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DESIGN AND MAXIMUM ERROR ESTIMATION FOR
SMALL ERROR LOW PASS FILTERS

by

W.D. Hibler III

Introduction

There exist many situations in which it is desirable to filter ont certain frequency components
from geophysical time series with a sharp frequency cutoff. When nsing a finite nonrecursive digital
filter for this purpose, some smoothing of the frequency cutoff must be employed to reduce the magni-
tude of spurious frequency ripples in both the stop band and the pass band. One type of smoolhing
for this purpose was developed by Martin (1957). In later work numerical search techniques tor
finding the optimal type of smoothing in terms of minimizing the ripple error for a given transition
bandwidth were discussed by Gold and Jordan (1969). However, in both these techniques the design
procedure depends upon estimating errors numericaliy for individual filters. For convenience it
would be quite useful to have a design procedure allowing the accurate estimation of ripple error for
any low pass filter designed by using the procedure. This is especially important for filters con-
sisting of large numbers of weights hecause the error calcnlation is time consuming and cnmbersome
in such cases.

Such a formulation and an error estimavion are carried out here. The smoothing is carried out
by using standard spectral windows, develope: for purposes of spectrial analysis (Blackman and
Tukey 1958), Specific examples illustrated later show that such a smoothing procedure yields low
pass filters with smaller errors (by a factor of five in one case) than those of comparable filters
designed by the Martin (1957) technique. As a result of the error estimation, the straightforward
working equations may be used to quickly calculate convolution weights for symmeiric, unity gain
low pass filters with a guaranteed ripple amplitude outside the transition band of less than 0.9%
or 0.05% depending on how wide the transition band is made. Moreover, in the working equations
presented later the width of the transition band scales inversely with N (the number of convolution
weights), so that the frequency cutoff for a given error may be made arbitrarily sharp by increasing
N. Once the convolution weights are calculated, the convolution may be performed by conventional
techniques or by the aperiodic fast Fourier transform (FFT) procedure (Stockham 1966), a much more
rapid technique. (The aperiodic FFT procedure should not be confused with simply doing a FFT,
removing certain frequencies and then transforming back to real space, because such au operation
effects a periodic convolution with spurions end point effects). For completeness we have included
the basic equations for t"e FFT aperiodic convolution procedure in Appendix A.

In the next section we shall formulate the design procedure in a manner that allows the numerical
estimate of maximum error. Maximum errors will then be calculated for the three most standard spec-
tral windows. A specific example and working equations will also be presented for those interested
in using low pass filters without going through the complete detail of the design procedure.
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Filter dasign and error estimation

A convenient way of viewing the frequency response of a given finite filter is to consider the
frequency spectrum of the filter an '‘estimate’’ of the true spectrum of the infinite length filter.
Viewed in this .nanner, spurious frequency ripples result from the convolution of the Fourier trans-
form of the data window with the true spectrum. A way to improve the situation is to use a non-
rectangular data window which produces smaller amplitude ripples, but which also smooths out the
frequency cutoff.

Let us cousider a symmetric digital filter with weights C(n):

H(n) n-01+1,.,+N -1
Ccm -

H(n)

2

n = +N,
The frequency response of this filter is (Holloway 1958):

—~ N -1
H() 2 X H) cos @nfaAt) + HO) + cos (2rfNAOH(N) (1)

n-1

where At is the data interval. We shall denote functions in frequency space by a tilda variable
with f ranging from 0 to 0.5 cycles/data imerval. If H(f) is known at the discreie frequencies n/(2T)
~where T - NAL), then eq 1 may be inverted

N-1 3 =
H(n) IIV ; cos ZNQH(k/.%T) 1 ? + cos (nn)’_i_(ﬂzl/virp—) . 2
Introducing the infinite Dirac comb
v AD 3 80 - gAD) 3)
q:-m
(where (1) is the Dirac delta function), eq 1 may be rewritter. in the form
Hh [ dt' cos Ruft WS A [ Hy(t - 1)Vy; 2Tdi, @
where
O}y ~T
W) 172 4] - T
e T

tin) n 0,..tN -1
Hl(l) = {Hm)/2 n - +N
0 |t >T.

