 6
Tver vy T35 Y x )+Vr"z(az'+ ar) V.Ver {2 r 30) (66)
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Because of the choice of axis, in terms of the its compoients V can be written
as

VvV = Vrér + (ve - Qr)ée + vzéz (b7)

where €., &g, &, are unit vectors. 7The theta component is made up of two
parts, one a '"'free st:eam" of magnitude -7r and a difference velocity v,,
which together make up Vore The only rotational component in equation ?9)
is the ir component, thus we may write

- l 3vz ave
CxVy=c5 "5 ©° (68)
- v ov
(V X V)e = ﬁ - arz = 0 (69)
v v v
- z 1 r
@x, = 5te 2D = (70)

With these two conditions, equation (66) may be written as

v v av
2 2 X 2 2 0 2 2 -
a® - v — t+ (a“ - + Qr — + - — =
( r) Y ( (ve )4) =5 (a vs) =
2 2 3Ve v,
- + + + + A —_—
a vr/t vrve/r 2vrveQ 4vrQ T 2vr (ve Qr) - 2vrvz =
Bve (71)
+ 2v, (ve + Qr) T
The energy equation
az + ((y - 1)/2) V - V = Constant (72)

may be used to relate the velocity components and the reference speed of
sound a, to the local speed of sound a. The reference speed of sound is
the speed of sound in the undisturbed regicn of the fixed frame. In the
rotating frame, this is the speed of sound at veloc.ty -QCr; thus
- -1 a -
ag +_Y._2—1(Qr)2 = 32 + Y_z.-_V' IR TA
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2 a2 4 y=1, - 2 2 2
a“< + 5 « .,r+v6) + ve + vz) (73)

Therefore,

- —!ﬁg—-( 2vgar + VO + vz) (74)

al = a2

If we also say that a velccity potential exists (due to equation (67)),

= ot - .
Ve Tt Se T T % (75a)
Ve =T T30 - T%elT (75b)
- . 9¢
V2 =T34, (75¢)
after some rearrangement, equation (71) becomes
bpr + {1 = (Wr/ag)?} oo /x? + ¢, + o /r =
2 ((ya bt IR B 6.2 S
brp/ae (=(-1)¢g2 + — ( + 9 ) =5 ¢}
2 + 2L e 2 X2 2 42l
+ ¢99/ra,ﬁ {‘(Y+1)¢99 2 (¢6 r) -'2— ¢r ¢Z (76)
-1 +1
*+ 0zg/al {-(r=Dogl + Lm0, + (op/1)2 + Lmg, )
_ (9g/)Bpp 204 9.8 . 2 ("’sr o )
alr ar a?

$29¢ 4 1 g
+2 e T2 OF Yo |E 0
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It should be emphasized that this equatlion is still an exact equation.

Its counterpart in uniform flow. for example, would be equation 32-~17 of
Heaslet and Lomax.“> All terms on the right-hand side should vanish for
the small perturbation equation. This is accomplished by assuming that

the ratio of all of the velocity components to the speed of sound is much
less tnan one. Further, it is assumed that gradients of the velocities

are also small, so that cross products cof velocities and velocity gradients
are also small. Terms of the rorm

Qr vila‘m an
may also be neglected. The resulr is

- 2 2 -
O T o, t (L-Qr/a9e Jri+ e /x =0 (78)
In the case where ur/am is nearly one, the coefficient of the ¢,,term

in the left-hand side of equation (76) becomes very small, and thus the
term on the right-hand side must also be considered. It is obvious and
analogous to the uniform flow case that the term of the form of equation
(77) is the largest of the terms and we should write

b T, (L-Xar/a)?) dgq/ri+ ¢ [t =

-+ D) @fra? ) ¢y b0 (79)

For the pressure, we have

dp =-pd(V-V/2) (80)

Integrating between a point where p = p_ and V =-Qir and a point on the
blade,

]

~

c_+po
P =Py =—25— ( (@)%~ ((vg - ur)24v 2 + vrz ) )

vgZ v 2 4 v 2
r
> ) (81)

= - (p=p,)(-rvy +

Again assuming that all velocities are small and that p'<< p_ results in

P-DP =-p v6 Qr (82a)

or, in terms of the pressure coefficlent,
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The basic equations (78) and (82)
[ K may be written in Cartesian
coordinates, as suggested by
Searsl? and defined in Figure 11.
Using che transformations

