
VOLUME V OF Y

U.S. DEEPWATER PORT STUDY

ANSPORT AND BENEFIT COST RELATIONS

'네툰' 스럽하고

11.7

al (n.s. 1916 - 1

desyl

Reproduced From Best Available Copy

INSTITUTE FOR WATER RESOURCES

The Institute for Water Resources is the focal point of efforts to inprove U. S. Army Corps of Engineers' planning for the development and management of the nation's water and related land resources, particularly as antional objectives are affected by chraging polylic values. Through in-house and contract studins. the Institute identifies emorging planning issues and requirementit; avaluated ristning efficiency and effectiveness; develops applications to Corps' planning of analytical and projectional techniques and planning management systems; and for unlater the bases for improved Corps' planning policies and respectives. In concert with the Office, Chief of Engineers. it advices and assists Corps' sgencies in utilizing such techalgura chid curries out such procedures. Finally, it evaluates and recommende improvements in the professional developesserierogram for Competedannare; devalops training programs: and conducts traibles.

The lightly welcomes your commonle and suggestions on its program and publications.

Brigadier Géneral, USA Director

	ROL DATA - R		
(Security classification of tills, body of abstract and indexing . ORIGINATING ACTIVITY (Corporate author)	Annotation must be a		CURITY CLASSIFICATION
Robert R. Nathan Associates, Inc.		Unclass:	ified
1200 Eighteenth St. N. W.		28. GROUP	
Washington, D. C. 20036		NA	
REPORT TITLE			• • • • •
U. S. Deep Water Port Study	•		10
. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
Final Report	mulate Di		au Issohus de Par
Jeremy C. Ulin, and B. Ahnert, Lee Ber Edmund Getzin, Dieter Harper, Orest Ko and Harold Wein	rtman James	Cavin, N	Aarcella Czarnecki
	78. TOTAL NO. C	F PAGES	75. NO. OF REFS
August 1972	Se. ORIGINATOR	S REPORT NUM	i
DACW 31-71-C-0045			
NA	OWR Repor	t 72-8 (:	in 5 volumes)
6.	18. OTHER REPO	RT NO(S) (Any of	her numbers that may be seeigned
	None		
4.	none		
This document has been approved for			· · ·
distribution is unlimited.	12. SPONSORING		
None	Water Res Virginia	ources,A	er Institute for lexandria,
This report provides an overall appr United States by means of identificat deepwater port decision; development evaluation of engineering, economic port needs and policies, analysis of at this time and the critical issues cation of critical issues which need sizes port requirements for bulk con Volume 1 contains the <u>Summary</u> Volume II contains Commodity	ation of the of criter and enviro the/devel s surroundi further a modities. <u>Report</u> Studies and	ne factor ria approp nomental lopment o ing each analysis. 1 Project	s critical to U. S priate to the aspects of deep ptions available and the identifi- The study empha- ions
Volume III contains Physical A Selected/ Volume IV contains The Environ Deepwater Volume V contains Transport o Relations	Deepwater I nmental and Ports f Bulk Comm hips	Port Alte I Ecologi	rnatives cal Aspects of
Volume III contains <u>Physical</u> Selected/ Volume IV contains <u>The Environ</u> <u>Deepwater</u> Volume V contains Transport o	Deepwater I nmental and Ports f Bulk Comm hips	Port Alte I Ecologi	rnatives cal Aspects of
Volume III contains Physical Selected/ Volume IV contains The Environ Deepwater Volume V contains Transport of Relations	Deepwater I nmental and Ports f Bulk Comm hips	Port Alte LEcologi modities	rnatives cal Aspects of
Volume III contains Physical A Selected/ Volume IV contains The Environ Deepwater Volume V contains Transport of Relations DD	Deepwater I nmental and Ports f Bulk Comm hips	Port Alte LEcologi modities	rnatives cal Aspects of and Benefit-Cost
Volume III contains Physical Selected/ Volume IV contains The Environ Deepwater Volume V contains Transport of Relations	Deepwater I nmental and Ports f Bulk Comm hips	Port Alte LEcologi modities	<u>rnatives</u> <u>cal Aspects of</u> and Benefit-Cost

ų

ž

あい アード・

.

そうち ちょうちょう

			• '					
1		•`						
	· · · · ·							
Security Classi	fleation		LIN	K A	LIN		LIN	K C
	KEY WORDS		ROLE		NOLE	WT	ROLE	WT
ommodity Studi lternatives, T nalysis, Secon nvironment and	es, Projections, Dee ransport Costs, Bene dary Economic Benefi Ecology of Deep Por	pwater Po fit-Cost ts, ts	rt					
	n an Article Anna Anna Anna Anna Anna Anna Anna Ann							
						ан 1917 - 1917 1917 -		
e de Reference		0 						
		 		· · · ·				
		میں ا میں ا						
						~		
1. 1.1								
· · ·	1993 - 10 M - 1						Н	
	• • • • • • • • • • • • • • • • • • •							
ч - с - с - с - с								
. s								
		•	.	Security	Classif	cetion		
		ib						

และมีคณะครามเพลสาว

j

ţ.

:

۰ ۱

i G

..

Volume V of V

U.S. DEEPWATER PORT STUDY

Transport and Benefit-Cost Relationships

; **;**

August 1972

IWR Report 72-8

DANE I

CONTENTS

Annex	E.	Transport of Bulk Commodities	1
Annex	F.	Transport Benefit-Cost Relationships for Selected Investment Alternatives	217
Annex	G.	Ocean Transport of Major Bulk Commodi- ties in U.S. Foreign Trade, 1968 and 1969; Patterns of Geographic Linkage and Flows Through U.S. and Foreign Ports,	465

-iii-

ANNEX E. TRANSPORT OF BULK COMMODITIES

-1.

あってい、「市市」

御上二年の二十二年の二十二日

Preceding page blank

CONTENTS

I.	OCEAN SHIPPING OF BULK COMMODITIES: WORLD SUPPLY AND DEMAND	5
	The Demand for Ocean Shipping of Major Bulk Commodities Changing Technology in Bulk Commodity	5
	Shipping The World Vessel Supply Bulk Commodity Movements by Type and Size	15 22
	of Vessel	59
11.	OCEAN SHIPPING OF BULK COMMODITIES: SELECTED ECONOMIC AND INSTITUTIONAL CHARAC-	_
	TERISTICS	77
	Introduction	77
	ture	78
	The Changing Market Structure	88
	Vessel Operating and Routing Patterns Potential Supercarrier Markets in U.S.	92
	Trade	94
III.	OCEAN TRANSPORT COSTS FOR BULK COMMODITIES	111
1	Introduction	111
	Methodology and Assumptions	113 123
	Results Estimated 1970 Unit Costs of U.SFlag	123
	Tankers	140
	Unit Costs of Dry Bulk and Combined	
	Carriers	145 149
	Sensitivity Analysis	158
	Future Ocean Shipping Costs	400

 10^{-10}

ļ

IV.	WATER TRANSSHIPMENT	163
	Introduction Lightering of Crude Oil Water Transshipment at Deepwater Ports Lightering Costs	164 168
APPEN	IDIX	181

.

الم الم

I. OCEAN SHIPPING OF BULK COMMODITIES: WORLD SUPPLY AND DEMAND

The Demand for Ocean Shipping of Major Bulk Commodities

The world market for ocean transport of liquid and solid bulk materials is huge. In 1971 over 2.5 billion metric tons of internationally traded cargo of all kinds, of which some 80 percent or more were bulk commodities, 1/ were shipped across the world's oceans. Approximately half of that 1971 total tonnage was accounted for by oil; another 10 percent, by iron ore; and the balance, by a wide variety of other commodities, including coal, grain, bauxite and alumina, and phosphate rock (table 1).

Although U.S. participation in that total market cannot readily be determined from available data, in 1969 and 1970 the U.S. share of world seaborne trade in the major bulk commodities covered by this study was estimated at slightly more than 15 percent.2/ However, among these commodities the relative importance of U.S. trade varies widely. Expressed as a percentage of total tonnage in world seaborne trade, the U.S. share in

1/ The appropriate percentage value depends upon one's definition of "bulk commodity," and on its application to trade flows over time. See the following section on "Changing Technology in Bulk Commodity Shipping."
2/ Because there are two trading partners in every movement, aggregation of every country's world market share would come to 200 percent.

.5,

ij

Estimated World Seaborne Trade by Major Commodity, 1960-71 Table 1.

(In millions of metric tons)

Commodity	1960	T96T	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971 <u>a/</u>
Major wet bulk Crude oil	n.a.	n.a.	366	424	482	552	607	672	768	871	679	1,060
products Subtotal	n.a.	n.a.	170 536	158 582	170 652	175 727	195 802	193 865	207 975	209 1,080	214 1,193	220 1,280
Major dry bulk Iron ore	101 46	98 48	102 53	107 64	134 60	152 59	153	164 67	188 73	214 83	247 101	252 98
Grain <u>b</u>	46	57	23	59		70	<u> </u>	68	65	60	73	10
Bauxıte/ alumına	17	17	18	17	19	21	23	25	26	30	34	<u>c/</u>
Phosphates	18	19 220	20	22 260	24 208	25	340	28 352	32 384	32 419	33 4 88	<u>c/</u> 470 c/
Total, major bulk comm			782	851	960 960	1,054	1,142	1,217		1,499	1,681	1,700
Other ^d /	n.a.	n.a.	468	499	550	586	628	•	681	741	759	850
Grand total	1	1	1,250	1,350	1,510	1,640	1,770	1,860	2,040	2,240	2,440	2,550
n.a. = not available.	lable.											
a/ Freliminary estimate.	estima w whee	te. + cor	corn harley rya and oats	Jou r	ne on	d Oate						

Includes only wheat, corn, barley, rye, and oats. Data for bauxite, alumina and phosphates unavailable; included in "other." Includes other bulk as well as nonbulk commodities.

וסוטום

Fearnley & Egers Chartering Co. Ltd., Trades of World Bulk Carriers in 1970 (Oslo, November 1971), p. 6, and <u>Review 1971</u> (Oslo, January 1972), p. 8. Source:

6.

NAME TO AND ADDRESS OF THE ADDRESS OF THE PARTY OF THE PA

recent years has ranged from less than 5 percent for crude oil to somewhat more than 50 percent for bauxite and alumina. The United States has also accounted recently for some 40 percent or more of total world seaborne trade in coal, grain, and petroleum products, and for lower proportions of iron ore and phosphate rock trade (table 2).

7.

While U.S. participation in world seaborne trade is very important, Western Europe -- taken as a whole -plays a substantially larger role. Among individual countries, Japan's influence is especially striking. Reflecting its extraordinarily rapid industrial growth in the last two decades, Japan's share of total world seaborne trade in the same group of commodities increased to approximately 20 percent in 1969 and 22 percent in 1970. That share was particularly large in crude oil, iron ore, and coal (table 3).

Although world seaborne trade in general has grown very fast, trade in major bulk commodities has grown more rapidly. Between 1962 and 1971, estimated seaborne carriage of all commodities in world trade approximately doubled, a compound annual growth rate of 8 percent. The fastest growing of the major commodities of interest in this study was the dominant one, crude oil. Its volume nearly tripled over that 9-year interval, a 12.5-percent annual growth rate. Among the major dry bulk cargoes, the fastest growing were iron ore (which increased 2.5 times), coal, and bauxite/alumina (which approximately doubled). Notable was the relatively slow growth of world seaborne trade in petroleum products. Whereas such products represented nearly onethird f total oil movements in world seaborne trade in 1962, by 1971 they accounted for only 17 percent of the trade (table 1). This development clearly reflects continuation of the historical tendency to locate new petroleum refineries closer to markets than to producing areas.

Trends or changes in distances of haul are an important factor in transport demand, which may influence shipping markets as much as tonnage taken alone. It is therefore useful to consider recent trends in world Estimated U.S. Share of Total World Seaborne Trade in Major Bulk Com-Table 2.

modities, 1967-70

Commoditv		Total w	world		-	Total U.S	J.S.		D.	U.S. share	
	1967	1968	1969	1970	1967	1968	1969	1970	1967	1968 1969	9 1970
				millions of	matric	+010					
Dry bulk						COIIS				percent	
Iron ore	164.4	1 187.7	213.8		27.5	25.0	26.8	38 6		c	
Graina/	68.0	68.0 65.1	59.5		29.7	29.2	23.6	2007			
Coal Ranvita/	66.8	3 72.9	83.2	101.2	31.1	30.8	35.8	47.5	46.64	44.9 39.1 42.2 43.0	40.6 046.9
alumina	25.0	26.	30.0	33.7	14.3	12 8	16.0	ר ר	C	1	
Phosphate.	27.6	32.4	31.6	33.0	7.3	9.6	1.01	9°6	c 7.1c	22.5 53.3 29.6 28 8	3 51.0 8 20 1
Subtotal.	351.8	351.8 384.4	418.1	488.2	2.00I	108.4	111.3	132.6	5	2 26	
Wet bulk											
Crude oil. Petroleum	672	768	871	979	n.a.	n.a.	43	32	ļ	4.9	3.3
products.	193	207	209	214	n.a.	л.а.	/ q 6L	1 <u>d</u> 26	1		
Subtotal.	865	975	1,080	1,193	ł	1	122 ^b /	124 ^b /			
Total 1,217 1,359	1,217	1,359	1,498 1,681	1,681	ł	ł	233	257	1	15.3	15.3
	1 - [<u>; ; ; ; ; ;</u>	(

n.a.

. = not available. Includes only wheat, corn, barley, rye, and oats.

RRNA estimate. Source: المالم

Fearnley & Egers Chartering Co. Ltd., Trades of World Bulk Carriers in 1969 (Oslo, November 1970), pp. 8, 12, 16, 18, 20; Trades of World Bulk Carriers in 1970 (Oslo, November 1971), pp. 10, 14, 18, 20, 24; Large Tankers, Janu-ary 1971 (Oslo, June 1971), p. 16; and Review 1971 (Oslo, January 1972), p.8.

8.

Estimated Japanese Share of Total World Seaborne Trade in Major Bulk Commodities, 1967-70 Table 3.

12月1日ま

í,

٧

1.24

i

ŝ

1 A ...

いいかん 二、 たいい

i

1. I. W.

f

	0 H	Total Japanese borne trade		sea-	Jar s	panese share o seaborne trade	Japanese share of world seaborne trade	world
Commoditcy	1967	1968	1969	1970	1967	1968	1969	1970
		mil. of 1	metric	tons		perc	percent	
Dry bulk	1	•) N	•				
Iron ore	56.7	68.2 4.1	83.2 4.3	102.1 n.a.	34.5 6.0		38.9 7.2	41.3 n.a.
	26.2	32.5	41.5	50.3	39.2	44.6	49.9	49.7
Bauxite/alumina.	2.2	2.6	2°0 2°0	4.0 3.2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9.9 10.5	11.0 9.2	11.9 9.7
Subtotal	91.9	110.8	135.2	163.9 <u>b</u> /	26.1	28.8	32.3	33.6 <u>b</u> /
Wet bulk								
Crude oil	103.0	119.3	144.1	172.0	15.3	15.5	16.5	17.6
Petroleum products	16.3	19.3	21.6	n.a.	8.4	9.3	10.3	n.a.
Subtotal	119.3	138.6	165.7	193.6 <u>c</u> /	13.8	14.2	15.3	16.2 ^{C/}
Total	211.2	249.4	300.9	357.5 ^{b,c/}	17.4	18.4	20.1	21.3 ^{b,c/}
n.a. = not availab	able.		ſ		I			
/ Includes only / Assumes grain	wheat, corn, b at 1969 level.	corn, barley,) level.	arley,	rye, and oats.				
c/ Assumes petroleum products at 1969 level.	eum pro	ducts a	t 1969	level.	•			•
Source: Same as t	cable 2,	plus:	UN Year	UN Yearbook of International Trade StatISTICS,	production	he. and	DENA PO	<u>stimates</u>

9.

the second second

ź

Job a small part of petroleum products; and RRNA estimates for a small part of petroleum products.

seaborne trade in terms of ton-miles (metric ton-nautical miles). From 1962 to 1971, world seaborne trade in all commodities increased from around 4.4 trillion ton-miles to over 11.1 trillion ton-miles, or an average annual

growth rate of nearly 11 percent. Among the major bulk commodities, crude oil and iron ore revealed the most rapid increases in ton-miles over the same 9-year span, each expanding by over 350 percent (table 4).