(The values of H (1) at other values of { are not important because of the multiplication by ©(t'; At)
in eq 4. To verify that eq 4 is in fact equal to eq 1, it is convenient to note that the eonvolution of
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H () with the infinite Dirac comb is equal to S H 1(t' - 2gT) so that for |t'] < WAt this sum
over q reduces to H,(t').) Q==

. Sgnce all terms in the integral in eq 4 are even functions of t', we may replace cos (2nft') by
ei®™U  Using the identity

f i eiEnft'v(tl; Abdt' - _/.\1.'.‘_ U(f; 1/At) g

and the convolution theorem, eq 4 becomes

i - 3 3 W - w/2T - ¢/A0H@/2T) (6)
n=--00  Q=-090
where
~ in 2T nf
W) = L = . 7
0 = T = Q0 ™

Equation 6 illustrates how the aliased Fourier transform of the spectral window is convoluted with
tiie discrete frequency response to give the complete frequency response. We are certainly {ree to
change the form of W(f) by using some nonrectangular spectral window, call it W ,(¢), zero outside
of the interval [-T, T If we substitute such a data window in eq 4, then eq 6 is the same with
W(f) being replaced by W,(f) and H(f) being a different frequency response, call it H ().

We would like to use a spectral window W,(0), having as small side lobes as possible, while
causing minimum smoothing of the spectral content. A general class of windows developed for
power spectral calculations with these considerations in mind is of the form

39 + 22 35 cosj%t ¢ < T
j=1
W) = 10.5la + 2 -§1 (-Dia,) | =T ()
J=
0 l¢f > T.

The Fourier transform of any window of this type is given by (Blackman and Tukey 1958, p. 99)
QN = a;Q;(N + jEl a;;{Qlf + j/2T) + @t - /2T 9

where Qq(f) is as defined in eq 7. In particular, we will consider only cases where 3;; = 0 for
j > 2. In this case, since Qo(m/2T) = 0 for an integer m with magnitude > 0, we have

$ Q@mA2T - N¢/T) = Q0/2D (10)

q:-—oo

e R IR

BRI
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for inj -. N - 3. Consequently, eq 6 lwith W(/) replaced by Wl([)! takes on the simple form at
discrete frequency values n/2T:

[2)

: , —~ - (n-m
Hyn/2n) - 3~ af (T) (11)

m- -2

it Hn/2T) 0 for Ini ~ N 3. Equation 11 can thus be used to determine smoothed diserete
frequency response values H 1(n/2T) given ideal frequency response values H(n/2T) and some
spectral window coefficients a . Filter weights may then be calculated fron eq 2.

We will consider here the three most standard spectral windows (Blackman and Tukey 1958)

which have the listed nonzero coefficients @

1. Hanning 4y g 0.5, ay ay ,p - 025
2. Hamming, ay o 0.54, g 1 Ay 023

3. Bilackman dy g 0.42, ag ag . = 0.25, 4y gy = a5 o - 0.04,

Using eq 11 the design procedure is to ¢hoose initially H(n/2T) equal to L up to in| - p, and
zero for o, - p. We will call p the design cutoff. Smoothed frequency weights H(n'2T) are
determined by eq 11 and the smoothed frequeney weights are eonverted to digital tilter weights by
eq 2. Clearly the transition band will extend from (p - D/2T to (p + 2)/2T for the Hamming and
Hanning spectral windows and from (p - 2). 2T to (p + 3)/2T for the Blackman window. Frrors are
any deviation from ! iun the pass bund and deviations from O i the stop band.

The basic equation for estimating the maximnm error is eq 6. An equivalent form of this equation
obtained by rearranging the double sum is {(frequencies are measured in units of 1/2T):

Hyo S OWWH &k - D (12)
where H , () S H(f 2gN) is now periodic. Keeping the periodicity of HA([) in mind, we see

q ~
that if we search mnnerically for the maximum error we need consider only low pass filters with
design cutoff valnes p - N 2. This follows because a filter with a higher design cutoff creates the
same sawtooth funetion (with a shift in the origin) for H o (D) as for 1 H (D, where H,'(f) is an
appropriate set of design weights with design cutofft p less than N/2, But the maxinum error for
1L - H,(f) is the same as for H 5 '(f) beeanse convolving W(k) with 1 yields 1 identically, (As
before, by maxinunn error we mean the greatest deviucion from 1 in the pass band or from zero in the
stop band, whichever is larger. Thus, changing the origin of a piven sawtooth function does not
change the maximum error defined in this way.)

