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COOPERATION OF MUTUALLY SUSPICIOUS SUBSYSTEMS
IN A COMPUTER UTILITY*

by

Michael D. Schroeder

ABSTRACT

This thesis describes practical protection mechanisms that
allow mutually suspicious subsystems to cooperate in a sin-
gle computation and still oe protected from one another.

The mechanisms are based on the division of a computation
into independent domains of access privilege, each of which
may encapsulate a protected subsystem. The central com-
ponent of the mechanisms is a hardware processor that auto-
matically enforces the access constraints associated with

a multidomain computation implemented as a single execution
point in a segmented virtual memory. This processor allows
a standard interprocedure call with arguments to change the
domain of execution of the computation. Arguments are auto-
matically communicated on cross-domain calls -- even between
domains that normally have no access capabilities in common.
The processor, when supported by a suitable software system
which is also discussed, provides the protection basis for
a computer utility in which users may encapsulate indepen-
dently compiled programs and associated data bases as pro-
tected subsystems, and then, without compromising the pro-
tection of the individual subsystems, combine protected
subsystems of different users to perform various computations.

*
This report reproduces a thesis of the same title submitted to

the Department of Electrical Engineering, Massachusetts Institute

of Technology, on September 20, 1972 in partial fulfillment of
the raquirements for the Degree of Doctor of Philosophy.
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CHAPTER 1

INTRODUCTION

When considered in conjunction with computer systems, privacy and
protection are easily confused. Privacy is a social and legal issue.
Privacy means that the dissemiration of information of or about a person
or group is controlled by that person or group. New emphasis has been
placed on guaranteeing rights of privacy in the face of the increased
ability provided by large, sophisticated computer-based information
systems tuv gather, catalogue, and analyze data. rotecticn, on the
other hand, is a technical and economic issue. Protection means the
mechanisms for specifying and enfcrcing control. Guaranteeing rights
of privacy requires protection mechanisms, but many other issucs are
involved as well. Protection is a means and privacy an end.

In this thesis interest is centered on protection mechanisms within
computer systems. The viewpoint is that of a computer system designer
who is intent upon providing efficient protection mechanisms applicable
to a wide range of problems. Questions of privacy influence this effort
to the extent of implying criteria which must be met before such a
computer system can be applied tc those problems where privacy is an
issue, The thesis, however, contains little explicit consideration of
privacy.

To further define the scope of the thesis, consideration is limited
to problems of hardware and software organization. While it is recog-
nized that issues such as installation security, communication line
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security, hardware reliability, and correctness of hardware and software

implementations of algorithms must be considered in order to achieve the

[T teRsy § XTI

secure environment required for useful application of protection

mechanisms, these topics are beyond the scope of the thesis.
i
Protection mechanisms are defined to be those components of a

computer system that control access of executing programs to objects in-

side the system. This definition recognizes that executing programs

A ARy memer At

carry out inside the system the intentions of the people outside the

rystem,

e x4y

Thus, executing programs are the active agents that must be

zontrolled in a computer system. The definition admits a large variety

of mechanisms, ranging from write-permit rings on magnetic tape reels
to sophisticated memory protection hardware and including access con-

trols implemented in software.

PR

All such protection mechanisms are directed toward two overall

objectives, The first can be labeled user self-protection. People are

I not infallible. They frequently make mistakes when conceiving algo-

rithms, specifying algorithms as programs, and applying programs to

particular problems. Protection mechanisms permit a redundant specifi-

£ cation of intention to be made and enforced. For example, the write-

3

1:, permit ring mentioned above allows the intention that a tape not be

;;. altered in a particular situation to be enforced on the basis of speci-

i% fications other than those provided by the executing programs. In gen- _
'Ef eral, enforcing limits on the objects an executing program may access

N

b2

can detect certain types of eirors and prec.ent inadvertant damage by

y incorrect access.
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The second objective of protection mechanisms is control of user
interaction. This objective surfaces in computer systems providing
computation and information storage services to more than one person or
group. The multiple users of a computer system may have different goals
and be responsible to different authorities. A diverse community will
use the same system only if it is possible for its members to be inde-

pendent of one another. On the other hand, a great potential benefit of

a multiple user computer system is its ability to encourage users to
communicate, cooperate, and build upon one another's work. Such inter-
action is generally based on users sharing stored information. Thus,
total user separation, while relatively easy to achieve, negates a

potential benefit. Required to achieve this benefit is controlled user

interaction. Controlling the ability of executing programs to access

objects in the system is the internal manifestation of controlling user

interaction.
While important in any system serving multiple users, the objec-
tive of controlling user interaction is a key purt of the service objec-

tives defining a computer utility. In the remaincer of this thesis,

protection mechanisms are considered in the context of a large, general-
purpose, interactive, multiplexed computer system functioning as a

computer utility. This context provides a severe test of protection
mechanisms, and at the same time offers a large reward for devising

economic, natural protection mechanisms that can guarantee tatal user

separation when desired, permit unrestricted user cooperation when

desired, and provide many intermediate degrees of control.
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Different Access for Different Situations

The essential observation underlying all protection mechanisms is
that executing nrograms need different a..ess in different situations.
For instance:

- The programs in different computations need different access.
In a computer utility serving a university community, for
example, programs executing in a computation directed by the
registrar to manipulate academic records need different access
to stored data than programs executirz in a computation directed
by a system administrator to generate monthly bills for computer
usage.

- The same programs in different computations need different
access. In the previous example, both computations may share
the use of a program for manipulating hash-coded index tables.

ekl

- Different programs in *he same computation need different access.
A user-defined program executing in some computation may invoke
a supervisor program to initiate I/0 channel operation. Presum-
ably, the executing supervisor program has access to channel
assignment data and to the start 1/0 instruction of the
processor -- access denied the executing user program. Y=t both
execuvting programs are logically part of the same computation.
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- The same program in the same computation needs different access
for different circumstances. For erample, a closed subroutine
providing string comparison functions for all programs written
in PL/I needs different access when invoked by a supervisor
program than when invoked by a user-defined program.

2

ketiaivdn
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in general, the access rermissicn that should be associated with an

3 |

executing program depends upon the specific circumstances of its execu-

.
NN ]

tion.

;o

A significant result of previous work [7,19,20] on protection

f ks
A1
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mechanisms has been the development of a model that applies to situa-

ALK

24 iy

tions where the access of executing programs needs to differ. This

ket

v,

model is based on the concept of demains which are sets of access

b

capabilities. The access of an executing program depends upon tae

Qrat R

domain of execution in which the program finds itself. An attempt by
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by an executing program to access something in the system will succeed
only if a capability allowing that access is an element of the domain
of execution. (Ways of defining the capabilities in domains and of
determining the domain of execution at any given time will be discussed
later.)

There is practically no limit to the types of capabiliities that can
be defined. A capability is simply an ordered pair specifying the name
of something in the system and the operations which can be performed on
that object. Thus, there can be capabilities tv allow any well-defined
operation on any named object in a system. Capabilities to read and
write data items and to execute programs are obvious examples. Capa-
bilities to do I/0 over a specific channel, to add capabiliries o
domains, and to change the domair of execution to a particular domain
are less obvious examples. The different types of capabilities present
depend upon the particulai system beiug considered.

The domain model provides a conceptual framewcrk in which to con-
sider the protection mechanisms of any system. For instance, the mocel
is easily related to the examples given previously. By using a distinct
domain of execution for each computation in a system, executing programs
automatically assume the access capabilities associated with the com-
putation of which they are part, as required in the first and second
examples. By alternately using two domains of execution for a single
computation, the supervisor/user distinction of the third and fourth

examples can be dealt with. Multiple domains per computation can deal

with more complex situations as well.
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Cooperating, Mutually Suspicious Subsystems

One of the most complex instances of multiple domains in a single

. R
T Y TIPS, . U R RT KL R TICE Au»,«.\'ﬁ

computation is the case of mutually suspicious subsystems cooperating
in the same computation. This case provides a good test of a set of

protection mechanisms. Since protection mechanisms that can deal with
cooperating, mutually suspicious subs:stems are the central concern of

this thesis, further discussion of this case is appropriate.

An essential idea underlying the case of cooperating, mutually

AT N A T O T RS S R R

suspicious subsystems is that of a protected subsystem. A protected

o

subsystem is a collection of programs and data bases that is encapsula-
ted so that other executing programs can invoke certain component

prugcrims within tne protected subsystem, but are prevented from reading

L0l gty iy

or writing component programs and data bases, and are prevented from

disrupting the intended operation of the component programs. The

prwe g

supervisor of most computer systems is a good example of a protected
subsystem. A few systems (notably the CAL system [15,18,26,27] and
Multics {[5,21,23]) allow normal users to define their own protected
subsystems and, with certaii. restrictions, make them available to be

invoked by the programs of other users.

Pk

Protected subsystems are useful for implementing complex controls

on access to data bases and for maintaining the secrecy of proprietary

algcrithms which are shared. In the first czse the programs of a pro-
i tected subsystem act as caretakers for the contained data bases and
interpretively enforce arbitrarily complex controls on access to them.
Programs outside the protected subsystem are allowed to access the con-

tained data bases only by invoking the caretaker programs. The
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algorithms manifest in these programs may judge the propriety of the
requested access based on information provided by the system on the
identity of the invoking program and the circumstances of invocation.
The caretaker programs may even record each access request in one of
the encapsulated data bases. No action by an outside program can dis-
rupt the operation of the caretaker programs in judging, perfcrming, or

recording requested accesses,

RGO B e AT AR N e W T T RO NV M Soh e 0, W3 S R B3O RS A S OGS, Muﬂg‘ﬂ%

In the case of maintaining the secrecy of sharcd, proprietary

algorichms, the programs in a protected subsystem may be invoked by
outside programs but not read by them. In addition, none of the tempo-
rary or permanent data associated with the programs.in the protected
subsystem may be read or written by outside programs. Thus, the pro-
grams in the protected subsystem may be used by other programs, but no ;
aspect of their structure examined.
So far the properties of a protected subsystem have been developed :
from the point of view of a program outside invoking a program inside.

It is also conceivable that in the course of its operation a program

¢ ——— ¥ e

inside a protected subsystem might need to invoke a program outside.

Cagwnserean

This reverse operation is useful only if it does not compromise the

srvans v wEras W

A case of cooperating, mutually suspicious subsystems arises when

twd or more protected subsystems are involved in the same computation.

gy

An example of this situation occurs if a program inside a protected sub-

system invokes a program outside that happens to be inside another pro-

tected subsystem. An example involving a less direct form of cooperation

arises if programs in two differeant protected subsystems are alteraately
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invoked by pregrams outcide both. Arbitrary structures involving any
number of protected subsystems can be imagined.

The domain model deals naturally with the notion of protected sub-
systems. Each encapsulation is just @ different domain containing
capabilities to execute the component programs and read or write the
compenent data bases. The case of mutually suspicious subsystems co-
operating in a single computation corresponds to a multidomain computa-
tion in which the domains invoived have few access capabilities in
common.

2 computer utility which allows user-defined protected subsystems
to cooperate in computations could be put to good use. For exampie,
imagine that a consulting firm has developed and calibrated a demand
model for interzounal traffic flow im a large metropolitaa area.

Model development, data gathering, and model caiibration were done at
great expense, and the firm wishes to sell the use of its model in order
to profit from the investment. To this end the model is implemented in
a computer utility. The resulting subsystem includes a set of programs
which embody the prediction algorithms, and several data bases contain-
ing socio-economic parameters and door-to-door survey results. In order
to vend this subsystem to other users of the computer utility, the con-
sulting firm encapsulates it as a protected subsystem.

Now imagine that a planning board for the area is studying express-
way networks to meet future transpovtation needs. As part of this task
they have constructed 2 model which calculates level-of-service param-
eters for an expressway network, given the physical attributes and the

traffic volume. This model, along with a wealth of related data, is
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also represented as a protected subsystem in the computer utility. For
one aspect of their study the planning board will perform a series of
network equilibrium flow analyses for various expressway configurations.
In these calculations the planning board will use the demand model
vended by the consulting firm. ‘

The resulting computation is a case of cooperating, mutually suspi-
cious subsystems. The consulting firm wishes to avoid divulging their
expensively gathered data and expensively devised algorithms, and wishes
to make secure records of use for later billing. The planning board
wishes to avoid premature, uncensored release of the various routing
and cost information for potential expressway configurations that is
accessible to their programs for this and other phases cf the study.

The encapsulation of the consulting firm's demand model as a pro-
tected subsystem guards their proprietary interests. Access by the
planning board subsystem is restricted to invoking a few carefully
selected programs. The planning board subsystem cannot read the code
or the data bases of the demand model, nor subvert its operation in any
way. The consulting firm subsystem can make protected usage records as
it operates from which bills can be generated later.

Likewise, the encapsulation of the planning board programs and
data bases protects the interests of the planning board. The consult-
ing firm subsystem cannct read or alter the sensitive data that is
accessible to the planning board programs. The consulting firm sub-
system just has temporary access to whatever input parameters the plan-

ning board subsystem provides each time that it invokes the demand
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model.* Also, the only way that the consulting firm subsystem can in-
fluence the operation of the planning board subsystem is with the values
of tne answers calculated by the former for the latter.

This simple example involving two protected subsystems is represen-
tative of a large class of potential applications for a compute; utility
that supports cooperating, mutually suspicious subsystems. Such,a
facility would permit, among other things, the packaging of knowledge in
an active form as program complexes and the marketiig of this knowledge
in a way tha*t preserves the proprietary interests of the seller and
limits the possibility of harm to the customers. Of course, this
facility cannot guarantee that a marketed program complex correctly per-
forms the functions that it is advertised to perform. Issues of program
certification are beyond the scope of this thesis. The important point
is that, even if a program malfunctions or behaves maliciously, the use
of protected subsystems limits the resulting damage.

A computer utility that supports cooperating, mutually suspicious
subsystems would favorzbly impact casnal programming users as well as
those affiliated with expensive proprietary projects or those manipula-
ting sensitive data., An important activity of most programming users in
a computer utility is sharing programs and program complexes with one

another. The access environment in which the programs of such & user

*In some cases it may be desirable to guarantee that a protected sub-
system invoked by another cannot remember and later divulge the values
of input parameters. This problem appears to be very difficult to solve
in a purely technical way and will not be considered in this thesis. A
practical soluticn probably involves program certification and means for
legal redress in cases of unauthorized release of such information.
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normally execute on his behalf could be set up as a protected subsystem.
Then the user could arrange for programs borrowed from other users to

execute outside of this "home" protected subsystem. In this manner the
borrowed programs could be invoked without giving them access to all the

programs and data of the borrower. If the borrowed program is malicious,
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or malfunctions, the damage it can do is thereby limited. The lending
user also would have the option to encapsulate the lent program or

program complex in a protected subsystem of its own and thus insulate

uawbiny aaf Ret

it from the programs of tha borrower. The result of this pattern is an
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environment in which casual sharing of programs is encouraged by the

ability to limit the potential damage to the participating users.
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Objectives
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The objective of the research reported here is to devise protection

mechanisms that allow cooperating, mutually suspicious subsystems to be

FTr TR

implemented efficiently and naturally in a computer utility. As has

been suggested, this case corresponds to a multidomain computation in

which the domains have few capabilities in common. The essential

difficulty is that common capabilities sezm to be a prerequisite to

E
E
-,‘g cooperation and communication among subsystems encapsulated in differ- :
ent domains. Thus, in this respect, cooperating, mutually suspicious
subsystems is a "worst case" problem. Means must be provided for pro-
grams executing in different domains to communicate even when these
E domains normally have no capabilities in common. The mechanisms
B

developed in this thesis, however. do not force the sets of capabilities

that are the domains in a compulation to be disjuint. There are no
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arbitrary restrictions on the capabilities that can be included in the
domains As a result, these protection mechanisms are able to enforce
as well a large variety of protection relationships that are less re-
strictive than those associated with cooperating, mutually suspicious
subsystems.

The words “'efficiently" and “naturally" are used to convey the aim
of developing practical mechanisms which meet the functional objective --
mechanisms that people actually might build and vse. This requirement
is manifest in three specific design criteria: economy, simplicity.
and programming generality. Economy, obviously related to efficiency,
encompasses two coasiderations. First, the cost of building the pro-
tection mechanisms should be small encugh relative tc the cost of the
entire system that the system designers are willing to include such
mechanisms in the system despite an untested market. Second, the cost
of using the mechanisms should be low enough that it is not an important
consideration in determining the degree of access control to be used in
a particular application. Cost in the first case is the per system
fixed cost of providing the protection mechanisms. Cost in the second
case is the marginal cost of application, and includes the subsystem
complexity and user jnconvenience that result from the use of the
mechanisms, as well as any associated extra storage space and execution
time.

Simplicity often leads to economy, but is identified as a separate
criterion for a more important reason. If a set of protaction
mechanisms is to be accepted and used, then there must be confidence

that no way exists to circumvent it. The best way to achieve confidence
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is to keep the mechanisms simple so that they may be completely under-
siood. In this respect standard techniques for controlling complexity,
such 2s functional modulzrity and adherence to a few overall design
principles, can help.

Programming generality, the third criterion, is adopted as the
specific manifestation of naturalness. First defined by Dennis [8,9.10],
it is a propertyv that has proven the key to encouraging users of a com-
puter utility to communicate, cooperate, and build upon one another's
wotk. As used here, it means that independent programs may be combined
in various ways iuto larger units without understanding or altering the
internal organizations of the programs. The idea is that independently
written and compiled programs of one o'- more computer utility users can
be used as building Diucks which can be combined in various ways into
different program complexes to perform different computations. In the
course of such activity a single program or program complex may have to
operate in many different pr 'tection envircnments. If the protection
mechanisms of a computer utility are te be consistent with the criterion
of programming generality, then., 1t must be possible to change the
protection environuent of a program or group cf programs without
altering the iaternal structure of the program or group,

The programming generality critericn generates some specific func-
tional requirements for the protection mechanisms of this thesis. These
requicements are now developed into a more precise statement of the
thesis objective. The initial assumption is that a call with arguments
is an accepted method of communication between independent programs and

should be supported in any general purpose computer system such as a
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computer utility. In keeping with the criterion of programming general-
ity, many systems allow separately compiled, independent programs to
communicate via a call that passes arguments. The only requirements for
such communication are that the programs involved use the same calling
conventions and that they agree on the number, kind, and order of the
arguments. No explicit knowledge of the circumstances of execution need
be embedded in the calling or the called program. A single call state-
ment in some program can invoke many different programs depending upon
the circumstances at the time the compiied version of the statement is
executed.

It seems reasonable that the domain in which a program will execute
when called not be part of the knowledge requiied in order to write or
compile programs that invoke it. A natural consequence of this view is
that the standard call used between independent programs should auto-
matically change the domain of execution if, in a given circumstance,
the called program is supposed to execute in a different domain than the
current domain of execution. The programmer or the compiler cannot do
anything special for calls that cause the domain of execution to change
(as opposed to calls that leave the domain of execution unchanged) be-
cause programming generality requires that such calls not be differen-
tiated when a program is written or compiled.

The passing of arguments with a call needs further consideration
in light of the requirement that a standard call between independent
programs can change the domain of execution if necessary. An argument
may be any data item or set of data items that the calling program can

specify. There are two fundamental methods that can be used to pass
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arguments with a call. One is to copy the values of the arguments into

2
'

memory locations or registers where the called program expects to find
them. The second is tc leave most arguments in their normal memory
locations and it orm the called program of the addresses of the argu-
ments. The criterion of economy makes it imperative to support the
second method. The copying involved in the first method would be so

expensive that the passing of large arguments (aricays, structures, etc.)
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would be discouraged. Further, the functional effect of passing argu-
ments by value can be achieved when required with a mechanism based on
passing arguments by address. The reverse is not true, for modification
of an argument passed by value immediately changes only a copy cf the

source variable, not the source variable itself. More sophisticated

linguistic comstructions for passing arguments, such as passing them by

name, also can be implemented based on mechamisms that pass arguments
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by address.

Passing arguments by address, however, can generate problems in the
case of calls that happen to change the domain of execution. For such
arguments to be referenced by the called program, the domain of execu-

tion of the called program must contain capabilities which allow access

Lot L

to the memory locations containing the arguments. The domain of the
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caiiing program and the domain of the called program essentially are
raquired to have capabilitiec ir common permitt ng the arguments to be

-~ 2ferenced.

E There are several ways that this need for common argument capabili-
i ties conceivably could be met. One approach is to allow cross-domain

i calls only if the capabilities in the crlling domain form a subset of
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arguments with a call. One is to copy the values of the arguments into
memory locaticns or registers where the called program expects to find
them., The second is to leave most argumencs in their normal memory

tocations and inform the called program of the addresses of the argu-~

ments. The criterion of economy makes it imperative to support the
second method. The copying involved in the first method would be so
expensive that the passing of large arguments (arrays, structures, etc.)
would be discouraged. Further, the fuunctional efizct of passing argu- E
ments by value can be achieved when required with a mechanism based on %
passing arguments by address. The revers« is not true, for modification
of an argument passed by value immediately changes only a copy of the
source variable, not the source variable itself. More sophisticated =
linguistic constructions for passing arguments, such as passing them by K

name, also can be implemented based on mechamisms that pass arguments

SR e

by address.

Passing arguments by address, however, can generate problems in the e
case of calls that happen to change the domain of execution. For such H
arguments to be referenced by the cciled program, the domain of execu- :
tion of the called program must contain capabilities which allov access =
to the ;emory locations containing the arguments. The domain of the
calling program and the domain of the called program essentially are 3

required tc have capabilities in common permitting the arguments to be

Al

referenced.

There are several ways that this need for common argument capabili-
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ties conceivably could be met. One approach is to allow cross-domain
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calls only i the capabilities in the call®ng domain form a subset of E
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the capabilities in the called domain. Thus, any argument that the
calling program happens to pass is accessible to the called program.
If one domain is a subset of another, however, then the twu domains
certainly cannot encapsulate mutuvally su.picious subsystems. Thus,

mechanisms based on this approach do not allow direct cooperation be-

R RTA S SO T B TR SR ORI S SRR S St

tween mutually suspicious subsystems by a call from one to the other.

T
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Another possibility is the a priori inclusion in a domain of the

precise capabilities required to reference all arguments that will be
passed with all possible incoming cross-domain calls. This methed is
not practical, however, because the binding of variable names to memory

locations can vary dynamically as programs execute. This dynamic bind-

ing makes it impossible to include in advance the proper capabilities in
ihe called domain. Even if this problem could be solved, a priori
inclusion of capabilities for arguments would violate the criterion of
programming generality as it applies to domains by requiring detailed

knowledge of programs making incoming cross-domain calls in order to

define a domain.

A third possibility is the establishment by mutual agreement be-

tween. a domain and each potential calling domain of a special buffer for

L AR L e I

transmitting arguments. Capabilities to reference the buffer would be
common to the domains. The use of a buffer for arguments on all calls,

whether they change the domain of execution or not, really means that

Erutn

arguments are passed by value, a technique .Iscarded ecrlier as

uneconomical. The use of a buffer only for cross-domain calls compro-

mises program generality.
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proposed here extend the idea so that protected subsystems may be used
as building tlocks as well. Independently defined protected subsystems
may be combined in different ways as cooperative partners in various

computations without either explicitly modifying the definitions of the

protected subsystems or altering the component programs.

Background

The protection mechanisms developed in this thesis are strongly
influenced by the structure of Multics. Multics is a prototype computer
utility developed at M.I.T.'s Project MAC in a joint effort with Honey-
well Information Systems, Inc. and now operating at several sites. (See
[5,21,23] for an introduction to Multics.) No claim is made that
Multics provides the best possible environment in which to develop
practical protection mechanisms which meet the stated objectives.
Meltics is used because it is the closest operational approximation to
a computer utility currently existing and because it is structured to
allow programs to be used as buailding blocks in the manner discussed
earlier [10}. Because Multics is an operational system that has proven
effective in meeting many of the objectives of a computer utility, there
can be some confidence that protection mechanisms designed for a similar
system environment are based on realistic assumptions. Protection
mechanisms have a tendency to permeate a system. In this case the
existing Multics can be used as a ccncrete system environment in which
to test the protection mechanisms by tracing their full system implica-

tions. The fact that the protection mechanisms described here represent
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the evolution and improvement of an existing, useful system lends
strength to the contention that they are practical.