The faster growth of world seaborne trade in tonmiles than in tonnage of course reflects substantial increases in average distances of movement. For total world seaborne trade in all commodities, average distances of haul increased from just under 3,500 miles to almost 4,400 miles between 1962 and 1971. Average distances for the major bulk commodities covered by this study were greater, expanding from 4,000 tc nearly 5,200 miles over the same period. Differences among specific commodities were notable, however.

Crude oil was typically transported the longest distances in most recent years, averaging nearly 5,800 miles in 1971 as against 4,500 miles in 1962. Among the dry bulks, cereals were consistently carried the longest distances on the average -- approximately 5,200 miles -- but with no tendency since 1960 to increase. Average distances of haul for iron ore, coal, and bauxite/alumina grew very rapidly between 1960 and 1971, amounting in the latter year to around 4,400, 4,800 and 2,900 miles, respectively. The equivalent 1971 figure for petroleum products was 3,500 miles (which was modestly lower than in earlier years), and for phosphates, around 3,500 miles (which was slightly higher than in the early 1960's) (table 5).

Data on the U.S. share of total world seaborne trade expressed in ton-miles are not available and cannot conveniently be estimated. However, most of U.S. major bulk commodity imports have originated in the Caribbean and other parts of the Western Hemisphere, implying relatively short average distances of movement. Typical shipping distances for U.S. major bulk commodity exports are significantly longer, especially for coal and grain, but in general are not believed to exceed Trade by Major Commodity, 1960-71 Table 4. Estimated World Seaborne

ű,

1

(In billions of ton-miles)

	. .				1	Ì	
	<u>-</u> 1971	6,120	770 6,890	1,100 470 370	1,940C/	8,830 2,300 <u>с</u> / 11,130	
	1970	5,536	760 6,296	1,093 481 393	99 116 2,182	8,478 1,985 10,463	
	1969	4 , 853	760 5,613	919 385 307	84 118 1,813	7,426 1,948 9,374]	
	1968	4,197	750	775 310 340	70 119 1,614	6,561 1,811 8,372	1.
	1967	3,400	730	65 1 269 380	62 103 1,465	5,595 1,635 7,230	
	1966	2,629	- 700 3,329	575 226 408	55 96 1,360	4,689 1,549 6,238	••••
	1965	2,480	640 3,120	527 216 386	46 85 1,260	4,380 1,469 5,849	
	1964	2,150	620 2,770	456 199 378	39 74 1,146	3,916 1,437 5,353	
	1963	1,850	600 2,450	348 202 304	35 67 956	3,406 1,298 4,704	· · · · · · · · · · · · · · · · · · ·
43 1941	1962	1,650	650 2,300	314 170 272	37 61 854	3,154 1,202 4,356	
	1961	n.a.	n.a.	298 157 283	35 60 833	n.a.	
	1960	n.a.	n.a.	264 145 248	34 55 746	n.a.	Lable.
- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	Commodity	Major wet bulk Crude oil	Petroleum products Subtotal	Major dry bulk Iron ore Coal Grain ^b /	Bauxite/ alumina Phosphates Subtotal	Total, major bulk comm Other ^d	l n.a. = not available.

Includes only wheat, corn, barley, rye, and oats. Preliminary estimate.

Data for bauxite, alumina and phosphates unavailable; included in "other."

Includes other bulk as well as nonbulk commodities.

Fearnley & Egers Chartering Co. Ltd., Trades of World Bulk Carriers in 1970 (Oslo, November 1971), p. 6, and Review 1971 (Oslo, January 1972), p. 8. <u>a/</u> Pre] <u>b/</u> Inc] <u>c/</u> Data <u>d/</u> Inc] şource:

11.

(In nautical miles)

										-		
Commodity	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971 <u>a</u> /
Major wet bulk Crude oil	ł	1	4,508	4,363	4,461	4,493	4,331	5,060	5,465	5,572	5,655	5.774
Petroleum	1	1	3.824	3.797	3.647	3.657	3 590	787 5	2 623	3 636		2 600
Weighted sub- total	1	ł	4,291	4,210	4,248	4,292	4,151	4,775	5,074	5,197		5,383
Concession and the	2,614			3,252		3.467						4.365
• •	3,152 5,391	3,271 4,965	3,208	3,156 5,153	3,317	3,661	3,705	4,015	4,247	4,639	4,762	4,795
•	2,000 2,05	2,059		2,059								
Phosphates Weighted sub-	3,056			3,045							3,515	וט
total	3,272 3,4	3,485	3,472	3,554	3,721	3,853	4,000	4,162	4,203	4,327	4,471	4,619 <u>5</u> /
Weighted total, major bulk commodities	!	ł	4,033	4,002	4,079	4,156	4,106	4,597	4,828	4,954	5,043	5,194
Other ^d			2,568	2,601	2,613	2,507	2,467	2,543	2,659	2,629	2,615	2,706
Weighted grand total	8	ł	3,485	3,484	3,545	3,566	3,524	3,887	4,104	4,185	4,288	4,365
<pre>a/ Preliminary. b/ Includes only wheat, corn c/ Data for bauxite, alumina d/ Includes other bulk as wei d</pre>	ly whea uxite, ier bul	שמ		ley, r phosph nonbu		and oats. unavaila commoditie		included	in	"other.	.	
source: Tables 1 and 4.	T and	4 .										

n - Bellen and a start where a start many start is the start and a start of the start of the start of the start many start and the start of the star

12.

アウン

world averages. Thus, the U.S. share of world seaborne trade in major bulk commodities, expressed in total ton-miles, is probably about the same as, or possibly somewhat lower than, its recent 15.3-percent share of total world tonnage.

In contrast, Japan's bulk commodity trade consists almost entirely of imports which come predominantly from distant origins. As a result, Japan's participation in world shipping of major bulk commodities has been estimated by a leading trade source at some 30 percent of total world ton-miles covered in 1971 (table 6), or substantially higher than its share of total world tonnage.

Underlying determinants of growth or change in worldwide demand for ocean shipment of major bulk commodities are numerous and complex. They reflect dynamic political, economic, technological, and physical factors whose significance varies by specific commodity and trade route. For example, import substitution policies stimulate disproportionately rapid rates of growth in oceanborne movements of some bulk commodities, with corresponding reductions in like movements of the typically nonbulk commodities being substituted. Thus, some current importers of wheat, corn, or soybeans -- all bulk commodities -- at one time imported flour, formula feeds, or meat. The latter are substantially equivalent processed products which are usually not shipped in bulk. Similarly, in their efforts to develop domestic manufacturing activity and employment, some developing countries have built and expanded their pig iron and other steel-producing facilities. This has had the effect of substituting iron ore and coal imports (to the extent they are not locally available) for pig iron and other semiprocessed or final steel products, which are not generally transported in bulk.

On the other hand, some developing countries have successfully overcome deficiencies in domestic food grain production through improved technology, thereby reducing or eliminating import requirements. Similar results may also be achieved by subsidizing domestic agriculture and protecting it from imports, as is done in the European Common Market.

Table 6. Estimated Japanese Share of Total World Seaborne Trade in Selected Major Bulk Commodities, in Ton-Miles, 1971

Commodity	Japanese share (percent)
Iron ore	60
Coal	75
Grain ^{<u>a</u>/}	20
Oil (crude and product).	20
Other major bulk com- modities <u>b</u> /	30
Total	30

a/ Includes only wheat, corn, barley, rye, and oats. b/ Not specifically identified, but probably including bauxite, alumina, phosphate rock, and other cereals and soybeans, among others.

Source: Fearnley & Egers Chartering Co. Ltd., <u>Review</u> <u>1971</u> (Oslo, January 1972), pp. 4-5.

No. States

A relatively new development may exert an important influence on future flows of waterborne bulk commodities. Many major world suppliers of oil, iron ore, bauxite, and some other primary commodities are developing countries. They may increasingly want to expand vertically into at least the first stages of processing from their present mining operations. This has already occurred on a limited scale. To the degree that this "export substitution" approach is successful, it implies more rapid growth for ocean transport of partially processed bulk commodities, such as petroleum products and alumina, at the expense of equivalent raw materials, such as crude oil and bauxite.

Average distances of waterborne movement for bulk commodities in world trade are importantly influenced by similar factors. Thus, where nearby resources are incapable of economic expansion, and/or where newly exploited but distant resources are potentially attractive, an economic incentive to import from the more remote sources may be created. It may be further stimulated by reductions in transfer costs, which can often be achieved through use of larger ocean vessels than had previously been employed.

Average distances of haul are also affected by physical or political constraints governing major waterways. Notable in this respect are the Suez and Panama Canals. The former's closing in 1967 immediately necessitated circuitous journeys for some traffic, particularly for crude oil moving from Persian Gulf origins to major European destinations. However, the existing water depths in both canals preclude efficient use of vessels exceeding certain limited sizes. As indicated by the benefit-cost analysis (Annex F), scale economies in ocean shipping may often justify longer journeys by vessels much larger than could pass through either canal, even if both were open to traffic.

Changing Technology in Bulk Commodity Shipping

Historical developments in markets and transport technology have resulted in profound changes in the ocean shipping of bulk commodities. Today's bulk commodities are so designated because they are essentially raw or semiprocessed materials that can physically be moved and transshipped without any form of packaging -that is, in bulk. Generally, handling and transport of such commodities in bulk form is significantly easier and more efficient than in a number of barrels, bags, bales or boxes. However, annual volumes must be sufficiently great to warrant the development of necessary specialized terminal facilities, and individual shipments must be sufficiently large to fill, or substantially load, an ocean vessel. Prior to the satisfaction of those conditions, virtually all so-called bulk commodities were packaged and shipped on vessels bearing a variety of merchandise as general cargo.

With expanding world trade in the second half of the 19th century, specialized ocean vessels began to evolve, resulting in three essentially separate trades and related types of vessels: (1) merchant ships serving most of the world's ports on regular schedules and bearing a large number of diverse cargoes in small lots (liner service); (2) tankships for the carriage of bulk oil cargoes; and (3) essentially multi-deck freighters (tramp ships) for the movement of various dry commodities in bulk form. These latter two types of vessels were employed only on those trade routes and served only those ports for which they were specifically engaged.

The three largely distinct markets and related vessels were, however, to some degree interrelated. Increases in lot size permitted growing proportions of some commodities that were previously moved as general cargo in liner vessels to graduate to bulk movement by tramp or tanker ships. In addition, at times when tankers were not fully occupied in the carriage of oil and other liquid cargoes, some would compete for dry bulk traffic (especially cereals), despite the inefficiencies inherent in their design for accommodating it.

In more recent years, and especially since the end of World War II, ocean movements of bulk commodities have exhibited two notable and widely advertised trends: a tremendously rapid growth in traffic, and substantial

and the second second

increases in average vessel size. But of equal importance, the world fleet has become more specialized and diverse. The earlier twofold distinction between tankers and tramp ships no longer reflects fast-changing realities.

Today's fleet consists essentially of:

1. Tankships or tankers, which are specifically designed to carry liquid commodities in bulk, notably crude oil and petroleum products, but many others as well

2. Dry bulk carriers, which are single-deck vessels built to transport one or more types of such commodities as grain, coal, or mineral ores

3. Combined carriers, which are flexibly arranged to permit carriage either of liquid or of dry bulk cargoes.

These three broad vessel types may be further distinguished by special design features. Apart from vessels built to carry oil, there are now specialty tankships for the carriage of such commodities as liquid gases, chemicals, sulfur, asphalt and bitumen, and wine. However, oil tankers are predominantl/ and are the only tankships of interest in this study. Furthermore, the most useful data available on tankships are limited to oil tankers. Therefore, all further references to tankers in this study pertain only to oil tankers, unless otherwise indicated.

Published information does not seem to illuminate the question of oil tanker suitability for carriage of

1/ Non-oil tankers of all types represented only about 4.5 million d.w.t., or less than 3 percent of the world tanker fleet of 2,000 gross tons or more, at the end of 1970. See Sun Oil Company, Analysis of World Tank Ship Fleet, December 31, 1970 (Sun Oil Company, Philadelphia, August 1971), p. 17. 18.

the various specific commodities within the general petroleum family. Generally, however, we have been given to understand by trade sources that a tanker designed to move crude oil could also often be used to transport most petroleum products and vice versa, although the need would probably not often arise.

While tankships designed to carry oil may occasionally carry dry bulk commodities such as grain, they are classified as tankers rather than as dry bulk carriers or as combined carriers as long as they continue to be used for their originally intended purposes.

The historic practice of tanker switching to dry cargo markets at times of slack demand in the oil markets has apparently been declining in significance, at least in relation to grain (table 7). This undoubtedly reflects the high cost of cleaning the tanks and of somewhat inefficient product loading or unloading. More commonly, many old tankers have been permanently modified to facilitate efficient handling of dry bulk commodities (which usually require large hatch openings, unlike oil). In this event they would normally be reclassified as dry bulk carriers.

Before 1955 the term "bulk carrier" had no special meaning in shipping. Bulk commodities were simply included among the many nonbulk dry cargoes carried in merchant ships or else transported in generalpurpose freighters. In the early 1950's, world demand expanded so rapidly that new capacity tonnage increasingly took the form of more efficient and specialized vessels to serve particular types of dry bulk cargo. In shipping circles, these new ships generally became known as bulk carriers. Some single-deck freighters which operated prior to that time were later incorporated as bulk carriers, including ore, grain, and coal ships.

Dry bulk carriers can thus be distinguished by specialty roles. Most important is their ability to efficiently accommodate commodities having entirely different density characteristics. In general, a carrier in this group is built either to carry full loads of

Table 7. Estimated Seaborne Movements of Grain in World Trade in Tankers, 1961-70

(In millions of metric tons)

Year	U.S. grain exports	World grain exports
1961	6.8	n.a.
1962	5.3	n.a.
1963	4.3	6.3
1964	5.8	9.4
1965	n.a.	13.8
1966	7.5	12.5
1967	3.2	6.2
1968	2.5	4.1
1969	1.8	2.9
1970	2.1	2.9
1971	n.a.	1.5 ^{a/}

n.a. = not available.
a/ Preliminary.

Source: U.S. Department of Commerce, Bureau of the Census, <u>Waterborne Exports and General Imports</u>, FT 985, selected years; and Fearnley & Egers Chartering Co., Ltd., <u>Review 1971</u> (Oslo, January 1972), p. 14. low-density commodities, such as coal, grain, or phosphate rock, or to carry full loads of high-density commodities, such as iron ore. Vessels within either of these two broad groups may also have special features for highly efficient movement or handling of one particular commodity, although in most instances they can also effectively carry other commodities of similar density characteristics. However, fundamental differences in vessel design generally preclude the economic use of iron ore ships for the carriage of low-density cargoes, or of other dry bulk vessels for the movement of highdensity ores.

The capacity of an iron ore carrier is basically determined by the cargo weight that results in the vessel's reaching its maximum permissible draft. Because of that ore's high density (about 14 to 18 cubic feet per long ton), only a small proportion of the vessel's total cubic space need be used before the vessel attains full deadweight. The ore is stowed in holds which are reinforced to support the relatively great stresses imposed by their highly dense cargoes. Although the cargo holds could be fully loaded with a light-density good (typically ranging between 40 to 55 cubic feet per long ton), that would only permit use of some one-third of the vessel's capacity in tonnage, which is usually uneconomic.