I'2=.X2+y2

y
_ -1
6 = tan " (-x/y)
(83)
X = - T sind
y =+ 1 cogh
X
Figure 11l. Coordinate System.
results in
b, F Ot O -2 (-x ¢, + y2¢_ -2 xyo . = x*¢_ =y ) (84)
XX Yy zz g2 X XX Xy yy y
2 (yp_ = x9_)
c = X L (85)

P a(x2 + yz)

The results of equation (78) and (82) are identical to the results obtajned
by Sopher3 directly from the acoustic equations. Similar work has been done
for a rotating and advancing blade. Simonov and Christianovitch™® derived

the equivalent of equation {(78) in a similar manner. Also, Burns“’ derived
the equivalent of equation (84) directly. We have gcne into details here so

that the further approximations which need to be made may be better under-
stood.
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Using the transformation 6= it in equation (78) and (82) results in the
acoustic equation

2 24 =
a’ Vg = L (86a)

P~P, = -0_9¢ (86b)
DIRECT SOLUTION

Source in a Rotating Flow

Recently, Sopher3 presented the solution of the small perturbation
equations using a source-sink distribution approach. The potential due to
a point source travelling on a rotational path is

¢ = -k/4D (87)

where k is the strength of the source and D the distance function referred

to coordinates rotating with the blade, which is given in polar coordinates
by

2 ]
D2 = rr'(e - 8')2 + (1 -%5 ) ((£-r5')2 + 22) (88)

where the primed coordinates refer to the location of the source and the
unprimed coordinates are the field points where ¢ is to be evaluated. 1In
deriving this distance function, higher order terms in the expansion for

the cosine are neglected early in the derivation. A comparison with the

more familiar distance function for uniform compressible flow in Cartesian
coordinates,

2
D2, = (x=x)2 4 (1= T2){(y-y"2 + 22} (89)

oc

reveals certain similarities and differences. The form, of course, is very
similar. But the compressibility term, namely, Mack number (U_/a_,) in the

uniform flow case, changes to the local Mach number at the root mean square
radius

r=/tr' (90)

of the source and the field points. Further transformation to Cartesian
coordinates of the firat term results in a very complex expression.

The resemblance between the two equations may be made closer if it is

assumed that the field points and the source points are close to each other.

A further restriction is that the two points are near the y axis, which
physically means narrow blades with the axis along the span of the blade.
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There are several arguments as to why this should hold, the most important
being that, if these points are far apart, D in equation (87) is large,
making the contribution to ¢ very small. With this assumption, it can be
sald that the root mean square radius, r, of equation (90) does not differ
greatly from r or r'. This will also provide for the small-angle expansion
of the transformations (see equation (83) ), namely,

X =T sinB } g

- (91)
y = =F cosg &~ T

With this, the approximation of the distance function for rotating flow in
Cartesian coordinates is )

t2(8-08")2 + {1 - (2—;) ]((r- r')2+ 22)

o0

p2
Rot.
ALprox.

2
(x - x")% + [1-(31) }((y -y"? + 2 (92)

The resemblance between the distance functions ip rotating and uniform flow
is now much closer. The compressibility factor in rotating flow is not
constant, and thus a "local Mach number" has to be defined:

My = Qyl/a, (93)
which is the Mach number now used in blade element rotor analysis.

This derivation of the approximate distance function will be used as parc
of the justification of the approximations made here.

The potential of a rotor blade is the potential due to the sum of all the
sources representing the blade. This is the surface integral over the
planform area of the blade,

As was shown in equations (82), the pressure distribution and therefore

the forces are relzted in compressible perturbation flow to the tangential
velocity v,. Further, Sopher (unpublished notes for Reference 3) derived
from the usual flow tangency condition that the required source distribution
to describe the thickness of a rotating wing is

x (£',8', 220) = -2 r Fe/t = =20 Fe (94)
where F defines the vertical z dimension of the blade. Equation (94)
resembles the linearized uniform flow source distribution, namely, twice
the free-stream velocity times the local slope. It is important to note that
the slope required in equation (94) is the slope in the directiom tangential
to the rotation rather than normal to span.
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The integral to be evaluated then becomes
Qr‘(e—e')Fe.dS'

(95)

v

o " 2m 03

S

The surface of the integration is the planform area of the blade and in
cylindrical coordinates dS' = r'd®'dr'. This integral was numerically
integrated in Reference 3 with important refinements in the areas of using
a uniformly valid surface flow speed and an equivalent linear theory tip
Mach number.

