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ABSTRACT

A theoretical method is derived whereby the effect of the compressible

three-dimensional relief on the torque required for a helicopter rotor

Lay be calculated. The complementary wing approach is used to represent

the relief effect. The effect of the wing which complements a finite wing

to make it an infinite wing may be found as a rducLiou in the free-stream

velocity. This approach was applied to fixed wings by Anderson i and is

extended here for application to helicopter rotors. By using a simplified

blade element analysis, the magnitude of the change in torque due to tip

rvlief has been calculated and compares well with test results. The method

to use the tip relief calculation in more complex blade element computer

programs is described.
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INTRODUCTION

The present methods of calculating the performance of helicopter rotors
in the compressible regime are not quite satisfactory. These methods are
based on the use of two-dimensional c-mpressible airfoil data inserted into
strip element analyses and predict power losses higher than are actually
found from flight test data.

Though only one of ma.ny complex factors, a prime reason for this discrepancy
is the tip relief effect., i.e., the reduction in the drag of a finite body
when compared to a similtr body of infinite span, due to the reduction in
local velocity near the tip. The existence of the tip relief effect has
been well documented for both fixed and rotary wings, and the documentation
indicates that the tip relief effect becomes more important as Mach number
increases in the subsonic range. For the case of a wing in uniform flow,
theoretical work exists which quantifies the tip relief effect. Further,
a theory exists by which the drag coefficients of wings of differing aspect
ratios, up to high subsonic speeds, may be correlated by a similarity law
developed by Anderson. 1

The purpose of the work reported herein was to investigate whether Anderson's
work on the tip relief effect for fixed wings could be extended to rotating
wings, either by a transformation of coordinates from uniform to rotating
flow, or by setting up the problem directly in rotating coordinates. The
approach was suggested by Trant 2 Neveral years ago. The nonlifting finite
wing is renresented as a source distribution, and the actual wing is found
to be mathematically equivalent to the superposition of a wing of infinite
aspect ratio and of a "complementary 7ing" that would extend from the tin
of the actual wing to infinity; the problem is initially sct up for
incompressible flow and then transformed into a compressible flow problem.

Early in the investigation, it was found, exactly as theorized earlier by
Trant, that Anderson's method could be used for rotating wines by using a
different method of averaging locally induced velocities over the wing due
to the tip effect. While Anderson finds a unique correction factor for
the free-stream velocity, one can find a spanwise varying correction factor,
which can be used in the blade element performance analysis of rotors. Only
recently, hovever, has a full understanding of the problem been reached,
after (1) the mathematical transformation of the problem from fixed to
rotating coordinates was accom-?lished and (2) a solution of the problem
directly in rotating coordinates was attempted. The limits of validity
of the solution indicated above have been established, and it has been
shown that the Trant approach is correct for helicopter rotors; in addition,
there is strong evidence that the mathematical formulation of the Anderson
problem directly in rotating coordinates is fruitless. limited comparisons
of flight test data with a simplified blade element analysis incorporating
the tiD relief effect derived theoretically in the renort show very
encouraging correlation trends.I

I



This report presents a detailed mathematical formulation of the tip relief
effect on helicopter rotors. The report first discusses the background to
the problem then the calculation of the spanvise varying correction factor
to quantitatively determine the three-dimensional relief effect is given.
Whenever possible, the discussion and the derivation are ir terms of fixed
coordinates, as it is simpler to grasp ph:'sicallv and beciuqe thf2
relationships between fixed and rotating coordinates are straightforward
as is shown later in this report. Next, the basic fluid dvnamic equations
of a rotor are discussed, including the derivation if the small perturbation
equations for subsonic and transonic flows to show the relation between
compressible and incompressible flows over rotors. The source-sink
distribution method of representing a rotating blade i discussed.3 Than,
use of the tip relief correction factor for compressible flow over a rotor
in blade element analysis is derived. Tahe final charters make a comparison
vith experiment, discuss the results, and give conclusions and recommenda..
tions.
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BACKGROUND

ROTA.RY-WING PERFORKMhNCE CALCULATIONS

Performance prediction techniques for rotary wings are highly iterative.

Calculations for a single point on a performance curve may take a considera-

ble time on a high-speed comnuter using one of the more sophisticated free-
wake techni- ues. This is clearly unaccettable for preliminary design

k purposes, and thus methods which are reasonably simple in avplication, but
not necessarily exact in the mathematical sense, are needed.

The two approaches to rotary-wing performance calculations are the actuator
disc and the blade element theories. Since actuator disc theory assumes
an infinite number of blades, it gives no information as to how the blades
should be dt.-signed and ignores profile drag. Thus it is necessary to use
aerodynamically as an irdependent two-dimensional airfoil segment. The

local forces are calculated from the resultant velocities at the element,
and total forces are found by integrating the contribution of each element
along the radius and the azimuth. From these forces, the motion of the
blade is determined, but the motion in turn has an effect on the local
velocities and thus the local angles of attack. This iteration may be
avoided only by making such further assumptions as averaging the induced
velocities and assuming a constant drag coefficient as is done in chapter 8
of the book by Gessov and Mers.4  With the use of high-speed computers, the
blade element iteration is used. Some of the basic assumptions used in
the analysis and some of the suggested improvements include (for a more
thorough review, see Gessow and Myers4 (page 198-216), Harris et al.,

5

and Bellinger ]s

The use of two-dimensional steady airfoil data is almost universal.
The use of so-called synthesized data has been suggested and will be
discussed later in this report. There are also attempts to include
unsteady stall hysterisis in the data, 6 in addition to theoretical
work in the area of dynamic stall. 7

Tip effects are accounted for as a loss in the lifting capability

of a small percentage of the blade near the tip. Often, it is
simply taken as a constant B-0.97, but it can be calculated as a
function of thrust coefficient based on vortex theories developed
by Prandtl and Betz, as explained by Glauert 8 (page 261-269).

The radial component of the velocity at an element is neglected, and
the analysis is based only on the velocity normal to the blade sran.
A means of removing this limitation has been suggested by Harris ,5
based on ideas of swept-wing aerodynamics.

- The induced velocity is in many cases assumed constant. The major
problem is the prediction of the location of the trailing vortices.



In fixed-wing aerodynamics, the trailiihg vortices are assumed to
trail aft in the direction of the free-stream velocity. On a rotor,
the trailing vortices are in more or less the shane of a helical
sheet, due to rotation and to the nonuniform lift distribution.

The helical shape for the trailing vortices was first used by
Goldstein. 9 But the helical shape gives rise to a great deal of
interference which distorts the wake, as described, for example,
by Landgrebe,

10 ,11

- Compressibility effects are taken into account by using airfoil data
from two-dimensional compressible flow tests as discussed below.

The complexity of the rotating wing problem is such that only recently has
any real progress been made in the basic theory. In fact, Scars 12 indicated

that the blade element approach is valid. Only in December 1970 was it
shown 1 3 that Sears is not necessarily valid for a finite span rotating blade.

Boundary layer calculations (such as that bv Hicks and Nash 11 and Clark and
Arnoldil )use the two-dimensional pressure distribution suggested by blade
elent -alyz±a- as the external flow. Unfortunately, very little of the

basic theoretical analysis is of direct vae in the design and performance
prediction of rotor systems.

COVPRESSIBILITY EFFECTS ON ROTORS

Some of the approaches to account for the compressible flow over heliconter
rotors will be reviewed. In the early 1950's, two basic theoretical
approaches to compressibility were made. The first was solutions to the
actuator disc problem in compressible flow.1b,17 ,16 This was combined with
blade element theory by Laitone19 for use with helicopters, The other
approach by Head,20 was the use of the Prandtl-Glauert rules for the lift
coefficient variation with Mach number in a simplified blade element analysis.
By including a linear decrease in lift above the lift divergence Mach number
to extend the validity, the ratio of comoressible-to-incompressible thrust
coefficients and the ratio of induced and total torque coefficients for
compressible and incompressible flows are found. Neither of these approaches
recieved much use. The actuator disc theory was not used because it does
not give any details concerning the airfoil design; Head's report received
little circulation; and the use of two-dimensional compressible airfoil

data in blade element analysis was begun at the same time.

Airtohl data obtained in two-dimensional compressible flow in blade element
analysis were used to find the effects of comoreqsibilltv and to make

corrections to the available incompressible rotor charts. Typicall,
these were numerically integrated by calculatorq and made a large number
of assumptions.2 1'2 2 The culmination of this effort is the charts and
tables prepared by Tanner,2 24 using a highly sophisticated computer

program with airfoil data from "two-dimensional wind tunnel tests of a

production blade specimen using the NACA 0012 airfoil section".

4.



The inconsistency of using tvo-dimensional data in rotating airfoil

;roblevs first came to light during propeller tebts.
2 5 The drag divergence

tip fMah number of a propeller vas found to be about 0.06 above the two-
dimensional result, and performance tests of full-scale helico ter rotors

in hover indicated the same trend.
26 Therefore, Carpenter

2 7 I2  proposed

the use of "synthesized" airfoil data, which are obtained by "adjusting the

airfoil data in such a manner that the calculated performance 
agrees

closely with the measured performance". He stated further on page 2 of

Reference 28 that "although the synthesized data are derived from rotor

hovering performance, it can be reasonably assumed (until proven otherwise)

that the data are equally applicable to forward flight calculations".

Charts similar to Tanner's were prepared by Kisielowski et al.. 2 9  using

the synthesized data of Reference 28. but these latter charts appear to 
be

rarely used. It would be of interat to compare the predicted performance

using each of the two sets of charts with some actual flight test data.

The problem of helicopters at high forward speeds ts that compressibility

effects and stall occur at the same time on the rotor, At the advancing

tip, the forward speed and the rotational speeds add, resulting in speeds

of approximately Mach one. But on the retreating side the two speeds

subtract, resulting In a region of reverse flow and areas where the flapping

blades are at or above the stall angle of attack. The dividing line

between stall losses and compressibility losses is not indicated by test

data,2 6 and both areas must be taken into account in rotor analysis.

To reduce the data and decrease the amount of flight test required,

personnel at the Edwards AFB Flight Test Center have been developing an

approach, mainly empirical, to account for compressibility effects.3
0-33

Drawing on fixed-wing experience, the power required is divided into two
portions: (1) the incompressible p<ver; and (2) an increment in power due
to compressible flow, which depends on the difference between the critical

Mach number of the blade section and the Mach number of the element. The
correlation is established empirically using UH-lF and CH-47A flight test

dita.30 ,31  Later reports 32 133 include the effects of power losses due to
retreating blade stall.

Another approach34 to the aerodynamic problem of a rotor blade in compressi-

ble flow has been taken by Bell Helicopter Company in its design of the

Model 309 King Cobra. The rotor system embodies an asymmetrical airfoil

section and a double swept tip. The airfoil section designed by Prof.