The relationship of the protection mechanisms described in this
thesis to Muitics is made clearer by briefly reviewing certain aspects
of the system. Multics zlready includes a fairly sophisticated set of
protection mechanisms, particularly for controlling access to stored
intormation. On-line storage is logically organized as a collection of
disjoint segments of information. Segments are variable length arrays
of bits that may contain any colliection of information, e.g., symbolic
programs. compiled programs, data files, tempordyy storage for on-going
compulalivns, oFf system datc bases. Any segment is potentially access-
ible to any executing program.

Multics is organized so that separately compiled programs may be
used as building blocks. While this goal influences the organization of
the entire svstem, several features are particularly important. Com-
piled programs are represented as segments of pure procedure so that
multinle computations may simultaneously execute the same shared proce-
dure segmenl. Interprocedure communication is by a standardized inter-
procedure call and interprocedure linking is done dynamically the first
time a particular call is executed in a computation. The normal execu-
tion environment includes a push-down stack for procedure activation
records, allowing procedures to be combined in patterns that may generate
recursive invocaticns.

Machine language programs in Multics execute in a segmented virtual

memory where segments are identified by number. The two-part address

(s,d) identities displacement & in the segmeni numberad s. Processors {17]
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contain logic for automatically translating two-pirt addresses into
absclute memory addresses. Translation is done using the segment number
as the index into a table of scgment descriptors called the descriptor
segment. When an executing program wishes to reference a segment stored
on-line, the segment must first be added to the virtual memory by
assigning it an unused descriptor segment entry, an operation automati-
cally performed by the supervisor when the first attempt to reference
the segment is detected. (See {1} fur a more detailed descriprion of
this virtual memory.)

The combination of an execution point aad a virtual memory is
called a process. A proces; with a new virtual memory is created for
each user when he logs in to the system. Thus, each user's process has
its own descriptor segment. In this context it is corvenient to use the
term computation to .tean the activity of the process of a user.

The allowed access of executiug programs to each segment stored
on-line is specified by an access control list. An access control list
entry essentially associates & domain name with some combination of
read, write, and execute ac.ess to the segment. A domain name is the
combination of the name of scme system user with one of the integers O
through 7, and designates one of the eight fixed domains associated with
the process of somc user. Each access control list entry defines a
capability in the named domain that allows the indicated access to the
segment. Manipuiation of access control lists is controlled by other
access control lists that are part of a hierarchy of segment catalogues.

As implied in the previous paragraph, Multics allows multiple do-

mains to be associated with a single process. The domain cf execution
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is changed by the standard interprocedure call. Arguments are passed by
address. The problem of arranging for the common argument capabilities
between the calling domain and the called domain is solved by forcing

all domains associated with a single process to form a linearly nested
collection of sets with respect to segment referencing capabilities [14].
Cross-domain calls are allowed only if the called domain is a superset

of the calling domain. This Jinear nesting generates a total ordering
with respect to access privilege on the domains associated with a process
that simplifies many aspects of the system in addition to cross-domain
calls. As pointed out earlier, however, this approach does not allow
direct ccoperation by interprocedure call of domains encapsulating
mutually suspicious subsystems. In fact, it does not even allow mutuall+
suspicious subsystems to be part of the same process.

The protection mechanisms described in this thesis are similar in
overall approach to those in Multics. They developed from consideriug
ways to improve the efficiency of cross-domain calls for the case of
linearly nested domains, and then considering ways to remove entirely
the linear nesting restricticn. The result of the first phase was a
previously reported [25]) hardware architecture for automatically handling
cross-domain calls with arguments in the case of linearly nested domains.
This design, implemented in a new processor for Multics being constructed
by Honeywell, contains the seeds of many ideas that ave expanded as the
central part of this thesis into a hardware architecture for automati-
cally handling the unconstraincd case of crouss-domain calls wich argu-
ments. In addition to devising hardware that automatically performs

general cross-domain calls. the second phase included isclating those
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software system aspects simplified by the linear nesting restriction in

Multics and exploring the extensions required to take advantage of the

prrasy R s a P cam— e ot ©

improved hardware protection mechanism., While the research reported

here was conducted within the specific context of Multics, the results

presented ir this thesis are quite general and applicable to a wide

variety of system environments.

One additional aspect of the relationship of this thesis to Multics

snould be mentioned. The primary programming language in Multics is

PL/T [1A}.
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Nor only are most user programs written in PL/I, but almost
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all of the system programs are as well [6]. Certain aspects of the

high-level languages in use in a system can influence the design of the

Wil TP

protection mechanisms. For example, if a standard interprocedure call

is to be able to change the domain of executicn, then the protection

mechanisms must accomodate all the semantic implications of a call as

defined in the various high-level languages in use. Because PL/I has

" R ITE

proven fairly well suited in Multics to the goal of allowing separately

compiled procedu~es to be used as building blocks, it will be used in
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- this thesis as a representative high-level language to be accomodated
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by the protection mechanisms. Because of the richness of PL/I, the
protection mechanisms developed in this context will support equally

well many other high-level languages in use tcday.

Approach
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Alwost all interesting things in a computer atility are ultimately
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manifest as stored information.

Processes. 1/0 streams, directories,

access contvol lists, domains, capabilities. data segments, and
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procedures, to name a few examples, are all represented as stored infor-
mation. It follows that control of access to stored information is a
basic function of protection mechanisms. This observation is reflected
in the design of the protection mechanisms developed in this thesis.

The hardware component of these mechanisms is a processor that
supports a multidomain computation implemented as 2 single Multics-like
process, i.e., as a single execution point in a segmented virtual
memory. This processor automatically controls access to a primitive
set of information objects by interpreting and enforcing capabilities
representing both the encapsulations defined by the domains of the
process and the arguments passed with cross-domain calls. The encapsu-
lation capabilities recognized are those allowing direct read or write
references to segments and those allowing transfers of the execution
point from one virtual memory location to another {(including trans :rs
that represent cross-domain calls). The cross-domain argument capabili-
ties recognized by the processor allow most types of data items defined

by current, general-purpose, high-level programming languages to be

passed as arguments with cross-domain calls. The processor automatically

adds the required argument cavabilities to the called domain when a
sross-domain call occuzs and removes them when the subsequent return
oCCcurs.

The hardware processor provides a general foundation for a software
second layer of the protection mechanisms. 7o get off the ground, one
of the domains supported by the hardware is given capabilities allowing
direct read/write access Lo the segments containing the capabilities

that the hardware enforces. Thus, the hardware is circularly applied
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to protect the stored capabilities that control it. This special
domain becomes the domain encapsulating the most highly privileged part
of the supervisor. Manipulation of the capabilities controlling the
harcdware by procedures executing in other domains can only be done
interpretively by calling the supervisor procedures. Part of the
supervisor is a file system that allows users to define the encapsula-
tion of segmenis as protected subsystems and control the sharing of such
protected subsystems. Control on such specification is eunforced
interpretively by the file system procedures based on information stored
in the file system data segments. Software to provide other supervisor
- functions, such as multiplexing processors to create many simultaneous
processes, is also encapsulated in the supervisor domain.

Notice that the hardware processor interprets and erforces only
capabilities allowing direct access by executing procedures to a few
simple information objects: segments, arguments, and domains. This
fairly simple processor, however, manages to handle automatically the
vast majority of accesses to objects by executing programs, creating a
relatively efficient system. More complex information objects can be
created and access to them enforced by using the basic facilities of
this hardware. The method is to defﬂne protected subsystems that
encapsulate segments containing the stored manifestations of these more
complex objects with procedures which provide interpretive access to
them. The file system, itself an example of this encapsulation strategy,
provides the basic tools aliowing users to perform such encapsulations
for themselves. Examples of information objects to be discussed later

that are defined and controlled by the file system are access control
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lists, directories, and protected subsystems. Other information objects
defined and contrclled by the supervisor domain might be processes,

I1/0 streams, and interprocess message queues. There .s no limit to the
complexity of the information objects and associated access controls

users can define by crearing their own protected subsystems.

Thesis Plan

rg

te central malerial of this thesis is the development of the hard-
ware processor. Chapter 2 presents the conceptual basis for the protec-
tion mechanisms in the processor. The properties of encapsulation and
argument capabilities are derived and the steps involved in performing
a cross-domain call are considered. These ideas are expanded in Chap-
ter 3 into a description of a processor that fully supports a computa-
tion involving multiple independent domains and that automatically
performs cross-domain calls with arguments -- even between domains that
normally have no capabilities in common. Included in this chapter is

a discussion of the machine code to be generated by compilers to take
full advantage of the processor protection mechanisms and of the high-
level programming language extensions required to allow programmers to
control the cross-domain call mechanisms.

The software second layer is considered in less detail than the
kardware first layer. In Chapter 4 a file system is described by out-
lining extensions to the Multics file system that permit it to deal with
protected subsystems. The extensions necessary are the addition of

protected subsystems to the objects catalogued by the file system and

the recasting of access control lists in * ms of protected subsystem
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names rather than domain numbers. A first approximation for the remain-

ing scftware system required to produce a computer utility in which seg-~
ments and protected subsystems can be used as building blocks is obtained
by adopting the rest of the Multics software organization and implemen-

tation with essentially no changes. The purpose of the material in

Chapter 4 is todemonstrate one way to harness the processor protection
mechanisms so that users can define and control the sharing of protected
subsystems.

Chapter 5 concludes the thesis by summarizing the important ideas

presented and indicating those areas where it appears that further

research would be fruitful.

Related Work

Before beginning the body of the thesis it is appropriate to review

the published work related to the thesis topic. The relationship of the

research reported here to Multics has already been discussed and the

pertinent references cited. A complete bibliography of publications on

Muliics appears in [5].

As indicated earlier, the concept of programming generality was

developed by Dennis [8,9,10]. His main concern has been tracing the

A RIS Al s vl o e

implications of this concept on language and system facilities for

:
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manipulating structured information. The implications of programming

i

=
generality on protection mechanisms are not developed .: his papers. é§
-
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Vanderbilt [28], bujlding on the work of Dennis, has developed an %% .
abstract model of information structures for controlling sharing in a =5
et
computer utility that 1is consistent with the criterion of programming =
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generality. He gives little consideration to methods of implementation,
however, and certain characteristics of the model, such as prohibition
on direct sharing of data among users and the inability to revoke access
permission once given, would be unacceptable in a practical facility.
The domain model finds its origin in the spheres of protection of
Dennis and VanHorn [7]. Lampson [19,20) first recognized the power of
the idea as an abstraction for understanding protection mechanisms, and
was responsible for developing the idea into a useful conceptual tool.
A recent paper by Graham and Denning [13] uses Lampson's model to
explain the diverse protection mechanisms in various existing systems.
Aside from the domain model, essentially no theory of protection
pechanisms exists. The rest of the literature in the field consists
of descriptions of proposed or existing systems wi.h various protection
properties. Wilkes {29] divides the various protection schemes into
two classes: 1list oriented mechanisms and ticket oriented mechanisms.
With the first approach, control of access to an object is specified in
lists maintained by the protected subsystem (usually the supervisor)
that is the custodian of the object. An attempt to access an object is
validated by matching the name of the requesting domain against a list
of domains authorized to access the object. Multics is an example of a
system implementing sophisticated list oriented protection mechanisms.
With the second approach, permission to access objects in the system
is embodied in unalterable tickets which may be distributed to the
domains in the system. Presentation of the proper ticket is all that is
required to gain access to an object. The CAL system [15,18,26,27]

implements sophisticated ticket oriented protection mechanisms that
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allow multiple domains to be associated with a single computation, In
the CAL system the domain of execution is changed by the expli:it invo-
cation of a special supervisor function, a method not consistent with
the cricerion of programming generality. A significant advantage of
the ticket approach to access control is that only a fairly simple

mechanism for manufacturing and controlling tickets need be embedded in

.; the most privileged part of the superviscr. With the list approach,

:? most of the file system must be protected at this level, A significaat ;
E

Eg disadvantage of the ticket approach is the difficulty of revoking access

E

E once a ticket has been given to some domain in the system. With both
list and ticket oriented mechanisms direct sharing of objects among the
domains in the system can be implemented.

In addition to the two basic classes of protection schemes suggest-
ed by Wilkes there exists a third class which can be called message
oriented mechanisms. (Actually, in some ways this class is a variant
of the list oriented mechanisms.) With this approach no direct sharing
of objects is allowed. Instead each object is under the exclusive con-

trol of some process. All sharing is done via interprocess messages

B KRR o S s AR it WAkt [RASAR bt WS T3 1BtV R mo A st sl b s st A B 32

that are managed by the supervisor. To reference a data file belonging
to some process, for example, another process would send a message ?
specifying the requested reference. The message is tagged by the super- %
visor with the identity of the sending process. The receiving process i
decides on the basis of this tag whether or not the request should be z
honored. The result oif the request is communicated by a return message. §
The RC-4000 system [2] is an example of a message oriented system. While §
2
4
i
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the message oriented mechanisms have an appealing simplicity, in
practice they are awkward to work with and inefficient.

Most commercially available computer systems have fairly primitive
protection facilities intended only to prcvide user separation. IBM
and other major manufacturers have recently become concerned about cer-
tifying their systems so that this total user separation can be guaran-
teed. Aside from Multics, which is available from Honeywell as a special
product, however, no operational or announced commercial system can
support user-defined protected subsystems, and very few even allow con-
trolled sharing of programs and data among users.

Very little work has been done on hardware mechanisms for supporting
sophisticated protection mechanisms. The protection facilities of most
systems are implemented largely in software using hardware with fairly
primitive protection mechanisms. The machines of the Burroughs Corpo-
ration [3] were the first to implement address mapping using segment
descriptors, the technigue that has proven to be the basis of most
sophisticated protection hardware. Evans and LeClerc [1l] were among
the first to suggest that address mapping hardware including access
control mechanisms could be constructed to help implement efficiently
computations involving several domains. The hierarchic domain structure
they propose is similar to the model developed by Vanderbilt. The Hitac
5020 [22] was one of the first hardware processors tuv implement more
than the simple supervisor/user form of multiple domain protection. The
scheme used is patterned after the linearly nested domains of Multics.
The Hitac processor, which closely follows the implementation suggested

by Graham [14], is not able to change the domain of execution
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automatically. The most sophisticaled multiple domain protection hard-

E k-

B ware that has actually been constructed is embodied in the new Multics %
Z

é processor [25] being built by Honeywell. Several projects are currently %

E}E underway to construct processors with similar protection mechanisms, but

%? no published material is available yet that describes these efforts.

Fabry [12] has proposed hardware protection mechanisms specifically
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designed to support ticket oriented protection mechanisms, but which

i

provides little assistance with the previously mentioned problem of

1

¥

locating already distributed tickets in order to revoke access
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CHAPTER 2

STATIC ACCESS, DYNAMIC ACCESS, AND-CROSS-DOMAIN CALLS

The hardware component of the protection mechanisms described in
this thesis is a processor that supports a multidomain computation im-
plemented as a single Multics-like process. (Recall thit such a process
is a single executiocn point in a segmented virtual memory.) This pro-
cessor countains logic for implementing a segmented virtual memory, for
enforcing the various virtual memory access constraints that represent
the encapsulation of procedure and data segments in several domains, and
for performing cross-domain calls. 1In this chapter some of the func-
tional characteristics of this processor are introduced.

The major emphasis of the discussion is on the types of capabil-
ities the processor interprets and enforces, the dynamic behavior of
these capabilities, and the steps involved in performing a cross-domain
call. The discussion is fairly general, making little reference to

specific implementation techniques.

The Segmented Virtual Memory

The segmented virtual memory of a process was introduced in
Chapter | during the discussion of Multics. The structural character-

istics pertinent to the material in this chapter are briefly reviewed

here.

1. A segment is a variable length array of bits.
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2. Each segment in the virtual memcry is identified by a unique
non-negative integer.

3. The twe-part address (s,d) specifies the gth bit in the seg-
ment numbered s.

4. All references to memory generated by an executing machine
language program, whether for indirect words, instruction oper-
ands, or the next instruction to execute, are specified by two-
part addresses. The number of bits actually referenced by the
address (s,d) is implied by the circumstances of the reference.

The processor logic required to implement the segmented virtual memory
of a process is described in the next chapter.

As indicated in Chapter 1, in order for a procedure executing as

part of a process to reference a segment stored on-line in the computer
utility, the segment must first be added to the virtual memory of the

process. In this chapter it is assumed that the virtual memory of a

process somehow already coatains all segments that are to be refarenced.

Multiple Domains

Each domain associated with a process is defined by a set of capa-
bilities for referencing parts of the segmented virtual memory of the
process in various ways. Methods for specifying which capabilities are
included in each domain will be considered in Chapter 4. The general
form of any capability is:

{name ,mode)
where the first elemenl identifies some object in the system and the
second element specifies the operations that the capability allows to be
performed on that cbject. With respect to processor enforced control on
access to the segmented virtual memory of a process, the relevant ranges

of values for names and modes are fairly restricted. All relevant names
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2 may be expressed as: %
5 3
EL (E’.q,.g:) %
- 5 where s and d are a two-part address, and £ is the number of contiguous 3
3 bits starting at the named location. This set of names allows the iden- %
5 3
N P s . . s . . 2
2 tification of any contiguous chunk of bits in any segment, i.e., any 2
3 subsegment. The range »f values for the mode is limited by the archi- §
z
- tecture of the processor. It is possible to structure the mode to é
= individually control any processor distinguishable operation or set of %
X 3
2; operations on the contents of a segment. For example, the use of the g
* 7
& <&
- subsegment named in a capability as the operand of each separate machine g
s 2
= 2 instruction could be individually controlled. g
'f_R For the purpose of encapsulating procedure and data segments in a 2
3 domain, an even more restricted set of names and modes is adequate. 7
3 With the exception of the gate capability introduced later, the capabil- g
3B ities used to express encapsulation that are recognized by the processor %
~ 33 name only whole segments and allow independent control of just three 5
2 3
=3 h
- operations. The operalions are executing the contents of a segment as é
b * é
3 machine instructions, reading from a segment, and writing in a segment . P
% 3
k> !
2 . s s 3
b The encapsulation capabilities recognized by the processor, then, are §
3 g
8 S
> 3
. £ * 5
BE Actually, capabilities that included no mcde information at all would E
= ' be adequate for the purpose of encapsulating procedure and data segments 3
in domains. In this case, the presence in a domain of a capability g
= naming a segment would permit {ull rcad, write, and execute access to 3
= | the segment. Providing separate control on these three operations, how- 5
S 5 X ;
s ever, is useful for several reasons. Separate control on reading and 3
s writing encourages the sharing of procedure and data segments among g
S several domains by making it possible to share only the ability to read g
5 a segment. Separate control on executing a segment allows the protec- 4
S tion mechanisms of the processor to detect accidental attempts to §
LA execute segments that do not contain machine code. §
% ;
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expressed as:

i feuy

(s,m)

R s eagten?

Atywern

vhere s is a segment number and m is some comhination of read, write,

ven

and execute permission flags.

an

Only the combinations r, rw, re, rwe,

and null, corresponding to segments of read only data, read/write data,

[ R e )
e e

*
pure procedure, impure procedure, and to no access at all , respectively,

make much sense.

The fact that the names in these capabilities are segment nrumbers

leads to an especially convenient representation of the domains associa-

L ne side

ted with a process. Each decmain is represented as an array whose ele-

ments are the modes defining the aliowed access to the various segments

in the virtual memorv of the process.

A BN AR (F D S s NS Y S ARS8

The array is indexed by segment

number. (The usefulness of a null mode now becomes apparent.) The

PRY Y LTIt ¥

processor uses the mode array corresponding to the comain of execution

b

of a process to control virtual memory references. An attempt by an

heowa

executing machine language program to read, write, or execute segment
number n is allowed by the processor only if the corresponding flag

. th L.
appears in the n~ mode in this array.

Domain of Execution

The issue of how the domain of execution of a process is determined

4&!’3 IﬁfJ‘Jo?i-uiﬁfii'~lﬁ&'.'ﬁfd-\;\'n“-‘-‘twt(»«.‘. aedibbe b

now must be considered. This problem is approached by defining ways to

s
R

]

s

control changing the domain of execution. An understanding of the sort

*
Including in a domain a capability specifying null access to a segment

is equivalent to having no capability at all for that segmeat in the
domain.
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of control required can be gained by reviewing the purpose of associa-
ting multiple domains with a process. A domain provides the means to
protect procednre and data segments from other procedures that execute
as part of the same - ocess. Using domains it is possible to make cer-
tain capabilities available only when particular procedure segments are
being executed. The code sequences in these segments therefore deter-
mine the use made of those capabilities. These code sequences implement
the intended algorithms, however, only if execution starts at certain
points. Thus, for domains to be meaningful, it must be possible to
restrict the start of execution in a particular domain to certain pro-
gram locations. These locations are called gates. Changing the domain
of execution can occur only as the result of a transfer to a gate loca-
tion of another domain.

Controlling the ability to change the domain of execution, then,
requires devising capabilities that identify certain procedure segment
iocations as gates into particuler domains. The name in such a capa-
bility needs to be more precise than just a segment number. It must
identify a particular machine instruction in a segment. The mode must
indicate that the named location is a gate and specify the nume of the
domain for which it is a gate. Thus, the gate capability has the form:

({g,4)

({s,8) (gate into domain D))

2
where s and d name a virtual memory locatiocn and the mode indicates per-
mission to invoke the program section beginning at the named location
and simultaneously change the domain of execution to domain D. The

method of naming domains is ignored for now, although it is apparent

from the previous discussion that any domain naming scheme that allows
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the processor to find the mode array for the new domain of execution
will work.

Unfortunately, the gate capability just described does not fit very
well with the previously suggested mode array representation of domains.
Moving d from the name portion to the mode portion of the capability,
however, solves this problem, for the name that is left is just a seg-
ment number as before. Capabilities for all the gates in a single seg-
ment that are accessible from some domain then may be represented by
listing the displacements of these gates in the mode array element for
that segment. Less mode information is required if all these gate loca-
tions in the same segment are required to be gates into the same domain,
a reasonable restriction. Representing capabilities for gates, then, is
done by adding a gate flag to the other three flags already possible in
mode array eantries. If the gate flag is present in a particular entry,
then a list of displacements of valid gate locations within the corres-
poinding segment is also part of the mode information, along with the

name of the domain for which these locations are gates.

An Example of Mode Arrays

Figure 2-1 illustrates mode arrays defining three domains associated
with some process. Segments 0 and 1 are read/write data segments access-
ible only from domain A. Segments 2 and 3 are pure procedure segments
executable only in domain A. A program executing in domain A can
chauge the domain of execution to B by transferring control to location
64 in segment 4, and to C tnrough location 32 in segment 8. Domains B

and C are similar. WNcte that segment 6 is pure procedure executable in
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Figure 2-1: Example access mode arrays for three domains of a process.
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both domains B and C, aad that segment 7 is a data segment that can be

read and written from domain B but only read from domain C.

Cross-Domain Calls

As discussed in Chapter 1, the criterion of programming generality
leads to a pattern in which the domain of execution of a computation is

changed when one program invokes another that requires execution in a

different domain. Adoption of this pattern means that the gate capa-

bilities just described will normally correspond to program entry points
and that 2 transfer of control to one of these gate locations will nor-
mally be part of an interprocedure call*. Such a call, however, in-
volves several important functions in addition to the transfer of con-
trol to an entry point, all of which must be handled properly if a
cross-domain call is not to compromise the protection provided by either

of the involved domains. Some of these additional functions lead to the

need for the proces:or to recognize, manipulate, and enforce capabil-
ities with different dynamic properties than the encapsulation capa-

bilities just presented, if the processor is to perform automatically

cross-domain calls. These new kinds of capabilities control the access

e

"A procedure segment may actually contain a set of hierarchically nested
procedures permanently bound togother Ly Lie compiler. An interproce-
dure call is the call used to invoke an entry point into the outermost
level of such a nested set of procedures. With the exception of one
special circumstance discussed later, entry points into the inner layers
of such a nest of procedures are not intended to be invoked from inde-
pendent, separately compiled procedures, and thus will not be gate loca-
tions. The calling methods used within a procedure segment to invoke

the inner entry points are of no concern to the system or its protection
mechanisms.
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of programs executing in the called domain to the arguments passed with
the call and to the return point. They must be added to the called
domain when a cross-domain call occurs and removed when the matching
return oOCCurs.