The Complementary Wing Directly in Rota:in~ Coordinates

An attempt to apply the reasoning of the previous scction, the complementary
wing approach in the case of a rotating blade represented by the source
distribution in compressible flow, will now be made, Because of the
variable dynamic pressure reference for the pressure coefficient, the total
forces are related to the total local velocity, which is the sum of Qr plus
v, and will be denoted by V. Consider the integration required in 2quation
(85); as previously, split the integration; from O to infinity minus from
tip to infinity. Thus we can write the equation for total local velocity as

1 3
V=Qr+ Ve = Qr b Qr' (6-6')Fe|r' de' dr'/D
cJO
fco
1
+57 jQr'(e-e')Fe, r'de' dr'/D3 (96)
c R

where ¢ represents the integration over the constant chord.

In the case of the fixed wing, Anderson! obtained a transformation between
the finite wing and infinite wings. The transformation could be simplified
because of the following two results:

(1) The complementary wing integral (i.e.,, the second integration in
equation (96))reduces to a form such that it is a multiple of the
frec~-gtream term.

(2) The infinite span integral is a known function obtained from other
theoretical work, from experiments, or from elsewhere.

The first criterion is easily met, as may be seen by inspection. The two
terms, after the integral is carried out, will reduce to a form ¢(r + G)
which may be used instead of 9r. Thus, we may write

vV = (Qr) 97)

effective ¥ Vg infinite blade
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The problem occurs in relating the infinite span integral to a known
function. In the fixed-wing problem this is the much-studied case of
two-dimensional flow over an airfoil. Many two-dimensional, compressible
flow airfoil data are available. Further, the Prandtl-Glauert

rransformation is available, so tnat the flow may be compared to incompressi-
ble flows. In this case, though, the flow over a rotor of infinite span

in the compressible regime must he known, calculated, or measured in some
manner. There appears tc be nou straightforward way of determining this
value. Analytically, it brings problems such as supersonic flows, etc.
Experimental testing is conceptually impossible.

A W T

The reason that this problem may not be approached in the direct manner is
that there is a basic difference between fixed-wing and rocating-wing

flows in the compressible regime. This was indicated by Sopher's results?
as discussed previously.

In incompressible flow, Sears!2showed that there was a straightforward
relation between uniform flow and flow over the same body rotating. This
same type of relation does not hold for the derivation shown above for
compressible, rotating flow, to a large extent due to the fact that we do
not vet have a transformation between compressible and incompressible flows.

Therefore, hov such a transformation might be obtained is described in the
next section.

PRANDTL-GLAUERT TYPE TRANSFORMATION FOR A ROTATING BIADE

The basic differential equations in Cartesian coordinates (equatious (84)
and (83)) may be rewritten as

+ = {_S-l_y.. : .i -+ 2 EA + — l. 98

dx * ¢yy ¢zz = lam ) (-yz Ot by Foxy 2 ¢yy - y¢y (98)
X

c = 208, - 5 ¢y)

—_—— 7 (99)
Gy (1 + x2/y%)

[ —

Consider the differential equaticns at points far from the center of rotation.
i Now y is the spanwise distance and is of the order cf magnitude of the radius.
! At the same time, X is of the order of magnitude of the chord. To compare
the magnitude of each of the terms in the right-hand side of equation (98),
nondimensionalize the x-dimension with the chord ¢ and the y-dimension with
radius R. (The primea coordinates in this section are noudimensional.)

; R2y'22 f e x' 1 xc 1 w221, 1 1,
: a? Rl y'e %' 2 Tx'x' v'R R "x'y' y'2R2Ry'y' Ry' R'Y
§
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For helicopter rotor the ratio c¢/R is much smaller than one. The coeffi~
cients of all tarms but one, (c/R), are raised to a power which will make
all terms small in comparison with the term of order (1). Therefore, the
differential equation becomes, when neglecting the higher order terms,

Q- (Qy/aw)2)¢xx + ny +¢,, =0 (101)

In a similar manner, for the pressure coefficient,
L

1 c X 1

2 = T T = ¢é.
C =—C X R Yy RV (102)
P 2 ' 2
R
Ny(Rz y'2+ 1

As before, there are terms with a coefficlent of one to compare with terms
with coefficients (c/R)2, which are small and neglected, so that

Cp = 20,/9y (103)

P

Now equation (101) resembles very closely the Prandtl-Glauert equations of
uniform flow, but with a variable Prandtl-Glauert factor

=1- (ayfa)2=1 - M2 (104)

2
8 y

y

This indicates that a Prandtl-Glauert type transformation may be made
locally for a rotating blade. The usual illustration for the Prandtl-
Glauert transformation is by the change in chord length (for example see
Shapiro,3? page 320). For a rotor, this change in chord length varies
along the span due to the variable local Mach number. The resulting
equivalent incompressible flow rotor is illustrated in Figure 12.