The cargo capacity of a (low-density) bulk vessel is basically determined by the total cubic space of its holds. Loading the holds of such a vessel with iron ore would create serious problems. All holds could be partially loaded, or some holds could be filled and others left empty. However, either approach would be exceedingly dangerous, subjecting the vessel to stresses and motions which it is not designed to resist.1/

This dilemma has been substantially overcome in the design of "multiple stowage factor" dry bulk vessels. Some of their holds are designed to accommodate ores, and others to stow lighter commodities. Normally only

1/ United Nations, Economic Commission for Europe, The World Market for Iron Ore (New York, 1968), p. 101.

1.

one type of commodity would be carried on a single journey. The greater flexibility of this design concept permits improved vessel utilization on those particular trade links providing relevant opportunities.

The third major group of ships for the ocean transport of bulk commodities is designed to carry either liquid or dry bulk cargoes. Among numerous foreign and domestic sources, different and sometimes confusing references are applied to these vessels. In this report they are known generally as "combined" carriers, corresponding to terminology used by at least two of the leading trade and statistical sources.1/ Although it would be equally logical to relate them closely to tankers, combined carriers are here considered as a subcategory within the broad group of bulk carriers, which also includes ore ships and other dry bulk carriers, to reflect prevailing statistical classifications.

The earliest combined carriers originated from the physical circumstances of specialized ore ships and from emerging new market opportunities. A large proportion of these vessels' total cubic space not used for stowage of iron ore consists of side or wing tanks used for ballast on return voyages. This led to the idea of adapting them for petroleum or other liquid cargo on alternate journeys where market conditions would permit. Such vessels were designated as ore/oil (O/O) carriers.2/ In terms of function, they are alternately ore carriers or oil tankers, although other dry bulk cargo may sometimes be carried in one direction, and other liquid cargo in the other.

The ore/oil ship thus has the advantage of greater flexibility in use than the special-purpose ore ship, and it is relatively simple to operate. It offers the opportunity both to obtain return freight on ore

 Fearnley & Egers Chartering Company Ltd. of Oslo, and John I. Jacobs & Company Ltd. of London.
 United Nations, Economic Commission for Europe, loc. cit. 22.

runs, and to shift major attention from ore to oil markets on short notice where market conditions warrant. However, there is also a disadvantage, apart from somewhat higher costs: only with high-density ores can full ship capacity be obtained. For lower density oil (comparable to the lighter dry bulk commodities), cubic space is insufficient to permit full use of available deadweight.l/

Since the early 1960's, the flexible design concepts of the multiple stowage factor dry bulk vessel and of the ore/oil vessel have been further refined. Thus, some ships were designed to carry either lowdensity dry bulk or oil on different journeys, and are known as bulk/oil carriers. To enhance opportunities for convertibility among the different commodity groups, the ore/oil and bulk/oil designs were then integrated, producing the well-known ore/bulk/oil (0/B/O) carrier. The O/B/O is generally designed to carry full, or very substantial, loads of any of the various bulk commodities.2/ Since opportunities for obtaining very large shipments of crude petroleum on many trade routes are much greater than for dry bulk, O/B/O designs are more likely to be optimized for the carriage of oil. Viewed essentially as tankers, they would require only modest volumes of dry bulk cargoes on alternate journeys to become more attractive investments than conventional tankers (see chapter III).

The World Vessel Supply

Recent Size and Age Characteristics

At the beginning of 1971, the entire world fleet of oil tankers was estimated at 159 million d.w.t., of which over 149 million d.w.t. were accounted for by commercial vessels exceeding 10,000 d.w.t. The total world fleet of bulk carriers at that time was around 83 million d.w.t., of which some 76 million d.w.t. were accounted

1/ "The Combination Bulk Carrier," in Surveyor (Quarterly Publication of the American Bureau of Shipping), August 1970, pp. 16-24. 2/ Ibid. for by commercial ships above 10,000 d.w.t. (table 8). Thus, noncommercial vessels and vessels of less than 10,000 d.w.t. are of minor quantitative significance in the total world supply. Since the smaller ships tend to be used heavily on short distance routes and in coastal or other domestic trades, they are of even less significance in world trade of bulk commodities. Furthermore, the most useful data sources generally exclude them. Accordingly, all further presentation of world fleet data in this report are limited to commercial tankers and bulk carriers over 10,000 d.w.t. unless otherwise indicated.

At 1970 year end, the world's 149 million d.w.t. of tanker capacity was provided by 3,102 vessels of widely ranging sizes. Of these, 704 exceeded 60,000 d.w.t. and collectively accounted for over half the total creacity. Within that group, 275 tankers exceeded 100,000 d.w.t. and provided nearly one-third of world tanker capacity. There were 14 ships over 250,000 d.w.t., and another 117 of 200,000 to 250,000 d.w.t. (table 9).

At the same point in time, 2,352 bulk carriers provided the world fleet's 76 million d.w.t. capacity, of which 12 percent were ore carriers; 20 percent, combined carriers; and 68 percent, other dry bulk carriers. Only 49 of these ships exceeded 100,000 d.w.t., twothirds of them combined carriers accounting for less than 8 percent of the world's bulk carrier tonnage. Most of the world's total bulk carrier tonnage was fairly evenly distributed among the different size groups between 10,000 and 80,000 d.w.t. However, combined carriers were heavily concentrated in size groups above 60,000 d.w.t., and non-ore dry bulk carriers, in size groups under 60,000 d.w.t. (table 10).

The world tanker and bulk carrier fleet is very young, reflecting its rapid growth. At the end of 1970, half of all tankers over 10,000 d.w.t. had been built between 1966 and 1970, and only a third of them in 1960 or earlier. Tankers over 60,000 d.w.t. -- representing more than half the total tonnage -- were significantly newer on average: 43 percent of them had been delivered

Table 8. Total World Fleet of Oil Tankers and Bulk Carriers as of January 1, 1971

Fleet	Tonnage (000 d.w.t.)
Oil tankers	
Over 10,000 d.w.t.:	
Commercial Government Miscellaneous Subtotal	149,225 2,330 157 151,712
2,000-10,000 d.w.t 100 g.r.t. ^{<u>a</u>/-2,000 d.w.t Total}	3,527 3,711 ^{b/} 158,950
Bulk carriers Over 10,000 d.w.t.	
(commercial) 6,000 g.r.t. $\frac{a}{-10,000}$ d.w.t. and noncommercial	76,086 7,025 ^{c/}
Total	83,111

equivalent). b/ Estimated by interpolation from July 1, 1970, and July 1, 1971, data.

c/ Estimated on basis of July 1, 1971, data.

Source: Tankers over 2,000 d.w.t. -- John I. Jacobs & Co. Ltd., World Tanker Fleet Review, 31 December 1970 (London, 1971), pp. 1-13. Tankers over 100 g.r.t. -- Lloyd's, Register of Shipping Statistical Tables, 1 July 1970 and 1 July 1971 (London, November 1970 and 1971), table 7. Commercial bulk carriers over 10,000 d.w.t. --Fearnley & Egers Chartering Co. Ltd., World Bulk Carriers, January 1971 (Oslo, March 1971), p. 4. Other bulk carriers -- Lloyd's, Register of Shipping Statistical Tables, 1 July 1971 (London, November 1971), table 9; and Fearnley & Egers Chartering Co. Ltd., World Bulk Carriers, July 1971 (Oslo, August 1971).

24.

25.

	<u> </u>			
Vessel size group (in 000's d.w.t.)	Number	Pct. of total	Total d.w.t. (000's)	Pct. of total
10-17	407	13.1	5,820	3.9
17-25	848	27.3	16,996	11.4
25-40	658	21.2	21,113	14.1
40-60	485	15.6	23,872	16.0
Subtotal	2,398	77.3	67,801	45.4
60-80	257	8.3	17,923	12.0
80-100	172	5.5	15,450	10.4
100-125	86	2.3	9,480	6.4
125-150	24	0.8	3,293	2.2
150-200	34	1.1	6,010	4.0
200-250	117	3.8	25,257	16.9
250-300	8	0.3	2,051	1.4
Over 300	6	0.2	1,960	1.3
Subtotal	704	22.7	81,424	54.6
Total	3,102	100.0	149,225	100.0

Table 9. Size Distribution of World Tankers as of De-cember 31, 1970

John I. Jacobs & Co. Ltd., World Tanker Fleet Review, 31 December 1970 (London, 1971), p. 5. Source:

tation and the second

, 1971
Ч
January
of
as
Carriers
Bulk
World
of
Distribution
Size
able 10.
Ĥ

Vessel size	Ore ca	carriers	Combined car.	d car.	Other b	Other bulk car.	Total	al
group (in 000's of d.w.t.)	Number	D.w.t. (000)	Number	D.w.t. (000)	Number	D.w.t. (000)	Number	D.w.t. (000)
10-18	85	1,278	12	170	502	7,487	599	8,935
18-25	60	1,225	21	480	517	10,974	598	12,679
25-30	25	668	و	173	278	7,421	309	8,262
30-40	33	1,159	10	348	240	8,342	283	9,849
40-50	7	329	14	654	142	6,276	163	7,259
50-60	33	1,799	22	1,237	106	5,954	161	8,790
60-80	J 6	1,131	59	4,232	62	4,310	137	9,673
80-100	e	260	45	4,099	ß	411	53	4,770
Over 100	10	1,098	32	3,945	7	826	49	5,869
Total	272	8,947	221	15,338	ī,859	51,801	2,352	76,086
Source: Fearnl. (Oslo,	l rnley & F lo, March	یں 4 Egers Cha March 1971),	artering C p. 9.	Fearnley & Egers Chartering Co. Ltd., (Oslo, March 1971), p. 9.	World Bu	World Bulk Carriers, January 1971	ers, Janu	lary 1971

A STATE A STATE COMMENT OF THE REAL PROPERTY OF THE ADDRESS OF THE

26.

during 1969 and 1970; another third from 1966 to 1968; and less than 3 percent prior to 1961 (table 11). In January 1971, the average age of this large tanker fleet was only 3.3 years per d.w.t.<u>1</u>/

At the start of 1971, nearly five-eighths of total world bulk carrier tonnage had been constructed since 1966, and only 15 percent of it had been constructed before 1961 (table 12). Within the group, the average age of combined carriers was lowest at 4.0 years per d.w.t., followed by other bulk carriers at 5.8 years per d.w.t. and ore carriers at a relatively aged 7.8 years per d.w.t.2/

<u>Trends in Vessel</u> Supply

General

Since the early 1960's, growth in the total supply of tankers and bulk carriers and in their average size has been remarkable. At the beginning of 1963 there were some 3,400 vessels above 10,000 d.w.t. By early 1972 that fleet had grown 70 percent to nearly 5,800 vessels, but its tonnage expanded more than threefold to 2.5 million d.w.t. Total world fleet capacity thus expanded nearly 14 percent annually over the 9year period. Increases were particularly great for combined carrier and dry bulk ships, whose tonnage expanded over tenfold and fivefold, respectively, while tanker supply grew by less than 160 percent (table 13). On the basis of shipyard backlogs in January 1972, the world fleet of tankers and bulk carriers is expected to increase by 105 million d.w.t. in the following 3 years, or by more than 40 percent (table 14).

Even more striking than its aggregate growth has been the trend in vessel size. In merely 9 years

 Fearnley & Egers Chartering Company Ltd., Large Tankers, January 1971 (Oslo, June 1971), p. 7.
 Fearnley & Egers Chartering Company Ltd., World Bulk Carriers, January 1971 (Oslo, March 1971), p. 9. Contraction of the local distance of the loc

Year built	Vessels ov d.w.	ver 10,000 t. <u>a</u> /	Vessels over 60,000 d.w.t.		
Year built	D.w.t. (1,000)	Pct. of total	D.w.t. (1,000)	Pct. of total	
1955	21,815	14.4	n.a.	n.a.	
1956	3,642	2.4	n.a.	n.a.	
1957	5,395	3.6	n.a.	n.a.	
1958	6,620	4.4	n.a.	n.a.	
1959	7,630	5.0	n.a.	n.a.	
1960	5,722	3.8	n.a.	n.a.	
Subtotal	50,824	33.5	2,257	2.8	
1961	5,037	3.3	761	0.9	
1962	5,204	3.4	1,101	1.4	
1963	5,986	3.9	2,288	2.8	
1964	8,811	5.8	5,637	7.0	
1965	9,608	6.3	7,522	9.3	
1966	10,575	7.0	8,963	11.1	
1967	8,034	5.3	7,370	9.1	
1968	11,071	7.3	10,417	12.9	
1969	16,370	10.8	15,851	19.6	
1970	20,192	13.3	18,694	23.1	
Total	151,712	100.0	80,861	100.0	

Table 11. Age Distribution of World Tanker Fleet, by Vessel Size, as of January 1, 1971

n.a. = not available.

<u>a</u>/ Includes government-owned and miscellaneous vessels.
Source: John I. Jacobs & Co. Ltd., <u>World Tanker Fleet</u>
<u>Review, 31 December 1970</u> (London, 1971), pp. 1415; and Fearnley & Egers Chartering Co. Ltd.,
<u>Large Tankers, January 1971</u> (Oslo, June 1971),

p. 7.

28.

Age Distribution of World Bulk Carriers, by Class, as of January 1, 1971 Table 12.

	Ore carriers	riers	Combined car.	đ car.	Other b	Other bulk car.	Total	al
Year built	Number	D.w.t. (000)	Number	D.w.t. (000)	Number	D.w.ĉ. (000)	Number	D.w.t. (000)
Through 1950	6	155	7	67	119	2,369	135	2,621
1951-55	12	366	15	304	99	1,291	93	1,961
1956-60	111	2,531	30	1,197	196	3,426	337	7,154
1961-65	76	2,335	34	1,907	482	12,879	592	17,121
1966	26	1,206	14	950	155	4,963	195	7,119
1967	13	580	40	3,075	210	7,874	272	11,529
1968	4	221	30	2,640	254	7,954	288	10,855
	14	874	21	1,784	190	5,476	225	8,134
1970	2	679	30	3,384	178	5,529	215	9,592
Total	272	8,947	221	15,338	1,859	51,801	2,352	76,086

Fearnley & Egers Chartering Co. Ltd., World Bulk Carriers, January 1971 (Oslo, March 1971), p. 8. Source:

29.

i,

-

;

A STATE OF A

いいの小学を見る

A NAME AND A DESCRIPTION OF A DESCRIPTIO

30.

a/		Vessel types		
Year ^a /	Tankers	Combined carriers	Dry bulk carriers	Total
		Number of ves	sels	
1960	n.a.	55	310	365
1961	n.a.	63	408	471
1962	n.a.	67	544	611
1963	2,650	69	687	3,406
1964	2,656	77	843	3,576
1965	2,704	83	917	3,704
1966	2,782	95	1,073	3,950
1967	2,864	109	1,271	4,244
1968	2,918	153	1,498	4,569
1969	2,982	175	1,761	4,918
1970	3,016	195	1,964	5,179
1971	3,102	221	2,131	5,454
19/2000	3,219	251	2,327	5,797
	De	adweight tonnage	(in millions)
L960	n.a.	1.3	5.3	n.a.
L961	n.a.	1.5	7.2	n.a.
L962	n.a.	1.7	9.9	n.a.
L963	65.1	1.9	13.2	80.2
964	69.2	2.4	17.1	88.7
.965	76.0	2.8	19.3	98.1
.966	84.9	3.4	24.2	112.5
967	94.4	4.3	30.5	129.2
968	103.0	7.7	38.7	149.4
L969	114.1	10.2	47.4	171.7
		12 2	54.2	196.0
.970	129.6	12.2	~ ~ ~	
.971	149.2	15.3	60.7	225.2
			60.7 68.7	225.2 257.1
.971 972	149.2	15.3 20.2		
971 972	149.2 168.2	15.3 20.2		
971 972 .a. = no / As of ource:	149.2 168.2 t available January 1. Fearnley &	15.3 20.2 5. Egers Chartering	68.7	257.1 eview
971 972 .a. = no / As of ource:	149.2 168.2 t available January 1. Fearnley &	15.3 20.2 5.	68.7	257.1 eview

Table 13. Growth of World Wet and Dry Bulk Carriers Exceeding 10,000 Deadweight Tons, by Three Major Vessel Types, 1960-72 1.4

in the second

Table 14. Projected Growth in World Fleet of Wet and Dry Bulk Carriers Exceeding 10,000 Deadweight Tons, 1972-75

Muno of vegaci	Total d.w.t. (millions)					
Type of vessel	1972 ^{ª/}	1973	1974	1975		
Tankers	168.2	187.5	210.0	232.0		
Combined car- riers	20.2	28.0	35.5	40.5		
Dry bulk car- riers	68.7	76.5	84.5	90.0		
Tota1	257.1	292.0	330.0	362.5		

a/ Actual as of January 1, 1972.

