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ABSTRACT 

Silicon nitride has become a major structural ceramic 
material in the past decade.    One form of this material, 
referred to as reaction-bonded silicon nitride, is of partic- 
ular interest because it permits the production of ceramic 
components requiring little or no machining.    This review 
discusses the application of powder metallurgical techniques 
to the fabrication of reaction-bonded silicon nitride, the 
nitridation process, and resultant properties. 

Silicon nitride (Si3NiJ has been seriously investigated and used as an engi- 
neering material in the last few years.    The material is produced in two principal 
forms:    hot-pressed1 and reaction-bonded.2»3    Reaction-bonded silicon nitride in 
essence is not a single material but encompasses a spectrum of materials  (like 
steel) with various property characteristics, and with an ability to be fabricated 
by differing processing techniques.    The wide range of properties available to the 
designer/engineer results from these varied fabrication methods and subsequent 
processing conditions.    Both forms of 813^ exhibit exceptionally good thermal 
shock resistance for a ceramic material, relatively good oxidation resistance, 
and good erosion/corrosion resistance.4*    'Ihese properties have lead to consider- 
ation of silicon nitride ceramics for applications such as gas turbine combustDrs, 
rotors and Stators,5 missile heatshields and nozzles,6 gas bearings and furnace 
components. 

While the highest strength silicon nitride is produced by hot-pressing tech- 
niques, this brief review will limit itself to the discussion of reaction-bonded 
silicon nitride.    It is most appropriate to discuss reaction-bonded S13N4 
(RBS13NJJ at a conferer -e on powder metallurgy, since this unique material repre- 
sents a true interface where the technologies of powder metallurgy and ceramics 
merge.    Reaction-bonded silicon nitride is made by producing a preform of silicon 
metal powder by any one of several techniques  (isostatic compaction, flame spray- 
ing, slip casting, or injection molding with a polymeric carrier).    A replica of 
a conplex-shaped silicon metal gas turbine combustor, fabricated by the flame- 
spray technique, is shown in Figure 1.    The porous silicon metal compact is then 
reacted in an atmosphere of nitrogen and RBSi3Njf results.    Thus the ceramist 
literally does powder metallurgy up to the point of sintering and then instead 
of sintering in a neutral atmosphere, reacts the metal powder with the atmosphere 
during the firing stage to produce a ceramic.    The several truly unique aspects 
of both the reaction bonding process and the material which results will be 
discussed below. 

The unique aspect of the reaction bonding process in silicon nitride is that 
the dimensions of the original silicon metal preform are preserved to within 0.1%. 
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1. RAMESPRAYED SILICON METAL GAS TURBINE COMBUSTOR. 
1OMTMDATI0N. (Photo Courtesy of Admiralty Materials Laboratory» 

Has Betas is practice that coop lex shapes can be machined fron a "green" silicon 
preferably a lightly zeacted compact (10% nitrogen uptake)« known 
■terial-    Such machinable compacts can be worked with conven- 

tional steel tools.   Most flame-sprayed or voided silicon shapes require essen- 
tially a» nmrhimimg falHiough the as-sprayed silicon piece is usually robust 
enough to be machined without the need for an initial nitrogen firing).    Since 
Ike folly mitrided piece preserves the dimensions of its precursor, costly 
amrbimimg of hard cexaadc coaponents is eliminated. 

results. 
Silicon reacts with nitrogen to produce RBSi3Ni+, a 23% volume increase 
1© accooBodate this volume increase with only 0.1% gross dimensional 

faiies Hut a substantial portion of the Si3N4 be formed in the void 
t.    Im feet, as «rill be shown below, the first SijNt, to form occurs by whisker, 

platelet, or other imtravoid growth of Si3Ni,.    Since the attainment of a homoge- 
neous piece of Sijjm* requires that nitrogen gas have access to all volume elements 
of the boo/, 0 continuously connected pore network is required.    To insure connec- 
tivity of 0 secomi phase in a microstructuro, 15 ± 3 vol% of second phase (in this 
case pores)7»8 is required.    In practice, a silicon compact of about 60% green 
density yields am USi^i» compact of about 75 to 77% density.    Although high 

siti.es and resulting high RBSi3Nij densities can be achieved in the flane- 
1 process, the highest, green densities (excess of 1.9 x 103 kg/m3 

silicon green density) cannot be fully utilized since insufficient pore connec- 
tivity precludes totally reacting the silicon matrix.    Silicon nitride occurs in 
two cxjrstallographic forms:    a Si3N^ (actually an oxynitride Sin.sNisOo.g) and 
0 Sijlf*, both of which are hexagonal.^»10   The a form apparently occurs first at 
low temperatures (high 02 potentials)9 and starts filling the void space.    This 
occurs at mitriding temperatures ranging between 1100 and 1400 C, and is illus- 
trated schematically on the typical nitriding sequence shown in Figure 2.    At the 
next stage of the nr.triding sequence the silicon metal is taken above its melting 
point and reacts with nitrogen to form both ß and also a Si 3N1,.    The compact 
retains its structural integrity in the presence of liquid silicon metal because 
of the skeleton of a Si3Ni, which has been formed.    An alternate hypothesis of 
buckling and exfoliation of a Si3Nit films below the melting point of silicon can 
also account for this duplex structure which is shown in Figure 3.10 



Sort RBa-Si,N, Skeleton a + 0RBSi,N4 

Figure 2. SCHEMATIC OF THE REACTION BONDING PROCESS AS A FUNCTION OF TIME AND 
TEMPERATURE. THE ILLUSTRATIONS AT THE TOP REPRESENT THE MICROSTRUCTURE 
DEVELOPMENT AT APPROXIMATE POSITIONS ALONG THE NITRIDATION CURVE. 
1&066-1274/AMC-71 
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a. Cold-pressed and reaction-bonded material from 
Messier ÄWong (Ref. 11). Mag. 1500X 

b. Injection-molded and reaction-bonded material. 
Mag. 3000X 

Figure 3. SCANNING ELECTRON MICROGRAPHS OF DUPLEX MICROSTRUCTURES IN RBSi3N4. 
NOTE DIFFERENCES IN WHISKER PHASE MORPHOLOGY. 
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The kinetics of the reaction bonding process are being investigated by vari- 
ous workers but as yet are not well defined.    The investigations which have been 
carried out demonstrate that particle size and purity are extremely important.10»11 

Iron impurites at the 1% level greatly accelerate the reaction to Rr<Si3Nit.    Ini- 
tial powder particle size has been shown to effect final pore size12 and thus 
mechanical properties of the final material, and also influence reaction rates 
while forming RBSi3Nt|.

11 

The mechanical properties of reaction-bonded silicon nitride are also rather 
interesting.    Material with approximately 20% porosity has been obtained with 
reported bend strengths of 43,000 psi  (c.  300 MN/m2).    Since fully dense hot- 
pressed Si3N4 has a bend strength of about 115,000 psi  (c.  800 MN/m2), the rela- 
tively high bend strength of the reaction-bonded material with 20% porosity is 
unusual.    One may speculate that the answer may lie with the duplex microstructure. 
There may be some reinforcement of the material by the in situ formed a 813^ 
whiskers.    If this should prove to be the case, a new class of composite materials 
may be considered "autocomposites".    However, much work needs to be done to eluc- 
idate the structure/property relationships in this material. 
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