Since we now have a transformation between the compressible and the

incompressible flows over a rotor, the complem ntary wing effect as derived
in the previous section may be applied.
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Figure 12.

Compressible
Flow

Equivalent Incompressible
Flow

Prandtl-Glauert Type Transformation of a Rotor.
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A short discusaion of the implications of this approximation is in order.
This approximation is consistent with blade element analysis, where an
element o/ the hlade is assumed to act as a similar airfoil in uniform
two-dimensiona. flow. The transformation has been applied previously,
without proof, for example, by Jones and Rao.“®

The approximation is made of the initial equation used by Sopher.?® Thus
the differences found by Sopher between three-dimensional rotating flow
theory and blade element analysis in the local induced velocities apply
when using the proposed transformation. Tne problem with the analysis
presented by Sopher is one of application. The major use of the Sopher
analysis would be 1in boundary layer calculations where it is important
to know tiie local velocity gradients, and where Sopher's analysis does
gsive a previously unknown spanwise pressure gra.lien-.

For the purposes of preliminary design and gross performance prediction,
the approximations made here are consistent, and the Prandtl-Glauert type
transformation may be safely used.

EXTENSIONS OF THE COMPRESSIBLE FLOW TRANSFORMATIONS

The Prandtl-Glauert transformation underpredicts the increase in flow speed
with Mach number as may be seen in Figure C8a of Reference 49. Also, the
Goethert extension to three-dimensional flows considers only the effect of
compressibility on lift and the lift curve slope. This is done through

the change in wing aspect ratio, since the Prandtl-Glauert transformation
changes the chord but does not alter the spanwise or the thickness
coordinates. No mention is made of any effect of compressibility on the
three-dimensional drag.

There have been a number of attempts to obtain similarity rules that would
extend the Prandtl-Glauert transformations to higher Mach numbers. The
nost important of these for two-dimensional flow were reviewed and compared
by Bennett.>? Van Dyke's second-order theory51’52'52 is considered to give
the best compressible pressure distributions of these techniques, but its
use is rather complex. This method takes into account squares and products
of the thickness, camher and angle-of-attack terms.

But a method suggested by Kuchemann and Weber>" appears to be much simpler
to apply. The usual form for the transformation is modified to the form

B2 = 1 - 42(L - Cpj)

where C_, is the incompressible flow pressure distribution. This form was
suggested for use in calculating local velocities and pressures as Cpi is
a function of position.

A simple use of the latter transformation was suggested by Sopherl for
rotors; namely, that an average value of C i be used, which can be
considered constant along both the span ang the chord. Thus for a rotor,
(nr/am)vl-a i is an equivalent Mach number which may be used in the linear
theory. P 49
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APPLICATION OF THE TIP RELIFF EFFECT
IN ROTOR PERFORMANCE CALCULATIONS

Having derived a correction factor for the effective free stream to relate
the two-dimensional airfoil data to three-dimensicnal wing characteristics,
and a transformation between ccmpressible and in:cmpressible flow over a
rotor, we are now ready to use this theory in helicopter performauce cal-
culatiorns, which are based on blade element analysis.

Blade element analysis involves a long and complicated computer program.
These programs are generally available to thote who would use the theory,
although it was not available for use within the present study. Therefore,
the theory is not used in a full blade element analysis. Presented herein
is a derailed description of how one should modify existinz blade element
computer programs to use the tip relief theory, and a simplified blade ele-
ment analysis for a hovering rotor using the theory, so that an indication
of the tip relief effect may be found.

THE PHYSICAL CONCEPT OF TIP RELIEF APPLIED TO A ROTOR BLADE ELEMENT ANALYSIS

The application of the tip relief concept to rotors in compressible flow
requires that a physical model be postulated for the planform of the compie-
mentary wing. This planform is not immediately obvious as it is for the
case of wings in uniform flows. 1In applying the complementary wing concept
to calculate the eifect of tip relief on rotors, full use is made of the
blade element theory while extending it, and of the Prandtl-Glauert trans-
formation with the extension to rotors as has been derived here.