Wortman 35 is based on the aerodynamic requirements for two-dimensional

airfoils found from basic blade element theory. Swept wings have long been

used to delay the effects of compressibility on fixed-wing aircraft.

Similar sweeping of the leading edge of the blade tip will reduce
compressibility effects in forward flight.

36

Thin blades near the tips to reduce the drag divergence Mach number have
also been considered by Bell.36 But in uniform flows, a thin airfoil has
a lower maximum lift coefficient and stalls at a lower angle of attack,

which in a rotor would increase the power on the retreating side. The

Sikorsky S-67 Blackhawk also incorporates the sweeping and a thinner

section of the blade tip to reduce compressible flow effects.

5



Surprisingly, though, full-scale wind tunnel tests 37 indicate that the
lifting capability of a thin-tipped bladed rotor is not compromised, while

it requires significantly less power at high advancing tip Mach numbers than

a blade with constant thickness.

THE THREE-DIMNSIONAL RELIEF EFFECT ON ROTORS

This report is concerned with one aspect of the rotor compressibility
problem. As noted above, two-dimensional airfoil data overestimate the

compressibility losses. One possible factor may be the reduction in drag
coefficient of a finite wing in compressible flow compared to a similar
two-dimensional airfoil. As will be described, this relief effect may be
determined in a quantitative manner and applied to the performance
calculation of rotary wings.

In a three-dimensional flow, the stream may deviate from the main stream

in both directions perpendicular to the body chord line. At the same time,
in two-dimensional flow, only deviation in the direction perpendicular to
both the chord and the span is possible. Therefore, lesser disturbances
are produced by three-dimensional bodies than by two-dimensional bodies.
(See the discussion of Figure 10.) This reduction in disturbance velocity
is also a reduction in Mach number, and thus a reduction in critical Mach
number.

That this disturbance reduction in a three-dimensional flow increases with
free-stream Mach number was found 38 analytically for flow past ellipsoids
of various aspect ratios; the difference between the maximum velocity of
an elliptic cylinder (an ellipsoid of infinite aspect ratio) and a finite
aspect ratio ellipsoid was found to increase with Mach numb-r (see, for

example, Figure 13-2 of Shapiro's book. 39 ) On airplane wingo of normal
aspect ratio at incompressible speeds, the wing is considered to be two-
dimensional. The effect of aspect ratio is found from the Prandtl lifting
line theory as an additional angle of attack and an induced drag due to

the effect of the trailing vortices. The induced drag of the wing is found

to vary inversely as the aspect ratio.

Goethert4 0 extended the Prandtl-Glauert transformation between compressible

and incompressible flows to finite wings. The result is that, instead of
the simple affine trnsformation of a two-dimensional body to reduce it to
an equivalent incompressible flcw, for a three-dimensional body all lateral

dimensions must be reduced by the amount 8 - 1 - . For a more
detailed discussion, see Shapiro, 39 article 13-2, and Jones and Cohen.l

!

pages 48-52.

But at higher speeds, not only the lift but the drag of the wing is affected

by aspect ratio, and the Coethert extension does not account for the three-

dimensional relief effoct. Therefore, a means to quantitatively predict

the relief effect is needed. Anderson1 developed a theory for the relief

effect on fixed wings in the nonlifting case. This theory is extended here
and is applied to rotary wings.

6



Ai.1erjon's theory for the tip relief used a "complementary wing" approach,

the complementary wing being a fictitious wing extending from the actual
wing tip to infinity on either side. His basic proposition is that the
velocity at the location of a finite wing can be considered to be the same
as for the infinite wing, reduced by the amount which would have been
contributed by portions of the infinite wing that were removed from the flow
(the complementary wings). These values can be calculated by lineariz~ed,
subsonic compressible flow theory, using a source-sink distribution to
represent the thickness effect of a symmetrical wing. In the case of the
fixed wing considered by Anderson, the effect of the complementary wing can
be averaged over the planform area of the finite wing, resulting in a
"corruction factor" which is a function of aspect ratio but not of position.
The application of this correction factor is "that the finite wing will be
considered to experience the same static pressure to total pressure ratio at
corresponding points as the infinite wing, but only when measured at a free-
stream velocity which is greater, by the correction (factor) calculated,
than the free-stream velocity over the infinite wing". In other words, we
can make use of two-dimensional airfoil information in the calculation of
three-dimensional flows through the use of the correction in free-stream
velocity. This will be explained in more detail in the chapters which
follow.

|I
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THE TIP RELIEF EFFECT

A quantitative means to calculate the tip relief effect, so that it may be
applied to rotary wings, is derived in this section. The derivation will
follow the concept and the treatment proposed by Anderson. 1 The major
difference between Anderson's reports and this report is that Anderson,
being interested in fixed wings, intended to obtain the correction as a
function of aspect ratio X alone, while here it is necessary to obtain
results as function of aspect ratio and distance from the tip, so that it
may be applied to rotors.

T17he result which will be obtained here and that found by Anderson is that
two-dimensional results, be they from theory, wind tunnel or flight test
data, may be used, through the transformation derived here, in the
calculation of three-dimensional flows.

The discussion here will be concerned .dith a wing in a subsonic uniform
airflow with a constant airfoil sect4 on. Tht flow is assumed to be sub-
critical, with no shock waves, and inviscid rithcut separation. The
airfoil is assumed to be thin; th-as the thickness of the airfoil may be
represented by the linear theory distribution of sources and sinks, namely,
that the source-sink distribution is proportional to the local stresmvise
slope of the airfoil. Although this is invalid at the leading and trailing
edges, because of the averaging process which will be discussed below, no
correction needs to be made. The discussion is further restricted to the
nonlifting case, i.e., the effect of thickness only. It is believed that
the major cause of tip relief is thickness, rather than angle of attack
or caber.

The derivation will be made for a wing in uniform flow, as the physical
characteristics can be most easily explained and the equations are more
familiar. At the end of this section it will be shown that the result is

the same for the rotating case as may be expected from the theory developed
by Sears. 

1 2

The Goethert extension of the Prandtl-Glauert rule is used in the analysis
for application to fixed wings. The factor 82 a 1 - M2 will be used to
transform between the compressible flow and the equivalent incompressible
flow, rather than any of the higher order developments. Extra complexities
of the higher order theories are not justified for this application. Further
extension to rotary wings is discussed in the next chapter.

PHYSICAL AND MATHMATICAL MODELS FOR THE TIP RELIEF EFFECT

Consider a symmetrical airfoil wing in inviscid, incompressible flow at 4

zero angle of attack. Due to the principle of superposition, the velocity
at any point is the sum of the free-stream velocity and the velocity induced
by the wing. The induced velocity of a finite span wing may be represented
by a source-sink distribution over the planform area of the wing. But



F t

because of sumerposition, the
finite span wing may also be

, ., renresented by a similar infinite

span wing less "complementary

Com plernntt"y wings". The complement rxy wing
Wing is a samilar wing extending from

the tips of the finite wing to
infinity on both sides. The

. / / concept of the complementary wing
/' is illustrated in Vigure I for

Fute win a wing of chord 2c and suan of
2X. 'Te may write this discussion
in equation form as

- -~- aiplemenitary 0 Ux f lAd(),.W--- I[,W ., x + U.A &1 (1)
S-2X
, .for the potential of a finite

wing of aspect ratio X, with flow
along the x-axis and origin at

"igure 1. Coordinate 7ystem for a the right winm tip, where A
"inite "'ing. re Presents the source-sink

distribution integral
+c

A F (.) (2)
27r I~~) -(Yi 2 

1(

-c

where the subscript C indicates differentiation. This coordinate system
was chosen so that it may later correspond to a helicopter rotor.

The potential of the finite wing using a Dair of complementary winRs is+as x2 +*>

U +x + U.A dn UwA d' -f U.A dn (3)

0

The values of * obtained from either eouation (1) or (3) have to be iun-
tical.

The first integral in equation (3) (with limits of olus and minus infinity)
is simply the potential of an infinite or two-dimensional airfoil, and
thus can be represented by the synbol @

The last two integralL give values which vary with Dosition throughout the
flow field. f an average value of these two terms can be obtained, the
problem becomes greatly simplified. Let

*-2X
C(X,x,y,Z) = . d, +J A d.-I (4)

-00 0

9



Then equation (3) becomes

The velocity in the streawwwise direction may be siprly written from equation
(5) as

u a-"= = U. + uX=® -U.Cx (6a)

or

u U (l- Cx ) + ux_. (6b)

which may also be written as

du (t )

If an averaged value of G can be found (denoted by , ), then the velocity
on the finite wing u can te compared to the velocity of an infinite wing,
but at the new free-stream velocity of U (l- X). Therefore, the finite
wing will experience the same static pressure to total pressure ratio at
corresponding points as the infinite win, at a free-stream velocity, which
is greater than the free-stream velocity of the infinite wing by the
correction n . Therefore, the finite and the infinite wing will experience
the same force Der unit span when

UI(I' nx) finite U. infinite (7)
wing wing

holds for the free-stream velocicy.

The correction 3 (M) was found by Anderson1 by averagAn4 over the pianform
area of finite wfng

-- -- , X ( X , N , Y , z ) d x d v( )
2C f -c -2X

If instead the averaging is done only over the chord of the finite wing,
then a correction will be obtained which will be a function of aspect ratio
X and snan y, +c

I f tx(X x,,z)dx (9)
-C

10



With the correction as a function of snanwise position, it becomes
applicable to a rolary wing where there are major spanwise variations.

The variable z, in the airfoil thickness direction, is eliminated since the
wing is assumed to be in the z = 0 plane.

THE CORRECTION FOR A SEMI-INFINITE WING

To y,n-.-

, WY.n The main effect of a complementary
winy will be felt near +he tip

, / where the comrtementarv wing joins
. ... - the finite wing, rather than at

/ the onposite wing tip. Thus a
/further simnlification may be

/,OW o/oiet h i ne osdr/found if the complementary winp

," ,'Complementary opposite to the tin under consider-
u , Wing ation is neglected. The problem

- -- -._ may then be posed as the comnlemen-
... tary wing of a semi-infinite wing

(see Figure 2). Mathematically,
this removes the first term of

Sem-niriate equation (4i). In this section
Wing the correction for the semi-

infinite wing will be derived,
while in the next two sections the

correction for a finite wing is
To yn-

derived, and then the two correc-
Figure 2. Coordinate System for a tions are compared.