Now for design cutoffs less than or equal to N/2 we may wriie eq 12 in the form

N
. 0 .
H( Y OWWH,Kk -0+ E (13)
k --N”

where
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E- ¥ wol,k-p. ¥ WO & - 1) (14)
k=Ng+1 k==Ng-1

where Ny < N/2, The first sum is quite tractable for numerical calculation, so we need to estimate
the maximum error introduced by neglecting E. To do this we first note that W(k) is of the form g(k)
sin #k where g(k) is a monotonically decreasing function past a certain value of k. For example, for
the Hamming spectral window 8(k) is given by 1/n{0.08%% - 0.54/k(x2 - )], Determining the
extremum values of g(k) by differentiation, we see that &(k) is monotonically decreasing for k > 10
for all three spectral windows considered in this paper. Consequently, we see that it Ny > 10 the
expression for £ represents the sum of two alternating decreasing series. This follows from the form
of W(p) and the fact that consecutive ones in the periodic function H A(k) occur in pairs. But
Leibnitz’s inequality (Gradshteyn and Ryzhik 1965) states that the magnitude of such a series ig
always less than the magnicude of the first term so that £ < 2|W(N,)|.

Therefore, we see that We may estimate the error of any filter with a number of weights greater
than 4N; + 1, within an additive constant of 2|W(N,)|, by evaluating

NO.
2 WEHEK -0 = W - P+ W —p+ 1) & ..+ WS p) (15)
k=-N0 *

(where p is the design cutoff value) for values of P =12, .., Njand values of fup to Ny. Such a
calculation was performed numerically by evaluating eq 15 at the disciate frequency points f = 0,
1720, 2/20, ..., N for values of p = 1, 2, ..., No. The maximum error was determined by taking the
absolute value of [H(f) - 1] for £ in the pass band and the absolute value of H(f) for f in the stop
band. Since H(f) typically goes through one oscillation for Af = 1 [because W(f) is of the form g(f)
sin (7f)], the sampling interval used in the numerical calculations is small compared with the rate
of change in H(f). Consequently, errors due to slightly missing the maximum side lobe were small.

To evaluate the error for filters with numbers of weights 2N + 1 less than (or equal to) 4N, +
1, we used eq 1 directly, again evaluating the frequency response at values of the frequency f =
0, 1/20, ..., N [units in 1/2T(cycles/data interval)] and for each value of f sweeping through values
of the design cutoff p from 1 to N/2 + 1 for the Hamming anc Hannirg windows and from 2 to N/2 4
1 for the Blackman window. This process was begun at N = 5. The results are illustrated in Fig-
ure 1, which can be used to estimate the maximum error of any filter with N > 5, and with the 100%
and 0% cutoff values both contained in the frequency interval C to 0.5 cycles/data interval.

In Figure 1 the filter error for N greater than a given cutoff value is illustrated by a straight
dashed line and was evaluated from eq 10 by the method described above. The maximum error
probably represents a somewhat higher error than would actually be obtained in practice. We have
also included in Figure 1 maxirmum error estimates for a trapezoidal type of smoothing for comparison.
The trapezoidal smoothing consists of using smoothing weights of ay=2/3,a_, -a y = 178,

These weights give the smcothed low pass filter frequency res_onse a trapezoidal shape, Errors using
a sharp cutoff are of course even larger (about 15% in some cases). To summarize the results, low
Pass filters designed using the Hanning, Hamming and Blackman spectral windows have respective
errors always less than 1.14%, 0.89% ang 0.048%,

Wesking cauations

To illustrate more specifically the filtering procedure we will design a specific low pass filter
and calculate its frequency response. Taking a filter with 2N 4+ 1 weights, we would like to pass all

frequencies below (N,/2N) cycles/data interval. To do this we take frequency weights of (at integer
values of i)

o ¥ - s s e

i

bx
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T T T T T T T T T T T 77 T T T T T T3
~ trapezoidal 'E
o /—7 ——
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o 1 b= y e V4
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N

Figure 1, Maximum error versus number of filter weights for low pass digital

filters designed using standard spectral windows. The dotted lines denote max-

imum error calculated according to eq 15 and represent an upper limit that is

never exceeded. As can be seen, the upper limit becomes more refined for large
N. For a given N, there are 2N + 1 digital filter weights.

i< N,
- 0.77, i - N, + 1 ,
IO = Y0035 - N, 4 2 0o
U B N1 v 2
for the Hamming window, and frequency weights:
( Li <Ny
0.96,i - N, 13
- 0.71, i - Ny v 2
HD - <020, . N, 4 3 el
0.04,i = Ny 4+ 4
L 0,i > N, + 4

for the Blackman window. The transition band frequencies extend {units of cycles/data interval)
from N,/2N to (N; + 3)/2N for the Hamming filter and from N /2N to (N, + 5)/2N for the Blackman
filter. The filter weights C(n) are obtained from eq 18