Blade element analysis of rotors is based on the theory that an elemental
spanwise segment of a rotor blade acts as a similar segment of a two-dimen-
sional airfoil. The angle of attack (a), Mach number (My) and Reynolds
number (ke) of the blade element are determined from the motion at the ele~
ment including rotation, advance, flapping, etc., velocities and from the
induced velocity. Since esch element is considered independent of the ad-
joining elements, the force on the element is determined from the force
coefficients of the similar two-dimensional airfoil at the angle of artack,
Mach number, and Reynolds number calculated. The total thrust and torque
of the rotor are obtained by integrating the contribution of each individual
element along the blade span and the azimuth of the rotor disc.

Consider a straight, rectangular rotor blade of radius R and a constant
chord c,, rotating at an angular velocity @ in compressible flow, as shown
in Figure 12 (a). A specific elrment is tocated at a distance r from the
center of rotation, i.e., a distance y = R - r from the tip, and the ele-
ment is at a local Mach number denoted by My'
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The application of the Prandtl-Glauert type transformation to the rotor

in compressible flow results in a nonuniform cherd blade in the incompres-
sible flow, as was illustrated in Figure 4, Now the complementary wing
has to be applied and the question becomes that of postulating the planform
of the ccmplementary wing. Attempts to apply a nonuniform chord comple-
mentary wing led to physical and mathematical difficulties and thus was
discarded. 1If instead, blade element theory is applied directly, then
each element of the blade can be considered as part of an infinite span
airfoil at the local velocity, Mach number, and local chord in uniform
flow. The blade element theory may be extended, so that instead of an
infinite span airfoil, the aerodynamics of the rotating element is char-
acterized by an element located at the same spanwise distance from the

tip of a finite wing, whose span is the same as that of the rotating
blade. The complementary wing then is of constant chord to infinity and
the results of the previous chapter may be applied. To summarize, an
element at r of a blade rotating in compressible flow at a local Mach num-
ber has the same tip relief effect as ap element located at R - r of

a similar wing of span R, with chord ¢, /V1 ~ My. This is illustrated

in Figures 13 (a) through (c).

This may also be approached by applying the blade element theory first
and only then the Prandtl-Glauert transformation. Since both transforma-
tions are linear, their order is immaterial. Using the extended blade
element theory, an element of the rotating blade has the same aerodynamic
characteristics as an element at a distance y from the tip of a wing with
span R, with constant chord c,, travelling at a uniform velocity fir and
Mach number . To this wing 1s then the Prandtl-Glauert transformation
applied, changirg the constant chord to a new value ¢, / vV 1 - 2, The
final result is physically and mathematically the same from either approach,
although the latter may be more satisfying physically at the intermediate
step.

In both approaches the assumptions made in deriving the Sears!? relation
between rotating and uniform flow are not thoroughly observed. 1In the
first approach, a cylinder with a varying chord is transformed to plane
flow; while in th. second, the transformation is applied to compressible
flows. These extensions of Sears' theoretical work are those that are
used in all blade element analyses. In addition, the transformation is
used for the finite span case.

Some theoretical validity for the blade element approach as extended to the
use with finite span was recently given by Caradona and Isom,5® They cal-
culated the chordwise pressure distribution for a nonlifting rotor in com-
pressible, inviscld flow and compared it to the pressure distribution on

a wing at a similar spanwise position at the tip Mach number. The results
siiow good agreement, except in areas affected by shocks.

An indication of the need for the use of finite rather than infinite aero-
dynamic characteristics in blade element theory may be found in this paper




(a) Blade element in
compressible flow.

(b) Blade and element in
equivalent incompressible

2
“ g rotating flow.

(¢c) Blade element in equivalent
incompressible, three-
dimensional, nonrotating

/ flow.

Figure 13. Transformation of a Rotor Blade Element.
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by Caradona and Isom.5® They compare the chordwise pressure distribution
at similar spanwise stations on a rotor and on a wing at Mach number of
the rotor tip. This differs from the blade element theory extended here,
as a wing at a different Mach number is to be used at each station. For
the first one-half semichord, there is no perceptible difference in their
figure presenting this result.* Further inboard, the rotor has a lower
(negative) pressure coefficient (i.e., smaller perturbation velocities)
than the wing at the tip Mach number. This is also true at all stations
when the Mach number is such as to cause local supersonic speeds. The

regult may be expected since the effective Mach number on the blade 1is
lover than on the wing to which it is compare..