Semi-Infinite Wing.
Mathematically, the problem is the
substitution of equation (2) for A

into equation (4) for the complementary wing potential and then in turn

into equation (9) for the correction, and carrying out the indicated
mathematical operations. The complementary wing potential for a semi-

infinite wing is, from equations (2) and (4),

G(x,y,z) "- /.('.)e+ (y.r)i (10)

Taking the derivative of G with respect to x results in

ao a +c Fr(% 1 r

x=' (-) (y-nZ - zr
, 4c

1 f f F()(x- )d d
o -C {(x-) 2 + (v-n) 2 + z2} 3 / 2

1i



The integration with rp3rect to n over the span (C<r<-) of the comnlemen-
tary wing throuph the use of integral form Petit Bois .;7-144 ' *

r du (12)

(A,2 __ __ _ +_ _ _ __ _ _ (12)1
(A2 + u 2 ) 3 /2  A2 /A2 + u 2

where u - y-n
du - - dn
A2 _ (X-_) 2 + 2

and F is constant with respect to the integration. Notin- that tie
upner'limit of integratfon is

lln u
U-- A2 + U

2

results in + -

F& (X-0 fc -dii
x (,2 + U2)3/2x - (IC)

-C
G r /7 TTv + 1

x (x.C) 2 + z2 (_&) 2 + J2 + z 2

-C

-C(13)

Substituting into equation (e) to obtain the averae chordwise correction,

+c +c

G(v) -7- 'K 1
x ~ ~ I + Zr 

2  +________:__

Evaluating at the chord line, z . 0, equation (14) simplifies to

(Y) +c [=)+Y2+ 1 d& dx (15)
-CJ_ LJ

* Petit Bois 67-14 indicates the 14th integral form given in Reference 42
on page 67.

12



Equation (15) may be integrated with respect to x holding F, as a constant,
since F is a function of the auxiliary coordinate . The use of integral
forms Petit Bois 1-4 and 45-10 results in the following equation:

= (x- J.1(x-E) 2 + y2 (

-c -c -C

c- c-

=y-in - +

-c -(c+&) -(c+&)

+c

_ 1 +/( ) +i

To evaluate equation (16) further, a specific airfoil under consideration
must be piven and its slope Fr inserted into equation (16) before carrying
out the integration. An attempt was made to carry out this integration for
an airfoil whose thickness is given by a simrle algebraic series, such as
the NACA four-digit series, without success. Two other approaches were
used successfullv to evaluate the integral of equati3n (16). The first is
numerical integration, while the second is a Taylor series exvansion which
results in a simple but accurate approximate equation of vide application.

hamerical Integration

Numerical integration of equation (16) was made usina Simpson's rule in a
computer program. This, of course, requires an even sraclnp of interv.1s.
In most instances, 30 intervals were used vith the urner and lower limits
+ 0.9999c to avoid possible singularities and division by zero within the I
comnuter. To indicate the accuracy with the number of intervals, Table I
compares the values of ( x usina 20 and 30 terms for a narabolic arc airfoil.

1

I
I
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TABLE I. COMPARISON OF INTEGRAL ACCURACY WITH NUMBER OF TERMS

Span Po)sitin Sti-- finite, Parabotic Arc Wing
y/c

20 terms 30 terms

0.105 -0.02184 -0.02226

0.50 -0.01041 -0.01058

1.00 -0.00528 -0.00537

3.00 -0.00098 -0.00101

Differences in the final change in torque due to the number of terms are
even smaller than indicated in the table.

Further discussion of results will be in comparison with other methods of
evaluating equation (16).

Taylor Series Approximation

If the bracketed term of equation (16) is expanded in a Taylor series of ,

the airfoil slope F- will then appear in integrals of the form

+Cf c F (() ndC (17a)

-c

which, as will be shown later, may be further reduced to

S F(C)ImdC (17b)

Anderson found1 that fuL Lhe usual airfoil section, the values of these

integrals cannot have large variations.

Therefore, we can write equation (16) as

14



+c +c

G H (c/y) +--LHj( +) F df + + d (18)

-C -C

where

I + .((c_)/y)2+ i
H( ) =lin = Ho + H' (c/y, 0)

t+_ ~1 + F (c+Hy)+ i

+ ... n-. Hn (c/y, 0 0) (19)

n!

where

H -- (20)

The integrals of equation (18) will be discussed in a later section on the

effect of airfoil section, while here the first three nonzero terms of the

Taylor series of equation (19) will be given.

For the Taylor series, the derivatives of the logarithm terms, which are of

the form

tn(l + rp 4 1 ) (21)

are found as follcws:

First Derivative

d- (tn (1 + / p+ ) ) = 1 1 2p pI
d K /,Ap+ 1 +-1 2 ip " + 1

-.p' i -vT

P ,9+i (22a)

-5
iI
tI



Second Derivative

(-p/p' -- /p2+)-(1- '2+) (p2 /Ip . + ,/pl.j )

d (_ )=. p2PPZ+l

d& P /p7+ p2 (p 2 +i)

( P'i 2p2+1 (22b)
. p P ap p2l 312

Lp 2 +1)

Third Derivative

T2

d p') 2p2+1 1) p 3 [P 02+1) 4pC22P+1)(2 (p2+) + 3p)-d - I-- p2(p2+1)3-/2 -  4( p 2+1) 31

p - 6p4+5p2+2 -2 (22c)

IL (p2+1)5/2

Fourth Derivative

d [p3_ 6p4+5p2+ 2 +2
d& t p 3 / (p2+1) 512

5/2 5/2 3/2

= p 4 p 3 (p 2 +) (24p 3 +1 0 ) - (6p 4 +5p 2 + 2) (3p 2 (p 24,1) + p35(p 2+1) p) 6

p6 (p2+1) 5 p4

3p' 4 f 8p6 + 8p 4 +7p 2 +2

p L (p 2 +i)72 ] (22d)

Fifth Derivative

d [3P"4 (8P6 + 8p4 + 7p2 + 2 -211

d, -4 (p2+ 1)7/2-

16



- .~ p~ p2 l)7/2(48o5+32p3+1 L,)-(8p6+48p4j+7p 2 +2) I/. 3 (p;'+1) ~p7h(.i 5~)8

Lp 8 (p2+l) 7 4-- 5

3p'5  40(p 8 +p6 ) + b3p4 +36p 2 + 8(2e

5 (p2+1) 9/ 2+

The terms of the Taylor series are then found by evaluating at =0. Note
that there are two terms of the form of equation (21) with p1  (c-F )/y and

P2 (-+,)ly. Further note that
dp1  dP2

First Term

1 + vl' (C/y)+1
HOcy 0) Zn - n 1 0 (23a)

1 +

Second Term

(lly) 1 - A/y7)T +-/y 1 (c/y)7 + 1
Hj~/, 0)= - - +T

(d) f7Y+i(y),(c/y)
1

Third Term

2 ,/Y F 2(cly)2 + 1 _1] (-i/y)2  2(cly)7

H (C/Y, 0)--- 7 - 2 (CY / 1  J 1 / (C./y) 2 L(ely)2 + 1 1/

H" (c/y,, = U) 0 (230)
2

Fourth Term

H", C/Y 0) 4-26(cly)" + 5(c/y) 2 + 2(2d
H"' (c/y,~ 0) 4-2 2 + 1)5/2 2d1

17



Fifth Term

H-!v(cl , Y 0) =0

Sixth Term

1r 40 ((c/y)8 + (c/y)6] + 63(c/y)'* + 36(c/y)2 + 8
H v(C/y, =O) = 15[8 6 (?) )/ c3e)

• ((cly) 2  + 1 )9/2

Therefore, the correction factor may be written in terms of a Taylor series
expansion for the first three nonzero terms as

G = (1/4rc) (h 11 /c + h2 12 /c
3 + 1 313 /c

5) (24)

where we have defined

hi= H'(c/y, = 0) '
h2 = H"(c/y,& = 0)/3! (25)

h3 = H V(c/y,r = 0)/5!

II = F d
-c
+c

12 = _F' 3d' (26)
+c

I3 = F C d&3J
THE CORRECTION FOR A FINITE WING

The derivation for a finite wing follows a very similar pattern to that
presented for the semi-infinite wing. The complementary potential for a
finite wing is

-c x2 X 
F _ d F 

d n

--G(X, Yz) + (yn ) +
+c 0

8d + 
(27)

18



i Differentiating with respect ;0 .X,

+c -2X -
G __If Fc (Y_-r) dc it,

:& (_ 2 + (y_rl )2 + Z2)3/2

f ,x d,(28)
TT (X_4)2 + (y-r)2 + Z2)3 /2

Integrating with" respect to n over (- < t1<-2X) and (0< q <- in the same
manner as equation (13) was obtained:

G -=T- 2- + d4 (29)
G f " - I (X_5)z i+-37- (xC)' + (2X-y)l

Averaging in accordance with equation (9) and evaluating at z =0,

x = -.-- - +2d- (30

I

4-nc ( (x- ) 2 + (2)_y)

tICarrying out the integration in the manner used to obtain equation (16)

results in +CxC

(Y) " F + In 3.. .. 31

where

U( 1  (C-(/y

u2 - (+z)/Y

u 3  (c- )l(y-2X)
u4 e (c+0)-2) d

F19

Gx=Tf y X-y+2d4(29



rA

We may compare equation (31) for the finite wing with equaLiion (16) for the
semi-infinite wfng. -As may be "xpccted, the CutgecLion factor for the
finite wing is the sum of the correction factor for a semi-infinite wing
with its tip at the origin going toward positive infinity, given by the

first term (u1 and u2 ) of equation (31) and another semi-infinite wing
with its tip at y - -2X, going toward negative infinity, given by the
second term (u 3 and u4 ) of equation (31). In a similar manner, the Taylor
series expansion terms given by equations (23) are

Hini (c/y =cy) + H (cy c/(2X-y) )

wing SI SI

(33)

where S1 indicates semi-infinite wing. The forms of equations (24) and (25)
will thus hold for finite wings.