Source:

Fearnley & Egers Chartering Co. Ltd., <u>Review</u> <u>1971</u> (Oslo, January 1972), p. 11. KINTE A MALANCAPPONTAL ATTEND

(between 1963 and 1972) the size of the average tanker over 10,000 d.w.t. in the world fleet increased from less than 25,000 d.w.t. to over 52,000 d.w.t.; the average combined carrier, from under 28,000 d.w.t. to more than 80,000 d.w.t.; and the average dry bulk carrier, from a bit over 19,000 d.w.t. to nearly 30,000 d.w.t (see table 15). Average vessel sizes are certain to increase further in the next few years: typical tonnages of vessels on order are 167,000 d.w.t. for tankers, 152,000 d.w.t. for combined carriers, and 42,000 d.w.t. for dry bulkers (table 16).

Tankers

In January 1957, the world tanker fleet included only a single vessel larger than 60,000 d.w.t. By January 1960 this fleet had added 15 more, including the first tanker exceeding 100,000 d.w.t. The first 200,000-d.w.t. vessel was launched in 1966, and several years later tankers in the 300,000-d.w.t. class began to make their appearance (table 17). The largest ship in the world -- a 477,000-d.w.t. tanker now under construction in Japan -- is expected to be in service in early 1973.1/ These trends in development of the largest tankers have been paralleled by changes in size distribution of the entire world tanker fleet, as indicated in tables 17 and 18. Thus, in January 1963, the 42 vessels over 60,000 d.w.t. represented only 1.5 percent of the world's 2,650 tankships over 10,000 d.w.t. and 5 percent of the world's total tonnage. However, only 8 years later these larger tankers constituted 22 percent of the world fleet in number and 54 percent of its capacity.

The preceding developments reflect both the expansion of the world tanker fleet to meet growing demand and the replacement of obsolete older and smaller vessels. Thus, the number of tankers under 60,000 d.w.t. declined from 2,608 in January 1963 to 2,406 in January 1971. However, their total tonnage increased somewhat from 1963 to 1967 and has since stabilized in the 68 to

1/ Journal of Commerce, April 20, 1972.

Trends in Average Size of World Wet and Dry Bulk Carriers Exceeding 10,000 Deadweight Tons, by Major Vessel Type, 1960-72 Table 15.

Ì

(In thousands of d.w.t.)

			Vessel type	type			
Year ^a /		Combi	Combined carriers	ers	Dry	bulk c	Dry bulk carriers
	TailNets	Total	0re/oil	Bulk/oil <u>b</u> /	Total	Ore	Other bulk
1960	n.a.	23.9	23.9	اد/	17.1	20.8	14.3
1961	n.a.	24.5	24.4	28.0	17.6	20.7	15.4
1962	n.a.	25.4	25.4	28.0	18.1	20.6	16.7
1963	24.6	27.5	26.8	28.0	19.2	21.4	18.1
1964	26.1	31.2	30.4	48.0	20.3	22.4	19.5
1965	28.1	33.7	33.3	48.0	21.0	23.2	20.3
1966	30.5	35.8	34.5	48.2	22.5	25.0	21.8
1967	33.0	39.4	35.2	64.2	24.0	27.7	23.0
1968	35.3	50.3	43.1	69.3	25.8	28.3	25.3
1969	38.3	58.3	50.9	72.8	26.9	28.5	26.6
1970	43.0	62.6	55.9	74.7	27.6	30.3	27.2
1971	48.1	69.2	61.6	82.7	28.5	32.9	27.9
1972	52.3	80.5	ł		29.5		
n.a. = not available a/ As of January l b/ Includes ore/bul c/ None. Source: Table 13.	<pre>= not available. As of January 1. Includes ore/bulk/oil. None. ce: Table 13.</pre>						

33.

1. S. .

and a state of the second second

¢ T

ì

.....

34.

Table 16. Average Size Characteristics of World Wet and Dry Bulk Carriers Exceeding 10,000 Deadweight Tons On Order as of January 1, 1971

Vessel type	Number of vessels	D.w.t. (000's)	Average d.w.t.
Tankers	476	79,349	166.7
Combined carriers	173	26,359	152.3
Total dry bulk carriers	528	22,015	41.7
Ore carriers	23	1,549	67.3
Other bulk car- riers	505	20,466	40.5

Source: Fearnley & Egers Chartering Co. Ltd., Review 1971 (Oslo, 1972), p. 11; and World Bulk Carriers, January 1971 (Oslo, March 1971), p. 17. Number of World Tankers by Vessel Size Group, 1957-71 Table 17.

d 12

<u>voara/</u>				Vessel size	dnoıb	(in thousands	ands of	d.w.t.)	
	10-60	60-80	80-100	100-150	150-200	200-250	0ver 250	Total over 60	Total over 10
1957	n.a.		н					1	
1958	n.a.		4					Ţ	
1959	n.a.	Ч	7					8	
1960	n.a.	ω	7	~				16	
1961	n.a.	13	7	7				22	
1962	n.a.	20	ω	m				31	
1963	2,608	23	15	4				42	2,650
1964	2,588	38	26	4				68	2,656
1965	2,574	77	48	S				130	2,704
1966	2,567	136	65	14				215	2,782
1967	2,544	198	86	34	Ч	Ч		320	2,864
1968	2,510	229	110	59	80	7		408	2,918
1969	2,479	244	142	83	1 6	J 6	2	503	2,982
0701	2,426	243	157	96	31	54	6	590	3,016
1971	2,406	25	163	112	35	113	18	969	3,102
n.a. = not avai a/ As of Janua Source: Fearnl June 1	<pre>= not availat s of January e: Fearnley June 1971</pre>	พี ่ ค่ ซ ~	Egers Chartering and Review 1971	-	Co. Ltd., (Oslo, Ja	Ltd., <u>Large Tankers</u> , .o, January <u>1972), p</u> .		January 1 9.	<u>1971</u> (0s10,

35.

and have

1

Sec. 1

.

Sec. Sec.

Tonnage Distribution of World Tankers by Vessel Size Group Table 18.

(In millions of deadweight tons)

					1			E	.
Year ^{a/}				Vessel	size	group (in	thousands	Ч	d.w.t.)
	10-60 <u>b</u> /	60-80	80-100	100-150	150-200	200-250	Over 250	Total over $60^{C/}$	Total over 10
1957	n.a.		0.1					0.1	n.a.
1958	n.a.	•	0.3 4		- 14 - - 1- 5			0.3	n.a.
1959	n.a.	0.1	0.6					0.7	n.a.
1960	n.a.	0.5	0.6	0.1				1.2	n.a.
1961	n.a.	0.9	0.6	0.2	ŗ			1.7	n.a.
1962	n.a.	J.4	0.7	0.3				2.4	n.a.
1963	61.8	1.6	1.3	0.5				3 . 3	65.1
1964	63.9	2.6	2.3	0.5			.1	5.3	69.2
1965	65.1	5.2	4.3	0.6				10.1	76.0
1966	68.4	9.2	5.7	1.6		1.		16.5	84.9
1567	6.69	13.6	7.6	4.0	0.2	0.2		25.5	94.4
1968	68.8	15.9	9.8	.6.7	5 1. 3	0.4		34.2	103.0
1969	68.1	- 17 , 0 - 1	12.7	9 5	2.8		0.7	46.0	114.1
1970	68.0	16.9	14.1	0.11.0	.5 . 5	11.4	2.7	61.6	129.6
1971	68.3	17.8	14.6	13.0	⊴6.2	24.3	5.0	80.9	149.2
	."			· · ·			ν',	a Ja	
n.a. = rot	available.	le.		1. J.	į, i	•••	9=1 		•
As of	inuary	-		n,					
b/ Derived	from	ifferen 1 fimir	difference between	tot	over o in	10,000 d.	d.w.t.	and total	over
ģ	•	omfrr -		3					נט
ີຍີ	q		group over 6	60,000 d.w.t.		sometimes d	do not	add to	total shown
because of	rounding		i	•	·				

January 1971 , p. (Oslo, January 1972) Large Tankers, Ltd., 4; and Review 1971 & Egers Chartering Co. June 197i), p. Fearnley

Source:

1

(Oslo,

36.

69 million ton range. This indicates that some new tankers of under 60,000 d.w.t. have been added to the fleet in recent years.

Bulk Carriers

Recent trends in the development of the world bulk carrier fleet have been both similar to and different from tankers. On the one hand, total supply and "average ship size have grown rapidly. On the other hand, aggregate capacity has increased at a substantially faster rate, while average size has grown more slowly (for dry bulk carriers).

From January 1960 to January 1971 the world bulk carrier fleet increased from 6.6 million d.w.t. to more than 76 million d.w.t., an average annual rate of nearly 25 percent. Growth was relatively faster for (lowdensity) bulk carriers, whose share of total tonnage increased from less than two-fifths in 1960 to over twothirds in 1971. Among the other types of bulk carriers, growth was extraordinarily rapid for combined bulk/oil (including O/B/O) vessels, and was relatively slow, though strong nonetheless, for combined ore/oil and specialized ore carriers (table 19).

Size characteristics of the world bulk carrier fleet have changed notably. In the 1940's an insignificant proportion of this fleet exceeded 10,000 d.w.t. In the early 1950's the largest bulk ships were in the 20,000- to 25,000-d.w.t. range. By 1960, 10 percent of the 365 vessels in the fleet exceeded 30,000 d.w.t. At that time the three largest bulk carriers were in the 50,000- to 60,000-d.w.t. class, and represented only an insignificant proportion of world capacity. The first bulk carrier exceeding 100,000 d.w.t. went into service in 1966. By January 1971 there were 49 such vessels (mostly combined carriers), probably representing less than 10 percent of total world tonnage (tables 19 and 20).

Despite the evident trend toward increasing average size, dry bulk carriers on the average tend to

E	SUOT		
1	DEAL TUDING IL MATH DATH CATTLET IN LES OVER TU, UUU DEADWEIGUT TO		
	000' NT		,
2000	Tavo		
	Cad I T		
ro inver	TATTER	1960-71	
עןיים	VTD G		
Main			
1 7	2		
Dettel chman	nc ve topuid		
Tahlo 19			

						-				
		Ore	Com	Combined carriers	rriers	31 (j	Other bulk	bulk		
Year ^a /	car	carriers	0re/oil	jil ji	Bulk/oil	/oil	carriers	iers	ă	Total
	Number	D.w.t. (000)	Number	D.w.t. (000)	Number	D.w.t. (000)	Number	D.w.t. (000)	Number	D.w.t. (000)
1960	131	2,727	55	1,317		ł	179	2,563	365	6,607
1961	168	3,480	62	1,514	Г	28	240	3,689	471	8,711
1962	201	4,131	66	1,675	г,	28	343	5,731	611	11,565
1963	218	4,674	68	1,824	г	28	469	8,488	756	15,014
1964	233	5,227	74	2,250	e	144	610	11,893	920	19,514
1965	229	5,315	80	2,662	m	144	688	13,960	1,000	22,081
1966	238	5,950	68	3,072	9	289	835	18,241	1,168	27,552
1967	260 -	7,192	92	3,239	17	1,092	110,1	23,263	1,380	34,786
1968	269	7,606	111	4,784	42	2,912	1,229	31,055	1,651	46,357
1969	269	7,660	116	5,899	59	4,295	1,492	39,734	1,936	57,588
1970	273	8,265	126	7,047	69	5,151	1,691	45,968	2,159	66,431
1701	272	8,947	139	8,557	82	. 6,781	1,859	51,801	2,352	76,086
./ <u>9</u> 1701	1	9,410	!	9,111	1	8,462	ł	54,960]	81,943
a/ As o	As of January	ry 1.					I			

A/ AS OF JANUARY 1. b/ AS Of July 1. Source: Fearnley & 1

Fearniey & Egers Chartering Co. Ltd., World Bulk Carriers, January 1971 (Oslo, March 1971), p. 4; and World Bulk Carriers, July 1971 (Oslo, August 1971), p. 3.

14.4

, ¦1

38.

「ない」と見る

ì

 $^{n} \phi_{h}^{n}$

1 -0 10 11 - -11 - -11 - -

 $\frac{f_l}{h}$

ļ

Table 20. Number of World Bulk Carriers by Vessel Size Group, 1960-71

A DECK STREET

وماراتها المناطقين المرتب والمساري والمراجع المساوية

voara/		Ve	Vessel si	size group	(in	thousands	Ъ	d.w.t.)		
reat	10-18	18-25	25-30	30-40	40-50	50-60	60-80	80-100	100+	TOLAL
1960	252	68	6	20	13	æ	ł	ł		365
1961	300	111	14	27	14	ŝ	ļ	1	!	471
1962	350	186	22	32	J 6	S	!	ł	ł	611
1963	397	242	41	44	22	6	г	ł	ł	756
1964	414	325	61	70	29	17	4	ł	ł	920
1965	416	360	74	87	27	28	7	н	1	1,000
1966	436	394	101	139	36	47	13	2	ł	1,168
1967	487	425	122	188	52	66	36	m	Ч	1,380
1968	521	460	155	220	16	105	78	18	ŝ	1,651
1969	571	514	206	236	120	139	103	37	10	1,936
1970	605	553	259	249	156	147	126	43	21	2,159
1971	599	598	309	283	163	161	137	53	49	2,352
a/ As of	<u>As of January</u> 1.	г.								
Source: F	Fearnley	& Egers	s Chart	ering C	Chartering Co. Ltd.,	, World		Bulk Carriers,	January	ry 1971

(Oslo, March 1971), p. 6.

39.

A.M.

ž,

うううなりない

1 11 .

·'i

A DECEMBER OF A

be considerably smaller than tankers. This fact reflects the many short routes and the limited markets served, for which very large vessels are often unsuited, as well as the numerous physical constraints presented to those vessels in the various ports involved. Thus, over half of the world's bulk carriers remained under 25,000 d.w.t. in early 1971, although this proportion had declined from 87 percent 10 years earlier (table 20).

New Vessel Construction

Rapid growth in the world fleet of tankers and bulk carriers has been paralleled by shipyard activity. From the early 1960's through 1970, annual orders for new vessels tended to increase sharply, with occasional dips. Thus, in 1963 new orders for nearly 23 million d.w.t. of wet and dry bulk ships were placed with shipbuilders, rising irregularly to nearly 72 million tons in 1970 (tables 21 and 22). Whereas in 1963 new tanker orders amounted to only 29 percent of total world supply at the beginning of the year, and new orders for bulk carriers amounted to only 26 percent, in 1970 the corresponding values -- on a much larger base -- were 64 and 46 percent, respectively.