As a basis from which to develop the properties of argument and

return capabilities, the action of an interprocedure call is considered

in more detail. An interprocedure call and return, as defined in a
language like PL/I, can be broken into eight steps. The call operation
itself involves:

1. specifying the arguments to be passed to the called procedure;

L R R N T )

*
2. saving the current procedure activation record so that it may
be restored when Lhe subsequent return occurs;

3. specifying the program location to receive control when the :
subsequent return occurs;

4. transferring control to the called entry point; §
5. creating a new activation record for the called procedure.
Once invoked, the called procedure will occasionally referenc the argu-
ments provided by the calling proceaure. Eventually, a return of con-

trol to the calling procedure may occur. This return operation involves:

PRI,

6. destroying the activation record of the called procedure;

7. transferring control back to the return location that was
specified by the calling procedure;

8. restoring Lo use the activation record cof the calling procedure.

*The activation record, normally allocated in a push-down stack, is the
local addressing environment for a procedure invocation and provides
storage for information associated with a single invocation of a proce-
dure. Addresses of arguments, the address of the return point, and PL/I
"automatic' variables are examples of this kind of information.
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The additional requirement of calls that change the domain of execution
is that all of these steps take place without compromising the protec-
tion provided by eithgr of the domains involved.

A cross-domain call occurs if the virtual memory location to which
control is transferred in step 4 happens to be defined by a capability

in the domain of execution (call it domain A) as a gate into another

Ry g

domain (call it domain B). 1In this case the return point specified in
step 3 and transferred to in step 7 is really a gate back into domain A,
for a transfer to this location by a procedure executing in domain B
should change th:e domain of execution back to A. As seen earlier, the
ability to transfer control to a gate and change the domain of execution
can be controlled by a capability. The capability for this return point
cannot be a permanent part of domain B. It if were, then procedures
executing in domain B could use it whether the corresponding call from

domain A were outstanding or not. What is required is that the capa-

oot oo A R 6 L3 oo VYLl R B GRS SN N S D H Sons ERSA I Re RE S B

bility for the return gate be added to domain B when the call occurs,

and removed from domain B when this capability is used to make the

AT

return.

A seguence of cross-domain calls may occur in a process before any

of them are returned. In the general case, that sequence may include
the recursive invocation of some domains of the process. The proper
dynamic behavior of the capabilities for return gates associated with
such a sequence is achieved by associating with a process a push-down
stack for return gate capabilities. Each time a cross-domain call
occurs, the processor adds the associated return gate capability to the

top of this stack, pushing-down whatever other return gate capabilities
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may already be in the stack. At any given time, only the return gate
capability at the top of the stack is available. When this capability
is used to perform a cross-domain return, the processor removes it from

the top of the stack, thereby making available the next older return

e e

gate capability. Thus, at any given time, the only cross-domain return
that can be performed is defined by the address and domain name contain-
ed in the gate capability at the top of the stack. This stack, then,
guarantees that the returns matching the sequencé of outstanding cross-
domain calls in the process will occur in the :orrect order, and that
each such return will transfer control to the expected loc;tion and will
properly change the domain of execution. This guarantee is valid even
if more than one cross-domain call into some domain is included in the
sequence, for procedures executing in one invocation of this domain in

the sequence are not able to use the return capabiliries associated with

other invocations.

The capability for the return gate of a cross-domain call is reall
P 3 y

2
g
i
3

a special case of a capability for an argument passed with a cross-domain
call. Capabilities to reference whatever arguments are specified in step
1 of the call operation must be added to the called domain when the call
occurs, and must be removed when the return transfer of control in step

7 occurs. The stack for return gate capabilities can be expanded to

control the availability of argument capabilities as well. Thus, when a

w amh o s ls.aw«\ .

cross-domain call occurs, the processor allocates a stack frame at the

rop oi this stack, pushing-down whatever stack frames may alrzady exist.
Into this frame the processor places a capability for the return gate

associated with the call and capabilities allowing reference to whatever
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arguments are specified in step 1 of the call operation. Only the capa-
bilities in the top frame on the stack are available at any given time.
The top frame is removed, and the remaining frames popped-up, when a

cross-domain returii occurs.

Static iccess and Dynamic Access

With the addition of the stack for argument and return capabilities,

the cap:bilities that define a domain of a process are represented in

two difierent ways. First, there is the mode array of the domain that :
specifies the encapsulation capabilities of the domain. In addition,
whenevey a particular domain is the domain of execution of the procecs,
the top frame on the capability stack specifies the argument capabili: .es

(including the capability for the return gate) that are temporarily part

of the domain. To differentiate these two sources of capabilities for a
domain, access available from the encapsulation capabilities to proce-

dures executing in a domain is called static accrss, and that available

U

from the argument capabilities is called dynamic access. The capability

*
stack of a process is called the dynamic access stack. Much of the

rest of this thesis will be concerned with the difference between static
and dynamic access, so the reader is advised to pause and be sure he

understands the definitions of these concepts.

*
The dynamic access stack is distinct from, though related to, the stack
of activation records for procedure invocations. 4
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Dynamic Access Capabilities

As stated above, dynamic access capabilities are created by the
processor whenever a cross-domain call occurs. Their purpose is to
give procedures executing in the called domain access to the arguments
and the return gate associated with the call. 1In creating these capa-
bilities, the processor must depend upon the specifications of arguments
and the return point provided by the calling procedure. Since there is
no control on the specifications which may be provided, the processor
must make sure that the capabilities created in this way and added to
the called domain do not give procedures executing in the called domain
permission to reference the virtual memory of the process in ways that
procedures executing in the calling domain cannot. Without this check,
the protection mechanism of the processor cculd be circumvented easily
by a pair of conspiring procedures in two different domains calling one
another and specifying the creation of dynamic access capabilities to
reference all parts of thke virtuval memory of the process.

I1f dynamic access capabilities are to control properly access to
arguments, they must provide more precise concrol than the static access
capabilities discussed earlier. 1In general, not all arguments will be
whole segments of information. For example, if the entire activation
record for a procedure invocation is stored within one segment. then a
single automatic variable associated with the procedure may occupy oniy
a few bits of that segment. It is certainly reasonable to specify such
a variable as an argument. If dynamic access capabilities are to allow
procedures executing in the called domain access to just the arguments

passed with the cross-domain call, and nothing else, then these
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capabilities must be able to name arbitrary subsegments, not just whole
segments as do static access capabilities. The mode should provide
separate control on reading and writing the subsegment named in a
dynamic access capability, so the intention that the value of a particu-
lar argument not be altered can be enforced. Thus, the dynamic access
capabilities recognized and enforced by the processor have the form:
(s,4,2,m)

where the first three elements name a subsegment and the last element is
some combination of read and write permission flags.

The dynamic access capabilities for return gates need to contain

the same information as static access capabilities for entry point gates.

The name portion of a return gate capability should specify the two-part
address of the return location, and the mode should indicate that the

capability is for a return gate and should specify the corresponding

Ghdety g 24 11! M i 2\ <,
tes 2NN RO e Mo 1 e SN g AL AN VU o L AN o b B B 8 PR St A AN bl Bovabd :ﬁm:ﬂ:n’iﬁ

domain of execution. It is very convenient, however, if the mode also

includes one additional piece of information -- the two-part address of

the activation record that is to be restored to use when the cross-
domain return occurs. The calling procedure needs to be guaranteed that
the correct activation record is restored to use when a cross-domain

return occurs, a: well as be assured that the return transfers control

to the expected location and changes the domain of execution to the

proper domain. If procedures executing in the called domain could some-

S et oieg Bt il gl e U ped e e e sd e

how cause a different activation record to be restored to use, then the

calling domain :ould be caused to malfunction after the return occurred.

e
2
ki
e
3
4
3

As will be seen in Chapter 3, the activation record of an executing

procedure is defined by the two-part address in a particular addressing
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= B register of the processor. Using the extra information in the return 5
K ;
E‘ 5 gate capability, the processor can verify that this register contains 3 ‘g
3 Z
o i
% the correct value befcre performing a cross-domain return. Thus, the 3 £
3
2 E dynamic access capability for a return gate really gives permission to f
perform a very specific three-part operation: load the activation E

&

record definition register with a particular value, transfer control to %

a particular location, and change the domain of execution to a particu- 7

lar domain. As will be seen in Chapter 3, the return gate capability g

§

g may be extended to control call and goto operations to eatry points and ; %

3

E labels, respectively, that are passed as arguments with cross-domain % ?

] :

g calls. § 4

TR N

Matching References to Capabilities

L3 53m,

A virtual memory reference is specified by a two-part add:ess

":1"'\”‘7?‘

(s,4), an implied length £, and an operation. Validation of such a
reference requires matching it with some capability in the domain of
execution.

Matching a reference to a static access capability is quite
straightforward. The segment number s is used as an index into the mode

array for the domain of execution. The read, write, execute, and gate

s g dtyes pan e

permission flags in the selected ontry indicate in the manner discussed

0y o

earlier whether or not the reference is allowed, depending upon what
operation is b.?ny attempted.

Match. o= a referenci i a dynamic access capability is a little

/e
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more complicatea:. Since more than nse dynamic access capability may
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cover a particular su. ~ement, an associative »27vch of the available
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dynamic access capabilities is needed. What is required to allow the
reference is the existence of at least one dynamic access capability

covering the refsrenced subsegment and allowing the operation being

attempted.
g It is up to the procedure in execution to determine which of these
%, % two kinds of validation will be applied to each virtual memory reference.
é? The processor never forces the use of or~ ar he other validation method. :

3 On the other hand, it is important to maincaining the integrity of a
domain to choose the proper method of access validation for each refer-

ence. Validation relative to the dynamic access capabilities in a

domain should be used if the reference represents an attempt to access

an argument provided with a cross-domain cali. Otherwise, the reference
should be validated relative to the static access capabilities in the
domain. The reasons for th:s pattern of validation will be discussed in
a moment.

The mecharisms of the processor for forming and mzaipulating two-
part addresses make it natural to use the two metheds of access valida-
tion in the manner just suggnsted. All two-part addresses tiiat are de-
rvived from the arg.ment specifications associated with the cross-domain
;all that started execution in . domain are automatically tagged by the
processor. A referenca using such a tagged address triggers validation
relative to the dynamic access capabilities of the domain of execution.
References with untagged addresses are validated relative co the static
access capzbilities of the domain. Unless an executing procedure makes

an explicit effort to alter these tags, which it can do, the processor

always manages to identify correctly addresses which were derived from
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cross-domain call argument specifications, and perform the proper vali-
dation on references made using such addresses.

The reason to be careful with argument-related addresses is that
they are derived from information provided by a procedure executing in
another domain -~ the domain which generated the cross-domain call. In
general, there is no guarantee that they locate pieces of the virtual
memory that are accessible from the calling domain*. For example, the
calling procedure could maliciously or erroneously provide an argument-
related address that in fact names some location in a critical data base
encapsulated in the called domain -- a {ata base that is not accessible
from the calling domain. If a procedure executing in the called domain
writes thryough this address, it does so with the intention of changing
the value of an output argument. I1f this reference were validated
relative to the static access capabilities of the called domain, it
woula succeed, erroneocusly changing the critical data base. Validated
relative to the dynamic access capabilities of the domain, nowever, the
reference fails, for as seeu earlier the dynamic access capabilities
caninot give access permission that is not also available to tle calling
domain. Thus, dynamic access capabilities allow the called domzin to
protece itself against “twick" argument-telated addresses provided by

the calling procedure.

*Hhile it is true that some of the addcesses that can be derived from
argument specificatrions will! have been checked by the processor when
used to create the dvmamic access capabilities corresperding to cross-
domain arguments, 4: discussed earlier, not all such addresses will have
been so checked. Further, even though the capabilities cannct be alter-
ed onne created, the specifications might be changed after being cheacked,
and it is the spocifications from which the calied domzin generates
argument addresses, This matter is discussed further in Chaptur 3.
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Creation of a2 New Activation Record

One function that must be performed by a cross-domain call has not
been aiscussed yet -- creating a new activation record for the called
procedure. When a call changes the domain of execution of a process,
allocation of a new activation record for the called procedure must
take place without any possibility of interference from the calling
procedure. Therefore, the called procedure cannot depend upon any in-

formation provided by the calling procedure in order to find space for

Activation records are normally allocated in a push-down stack.

To prevent procedures executing in one domain from directly reading and

writing the activation records (or their residues) of procedures that

%%
B
§
B
E a new activation record.
é

et

execute in other domains, this push-down stack will be spread over

£t f‘*‘, "

several segments -- one for each domain of a process. Static access

Qrei,

capabilities in the various domaians are usually arranged so that the

stack segment for a particular domain can be read and written from that

A domain, but is not accessible fron other domains except those encapsu-
lating portions of the supervisor.
With this scheme, allocating a new activation record for the called

procedure involves finding the stack segment for the domair: of execution

of the called prucedure and then locating the beginning of the free area

at the end of this segment. The prucessor mares this operation easy and

E<
S
K
B

safe by leaving in a particular addressing register after each call,
cross-domain or otherwise, the twc-part address of the beginning of the

proper stack segment for the new activation record. From this address

-

l"'\‘ 2% 7,

the called procedure can easily iocate the free area at the end of this
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segment, and allocate its own activation record, without having to de-
pend on information provided by the calling procedure. This scheme
requires that there be embedded in the processor some aigorithm for gen-
erating the segment number of the proper stack segment given the name

of the domain of execution.

Summary

A processor which supports a multidomz2:in computation implemented
as a single execution point in a segmented virtual memory, and
automatically performs cross-domain calls, must recognize and enforce
two distinct kinds of capabilities -~ static access capabilities repre-
senting the encapsulation of subsystems in domains and dynamic access
capabilities representing cross-domain arguments. These two kinds of
capabilities have different dynamic properties.

All functions of an interprocedure call have protection implica-
tions whea such a call is allcwed to change the domain of executionm.

The static access capability for controiling access to entry point gates,
the various dynamic access capabtilities, and processor assistance in
creating a new activation record for the called procedure are sufficient
tools for performing these functions withcut compromising the protection
provided by either domain involved ir a cross-domain call.

In the next chapter these id2as are expanded into the design of a
processor meeting the objectives ovtlined in the first chapter. That
processor design will enable many of the ideas introduced in fairly
genecral terms here to be presented in specific forms which make their

validity and usefulness more apparent.

VBRI n iy Rab Rty VA £ WA B YT B s e e B ¥t 3 e, B

ZELTTE VR T NOIRTITY NTNvIevs

“as o [EPTR

-

PR E™1 NS,

-

N

2

-

ERTL R WAL LRV J S

.y

e ks Mo

R A T S IR I L

< Ba e . - N N e e ————

— e
AN & - oty P
g g R - o

Sl Al

,n\u\\.




RS ERSTRIASTTIN

P S 2 st

) i TR

ARG T TON, IR AR A TR

CHAETER 3

THE PROCESSOR DESIGN

This chapter describes a hardware processor that supports a multi-
domain computation implemented as a single execution point in a segmen-
ted virtual memory and that automatically performs cross-domain calls,
This processor provides a specific context in which to explore some of
the detailed implications of the objectives presented in Chapter 1 and
in which to expand the ideas that were introduced in Chapter 2.

The processor described here is a paper machine. No realization
of this design exists. It is claimed, however, that the processor
described here could be built economically using today's hardware tech-
nology and that, if built, it would provide a practical hardware base
for a computer utility. This claim is based on the facts that a pro-

cessor with similar overall architecture but less sophisticated protec-

tion mechanisms is currently being built by Honeywell Information

oyl hsnn. ¢

Systems, Inc. to serve as the primary component of a new hardware base
for Multics [25] and that the new protection mechanisms described here

add little to the overall complexity of that machine.

In the case of meny of the component mechanisms in this processor,
the specific implementation described represents a choice among several

alternative implementations that all meet the basic fuuctional require-

ments of the component., An important criterjon in making such choices

was the functional clarity of the various alternatives. In each case

the implementation chosen is intended to expose the intrinsic problems

56
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that are solved by a component of the protection mechanisms while at

the same time illustrating thatc a practical, general implementation of
that component is possible. For example, the method used to implement
static access capabilities places a fairly small fixed upper limit on

the number of domains that can be associated with a single process at

any one time. This implementation is easy to understand and quite
economic if a small number of fairly large domains are usually associated
with a process. An alternative implementation that aliows an essentially
unlimited number of domains to be associated with a process was rejected
because it introduced complexity that obscured the intrinsic problems
being solved by this component of the protection mechanisms in the
processor. The specific design presented here, then, should be consid-
ered as one example of how to organize a processor to meet the stated
objectives. After understanding how this processor works, the inven-
tive reader should be able to devise a large number of variations on

this design which embody the same basic techniques but which may meet
better the specific external constraints associated with a particular

application of such a machine,

The Virtual Memory and Static Access Capabilities

As in Multics, the implementation of the segmented virtual memory
is based on a descriptor segment that is stored in memory. Figure 3-1
illustrates the format of a descriptor segment entry (DSE). If the
validity bit (DSE.V) is on. then a DSE contains the absolute address of
the beginning of a segment in memory {DSF.ADDRESS) and the length of

of that segment (DSE.LENGTH). The descriptor segment base register (DSBR)

orvos mara

NN S e AR F Bl 1 A ey

[P

L N PPN RN PR U

° Awak Ar

-,

P




Descriptor Segment base register

DSBR |ADDRESS | LENGTH

Domain of execution register
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Figure 3-1: The descriptor segment and related registers.
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of the processor contains the base address (DSBR.ADDRESS) and length
(DSBR.LENGTH) of the descriptor segment, allowing the address transla-
tion logic of the processor to reference DSE's by absolute address.
ALutomatic translation of a two-part address inlLo the corresponding
absolute address, dcae by using the segment number as an index with
which to retrieve the appropriate DSE*, happens each time that the
virtual memory is referenced, i.e., each time an instruction, indirect
address, or instruction operand is referenced by the executing program.
If each process is to have its own virtual memory, as in Multics, then
each process has its own descriptor segment. If several processes are
to share a single virtual memory, then those processes have a common
descriptor segment.

As implied by this description, it is assumed that the storage
space for each segment is contiguously allocated in a one-~level memory
system with enough capacity to hold all segments of interest. With most
real implementations of segmented virtual memories, storage for segments
is provided by a multilevel memory system using block allocation and
paging. If used, block allecaticon and paging wust be takem into account
by the address translation logic of the processor. When properly imple-
mented, however, these storage management techniques are functicnally
transparent from the point of view of protection mechanisms. The assump-
tion of a one-level memory system and contiguous allocation of space for

segments allows problems of storage management to be ignored.

e

Including in the processor a small, fast associative memory for the
most recently used DSE's can eliminate most of the memory references for
DSE's {24]}.
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As indicated in Chapter 2, the static access capabilities included
in the domains associated with a process can be represented as mode
arrays, one per domain. Mode arrays are indexed by segment number, as
is the Jescriptor segment. This suggests the straightforward implemen-
tation for static access capabilities of combining the mode arrays of a
process with the descriptor segment. The DSE format in Figure 3-1
illustrates this implementation. Each DSE contains a set of read, write,
axecute, and gate permission flags for each domain that can be supported
by the processor. The domain of execution register (DR) records the
number of the current domain of execution of the process. The value in
DR is used to select the proper set of permission flags with which to
validate virtual memory references.

The DSE for a segment is an ideal place in which to record the
static access capabilities controlling references to that segment.

Since the processor must examine the DSE for a segment each time that
segment is referenced anyway, little effort is added to validate an
attempted access against static access capabilities recorded there.*
With this implementation of static access capabilities, changes in the
static access of a domain can be made immediately effective, since
access is validated each time a reference is made.

A key engineering decision is the number of domains that will be
supported automatically by the processor. The size of a DSE increases

as the number of domains to be supported increases. Based on experience

ot

1f an associative memory for DSE's is used, the static access capa-
bilities for a segment will automatically be in the associative memory
whenever the corresponding DSE is there.
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with Multics, the number chosen here is eight. Thus, there are 32 per-
mission flags in each DSE. This choice is based upon the ~ssumption that
domains normally encapsulate relatively large subsystems and, therefore,
that a few domains per process is sufficicnt.*

Whenever DR contains the value n. the Eth set of flags in the DSE's
control access to the virtual memory of the process. An attempt to read
or write segment number s will be allowed only if DSEs.Rn or DSEs.Wn is
set on, respectively. An attempt to transfer control to location (g,d)
has three possible results. 1If both DSEs.En and DSEs.Gn are off, then
the transfer is not ellowed. 1If DSEs.En is on, then the transfer is
allowed and execution continues in the same domain. If DSEs.Gn is on,
then t» segment contains gates into another domain. The displacements
of th ate locations are recorded in DSE.GATES, and the name of the
dcmay, 3 recorded in DSE.DOMAIN. For ease of representation, all gate
locat. in a segment are collected together at the beginning of the
segment ".GATES indicates the number of such gate locations.‘ Thus,
d < DSES.GATES guarantees that the transfer is to a gate location. If
this check is true, then DR is changed to the value recorded in
DSES.DOMAIN, thus changing the domain of execution of the process, and

the transfer is allowed. Having both DSEs.En and DSEs.Gn set on is not

meaningful.

7"An alternative implementation of static access capabilities is to place
the mode «rray for each domain in a separate segment. This implementa-
tion removes the small fixed upper limit on the number of domains that
may be associated with a process at any one time, but complicates the
naming of domains, the representation of gates, and the structure of

the associative memory for DSE's.
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By hardware and software convention, domain 0 is always used to
encapsulate the most privileged portion of the supervisor. Instructions
desigznated as privileged will be executed by the processor only in
domain O, The instruction to load DSBR is an example of an instruction
that must be privileged in order to maintain the integrity of the pro-~
tection mechanisms in the system. The seven remaining domain numbers
available to a process are managed by the supervisor in much the same way
that the larger number of available segment numbers are managed. When a
program executing as part of a process first wants to reference some
segment stored on-~line, the segment is assigned an available segment
number in the virtual memory of the process by the supervisor. Likewise,
when a program first wishes to associate with the process some protected
subsystem whose de€inition is stored on-line, that protected subsystem
is assigned an available domain number by the supervisor. Thus, while
the maximum number of protected subsystems may be associated with a
process at one time is eight, the particular eight can change with time,
and different sets of eight or fewer protected subsystems can be asso-

ciated with processes that have different virtual memories.