AIRFOIL SECTION CHARACTERISTICS

The integrals of equation (26) may be simplified and use made of the
equation for the Airfoils rather than the airfoil slope, by setting up
these integrals using the method of integration by parts (fudv = uv-fvdu).
The first integral in equation (26)

+c +c +c +c

I f  F4d& = &Ff -J Fd = -J FdC (34a)

-C -C -C -C

since

dF

dF

2. u= dv F d4= dE dF

du = d v= F

3. F - 0 at 4 - ± c, i.e., the thickness is zero at both
leading and the trailing edges.

Statements 1 and 3 will hold exactly for the other twy integrals, and

statement 2 will be similar with u = n and du = nn d.

fZl

f4

.. . . . .1 I



F

=+c +C

12 3 d4 - - (4b)

-c -c

and +c +c

I; F44 d (340)

The limitation on these integrals may be found from comparing the actual
profile to a rectangle enclosing the profile. Comparing the areas of the
rectangle and the profile,

+c

2/ F d = area of airfoil

-c

4tc - area of rectangle

Let +c

6A = 2 FdC/4tc (35a)

then +c 2c

-I, Fdr -6 4tc- -- 26 - c.c (35b)
121 A c c

-c

Nondimensionalizing by defining the leading and trailing edges at + 1
(chord lcngth 2, c = 1),

-26 AT (35c)
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_ c +C& The definiton of 6A is the
ratio of the area of the profile

to the area of the rectangle. It
t F( ) &may be seen from Figure 3 that

the ratio of these two areas
will not vary greatly for the

usual airfoil sections. In a
similar manner, the moment of
inertia of the profile and the

Figure 3. Geometrical Relationship. enclosing rectangle may also be
compared:

2 .1c F C2 d& - moment of inertia of the profile

(2t)(2c) 3/12 moment of inertia of rectangle

Let

61 = 1 c 2 F d& (4tc 3/3) (36a)

When nondimensionalized, 12 becomes

12 - .c F C3 dE - 26iT/3 (36b)2 c

Again by inspection of Figure 3, the ratio of the moment of inertia of the
profile to that of the rectangle will not vary by much. Uf orLunaLely,
there is no similar physical argument for the third integral.

The values of the integrals of equation (34) were calculated for some
airfoils. Table II shows these calculated values for an airfoil approximated
by an ellipse for the nose section and a parabolic arc for the rear
portion (from reference 1), and a parabolic arc airfoil.

It should be pointed out that 6. and 61 are independent of the coordinate
system and are dimensionless, w~ile the values of the integrals do depend

on the coordinate system, and the values given in the table should be used
only for the case where the length is measured in terms of the semichord
as is done in this report (see Figure 3.)
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TABLE Ii. AIRFOIL CONTANTIn!/T

Elliptic Nose~Parabolic Arc
n Parabolic Rear

1 -1,434 -1.333

2 -0.989 -0.80

3 -0.571

CHARACTERISTICS OF THE CORRECTION FACTOR

A simple computer program was written to calculate OX so that its
characteristics may be studied. The Program integraied equations (16) anc'
(31) numerically for Cx and calculated Cx as a Taylor series expansion
(see equation (24) for both the finite and the semi-infinite wing). From
these calculations, the plots presented in Figures 4 through 8 were made.
The comparisons made in this section are for a 10% thick parabolic arc
airfoil section, but the general trends will apply for other sections.

Figures 4 aiid 5 show the coefficients of the Taylor series for a semi-infinite
wing (Figure 4) and wings of aspect ratio 2,3 and 4. The following observa-
tion may be made:

- The coefficients decrease at a fairly rapid rate near the tip.

- The first term is dominant by far over the full span.

- The second coefficient becomes negative about one-half semichord
from the tip, has a negative maximum at about 0.9 semichord, and
then becomes asymptotic to zero. For y>2.25c, the absolute value
of the second coefficient is less than one-tenth of the first
coefficient.

- The third coefficient is negative in the range 0.251y/c I.2, with a
negative maximum at about y = 0.45c. After becoming positive at
y/c"-l.2, a maximum occurs at y/c"-l.5, but at this maximum the
ratio of the first term to the third term is about 1/100. Above
y/c>0.1, this term is less than one-tenth of the first term.

- The second and the third terms are more nearly equal in magnitude,
and thus one should not be neglected in favor of the other.

- At the wing tip, the limiting values are:

23



h I  2.0

h2----- 0.667

h 0.4 I

- These observations hold for the three finite aspect ratios and for

the semi-infinite wing. The similarities of the shapes of the curves

and the magnitudes are obvious.

The correction factor Gx is shown in Figures 6, 7 and 8. Figures 6 and 7

compare the three means of calculating the correction factor:

i. using the first term of the Taylor serie; only

2. using the first three nonzero terms of the Taylor series

3. using a numerical integration scheme with 30 terms from -0.9999c

to 0.9999c wit'o Simpson's rule.

In addition, Table III tabulates the data used for Figure 7 and includes a

column showing Cx calculated using two terms of the Taylor series. Except

within the 0.2 semichord near the tip, all of the means of calculating the

correction factor are in good agreement. The three-term approximation is

in good agreement with the numerical integraLion calculation even closer

to the tip.

As would be expected, the correction factor decreases rapidly as the distance

from the tip is increased. The correction factor Ex is the change in

velocity (AU.) between the two-dimensional and the three-dimensional flows.

At the tip, for a 10% thick airfoil, AU,/U, is about *3.0%, while one

semichord inboard it is reduced to 0.15%.

The magnitude of AU./U,, is indicative of the accuracy required in calculating

GX. Since AU,/U. is of the order of one percent, a ten-percent error in '5

results in only a one-tenth of one percent error in U,.

the effect of aspect ratio on the correction factor may be noted in Figure 7.

Here the aspect ratio effect is seen on the magnitude of the distribution

of GX9 especially at the wing center line, where differences in Gx for the

various aspect ratios are seen to be important for the small aspect ratios

Figure 8 comparc7 the spanwise variation of the correction factor near the tip

for several aspect ratios. It is seen that the differences are rather small.

The difference between the aspect ratio 20 and the semi-infinite wing could

not be shown on the plot as it is a difference of one in the third significant

place. The effect of aspect ratio on the value of the correction factor

near the tip is thus small, as any effect is due to the complementary wing

associated with the opposite tip, and since it is far away, it has only a

small effect.
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TABLE MI]. CORRECTION FACTOR FOR A SEMI-INFINITE WING

TERMS OF THE TAYLOR SERIES
.INTEGRATED

SPAN FIRST SECOND THIRD USING 30 TERMSI

5,I6I0 -,2147 -0'025,9505 410#Q270685? '0941

9,61500000 -0102090240 *O00495562 *00~2663823 .-,0?Iid@82
.I,02060006 -609J79635 90,02470600 e0#02642328 -',1~2770379
11,025000 -0,62069033 00,02461648 -0.;2620~853 -?,. 2725842
89 0006 -0,12216a97 -.0,2377112 q8,72513926 -",!253187
6,10668606 .0161910914 -0,022W0093 -O.?2306137 .:,:?26477
01150606 -0#01807279 .0,02047623 -0,2103217 -?,01986488
9,20 6g006 -201705896 -0,01891626 mt,'2914564 ",
0_1 i2i6 06 08,61607391 -0,01743656 0,t!1742549 -JX 621630'
6,3600060 -,61S12296 -0#01604843 .0,?08?454 -2.,!1477810
a'.;500000 -0#01421042 OZ,0j475888 00,71440564 -7,01352551
046000@000 *0401333952 W0401357091 nO.e1314358 -?,%242437

0,41000I00 -0,01251246 w,001248411 -0,1202747 *7,VI14491B
*,,0of0oog *0,01173050 90,01149527 u.0?11043V6 -?,'58032
,5 5 006 0 0 6  "0421099403 0,01059927 e0,01017477 -??796022
l,606006 -0,61035273 60400978962 90,00940718 -,f913248
e61,630e0u o0,00965566 .0,00905918 .-0,c872597 -, Z?847Z7
1,70116066 o060@905142 0,.00840055 uP,00811846 -j,00789841
6,7566666 0,0848827 .0,0780649 s6,02757376 -1,2,0737844
9,86 10606 .0,0I796423 .0,00727012 9,.00708272 Z.10690471.

A."t JiU66 -006702479 aO00945%0 9?,2L'623272 -5',60759A
1,616066 000621539 -0,00558281 V0,0055227? 2 ~ 03a1
1,09999999 9011051365 o0,00494740 "ZV0492161 -Z7873
1,2100066 W0I110491800 .0,0044126? v?.74440762 -"?1428185
1,2999999 .0t0440066 -O,00395817 "0,00396480 -', 0384770
1,39999999 -0,00395270 v0@00356860 0,t00358102 -?,Z:347242

_&_56100V0 -e-0180-35640% .0,00323203 00,;10324672_ -'. ?,0 3 1 to2 9
1175910001 .0600279597 -0,00256672 s0,00258019 -7,70249802
1,99999999 0000224033 00#0020812 0,20209084 -0,00202332

2,2561060 .9e,0082898 0,0171663 -0,90172329 -2,00166724
2,50090001 e0,00151777 00@00243711 m0#0014415 .7,00139445

;,}99999999 w0,00063360 00000061704 00@,0061832 - ,-,0059784

4,49999996 0~lO050533 00,00049515 .0,00049540 PZ0?47895
5,0000000e *0100041209 vge@040524 w0,00040539 -% 039193
4,66000ml -*006028e73 -o@6028532 00,00028537 -Zje0?275$5
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Thus a result to be found later may be anticipated. In a rotor, which is
a blade of large (on the order of 15 to 20) aspect ratio, a large part of the
forces are near the tip, and this is where most of the correction needs to
be applied. But near the tip, the actual aspect ratio has a second-order
effect. Therefore, for rotary-wing calculations, the simplified semi-
infinite wing correction factor will be found satisfactory.

CORRECTION FACTOR FOR A ROTATING WING

Sears, 12 in 1950, derived the relationship between the incompressible veloci-
ties on a rotating blade and on a similar cylinder in plane steady flow.
The relation of the potentials is

S- Qy(ol - x) (37)

where +is the potential of the rotating blade &nd l is the potential of
the blade in uniform flow at unit velocity.

The velocities in the transverse (to the span) plane are identical in the two
cases. The spanwise component of the velocity is given by a very simple
formula, and for an infinite circular cylinder this velocity is zero on the
surface and therefore makes no contribution to the forces.

A recent paper extending Sears by Goorjian and McCroskey 13 indicates that
for finite Ppan rotating blades, there is a finite spanwise potential
velocity at the surface. While this component is important in boundary layer
calculations and thus affects the separation line, its contribution to the
pressure in the linearized case being applied here is of the same order of
magnitude as other terms which are neglected.

Therefore, for a rotating blade, we may write, from equation (37) and the
discussion for fixed wings,

U f+y (x-0dS (38)u = - fly + -y F 38

planform 2w D

where

2  (x-) 2 + (y-r) 2 + z2  (39)

and

dS - d~dn  (40)

In a manner similar to that used for the fixed-wing case, the integration
over ,the finite planform may be split up as integration over the infinite
blade less the integral over the complementary blade. Averaging over the
chord results in
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+c +c

I+ C F, (x-F)d~d i(dx
u- y i+ j -i D3 +u(41)9 4,tc .\ =

C -c tip

where u, is the velocicy due to the infinite blade. The spanwise coordi-
nate y in equation (38) may be brought outside of the integral sign since it

is invariant with respect to each of the three variables of integrations.
This equation is identical to the result obtained for the semi-infinite wing
(equation (6b) with the averaging given by equation (9) and the integrand in

equation (11)). Thus it has been shown that the correction factor in the
case of a rotating blade is given by the same equation as for a fixed wing.