This extraordinary rate of new construction orders is not likely to continue indefinitely. Thus, a pronounced decline in new construction contracts during 1971 to less than 52 million tons may be the forerunner of an extended period of much lower demand for new tonnage while the still rapidly growing world vessel fleet waits for demand to catch up.

During much of the 1960's, new orders for tonnage increased faster than deliveries, which are indicated in table 23. This fact reflects the difficulty of expanding productive capacity in the short run. Thus, at the end of 1962 the world's shipyards had an order backlog for only 19 million d.w.t. of tankers and bulk carriers. By the end of 1971 that backlog had increased to over 143 million d.w.t. (tables 21 and 24). At the 1971 (historically high) delivery rate of 32 million d.w.t. of tankers and bulk carriers, the average

Year	New orders a/	Constructi outst	on orders anding <u>b</u> /
	(1,000 d.w.t.)	Number of ships	D.w.t. (1,000)
1962	n.a.	263	12,940
1963	10,800	327	18,799
1964	7,700	299	18,817
1965	10,900	263	19,726
1966	16,200	251	24,606
1967	24,200	307	41,453
1968	23,800	349	52,749
1969	23,500	400	58,354
1970	41,200	476	79,349
1971	38,100	542	95,708

Table 21. World Orders and Shipyard Backlogs for New Tankers Over 10,000 Deadweight Tons, 1962-71

n.a. = not available.

 \underline{a} / During the year. \underline{b} / As of year end.

Scurce: Fearnley & Egers Chartering Co. Ltd., <u>Review</u> <u>1971</u> (Oslo, January 1972), pp. 10-11.

ų.

Table 22. World Orders for New Bulk Carriers Over 10,000 Deadweight Tons, 1963-71

Year	Combined carriers	Dry bulk carriers	Total
1963	400	3,500	3,900
1964	500	5,300	5,800
1965	2,400	9,900	12,300
1966	1,500	7,600	9,100
1967	2,400	4,000	6,400
1968	5,200	8,400	13,600
1969	8,500	10,000	18,500
1970	16,200	14,400	30,600
1971 ^{<u>a</u>/}	3,600	10,600	14,200

(In thousands of d.w.t.)

a/ Preliminary.

Source: Fearnley & Egers Chartering Co. Ltd., <u>Review</u> <u>1971</u> (Oslo, January 1972), p. 10.

42.

The second s

New Tankers and Bulk Carriers Over 10,000 Deadweight Tons Delivered by World Shipyards, 1963-71 Table 23.

1

٢

「「「ないち」になった時にはないたいのできます。

ومعطيتها المرادي والمتعادية والمتعاقب

	Tankers	irs	Combined car.	d car.	Dry bulk car.	k car.		Total
IEGI	Number	D.w.t. (000)	Number	D.w.t. (000)	Number	D.w.t. (000)	Number	D.w.t. (060)
1963	129	5,821	7	411	127	3,278	263	9,510
1964	168	8,499	6	523	70	1,890	247	10,912
1965	201	6, 539	12	631	159	4,920	372	15,090
1966	144	10,347	15	978	179	5,881	338	17,206
1967	103	7,967	41	3,073	236	8,166	380	19,206
1968	114	11,097	32	2,720	249	7,897	395	21,714
1969	125	16,385	23	2,028	200	5,999	348	24,412
1970	142	20,122	30	3,384	185	6,208	357	29,714
1971 <u>a</u> /	140	19,400	40	5,100	195	7,600	375	32,100
								·
a/ Preliminary.	iry.							
Source: Fearnley		& Egers Chartering Co. Ltd., <u>Review 1971</u>	tering Co	. Ltd.,	Review 19		(Oslo, January 1972),	, (272)

ï

p. 9.

43.

- Service

Å.

ł

ţ

とういう きゅうきょう ういろう うい

World Bulk Carrier Construction Orders Outstanding by Class, 1961-71 Table 24.

Ŋ.

 $[j_{ij}]_{ij}$

(Ore ca	Ore carriers	Combined car.	d car.	Other b	Other bulk car.	To	Total
Yeard	Number	D.w.t. (000)	Number	D.W.t. (000)	Number	D.w.t. (000)	Number	D.w.t. (000)
1961	38	838	ы	218	06T		233	٥,
1962	30	958	11	662	227		273	°,
1063		102	19		152		194	9
)	460	22		148		181	°,
1965	191	825	21	1,199	246	7,386	283	9,410
	26		48		351	2	425	6,6
1067	210	1011	22	6 B	421	4	499	8,6
	10	563	46	• •	360		426	6,4
1060		104	64	6.907	358	Ļ,	432	e, e
1070	1	716	111	4	361		481	,42
1971	23	1,549	173	26,359	505	ີ	101	48,374
:1971:		1 EQU	ļ	90	ł	23,918,	1	2,80
····Arnr	! 1		OV L	997.00	595 ^D	24.760 ^{D/}	744	47,559
Dec	1	1		•		•		

As of January 1, except as otherwise noted. Includes ore carriers. اهاها

Fearnley & Egers Chartering Co. Ltd., World Bulk Carriers, January 1971 (Oslo, March 1971), p. 12; World Bulk Carriers, July 1971 (Oslo, August 1971), p. 5; and Review 1971 (Oslo, January 1972), p. 11. Source:

44.

n George

shipyard had nearly 4.5 years of work. However, increased shipyard capacity in the next few years, especially from new facilities designed to produce very large vessels, will reduce this value substantially. If, as several informed trade sources have recently indicated, "the shipbuilding boom of recent years has been arrested, "1/ if "the market for new vessels will remain bleak until 1974-75, "2/ and if "there can be no shadow of doubt that state aid will again be given to many...,"3/ then the intermediate-term outlook for orders at the world's shipyards stands in sharp contrast to its recent pattern of activity.

Among the world's shipbuilders of tankers and bulk carriers, those of Japan and of Scandinavia and other Western European nations are dominant. At the end of 1970, Japan alone accounted for over half of all the outstanding worldwide orders for bulk carriers over 10,000 d.w.t. and for approximately a third of such orders for tankers. Among the others, Sweden was a distant second, accounting for more or less than 10 percent of all outstanding orders for new tankers and bulk carriers. Other leading shipbuilding nations include Spain, West Germany, the United Kingdom, France, Denmark and Norway (tables 25 and 26).

Much of the tonnage on order is destined for inclusion in fleets operating under the flag of the same country in which the vessels are constructed. However, although some countries give preference to vessels built at home, many do not. Thus, to a substantial degree, shipyards among the different countries are in direct competition for orders from clients located throughout the world. These competitive circumstances help to explain the position of dominance achieved by Japanese shipbuilders, whose output in recent years for Japanese operators has been exceeded by overseas sales. It also helps to explain why, with the prospect of weak markets for new ships in the next few years, European shipyards

1/ Lloyd's Register, as quoted in the Journal of Commerce, January 27, 1972.

2/ Eggar Forrester (London Shipbrokers), as quoted in the Journal of Commerce, March 10, 1972. Ibid.

3/

「「「「「「「「」」」」

il e

ANT CONTRACTOR

南晋

į,

45.

Country	Dec. 31, 1960	Dec. 31, 1969	Dec. 31, 1970
Japan	2.8	21.1	24.2
Sweden	2.6	7.3	7.9
France	1.2	6.1	6.6
Denmark	0.8	3.7	6.2
Spain	0.5	3.9	5.6
Norway	0.8	2.6	4.8
West Ger- many	1.8	2.7	4.2
Netherlands.	0.8	1.9	3.9
United Kingdom Italy	2.6	3.5 2.3	3.0 3.0
United States	0.5	1.5	1.9
U.S.S.R		0.6	1.4
Others	0.4	2.2	2.6
Total	15.4	59.3	75.4

Table 25. Tankers Over 10,000 Deadweight Tons on Order by Country of Construction, Selected Years

(In millions of d.w.t.)

Note: Numbers do not add to totals because of rounding.

Source: Sun Oil Company, <u>Analysis of World Tank Ship</u> <u>Fleet, December 31, 1970</u> (Philadelphia, August 1971), p. 16.

Country	January J	L, 1971	January	1, 1970
	Mil. of d.w.t.	Pct. of total	Mil. of d.w.t.	Pct. of total
Japan	25.4	52.6	12.1	42.5
Sweden	4.7	9.6	3.0	10.6
United Kingdom	3.8	7.8	3.2	11.5
West Germany	3.3	6.8	2.3	8.0
Yugoslavia	2.2	4.6	1.8	6.2
Spain	2.0	4.2	0.9	3.2
Nor/ay	1.3	2.7	0.9	3.2
Italy	1.2	2.6	1.2	4.1
Poland	1.1	2.2	0.9	3.3
Others	3.3	6.9	2.1	7.4
Total	48.4	100.0	28.4	100.0

Table 26. Bulk Carriers over 10,000 Deadweight Tons on Order, by Country of Construction, as of January 1, 1970 and 1971

Source: Fearnley & Egers Chartering Co. Ltd., <u>World</u> <u>Bulk Carriers, January 1971</u> (Oslo, March 1971), p. 13.

Flag Distribution

The world's tanker and bulk shipping fleet travels under flags of many nations, particularly those of Western Europe, Scandinavia, Japan and Liberia. The latter nation's flag alone recently accounted for onefourth of the world's tanker and bulk carrier capacity. The three other flags of greatest global importance are the United Kingdom, Norway and Japan. Together this "Big Four" represented approximately 60 percent of total world tanker tonnage over 10,000 d.w.t., approximately 72 percent of that tonnage in excess of 60,000 d.w.t., and 68 percent of its bulk carrier capacity (table 27). On the basis of outstanding orders for new ships, fleet shares of the four dominant flags are expected to remain about the same over the next several years.2/

To a large degree, the flag distribution of vessels which are used to carry bulk commodities between any two countries is determined by market or economic rather than political criteria. Thus, as the costs of constructing vessels in U.S. shipyards and operating them with American crews have become unfavorable relative to foreign competitors, the U.S.-flag share of U.S. seaborne trade in bulk commodities has declined precipitously. Whereas in 1950, 42 percent of U.S. bulk imports and 27 percent of U.S. bulk exports traveled in ' U.S.-flag vessels, by 1970 less than 4 percent of that trade traveled in carriers bearing the national flag (table 28). A substantial proportion of even that reduced market owed its existence to legislative requirements for carriage of some bulk commodities in U.S. bottoms (principally wheat exports under P.L. 480, and certain military preference cargoes).

1/ Journal of Commerce, May 9, 1972.
2/ See Fearnley & Egers Chartering Company Ltd., Large Tankers, January 1971, p. 10; and World Bulk Carriers, January 1971, p. 17.

Table 27. Distribution of World Tanker and Bulk CarrierFleet by Flag as of January 1, 1971

(In millions of d.w.t.)

R ¹ ag	Oil ta	nkers	Bulk carriers
Flag	10,000 d.w.t. and over	60,000 d.w.t. and over	(10,000 d.w.t. and over)
Liberia	37.4	20.7	19.4
United Kingdom	21.7	13.2	6.8
Norway	17.0	11.9	11.7
Japan	15.2	12.7	14.0
United States	9.3	<u>a</u> /	0.8
Greece	7.7	2.7	3.7
France	5.7	3.7	1.1
Panama	5.5	1.9	0.9
Italy	4.3	1.7	3,.6
U.S.S.R	4.2	<u>a</u> /	<u>a</u> /
Nether- lands	3.5	1.9	0.8
West Ger- many	2.8	1.8	2.7
Sweden	2.6	1.7	2.4
Denmark	2.3	1.6	0.8
Spain	2.2	1.5	0.6
Other	10.3	3.8	б.8
Total	151.7 ^b /	80.9	76.1

a/ Included in other.

b/ Includes government-owned and miscellaneous vessels.
Source: Tankers over 10,000 d.w.t. -- John I. Jacobs & Co. Ltd., World Tanker Fleet Review, 31 Pecember 1970 (London, 1971), p. 12. Tankers over 60,000 d.w.t. -- Fearnley & Egers Chartering Co. Ltd., Large Tankers, January 1971 (Oslo, June 1971), p. 6. Bulk carriers -- Fearnley & Egers Chartering Co. Ltd., World Bulk Carriers, January 1971 (Oslo, March 1971), p. 17.

「「「」

Table 28. U.S.-Flag Carrier Share of U.S. Waterborne Foreign Trade Transported in Wet and Dry Bulk Carriers, Selected Years

i di

(In millions of short tons)

U.S. trade and vessel type	195 0	1960	1969	1970	, , , , , , , , , , , , , , , , , , ,
Waterborne imports car- ried by		I	ب بیش د شید _م	((¹)	
Irregular dry cargo vessels:ª		· .•	r di A		BARAN SAN AND AND AND AND AND AND AND AND AND A
Total U.S. flag:				114.2	and the second
Amount Percent of total		8.0 10.7	2.1 1.9	4.6	
Tankers: ^{b/} Total U.S. flag:	50.1	103.9	156.9	161.4	rente of generat
Amount Percent of total	27.4 54.8	5.8 5.6	4.2 2.7	3.4	, (' , ('
Total wet and dry bulk carriers:		х а	, ,	19 1° 15	e na na nanazi da fin afen e denga ng na na nanazi da fin afe
Total U.S. flag:				275.6	a a Yang A
Amount Percent of total	32.8 42.4	13.8 7.7	6.3 2.3	10.2 3.7	
Waterborne exports car- ried by					
Irregular dry cargo vessels:					·
Total U.S. flag:			156.3		
Amount Percent of total	7.6 22.8	6.9 10.9	5.3 3.4	5.3 2.8	
Tankers: ^{b/} Total	9.1	16.3	17.0	20.0	
U.S. flag: Amount Percent of total	4.0 43.4	3.2 19.3	1.7 10.2		
				tinuod	

continued--

-- h-11 ap.

V 135

<u>بالم</u> <u>р</u>,

50.

ຄົງເສ

Table 28.U.S.-Flag Carrier Share of U.S. WaterborneForeign Trade Transported in Wet and Dry BulkCarriers, Selected Yearscontinued--

(In millions of short tons)

U.S. trade and vessel type	1950	1960	1969	1970
Total wet and dry bulk carriers:			• •	
Total U.S. flag:	42.5	86.7	173.3	207.5
Amount Percent of total	11.6 27.3	10.1	7.0 4.0	7.4 3.6

a/ These vessels transported dry bulk commodities and some general cargo.
 b/ Includes dry bulk cargo transported by tankers (especially grain).

Source: U.S. Department of Commerce, Bureau of the Census, <u>Waterborne Exports and General Imports</u>, Series FT 985. dian's

- 14 H

The Difference of the State of

52.

Data on U.S. bulk commodity trade by specific foreign flag are not published. However, discussions with shipping firms indicate that recently some 60 percent of U.S. oil imports were transported by vessels flying flags of convenience (primarily Liberia, and to a lesser degree Panama). A substantial proportion of such ships are U.S. owned and operated.1/ Movements of U.S. dry bulk exports and imports are more widely distributed among foreign-flag vessels. However, a significant proportion of coal exports to Japan are transported by Japanese-flag ships, and of iron ore imports, by flag-of-convenience vessels.

Speed and Propulsion

Most tankers and bulk carriers are designed to operate at speeds of 14 to 17 knots. At the end of 1970, the average oceangoing tanker of more than 2,000 gross tons could move at 15.8 knots. The average design speed of large tankers exceeding 60,000 d.w.t. was about the same.