Generating Virtual Memory Addresses

In order to understand the discussion to be presented in the follow-
ing sections of this chapter, i+ is necessary to know something about the
geaneration of two-part addresses by machine language programs. For ease
of description, the processor presented here is primarily a word
addressed machine. Thus, the displacement portion of a iwo-part address

is a word number, where a word is enough bits to hold an indirect
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PR

address or an instruction, and the implied length of most references is

+ Y

one word., The ideas presented here, however, can also be applied easily

g 4 A

to a byte or bit addressed machine. The ultimate precision of referenc-
ing memory by arbitrary bit number and arbitrary bit length can be very

useful in controlling access to cross-domain arguments that are not word 3 K

aligned, and will be considered in that respect later. é

FTToTery)

A two-part address together with a protection tag is called a
pointer. The tag portion of a pointer is a one bit flag* that indicates
whether the static access capabilities or the dynamic access capabilities .
of the domain of execution should be used to validate references through
the pointer. The tag will be considered in more detail in a moment. !
Figure 3-2 presents the registers and storage formats relevant to manip-
ulating pointers. The imstruction pointer register (IPR) specifies the

{wo-part address of the instruction being executed. Since instruction

3 retrieval is always validated relative to the static access capabilities

AWt v s

of the domain of execution, the pointer in IPR does not include a tag.
Arbitrary pointers may be kept im the pointer registers (PR1, PR2, ...)
or stored in memory as indirect addresses (IND). Because segment

numbers cannot be krown when a procedure segment is compiled and because

care

mest procedure segments will be p' -e, instructions {INST) specifiy

cperand addresses by giving an offset (INST.OFFSET) relative co ifR or

one of the PR's. INST.PRNUM = 0 indicates IPR-relative addressing and

INST.PRNUM > 0 indicates PR-relative addressing. In the latter case

Chvebn v YERuTd

* cqs .
The one bit tag is a simplification used now to facilitate the descrip-
tion of the processor. The multibit tag actually required will be intro-

duced later.
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Instruction pointer register

IPR f: SEGNG WORDNO

Pointer registers

JacacRss L

PR! TAG SEGNO WORDNO

PR2

o

5

Indirect address (stored in memory)

IND TAG SEGNO WORDNO

s
. - . et
PTG WU ITSYR X RO L RTRREITT [TRETT I ANPRNLY RN SPIRPIAREATE DT PR SERWII S i P\ PV s L | t‘

Instruction (stored in memory)

INST PRNUM OFFSET OPCODE I

Temporary pointer register

TPR TAG SEGNO WORDNO

RS

B re e v eddatin , hida

Figure 3-2: Register and storage formats for address formation.
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the value of the field indicates which PR. Indirect addressing may be

specified by setting the indirect flag (INST.I) on. The final item in

Figure 3-2 is the temporary pointer register (TPR). Tais is an internal 2
processor register that is not directly program accessible. 1In TPR is |
formed the two-part address. called the effective pointer, of the
operand of each instruction.

The algorithm for generating the effective pointer, given an
instructioa, is presented in Figure 3-3., Ignoring tags in pointers for

a moment, a couple of examples will make clear the operation of this

algorithm. The instruction:

PRNUM OFFSET OPCODE I

0 200 ADD | off

specifies that its operand is the word 200 beyond the instruction in

the same segment. The instruction:

e, s Ry,

1 200 ADD | off

specifies that its operand is the word 200 beyond the location specified

by the pointer in PR1. The instruction:

it

1 200 ADD | on

oy

e

causes the word 200 beyond that specified by the pointer in PRl to be

o
bif g

o rh—

retrieved from memory and interpreted as an indirect address which

T IN

specifies the two-part address of the instruction's operand. The instruc-

g tions from these three examples may be written as:

P

Sty L

ADD 1200
ADD FR11200

ADD  PR11200,%

respectively.
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C_INST.PRNUM > 0 >~
T

yes

(PR-relative addressing)

no

(IPR-relative addressing)

(2 = INST.PRNUM)
TPR.TAG ~ PRua,TAG
TPR.SEGNQO ~ PRn.SEGNO
TPR.WORDNO + PRn.WORDNO
+ INST.OFFSET

.TAG «~ off
.SEGNO - IPR.SEGNO
-WORDKNO ~ IPR.WORDNO

+ INST.OFFSET

bl
ES

T

”e

PR
PR
TTR

A

no

Y
INST.I = on >

yes

(indirect addressing)

by TPR.TAG.

Retrieve indirect address from memosy
using two-part address in TPR.
of access validation to use indicated

Type

TPR.SEGNO ~ 1nD.SFGNO

TPR.TAG ~ TPR.TAG | IND.TAG

TPR.WIRDNO ~ JTND.WORDNO

»)

y
(:Eggg:)* . TPR contains the cffective pointer

to the orerand of the instruction,

Algovithm for effective pointer generatinn.

“The symbol “[" indicates the logical OR operation.
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Obviously, for this machine really to be practical a richer collec-
tion of addressing techniques would be needed. The processor as
described does not even have inde:r vegisters! The techniques shown,

n this

pie

however, are sufficient to discuss tue profection issues raiscd
thesis and to illustrate the rules that other addressing techniques must
follow. With respect to protection mechanisms, it is straightforward to

add other more sophisticated addressing techniques to the processor.

3

wo machine instructions are representative of those used to wanip-

s

ulate pointers. The Yeffective pointer to pointer register n" i- - :ruc-
tion (EPPn) causes the effective pointer generated by the instruction,
i.e., the entire contents of TPR, to replace the contents of PRa.
“Store pointer from pointer register n" (SPPn) causes the entire contents
of PRn to be stored at the specified location in the format of an in-
direct address. As an example of how these two instructions can be used,
note that the folloring code sequence saves the pointer from PR4 and then
restores it to PR4:

SPP4 PR11367

EPP4 PR11367,%*

The role of the tags in pointers is now discussed in more de:ail.

The tag differentiates pointers related to cross-domain argumer'; from
other pointers. When the tag in a pointer is off it means that a
reference through that pointer will be validated relative to the static
access capabilities of the domain of execution. When the tag is on the
dynamjc access capabilities of the domain of execution will be used

instead.
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The processor is organized so that, as a matter of course., the tag

is on in all pointers related to cross-dcmain arguments. The key to :

R PP TNY S CENLE TR

this feature is the effective pointer generation algorithm presented in
Figure 3-3. It is the tag in TPR that determines which type of access
validation will be zpplied to each indirect address reference and each :
instruction operand reference. As can be secn from Figure 3-3, the tag :
in TPR will b2 on at the conclusion of effective pointer generation for
some instruciion if tie operand address specification in the instruction ¥
indicates a PR whose tag is on or locates i indirect address whose tag
is on or both. A reference to an indirect address, if required, will be
validaced as indicated by the value of TPR.TAG at the point in the
algorithm where the indir-ct addrass is retrieved from memory.

The technique described in the next section for transmitting argu-
ments on a call is to prepare a list of indirect addresses locating the -
various arguments and then to communicate the location of this list to
the called procedutre via a MR. In the case of a cross-domain call the
processor automatically sets the tag in this PR on. Since the called
procedure normally will derive the addresses of the arguments through
this PR using the effective pointer gzeneration algorithm just described,

all argument-related addresses will acquire a tag that is on as a matter

of course, and therefore all references to cross-domain arguments will

(@ ieye

be validated relative to the dynamic access capabilities of the called

domain as is desived. Referencing cross-domain arguments will be dis-

cussed in more detail later.
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Call and Return

The next step in describing the processor is to introduce the
implenentation of the standard interprocedure call and return. This
call and return convention provides the standard interface for separately
compiled procedures in the system so that they may be used as building
blocks in the manner discussed in Chapter 1. For this initial descrip-
tion protection issues are ignored.

According to Chapter 2, the first step of an interprocedure call is
specifying the arguments to be passed to the called procedure. Follow-
ing the custom in many programming languages, the procedure to be called
is assumed to know the number of arguments to be passed, the order in
which they wiil bpe specified, and the type and size of each.* Since
arguments are to be passed by address, the minimum information which must
be communicated to the called procedure is a list containing a pointer
to the start of each argument. To communicate this list a specific
pointer register chosen by system convention (call it PRa) is set to
point to an area of memory that is to hold the list. This area is
allocated in the activation record of the calling procedure. The area
is then filled according to the format given in Figure 3-4 with pointers
to the various arguments in the appropriate order. The pointer to the
ith argument normally is constructed using a ccde sequence such as:

EPPn "zrgument i"

SPPn  PRa!(2i+3)

*
These assumptions can be removed by providing a more elaborate argument

list than is defined here. The simple argument list presented is ade-
quate to illusirate the relevant protection issues.
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PRa [ o ]
e _,_./
——-—\
\\____/
4 ) : E
return pointer 1
activation record pointer 2 )
pointer to argument 0 3 :
4 ,
argument list << pointer to argument 1 5 ‘ 1
6 E
' y . J
z 1 . T ‘
: .
!
pointer to argument n 2n+3
: \ T 2n+s

E Figure 3-4: Format of the argument list for an interprocedure call.
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where n indicates some PR that is tempor:rily free and "argument i"
represents an operand address specification locating the ith argument.

The next two steps of a call are saving a pointer to the current
activation record and specifying the return location. The beginning of
the memory area holding the activation record in use is specified by
another pointer register chosen by system convention (call it PRs). The
return location is always one word beyo-d the instruction that transfers
control to the called procedure. The instructions:

SPPs PRat2

EPPn 13

SPPn FRatl
where n designates some unused PR, create the return block at locationms
1 and 2 of the argument list as shown in figure 3-4 by storing as in-
direct addresses the pointer from PRs and the pointer from IPR (suitably
offset).

Creating the argument list also includes storing additional argu-
ment-related information in the empty words shown in Figure 3-4. This
extra information ic used by the processor in the case of a cross-domain
call to create the proper dynamic access capabilities. The definition
of these remaining parts of the argument list is delayed until the next
section.

Once the argument list is created, the next step of the call is
actually performing the transfer of control to the called entry point.
This is done by executing the instruction:

CALL "entry point®

where "entry point" is an operand address specification that locates the
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entry point being called. In addition to transferring control, the

CALL instruction helps the called procedure create a new activation

N e £k SF AN AR v ot S Bl 3}“‘.&%}{}'*"\ P ;%g

record for itself by leaving :u 4 third pointer register chosen by

T

system convention (call it PRb) a pointer to the zeroth word of the
stack segment in which the called procedure should allocate its activa-
tion record. This stack segment has in its zeroth word a pointer to the

beginning of the unused area at the end of the stack segment. The called

. Wi

procedure creates a new activation record of £ words there by executing

|
§
3
1

the instructions:

EPPs  PRb10,*

LTV

EPPn PRs*4

£

o T

SPPn  PRb10

M X

where n designates some PR other than one of the three reserved pointer

Mttt

registers. The first instruction loads PRs with a2 pointer to the be-

u‘l‘

"

ginning of the new act . ion record. The second and chird instructions

update the pointer in the base of the stack segment to point just beyond

this new activation record.

23
§=
3

Creating a new activation record completes the steps of the call

Aeve i o omam oW

operation. While executing, the called procedure may reference words in -

I’.| TR

-

®

its activation record using operand address specifications of the form

LR

ol

"PRs*i" in instructions. It can generate in PRn the beginning address

LIRS,

.th . : .
of the i argument using the instruction:

= EPFa PRat (2i+3),*

= When it comes time to return, the called procedure must perform the

three steps of the return operation. First, its activation record must

be reicased and added to the unused area at the end of the stack segment.
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This is done with the single instruction:

SPPs PRb10
which resets the pointer in the base of the stack segment to point at
the bepinning of the released activation record. The second and third
steps of the return operation are transferring control back to the
calling procedure and restoring to use the activation record of the
calling procedure. These steps are performed in reverse order by the
following instruction sequence:

EPPs  PRat2,*

RETURN PRatl,*
The first instruction restores to PRs the activation record pointer
from the return block in the argument list. The second instruction®
transfers control to the location specified by the return pointer from
the return block. Thus, the calling procedure receives control at the
proper return point and the proper activation record is restored to use.

Note that the only PR which is restored by the return operation to

the value it contained prior to the call is PRs. It is up to the call-
ing procedure to explicitly save and restore other PR's whose contents
are valuable. Because PRs is automatically restored by the retura, the
activation record can be used by the calling procedure as a place in
which to save the values of other PR's before the call, from which

place they may be restored after the return.

*
Ignoring protection issues, the RETURN instruction simply transfers

control to the location specified as its operand. As will be seen in
the next section, however, the RETURN instruction can perform some
protection-related operations that normal transfer instructions cannot.
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Cross-Domain Call and Return

The standard interprocedure call and return just sketched are now
reconsidered in light of the requirement that they be able to change the
domain of execution of the process. The overall strategy of implement-

ing cross-domzin calls and returns is . -z~? on the following twc hard-

ware enforced restrictions

1. Only the CALL instruction may utilize a static access capability
for an entry point gate.

2. Only the RETURN instruction may utilize a dynamic access capa-
bility for a return gate.

The implications of these restrictions are that all cross-domain calls
will be performed by the CALL instruction, and that all cross-domain
returns will be performed by the KETURN instruction. (The processor is
also arranged so that no other type of instruction may change the domain
of execution of a process.) Thus, the special functions associated
with cross-domain calls and returns can be embedded in the CALL and
RETURN instructions, respectively, with the assurance that these func-
tions will be performed whenever a cross-domain call or return occurs.
If a call to location (s,d) from domain n is to be cross-domain,
then the CALL instruction detects this civcumstance by noting that
DSEs.Gn is omn rather thaan DSEg.Eg.* (The call will be allowed if
d < DSEs.GATES and the new domain of execution will be DSEs.DOMAIN.)

Detection of a cross-domain call causes the CALL instructioa to perform

*It is assumed for most of this chapter that the effective pointer gener-
ated by the CALL instruction always has a tag that is off, and thus that
validation of the call is relative to the static access capabilities of
the domain of execution. In one of the last sections of the chapter

the meaning of removing this restriction is explored.
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two extra operations that are not performed if the call does not change
tiie domain of execution. The first is cresting a new frame on the
dynamic access stack of the process and filling this frame with the
dynamic access capabilities which will allow procedures executing in the

called domain to reference the arguments of the call and transfer control

back tc the return gate. The second extra operation is to set the tag

in the argument list pointey ragister (PRa.TAG) to on so that references

to the cross-domain arguments by procedures executing in the called
domain will be validated with respect to these dynamic access capa-
bilities, rather than the static access capabilities of the called
domain. After performing these two extra steps in the case of a cross-
domain call, the CALL instruction completes in the normal manner by
loading PRb with a pointer to the base of the stack segment in which
the called procedure should allocate its new activation record, and
then transferring control to the called location. The pointer in PRb
is created the same way whether the call is cross-domann or not. The
stack segment selection rule embedded in iLhe processor is that the

*
stack segment for domain n is segment number n.  Thus, PRb.SEGNO is

*This stack segment selection rule is adequate only for the case that
each process has its own virtual memory. 1If it is desired to allow
multiple processes with the same virtual memory, i.e., more than one
execution point in a virtual memory, then a more sophisticated stack
segment selection rule is required to provide each of the processes
sharing a virtual memory its own set of stack segments. A simple way
to provide for multiple sets of stack segments in a virtual memory is
to include in the processor a register that specifies the eight con-
secutively numbered segments that are the stack segments. When a
CALIL iastruction is executed, then PRb.SEGNO is calculated by adding
the new domain number to the vaiue in this stack segment selection
register. The various processes sharing a virtual memory each would
execute with a different value in this register, and thus each would .
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s

set to th¢ number of the domain in which the called procedure will

execute, PRb.WORDNO is set to zero, and PRb.TAG is set off (the called
procedure will use static access tc reference this stack segment). The
transfer of contrel to the called procedure is done by loading IPR from
the effective pointer generated by the CALL and, if necessary, reloading
DR to change the domains of execution,

A cross-domain return is detected by noting that the tag is on in
the effective pointer generated by the RETURN instruction. Detection of
a cross-domain return causes the RETURN instruction to perform several
extra operarions that are not performed if the return does not change
the domain of execution. The return gate capability in the newest frame
on the dynamic access stack is used to verify that PRs contains the

proper activation record pointer and that the transfer is to the proper

location. If so, the RETURN instruction removes this frame from the
dynamic access stack, thus destroying the dynamic access capabilities
that allowed procedures executing in the called domain to reference the
arguments of the corresponding cross-domain call and transfer control
to the return gate. When the effective pointer generated by the RETURN
instruction is loaded into IPR to perform the transfer, DR is changed
back to the domain of execution of the calling procedure, as recorded

in the return gate capability.

have its own set of stack segments. With this change the processor is
fully able to support multiple processes sharing a single virtual

memory. Each such prccess would have its own dynamic access stack but
would use the same descriptor segment.
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Dynamic Access Capapilities

In creating a new dynamic access stack frame for a cross-domain
call, the CALL instruction uses the standard interprocedure argument
list as the specification from which to generate dynamic access capa-
bilities. The argument list defined in Figure 3-4, while it provides
enough information for the called procedure to reference the arguments,
does not provide quite enough for the processor to create the proper
dynamic access capabilities. Spaces have been left in that format, how-
ever, for the additional information required to correct this deficiency.
The complete argument list format, illustrated in Figure 3-5, uses a
double word entry to describe each argument. This entry contains the
size (in words) of the argument and flags indicating whether the argu-
ment can be read and/or written, in addition to the pointer to the
beginnirg of the argument. To inform the processor how many dynamic
access capabilities to generate, an argument list header is added that
indicates the length (in words) of the list.

To be consistent with the criterion of programming generality, the
full argument list as defined in Figure 3-5 must be generated by com-
piled code for all interprocedure calls, as it cannot be known in ad-
vance which calls will be cross-domain. Minor extensions to most
languages will be required to allow symbolic programs to specify to the
compiler which arguments of a call are input arguments and which are
output arguments so that the read and write flags im the argument list
entries can be properly set. Compilers must <iso be able to generate

code which properly sets the size information in each argument list

entry.
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return pointer 1 i
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activation record pointer] 2 4
pointer *to argument 0 3 i 3
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P
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Figure 3-5: Completed argument list format for an interprocedure call. % J
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The dynamic access stack (DAS) of a process, in which dynamic
access capabilities are created by the prncessor on a cross-domain call,
is located in memory -- presumably ir a segment that can be read and
written directly only from domain 0. The location and state of the DAS
is specified by the DAS definition register (DASDR) shown in Figure 3-6.
This register, in addition to being manipulated by the CALL and RETURN
instructions in the case of cross-domain calls and returns, can be loaded
and stored directly by privileged imstructions. DASDR.SEGNC and
DASDR.WORDNO1 specify the two-part address of the beginning of the most
recently created DAS frame. DASDR.WORDNO2 svecifies the word one beyond
the last word in this frame. If no unreturned cross-domain calls exist,
then DASDR.SEGNO and DASDR.WORDNOl will specify the beginning location
for the DAS of the process, and DASDR.WORDNO2 will equal DASDR.WORDNOL.

As can be seen by comparing Figures 3-5 and 3~é, the creation of a
new DAS frame by the CALL instruction in the case of a cross-domain call
is quite straightforward. PRa locates the argument list to be used as
the information source and (DASDR.SEGNO,DASDR.WORDNO2) is the two-part
address for the beginnirg of the new frame. While creating a new DAS
frame the processor validates all references to the argument list
relative to ti.. static access capabilities of the domain from which the
call is being made* and validates all references to the DAS relative to

the static access capabilities of domain O.

xAccording to the normal pattern of operation described earlier, an
executing procedure has static access t: ‘ts activation record and to
any argument lists it creates for interprocedure calls., To simplify
the processor description, the processor protection mechanisms are de-
signed to accomodate only this normal pattern of opera:tion. The
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Dynamic access stack definition register

Pl NS
ASDR | SEGNO | WORDNU1 | WORDNOZ

—

Dynamic access stack
(storad in memory)
/"'—-'———’.

—_—__-——~‘\\‘\\\5\‘~____/_’,,//

——
return pointer \
1 ac*+ivation reccrd pointer ]
2 DOMAIN LASTFRAME
3 pointer to argument 0 ;
: 4 R|W[~><] SOURCE | END
\ 5
{ Z 4
» Y
vointer to argument n
\\\ RiW SOURCE END )
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The first capability in the DAS frame is the return gate capability.

This contains the return pointer and the activation record pointer from

words 1 and 2 of the argument list. It also contains the number of the

domain to which the return should be made (DOMAIN), i.e., tue domain of

RO B2 11

execution at the time the call is made. The final item in this capa-
bility (LASTFRAME) is the word number of the beginning of the previous
DAS frame, as found in DASDR.WORDNOL.

Following the return gate capability in the DAS frame axe¢ .he

capabilities allowing read and write access to the various argume. .s.
fach two-word argument entry in the argument list generates a two-word

capability at the matching location in the DAS frame. The capability

gives procedures executing in the called domain access !~ the subsegment
specified by the argument eriry. The first word of the capability is a
pointer to the beginning cf che arguwent, copied from che -:zument entry.
The second word contains the read and write permission flags from the
argument entry. The END field in the second word is the word number of
the last word of the argument, derived by adding the size from the
.“gument entry co the word number ia the argument pointer and subtract-

ing one. (The ending word number is easier to interpret than the size

footncted statement in the text ab . is the firs: of several places
where this decisicn is apparent in « 2 processor design. If some pro-
cedure chooses noi Lo couform to these standards and instead creates an
activation recerd or an argument list to which it has dynamic access,

) however, the protection mechanisms will not be circumwvented. But such

3 unconvent ional behavior is not fully suppor:ed and that procedure will

' not be able to make cross-domain calls. While it is hard to imagine
the circumstances under which a procedure would find creating a dynam-
ically accessible activation record or argument list to be useful, the

processor could be extended to fuily suppori such.
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when matching references to the dynamic access capabilities.)

The meaning of the SQURCE field in the second word of the capability
is a little harder to explain. Recall from Chapter 2 that dynamic access
capabilities must be constrained to give no more access than is :vail-
able in the calling domain. In order to enforce this consiraint, before
making the corresponding dynamic access capability tue processor must
verify that the argument specified by an argument entry is in fact
sccessible from the calling domain in the manner indicated. There are
twa ways for the calling procedure to have access to the argument:
access can be allowed by virtue of a static access capability in the
calling domain or by virtue of a dynamic access capability in the cailing
domain. The tag portion of the pointer to the beginning of the argument
in the argument entry specifies the opinion of the calling procedure as
to which is the case. When the tag is on, specifying dynamic access,
the calling orocedure is indicating its intention of passing-on all or
part of an argument from the earlier cross-domain call that began
execution in the calling domain. When the tag is off, specifying static
access, the calling procedure is indicating that the argument originates
in the calling domain.

1f the argument pointer tag is off, then the calling domain is the
source of the argument and the processor must verify that the subsegment
specified in tte argument entrxy is accessible tc the calling domainm by
virtue of its static access capabilities. The obvious way to oerform
this verification is to reference ihe DSE for the containing segment and
check that the appropriate read and/or write permission flags are or.

1f the check succeeds the dynamic access capabilily can be crealed.
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With this method the fact that the dynamic access capability exists is N
proof that the calling domain includes t'e required static access
capability. A very important disadvanta,e of this method is that it :

dat

makes it hard to change (or revoke) the st : :cess from various
domains of a process to a segment. Not only do permission bits in the
corresponding DSE need co be changed (which is easy to do), tut all
dynamic access capabilities in the DAS giving access to pieces of the
segment must be found and changed (which is hard to do). To get around
this problem, no check of static access is mace when the dynamic access
capability is created. Instead, the number of the cailing domain is
simply reccrded in the SOURCE field of the dynamic access capability as

the source of the capability. The static access of the calling domain

will be verified each time the dynamic access capability is used to
validate a reference from the called domain. In other words, if a parti-
cular reference by a procedure executing in the called domain appears to
be allowed because it matches the dynamic access capability, then the
reference is also checked against the static access capabilities in the
domain incd‘cated by the SOURCE field. As a —esult. the dynamic access
capability can give no more access than is svailabie from the static
access capacvilities in the calling domain.

T§ the mxgument pointer tag is on, then the calling domain is not
the source of the argument, The calling ure i
part of an argument from the earlier ctoss-domain call that began
execution in the calling domain and the actual source cf the argument

is sumewhere back along the chrin of unreturned cross-domain calls in .

the process. In this case the processor must verify that the subsegment
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specified in the argument entry is accessible to the calling domain by
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virtue of its dynamic access capabilities. These are the capabilities
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in the DAS frame just above the new frame being created. This previous

£

A

frame is searched for a capability allowing the subsegment tc be read :

and/or written, as required, and if one is found then the capability 3

E for the argument in the new DAS frame can be created. The SOURCE field g
% in the new capability is set with the value from the SOURCE field in the é
% matching capability from the previous DAS frame. As a result, when an §
% argument (or successively smaller pieces of an argument) is cascaded %
g through a chain of cross-~domain calls, the identity of the source :
rd

% domain is propagated to the corresponding capability in each consecutive %
g DAS frame. é
§ In summary then, the SOQURCE field in a dynamic access capability g
g indicates the domain at the head of the chain of cross-domain calls é
g down which permis: - : to reference the corresponding subsegment has

é been passed. The existence of a dynamic access capability in the DAS

4

€ guok Rerus

frame for some particular cross-domain call is proof that permission to

AL Tains

read and/or write the specified subsegment was passed along by ezch

cross-domain call in the chain from the specified source domain to the

T

called domain. Any time a dynamic access capability is actually used to

validate a reference, the reference is also checked against the static
access capabilities in ithe snurce domain for that capability.