CORRECTION FO THE CHANGE IN DYNAMIC PRESSURE

The correction factor is the diffeience between the velocities of a finite

wing and an infinite wing* having the same potential. This in turn means

that the two wings have the same static-to-total-pressure ratio and therefore
the same force acting,

Dfinite wing = Dinfinite wing (42)

with the velocity condition of equation (7), which requires different

dynamic pressures. Thus, since the reference areas are also the same,

(CDq)FW = (CDq) = (43)

but neither CD nor q is the same. Thus

_qCD CD ( + ) (44)
DFW X=3

or by logarithmic differentiation of (43)

LCD/CD = - A q/q (45)

The correction gives the change in velocity and thus the change in dynamic

pressure. Since the drag is a function of Mach number, the change in velocity

must be applied not only as a change in drag coefficient but also as a change

in Mach number as will be shown in Figure 10. It is more convenient to

express both of these changes in terms of the free-stream Mach number.

In the introduction, the explanation of the tip relief effect was made on

the basis of deviation allowed of the stream. Consider a representative

stream tube as it passes over a finite and an infinite wing illustrated in

* While the discussion here talks about wings, since the correction factor

was derived as it varies along the span of a finite wing, the discussion

presented here is just as valid for a spanwise element of the wing located
a given distance y from the tip.
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Figure 9. Distortion of a Stream Tube Over a Finite and an Infinite Wing.

Figure 9. In the case of the infinite wing, the stream tube cross--sectional

area is decreased and displaced due to the displacement effect of the wing.
But for the finite wing, t', e stream tube may also expand laterally; thus the
cross-sectional area is decrLased by a lesser amount.

The flow in both of these stream tubes is isentropic, and thus the usual
quasi-one-dimetisional isentropic, compressible flow analysis may be used.
Since both stream tubes have identical conditions at infinity, they may be
considered as part of the same stream tube. In the usual application of
this analysis, the area changes are known. In this case, however, the
velocity changes are given by the correction factor, while the area change
in quantitative terms is immaterial. It is desired to find ACD/C D and
.M/M in terms of LU/U --C xI with the appropriate compressible transformation.

The equation of continuity for a stream tube may be written as either

PUA = Const (46)

or
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pUA U0
Ae = = M*A (47)

p*1J* * P~ 0

where A is the area and Lhe sLarred quantities represent conditions at a

sonic point as a reference. Also Bernoulli's equation is

UdU + dp/p = 0 (48)

Logarithmic differentiation of equation (46)

p 3U OA
- +-- = 0 (49)

S p A

combined with Bernoulli's equation leads to the familiar
dU dA

(M2- dU - (50)

used so often in describing the difference between subsonic and supersonic

flow. Using the relations from isenzropic flow

S 2 1/ y-I(51)

P 0  (¥-I)M 2 + 2 _ I)M2
(yl1)M2 + 2~ - (51c)

M. 2  -( - 1)M 2  (5ic)

(y - I)M2+ 2

Equation (47) results in, after some manipulation,
Y+i1

+ 2 (Y - 1)

AM ( y+ ) = constant (52)
- I)M " + 2

Logarithmic differentiation gives

dA 2(M 2 
- ) (53

A ((y -1)M 2 + 2) M
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Combine equations (49) and (53):

- -, (1 +]-- M2) - (54)

which is the relation between the velocity change as given by the correction
factor and the resulting Mach number change.

Since q - pU2/2, logarithmic differentiation gives

dq dp ddq - U+ 2 dU (55)
q p U

Combining with equation (49) gives

dq dA dU dU dU dA
_ -- + 2-- -(56)

q A U U U A

Substituting from equation (50) and then from equations (54) and (45),

dq dU dU 2 dU-i V (-i) - = (2-M ) d- (57)
q' U T 7

dCD dq 2-M2 dM.... (58)
CD q i +-2 M

2

As previously noted, the derivation here is applicable to a segment of a
wing or to a full wing, depending on how the correction factor is derived.
In fact, equations (54) and (58) are given by Anderson.I but since he did
not give their derivation in detail or explain them in a physical manner,
and since they are unusual in form, it is felt that presenting their
derivation in detail would be useful in clearing up some misunderstandings.

Figure 10 illustrates the application of equations (54) and (58). The
correction factor used here was from Reference 1 and for aspect ratio 3 wing
with NACA 0012 airfoil with two-dimensional drag vs. Mach number
characteristics approximated by two straight lines as proposed in Reference 55.
A point on the two-dimensional curve is displaced horizontally in accordance
with equation (54) and then vertically as per equation (58) to obtain the
three-dimensional characteristic.

In reading this plot, the drag of the three-dimenbional wing is seen to be
less than the drag of the corresponding two-dimensional wing at the same
Mach number.
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Experimental verification of the basic theory for fixed wings may be found

in the report by Anderson and Carroll.4
3 Wings of various aspect ratios

at high subsonic speeds are correlated both for the case of nonlifting

wing and for the lifting case with lift coefficients up to 0.3.

The corrected drag coefficient as calculated for Figure 10, requires the

use of appropriate transformation between the incompressible theory

as derived here and the compressible flow considered. For this fixed wing

case the direct Prandtl-Glauert transformation is used. For rotary wing,

the extension discussed in the next chapter must be made to apply the

transformation shown in equations (105) to (110).

0.1I0

0.08

0.0c
CD ,,

,//

J. 04

-D/ Two Dimensional Airfoil

0.0 Three Dimensional Wing With-

_- - Mach Correction Only

Mach and Drag Correction
I I a I

0.60 0.G l. u
Mach Number

Figure 10. Theoretical Correction of the Drag Coefficient vs. Mach Number

for an NACA 0012 Airfoil From Two-Dimensional Data to an

Aspect Ratio of 3. (Note Displaced Origin.)
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BASIC EQUATIONS OF A ROTOR IN COMPRESSIBLE FLOW

Having derived a tip relief correction for a fixed wing, the next step is
the problem of applying this correction to a helicopter rotor. To do this,
the basic fluid meche, nc equations of a rotor have to be examined. There-
fore, in this section the Navicr-Stokes equations for a rotor in compressible
flow will be written.

The usual approach to compressible flows is the small perturbation rneory,
and this derivation will be presented. In fixed-wing usage, the result is
the Prandtl-Glauert transformation. It will be shown here that further
assumptions are needed so that a Prandtl-Glauert type transformation between

compressible and incompressible flows may be made for a rotor.

Previous work on the representation of a rotor in compressible flow by a
system of sources and sinks was done by Sopher. 3 This work will be
thoroughly reviewed to show how it is connected to the present presentation.
The similarities and differences will be discussed, along with where each
approach is useful.

FLUID DYNAMIC EQUATIONS FOR A ROTOR

Consider a coordinate systew with a fixed origin 0 rotating with angular
velocity Q. The absolute velocity is 1, while the velocity relative to the
rotating frame is 1'.* The relation between the two velocities is

A= x r (59)

The equations relative to the rotating frame are the same as for a fixed
frame except for the acceleration term

T + V . VV + S x V (60)

With some vector identities, we have

.6 A
(V,.V) V = (V'.V) V' + S2 x V' (61a)

-' = 3--(61b)
at ~|t

-a 0 x r) =0 (610)

*'This discussion is taken, to a large extent, from Hughes and Gaylord.44
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Therefore, the equation of momentum is

-- + , V)V1' + 2S x v'+ x (f xr- - - Vp (62)
at

where the last two terms on the left-hand side are due to the Coriolis and
the centrifugal forces. Let the velocity I' have components Vr, vet,v in
a cylindrical reference frame, and define the axis such that rotation is
only about the z-axis. Further assuming, for convenience, steady flow
with rotatin3 coordinates, the three components of the momentum equation

are

aV r v0 3v r Dvr vEtz 1

v -r + &tr + v 2v - rQ2  I 1 (63a)
r dr r 30 z r 8 0 Jr

avot rot 3vot  3Vr VYr I ap
V- + - 7- + v z + r + 2VrII (63b)
rr r + rv (63)

V r r 3e z 3z p az (63c)

The equation of continuity is identical in rotating and stationary frames
of reference:

avr 1 aVet 3vz vr vr ao v8t p Vz ap
3r ;-- + + 0 (64)

p rr PraO p az

Further, the speed-of-sound relation is

(ap/3) a2  (65)
S

To combine equations (63), (64) and (65) by multiplying each of the
equations in (63) by v , vetand v , and by using equations (b4) and (65)
to put the pressure ant the density in terms of the speed of sound gives

(v 2 -a 2 ) 2zr +(v 2 -a 2 ) -2a2)r- - t( 2 v -a2) - vrr2
r L4 f t r vz  )0z r 6t r

1 v 3V6LVr +v Dvz r"iL 1 LIZ)+ Vet V - + -) +vrz(- -
r

+---) + v +V (r + = 0 (66)r7 r r r z ;z ar z t z r ~
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Because of the choice of axis, in terms of the its compoients V can be written
as

v + (v0 - SQr) 0 + (b7)
r r e v v

where 4er e, e. are unit vectors. The theta component is made up of two
pats oea "free st.eam" of magnitude -Qr and a difference velocity V&,

which together make up vt. The only rotational component in equation (9)
is the Qr component, thus we may write

(V x v)r 1 Qa(68)

- av v

(V x V)0  r r Z 0 (69)

aVz v aVr
(V x V)z = r +  -- = 2 (70)

r r r ae

With these two conditions, equation (66) may be written as

(a- vo2) .r + (a2 -(v + r)2) a + (a2 - v2 z) az -

r r rZ

aZvr/r v vV/r + 2vv Q + 4v n2r + 2v (v + nr) - + 2v r
r rO r 0 r r 0ar rZ z 3

(71)j
+ 2v (v + r) ave

The energy equation

a2 + ((y - 1)/2) V Constant (72)

may be used to relate the velocity components and the reference speed of
*sound a,, to the local speed of sound a. The reference speed of sound is
* the speed of sound in the undisturbed regic- of the fixed frame. In the

rotating frame, this is the speed of sound at velocity -Pr; thus

a 2 +-(QGr)2 = a2 + V V2 2
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=a
2 + .i((-2-r+v0 )2 + V2+ V2) (73)

2 r z

Therefore,

a2  a.2 ----- 2v Qr + v2 + V2) (74)

If we also say that a velocity potential exists (due to equation (67)),

r - r (75a)

=~-~~ -96 /r(75b)

az 3 z (75c)

after some rearrangement, equation (71) becomes

rr+ ( - (1r/a,,) 2 } /r 2 + 0 + Qr /r

rr-Y2 r z 2 r

+~~ 20ra r + z ! +~2 (76)