Bulk carriers are typically designed to operate at slightly lower speeds than tankers, averaging 14.8 knots in 1970 (table 29). Within the group, ore carriers averaged 14.3-knot design speeds; other dry bulk carriers, 14.8 knots; and combined carriers, 15.4 knots. Speed differences among major flags were relatively small.2/

Typical vessel speeds have tended to increase gradually over the years with improvements in vessel design and propulsion technology, reductions in unit fuel consumption, and increasing vessel size. However, optimal speeds vary considerably with such specific circumstances as the level of freight rates and bunker

1/ American and Greek owners are believed to control, in about equal proportions, 85 to 90 percent of the Liberian and Panamanian tonnage. See S.G. Sturmey, British Shipping and World Competition (London: University of London, 1962), pp. 213-14 2/ Fearnley & Egers Chartering Company Ltd., World Bulk Carriers, January 1971, p. 10.

Table 29. Speed Distribution of World Tanker and BulkCarrier Fleet at End of 1970

(In percent)

Knots	Tankers over 2,000 g.r.t.		Bulk carriers over 10,000 d.w.t.
Less than 13	2		3
13-14	2	ь ¹ 2	5
14-15	10	, 2	24
15-16	28	35	46
16-17	45	57	21
17 and over	13	6	1.
Total	100	100	100
Average knots	15.8	15.7	14.8

Source: Sun Oil Company, <u>Analysis of World Tank Ship</u> Fleet, December 31, 1970 (Philadelphia, August 1971), Tables 3A and B; Fearnley & Egers Chartering Co. Ltd., <u>Large Tankers</u>, January 1971 (Oslo, June 1971), p. 7; and Fearnley & Egers Chartering Co. Ltd., <u>World Bulk Carriers</u>, January 1971 (Oslo, March 1971), p. 10.

53.

fuel prices, turnaround time in ports, and trip distance. In many instances total unit transport costs actually increase when speed exceeds a certain point. This reflects the fact that fuel consumption rises at a disproportionately high rate. Accordingly, generalization is hazardous. Nevertheless, the fastest vessels are most likely to be found in regular service between ports which minimize terminal times. 1/

The two dominant types of propulsion used in tankers and bulk carriers are steam turbine and diesel (motor) engines. At the beginning of 1971, turbine power was somewhat more common than diesel in tankers, while motor propulsion was relatively dominant in bulk carriers (table 30). To some degree, propulsion by steam is apparently considered advantageous in very large vessels, but, as in the case of operating speeds, the choice of the most favorable propulsion system depends on numerous factors which vary on a case-by-case basis.2/

Thus, for example, the U.S. tanker fleet is almost entirely steam driven, although vessels are relatively small in size. On the other hand, Norwegianflag tankers, which are typically much larger, are predominantly motor driven.3/ Furthermore, of 69 orders placed during the latter half of 1970 for new tankers over 200,000 d.w.t., nine were to be diesel powered.4/ These circumstances suggest that any differences in overall cost and efficiency between steam turbine and diesel propulsion must generally be small.

1/ Trevor D. Heaver, The Economics of Vessel Size (Ottawa: National Harbours Board, 1968, mimeo), p. 24. 2/ A good summary of these factors is given on p. 23 of Heaver's The Economic of Vessel Size. 3/ See John I. Jacobs & Company Ltd., World Tanker Fleet Review, 31 December 1970 (London, 1971), p. 23. 4/ Ibid., p. 6.

54.

Table 30. Distribution of World Tankers and Bulk Carriers by Method of Propulsion, as of January 1, 1971

Method of	. Tan	kers	Bulk carriers over 10,000		
propul- sion	10,000-60,000 d.w.t.	Over 60,000 d.w.t.	d.w.t.		
. }		ons of d.w.t.			
Turbine	42.2	50.7	9.7		
Motor	28.6	30.2	66.4		
Total	70.8	80.9	76.1		
		Percent			
Turbine	60	63	13		
Motor	40	37	87		
Total	100	100	100		

Source: Fearnley & Egers Chartering Co. Ltd., World <u>Bulk Carriers, January 1971</u> (Oslo, March 1971), p. 11, and <u>Large Tankers, January 1971</u> (Oslo, June 1971), p. 6; and John I. Jacobs & Co. Ltd., <u>World Tanker Fleet Review, 31 December</u> <u>1970</u> (London, 1971), p. 12.

55.

A. A. Barris .

Vessel Dimensions and Capacity

In the context of this study, relationships between a vessel's size or capacity and its dimensional characteristics are of considerable interest. Waterways on various routes, terminals, or connecting channels often impose constraints on one or more dimensions of a ship used for a particular movement. The Panama Canal is a notable example. It can accommodate vessels only up to 106 feet in beam (width), and they may not draw more than 36 feet of water under seasonally low water conditions. Vessels built for service requiring regular use of the canal are therefore often specially designed. They are longer than usual to compensate for the other dimensional constraints.

A vessel's beam or length may also be limited by physical conditions of port channels or berths or, in the case of dry bulk commodities, by the nature of dockside handling equipment. Relatively shallow harbor depths are, however, typically the most serious constraints for tankers and bulk carriers. They usually impose draft limitations before any constraints on other dimensions become effective. Unfortunately, these constraining influences among the world's many harbors and channels, as well as their significance for vessel design, vary considerably. Therefore, a determination of the most efficient ship size and design characteristics, even for a given draft constraint, produces varied results in individual cases.

These circumstances are strikingly revealed in tables 31 and 32, which summarize the major dimensional characteristics of the world tanker and bulk carrier fleets by size class. As is evident from even a cursory review of these tables, there is a considerable range of values for length, draft or beam for any given size level of ship. For example, existing tankers or bulk carriers of 60,000 to 80,000 d.w.t. draw anywhere from 36 feet to 50 feet of water. Similarly, the capacity of tankers requiring 50- to 55-foot drafts ranges from less than 100,000 d.w.t. to more than 200,000 d.w.t.

56.

Dimension	NO.	of ve	ssels	by siz	e grou	p (000	d.w.t.)
(in feet)	60- 80	80- 100	100- 150	150- 200	200- 250	250 & over	Total
Draft Under 40 40-45 45-50 50-55 55-60 60-65 65 and over.	8 223 24 	61 94 8 	 46 55 11 	 4 20 11	 3 1 88 21	 17	8 284 164 70 32 100 38
Length Under 800 800-850 900-950 950-1,000 1,000-1,050. 1,050-1,100. Over 1,100	160 90 5 	1 96 65 1 	19 52 35 5 1	 1 16 10 8	 21 87 5		161 205 122 37 21 32 95 23
Beam Under 110 110-120 120-130 130-140 140-150 150-160 Over 160	99 98 58 	1 13 146 3 	 51 45 16 	 4 6 17 8	 8 79 26	 18	100 111 255 52 30 96 52
Total number of ships	255	163	112	35	113	18	696

Table 31. Distribution of World Large Tankers by Dimensional Characteristics as of January 1, 1971

Source: Fearnley & Egers Chartering Co. Ltd., Large Tankers, January 1971 (Oslo, June 1971), p. 8.

57.

THE REPORT OF

as	
Characteristics à	
Length	
and Lei	
Draft	121 1971
γd	
Carriers by Draft a	January]
Bulk (of January]
of Bulk Carriers	of January]
Bulk (of January]

	Nimbor	4	traccal c hir	ci 70	droin ((in 1.000 d.w.t.	0 0 % +		
Dimensions		5	- 1		- 1				
(in feet)	10-18	18-25	25-30	30-40	40-50	50-60	60-80	80-100	Over 100
Draft									
Tinder 30	424	56	2	1	ŀ	ł			1
्ष	186	275	T6		!	1	ļ	!	ł
and	6	225	108	.12	7			1	ł
	ł	42	177	118	8	٦	1		1
and	1		Q	136	41	11	~	1	1
	1	ł	1	16	83	17	Ŋ	1	
-44	1	 	 	!	29	78	89	6	-
45-49		ļ	!	1			43	42	13
	;	ļ	1	1	1	1	1	7	35
T.ength									
Under 500	589	259	11	ł	1	1	ł	1	ł
	10	274	188	6	;	1		1	1
600-650		65	105 1	162	39	!	ł		
650-700		1	ŝ	105	69	11	1	1	!
700-750		ł		2	47	115	TO	1	
750-800	•	1	•	1	ω	33	49	2	ł
800-850	1	1	ł		1	7	73	44	14
850-900			ł	ł	l	1	ഗ	۲ ۲	18
Over 900	1		ł	1	ł		ł		17
Total no. of ships.	599	598	309	283	163	191	137	53	49
Source: Fearnley &	Egers Cha	Charter	Chartering Co.	Ltd.,	World Bulk Carriers	ulk Car		January	1971
Mar	CU TA/I	-), p. L	•						

2

語の言語

58.

ì

Furthermore, some analysts note a tendency for vessel deadweight to increase at a given draft. For example, in 1968 Meredith and Wordsworth observed that:

> ...whereas a few years ago a 65,000 ton ship might draw 42 feet fully laden, there are now tankers and a few bulk carriers of 85,000 tons deadweight or more on the same draught. The authors expect eventually to see 100,000 ton ships drawing no more than 44 feet, but with breadths of as much as 140 feet.1/

The preceding circumstances clearly show that there is no fixed relationship between vessel size (in deadweight) and draft. A ship's capacity is governed primarily by the particular combination of length, beam and draft incorporated in its design. Since the number of dimensional combinations is virtually without limit, vessel design optimization is moderately complex. This topic is considered further in chapter III, where differences in transport costs associated with alternative design concepts for vessels of varying sizes are analyzed.

Bulk Commodity Movements by Type and Size of Vessel

General

The preceding sections have shown that both demands for and supplies of ocean vessels to transport major bulk commodities have been growing rapidly, especially for vessels of larger size. Those trends can be illuminated more clearly for individual commodities by considering the types and sizes of vessels actually used in the movement of each over time. Table 33 gives tonnages of crude oil in world trade transported in tankers and combined carriers exceeding 60,000 d.w.t.

1/ W.G. Meredith and C. Wordsworth, "Size of Ore Carriers for the New Port Talbot Harbour," Journal of the Iron and Steel Institute, vol. 204, November 1968, p. 1077.

Table 33. Estimated World Seaborne Shipments of Dry Bulk Commodities in Bulk Carriers Exceeding 18,000 Deadweight Tons, 1960-70, and of Crude Oil in Vessels Exceeding 60,000 Deadweight Tons, 1962-70

(In millions of metric tons)

Commodities	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970
Crude oil	n.a.	n.a.	23.1	34.0	67.7	116.2	195.0	258.1	348.9	445.8	566.3
In tankers	n.a.	n.a.	23.1	34.0	67.7	116.2	192.4	242.9	312.1	402.4	517.8
In combined carriers ^a /.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	2.6	15.2	36.8	43.4	48.5
Major dry bulk											
Iron ore	31	38	47	54	80	98	107	127	151	181	212
Coal	٣ 	9	12	18	25	30	34	39	48	60	70
Grain <u>b</u> /	ה 	m	7	14	J 6	17	25	29	40	36	43
•	ر ب	2	9	8	0T	12	13	15	16	1 9	20
	!	ł	1	H	Ч	2	4	7	12	12	14
Subtotal	38	52	72	95	132	159	163	217	267	30	359
Other dry bulk	1	-1	Ч	ς Γ	9	12	24	41	59	99	80
Total dry bulk	38	53	73	98	1 38	171	207	258	326	374	439
n.a. = not available. a/ Negligible prior to 196 b/ Includes only wheat, co Source: Fearnley & Egers C 1971), pp. 5 and ber 1971), p. 7.	1 1966. barley, corn, barley, s Chartering Cc nd 24, and <u>Trac</u>	66. corn, barley, ry Chartering Co. 1 24, and <u>Trade</u> s		<u>е</u> н "	and oats 1., <u>Large</u> E World B	ulk.	Tankers, Ja Lik Carriers	in	<u>197</u>	<u>1</u> (Oslo, (Oslo, Nc	o, June Novez-

60.

in each year from 1962 through 1970. It also shows annual volumes from 1960 through 1970 for each major dry bulk commodity in world trade carried in bulk carriers exceeding 18,000 d.w.t. Table 34 reveals total ton-miles of ocean transport corresponding to the movements given in table 33, while table 35 indicates the equivalent average trip distances.

Comparison of the data in those tables with like information for total world seaborne trade given in tables 1, 4 and 5 is instructive. Such a comparison shows that the proportion of total trade in each commodity shipped in larger vessels has grown very rapidly. Thus, in 1962 only 6 percent of crude oil seaborne trade -- in both tonnage and ton-miles -- was transported by ships over 60,000 d.w.t. By 1970 these vessels' share of total tonnage and ton-miles had increased to 58 and 70 percent, respectively (table 36).

The pattern for world seaborne trade of the five major dry bulk commodities is similar. Whereas only about one-sixth of that trade moved in bulk carriers exceeding 18,000 d.w.t. in 1960, 10 years later these vessels accounted for 74 percent of total tonnage and 81 percent of total ton-miles (table 37). Allowing for cargo carried by the smallest bulk carriers in the 10,000- to 18,000-d.w.t. range, bulk carriers taken as a whole were responsible for nearly 90 percent of total ton-miles of the five major dry bulk commodities in world seaborne trade in 1970.1/ The balance of that trade moved in tankers, small tramps and general cargo ships.

Thus, diversion of bulk traffic from other vessels explains why growth in demand for and supply of dry bulk carriers has greatly exceeded growth in total trade. As is evident from 1970 data, however, further possibilities of diversion for the five major dry bulk commodities are quite limited. Nevertheless, attraction of other commodities to bulk carriers has considerable further potential: from negligible levels in

1/ Fearnley & Egers Chartering Company Ltd., Trades of World Bulk Carriers in 1970, p. 7. ble 34. Estimated World Seaborne Shipments of Dry Bulk Commodities in Bulk Carriers Exceeding 18,000 Deadweight Tons, 1960-70, and of Crude Oil in Vessels Exceeding 60,000 Deadweight Tons, 1962-70 Table 34.

(In billions of ton-miles)

Commodities	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970
Cruide oil	2		104	148	317	550	956	1 580	2 310		
			- CHOT	/ Entt		2	2		コオフィチ	•	•
In tankers	n.a.	n.a.	1045	148-/	311	550	943	1,4 95	2,063	2,696	3,493
In combined								i			
carriers <u>b</u> /	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	130	07 70 70	2479	/ 296 <u>4</u>	/ 367 <u>4</u> /
Major dry bulk											
Iron ore	98		149	184	278	356	424	514	653	822	976
Coal	13	29	59	87	121	146	167	203	269	347	421
Graine/	ŋ	17	38	74	0 6	95	151	188	233	218	257
Bauxite,											
alumina	9	9	님	14	18	21	26	35	39	54	62
Phosphates	1		ł	2	4	9	12	29	56	50	55
Subtotal	122	178	257	361	511	624	780	969	1,250	1,491	1,771
Other dry bulk.	ł	7	4	6	19	35	98	199	295	334	400
Total dry bulk.	122	180	261	370	530	629	878	1,168	1,545	1,825	2,171

= not available. n.a.

the same as for all tankers over 10,000 d.w.t. Assumes average distance of movement Negligible prior to 1966.

the same as for large tankers. Assumes average distance of movement

Assumes average distance of movement the same as for all combined carriers exceeding a/Assumes avb/Negligiblec/Assumes avd/Assumes av18,000d.w.t.

Includes only wheat, corn, barley, rye, and oats. 6 Fearnley & Egers Chartering Co. Ltd., Large Tankers, January 1971 (Oslo, June 1971), p. 5; Review 1971 (Oslo, January 1972), p. 8; Trades of World Bulk Carriers in 1970 (Oslo, November 1971), pp. 7, 30; and Trades of World Bulk Carriers in 1969 (Oslo, November 1970), p. 31. Source:

62.