Cn) -

Z cos (—N—)H(x) + oy py oS (18)



DESIG:! AND MAXIMUM ERROR ESTIMATION FOR SMALL ERROR LOW PASS FILTERS 7

(LY ' | My,
00— P | ——————————— K -——lu T
e = = H"I ——— o | .‘III
TiewgpEe |
[t miwradp [EE]E 1
# - I
5 |
f§ %00 |I e
i
_Ll' B0 H il I|
7 |
E | .ll-.n'.'qln.‘l |
L qammilly ful |
- |II 1 II
i Hainming Li I LY & Hlppheey b - -2
i di [+ '1,."..- L i‘ % i {13 o= _-{H
1007, . . o i o - i £ (o]
oaf ——
|000M/W\/\/\\ - i — l:-:lt'],—’—' — “—rﬁ-ﬁ-.f"t T S
995 =5 1 k.’ \I'u
o | |
® 200 I Hiten 1
| \
2 J {
2 60 iy
: | \
b~
= \
‘?;1400 460
q 1
200 , 08
" b.Martin [, - uz | A Merhin i1
[ U — . R ——e o) fl e i I'&,_ -
% o I°H I T L ] (iF3 oy B
03 04 [ . 5 i

Frequency. cycles per datainterval Frequency, cycles per dota intervat

Figure 2. Amplitude response of selected nonrecursive digital filters consisting of 61 symmetric

weights. The error and transitior bandwidth (Af) in cycles/data interval for the various filters are:

1. (Hamming) 0.42%, Af = 0.050; 2, (Martin) 0.62%, Af - 0.054; 3. (Blackman) 0.03%, Af -

0.083; and 4. (Martin) 0.17%, Af = 0.10. For the Martin filters b and d, the r, parameter is 0.234
and the H parameters are respectively 0.27, 0.051.

where
Cn) - C(m)forn = 0, 11, #2, ..., N - 1)

and i

Cn) = C'(n)/2forn = iN,

Note that for numerical computation the sum over i in eq 18 need only extend up to the last nonzero
value of H(i). The resulting weights C(n) can then be used to filter some time series 7(i) by the
convolution

N
-

with r)r(i) being the filtered result. The filtering procedure necessitates the loss of 2N points. As
long as the transition band is contained between zero and the Nyquist frequency (1/2 cycles/data
interval), the maximum error is less than 0.9% for the Hamming filter and less than 0.05% for the
Blackwmian filter (Fig. 1).

In particular, taking N = 30 and Nl = 14, Figure 2 illustrates the frequency response of the
filters designed using eq 16-18. We have also illustrated typical filters generated according to the




procedure described by Martin (1957). The working equations for the Martin filters are also given

by Davis (1971), a somewhat more accessible reference. For the Martin filters there are two
Parameters r, and H, where r, denotes the 100% cutoff frequency and H determines the amount of
smearing of the frequency cutoff. (Values of r, and H are given with the figure caption.) DJoth the
Hamming and Blackman windows generate filters with less side lobe error than the Martin filters,
witn comparable transition bands. The Blackman window has decidedly less error than the compara-
ble Martin filter (smailer hy a factor of 5). Moreover, the transition band is considerahly smaller in
the Blackman case, with a width equal to 5/61 cycles/data interval as opposed to about 6/61 cycles/
data interval for the Martin filter. A Martin filter with 2 smaller transition bandwidth would be
expected to have an even greater error.

Application example

To illustrate the application of a low pass filter to digitized data we have applied a low pass
filter to laser profilometer data taken from an aircraft flying over the arctic pack ice. The results
are illustrated in Figure 3. The illustrated data consist of 1800 digitized points, at 1-yd intervals,
representing a straight-line profile of the upper surface of the ice pack. The original record length
was 2720 points as the filtering process necessitated the loss of 460 end points at each end of the
record. The low frequency trends in the data are due to the aircraft's change in altitude (about
20 ft) over the 1800-yard record. The smooth curve represents the low-pass filtered result.

The low pass filter was designed using the Hamming window and consisted of 921 weights with
the transition band extencing from 3/460 to 6/460 cycles/yd. By reference to Figure 1 the error is
less than 0.6%. The filter weights were convolved with the record using the aperiodic fast Fourier
transform procedure with a Fourier series length of 2048 points. In this particular case, the FFT
aperiodic convolution took about 45 sec (requiring 5 applications of the FFT algorithm for 2048
points), which was about five times faster than the convolution time using a conventional program.

o - : ﬁl' Lfn-ﬁ: .I EPH : o0 I; #56 "idooye
$ 60 «00 600 800 1000 1200 1400 1600 m

Distance .