* Ozz/aZ -y14S + y-. + (Ir) 2 + z
2 ~r 2 2

4r -r 22 - r r2 r

a -l rj

2 rz ak r ez r
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it should be emphasized that this equation is still an exact equation.
Its counterpart in uniform flow. for example, would be equation 32-17 of
Heaslet and Lomax.4 5 All terms on the right-hand side should vanish for
the small perturbation equation. This is accomplished by assuming that
the ratio of all of the velocity components to the speed of sound is much
less than one. Further, it is assumed that gradients of the velocities
are also small, so that cross products of velocities and velocity gradients
are also small. Terms of the rorm

Sr vi/a 2 0 (77)

may also be neglected. The result is

rr + z + (l-(Qr/a.) 2 ) 6 9/r 2 + r/r 0 (78)

In the case where -r/a. is nearly one, the coefficient of the {oterm
in the left-hand side of equation (76) becomes very small, and thus the

* term on the right-hand side must also be considered. It is obvious and
analogous to the uniform flow case that the term of the form of equation
(77) is the largest of the terms and we should write

r+ ¢p+ (1 -(Qr/a ) 2 ) ee/r 2 + {r/r =

rr zz C

- (y + 1) (.Q/ra 2o) 0 e (79)

For the pressure, we have

dp -pd(V.V/2) (80)

* Integrating between a point where p -- p and V =- ir and a point on the
blade,

P - p "' +P ) (V 4 2 + v 2 )
! =~ ~ ~ 2 ( 9(r)2 - ( ( - )2 Vr

Z r

v6 2 +V z2 + V 2
: =- (p-p) (-Qrva + z r) (81)

2

* Again assuming that all velocities are small and that p'<< p. results in

p - p - va 2r (82a)

or, in terms of the pressure coefficient,
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P- P. 2v 0  2%/rC - - "82b)

P 1 p (Qr) 2  Or Qr

The basic equations (78) and (82)

may be written in Cartesian

coordinates, as suggested by
Sears 12 and defined in Figure 11.

r Using the transformations

r 2 = x 2 + y2

0 = tan- 1 (-x/ y )

(83)
x = - r sin6

y = + r cowE

x

Figure 11. Coordinate System.

results in

C +  yy + #z -a (-x + Y2 xx- 2 XYxy - X2 y y y (84)
+c yy zz a2,,, X xx XY~ - y -y4)()

2 (y - xT)
C -- - (85)

p (x 2 + y 2 )

The results of equation (78) and (82) are identical to the results obtained
by Sopher 3 directly from the acoustic equations. Similar work has been done
for a rotating and advancing blade. Simonov and Christianovitch derived
the equivalent of equation (78) in a similar manner. Also, Burns 4 7 derived
the equivalent of equation (84) directly. We have gcne into details here so
that the further approximations which need to be made may be better uud.±r-
stood.
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Using the transformation 0 :t in equation (78) and (82) results in the
acoustic equation

a 2  2  - (86a)

p- p = 0 (86b)

DIRECT SOLUTION

Source in a Rotating Flow

Recently, Sopher 3 presented the solution of the small perturbation
equations using a source-sink distribution approach. The potential due to
a point source travelling on a rotational path is

-k/4TrD (87)

where k is the strength of the source and D the distance function referred
to coordinates rotating with the blade, which is given in polar coordinates
by

Ql2rr'
D2 = rr'(e-e') - (1 -r ) ((r-r') 2 + z2 ) (88)a

where the primed coordinates refer to the location of the source and the
unprimed coordinates are the field points where 4 is to be evaluaILed. In
deriving this distance function, higher order terms in the expansion for
the cosine are neglected early In the derivation. A comparison with the
more familiar distance function for uniform compressible flow in Cartesian
coordinates,

D = (x - x') 2 + (I - a2 )y-y' + z 2 )  (89)

reveals certain similarities and differences. The form, of course, is very
similar. But the compressibility term, namely, Mach number (U=,/ac,) in the
uniform flow case, changes to the local Mach number at the root mean square
radius

r r (90)

of the source and the field points. Further transformation to Cartesian
coordinates of the first term results in a very complex expression.

The resemblance between the two equations may be made closer if it is
assumed that the field points and the soutce points are close to each other.
A further restriction is that the two points are near the y axis, which
physically means narrow blades with the axis along the span of the blade.
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There are several arguments as to why this should hold, the most important
being that, if these points are far apart, D in equation (87) is large,
making the contribution toe vary small. With this assumption, it can be

said that the root mean square radius, r, of equation (90) does not differ
greatly from r or r'. This will also provide for the small-angle expansion
of the transformations (see equation (83)), namely,

x - i sinG I r0
~(91)

y = -r cos %-

With this, the approximation of the distance function for rotating flow in
Cartesian coordinates is

D2  = i(a- 6')2 + [-(2±((r - r') 2 + z2 )
Rot. a.\%
Ap.prox.r9

A p o .= (x - x ) 2 + [2i.Z )y - y )2  + z2) (92)

The resemblance between the distance functions in rotating and uniform flow
is now much closer. The compressibility factor in rotating flow is not
constant, and thus a "local Mach number" has to be defined:

My = S y/a. (93)

which is the Mach number now used in blade element rotor analysis.

This derivation of the approximate distance function will be used as part
*of the justification of the approximations made here.

*The potential of a rotor blade is the potential due to the sum of all the
sources representing the blade. This is the surface integral over the
planform area of the blade.

As was shown in equations (82), the pressure distribution and therefore
the forces are releted in compressible perturbation flow to the tangential

velocity v . Further, Sopher (unpublished notes for Reference 3) derived
from the usual flow tangency condition that the required source distribution
to describe the thickness of a rotating wing is

k (r',8', z 0 0) = -2 Qr F 6 /r = -20 F6  (94)

where F defines the vertical z dimension of the blade. Equation (94)

resembles the linearized uniform flow source distribution, namely, twice
the free-stream velocity times the local slope. It is important to note that

the slope required in equation (94) is the slope in the direction tangential

to the rotation rather than normal to span.
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The integral to be evaluated then becomes

(95)
E6 " D3

S

The surface of the integration is the planform area of the blade and in
cylindrical coordinates dS' = r'dO'dr'. This integral was numerically
integrated in Reference 3 with important refinements in the areas of using
a tniformly valid surface flow speed and an equivalent linear theory tip
Mach number.

The Complementary Wing Directly in Rota .in" Coordinates

An attempt to apply the reasoning of the previous scction, the complementary
wing approach in the case of a rotating blade represented by the source
distribution in compressible flow, will now be made, Because of the
variable dynamic pressure reference for the pressure coefficient, the total
forces are related to the total local velocity, which is the sum of Qr plus
vA and will be denoted by V. Consider the integration required in equation
(95); as previously, split the integration; from 0 to infinity minus from
tip to infinity. Thus we can write the equation for total local velocity as

V r+V 0 =r - 2r' (6-O')F,r' d6' dr'/D3

Jc O

+ (6-6') F r'dO' dr'/D3  (96)

c R

where c represents the integration over the constant chord.

In the case of the fixed wing, Anderson obtained a transformation between
the finite wing and infinite wings. The transformation could be simplified
because of the following two results:

(1) The complementary wing integral (i.e., the second integration in
equation (96))reduces to a form such that it is a multiple of the
fret--stream term.

(2) The infinite span integral is a known function obtained from other
theoretical work, from experiments, or from elsewhere.

The first criterion is easily met, as may be seen by inspection. The two
terms, after the integral is carried out, will reduce to a form (r + G)
which may be used instead of f-r. Thus, we may write

V =(Qr) effectve97
effective infinite blade (97)
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The problem occurs in relating the infinite span integral to a known
function. In the fixed-wing problem this is the much-studied case of
two-dimensional flow over an airfoil. Many two-dimensional, compressible
flow airfoil data are available. Further, the Prandtl-Glauert
transformation is available, so tnat the flow may be compared to incompressi-
ble flows. In this case, though, the flow over a rotor of infinite span
in the compressible regime must be known, calculated, or measured in some j
manner. There appears to be no straightforward way of determining this
value. Analytically, it brings problems such as supersonic flows, etc.
Experimental testing is conceptually impossible.

The reason that this problem may not be approached in the direct manner is
that there is a basic difference between fixed-wing and rotating-wing

flows in the compressible regime. This was indicated by Sopher's results3

as discussed previously.

In incompressible flow, Searsl 2showea that there was a straightforward
relation between uniform flow and flow over the same body rotating. This
same type of relation does not hold for the derivation shown above for
compressible, rotating flow, to a large extent due to the fact that we do
not yet have a transformation between compressible and incompressible flows.
Therefore, how such a transformation might be obtained is described in the
next section.

PRANDTL-GLAUERT TYPE TRANSFORMATION FOR A ROTATING BLADE

The basic differential equations in Cartesian coordinates (equatious (84)

* and (85)) may be rewritten as

+ +xx + yy + )2 x + 2 + 2 yy -Yy (98)

(€x Y (99)

p "y(l + x2 /y2)

Consider the differential equations at points far from the center of rotation.
Now y is the spanwise distance and is of the order cf magnitude of the radius.

At the same time, x is of the order of magnitude of the chord. To compare

the magnitude of each of the terms in the right-hand side of equation (98),
nondimensionalize the x-dimension with the chord c and the y-dimension with

radius R. ([he primed coordinates in this section are nondimensional.)

S2R2 c X xc _' 2 c2 1 1
a2  R2cy x + c2 'X' x'y' '2R '' y R2 ,
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or

axc2  L 4' + 2 + -, + + (100)aC R2yXY y Y' R4 y'12 y'y '  x

For helicopter rotor the ratio c/R is much smaller than one. The coeffi-

cients of all terms but one, (c/R), are raised to a power which will make

all terms small in comparison with the term of order (1). Therefore, the

differential equation becomes, when neglecting the higher order terms,

(1- (Qy/a.)2)( + p + (zz =0 (101)

In a similar manner, for the pressure coefficient,

1 c x1
2 R y i-' Y

C = (102)

p,(c2 X12
., R2  -+ 1,1

As before, there are terms with a coefficient of one to compare wit ,-, terms

with coefficients (c/R)
2 , which are small and neglected, so that

Cp = 20xl !4y (103)

Now equation (101) resembles very closely the Prandtl-Glauert equations of I
uniform flow, but with a variable Prandtl-Glauert factor

2 - (sy /a.) 2 1 - 2 (104)

This indicates that a Prandtl-Glauert type transformation may be made

locally for a rotating blade. The usual illustration for the Prandtl-

Glauert transformation is by the change in chord length (for example see 3
Shapiro, 3 9 page 320). For a rotor, this change in chord length varies

along the span due to the variable local Mach number. The resulting

equivalent incompressible flow rotor is illustrated in Figure 12.

Since we now have a transformation between the compressible and the

incompressible flows over a rotor, the complem ntary wing effect as derived

in the previous section may be applied.