Table 35. Average Distances of Seaborne Movement of Dry Bulk Commodities in World Trade Transported in Bulk Carriers Exceeding 18,000 Deadweight Tons, 1960-70, and of Crude Oil in Vessels Exceeding 60,000 Deadweight Tons, 1962-70

the second second

-

(In nautical miles)

ies 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970	n.a. n.a. 4,508 ^{a/} 4,361 ^{a/} 4,594 ^{a/} 4,733 ^{a/} 4,901 ^{a/} 6,155 ^{a/} 6,621 6,712 6,816 rs. n.a. n.a. n.a. n.a. 4,594 4,733 4,901 6,155 6,610 6,700 6,746	neu s) n.a. n.a. n.a. n.a. n.a. n.a. n.a. n	3,161 3,237 3,170 3,407 3,475 3,633 3,963 4,047 4,325 2,541	4,333 4,833 4,917 4,833 4,840 4,867 4,912 5,205 5 5,000 5,667 5,429 5,286 5,625 5,588 6,040 6,483 5	3,211 3,423 3,569 3,800 3,871 3,925 4,262 4,465 4,682 4,841		otal dry bulk 3,211 3,396 3,575 3,776 3,841 3,854 4,242 4,527 4,739 4,880 4,945	. = nct available. Assumes average distance of movement by large combined carriers is the same as for large	tankers. b/ Includes only wheat, corn, barley, rye, and oats.
Commodities 19		LI COMPLIEU Carriers n.	Major dry bulk Iron ore3,1		Enosphates. 3,2	Other dry bulk	Total dry bulk 3,2	n.a. = nct available. a/ Assumes average d	tankers. <u>b</u> / Includes on]

まってすい 顕然の

Tables 33 and 34.

Source:

And a survey of a survey

and the second second

一部時間と調理した時間間に見ていたので、

第二日に

1.1.1

÷

1

Table 36. Seaborne Movements of Crude Oil in World Trade by Vessels Exceeding 60,000 Deadweight Tons in Relation to Total Trade, 1962-70

MANAGART TO THE REAL PARTY OF THE AND DO THE PARTY OF THE TAXAGE AND THE ADDRESS OF THE ADDRESS

1

.

		World seal	oorne trade
Year	Total ^a /	In vessels ove	er 60,000 d.w.t.
	Total-	Amount	Percent of total
		Metric	tons
1962	366	23	6
1963	424	34	8
L964	482	68	14
L965	552	116	21
.966	607	195	32
L967	672	258	38
L968	768	349	45
959	871	446	51
197)	979	566	58
		Metric ton	-miles
1962	1,650	104	6
L963	1,850	148	8
L964	2,150	311	15
L965	2,480	550	22
L966	2,629	956	36
967	3,400	1,589	47
1968	4,197	2,310	57
L969	4,853	2,992	62 70
1970	5,536	3,860	70
a/ Total	tons in mil	lions of metric	tons; total ton-

International Contractor Station

Source: Tables 1, 4, 33 and 34.

وبذأوأ أواجعه والمتطر أساسيت لمنت

64.

Ň¢.

Table 37. Seaborne Movements of Five Major Dry Bulk Commodities^a in World Trade by Bulk Carriers Exceeding 18,000 Deadweight Tons in Relation to Total Trade, 1960-70

		World seab	orne trade	
lear	Total ^b /	In vessels	over 18,000 d.w.	t.
	TOTAL	Amount	Percent of tot	al
		Metric	tons	
L960	228	38	17	
1961	239	52	22	1
962	246	72	29	
1963	269	95	35	
964	308	132	43 49	
L965	⁰ 327 340	159 183	54	
L966 L967	340	217	62	
1968	384	267	70	
L969	419	308	74	
L970	488	359	74	
		Metric to	n-miles	
1960	746	122	16	
1961	833	178	21	
1962	854	257	30	
L953	956	361	38	
L964	1,146	511	45	
965	1,260	624	50	
L966	1,360	780	57 66	
1967 1968	1,465	969 1,250	77	
1969	1,813	1,491	82	
1970	2,182	1,771	81	
			te, and bauxite/	,
alumina.		_		
b/ Total (tons in mil	lions of metri	c tons; total to	n-

Source: Tables 1, 4, 33, and 34.

ŝ

.

€6.

1960, bulk carriers over 18,000 d.w.t. hauled around 80 million tons of other (bulk) commodities in 1970. This represented only a bit more than 10 percent of all other dry cargo, an uncertain but large part of which can conveniently be transported in bulk.

1970 Ship Size Distribution in Major U.S. Commodity Trades

No U.S. sources are known to publish or otherwise make available data indicating, by specific bulk commodity, the proportion of annual seaborne trade moved in vessels of various sizes. The basic information exists in raw form; that is, in operating records of the nation's ports and local customs offices. An extraordinarily time-consuming effort would be required to extract and organize the data for analytic purposes. Ideally they should be integrated with detailed commodity-flow data by origin and destination that are regularly published by the Census Bureau in its series SA-305 and SA-705.1/ That would permit illumination of those movements by trade route and even by port pair.

Until the prior statistical infrastructure is created, one must resort to trade sources, among which publications of Fearnley & Egers Chartering Company appear to provide the most comprehensive understanding. The only commodity for which available data effectively illuminate ship size distribution by U.S. trade route is crude oil. As indicated in table 38, 57 percent of U.S. 1970 seaborne crude imports arrived in vessels exceeding 60,000 d.w.t., predominantly in the 60,000- to 80,000-d.w.t. range and to a lesser degree in larger ships. Most of the shipments from the Persian Gulf, and to a limited degree from North Africa and Indonesian origins, arrived in ships of at least 60,000 d.w.t. In contrast, around five-eighths of crude imports from Venezuela -- still the most important overseas source in 1970 -- arrived in ships smaller than 60,000 d.w.t., reflecting the relatively short hauls involved.

1/ And as presented in Annex G.

U.S. Imports of Crude Oil by Vessel Size Groups and Major Point of Origin, 1970 Table 38.

(In millions of metric tons)

		Å	Vessel siz	size group		(1,000 d.w.t.)		
Origin	Tankers	Combined	Combined carriers		Tankers	SIS		Total
	unaer 60	Under 60	Over 60	60-80		100-150	80-100 100-150 Over 200	
Persian Gulf	1	0.5	3.2	3•0	1.3	ł	0.2	8.2
North Africa	0.3	0.7	0.2	0.8	0.3	1.0	0.2	2.6
Caribbean	7.7	1.4	0.7	4.5	0.1	8	 	14.4
Near East	0.3	1	1		!	1	1	0.3
other ^{a/}	2.7	0.3	0.5	2.4	0.8	0.2	}	6.9
Total	0.11	2.9	4.6	10.7	2.5	0.3	0.4	32.4
<u>a/ Largely from</u> 1 Source: Fearnley June 1971 (Oslo, No	Indonesia. & Egers C 1), pp. 14 Vember 19	<pre>LIV from Indonesia. Fearnley & Egers Chartering Co. Ltd., Large Tankers, January 1971 (Oslo, June 1971), pp. 14, 16, and 26, and Trades of World Bulk Carriers in 197(Oslo, November 1971), p. 31.</pre>	Co. Ltd. 26, and <u>1</u>	Ltd., <u>Large</u> and <u>Trades</u>	e Tankeı of Worl	<mark>s, Janu</mark> d Bulk (mkers, January 1971 (World Bulk Carriers i	(Oslo, in 1970

67.

国家大学

Ĩ

うちょうの うちょう

ì

10.00

It is interesting to note that, although they were quantitatively quite small, several shipments of U.S. crude imports arrived in vessels of over 100,000 d.w.t. and even over 200,000 d.w.t. in 1970. Ports of destination are not indicated. However, several major ports on the west coast can presently accommodate vessels of such large size, while similar movements to major east coast ports are also feasible when the ocean vessel's cargo is lightened outside shallow harbors (see chapter IV).

No statistical data are available on the ship size distribution for U.S. (or other) petroleum product imports. In recent years, volumes have substantially exceeded seaborne crude imports. However, trade sources indicate that virtually all petroleum products in world seaborne trade, including that of the United States, are moved in vessels smaller than 60,000 d.w.t., generally reflecting prevailing demands for comparatively small lot sizes.1/

Data on ship size characteristics of dry bulk commodities in U.S. seaborne trade are available, but not by trade route. Table 39 indicates the proportion of total 1970 U.S. seaborne trade in each major bulk commodity by vessel size group. As shown there, typical ship sizes are smaller for dry bulk commodities than for crude oil. They tend to be relatively largest for iron ore and coal movements, somewhat smaller for grain and bauxite, and smallest of all for phosphate. The largest vessels carrying 1970 U.S. iron ore imports were in the 60,000- to 80,000-d.w.t. class, but most were smaller. Nearly one-fourth of U.S. coal exports in that year were shipped in vessels of more than 60,000 d.w.t., but the largest ones are believed to have been in the 80,000- to 100,000-d.w.t. range.

Data for the other dry bulk commodities are less detailed as to vessel size groups. They do indicate that only insignificant quantities of U.S. grain exports

1/ Fearnley & Egers Chartering Company Ltd., Large Tankers, January 1971, p. 4.

68.

Table 39.	Estimated	Vessel	Size Di	stribu	tion of	World
and U.S	. Seaborne	Trade i	n Major	Bulk (Commodit	ties,
		19	70 -			

(In percent)

			e j	78 0		2 (]	000 0	l.w.t	.)
Commodity					T			r	· /
		nder <u>8a</u> /	18- 25	25~ 40	40- 60	- 60- 80		Over 100	Total
Dry bulk									
Iron ore: World U.S Coal:		1.4 1.3	7 8	19 26	32 46	17 7	5	6 	100 100
World U.S			11 12	21 26	27 35		-12 -24		100 100
Grain: World U.S		41 19	21 26	27 36					100 100
Bauxite: World U.S		41 41 <	20 20						100 100
Phosphate: World U.S		59 33 n	14 .a.	22 n.a			<u>5</u> ->5	/ 	100 100
	A11	Comb			Т	anker	'S		
	ves. under 60	car. over 60				100- 150	150- 200	Over 200	Total
Wet bulk Crude oil: World U.S	42 43	5		63	12	9	4	12	100
n.a. = not ava a/ May includ nonbulk carrie b/ Most vesse U.S. c/ Most vesse and Canada. Source: Fearn <u>World</u> 1971)	Ilable e a sm rs exc ls ove ls ove	all p eedir r 25, r 40, Egers <u>Carri</u> 12, 1	orop 000 000 Ch ers	orti 8,00 d.w d.w arte in	lon ())0 d /.t. /.t. /.t. /.t.	of ta .w.t. from from g Co. 0 (Os	U.S Ltd.	s or ibbea . to : . <u>Tra</u> Novem	other n to Europe ades of ber

- Avenue

4

69.

河道川

-

in 1970 were shipped in vessels exceeding 60,000 d. and imply the same for phosphate rock. Virtually a bauxite imports are believed to arrive in vessels o less than 50,000 d.w.t.

Table 39 also permits direct comparison of 1! U.S. ship size distributions with the rest of the we for the same commodities. In the case of crude oil the largest tankers in world trade are usually much larger than those serving the United States. Where 1970 U.S. crude oil imports were predominantly shipp in vessels smaller than 100,000 d.w.t., and mostly under 80,000 d.w.t., at least 25 percent of world se borne trade in crude oil was served by vessels above 100,000 d.w.t., and 12 percent was accommodated by v sels exceeding 200,000 d.w.t.

Among the major dry bulk commodities, 1970 U. iron ore imports were transported in typically small vessels than the rest of the world. Whereas the lar ships serving the United States were in the 60,000-80,000-d.w.t. range, 11 percent of world seaborne tr in iron ore was transported in larger vessels, about half of them exceeding 100,000 d.w.t.

For the other four dry bulk commodities, howe typical sizes of ships engaged in U.S. seaborne trac were larger than their counterparts in world trade generally. This reflects the fact that, with the ev dent exception of iron ore and the more limited exce tion of coal, there is presently little demand anywr in the world for shipments of dry bulk commodities i lots of 60,000 tons or more.

Large-Size Vessel Trades1/

The dominant trade routes for crude oil gener ally are the Persian Gulf to Japan and to Europe, an

1/ This discussion is drawn primarily from Fearnley Egers Chartering Company Ltd., Large Tankers, Januar 1971 and Trades of the World Bulk Carriers in 1970.

71.

諸語語言

i.

3

a lesser degree North Africa to Europe. In 1970, journeys of tankers exceeding 200,000 d.w.t. originated almost entirely in the Persian Gulf, and all but a small proportion of tankers in the 100,000- to 200,000-d.w.t. range were employed on the above-indicated three major trade routes. Even vessels in the 60,000- to 100,000d.w.t. class were heavily concentrated on the same three routes. Since its crude imports accounted for only 3.3 percent of total world seaborne trade in 1970, the role of the United States was relatively insignificant.

The most important dry bulk commodity in world trade -- iron ore -- is dominated by Japan. In 1970 it accounted for 40 percent of total world seaborne tonnage moved in bulk carriers exceeding 18,000 d.w.t., and 58 percent of the ton-miles. Its most important sources were Australia, South America (Chile, Peru, Brazil), India and West Africa. Other major routes in world trade include West Africa, Scandinavia, Canada, and Brazil to Europe, as well as Canada and Venezuela to the United States.

The largest vessels employed in iron ore trades in 1970 -- those exceeding 80,000 to 100,000 d.w.t. -were primarily engaged on the longer routes, especially from South America and Australia to Japan and to a much lesser degree from Brazil and West Africa to Europe. A large proportion of intra-European and intra-Asian traffic was served by small vessels, many of them under 18,000 d.w.t. Thus the range of ship sizes bearing U.S. iron ore imports in 1970 was quite high in light of the dominant short distance hauls from its nearby Western Hemisphere origins.

In the other bulk trades, the largest vessels operating in 1970 were most importantly utilized on routes involving the United States. Coal movements in vessels exceeding 60,000 d.w.t. were dominated by exports from Hampton Roads to Japan and Western Europe. Most ships of more than 40,000 d.w.t. carrying grain traveled from the U.S. gulf coast to Japan and Western Europe. Relatively large grain ships were also used for some movements originating in Australia and eastern Canada for Western Europe. 72.

The largest bauxite shipments are made in vessels exceeding 25,000 d.w.t. Data on ship size distributions above that level are not available, but would probably reveal a heavy concentration in the 25,000- to 40,000d.w.t. range. In spite of the relatively short distances involved, most of these larger vessels operate on the major Caribbean-U.S. route. Similar information on shipments of alumina, which are quantitatively much smaller than those for bauxite, is unavailable. However, industry sources indicate that some alumina shipments from Australia to the Pacific Northwest -- the dominant U.S. trade route -- are made in vessels as large as 40,000 to 50,000 d.w.t.

Small ships enjoy a larger share of world seaborne trade in phosphate rock than the trade in any other major bulk commodity. The limited number of vessels in the 25,000- to 40,000-d.w.t. range actually used to carry phosphate in 1970 was principally engaged in the evacuation of U.S. exports for Europe and the Canadian Pacific coast.

Combined Carriers

The role of combined carriers in world seaborne trade has grown rapidly in the last few years. Those over 18,000 d.w.t. carried 97 million tons of bulk commodities in 1970, up from only 38 million in 1966. Oil (mostly crude), iron ore and coal have constituted 95 to 99 percent of all cargoes carried since 1966 (table 40). Since 1967, oil has been by far the most important of the individual commodities transported by combined carriers. However, in the brief 5-year period for which data are available, there have been significant yearto-year changes in the commodity mix. This reflects one of the major advantages of combined carriers: their ability to adapt quickly to changing market circumstances in the short run.