Looking back for a moment at the rzrurn gate capability, it is now
apparent that the DOMAIN field in this capability can be interpreted as
indicating its source domain (which is alwavs the caliling domain) as

well as the domain to which the return is to be made. It follows that,
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on a cross-domain return, after verifying that PRs contains the activa-
tion record pointer recorded in the return gate cepability and that the
return is to the return location recorded in the return gate capability,
a check must be made to assure that the rerurn point is in a segment
which by static access capability is executable in the calling domain.

After creating dynamic access capabilities for all the arguments,

a final capability is created in the new DAS frame giving read access

to the subsegment containing the argument list itself. (The called
procedure needs to be able to read the argument list to find the argu-
ments.) The pointer in this capability comes from PRa and the END field
value is calculated from the argument list hesder. The source domain of
this capability is the calling domain.

Creation of the new DAS frame is compicted by updating DASDR to
locate the new frame, i.e., DASDR.WORDNQO1 is set from DASDR.WORDNO2 and
then DASDR.WORDNO2 is set to indicate the word one past the end of the
new frame.

Destroying the DAS frame on & cross~domain return is done by
set.ting DASDR.WOPONO2 from DASDR.WORDNO1l, and setting I ASDR.WORDNO1
from the LASTFRAME field of the return gate capability in the destroyed
frame.

Before leaving this discussion of dynamic access capabilities, the
algorithm used to match a reference against the dynamic access capa-
hilities of a domain ne-ds to be stated more preciselv. Assume a read
reference to location (s.d) is to be validated with respect to the
dynamic arcess capabilities of the domain ot execution. The matching

algorithm is to perform a linear search oi the most recent DAS frame,

o
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i.e., the frame located by DASDR, starting with word 3, looking for a
capability that meets all of the following conditions:

1. read permission flag in the capability is on,

2. segment number from the pointer in the capability is s,

3. word number from the pointer in the capability is less than or
equal to d,

4. END field in carability is greater than or equal to d.
The first capability that matches stops the search. The reference is
allowed only if it also passes the check against the static access
capabilities of the indicated source domain. If no match occurs, or the
static access check fails, then the reference is not allowed. A write
reference is handled in the analogous way. The linear search required
can be eliminated in the case of muitiple references to the same argu-
ment by the addition to the processor of a small, fast associative
memory for the most recently used dynamic access capabilities. Such

an associative memory will be described in more detail later.

Propagation of Tags

When a cross-domain call occurs the tag in PRa is set on. The
purpose of this action is to cause all pointcrs generated in the called
domain that are related to cross-doma2in arguments to have tags that are
on. Then references through thesc pointers will be validated relative
to the dynamic access capabilities added tc the called domain by the
cross-domain cail, and not relative to the static access capabilities of

the called domain. The propagation of the tag from PRa to other pointers

related to cross-domain arguments is caused by the effective pointer

PRYFIUFIPVE SR ‘*3"'”'535%1#‘ o
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generation algorithm presented earlier. This algorithm guarantees that
any pointer generated from a pointer whose tag is on will also have its
tag on. 1If applied properly by procedures executing in the called
domain, the algorithm guarantees that all pointers generated from PRa,
and pointers generated from these pointers, etc., will have their tags
set on,
| An example will illuctrate the method of tag propagation. Imagine
that a subsegment containing a threaded list of variable-sized blocks
is passed as argument O on s cross-domain call. The argument entry
and the corresponding dynamic access capability will contain a pointer
to the beginning of this subsegment and specify its length. Fach block
in the subsegment contains ir. word 1 the size of the block and in word 0
a pointer to the next block in the threaded list. The first block on
the list is known to begin at word O of the subsegm¢ t. (It is quite
possible to define and manipulate a data structure like this in PL/I
using based structures.) This data structure originated in the calling
domain, and therefore the pcinter in the argument entry as well as all
the list pointers in the data structure itself have tags that are off,
When the cross-domain call occurs a dynamic access capability t-~ read
and write the subsegment is created and the tag in PRa is set on.

Now consider the machine language implementation of some operations

the called procedure might perform on this argument. Execution of the

following instruction sequence by the called procedure will generate

in PRn a pointer to the 100th block in the list:
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EPPn PRat3,*

(99 times) <:EE§E PRntO, *
h

At the conclusion of this sequence the pointer in PRn to the 100°

TEEARNOATR LY

block will have its tag set on, even though all pointers in the 99 list

blocks encountered had their tags set off. The tag from PRa is propa-

ik
eresndds Auternarie roye, $ERantieEas SN ks -.ma-\-.»u.u\kbm i b Nt ARz

gated all through the instruction sequence in PRn. (Refer to the effc
tive pointer generation algorithm in Figure 3-3 to see that this really
works.) All during the instruction sequence the references to the point-

ers in the blocks as indirect addresses will be validated with respect

ot bt s ke v taab s Lottt e ot e,

RPN E ST SIS IR

to the dynamic access capabilities of the called domain, and specifi-

cally will match the capability giving access to the whole subsegment

(VLT | PRI

that is argument 0.

IR A

Now imagine that the called procedure, after laboriously ge: - ting

BT DT SOTIN § M NN R

; this pointer to the 100th block in the list, wants to save it in a :

temporary storage location in the current activation recoxrd. The

instruction:

SPPn PRsttemp

does the trick. Note that this write reference to a word of the activa- ; :
|

tion record will be validaied with respect to the static access capa- ]

bilities of the called domain, since the tag in PRs is off. However,

the stored pointer will have its tag on. Later, the tracing of the list

i

from the 100tn block to the 150t] block can be continued with the

instruction sequern.e: N
EPPn PRsftemp,* Z d

(50 times) EPPn PRnt0,*

The resulting pointer in PRn will still have its tag on.
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There is a way to break the chain of propagation of the tag from

PRa. If the called procedure now transfers the list pointer contained
. th

in the 150 block to another temporary storage location in the activa-
tion record using the code sequence:

LOAL  PRat0

TG IAN T b A AN A 2 PR R SN

STORE  PRsttemp2
then the tag in the stored pointer will be off. The propagation of the
tag from PRa is broken because LOAD/STORE generates a direct copy of the
pointer from the 150th block whose tag is also off. The alternative
sequence:

EPPn PRn'0,*

SPPn PRsttemp2

results in a stored pointer whose tag is on. When copying a pointer,

EPPn/SPPn aust be used rather than LOAD/STORE to make sure the relation
of a pointer to a cross-domain argument is not lost. By violating this
rule, however, a procedure can compromise only the integrity of its

own domain. It cannot gain unauthorized access to information. Only
self-protection is at stake.

Now imagine that the called procedure wishes to load into the
accumulator the size from word 1 of the 100th block, the block whose
address was stored earlier at "PRsttemp'. The instruction sequence:

EPPn PRsttemp,*
LOAD  PRmntl
h

does the trick, and validates the read reference ‘ord 1 of the 100"

block with respect tc the dynamic access capabilities of the domain,

since the tag in PRn will be on.
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As the final example, imagine that the called procedure in turn
generates another cross-domain call and passes as the zeroth argument
this 100th block from the list. After saving the currenc value of PRa
somewhere in its activation record, allocating space for the required
new argument list, and resetting PRa to point at this new argument list
area, the argument pointer in the zeroth argument entry would be created
with;

EPPn PRsttemp, *

SPPn  PRat3
Note that this argume::+ jointer will have its tag set on, correctly
indicating to the processor when it constructs the required new DAS
frame that the argument comes from a previous cross-domain call.

This is a good place to reemphasize why it is important that pro-
cedures executing in some domain be able to iden:tify those pointers
that are related to incoming cross-domain arguments and validate all
references through such pointers against the dynamic access capabilities
currently in the domain, rather than against the static access capa-
bilities of the domain. As indicated in Chapter 2, the essential reason
is that all pointers related to cross-domain argumencts are derived trom
pointers provided by the calling domain. The pointers in PRa, in argu-
ment list entries, and in arguments themselves, e.g., as in the 7 nked
list example given above, are all arbitrary bit patterns set by pro-
cedures executing in the calling domain or some other domain further
back along the chain of unreturned cross-domain calls for the process.
When the cross-domain call occurred, the processor constructed the

dynamic access capabiiities in such a way that they are guaranteed to
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[SEOR

pass-cn to the called domain no more access than is dynamically or
statically available from the calling domain. The processor even
arranged things in such a way that if the static access capability which

is the original source of permission in a dynamic access capability - |

changes, then the change immediately propagates to the dynamic access
capability, The processor, however, did not and could not check all of
the pointers that can be generated starting with the pointer in PRa.
There is no guarantee that, say, in the linked list example given above,

the list pointer in the 99th block will not by malice or error point at

a critical data base in the called domain that is not accessible from
the calling domain, rather thar point at the 100th block in the subseg-
ment that is the cross-domain argument. When the called procedure makes

=]

L ]

bl

ey
i

a write reference via this peinter, it J:¢es so with the intention of .
writing something in the 100th block of the argument. 1If the pointer i
locates a portion of the critical data base, then the called procedure

wants the write reference to fail. The propagation of the tag that is

on from PRa guarantees that the write will fail, for this tag causes

validation relative to the dynamic access capabilities created by the

cross-domain call, and these capabilities will not provide write access

to the critical data base. Without the propagated tag the write would

succeed, for the static access capabilities of the called domain do

[N

allow write access to the critical data base.

Recall that a tag that is on in the effective pointer generated by
a RETURN instruction is what triggers a cross-domain return. This tag
propagates from the tag in PRa in the same way thsui the tags in argu- .

ment-related pointers are propagated from the tag in PRa. To see this,
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consider the last two instructions of the standard return sequence again:
EPPs PRat2,*
RETURN PRatl,=*

It is clear that if the tag in PRa is on, as it would be when the
corresponding call is cross-domain, then the effective pointers generated
by both instructions will have tags tnat are on. In the case of the
RETURN instruction this propagated tag triggers the cross-domain return.
In the case of the EPPs instruction it generates an interesting problem.
The purpose of the EPPs instruction is to restore to PRs the activation
record pointer of the calling procedure. This pointer, as it was re-
corded by the calling procedure in the return block of the argument list,
had its tag set off. (An executing procedure always has static access
to its activation record.) Yet tka EPPs instructior restores this
activation record pointer to PRs with its tag set on. To correct this
problem, part of the special action of the RETURN instruction on a cross-
domain return is to set the tag in PRs vff. Thus, when the calling
procedure receives control following the cross-domain return, PRs
properly contains the same activation record pointer it had before the
cross-~domain call occurred, even though the EPPs instruction restored
the tag incorrectly.

The problem encountered here in restoring PRs on a cross-domain
return foreshadows a general problem which will be considered later.
On a cross-domain call, whenever the called procedure generates a
pointer to be used by the calling procedure after the return occurs, care
must be taken to set the tag properly for use by the calling procedure.

For stored pointers a simple addition to the SPPn instruction, the
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instruction used to create stored nointers, can detect these cases
and automatically genevate the cor:ec% tag. This algorithm will be

presented in detail later in the chapter. The case of a pointer being

BN AW A A M ki B N 1A . St U ks A% T A St LR R A SO

communicated through a PR, however, cannot be detected by a similar

4

e

algorithm added to the EPPn instruction. The only instance of this

’?’

second case, however, is the communication of an activation record

LRRUITONY SV

pointer in PRs. A. 3een in the previous paragraph, the tag in PRs can

'y

be adjusted easily when the cross-domain return occurs. :

Multibit Tags
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Exploring a little further ‘the example of the argument that is a
subsegment containi-z a linked list points out a fi.w in the processor

design as described so far. Consider the case of a cross-domain call

I IS TP T T R LA T L

from, say, domain 7 to domain 2 followed by a cross-domain call from
domain 2 to domain 4, as illustrated in Figure 3-7. The subsegment
containing the linked list is passed as a read/write argument on the

first cross-domain call. The pointer in the 99th block of the list :

Bap by,

maliciously has been set by procedures executing in domain 7 to point

at ety

at some data base in domain 2, a data base not accessible from domain 7.

o

As seen above, procedures executing in domain 2 cannot be tricked by this

R T

bad pointer because the tag propagated from PRz will cause attempted

PRI

read and write references through this bad pointer to fail. Suppose

I

that instead of directly referencing this argument provided by domain 7,

however, the called pcocedure in turn passes the subsegment as a

Wmmz mmmmmmmmmmmmmmmnmmmmmmmﬂmmm&n

read/write argument of Lue cross-du.ain call from domain 2 to domain 4.

o

Another read/write argument of this second call happens to b: that data
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Two consecutive cross-domain calls with one argument
cascaded through both.
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base pointed at by the bad address in the 99th block of the linked list

in the first argument.
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Now consider the procedure called by this second cross-domain call.

Executing in domain 4, it locates the 99th block ir the linkeéd list in

s o

the manner dascribed earlier and then uses the contained pointer to make

. . < . s ; th
a write reference with the intention of writing in the 100 lock.
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Because of the bad pointer, however, the write is actually to the data
base that happens to be the other cross-domain argument provided from

domain 2. Of course, the tag of the pointer used to make this reference

BTN N (DY AT PN TITINY

will be on as before, and the reference will be validated with respect

to the dynamic access capabilities associated with the second cross-

st

domain call. In this case the reference will succeed because it is

LTI FRY 1

to a valid writable cross-domain argument of that call and thus a

matching dynamic access capability will be found.

s AL VO e

What really has nappened here? In a sense, the procedure executing
in domain 4 has not done anything wrong. It has permission to write

in the data base argument in which it wrote. But this procedure did

1 ras

make a mistake, writing into domain 2's data base the data it was in-
. . th _ . : e s
tending to put in the 100~ block of the linked list in the other arzu-

ment. The important thing about this mistake is that it was caused by

o ems #ei e aur

procedures executing in a third domain. The problem illustrated by this
example is particularly insidious in cases where the domain that receives
the second cross-domain call encapsulates part of the supervisor and

thus is trusted by the domain that made the second call. In this cir-

cumstance the procedure that made the second cross-dowain call has no

reason to check after the return has occurred that the trusted supervisor
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has written reasonable values into the output arguments znd thevefore

may not notice the mistake before it leads to a disastrous error. It

BN P T AETE TR

M

is possible to construct many examples like this involving two or more

cross-domain calls. :

An analysis of why in the example given a procedure executing in
domain 7 could cause a procedure executing in domain 4 to incorrectly
alter data encapsulated in domain 2 reveals the general flaw in the
protection mechanisms of the processor as presented so far. The reason
the problem occurred is that a reference through a pointer generated s
from a cross-domain argument whose source was domain 7 was allowed be-

cause it matched a dynamic access capability whose source was domain 2.

To prevent the general class of problem represented by this example from }

occurring, the processor must be altered so that a reference through a

§ it x

L sasn

pointer gencrated from a cross-domain argument whose source is domain
n will be allowed only if it matches a dynamic access capability whose

source is domain n. This change requires expanding the tag portion of

pointers to specify the source domain of the cross-domain argument from . .
which the pointer was derived, if in fact the pointer was derived from
|
a cross-domain argument.
The obvious value to record in a tag indicating dynamic access is
£ the number of the scurce domain asscciated with a poiuter. This number
is thco watched to the SOURCE field in dynamic access capabilities.

There are two probplems with this approach. First, when generating an

effective pointer using the expanded tag. the processor must be able to

determine ..ch of two tag values indicating dynamic access ccrresponds

to a cross-domain call that is further back in the chain of unreturned

Lk L
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cross-domain calls for the process. it is hard to make this determina-
tion quickly from domain numbers alone. The second problem is more im-
portant. To be consistent with programming generality it must be
possible for the chain of unreturned cross-domain calls ir a process to
include recursive invocaticns of domains. When recursive invocations of
domains occur the domain number by itself does not specify which invoca-

tion of a particular domain originally passed the argument from which a

ST SRS P A S P N R AR LS - WD DY N 87 e vt i NI WA ) b AR

pointer was derived, and this distinction can be important. When the

o o

possibility of recursive invocations of domains is considered, it becomes

o LU B AL peirbirs s a1 B LB R e S0l B b L 4 (NN et b3 bl 20 whﬁ.&mﬁ#ﬁtﬁ“

apparent that the source of a cross-domain argument or a dynamic access
capability is not just a domain but a domain invocation. What needs to
be recorded in dynamic access tags and in dynamic access capabilities is

the identity of a domain invocation, not just the number of a domain.

N R R e R A SRR uT .

The dynamic access stack (DAS) of a process provides a convenient
numbering for the domain invocations that exist at any given time. Each
time a cross-domain call occurs a new DAS frame is created. The number

of the frame can be used as an identifier for the domain invocation from

cd v s o] gNvere 8

which the cross-domain call came that generated the frame. It is these

domain invocation numbers that are recorded in dynamic access capabilities

oY)

and in tags specifying dynamic access. If the first DAS frame is given

APl S

the number one, then the number zero can never identify a domain invoca-
tion. Thus, the tag value zero c¢an be used to specify that reference

through a pointer be validated with respect to static access capabilities.

cxesanLrry Lt

A non-zero tag specifies validation with respect to dynamic access capa-

vilities and the non-zero value identifies the source domain invocation.

Certain aspects of the processor are now redescribed to incorporate

. A‘yl\Ll’LL'\J‘['X Lad. sdatemat a2 e)?
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the expanded tag into the design. The length chosen for the tag field
determines the maximum number of unreturned cross-domain calls that can

exist in a process. A five bit tag, fixing this maximum at 31, is con-

BRNRRETRR (R T

sistent with the choice of eight as the number of domains per process
that the processor will support. To provide an easy means for generating
DAS frame numbers and domain invocation numbers, a cross-domain call
count field is added to th. DAS definition register (DASDR.XDCC) as illus-

trated in Figure 3-8. If no unreturned cross-domain calls exist, and

thus no DAS frame exist, then DASDR.XDCC = 0. Each time a cross-domain

call occurs and a new DAS frame is created DASDR.XDCC is incremented by

one. (DASDR.XDCC is not allowed to overflow.) A cross-domain return
causes it to be decremented by one. At any given time, then, DASDR.XDCC
contains the number of the most recent DAS frame. This value is also the
number of the domain invocation from which the cross-domain call came that
started execution in the current domain of execution. In the state shown
in Figure 3-8, for example, three unreturned cross-domain calls exist.

It is clear that at any given time only tag values less than or equal to
DASDR.XDCC mean anything.

The modified effective pointer generation algorithm is showm in
Figure 3-9. It looas fairly complex but has a simple effect. If only
tags of zero are encountered during effective pointer generation, then
the final effective pointer has a tag of zero, indicating that the refer-

N ence through the pointer will be validated relative to the static access

" capabilities of the domain of execution. 1If oniy one non-zero tag is
= cncountored (in the indicated PR or indivect address), thea assuming the

value of this tag is meaningful, i.e., < DASDR.XDCC, the final effective

Cdahy /o o A A e o e S 8
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Dynamic access stack
(DAS)

LI

frame for
cross-domain call

[

number 1

TS

number 2

g

.
. % SEGNO WORDNO1  WORDNO2 Xrce
|

E

:

|

frame for
cross-domain call
number 3

frame for
cross-domain call
—_—

place to start = |
frame for :
cross-domain call . 7
number 4

Figure 3-8: Dynamic access stack containing frames for three
unreturned cross-domaii calls.
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C_INST.PRNUM > 0 )= no
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P —

yes
(PR-relative addressing)

|
(n = INST.PRNUM)

{Prn.TAC < r}msnn.xncg)—— no—y

yes ERROR

TPR.TAG ~ PRn.TAG
TPR.SEGNO + PRn.SEGNO
TPR.WORDNO - PRn.WORDNO

4+ INST.OFFSET

(IPR-relative addressing)

T e e e TR S A T R A I N e e i

TPR.TAG ~ 0
TPR.SEGNO «~ IPR.SEGNO
TPR.WORLCNO +~ IPR.WORDNO

+ INST.OFFSET]

INST.I = — no

yes
(indirect addressing)

Ketrieve indirect address from memory
using two-part address in TPR. Type
of access validation to use indicated
by TPR.TAG.

( IND.TAG =0 )—no

ves

yes ( TPR.TAG = 0 )—no——1

ZIND.TAG < TPR.TAG )—uo}

,‘,es ERROR

Po—{mn.'mc < DASDR.XDCC »

]
ERROR yes
|TPR.TAG «— IND.TAG }
|
y
TPR. SEGNO + IND. SEGNO
TPR. HORDNO « IND.WORDNO

Le

@_/TPR contains the effective pointer

to the operand of the instruction

Figure 3-9: Modified algorithm for effective pointer generation with a
multibit tag.
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pointer has the same non-zero tag value, indicating that the reference
through the pointer will be v..lidated relative to the dynamic access
capabilities currently in the domain of execution. The non-zero tag
value is the source domain invocation number to be used in finding a
matching dynamic access capability. The interesting case is when both
PR-relative and indirect addressing are indicated, and both the PR and
the indirect address have non-zero tags. Assuming no error is generated
because the PR tag is greater than DASDR.XDCC, the indirect address tag
is checked to make certain it is smaller than the PR tag, and if it is
then the indirect address tag provides the value for the tag in the final
effective pointer. That the indirect address tag he smaller than the PR
tag is important. A non-zero PR tag with a value t indicates that the
indirect address located by the PR is in the argument list or is in an
argument of the £th unreturned cross-domain call. From the vantage point
of dowmain invocation t (the domain invocation from which the EFh Ccross-
domain call came), only tag values less than t mean anything. When the
argument list was created, t-1 was the number of the most recent DAS frame.
In that circumstance a pointer with a tag value greater than or equal to
t would not mean anything. Further, if the effective pointer generation
algorithm accepted a tag value strictly greater than t from the indirect
address located by the PR, then one aspect of the previously described
flaw would remain uncorrected. The effective pointer formed using infor-
mation provided by demain invocation t would specif:” in its tag a domain
invocation number greater than t.

Propagation of the new expanded tag is by essentially the same means

used for the one bit tag. When a cross-domain call occurs the processorx
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sets the tag in PRa with the incremented value of DASDR.XDCC. This is
the number of the domain invocation from which the cross-domain call comes.

f.- example, if a cross-domain call occurred when the DAS were in the state

illustrated by Figure 3-8, then PRa.TAG would be set to four. Correct use

of ti- effective pointer generation aigorithm by procedures executing in

27| RS

the called domz’n guarantees propagation of this tag (and smaller non-zero

tags 1f encountered) to all pointers derived from cross-domain arguments.

a1 V3 s L
by

The purpose of the expanded tags, of course, is to provide an addi-

‘.onal paramete- to use when matching a reference to the dynamic access

RPN 2 ST AYI | WIS TNUIIWLY SIOTROTIRIPATI 1 174 1135 SIS LSt R ST 3 IRt et o RS 20

capabilities currently in the domain of execution. Figure 3-10 presents

v linsy A PR, mm"\‘

the detailed format of a dynamic access capability giving read and/or

write access to a subsegment. The TAG field in the first word is used to

record the number of the domain ‘avocation that is the source of the capa-

bility. The SOURCE field in the second word is the demain number associa- i

ted with the source domain invocation. The TAG field provides the value

Cutrt PF ALK B b 4

to be used when matching a reference through a pointer to the dynamic
@?E access capabilities currently in the domain. Once the dynamic access
E-£ capability that matches a reference has bheen se’-cted, the contained

} SOURCE field specifies which domain's static access capabilities must also
7% allow the reference, as before.
: Recall that a dynamic access capability to read and/or write a sub-
segment is created for each argument entry in the argument list of a

cross-domain call, (One is also created to allow read access to the

i
xl argumer : list itself.) With the expanded tag, creation of the dynamic
&

access capability for an argument entry is still done pretty much as

described earlier for the one bit tag. There are two cases. If the tag
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in the argument pointer from the argument entry is zero, then the source
of the argument is the domain invocation from which the cross-domain

call is being made. In this case the SEGNO, WORDNO, END, SOURCE, R,

and W fields of the dynamic access capability are set as before. The TAG
field is set with the number of the domain invocation from which the call
is being made. (Adding one to the value in DASDR.XDCC at the time the
new capability is being created produces this number.) In the second
case the tag in the argument pointer is greater than zero, indicating
that an argument (or piece of an argument) whose source domain invoca-
tion is further back in the chain of unreturned cross-domain calls in

the process is being passed-on by this cross-domain call. The value of
the tag identifies the source domain invocation for the argument. 1In
this case the DAS frame previous to the new frame being created is
checked for a matching dynamic access capability as before. (The new
matching algorithm presented below is used.) If a match is found then
the new dynamic access capability can be created. The SEGNO, WORDNO,
END, SOURCE, R, and W fields are set as before, with the source field
value being copied from the matching capability. The TAG field in the
new capability is set from the tag value in the argument pointer.