I

I
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A short discussion of the implications of this approximation is in order.
This approximation is consistent with blade elemant analysis, where an
element o the blade is assumed to act as a similar airfoil in uniform
two-dimensiona flow. The transformation has been applied previously,
without proof, for example, by Jones and Rao.4 8

The approximation is made of the initial equation used by Sopher.3 Thus
the differences found by Sopher between three-dimensional rotating flow
theory and blade element analysis in the local induced velocities apply
when using the proposed transformation. Tne problem with the analysis
presented by Sopher is one of application. The major use of the Sopher
analysis would be in boundary layer calculations where it is important
to know the local velocity gradients, and where Sopher's analysis does
give a previously unknown spanwise pressure gra.'ien .

For the purposes of preliminary design and gross performance prediction,
the approximations made here are consistent, and the Prandtl-Glauert type
transformation may be safely used.

EXTENSIONS OF THE COMPRESSIBLE FLOW TRANSFORMATIONS

The Prandtl-Glauert transformation underpredicts the increase in flow speed

with Mach number as may be seen in Figure C8a of Reference 49. Also, the
Goethert extension to three-dimensional flows considers only the effect of
compressibility on lift and the lift curve slope. This is done through
the change in wing aspect ratio, since the Prandtl-Glauert transformation
changes the chord but does not alter the spanwise or the thickness
coordinates. No mention is made of any effect of compressibility on the
three-dimensional drag.

There have been a number of attempts to obtain similarity rules that would
extend the Prandtl-Glauert transformations to higher Mach numbers. The
most important of these for two-dimensional flow were reviewed and compared
by Bennett. 50 Van Dyke's second-order theory 5l,52 ,52 is considered to give
the best compressible pressure distributions of these techniques, but its
use is rather complex. This method takes into account squares and products
of the thickness, camber and angle-of-attack terms.

But a method suggested by Kuchemann and Weber appears to be much simpler
to apply. The usual form for the transformation is modified to the form

a2 = I- 
2 (I - Cpi)

where CPA is the incompressible flow pressure distribution. This form was
suggeste for use in calc, lating local velocities and pressures as C - is
a function of position. pi

A simple use of the latter transformation was suggested by Sopher1 for
rotors; namely, that an average value of C i be used, which can be
considered constant along both the span an? the chord. Thus for a rotor,
(,r/a.) / j is an equivalent Mach number which may be used in thf- linear

?theory. 4
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APPLICATION OF THE TIP REIpr EFFECT
IN ROTOR PERFORMANCE CALCULATIONS

Having derived a correction factor for the effective free stream to relate
the two-dimensional airfoil data to three-dimensional wing chatacteristics,
and a transformation between ccmpressible and iiitcmpressible flow over a
rotor, we are now ready to use this theory in helicopter performatice cal-
culations, which are based on blade element analysis.

Blade element analysis involves a long and complicated computer program.
Those programs are generally available to thore who would use the theory,
although it was not available for use within the present study. Therefore,
the theory is not used in a full blade element analysis. Presented herein
is a detailed description of how one should modify existin3 blade element
computer programs to use the tip relief theory, and a simplified blade ele-
ment analysis for a hovering rotor using the theory, so that an indication
of the tip relief effect may be found.

THE PHYSICAL CONCEPT OF TIP RELIEF APPLIED TO A ROTOR BLADE ELEMENT ANALYSIS

The application of the tip relief concept to rotors in compressible flow
requires that a physical model be postulated for the planform of the comple-
mentary wing. This planform is not immediately obvious as it is for the
case of wings in uniform flows. In applying the complementary wing concept
to calculate the effect of tip relief on rotors, full use is made of the
blade element theory while extending it, and of the Prandtl-Glauert trans-
formation with the extension to rotors as has been derived here.

Blade element analysis of rotors is based on the theory that an elemental
spanwise segment of a rotor blade acts as a similar segment of a two-.dimen-
sional airfoil. The angle of attack (a), Mach number (My) and Reynolds
number (Re) of the blade element are determined from the motion at the ele-
ment including rotation, advance, flapping, etc., velocities and from the
induced velocity. Since each element is considered independent of the ad-
joining elements, the force on the element is determined from the force
coefficients of the similar two-dimensional airfoil at the angle of attack,
Mach number, and Reynolds number calculated. The total thrust and torque
of the rotor are obtained by integrating the contribution of each individual
element along the blade span and the azimuth of the rotor disc.

Consider a straight, rectangular rotor bladt of radius R and a constant
chord co, rotating at an angular velocity S In compressible flow, as shown
in Figure 13 (a). A specific elment is iocated at a distance r from the
center of rotation, i.e., a distance y = R - r from the tip, and the ele-
ment is at a local Mach number denoted by MY.
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The application of the Prandtl-Glauert type transformation to the rotor
in compressible flow results in a nonuniform chord blade in the incompres-
sible flow, as was illustrati d in Figure 4. Now the complementary wing
has to be applied and the question becomes that of postulating the planform
of the complemeatary wing. Attempts to apply a nonuniform chord comple-
mentary wing led to physical and mathematical difficulties and thus was
discarded. If instead, blade element theory is applied directly, then
each element of the blade can be considered as part of an infinite span
airfoil at the local velocity, Mach number, and local chord in uniform
flow. The blade element theory may be extended, so that instead of an
infinite span airfoil, the aerodynamics of the rotating element is char-
acterized by an element located at the same spanwise distance from the
tip of a finite wing, whose span is the same as that of the rotating
blade. The complementary wing then is of constant chord to infinity and
the results of the previous chapter may be applied. To summarize, an
element at r of a blade rotating in compressible flow at a local Mach num-
ber M has the same tip relief effect as a elent located at R - r of
a similar wing of span R, with chord co /1 -1. This is illustrated
in Figures 13 (a) through (c).

This may also be approached by applying the blade element theory first
and only then the Prandtl-Glauert transformation. Since both transforma-
tions are linear, their order is immaterial. Using the extended blade
element theory, an element of the rotating blade has the same aerodynamic
characteristics as an element at a distance y from the tip of a wing with
span R, with constant chord co, travelling at a uniform velocity Sir and
Mach number My. To this wing is then the Prandtl-Glauert transformation
applied, changing the constant chord to a new value co / /ri - .. The
final result is physically and mathematically the same from either approach,
although the latter may be more satisfying physically at the intermediate
step.

In both approaches the assumptions made in deriving the Sears 12 relation
between rotating and uniform flow are not thoroughly observed. In the
first approach, a cylinder with a varying chord is transformed to plane
flow; while in th- second, the transformation is applied to compressible
flows. These extensions of Sears' theoretical work are those that are
used in all blade element analyses. In addition, the transformation is
used for the finite span case.

Some theoretical validity for the blade element approach as extended to the
use with finite span was recently given by Caradona and Isom. 56 They cal-
culated the chordwise pressure distribution for a nonlifting rotor in com-
pressible, inviscid flow and compared it to the pressure distribution on
a wing at a similar spanwise position at the tip Mach number. The results
show good agreement, except in areas affected by shocks.

An indication of the need for the use of finite rather than infinite aero-
dynamic characteristics in blade element theory may be found in this paper

51



r
(a) Blade element in

compressible flow.

(b) Blade and element in
- .~, equivalenit incompressibIc

rotating flow.

0-

(c) Blade element in equivalent
incompressible, three-
dimensional, nonrotatingflw

Figure 13. Transformatiov of a Rotor Blade Element.
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by Caradona and Isom,56 The> compare the chordwise pressure distribution
at similar spanwise stations on a rotor and on a wing at Mach number of
the rotor tip. This differs from the blade element theory extended here,
as a wing at a different Mach number is to be used at each station. For
the first one-half semichord, there is no perceptible difference in their
figure presenting this result.* Further inboard, the rotor has a lower
(negative) pressure coefficient (i.e., smaller perturbation velocities)
than the wing at the tip Mach number. This is also true at all stations
when the Mach number is such as to cause local supersonic speeds. The
result may be expected since the effective Mach number on the blade is
lower than on the wing to which it is compare,..

For compressible flow, we must further apply the local Prandcl-Glauert
type transformation derived previously. As is usual in fixed-wing type
flows, this correction is made to the chord:

c " c y y (105)

thickness ratio:

ay c ti = ti/C1 (106)

aspect ratio:

Xc Xl (107)
y

perturbation velocity:

- Au /B2 (108)
c iy

The free-stream velocity does not change:

U 0c - U~i (109)

Therefore, the correction factor changes:

j - xi /62  AU C/U OD(110)

TIP RELIEF CALCULATION IN BLADE ELEMENT ANALYSIS

The tip relief effect is included quantitatively in blade element analysis
by correcting the two-dimensional airfoil data in accordance with the theory
presented here. The method for making this application in blade element
zomputer programs will be described in a step-by-step manner.

*For Mti p = 0.85 the difference is less than 0.01 at this station.
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1. In blade element analysis computer programs, the airfoil data,
especially the drag coefficient, is available in some form as
a function of angle of attack, Reynolds number, and Mach number.

2. At the blade element under consideration, the velocities are
determined; thus angle of attack, Reynolds number, and Mach
number can then be determined.

3. The correction factor for the blade element, knowing the distance

of the element from the tip, is calculated using the method
described before. Here, one can represent the wing as a semi-
infinite or finite aspect ratio wing and use one or three terms
of the Taylor series or a numerical integration scheme to obtain
the correction factor.

4. Calculate 62 = 1 - (.'r/a )2 for the element and transform the
correction factor to the compressible case (see equation (110)).

5. Find the effective Mach number (M eff), using equation (54).

6. Obtain from the airfoil data the drag coefficient at the a and Re
obtained in step 2 and at the Mef f obtained in step 5.

7. Calculate ACD/CD, using equation (58).

8. Determine CDeff , combining the drag coefficient found ir , 6
and the drag correction LCD/CD found in step 7. Use tbi :ective
drag coefficient in calculation of the drag force of the ;.ement.

These steps re, of course, repeated for each segment each time as they are
calculated ing the iterations.

A SIMPLI'."IED BLADE ELEMENT ANALYSIS

To obtain an indication of the magnitude and variation of the tip relief
efiect, a greatly simplified blade element analysis is derived for the
case of a hovering rotor. Thes" grub bimplifications allow the use of a
short computer program to make the integration over the rotor radius. The
assumptions to be iT will be discussed in turn as they are made.