For compressible flow, we must further apply the local Prandtl-Glauert
type transformation derived previously. As is usual in fixed-wing type
flows, this correction is made to the chord:

€c " Sy By (105)
thickness ratio:
By tom by = tyley (106)
aspect ratio:
Ao = A/ By (107)
perturbation velocity:
. 2
Auc Aui/By (108)
The free-stream velocity does not change:
Umc- Ucni (109)
Therefore, the correction factor changes:
— - 2 _
ch a Gxi/By AuC/Um (110)

TIP RELIEF CALCULATION IN BLADE ELEMENT ANALYSIS

The tip relief effect is included quantitatively in blade element analysis
by correcting the two-dimensional airfoil data in accordance with the theory
presented here. The method for making this application in blade element
computer programs will be described in a step-by-step manner.

*For Mtip = 0.85 the difference 1s less than 0.01 at this station.
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1. In blade eclement analysis computer progirams, the airfoil data,
especially the drag coefficient, is avallatle in some form as
a function of angle of attack, Reynolds number, and Mach number.

At the blade element under consideration, the velocities are
determined; thus angle of attack, Reynolds number, and Mach
number can then be determined.

TR TR e e o
ki
~N
.

3. The correction factor for the blade element, knowlng the distance
of the element from the tip, is calculated using the method

: described before. lere, one can represent the wing as a semi-

E i infinite or finite aspect ratio wing and use one or threce terms

: of the Taylor series or a numerical integration scheime to obtain

the correction factor.

4. Calculate g2 =1 - (0r/a )2 for the element and transform the
. «© .
correction factor to the compressible case (see equation (110) ).

5. Find the effective Mach number (Meff)’ using equation (54}.

6. Obtain from the airfoill data the drag coefficient at the u and Re
vbtained in step 2 and at the Meff obtained in step 5.

ATmE TR T YR TR YT pm ety owmT e o

7. Calculate ACp/Cp, using equation (58).

Determine Cp,¢¢, combining the drag coefficient found ir ..- 6
and the drag correction ACD/CD found in step 7. Use thi. .iective
drag coefficient in calculation or the drag force of the 2 .emeant.

These steps
calculated

ve, of course, repeated for each segment each time as they are
.ing the iterations.

A SIMPLIYTED BLADE ELEMENT ANALYSIS

To obtain an indication of the magnitude and variation
efiect, a greatly simplified blade element analysis is
case of a hovering rotor. Tuese grouss simpliflcatiocns
short camputer program to make the integration over the rotor radius.
assumptions to be r will be discussed in turn as they are made.

of the tip relief
derived fer the
allow the use of a
The

The first assumption to be made concerns the form of the drag coefficient
and its variation with Mach number. 1t is often (for example, Reference 55)
approximated by the equrtions

Cp = Cpy

CDi + a

0<M<Mpiy

c (112)

M-M ) MC it<M<l.0

D c crit r
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or infinite aspect ratio. For an NACA UULZ airtoil section, wmosat
commonly "sed in roter blades,

= 0.8
cric

a_ = Q.57 (113)

As r_2viously noted, the correction for tip relief is made up of two parts:
a change in the Mach number AM and a change in the drag cocefficient ACh,

as obtained from equations (54) and (58) respectively. An inspection of
Figure 9 will indicate that the change in Mach number is by far more
important chan the change in drag coefficient. Note that the change in
Mach number assures a change ir the drag coefficient in the subsonic drag
rise range of Mach numbers. Therefore, in this simplified analysis the
change in drag coefficient will be neglected.

From equation (112), the drag coefficient for a finite wing may be written as

C = Cp,; *+ ¥ - 4M) - M + AC 114

Drw Dy ¥ 3¢ (¢ ) crit) b ( a)
or rearranging slightly,

CDFw = CD1 ta, (M - Mcrit) - M) + Cp (114b)

Inspection of this equation indicates that the drag coefiicient of a finite
wing is made up of three parts:

1. The incompressible drag of an infinite wing ’bCDi

2. A correction for the compressible drag rise va (M - M : )
c crit

3. A correction for the tip relief effect made up of two trerms
~ -aCAM + AC,

The 4C, term may be neglected for the reasons discussed above. It should
be pointed out that by neglecting the AC  term, the tip relief effect is
assumed negligible below Mcr ¢» Since the drag coefficient is independent
of Mach number as stated in éhe first of equation (112).