The dynamic access capability allowing references to the argument
list is also constructed as before. 1Its TAG field is set with the num-
ber of the calling domain invocation, for the source of this capability
is always the calling domain invocation,

The result of the way the TAG fields in dynamic access capabilities
are set is that each capability in a DAS frame correctly indicates the

number of the domain invocation that is its soirce.
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As indicated, the value of the TAG field in a dynamic access capa-
bility is taken into account when matching a referenca to the dynamic

access capabilities currently in the domain of execution. While the

29 AN e Attty AetBerast AN N rpu e s
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only difference from the algorithm presented earlier for the case of one

hit tags is the additional constraint that the tag from the pointer must

YR A th s te v

match the tag in a capability, the entire algorithm for matching a

ot Pardoaty e
PTEREIIRC P RE T SR ST R | Y

reference to the dynamic access capabilities in a domain is presented

Vot s

again for the sake of clarity. Assume a read reference is made through

ARTO SR

a pointer containing the tag t, where t > 0, and the two-part address
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(s,d). The reference validation algorithm is to perform a linear search

of the most recent DAS frame, starting with word 3, looking for a capa-

1Y)

bility that meets all of the following conditions:

s

1. Read permission flag is on. :

2, TAG field contains the value t.

weatarhy TR0 447 AT AR BT

3. SEGNO field contains the value s.

4., WORDNO field < d s END field.
The first capability that matches stops the search. The reference is
allowed only if it also passes the check against the static access : :

capabilities of the domain indicated by the SOURCE field. Again, vali-

s e ore s A

dation of a write reference is analogous. : ;

The multibit tag does not change the way the return gate capability

Jirid)
st

B
11 S0t A i N

in a DAS frame is matched. At any given time only one cross-domain

return is possible in a process. The only valid non-zero tag which can

4,

u

U KRR TR IO b AT erd B RS S B 0 P R 2 ¥

> be generated in the effective pointer of a RETURN instruction is the

= t
£ 1
% number of the most recent DAS frame. The pointer in PRs and the loca-

=4 y

i tion to which the return transfer is directed must match the two pointers
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in the single return gate capability in that frame as before.
This completes all but one of the changes and additions to the
processor necessary to incorporate multibit tags. The last remaining

addition is presented in the next section.

Pointers as Arguments

In the previous two sections the example of a cross-domain call
argument that contained stored pointers, i.e., indirect words, was used.
The stored pointers provided the links in a threaded list of variable-

sized blocks. There are several subtleties related to the use of stored

pointers in cruss-domain arguments that must be explored.

The PL/I language includes a "pointer" data type. In a machine

such as that being described here, PL/I pointer variables would be im-

plemented as stored pointers. Thus, an argument that is a stored

pointer or contains stored pointers will occur whenever a PL/I program
specifies a pointer vzriable itself or a data structure containing
pointer variables as an argument cf an iaterprucedure cali.

First consider the use of a2 pointer variable as an output argument

of a cross-domain cail. For simplicity of explanation the discussion

is presented in terms of an output argument that is a single pointer

variable, although the ideas presented also apply to output argumentst

which are larger data structures containing pointer variables. When

the cross-domain call occurs, a dynamic access capability will be
created allowing procedures executing in the called domain to write iato
(and read from) the subsegment contairing the pointer variable. The

calling procedure must recognize that, by specifying that a pointer
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variable is an output argument, the called procedure in another domain
is given the ability to write an arbitrary bit pattern into this pointer
variable. Thus, after the return has occurred, the calling procedure
must explicitly check that a reasonable value has been stored in this

pointer variable before it is used to make a reference if the calling

st 0 tnok e S e s Mok k! oLk et i td s dedia

procedvre has any reason to mistrust the called domain. Normally, when

Yo

a pointer variable output argument is passed on a cross-domain call, the

called domain is in fact trusted, e.g., the called domain may encansulate

Bxae adedd cukive 8

part of the supervisor.
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The interesting question about pointer variable output arguments

for cross-domain calls is what tag value will be placed in the pointer.

s bae

If t is the domain invocation number from which the cross-domain call

is made, then only tag values strictly less than t :-ill mean anything

AV AN T At AR ke

"

to the calling procedure. Yet to the called procedure in the next higher
numbered domain invocation, a tag value equal to t certainly means some- 3
thing and such a tag value might be stored into the pointer variable

output argument. To see this consider the following example. A proce-

dure executing in domain invocation t passes as an input argument of a

stpre

cross-domain call some data structure and as an output argument a pointer

R

variable. The called procedure is expected to locate a certain item

within the input data structure and return a pointer to this item in the

[PPPYPIRR ST

output pointer variable. Because pcinter variables are iupilemented as
|

% stored pointers, i.e., indirect addresses, the called procedure will

3 write the value into the pointer variable output urgument using the

SPPr instructicn. The pointer in PRn will have been generated by apply-

ing the effective pointer generation algorithm to the input data -
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structure in various ways, and thus will contain the tag value t propa-
gated from PRa. If the .7 instruction simply stores the whole pointer
from PRn as its operand, cnen the output argument pointer variable will
also have a tag value of t, a tag value that means nothing to the calling
procedure. From the point of view of the calling procedure and the
domain invocation in which it is executing, the correct tag is zero,
since after the return occurs the pointer variable will be used to
reference the data structure which is statically accessible in that
domain.

To solve the problem illustrated by this example, and others like
it, the SPPn instruction does not always just copy PRn.TAG into the
indirect address being created. It is able to detect the circumstancas
in which the indirect word tag should be set to zero, and will set it
to zero in these cases. The algorithm is presented in Figure 3-11. When
performing the SPPn instruction there are two tag values to consider:
the value in TPR.TAG and the value in PRn.TAG. In the simple casz that
TPR.TAG is zero, ther the operand of the instruction is not a cross-
domain argument. The indirect address should be constructed directly
from the pointer in PRn, tag and all. Whatever tag may have propagated
into PRn needs to ve preserved in the stored pointer.

If the tag in TPR is non-zero, then the operand of the instruction
is a cross-domain output argument that is a pointer variable, and the
potential exists for the sort of problem to occur that was illustrated
by the example given earlier. Specific examples of three general cases

which mey occur are illustrated in Figure 3-12. In all cases the SPPn

instruction being execuced is writing a pointer into a pointer variable
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Generate effective pointer
to operand in TPR. (See
Figure 3-9)

!
P RS A HAROONS WA B b e NG sabiwaodsesidberedionidlmtdng "}‘
N
o

!
{ TPR.TAG = 0 ) no
yes
< no <§RE.TAG z TPR.TA€> % :
yes ;
Store SEGNO and WORDNO from :

B
g
g
g
g
:
:
B

Store contents of PRn as
indirect address at loca-
tion specified by two-part
address in TPR. TPR.TAG
indicates type of access
vralidation to use for th'‘s

operand reference.

PRn and TAG of zero as in-
direct address st location
specified by two-part
address in TPR. TPR.TAG
indicates type of ac:cess
validation to use for this
operand icference.

Y

Caone>

Figure 3-11: Algorithm of the SPPn instruction.
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input
argument
A

docmain
- -/’ invocation

ross-domain
input cal% 1

argument

domain
invocation

L .

cross-domain
cal% 2

B A execution

PRn: 146G  SEGNG  WORDMC

- 1
address'derived
case 1 0 . i
internally
address! derived
case 2 2 s
trom B
address' derived
case 3 1 P
LI0m o

output argument
{pointer variable)

TAG S=GNO WORDNO

TPR | 2

Resulting TAG value
in outpnt argument

case 1 0
case 2 0
case 3 1

3-12: Three cases of the SPPn inmstruction.

.

Lny

PPy

el Etear R Wl R N SR T edtedionn D a 0Tt fr WARTAN GAR ¥

AR AT S us s Fare o B Aot o B TS Tkt SIAMAY 8 LN FA2 - M I o /Bl Lot LATLAND 46.1000m

e e Y X .S F VIV AP HT TP S YP RS PUNY ST X NP T SRS

TS

N AR e

ML ettt alne g 1o ingfuae 4L

"4 av

R LAY T

»

T e |



TSR
AR Y

SRl

b

R e - - e mm e ]

T

111

that is an output argument of a cross-domain call. The source of this
argument is domain invocation 2. Thus, the tag in TPR is two.

In case 1 the pointer in PRn was constructed from scratch or de-
rived from pointers not related to cross-domain arguments, and therefore
has a tag of zero. For example, the domain of execution might be part
of the supervisor, and the procedure invoked by cross-domain call 2
might be the procedure which converts a symbolic segment name provided
as an input argument into an output argument that is a pointer to the
base of that segment. According to Figure 3-11, this zero tag will be
stored in the indirect address. When control returns to domain invoca-
tion 2, the source of the pointer variable output argument, the zero
tag will cause references through this pointer to be evaluated relative
to the static access czpabilities of that domain. This is correct since
the pointer certainly was not derived from an argument of the cross-
domain call from domain invocation 1.

In case 2 the pointer in PRn was derived from input argument B.

The source of this argument is domain invocation 2, and PRn will contain
a taz of two propagated from PRa. The SPPn instruction, however, will
store a tag value of zero in this case, since PRn.TAG = TPR.TAG. This
is the correct tag from che viewpoint of domain invocation 2, since this
pointer locates part of a data base that is statically accessible from
that domain. It is also the correct tag from the point of view of the
domain of execution. If this stored pointer is later read (using an
EPPn instruction) by procedures executing in this domain before the
cross-domzin return to domain invocation 2 o.curs, then the fact that

the stored pointer is a cross-domain argument with domain invocation 2
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as its source will cause a tag of two to propagate back into the re-
trieved copy of the pointer. Thus, from the point of view of the domain
of executioa, no information is lost by cancelling the tag of two when
the pointer is stored.

In case 3 the pointer in PRn was derived from input argument A.

The source of this argument is domain invocation 1, and PRn will contain
a tag of one propagated from the corresponding argument pointer in the
argument list of cross-domain call 2. 1In this case the tag of one is
stored unaltered in the pointer variable, for PRn.TAG < TPR.TAG. This
is the correct tag from the viewpoint of domain invocation 2, since the
pointer was derived from an argument whose source was domain invocation
1. Use of the pointer variable by procedures executing in domain invo-
cation 2 to make a reference should be validated with respect to the
dynamic access capabilities currently in this domain. It is also the
correct tag from the viewpoint of the domain of execution, since it
properly indicates the source ‘omain invocation of the argument from
which the pointer was derived.

Now censider the use of pointer variables as input arguments on
cross-domain calls. This use of pcinter variables does not lead to
furziier additions to the processor design, but instead creates a new
application for the existing protection mechanisms. Again, the dis-
cussion will be presented in terms of a single pointer variable used as

an input argument, but all ideas presented can be applied to the case

of an input argument that is a data structure containing pointer

variables.
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The usual reason for passing a pointer variable as an input argu-

ment is to explicitly inform the called procedure of the location cf some

data item. The called procedure will rcference the data item through

the pointer variable. 1If the call is cross-domain, and the data item
is not a formal argument of the call, then a problem can result, for no E ]
dynamic access capability will be created allowing procedures executing 5 b
in the called domain invocation to reference the data item. While it :
can be argued that passing a pointer to the data item as the argument

rather than the data item itself is bad programming practice, it is -

[T

frequently done anyway. This technique ailows complex PL/I structures

to be passed as implicit arguments, avoiding the syntactically messy

specification of the structure as a formal argument. The technique can ;
also be used to pass as implicit arguments data items which are too com- :

plex to be expressed as formal arguments with the syntax of the language.

PR P I,

For whatever reason, pointer variables are used in input arguments
to pass implicit arguments. It would be nice if the protection
mechanisms of the processor could deal with this case. Fortunately they

can. So far the argument list associated with a cross-domain call has

Vo 70 S PP L4 NGB ADE Ssih e Sudia s W)

beeu treated solely as a specification of the formal arguments of the
call. The argument list serves a dual purpose when a call is cross-
domain: it informs the called procedure of ithe addresses of the argu-
ment and it tells the processor how to create dynamic access capabilities.

The called procedure knows how many formal arguments to expect. If

extra argument list entries were appended to the end of the argument

list, after those for the formal arguments, it would not confuse the

YA e b it s

called procedure. It would, however, cause the processor to create
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extra dynamic access capabilities in the case of a cross-domain call.
This property can be used to cause the creaticn of dynamic access capa-
bilities allowing access to implicit arguments.

If a compiler is to generate code which creates at the end of the
argument list generated for a call extra argument entries for implicit
arguments, then the compiler somehow needs to be told what extra entries
are to be created. A variety of high-level language extensions can be
imagined to serve this purpose. The specific extension described here
fits well into PL/I. The extension is a built-in function named
Ywindow". The function has three arguments: a pointer, an integer, and
a one bit flag. The appearance of the window function at some position
in the argument list portion of a call statement causes an argument
entry to be generated at the corresponding position in the argument list.
The pointer provided becomes the pointer in the first word of the entry,
the integer becomes the size in the second word, and the one bit flag
controls the generation of the read and write permission flags: if off
then only read permission is indicated, if on then both read and write
permission are indicaLed.* Window functions will typicaliy appear last
in the list of arguments for a call statement, and will define the sub-
segmeitts containing the implicit arguments.

Window functions can be used to create fairly complex patterns of
access permitsion. In particular, one window function (or a formal

argument) can provide read access to a large subsegment while several

*
Write only access to a window could be specified as well by expanding
this argument to two bits,
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other window functions provide read/write access to selected pieces of

TR T

that subsegment. ‘
Window functions, then, allow input arguments that are pointer
variables to be used to pass implicit arguments. The pcinter variable
is listed as a formal argument of the call and the implicit argument is
defined by one or more window functions at the end of the argument list.
It can be argued that window functions are contrary to the criterion of
programming generality. JIn a sense this contention is correct. A call

that works without window funct.ons in cases where the domain of execu-
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tion is not changed may require window functions to work cross-domain. .

The only answer is always to use windcw functiors when implicit argu-~

ments are being passed, even if the call is not expected to change the

domain of execution. The extra specification provided by the window

Vot M ablat

functions, wiile not functionally required for calls that do not change

P

the domain of execution, does help to make the intention of the program

clearer to programmers and others who must understand the symbolic

program.

N L T o)
NP

[ TR TR

The Escape Hatch

The protection mechanisms of the processor are built upon the

philosophy that all references made by a procedure executing in some .

. ,
s n e o

domain invocation through pointers derived from incoming cross-domain

YN

arguments should be validated relative to the dynamic acces< capabilities

of that domain invocation. The mechanisms for propagating tags cause

this kind of validation of all such references as z matter of course.

A LATT S RS H L B O s Ly 2

There may arise circumstances, however, when a procedure wishes to
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violate this philosophy intentionally. For example, two domains may
share static access to a segment. A procedure executing in one may call
a procedure that executes in the other to provide the latter with a
pointer to the shared segment. The called procedure may store the
pointer as an interral static variable to be used later. The segment is
not an implicit argument of the cross-domain call and no dynamic access
capability for the segment ever exists. The intentions of the called
procedure are properly served if the stored pointer has a tag of zero.
Yet, the standard pointer manipulation code will produce a non-zero tag
in this pointer, for it is related to a cross-domain argument. In cases
such as this, there needs to be a way to force the tag in a pointer to
zero. For this purpose a built-~in funciion should be provided.

Such a function for PL/I might be named "neutralize" and take a
single pointer as its argument. Tle result is another pointer with the
same two-part address, but a tag of zers. When applied to pointers that
either are cross-domain arguments or ar. derived from cross-domain argu-
mencs, neutralize would produce an equivalent pointer with the difference
that references through it will be validated with respect to the static
access capabilities of the domair cf executicn. UNeedless to say, a
procedurz must be very careful when applying the neutralize function to
a pointer, for use of this tunction has tihe potential to violate the

integrity of the domain of execution.

Processor Response to Exceptiosnal Conditions

Each reference made by an executing machine language program to a

virtual memory location is -7alidated by matching it to the static or
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dynamic access capabilities in the domain of execution. The method of
validation and the specific conditions under which a given reference
will be allowed have been discussed in some detail. An important point
not considered yet is the action of the processor in cases where valida-
tion indicates a reference should not be allowed. This occurrence is
called an access violation.

An access viclation is one of several types of exceptional condi-
tions that the processor can detect. Other examples are the attempted
execution of a privileged instruction from some domain other than domain
0, the detection of an error while performing a cross-domain call or
return, an attempted reference beyond the end of a segment, and the
attempted use of an invalid segment number. There may be many other
processor detected exceptions as well., All, including access violatioms,
cause the processor to change the domain of execution to domain 0 and
transfer control to a fixed location. Presumably the software system
is arranged so that this location is the beginning of the supervisor
procedure which responds to exceptions. The processor is arranged so
that the processor state at the time of the exception is preserved.

The supervicor procedure can inspect this state information to determine
the precise cause of the exception. Corrective acticn can be initiated
if appropriate. A privileged instruction allows the processor state
to be restored, so that if the cause of the exception is corrected then
the disrupted program can be restarted at the point where the exception
occurred.

The transfer to domain O in the case of an excepcion, although it

may be a cross-domain transfer, does not affect the state of the dynamic
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access stack or its definition register. The segment containing this
stack, as well as the descriptcr segment, are statically accessible
from domain 0. In addition, privileged instruction exist to load and
store the DSBR, DR, and DASDR of the processor. Thus, the supervisor
procedures invoked by the exception are able to make any necessary

alterations to the protection environments provided by the various

domains of the process.

An Associative Memory for Dynamic Access Capabilities

As indicated earlier, the operation of validating a reference
against the dynamic access capabilities currently in the domain of
execution can be made faster in the case that multiple references match
the same capability by adding to the processor a small, fast associative
memory which stores the most recently used dynamic access capabilities,
In this section the design and use of such an associative memory is
presented. Those readers generally familiar with such associative
memories can skip this section without loss of continuity.

The associative memory has a small number of registers (eight is
prebebiy more theu enousgh), each of which caa lwld ail fields of a
dynamic access capability for read and/or write access to a subsegment.
In addition, each register contains a few bits of identification and
control information. The format cf the registers is shown in Figure
3-13.

This associative memory (DAC-AM) has four cycles: SEARCH, WRITE,

CLEAR-FRAME, and CLEAR-ALL. Consider the SEARCH cycle first. Whenever

a reference is to be validated with respect to the dynamic access
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DAS
frame control

fields from dynamic access capability number information

A TN TN N

—
TAG SEGNO WORDNO END R W SOURCE FRAME LRUCOUNT V

input parameters for search: tag, segment number, starting
word number, ending word number, type of reference
(read or write), current DAS frame number (DASDR.XDCC)

output from search: match indicator, source domain number if
match occurred

Format of the associative memory for dynamic access
capabilities.

Figure 3-13:

SO A R S A S S LR

g

’n

. &
ot s o2V At e SISO Vbt _;k(,m,,mmﬂ%m

t

AN LA L BLe:

Flns s

L R A S L N T T ATy LTSN

o

sral et o st s Ay tr v,

SR

LTSI

TS AR LS A R VA o LRGN AR NI N 19 Bl cdTa5it I8 HLEU B ANV 1A Cnt 3 30k S e o LS8 GRS R Kt SR




4 lr
R AR

oy
ALV

N (e
; scer b e ."'AI Rt
ot ! *y:& AR f H

i

S A DA ..
- Srqaz i ST T T T S AR TR L s e e 5o
T T TR S R Y TR R ;
ﬁm m‘-& % mmm. ﬂ-mi“. Q—%zmh‘ EQ“M.E .‘tﬁﬂh W‘EW
o
120 :

:apabilities currently in the domain of execution, the DAC-AM SEARCH
cycle is invoked before a linear search of the most recent DAS frame is
performed. The input parameters to the SEARCH cycle are listed in

Figure 3-1". The first five define the reference being made. Both a

starting and ending word number are provided so that double-word (and

larger multiword) references can be validated. The last input parameter

is the ..umbter of the current DAS frame, as recorded in DASDR.XDCC. The
hardware performs an associative search of all DAC-AM registers, looking
for one containing a dynamic access capability which allows the reference

and which is from the indicated DAS frame. If a match occurs, then a
positive match indicator is the result and the SOURCE field from the
matching capability is produced.* In this case the linear search of

the DAS frame in memory can be bypassed, and validation of the reference

can proceed to the stage where the static access from the indicated

source domain is checked. If no match is found, then a negative match

indicator is the result, and the DAS frame in memory must be searched

in the way previously described for a matching dynamic access capability.
The LRUCOUNT field of DAC-AM registers is used to order the dynamic

access capabilities contained in the DAC-AM by recency of use. Each

time a SE4RCH cycle match occurs, the LRUCOUNT of the matching register

is set to the maximun possible value, and all other LRUCOUNT fields that

are greater than the original LRUCOUNT value of the matching register

[RSUPTT TR L IY WIPPRIQPI P IRPIRE- RUSLT SN Y It 1 SPRTSUIREALISENE NEENRPIVPAPL T § AR T8 PN

redlty 9 k-

¥ res

afiws st n

Hrenr o

i

gﬂk‘ﬂif'»v'ﬂ“""" b AR R A1 s Wb F M s hbed ntev

x 3

» o

] Actually, more than one DAC-AM register may contain a matching capa- 2

‘9 bility. Since the SOURCE fields in all capabilities that match will Ee
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are decremented by one.

If a SEARCH cycle results in no match, but the linear search of
the DAS frame in memory does succeed, then the dynamic access capability
found this way is entered into the DAC-AM using the WRITE cycle. The
various fields of this capability overwrite the contents of the DAC-AM
register whose LRUCOUNT value is zero. This is the register that has
gone longest without producing a match. The FRAME field is set from
DASDR.XDCC to indicate the DAS frame from which the capability came.
The LRUCOUNT field is set to the maximum possible value and the LRUCOUNT
fields in all other registers are decremented by one. Thus, the DAC-AM
always contains the most recently used dynamic access capabilities for
a process. Repeated use of a small group of dynamic access capabilities,
as is likely, will result in most searches of the DAC-AM succeeding.
As a result, the more time-consuming linear search of the DAS frame in
memory will not occur each time dynamic access validation is required.