The first assumption to he made concerns the form of the drag coefficient
and its variation with Mach number. It is often (for example, Reference 55)

approximated by the equntions

CD = CDi 0'i<crit

CD = CDi + ac (M - M crit) mcrit<M<1.0 (112)
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or infinite aspect ratio. For an NACA UU12 airtoil section, most
commonly ,sed in rotor blades,

M =0.8
cr1t

a = 0.57 (113)
C

As r-eviouslv noted, the correction for tip relief is made up of two parts:
a change in the Mach number 14 and a change in the orag coefficient ACD,
as obtained from equations (54) and (58) respectively. An inspection of
Figure 9 will indicate that the change in Mach number is by far more
important than the change in drag coefficient. Note that the change in
Mach number assures a change in the drag coefficient in the subsonic drag
rise range of Mach numbers. Therefore, in this simplified analysis the

change in drag coefficient will be neglected.

From equation (112), the drag coefficient for a finite wing may be written as

CDFW = CDi + a c  - AM) - Merit) + ACD (114a)

or rearranging slightly,

DFW ( (M cri - M) + CD  (114b)

Inspection of this equation indicates that the drag coefficient of a finite
wing is made up of three parts:

1. The incompressible drag of an infinite wing %CDi

2. A correction for the compressible drag rise ^-a (M - M )
c crit

3. A correction for the tip relief effect made up of two terms
' -a AM + AC DcD

The ACD term may be neglected for the reasons discussed above. It should
be pointed out that by neglecting the ACD term, the tip relief effect is
assumed negligible below M  ,' since the drag coefficient is independent
of Mach number as stated inrthe first of equation (112).

The torque of an element of a rotor blade due to drag is

dQ = rdD cos@

= P(S r)2 2c CD r dr CO(115)
2

The usial small-angle assumption is made. Since the equation (equations
(114)) eor the drag coefficient is linear, upon substituting into equation
(115), the change in torque on the element due to tip relief may be

separated and is
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dAQ p(2r) 2 2c a c AM rdr/2 (116)

or in coefficient form for b hovering rotor blades

1 b2c 3-
dCq=T a cM r3dr (117)

From the definition of solidity and the transformation of equations (105)

and (107 ) ,
2b 2b(1)

GC = 10R = - C13y= 6 a
c 7R TR y y i I

Using equations (54) and (118) in (1.17),

d 1C = c- -a(1 M2) ( P/) dr (119)
Q 2B 7 c 2 X y

Integrating,

AC +-- M2 )G r3 dr (120)

It should be emphasized that M, B and G are all functions of the radiaL

position along the blade. Also ngte that Cx depends on F, the airfoil

coordinates, whose thickness must be transformed in accordance with

equation (106).

In equation (120) the correction factor needs to be calculated separately.

In the simplest case, the correction factor is obtained by assuming a semi-

infinite wing and using the first term of the Taylor series expansion. The

change in Mach number then becomes, using equation (23b) (35c) and (54),

A&M/M (I + Y2- M2) 2 (1 1 i /(4a2)

2 2C( +Y ),+)1 Ii Y

2 (1 + - 1,1 ) I - -

(1--/( c (1-f)2)2 + T- 47Y

y C

(121)

The factor 2 occurs because 2X=R. The value of 11/T is given in Table II.

Substituting into equation (116) results in the integral
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Q 47
Q2 - dr (122)

0 12y, 1E
c -

Even in the simplest case of using the correction factor as for the first
term of the Taylor series for a semi-infinite wing, as shown in equation
(122), the integration of equation (120) appears to be too complicated to

7; be analytically integrated. Therefore, three computer programs to
numerically carry out the integration were written; they are listed in
order of complexity:

2. A program using only the first term of the Taylor series for a
semi-infinite wing only as the correction factor, as in equation

(122).

2. A program using the Taylor series as the correction factor with
options for using only the first or all three terms of the series
and a finite or a semi-finite wirg.

3. A program using the numerically integrated version of the correction
factor.

These programs are similar and, therefore, will be described together. They
use the trapezoidal rule for the intcgration, with a maximurn of 50 steps
and the values of the independent variable (rotor radius) given as input
data. Each program consists of a main program, which sets up the
necessary variables and contains the integration loop. To calculate the
integrand, a fun.ction subroutine is called. The correction factor is
calculated within the function in program 1; for the other two programs,
the correction factor is calculated in a further subroutine.

In the third program, the correction factor is calculated by numerically
integrating equation (16) as described on page 15. For parabolic arc
airfoil shapes. 22 evenly divided segments were used along the chord from
0.0000 to 0.9999 (since this airfoi). is symmetric about the , = 0 axis),
while 30 points from +0.3999 to -0.9999 were used for the NACA 0012 airfoil.

Because of the assumptions made concerning the drag coefficient, there is
no effecr on the torque due to tip relief on any segment where the local
Mach number is below eight-tenths. Also, there is a strong singularity
at tip; therefore, the upper li-nit is 0.999950 rather than exactly one.
Forty-nine unevenly spaced segments are used. Using only 39 segments in
some test cases resulted in a change only in the third significant figure,
but since there is only a small increase in computing time, 49 segments
are used. The intervals were chosen so that the values of the integrals
from the seerents are roughly equal.
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RESULTS

The criputer programs discussed previously were run with a number of
sets of data, with the various options available for calculating the
correction factor. The results from these computer runs are discussed,
as is the problem of comparison with experiment.

In making these calculations many major assumptions were made, the most
important being the simplified form of the drag coefficient and neglecting
the ACD term in the tip relief correction on page 56. These assumptions
are such that there is no variation of torque due to tip relief with lift.
To make full use of the theory presented here, it should be applied to the
drag coefficient used ini a strip analysis computer program.

It should be noted in regard to the accuracy required that the calculation
is of the change in torque coefficient due to tip relief. The order of
magnitude of CQ is about 25 x 10 - 5 , while at the same time the change in

torque coefficient due to tip relief is about 2 x 10 - 5 . Thus, there is
a factor of 10 between these two numbers, which are subtracted from each
other. Three-place accuracy on ACQ requires four-place accuracy of CQ.

Results from the computer output indicate the differences between the
various means of calculating the tip relief. This is summarized in Table IV.
The choices are the use of finite and semi-infinite wing, and the use of
numerical integration and one- and three-term Taylor series approximation.

Further, calculations were made using parabolic arc and NACA four-digit
series airfoil.
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TABLE IV. CHANGE IN TORQUE DUE TO TIP RELIEF

i -IncQ Per Blade

- Tip Mach Solidity Per Q
Number, M Blade Finite Wing Semi-Infinite

Wing

Using three terms of the Taylor series

0.85 .0159 1.026x10-5  1.02xlO 5

0.90 .0159 1.847 1.841
0.95 .0159 3.812 3.796

0.85 .0232 1.836 1.830
0.90 .0232 3.369 3.352
0.95 .0232 6.748 6.699

Using numerical integration

.85 .0159 .993 .991
0.90 j .0159 1.789 1.784
0.95 •0159 3.708 3.693

Using the first term of the Taylor series

0.85 .0232 1.718 1.711
0.90 .0232 3.18o 3.162
0.95 .0232 6.203 6.153

Parabolic arc airfoil

The differences between the use of finite and semi-infinite wings for
calculating ACQ are very small. The differences are in the third signifi-

cant figure, and thus it is recommended that calculations be made using the
semi-infinite wing concept. Further discussion will be restricted to the
semi-infinite case.

Figure 14 shows the change in torque coefficient due to tip relief obtained i
from the three means of calculating the correction factor. The numerical
integration requires much more computing time, but since the differences are

fairly small, it is believed that the use of the first term of the Taylor
series will give satisfactory results.
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First Term of the Taylor Series
- Three Terms of the Taylor Series

.......- Numerical lItegration

A

0.06
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IiII
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0.02 .

0.0

0.80 0.85 0.90 0.95 1.00

Mach Number

Figure 14. Change In Torque Coeff.cient Due to Tip Relief for a
Hovering Rotor (u/b=0.059). (Note Displarel Origin.) A
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The change in torque varies drastically with tip Mach number, and increases
rapidly as Mach one is approached. This is due to the use of the compressi-
ble flow transformations discussed on page 50. All of these transformations
behave in a manner similar to the Prandtl-Glauert transformation, having
an infinite singularity at Mach number equal to one. The results presented

here used the Prandtl.-Glauert transformation, although for application, I
the extensions of the Prandtl-ulauert transformation that were discussed
should be investigated.

The change in torque coefficient divided by solidity per blade due to tip

relief at two different solidities is shown in Figure 15. Solidity of
0.0159 per blade corresponds to a blade of aspect ratio 20, while the
solidity per blade of 0.0234 represents the two-bladed UH-lF helicopter.
The quantity ACQ/(W/b) increases with solidity. This is as expected; with
the greater amount of blade area, the flow is less like two dimensional.

Also indicated on Figure 15 is some comparison with test data. The data

is obtained from Reference 31, Figure 9, where the measured power coef-
ficient (nkunerically equal to t-he torque coefficient) of a UH-lF heli-
copter at u = 0.25 is presented along with the predicted performance

based on Tanner.2 3  The experimental value of the torque coefficient due
to tip relief is the difference between these two curves.

The figure shows remarkable agreement, but because of the difference in
conditions used for the two cases, care must be taken in interpreting this
figure. First, the difference in scale between the two figures is very

large, the data being taken from a small figure. Thus, the curve indi-
cating the test should show a wide error band. At the same maximum tiD
Mach number, a larger portion of a hovering rotor is in compressible flow

when compared to an advancing rotor. Thus, the hovering rotor may be ex-

pected to have a larger tip relief correction than an advancing rotor at
the same tip Mah number, as is indicated in Figure 15. This figure does
show that the theory compares well with flight test data in both order of
magnitude and trend with Mach number. Thus the theory presented here can
help to explain differences between prediction and test data of helicopter
rotors operating in the compressible flow regime.
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Figure 15. Change in Torque Coefficient Due to Tip Relief for a
Hlovering RoLor. (Note Displaced Origin.)
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CONCLUSIONS

A derivation has been presented which attempts to accQunt for differences
between performance prediction and flight test data, as being due to tip

relief effect. The theory is based upon the complementary wing concept
and results in a ;orrection factor to the local free-stream velocity.
Small perturbation theory for rotors in compressible flow is discussed to

show how a Prandtl-Glauert type transformation may be used in rotary-wing
• theory. Application of the correction factor with the Prandtl-Glauert type

transformation in blade element analysis is discussed. The use of the
theory in a simplified blade element analysis results in a change in
torque due to tip relief, which is compared with data.

Results from the simplified analysis are of the same order of magnitude
as the discrepancy in test data, and indicate the same trend with Lncreasing
tip Mach number.

To fully exploit the theory, it should be made a part of a performance

computer program using blade element analysis. By doing so, more meaningful
comparison with flight test data may be made.

The tip effect is only one of the factors which influence the compressible i

flow over helicopter rotors. Therefore, the quantitative analysis presented
in this report cannot by itself lead to a complete understanding of the

performance of helicopter rotors in compressible flow.
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