Figure 3. Example of low pass filtering. The illustrated data consist of 1850 points at 1-yd inter-

vals. The smooth curve is the low pass liltered result using a Hamming low pass tilter consisting

of 921 weights with a transition band extending from 3/920 to 6/520 cycles/yd.
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We remark that the low pass filter gives a reasonable estimate of the aircraft motion (especially
in this example), but not in general ideal because there is an overlap between the surface roughness
spectrum aud the aircraft motion spectrum. {A more detailed filtering process which bypasses the
spectral overlap problem is described by Uibler (in prep).] Figure 3 is a good example,
however, of where small filter errors in the pass band are important because of the much larger
amplitude of the low frequency components compared with high frequency components. When, for
example, the low pass filtered result is subtracted from the initial profile, large errors in the pass
band leave residual low frequencies with amplitudes commensurate with the surface roughness. We
note in passing that it is clear that rather than low pass filter the data and then subtract the
filtered points the same end result could be obtained by applying the high pass filter consisting of
weights Cl(n). where Cy(n) - 6n’ o — Cm) with C(n) being the above low pass filter weights.

Conclusicn

In couclusion, the working equations described in eq 16-18 give a rapid method of determining
low pass filters with sharp frequency cutoffs and small spurious side lobe errors. Moreover, since
the maximum filter error is known, individual filter errors do not have to be checked — a laborious
procedure for large N. In practice, the procedure generates filters with small errors, especially for
the Blackman window, which are smaller than those of comparable filters generated by existing
techniques. 1t is probably true that for a particular cutoff and convolution length a more accurate
nonrecursive filter could be designed, for example, by using a slightly different spectral window.
However, in most applications eq 16-18 give adequate filters: and these equations are convenient to
use because a maximum filter error estimate is known.
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Preceding page blank 11

APPENDIX A. FFT APEi{IODIC CONVOLUTION TECHNIQUE

Given a set of filter weights C(n), we would like to filter the space series 7(i) by performing
the convolution

N
o) - ¥ Cigl - j) (A1)
j=-N

with nf(i ) being the filtered result. The filtering procedure necessitates the loss of 2N end points,
For a filter consisting of a large number of weights. & conventional convolution program takes
prohibitive amounts of time. Consequently, it is necessary to use the aperiodic fast Fourier trans-
form high-speed convolution technique (Stockham 1966). The aperiodic FF'T convolution procedure
should not be confused with simply carrying out a fast Fourie transform, removing certain fre-
quencies, and then transforming back to real Space as this results in a periodic convolution with
Spuricus end point effects. The aperiodic fast Fourier transform is performed as follows. The
discrete Fourier transform of (i) {denoted by 7k)]:

Nl—l
k) = N
=0

2rijk/N .
e V) (A2)

may be performed rapidly using the FFT algorithm for N 1+ & power of 2 (Cooiey and Tukey 1965).
For a filter with 2N + 1 weights we take Nl > N and define

Cn v NMyn=0,.., 9N 1
c,n) - : (A3)
0 n>@N +1)

We then take the discrete Fourier transform of C,(n) [denoted by él(k)l and 7(k) and form H(k) -
C, (k) 7(k). The discrete Fourier transform of i (k) is given by

N-1 -2rmink/N, -

e H(k) (A9

s—e

H@n) - 1—
N

1 k

Y

Jii

0
and is equal to the aperiodic convolution

Nl—l
Hn) = X qp(n - m)C(m) (A5)

m=0

where qp(i) is periodic; 1.e., 5 (i ¢ qu) = 7li), g an integer. Because of the zeros in C(j), how-
ever, the aperiodic convolution values i) defined in eq 2 are given by (i) - H@ + N) for

i - N toN, - N - 1, Tlus, N, - 2N filtered points are obtained. Note that if the convolution
length, 2N 4+ 1, is nearly equal to N1 then ouly a few points will be accurately filtered.
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12 APPENDIX A

Clearly the above procedure may be used for filtering a long record by operating with the FFT
algorithm on overlapping sections of record with the overlap depending on the convolution length.
In our application the FFT aperiodic technique (using N 1 = 2048) is about five times faster than
conventional methods.