The torque of an element of a rotor blade due to drag is

dQ = rdD cosy

cosé

= p(Rr)? 2c Cp r dr (115)

The usial small-angle assumption is made. Since the equation (equations
(114)) for the drag coefficient is linear, upon substituting into equation
(115), the change in torque on the element due to tip relief may be
geparated and is




daQ = p ()% 2¢ a, &M rdr/2 (116)

or in ccefficient form for b hovering rotor blades

) X _1 b2¢c
i duCQ =3 IR

a oM r3dr (117)

From the definition of solidity and the transformation of equations (105)

and (107),
2bc, 2b bB
G o ——— i —— = R =
c = R cisy hyoi -;;iL (118)
Using equations (54) and (118) in (117),
dac, =+ Ze 4 ( +1=2M2) (G./82) T3 dr (119)
Q 2 ey c 2 X'y )
Integrating, 1
SFEW M vo1 yim =3 m
ACQ = > 8—3(1 +--i— M )er dr (120)
0 y

It should be emphasized that M, 8 and éx are all functions of the radiad
position along the blade. Also ndte that Gx depends on F, the airfoil
coordinates, whose tnlckness must be transformed in accordance with
equation (106).

In equation (120) the correction factor needs to be calculated separately.
In the simplest case, the correction factor is obtained by assuming a semi-
infinite wing and using the first term of the Taylor series expansion. The
change in Mach number then becomes, using equation (23b) (35c) and (54),

y-1 1
AM/M= (1 +=~M2) 2 (1 - —=—————=) I /(4n82)
2 (c/y)Z + 1 1 y
71 B. 1
- 1
= 2(1 +*2—1 M2y |1 1 — X

-f(l/(Bylc(l-f)z)z a1 T o4mBd
(121)

The factor 2 occurs because 2)=R. The valuc of Il/I is given in Table II.
Substituting into equation {(116) results in the integral
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Even in the simplest case of using the correction factor as for the first
term of the Taylor series for a semi-infinite wing, as shown in equation
(122), the integration of equation (120) appears to be too complicated to
be analytically integrated. Therefore, three computer programs to
numerically carry out the integration were written; they are listed in
order of complexity:

1 A program using only the first term of the Taylor series for a
semi-infinite wing only as the correction factor, as in equation

(122).

2. A program using the Taylor series as the correction factor with
options for using only the first or all three terms of the series
and a finite or a semi-finite wirz.

3. A program using the numerically integrated version of the correction
factor.

These programs are similar and, therefore, will be described together. They
use the trapezoidal rule for the integration, with a2 maximum of 50 steps

and the values of the independent variable (rotor radius) given as input
data. Each program ccnsists of a main program, which sets up the

necessary variables and contains the integration loop. To calculate the
integrand, a fuiction subroutine is called. The correction factor is
calculated within the function in program 1; for the other two programs,

the correction factor is calculated in a further subroutine.

In the third program, the correction factor is calculated by numerically
integrating equation (16) as described on page 15. For parabolic arc

airfoil shapes, 22 evenly divided segments were used along the chord from
0.0000 to 0.9999 (since this airfoil is symmetric about the £ = 0 axis),
while 30 points from +0.3999 to -0.9999 were used for the NACA 0012 airfoil.

Because of the assumptions made concerning the drag coefficient, there is
no effect on the torque due to tip relief on any segment where the local
Mach number is below eight-tenthes. Also, there is a strong singularity

at tip; therefore, the upper liuit is 0.999950 rather than exactly one.
Forty-nine unevenly spaced segments are used. Using ouly 39 segments in
some test cases resulted in a change only in the third significant figure,
but since there is only a small increase in computing time, 49 segments
are used. The intervals were chosen so that the values of the integrals
from the segments are roughly equal.
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RESULTS

The craputer programs discussed previously were run with a number of
sets of data, with the various options available for calculating the
correction factor. The results from these computer runs are discussed,
as 1s the problem of comparison with experiment.

In making these calculations many major assumptions were made, the most
important being the simplified form of the drag coefficient and neglecting
the ACp term in the tip relief correction on page 56. These assumptions
are such that there is no variation of torque due to tip relief with 1lift.
To make full use cf the theory presented here, it should be applied to the
drag coefficient used in a strip analysis computer progranm.

It should be noted in regard to the accuracy required that the calculation
is of the change in torque coefficient due to tip relief. The order of
magnitude of C. is about 25 x 1073, while at the same time the change in
torque coefficlent due to tip relief is about 2 x 1075, Thus, there is

a factor of 10 between these two numbers, which are subtracted from each
other. Three-place accuracy on ACQ requivres four-place accuracy of CQ'

Results from the computer output indicate the differences between the
various means of calculating the tip relief. This is summarized in Table IV,
The choicrs are the use of finite and semi-infinite wing, and the use of
numerical integration and one~- and three-term Taylor series approximation.
Further, calculations were made using parabolic arc and NACA four-digit
series airfoil.