When a cross-domain call occurs. the DAC-AM can be used in two
ways. First, it can be applied to locating a matching dynamic access
capability in the previous DAS frame when constructing a new dynamic
access capability from an argument entry whose pointer has a non-zero
tag. (This is a case where the ability of the DAC-AM tc find capa-
bilities matching multiword subsegments is used.) Second, it can be
preloaded explicitly (using the WRITE cycle) with the newly constructed
capability allowing read references to thc argument list itself, since

the likelyhood of this capability being used in the near future is

great.
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When a cross-domain return occurs* the CLEAR-FRAME cycle of the
DAC-AM is invoked. This invalidates all registers whose FRAME field
indicates that ihe contained capability is from the DAS frame being de-
stroyed by the return. Invalidation is performed by setting the validity
bit (V) off. Only registers whose validity bit is on can match on a
SEARCH cycle. The LRUCOUNT fields in all registers so invalidated are
adjusted so that these registers will be the next to be overwritten.

The final cycle, CLEAR-ALL, is used when the process is execution
on the processor is changed. Tt causes all registers to be invalidated.

The DAC-AM will decreass the time required to validate a reference
against dynamic access capabilities only in the case that multigle
references are validated against the same capability. It will almost
always be the case that the capability giving read access to a cross-
domain argument list will be used several times. Multiple references
to individual arguments are wot uncommon ~-- particularly to arguments
that are large arrays or structures. Considering the low cost of such
an associative memory and the off-the-shelf avallability of the control
logic for performing the associative search and updating the LRU counters,
the DAC-AM seems like a good investment.

In addition to the DAC-AM, the processor also can contain a similar
associative memory for the most vecently used descriptor segment entries

(DSE's). Associative memories for address translation table entries are

—

*There is no reason to put return gate capabilities in the DAC-AM, since
each is used only once. The position of the return gate capability in
a DAS frame is always known so no search of the DAS frame is required

to find it in any case.
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of proven value in reducing the average time required to translate an

address [24].

Entry and Label Variables

In PL/I, entry and label variables may be passed as arguments on
interprocedure calls. It is possible for the called procedure to per-

form a goto operation on a label variable received as an argument and

to perform a call operaiion on an entry variable received as an argument.

The processor as currently defined can handle neither of these cases
automatically if the call which passes the entry or label variable as
an argument is cross-domain. The techniques underlying the processor

protection mechanisms described so far, however, can te applied to

these cases as well. This section investigates the processor extensions

that would be required for allowing entry and label variables to be
used as arguments of cross-domain calls.

Presentation of the material of rhis section is not meant to imply
that the facility ¢o pass entry and label variables cn cross-domain
calls must be included in the processor if it is to be practical. In-
deed, a good case can be made for omitting this facility considering
the additional complexity that it introduces. The section is included
in the thesis only to illustrate a more sophisticated application of
the basic techniques used in the processor than has been presented so
far ia this chapter.

First consider entry variables. As usually impiemented an entry
variable is a pair of pointers. The first locates an entry point while

the second locates an activation record. If the entry variable locates
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an entry point into the outermost level of a nested set of PL/I proce-
dures, i.e., an external entry point, then the second pointer means
nothing. If the entry variable locates an entry point into one of the
inner layers, i.e., an internal entry point, then the second pointer
locates an already existing activation record that corresponds to some
unreturned invocation of the containing procedurc. When a call through
an entry variable to an internal entry point occurs, this activation
record pointer must be made available to the called procedure to define
part of its addressing environment.

A standard implementation of a ca2ll through an entry variable
needs to be defined, just as a standard inlerprocedure call was defined
earlier. The implementation chosen is substantially the same as that
for a normal interprocedure call. The only difference iz that the two
instructions:

EPPs "entry variable"tl,*

CALL "entry variable"1Q,*
where "entry variable" represents the address of the entry variable,
are used in place of the single CALL instruction ¢f the standard inter~
procedure call. The first instruction loads PRs with the second pointer
from the ertry variable. The second instruction is the previously de-
fined CALL instruction with an operand address specification that
locates the entry point specified by the first pointer in the entry
variable. As a result of a call through an entry variable, the cailed
procedure can expect to find PRa containing a pointer to the argument
list, PRb containing a pointer to the base of the stack segment in which

a new activation record should be created, and PRs containing the second
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pointer from the entry variable. If the called entry point is external,
then the callec procedure will ignore pcinter in PRs. If it is internal,
then the pointer in PRs will be used by the called procedure to locate

variables belonging to the appropriate outstanding invocation of the

(Rl Boas S LA § R AT SRE SV T

enclosing procedure block. That a call is through an entry variable is

apparent to the compiler., so it can choose proverly whether to generate

the code for a standard interprocedure call or the code for a call
through an entry variable. !

There are a variety of ways to use entry variables as arguments.

They may appear singly, in arrays, or as elements of non-homogeneous
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data structures. Consideration of the simple case of a single entry

FTREN

variable passed as an individual argument, however, demonstrates the
problems generated by the use of entry variable arguments on cross-domain

calls. Imagine that procedure A passes an entry .riable as an input

M e B A LEN sk vl o ok

argument on a call to procedure B with the intention that B (or a

~ e

descendant procedure) perform a call through this entry variable. With

the protection mechanisms defined so far, an argument list like that

illustrated in Figure 3-1% would be generated by A. An argument list
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entry specifies read access to the two word entry variable. If the

i

g

A to B call is cross-domain, a dynamic access capability will be gener-
ated which allows procelures executing in the called domain read access

to the entry variable.

R REG Dottty

When time comes for B to make the call through the entry variable

a temporary pointer to the entry variable will be generated in PRn
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where m is the offset of the argument list entry for the entry variable.
Ther an argument list will be created and PRa set with a pointer to it.
Finally, the call through the entry variable will be made by procedure
B with the instructions:

EPPs PRntl,=*

CALL PRnt0,*
Because the entry variable itself is a cross-domain argument, the tempo-

rary pointer to it generated in PRn will have a non-zero tag. This tag

i § il i!nmzw,un-wﬁsw‘z&m:u o2yt LS s andt dsont A Ve i Nt PrcemBiobi G

— s s 1 . e

causes the indirect word read reference to the entry variable generated

by the EPPs instruction to be validated relative to the dynamic access

————

capabilities in B's domain invocation. This reference will succeed

by matching the capability allowing read access to the entry variable;
likewise for the indirect word read reference cauvsed by the CALL
instruction. The final effective pointer generated by the CALL instruc-
tion aiso will have a non-zero tag -- indicating that the call is to be

validated with respect to dynamic access capabilities in B's domain of

It is here where the protection mechanisms defined in the

execution.

E: previous section are inadequate. No matching dynamic access capability

;f

,i can be found because dynamic access capabilities allowing call access

i to an entry point have not been defined. The protection mechanisms dis-

7 cussed so far only can handle the case of a CALL instruction which i
A
E- generates a tag of zero in its effective pointer. The extension required : 3
3 i R
=3 . . . ' i
RE to allow the use of entry variables as cross-domain arguments is the 4
Y 3
=3 introduction of a new dynamic access capability type for call access E
3 to an entry point. Tt call access capability must contain both : H
1; pointers from the entry variable so that both the location to which the 3
3 b2
2 i
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call is directed and the activation record pointer loaded into PRs can
be verified.

One way to implement call access capabilities is to add an entry
variable identification flag to the read and write permission flags
that may already appear in argument list entries. If this entry

variable identification flag is set on, then the subsegment located by

the argument list entry is specified to be an entry variable {or an

array of entry variables if the indicated size is greater than two words)
for which a dynamic access capability allowing call access should be
constructed when a cross-domain call occurs. If an input argument is

an entry variable {(or am array of euniry variables), then the correspond-
ing argument list entry has both the read permission flag and the entry

*
variable identification flag set on . If the call is cross-domain, then

because of the read permission flag the processor will generate a dynamic

access capability allowing read access to the subsegment containing the
€ :try variable as before, and because of the entry variable identifica-
tion flag the processor will generate a capability allowing call access
to the entry point located by the entry variable. (In the case of an

array of entry variables a call access capability must be generated for

each element in the array.) The call access capability contains the

*It seems a safe assumption that, when an entry variable is passed as an
input argument, the calling procedure intends for the called procedure
to call through the «ntry variable., Thus, the compiler can always
generate code to set the entry variable identification flag on for input
arguments that are entry variables. For entry variables that are output
arguments the read and write permission flags should be set on, but the
entry variable identification flag should be left off.
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segment and word number portions from both the entry point pointer and
the activation record pointer in the entry variable. It also contains
a TAG and a SOURCE field like read/write dynamic access capabilities.
The TAG field identifies the domain invocation that is the original
source of the capability while the SOURCE field contains the number of
that domain.*

With the addition of call access capabilities, then, CALL instruc-
tions which generate an effective pointer with a non-zero tag can be
handled. When this case is encountered, the most recent DAS frame is
searched for a call access capability allowing the intended call. In
order for the call to be allowed, a call access capability must be found
whose TAG field matches the tag from the effective pointer, whose entry
point pointer segment and word numter match the segment and word number
in the effective pointer, and whose activation record pointer segment
and word number match the segment and word number in PRs. The call
must also be allowed by the static access capabilities of the SOURCE

domain indicated by the matching call access capability. If the call

*When determining the source domain invocation for a call access capa-
bility both the tag of the pointer in the argument list entry and the
tag of the entry point pointer in the entry variable must be taken into
consideration. If the source is the domain invocation from which the
cross-domain call is coming, then both tags will be zero. In this case
the TAG field of the capability is set to the number of the domain
invocation from which the call is coming and the SQURGE field is set to
match. If the source is an earlier domain invocatica, however, then
the tag from either pointer may indicate this fact. Ir this case the
smallest non-zero tag of the two irdicates the source domria invocation
number to be recorded in the TAG field of the capability. The previous
DAS frame must be searched for a matching call access capability and
the SOURCE field value from the matching capability copied into the

new capability.
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is allowed, then the CALL instruction completes in the manner discussed

earlier. The value of PRs.TAG is forced to zero as the transfer occurs.

(The called procedure, if the call is to an internal entry point, always

wants static access to the activation record of the containing proce-
dure block, and the tag in PRs may be set erroneously to a non-zero
value for the same reason that the tag in the pointer restored to PRs

before a cross-domain return erroneously is non-zero.)

Notice that a call through a cross-domain argument that is an entry

variable may not be a cross-domain cail, even though it is validated
by matching a dynamic access capability. If the call is to an internal
entry point then it may be an internal entry point of a procedure invo-
cation executing in an earlier outstanding invocation of the calling
domain. If the call is to an external entry point then it may be a
gate entry point back into the calling domain, which gate is statically

accessible from the source domain of the dynamic access capabilicy that

allows the call.*

*The processor described in this chapter does not allow procedures
executing in some domain to use the dynamic access capabilities of an
earlier outstanding invocation of the same domain. This restriction
is required to prevent a cross-domain return from jumping several
outstanding domain invocations without giving procedures that execute
in these domain invocations a chance to place the encapsulated sub-
systems in a consistent state. A cross-domain call through an entry
variable, however, can generate a legitimate need for a procedure
executing in some domain to use the dynamic access apabilicties (other
than the return gate capability) of an earlier outstanding invocation
of the same domain. It is straightforward to extend the processor to
handle this case properly. The extension requires expanding the tags
in pointers and dynamic access capabilities to contain one bit for each
domain invocation which can exist at one time. The expanded tags allow
the specification to be made that a reference be validated with respect
to the dynaric access capabilities of an earlier invccation of the
domain that is the domain of execution.
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Label variables are very similar to entry variables, and also are
normally implemented as a pair of pointers. The first pointer locates
the start of the machine code corresponding to some labeled statement of
a prograﬂ and the second is an activation record pointer which identi-
fies the procedure invocation which goes with that label. The goto
operation on a label variable involves destroying all stacked activation
records between the activation record for the procedure which performs
the goto and the activation record indicated in the label variable.
Along the way, the appropriate condition handlers defined in the acti-
vation records being destroyed will be invoked. When the stack is
properly unwound, then a transfer to the indicated procedure segment
location occurs. Because of its complexity, this non-local goto opera-
tim through a label variable is normally implemented by compiler
generated code which calls upon a system-provided stack unwinding pro-
gram. In the cas2 of the processor design described here, the same
approach can be used. This unwinding program is easiest to construct
if it executes in domain O where it will have access to all activation
record stack segments and the DAS. The processor, however, can be ex-
panded a little to make the job of the unwinding ; ~ogram a little easier.

1f a label variable is passed as an input argument on a cross-domain
call then a goto operation on that label by a procedure executing in the
called domain will unwind the activation record stack and the DAS back
through unreturned cross-domain calls. The transfer of control to the
label may change the domain of execution. By adding a label variable
identification flag to argument list entries, and extending the processor

to create goto access capabilities for label variables on cross-domain
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calls, the processor can help the unwinding procedure to determine that
an attempted cross-domain goto is allowed. The unwinding procedure
merely need look in the most recent DAS frame for a matching goto access
capability to determine if the attempted cross-domain goto should be
performed. The goto access capability is analogous to the call access

capability in the way it is conmstructed and the information it must

contain.

Bit Addressing

For simplicity of explanation, the processor presented in this
chapter is word addressed. This allows the problem of asscciating an
explicit length with each reference to be ignored, for all references
have an implied length of one or two words. When passing arguments
with cross-domain calls and referencing arguments of cross-domain calls,
however, the ultimate precision of specifying references by bit address
and bit length can be very useful.

To see the usefulness of full bit addressing, consider passing
a bit string of length 7 as an input argument on a cross-domain call.
With the word addressed machine the corresponding argument list entry
and dynamic access capability vill specify the one or two word sub-
segment necessary to cover the bit string. Additional information may
have to be communicated to the called procedure, either in the argument
list or another argument, to specify the location of the bit string
within the larger subsegment. Procedures executing in the called domain

will have read access to the entire subsegment, although only a bit

string of length 7 is the argument. If the string is cmbedded in
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other informaticn which the calling procedure wants to be certain does g
&

not become accessible to the called procedure, then the bit string must :
g

be copied into a wort that contains no other valuable information before %
i

the call is made, and the copy passed as the argument. With a bit %
8

addressed machine the exact seven bits "olding the string could be %

specified as an argument, and a dynamic access capability created giving
read access to that subsegment of seven bits. No copy would have to be

made to avoid giving the called procedure access to adjacent bits.

The protection techniques presented in this chapter apply equally

well to a bit addressed machine. The essential changes required are

extending the length of the displacement portion of a pointer to hold a

NTHE W ) en

bit number rather than a word number, and devisirg means to associate

the proper length with all references. Working through the hardware

mechanisms required to generate the proper length information for each

s
%
E:;:

TRRAA TR LIRS LR M 0 TS PR AN ATREATTEAL BIATENL 230 LA |

reference appears to be the most difficult problem encountered when
applying the techniques presented in this chapter to a bit addressed
machine.

Summary

This chapter described a hardware processor that supports a multi-
domain computation implemented as a single execution point in a seg-
mented virtual memory and that automatically performs cross-domain calls.

The processor recognizes static access capabilities allowing read,

Y LT3 AN IV ERE S BEMRRRLNE 457
s b it

write, and/or execute access to segments and allowing procedures execut-

ing in one domain to cail gate entry points into another domain. Dynamic

access capabilities allowing read and/or write access to subsegments
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dynamic access stack when a cross-domain call occurs, along with a

LR T P NN Y

é representing arguments are automatically created in a processor managed

dynamic access capability allowing access to the return gate for the

call. The standard argument list of an interprocedure call is used by !
the processor as the specification of what capabilities to create.

These capabilities are automatically destroyed when the corresponding

i
L
B
: E cross-domain return occurs.
g The processor is organized so that all addresses related to cross-
g domain arguments are automatically tagged with the number of the source
g domain invocation for the argument. This tag causes validation of
]
E references through such addresses to be with respect to the dynamic
access capabilities currently part of the domain of execution. As long

as addresses are manipulated using the EPPn and SPPn instructions, the

relationship of an address to a cross-domain argument is never lost.

Recursive invocation of domains and the passing of arguments through
multipie consecutive cross-demain calls do not confuse the address
tagging mechanism. The failure of a niachine code procedure to utilize
properly this and other processor protection mechanisms, however, can
only compromise the integrity of the domains in which that procedure
executes.

While the protection mechanisms described in the chapter may seem
complex when viewed at the level of the hardware, this complexity is not
apparent to the users. The users control the cross-domain call mechanisms
directly from h gh-level programming languages. The call statement of a

language like PL/I, with the simpie extamnsion that arguments be declared

as ioput or output arguments, and the special built-in functions "window"
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and "neutralize" are all that the programmer needs to direct the cross-

domain call mechanisms and properly control access to arguments.
Th= processor developed in this chapter provides a hardware basis

for a computer utility in which users may encapsulate independently

compiled programs and associated data bases as protected subsystems,

and then, without compromising the protection of the individual sub-

WMo 1egeh kb GO NG A% b
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systems, combine protected subsystems of different users to perform

various computations. The software system required to produce such a

facility based on this processor is discussed in the next chapter.
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CHAPTER 4

SOME COMMENTS ON THE SUPPORTING SOFTWARE

In this chapter a software second layer for the processor protec-
tion mechanisms developed in Chapters 2 and 3 is briefly discussed. The
purpose of the material in this chapter is not to provide a detailed
development of the complex issues involved in providing a proper user
interface for controlling sharing in a computer utility. Rather, it
is simply to demonstrate one way of harnessing the processor protection
mechanisms so that users can define and control the sharing of protected
subsystems.

As stated in Chapter 1, the goal of the research reported in this
thesis is to develop a computer utility in which mutually suspicious
subsystems can cooperate in a single computation in an efficient and
natural way. A specific objective derived from this goal is that a
programming envircnment be provided in which procedure segments, data
segments, and protected subsystems of all users can be treated as
building blocks and combined in a contruvlled way into different compu-
tations. The starting point of the research was Multics, which to a
large extent already provides the building hlock facility with respect
to procedure and data segments, but which allows protected subsystems
to be defined and manipulated oniy in restricred ways. The primaiy
obstacle to providing a general facility for manipulating protected sub-
systems in Multics is the restriction that the domains of a process be
totally ordered with respect to containcd access capabilities. The
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processor discussed in Chapters 2 and 3 remcves this restriction.

With the primary obstacle out of the way, only a few asp:cts

of the Multics software system need to be extended to produce a first
app. c¢imation te a software system which can effectively apply the hard-
ware protection mechanisms to generate an environment in which proiected
subsysiems may be manipulated in a natural way by all users. The most
significant changes required are the expansion of the file system to
catalogue protected subsystems as well as segments and the recasting of
control lists in terms of protected subtsystem names rather than domain
numbers. These exteasions are outlined in this chapter.

Because this chapter is intended only to provide an example of how
the processcr protection mechanisms can be harnessed by a software
system, little justification or detail is provided for those aspects of
the software that are derived directly from Multics. The reader is
referred to the book by Organick [34] for a detailed discussion of the

Multics facilities outlined here.

A Distributed Supervisor

The disiributed supervisor organization used in Multics is easily
implemented on the new processor. When a user logs in to the system a

process with a new virtual memory is created for ham. Initially two

. domains of the process are occupied. Domain O encapsulates the super-

CrEr A A £y

28 - * . . .
visor. Thus, the supervisor is a protected subsystem that is part of :

s 4
1N
fas

LIFS

3 * . .
i Domain 0 is chosen because of the special treatment afforded it by the

0 processor. In Multics, the supervisor is encapsulated in the largest of
3 the linearly nested domains of a process.
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every process. Another domain encapsulates a "“home' protected sub-

system for the uvser. When the user first gains control of the process
it is executing in this home domain in sume procedure which interprets
as commands characters input from his terminal.

Because the supervisor is a protected subsystem that is part of the
process, the supervisor can be invoked by standard interprocedure calls
to the gate entry points into domain O to perform various services for
the process. (It may also be invoked by generating an exception, for
an exception forces control into domain 0.) Among the services of
interest here are adding various segments stored on-line to the virtual
memory of the process and associating various protected subsystems

whose delinilLions are stored on-line with unoccupied domains of the

process.

The File System

In Multics all segmeants stored on-line are catalogued by a file
system which is implemented as a set of procedure and data segments in
the supervisor. The single, system wide catalogue is arranged as a

tree-structured directory hierarchy. Each directory contains entries

giving the attributes of all directly inferior directories and segments.

The attribuies in each entry include & name, a length, a beginning

K9
absolute address, and an access control list., The name in a directory

entry uniquely identifies the entry in that directory. Each directory

"Directories are implemented as data segments which can be read and
written only from the supervisor domain.
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or segment can be uniquely located in the tree-structured directory
hierarchy by a multicomponent tree name consisting of an ordered list
of directory entry names defining a path from the base of the tree --
the "root" directory -- to the item of interest. Figure 4-1 illustrates
a directory hierarchy and gives the tree names of the items shown. The
symbol ">" is used as a separator for the components of a tree name.

The directory hierarchy allows a content-related organization to be
imposed on all information stored on-line in the system. The structure

of the initial layers of the hierarchy usually will be quite static and

DA b V0 0y 03 DA AL N 1 SN LA 212 e, F YR G0, i B 8 B v SR L Lasasid R u«}s..i}«‘f:.ny& washepradh ki W;L%_NA

will be known by most system users. Figure 4-2 illustrates a structure

STHE

similar to that used in Multics to organize on-line storage. This
structure reflects the fact that the people who use the system are
grouped for administrative purposes into various projects. (A user name

in this case is the concatenation of a project name and a person name.)

amtensnsdiowe nan KA edgn

Each user has a home directory in which to create an arbitrary sutstruc-
ture of segments and directories. Each existing process has a directory
in which to place all its temporary data segnents such as its descriptor

segment, stack segments, etc. Other areas of the hierarchy catalogue ;

RIS T IR T

library and system segments. :

durg

There are a variety of operations which may be performed on the

Sk

directory hierarchy by colling the z2ppropriate superviscr gate entry

PR I R S T

PRIV

point. Examples are creating or deleting an object in some directory,

changing the attributes of an existing object, listing the entry names

v #rar

in a directory, and adding 2 segment to the virtual memory of the
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A representative directory hierarchy.
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%
process. Whether or not a particular requested operation on some

object will be performed is controlled by the access control list (ACL)
of the object. The supervisor compares the name of the user associated
with the process being executed and the number of the domain from which
the request is made with the ACL of the object. If some ACL element

containing a matching name and number is found, then the various per-

mission flags set in that element determine whether or not the requested

operation will be performed. If no matching element is found then the
requested operation will not be performed. Each ACL entry essentially
defines some capabilities included in the specified domain of a process
of the specificd user. The permission flags present determine the
particular kinds of access allowed by the capabilities, The flags that
may appear in an element of a directory ACL provide independent control
on operations like listing the entries in that directory, creating new
objects in that directory, and changing certain attributes recorded in
entries in that directory. The last case includes changing the ACL's
in these entries. The permission flags that may appear in an element
of a segment ACL can indicate read, write., execute, and gate access
to that segment.

The flaw in this access specificatiorn scheme used by Multics, when
applied to controlling the sharing of protected subsystems with the new
processor, is that actual domair numvers appear in ACL elemencs. The

implication of this fact is that a particular domain of a process of a

E
In Multics this last operation is normally caused by a dynamic linking
exception rather than an explicit call to the supervisor.
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particular user always protects the same protected subsystem. An exten-
sion that eliminates this flaw is to make protected subsystems named
objects that are catalogued in the directory hierarchy and to repliace
the domain number in an ACL element with the tree name of a protected
subsystem. Then any protected subsystem may be associated with any
demain of a process as the need arises. The numbered domains of a
process are allocated to protected subsystems just as segment numbers

in the virtual memory of the process are allocated to segments stored
on~iine. With this revised scheme the access of procedures executing

in some domain of a process is determined by the name of the protecced
subsystem associated with the domain and the name of the user associated
with the process, rather than the domain number and the user name. This

approach is now explored in a little more detail.

A protected subsystem is a third type of object which may be defined

by a directory entry. The attributes of a protected subcystem are a
name and an ACL. A protected subsystem has nc conteat, so attributes
such as length and address are not required. The ability to create a
new protected subsystem in some directory or delete a protected sub-
system from a directory is controlled by the ACL of the directory, as it
is for the other two types of objects which may be defined by a directory
entry.

The ACL for a directory, segment, or protected <..system is a list

of two-component elements of the following form:

<protected subsystem tree name>:<user name> <mode>
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The first component identifies an instance of use of a particular pro-
tected subsystem in a process of a particular user. The second com-
ponent is some set of permission flags appropriate for the object type.

By means to be discussed in a moment it is possible to associate

e wh kemx e et e s ow o o ema

a protected subsystem with one uf the numbered domains of a process,

Anranne st s

thereby generating a protected subsystem instance. The supervisor

maintains for each process a table of associations of domain numbers and

hahn——

protected subsystem tree names. This domain table can also record the

name of the user associated with the process. When a process is first

P no

UK e

created, the domain table might appear as illustrated in Tigure 4-3.

Domain 0 is occupied by an instance of the supervisci :rotected sub-

GlE e
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system and domain 1 is occupied by the home protected subsystem instance

for the user. {A directory hierzrch: similar to that shown in Figure
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4-2 is assumed.)
When a procedure executing in some domain of a process calls a

gate entry point into the file system, the requested operation is vali-
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dated by comparing the protected subsystem name associated with the re-

TN

querting domain and the user name associated with the process against

a0 g e HALA

the appropriate ACL. The mode in the first matching ACL element deter-

wines if the request will be performed. If no ACL element matches,

PR

then the request is not performed.

Cevisnsy

P

Permission Flags for Segments

Laivearie.

To understand how a protected subsystem can become associated with
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: E a domain of a process, it is necessary to investigate in more detail the

use of the modes which may be specified in an element of an ACL for a
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domain occupied protected subsystem
number tree name
0 yes root>system>supervisor
1 yes root>projects>CompSys>Jones>home
2 no -
3 . no -
4 no -
5 no -
6 no -
7 no -
(N S |

User name is '"CompSys.Jones"

Figure 4-3: Initial state of the domair table for a process.
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segment. As indicated earlier, these modes may specify read, write,
execute, and gate permission. When a procedure executing in some domain
explicitly or implicitly requests of the file system that a segment be
made accessible from that domain, the matching ACL element determines
which permission bits in the corresponding descriptor segment entry
(DSE) will be set on. For example, if the segment is or was previously
assigned segment number s in the virtual memory of the process, if the re-
quest is from domain n, and if the permission flags in the matching ACL
element indicate read and execute access, then DSEs.Rn and DSEs.En are
set on by the supervisor, and DSEs.Wn and DSEs.Gn are set off.

The case when the matching ACL entry indicates gate permission is
a little more complex. Continuing with the previous example, in this
case only DSEs.Gn is set on by the supervisor. However, DSEs.GATES and
DSEs.DOMATN must also be filled in. Recall that these fields indicate
the number of gate entry points in the segment and the number of the
domain for which they are gates, respectively. As the information
source for thesz fields, two new attributes for a segment are introduced.
The first attribute, which may or may not apply to a given segment,

says: "this segment is a gate into protected subsystem <protected

subsystem tree name>", and is called the gate attribute. The second
atiribute, which is only meaningful when the f[irsi is appiled, says:
"there are m gate entry points in this segment'". How these attritubes
are used is obvious. If gate permission applies, then the supervisor
determines if the protected subsystem named by the gate attribute is
already associated with some domain of the process. If so, then the

corresponding domain number derived from the domain table for the
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process is used to set DSEs.DOMAIN. 1If not, then that protected sub-

system is assigned an unoccupied domain of the process, and the number
of this domain is used to set DSEs.DOMAIN. DSEs.GATES is set directly
from the second attribute. Thus, a protected subsystem is associated

with a domain of a process when the first attempt is made to get at a

segment containing gates into that protected subsystem.

If all eight of the domains of a process are occupied at the time
when a new protected subsystem is to be associated with the process,
then it is necessary to free an occupied domain to make room. The
choice of which domain to free, i.e., which protected subsystem instance
to remove from the process, is best made by the user associated with the
process or a program provided by him. With the reasonable restriction
that the domain to be freed have no outstanding invocations, the desig-
nated domain :s easily freed by turning off all the permission bits in
the correspoading column of the descriptor segment, turning off all
gate permission bits in other columms that correspond to gates into the
freed domain, and appropriately updating various suvperviscr data bases.
The execution environment of the fireed domain must alsu be returned to
the unused state. Reusing domains is much easier than veusing DSE's.
The reason is that segment numbers diffuse into nonr-supe:visor-controlled
data segments as part of stored pointers, making it vevy difficult to

locate all instances of pointers referring to the sepment previously
associated with a reused DSE. Domain numbers are not part of stored

pointers, however, and appear only in supervisor-controlled data segments.
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Controlling the Gate Attribute

In general, given that a particular protected subsystem instance
has permission to modify the ACL of an object at all, there need be no
finer control on the particular modification. Any element may be deleted
from the ACL and any element may be added. There need be no constraint
on the protected subsystem instance named or the mode specified in an
added element. (To keecp things consisctent the supervisor might enforce
the rule that the specification c¢f gate permission in an ACL element
for a segment can be made only if the gate attribute is present for the
segment.) The ability to set the gate attribute for a segment, however,
needs to be carefully controlled. 7Tn particular, if a procedure execut-
ing in a protected subsystem instance which has pruper permission to
change the attributes of some segment could specify a gate attribute
for that segment naming an arbitrary protected subsystem, then no vro-
tected subsystem would be secure. Any user could create, say from his
ilome protected subsystem instanca, a gate into any other protected sub-
system and thereby cause & procedure he coastructed to execute in any
other pruiected subsystem. The ability to create gates into a protected
subs,ctem needs to be restricted ro those respensible for the protected
subsystem (or thelc designates). The ACL ou a protected subsystem pro-
vides this control.

There necd be onliy one kind ¢‘ permission flag that can appear in
an ACL element of a nrotected subsvstem: the "define gates' permission
flag. 1In order for some protected subsvstem instance to set the gate
attribute for some ssgment to specify that the segment contains gates

into 2 protected subsystem with tree name T, a matching element on the
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ACL of T must give the requesting protected subsystem instance "define
gates" nermission. Thus, in addition to providing a tree name for a
protectad subsystem, a protected subsystem object in the directory

hierarchy controls the creation of gates into the protected subsystem.

Exampies of Access Lontrol Lists

A few cxamples will help to sharpen the meaning and use of ACL's
on protected subsystems and segments., To start with, imagine that each
system useY has a two-part project/persor name, that a home directory
with the tree name "root>projects>PROJECT NAME>PERSON_NAME" is provided
for each user, and that a home protected subsystem with the name
"root>projects>PROJECT NAME>PERSON NAME>home" is provided for each user.
Only the home protected subsystem instance of the user and the home pro-
tected subsystem instance of his project administrator have permission
to parform operatione on th; user’'s home directory, including modifying
the ACL's cf directly inferior segmeunts, directories, and protected
subgyscams.

The most frequently used ACL clements by a user will be those
giving access to his home protected sul.ystem instance. Following the
assumptions just outlined, such ACL elements tor the user "CompSys.Jones"
would be expressed as:

reot>projects>CompSys>jones:-home: Compsys.Jones  <mode>
his specification will be so {requently used (even in the examples in
this section) and is sc avkward that a shorthand notation is adopted to
axpress the home protected subsystem instance of a user. it is jusu

the uger's name preceeded by 2 coion. Thus the ACL eiement:
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:CompSys.Jones <mode>
is equivalent to the previous exptessicn.* A data segment that this
user creates for hic own use, then, would bear the ACL element:
:CompSys . ones read, write

while a procedure segment created for his own use would bear the ACL

3 - element:

:CompSys .Jones read, execute
This procedure segment could be shared with his friend "Smith" in the
same project by adding to its ACL the element:

:CompSys .Smith read, execute i

Now imagine that user "CompSys.Jones" wishes to create a protected
subsystem that encapsulates one procedure segment containing gate entry
points and one datz segment. We will name this protected subsystem
"ex ps” and put it in his home directory. Thus, its tree name is
"root>projects>CompSys>Jones>es_ps". The ACL of this protected subsys-
tem ic set with the single entry:

:CompSys.Jones definc gates {
which gives user "CompSys.Jlones" permission to define gates for the pro-
tected subsystem when executing in his home protected suyhgystem instarnce.
Thz procedure segment is then given a gate attribute for the protected
subsystem "roo*>prajects>CompSys>Jones™ex_ps'. Initially, the ACL of

the procedure segment has two elements. They are:

ate

In ¢ real wmplementation conventions aiso would be required to shorten
the expression of other commonly used protected subsystem iastances iu
ATL elements. No further conventions will be introduced here, however.




T e S R TR SaeRy e E

i 3

¥

151 N

:

:

X

:CompSys.Jones read, execute K
root>projects>Complys>Jones>ex_ps:¥*.* read, execute §

These elements 2llow erecution of the procedure segment :n his home pro- 1
% Z
tected subsystem instance and in any instance of the "ex_ps" protected A

o

subsystem. Likewise, the data segment gets the ACL:
:CompSys.Jones read, write

root>projects>CompSs>Jones>ex_psi¥.7

-

Tead, write
allowing read/write access to the segment from the home protected subsys-

tem instance of the user and {rom any instance of the "ex_ps'" pratected

Yovukd e 3 SOl R Ban (oo sndal SnEANs Aska 0w Rl REY Cntnt st o

subsystem. So far, no user can borrow this protected subsystem.

Suppose now that user “CompSys.Smith" wants to borrow this protected

subsystem. User "“CompSys.Jones" can permit this by adding the element:

£yt

:CompSys.Snith gate
to the ACL of the procedure segment cvontaining gates into the protected
subsystem. This gives user "CompSyvs.Smith" permission to call these

gate entry points from his home protected subsystem instance and estab-

BN W2 NI

lich an instance of the protected subsystem "ex ps" in his process.

s

This simple example illustrates the general pattern for defining

R N

and controlling the sharing ¢f a protectud subsystem. All the procedure

1}

and data segments cf the protected subsystem are made divectly accessible

Gu

in appropriate ways from anv instance of the subsystem. The sharing

A #e

of rthe protected subsystem is then controlled by giving other protected

subsystem instances gate access to the gate segments.

Ha ki daas be fduate

The user name " %" means any project and any user. A match anything
character such as "*" is very useful for construecting ACL elements
which matih a group of protected subsystem instances.
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The pattern for controlling the sharing of protected subsystems

g,

allows the access of one protect=d subsystem instance to another tn be
revoked in a2 particularly smooth way by removing the ACL entries giving
5 the former gate access to the gate segments of the latter. If the

é latter happens to be executing at the time this gate access is revoked,
13 execution is not stopped instantaneously. Rather, execution continues

pe until the cross-domain return terminates the activities of the protected
subsystem instance in an orderly fashion. Thus, the protected subsystem
instance is not stopped executing at an awkward moment leaving component
; data bases in an inconsistent state. Because of the revoked gate access,
: however, further cross-domain calls back into the protected subsystem

instance by the former will not be allowed.

E Other Issues

The decision to provide general support for user-defined protected

T
RASE LY Feia

subsystems in a computer utility impacts other areas of the software

BAPCR P

system besides the file system. One of thc most important is the execu-
tion environnent provided by the system for procedures. A procedure

3 segment that can be used as a building block is of necessity pure and

may contain ambiguous unresolved r:ferences to other procedure and data
segments. In order to execute, the procedure segment must be provided

e with an impure appendage in which to store linkage information and

3 static variables, a stack segient in which zo allccate activation records,

3 and information such s search rules [4] with which to resolve the

ks ambiguous references to other procedure and data segments. It is

.
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essential that all these aspects of the executijon environment which
can affect the operation of a procedure be provided by the system on a
per domain basis, and that a standard initial execution environment be
defined which is guaranteed by the supervisor to exist in any domain
of a process. Thus, when a protected subsystem instance is associated
with a domain of some process, the procedures of thal proutected sub-
system can know what execution environment will be provided initially
and therefore can be constructed to operate correctly in that
environment.

Multics already meets this requirement. I/0 stream name defini-
tions and attachments, reference name definitions, and search rule
definitions are limited in scope to a single domain of a process and
always given a svstem-defined initial state. A stack segment and a
segment for linkage information are preovided for each domain of a pro-
cess and are given system-defined initial states.

Other system functions which affect the secure operation of a
multidomain computation include error detection and handling (for .
example, the PL/I condition mechanisms), process interruption via the
attention key of the user's terminal, input/output, and accounting.
The mechanisms in Multics for performinz these and other functions,

with minor revisions, appear to be adequate for supporting multidomain

[P

computations.

o

Finally, in order for the procedures of a protected subsystem to

P TR L]

make meaningful decisions on whether or not to fulfill rejuests received

in the form of cross-domain calls, it must be possible for these proce-

P ~l.
etormine
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dures to ie identity vi the prorected subsystem instance
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maling the request. For this purpose a supervisor gate should be

@

provided which allows a procedure executing in some domain to determine

AN

the tree name cf the protected subsystem instance from which the last

A}

TR ) [ T T T T TR TP T e ep T G P BV L Rk

incoming cross-domain call was made. It may be appropriate to provide
a supervisor gate which essentially makes the contents of the domain
table of a process available to procedures executing in any domain of

a precess.

Summary

This chapter has presented a brief description cf a software second

catitalapgaigaia e i sa biadbica et
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layer for the processor protection mechanisms described in Chapters 2
and 3. The purpose of this material is to demonstrate sne way to har-
ness the processor protection mechanisms so that users can define and
control the sharing of protected subsystems. There are many degrees of
freedom in constructing a software system to harness the hardware pro-
tection mechanisms. Further research may produce a software system
organization Lhal provides a more simple, natural, and flexible user
interface for controlling sharing in a computer utility than the inter-
face developed in this chapter. The software system outlined here,
however, demonstrates that a practical protection facility meeting the
objectives presented in Chapter 1 can be constructed based on the hard-

ware protection mechanisms developed in this thesis.
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CHAPTER 5

CONCLUSIONS
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This thesis has described protection mechanisms for a computer

e et

utility which, in addition to allowing controlled sharing of programs

RV

and data among users, allow contrclled sharing of user-defined protected

a3vstey g,

subsystems. These mechanisms are practical to implement using the hard-

-

ware and software technology available today, and if implemented would
provide a practical and sophisticated facility for controlling infor-
mation sharing in an operational computer utility.

The unique aspect of these protection mechanisms is the efficient,
natural, and general manner in which they support the controlled sharing

of user-defined protected subsystems. A protected subsystem is a col-

lection of programs and data bases encapsulated so that other executing
programs can invoke certain component programs within the protected sub-

system, but are prevented from reading or writing component programs and

b

data bases, and arec prevented from disrupting che intended operation of

the component programs. The ability to define and share protected sub-

systems provides users with a flexible and powerful means for controlling .

S

access to stored information. By defining appropriate protected subsys-

e

4

tems, for example, users can implement complex controls on access to data

]

[T O

bases, share proprietary algorithms without divulging the structure cf

Y]

ach

the algorithms, or limit the damage that borrowed programs can do to the

programs and data bases of the borrower.
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In the first example, by encapsulating various data bases in a pro-
tected subsystem with programs that he provides, a user can force all
references to the data bases attempted by programs outside the protected
subsystem to be made by invoking these caretaker programs. The user can
specify arbitrarily complex controls on access to the encapsulated data
bases since he writes the programs that judge, perform, and record re-
quested references. Providing users with the ability to write programs
for controlling access to data bases has an important impact on the
structure of the computer utility. It means that the system need not
provide protection mechanisms that directly implement complex, content-
dependent controls on access to stored informaticn. Rather, the system
only need implement the general mechanisms required for users to define
the encapsulation of programs and data bases in protected subsystems and
for users to control the sharing of protected subsystems. More complex
controls on access to stored information than are directly provided by
the system can be implemented by the users themselves by encapsulating
caretaker programs with data bases in protected subsyctems. The result
is that arbitrarily complex control on access to stored programs and
data can be implemented based on a general, fixed, fairly simple set of
system-provided protection mechanisms.

The secoud example use for protected subsystems, sharing proprietary
algorithms without divulging the structure of the algorithms, takes ad-
vantage of the fact that programs in a protected subsystem may be invoked
by outside programs but not read by them. In addizion, none of the tem-

porary or permanent data associated with the programs in the protected

e

subsystem may he read or written by outside progtams. Thus, the programs
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in a protected subsystem may be used by other programs, but no aspect of
their structure examined.

The third example use for protected subsystems, limiting the damage
that borrowed programs can do to the programs and data of the borrower,
is based on the fact that programs inside a protected subsystem can in-
voke programs oulside wilhout compromising the protected subsystem.
Thus, a borrower only need arrange that his programs and data form a
protected subsystem and that a borrowed program not be nart of that pro-
tected subsystem. Then, if{ Sy malice or error the borrowed program be-
haves in an unexpected way, it will not be able tov damage the programs
and data of the borrower.

i protection mechanisms described in this thesis for supporting

user- = 'ned protected subsystems allow multiple, independent protected
subsy to be combined in a singie computation without compromising
the prc n of the individual subsystems. The mechanisms are based

on the division of a computation into independent domains of access priv-
ilege, each of which may encapsulate a protected subsystem. The central
component of these mechanisms is a hardware processor that fully supports
a multidomain computaticn impleme:ted as a single process whose address
space is a segmented virtual memory. This processor allows a standard
interprocedure call with arguments to change the domain of executicn of
the process. All the semantic implications of an interprocedure call

as defined in a high-level programming language like PL/I are accomodated
on a cross~domain call without compromising the protection of th. sub-
systems encapsulated by either of the domains involved. The processor

design represents the first time that hardware mechanisms for fully
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automating cross-domain calls between independent domains of a compu-
tation have been described.

The processor rzcogniz-. and enforces two kinds of access capabil-
ities: static and dynamic. Static access capabilities represent the
encapsulation of segments of procedure and data in protected subsystems
and control the ability of procedures executing in one protected sub-
system to invoke procedures of another via a cross-domain call. Dynamic
access capabilities correspond to the arguments of cross-domain calls.
The processor automatically adds to the called domain dynamic access
capabiiities to reference whatever arguments accompany a cross-domain
call and automatically removes these capabilities whenever the subse-
quent return occurs. The distinction between static and dynamic access
capabilities corresponds to an apparently fundamental division of the
access privilege associated with a process that executes in a multi-
domain environment into the capabilities associated with the address
space component of the process (a segmented virtual memory in this case)
and the capabilities associated with the execution point component of
the process.

The processor is the key to both the efl.ciency and the naturalness
of the protection mechanisms. Because the processor automatically vali-
dates each reference made by an executing program against the static or
dynamic access capabilities in the domain of execution and automatically
performs cross-domain calls, little intervention by supervisor software
is required for the enforcement of the access constraints associated
with a multidomain computation as that computation executes. Because

on a cross-domain call the processor is able to ipterpret the standard
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argument list and create in the called domain dynamic access capabilities

.,
O

that exactly correspond to the arguments, the user has the natural inter-

face to the cross-domain call mechanism of the call and return statements

{alblcuinsing

in a high-level programming language.

Pri

In addition to the hardware processor, supporting software was dis-
cussed. This software, when used in conjunction with the hardware pro-
tection mechanisms, provides an eavironment in which users of the com-
puter utility can construct and share procedure segments, data segments,
and protected subsystems. This protection facility extends the idea
inherent in programming generality of using programs as building blocks
to allow protected subsystems tc be used as building blocks as well.
Independently written and compiled procedure segments may be combined
in different ways along with the associated data segments to form pro-

tected subsystems without recompiling the procedure segments. Independ-

¢ ba ek GO oo S SHRBTANEI et L snirant bR e s N i ctid Bt

ently defined protected subsystems may be combined in different ways as i
cooperative partners in various computations without either modifying
the protected subsystems or altering the component procedure segments.

The ease with which procedure segments, data segments, and protected sub-

systems provided by different users can be combined to perform different

LITV TP Y TR DPRIIPPET TAPI RN U

computatiors wiil encourage the users of tbe computer utility to commun-

icate, cooperate, and build upon one another's work.

wWorlddat ¢ 4 A A

Taken togethier, the hardware and softuare mechanisms described in

Mo

this thesis constitute ar existence proof of the feasibility of building

w St

protection mechanisms for a computer utility that allow multiple user-

Y

defined protected subsystems, mutually suspicious of one another, to

cooperate in a single computation in an efficient and natural way.
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Areas for Further Research

The topic of protection mechanisms for computer systems is by no
means cxhausted as a viable research topic. 1In this final section of
the thesis two of the many areas for further research are discussed
briefly. The first is the user interface for controlling sharing in a
computer utility. As indicated in Chapter 4, further research may pro-
duce a software system organization that provides a more simple, flex-
ible, and natural user interface for controlling sharing in a computer
utility than that described in this thesis. Making the user interface
as simple and natural as possible without sacrificing needed flexibility
is very important. Experience with Multics suggests that users not
accustomed to dealing with sophisticated protection mechanisms frequent-
ly make errors when specifying to the system the access to be allowed to
some object. Even after some skiil is developed in applying the protec-
tion mechanisms, users find it hard tc be sure ihat specifications given
to the system to control the access to some object result in the intended
pattern of access being allowed. For example, it is ver, hard to detect
the accidental granting of too much access to some object, because no
obvious errors result from too much Aaccess being granted. When dealing
with user-defined protected subsystems the problem probably becomes
worse, for access specifications become embedded in programs that users
construct.

To make more progress on this important problem of human engineering,
it may be necessary to employ an actual system with a creative user

community as a tool. Only by applying a set of protection mechanisms to

the protection needs of real users can it be seen where user mistakes
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commonly are made, and can it be seen what aspecis of the flexibility
provided are really needed and what aspects complicate the mechanisms
with unneeded flexibility. It would be feasible to construct a proto-
type of the system proposed in this thesis to use as such a tool. Be-
cause of the ciose relationship of the overall architecture of thke pro-
cessor described here to the architecture of the new Mullics processor,
only a few of the major functional modules cf that processor would have
to be altered to produce a processor that iwmplements most of the protec-
tion mechanisms described in Chapter 3. Only a few changes are required
to the existing Multics software to produce the software system described
in Chapter 4. 1In addition to testing user reaction to the protection
facilities provided, this prototype system would provide an environment
in which to test improved inte:xfaces and to develop tools that allow
users to debug the access specificitions embodied in protected subsys-
tems or given to the systen~provided protection mechanisms.

The second area for further research is that of certification.
Certification means guaranteeing that the protection mechanisms in a
system actually implement the intended protection facility, i.e., that
no mistakes were made during the design or construction of system pro-
tection mechanisms that allow these meclanic .- to be circumvented. The
essential problem is that there exist no methodical techniques for de-
signing or construrting sysiems so that this guarantee can be made. In
addition, the protection mechanisms devised to date, especially their

software components, are much too complex to certify by inspection once

constructed.
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Proteccion hardware for supporting multidomain computations, such
as that described in this thesis, offers s~me help in attacking the prob-
lem of certifying the software componentz of the protection mechanisms
in a system.

The hardware can be applied tc isclate by encapsulation in

nrotected cubsystems those software components that are critical to the

correct function of the protection mechanisms. The key to success, and
the area where further research is required, is making small and simple

those software components which, if improperly designed or implemented,

or if violated, would conpromise the protection mechanisms of the system.
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Once made gmall and simple, aad their correct operation certified, the

hardware can previde enforced isolation for these components, thus insu-

lating them from errors introduced into the system by modifying other,

less critical components of the softwarc.
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The two areas for further research mentioned above are only a small

sample of the wourk that remains to be done on the topic of protection
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mechanisms for computer svstems. One of the basic problems to be over-

come is that there exists such a lack of formal knowiedge on the topic

that it is difficult tc see the problems that remain unsolved. As com-

puter systems play larger and mere important roles in society, protection

mechanisms will become increasingiy wuaportant as the guardians of priva-

cy. The design and implementa’ion of pretection mechanisms must become
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so well understcod ard methcdical that, as a matter of course, commerical-

-

ly available corputer-based intormation systems contain protection mecha-

nisms which prevent unauthorized access to the information stored in them

while at the same time make it casy for uscrs to communicate when appropri-
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