i
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TABLE 1V. CHANGE IN TORQUE DUE TO TIP RELIEF
Tip Mach Solidity Per -4Cq Per Blade
Number, M Blade Finite Wing Semi-Infinite
Wing
Using three terms of the Taylor series

0.85 .0159 1.026x10"° 1.024x10"°

0.90 .0159 1.847 1.84

0.95 .0159 3.812 3.796

0.85 .0232 1.836 1.830

0.90 .0232 3.369 3.352

0.95 .0232 6.7L8 6.699

Using numerical integration

0.85 0159 +993 .991

0.90 0159 1.789 1.784

0.65 .0159 3.708 3.693

Using the first term of the Taylor series

0.85 .0232 1.718 1.711

C.90 .0232 3.180 3.162

0.95% .0232 6.203 6.153
Parabnlic arc airfoil

The differences between the use of finite and semi-infinite wings for

calculating ACy are very small. The differences are in the third signifi-
cant figure, and thus it is recommended that calculations be made using the

semi-infinite wing concept. Further discussion will be restricted to the
semi-infinite case,

Figure 14 shows the change in torque coefficient due to tip relief obtainead
from the three means of calculeting the correction factor. The numerical
integration requires much more computing time, but since the differences eare
feirly small, it is believed that the use of the first term of the Taylor
serles will give satisfactory results.
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Figure 14, Change in Torque Coeff:cient Due to Tip Relief for a
Hovering Rotor (o/b=0.0.59). (Note Displaced Origin.)
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The change in torque varies drastically with tip Mach number, and increases
rapidly as Mach one is approached. This i1s due to the use of the compressi-
ble flow transformations discussed on page 50. All of these transformations
behave in a manner similar to the Prandtl-Glauert transformation, having

an infinite singularity at Mach number equal to one. The results presented
here used the Prandtl-Glauert transformation, although for application,

the extensions c¢f the Prandtl-clauert transformation that were discussed
should be investigated.

The change in torque coefficient divided by solidity per blade due to tip
relief at two different solidities is shown in Figure 15. Solidity of
0.0159 per blade corresponds to a blade of aspect ratio 20, while the
solidity per blade of 0.0234 represents the two-bladed UH-1F helicopter.
The quantitv ACy/ (¢/b) increases with solidity. This is as expected; with
the greater amount of blade area, the flow is less like two dimensional.

Also indicated on Figure 15 is some comparison with test data. The data
is obtained from Reference 31, Figure 9, where the measured power coef-
fictent (numerically equal to the torque coefficient) of a UH-1F heli-
copter at u = 0.25 is presented along with the predicted performaace
based on Tanner.?3 The experimental value of the torque coefficient due
to tip relief is the difference between these two curves.

The figure shows remarkable agreement, but because of the difference in
conditions used for the two cases, care must be taken in interpreting this
figure. First, the difference in scale between the two figures is very
large, the data being taken from a small figure. Thus, the curve indi-
cating the test should show a wide error band. At the same maximum tip
Mach number, a larger pcrtion of a hovering rotor is in compressible flow
when compared to an advancing rotor. Thus, the hovering roter may be ex-
pected to have a larger tip relief correction than an advancing rotor at
the same tip Mach number, as is indicated *n Figure 15. This figure does
show that the theory compares well with flight test data in both order of
magnitude and trend with Mach number. Thus the theory presented here can
help to explain differences between prediction and test data of helicopter
rotors operating in the compressible flow regime.
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Change in Torque Coefficient Due to Tip Relief for a
Hovering Rotor. (Wote Displaced Origin.)
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CONCLUSIONS

A derivation has been presented which attempts to account for differences
between performance prediction and flight test data, as being due to tip
relief effect. The theory 1is based upon the complementary wing concept

and results in a correction factor to the local free-stream velocity.

Small perturbation theory for rotors in compressible flow is discussed to
show how a Prandtl-Glauert type transformaction may be used in rotary-wing
theory. Application of the correction factor with the Prandtl-Glauert type
transformation in blade element analysis is discussed. The use of the
theory in a simplified blade element analysis results in a change in

torque due to tip relief, which is compered with data.

Results from the simplified analysis are of the same order of magnitude
as the discrepancy in test data, and indicate the same trend with Increasing

tip Mach number.

To fully exploit the theory, it should be made a part of a performance
computer program using blade element analysis. By doing so, more meaningful
comparison witn flight test data may be made.

The tip effect 1s only one of the factors which influence the compressible
flow over helicopter rotors. Therefore, the quantitative analysis presented
in this report cannot by itself lead to a complete understanding of the
performance of helicopter rotors in compressible flow.
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