Another notable feature of recent movements by combined carriers is the growing importance of the larger vessels. Whereas in 1966 only one-fourth of their total traffic was carried in ships exceeding 60,000 d.w.t., by 1970 the latter group accounted for

Table 40. Shipments of Major Bulk Commodities in World Seaborne Trade by Combined Carriers, 1966-70

(In millions of metric tons)

Commodity and vessel size (1,000 d.w.t.)	1966	1967	1968	1969	1970
<u>Oil</u>					
18-60 Over 60	8.2 2.6	13.5 15.2	17.5 36.8	15.2 43.4	13.0 48.5
Total	10.8	28.7	54.3	58.6	61.5
Iron ore					
18-60 Over 60	17.9 6.5	12.4 5.1	5.3 3.5	9.1 9.6	8.8 17.6
Total	24.4	17.5	8.8	18.7	26.4
Coal					<i>n</i>]1
18-60 Over 60	0.7	0.9 0.7	1.6 1.5	1.3 3.2	1.4 5.8
Total	0.9	1.6	3.1	4.5	7.2
Other		•			
18-60 Over 60	1.7 0.1	0.6	0.7	0.6	1.2 0.7
Total	1.8	0.8	0.7	0.6	1.9
<u>A11</u>					
18-60 Over 60	28.5 9.4	27.4 21.2	25.1 41.8	26.2 56.2	24.4 72.6
Total	37.9	48.6	66.9	82.4	97.0

Source: Fearnley & Egers Chartering Co. Ltd., Large Tankers, January 1971 (Oslo, June 1971), p. 24; and Trades of World Bulk Carriers in 1970 (Oslo, November 1971), p. 29.

73.

IL A

「「「「「「「」」

74.

three-fourths of the movements. This trend is in keeping with more general trends in size distribution of both tankers and bulk carriers.

Despite their growing importance, combined carriers account for a relatively limited proportion of world seaborne trade. In 1970 combined carriers transported some 5 percent of all the oil moved in world seaborne trade, 7 percent of the coal, and 11 percent of the iron ore. Their relative importance in terms of ton-miles was greater, reflecting longer average distances of movement, especially for dry bulk (table 41).

At least in 1970, the relative importance of combined carriers in U.S. seaborne trade was somewhat greater for crude oil and coal, and considerably less significant for iron ore, than in world seaborne trade (table 41).

The most important movements of combined carriers in recent years have included: (1) oil from the Persian Gulf, mostly to Europe, and to a lesser degree to South America and the United States; (2) iron ore from South America, West Africa, and Canada to Japan, and to a lesser degree to Europe; and (3) coal from Hampton Roads to Japan.

Many of these separate movements are of course undertaken as related segments of two-legged, triangular, or quadrangular routing patterns of a single vessel. These matters are presented further in chapter II.

Table 41. Combined Carrier Share of World and U.S. Seaborne Trade in Major Bulk Commodities, 1970

(In percent)

Commoditu and two do	Combined ca	arrier share
Commodity and trade	Tonnage	Ton-miles
<u>Oil (crude and products)</u>		
World U.S	5 6	7 n.a.
<u>Crude oil</u> World U.S	5-6 ^{a/} 14-23 ^{a/}	7-8 n.a.
Iron ore World U.S	11 5	18 n.a.
<u>Coal</u> World U.S	7 12-14	14 n.a.

n.a. = not available.

a/ Range reflects uncertainty as to proportion of total oil shipments represented by petroleum products.

Source: Fearnley & Egers Chartering Co. Ltd., Large Tankers, January 1971 (Oslo, June 1971), pp. 24 and 26; and Trades of World Bulk Carriers in 1970 (Oslo, November 1971), pp. 29-31.

75.

30

京都、梁山の松丁

Preceding page blank

II. OCEAN SHIPPING OF BULK COMMODITIES: SELECTED ECONOMIC AND INSTITUTIONAL CHARACTERISTICS

Introduction

ð

As indicated in Chapter I, world shipping of bulk commodities is a large and growing business which has been changing rapidly in response to numerous dynamics. Among them, a single economic factor has been dominant: improved efficiency and lower unit costs obtainable through the use of vessels of larger size. In addition, but of lesser significance, vessel productivity has sometimes been increased through multipurpose ship design and related exploitation of opportunities for return cargoes. The quantitative implications of these economic factors for shipping costs are presented in chapter III.

In this chapter, an attempt is made to summarize some of the major institutional, operating, and other factors which influence the choice of vessel size for particular movements, and hence, the cost of ocean transport. It begins with a review of the shipping industry's market structure and determination of prices. It then considers institutional factors which have interacted with and contributed to changes in that structure. After a review of vessel operating and routing patterns, the chapter concludes with an overview of prospects for significant use of supercarriers to transport major bulk commodities in U.S. foreign trade, and it identifies some leading constraints.

77,

Shipping Industry Market and Price Structure

Ocean shipping of both wet and dry bulk commodities can be carried on in two basically different ways: private or proprietary carriage by large industrial companies which also own and operate their own ships; and contract or "for hire" carriage by independent chartering or shipping firms. In the former case, an internationally integrated company typically controls or has a major interest in the bulk commodity produced in a particular area, as well as in its processing elsewhere. It operates its own vessels between origin and destination points.

In the latter case, vessel owners and operators are distinct parties from both buyers and sellers of the commodities. The former contract with the latter to perform specified transport services between terminal points. Arrangements vary widely from accommodation of single shipments, to short-term vessel leasing for a few months or a few years, to long-term contracts for periods of 5 to 15 years or more. Generally, long-term charters are related to a continuing pattern of commodity movement between given points which are not likely to change much over time. In the case of single-voyage hire, the buyer (for f.o.b. transactions) or seller (for c.i.f. transactions) negotiates shipping arrangements with a shipping concern for that particular transaction only. Sometimes various buyers and sellers (notably in the cereal trade) having compatible location characteristics group small orders to permit full use of a larger vessel than would otherwise be possible, but this is a minor variation of the case.

Proprietary operation of oil tankers is common. In recent years about a third of the world tanker fleet has been directly owned and operated by international oil companies (table 42). Most of these ships are used for the transport of crude oil between overseas producing areas and market-oriented refinery locations. The balance is predominantly owned and operated by private chartering companies.

78.

NAME FOR THE STR

Oil Company Ownership of World Tanker Fleet, Selected Years Table 42.

	Total wo	Total world fleet		Oil company ownership	ownershi	CL
Vessel size and	Number	Total	Ve	Vessels	D.	D.w.t.
date	or vessels	a.w.t. (mil.)	No.	As pct. of world	Total (mil.)	As pct. of world
Tankers over 10,000 d.w.t. December 31, 1970	3,102	149.2	1,220	39.3	53.7	36.0
Tankers over 60,000 d.w.t. January 1, 1971	696	80.9	205	29.5	25.3	31.3
Tankers over 6,000 <u>d.w.t.</u> January 1, 1959 January 1, 1958 January i, 1957	2,703	52.4	906 	33.5 35.0 36.0	17.1	32.6 54.1 35.1
Source: John I. Jacobs	DS & Co. I	td., World	Tanker	Jacobs & Co. Ltd., World Tanker Fleet Review, 31 December 1970	w, 31 December	ember 1970 Large

(London, 1971), p. 5; Fearnley & Egers Chartering Co. Ltd., Large Tankers, January 1971 (Oslo, June 1971), p. 6; Zenon S. Zannetos, <u>The</u> Theory of Oil Tankship Rates (Cambridge, Massachusetts: MIT Press, 1966), pp. 66, 67, and 72.

79.

LAND.

1

ý

時間

Å,

AL DEPARTMENT OF THE PARTY OF THE

80.

「「「「「「「「」」」」

Ownership of the world tanker fleet is widely dispersed among individual owners, although it is much more dispersed for those tankers which are independently owned. In January 1959, the only period for which pertinent data are readily available, the world fleet of tankers exceeding 6,000 d.w.t. was distributed among more than 600 separate owners, the largest of which (an oil company) controlled about 7 percent. Five major oil companies owned 23 to 24 percent of the total tonnage, while the five largest independents owned 13 percent.]/

The oil companies provide only a part of their own shipping requirements, depending for the rest upon an independent tanker market. This is the result of one major factor: imbalances in the relation between crude oil production and refinery capacity of most individual oil companies. Complete self-sufficiency of each company in ocean transport under these circumstances would be wasteful. In addition, a sharing arrangement whereby some companies depended upon their competitors for delivery as well as for determination of transport charges would be unworkable. For these reasons the independent tank shipping market developed. That market operates in a perfectly competitive manner, reflecting its unregulated character, the relative ease of entry and exit, the apparent lack of scale economies in management or finance, and the relatively limited degree of risk, at least under circumstances of longterm charter arrangements.2/

Ownership characteristics of the world bulk carrier fleet are more complex than those of tankers, and available data are fragmentary. The ownership pattern is somewhat obscured, at least in relation to vessels engaged in the carriage of iron ore, because some steel and mining companies have indirect or partial control over many of the independents.3/ However, as of early

 Zenon S. Zannetos, <u>The Theory of Oil Tankship Rates</u> (Cambridge, Massachusetts: MIT Press, 1966), p. 175.
 Ibid., pp. 174-85.
 United Nations, Economic Commission for Europe, <u>The</u>

World Market for Iron Ore (ST/ECE/STEEL/24), 1968, _____ pp. 122-23. 1969, only about 10 percent of the total world fleet was believed to be owned by cargo interests, the balance being controlled largely by independent charterers. Some 400 to 500 separate enterprises owned the 2,000 or so vessels, and only a few owned more than a dozen. Thus international competition is strong, and "only the efficient (or highly subsidized) operator survives."1/

Proprietary carriage of dry bulk commodities by industrial enterprises is heavily concentrated among those engaged in ore mining and metal fabrication, especially in the iron ore and steel industries. Thus the U.S. Steel Corporation and the Bethlehem Steel Company own and operate a substantial proportion of the vessels bearing their iron ore imports from Latin American and other sources, especially from mines in which they have a major investment stake.2/ Major U.S. producers of aluminum also own and operate their own fleets to transport uncertain proportions of their bauxite and alumina imports, typically from origins where they have a financial interest in resource development. These underlying circumstances appear strikingly similar to those influencing proprietary operation of tankers by the petroleum industry.

By the same token, steel and aluminum companies also rely importantly on the independent bulk carrier charter market for much of their shipping requirements. In part this may reflect some imbalances between outputs of raw material and of processed commodities by individual companies. In addition, improved vessel utilization and hence lower costs can often be obtained through chartering. This is true for two reasons. First, in some cases, underused capacity of an ore ship on certain runs could be overcome by serving the joint

1/ G.R. Snaith and I.L. Buxton, "Bulk Carrier Development," <u>Conference on Tanker and Bulk Carrier Terminals</u> (London: The Institution of Civil Engineers, 13 November 1969), p. 6. 2/ United Nations, Economic Commission for Europe, <u>The</u> <u>World Market for Iron Ore</u> (ST/ECE/STEEL/24), 1968, pp. 122-23. đ

82.

needs of several companies in combination. Second, effective use of combined carriers to capture backhaul traffic in oil or in other commodities requires knowledge of and contacts with other segments of the shipping market.1/

So far as is known, movement of the three other major bulk commodities in world trade -- coal, grain, and phosphate rock (the major U.S. bulk <u>exports</u>) -- is overwhelmingly handled by the independent bulk shipping industry. This reflects the relatively more competitive nature of trade in those commodities, the typically smaller lot sizes, and especially the dominantly separate nature of commodity buyers and sellers.

In general, proprietary vessels serving oil, steel, aluminum or other companies are engaged in a continuous, long-term shuttle service between essentially fixed origins and destinations. With stable demands for the end product and a vested interest in particular supply sources, the need for changes of routing are infrequent. Since the operation of these ships falls outside the marketplace, ccean shipping "costs" are in principle determined by long-run real economic costs (although in multinational companies, actual charges to U.S. subsidiaries may also reflect accounting convenience or tax considerations, which may differ).

The role of chartered vessels in a shipper's operation depends largely upon the length of the contract. Most commonly, vessels secured on intermediate or long-term charter are used in the same way as proprietary vessels: for regular, continuing runs between specified points. Altogether, some 85 to 90 percent of the world's seaborne petroleum trade is normally carried on under these basically fixed patterns.2/ In 1965, an estimated 95 percent of the world steel industry's iron ore shipping requirements were satisfied in

1/ Gerald Manners, The Changing World Market for Iron Ore, 1955-1980 (Baltimore: Johns Hopkins Press, 1971), pp. 195-96. 2/ Zenon S. Zannetos, The Theory of Oil Tankship Rates,

pp. 3-4.

the same way.1/ Comparable data for bauxite and alumina are lacking, but would probably show similar results.

Ocean shipping charges actually incurred by those companies under contract with the independent charterers are of course negotiated in the marketplace. Since the independent shipping market is highly competitive, prices for <u>long-term</u> charters would normally be expected to correspond rather closely to long-run real economic costs. The classic economic study of tankship pricing found this to be both theoretically and empirically true.2/ If prices departed materially from that standard for any length of time, the companies would presumably increase or reduce their proprietary stake accordingly, thereby reinforcing the basically competitive processes involved.

The small balance of U.S. crude oil, iron ore, bauxite and alumina imports, and perhaps the majority of U.S. major bulk exports as well as of U.S. petroleum product imports, are transported on the basis of singlevoyage or short-term charter arrangements. Prices are also established competitively in the market. However, the short-run inelasticity of vessel supply, together with modest fluctuations in demand, produce a highly volatile and chaotic price structure common to spot markets for highly competitive agricultural commodities. The unstable nature of the price structure is illuminated in tables 43 and 44 for spot tanker rates during 1949-58 and 1967-71, respectively, and in table 45 for coal and grain rates in the 1967-71 period. As indicated in these tables, year-to-year fluctuations of 50 to 100 percent and more have been common. Intermediate and longer term charter rates are not impervious to spot market rates at any given moment. However, the longer the time charter, the less sensitivity there is (figure 1).

1/ Gerald Manners, The Changing World Market for Iron Ore, 1955-1980, p. 194.

2/ Zenon S. Zannetos, The Theory of Oil Tankship Rates, pp. 3-4.

Table 43. Average World Spot Tanker Rates, by Quarter, 1949-58

Year		Qua	rter	• <u> </u>	Average
1601	First	Second	Third	Fourth	annual
1949	1.35	1.13	0.93	1.08	1.12
1950	0.96	0.97	1.40	2.75	1.52
1951	4.06	2.47	2.04	3.59	3.04
1952	4.18	2.02	1.63	1.55	2.35
1953	1.08	0.95	0.80	0.91	0.94
1954	0.98	0.70	0.75	1.12	0.89
1955	1.32	0.88	1.05	2.01	1.32
1956	1.60	2.18	2.23	3.76	2.44
1957	3.57	1.11	0.73	0.65	1.52
1958	0.64	0.61	0.76	0.72	0.68
	1				

(In dollars per thousand ton-miles)

Source: Zenon S. Zannetos, <u>The Theory of Oil Tankship</u> <u>Rates</u> (Cambridg?, Massachusetts: MIT Press, 1966), pp. 91, 92, and 98.

and the second second

「「「「「「「「「」」」」」」

ţ;

Index of Average Annual Freight Rates for Medium-Size Tankers, Single Voyage, 1967-712/ Table 44.

į

	World	Worldwide	Persian Gulf to	Gulf to	Caribbean to	n to
ICAL	Source A <u>b</u> /	Scurce B <u>C</u> /	Western Europe	Japan	Western Europe	Northeast U.S.
1967	118	143	117	112	130	129
1968	106	115	108	104	106	101
1969	89	96	85	84	80	06
1970	061	961	181	06T	178	206
1971	102	107	16	66	92	66
a/ World Scale si	l nce Octol	1060 Toc	[ersetr] Ko		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

a/ World Scale since October 1969, and Intascale converted to World Scale prior to October 1969. All figures on dollar basis allowing for devaluations of sterling and the dollar in recent years. <u>b/</u> Mullin. <u>c</u>/ Norwegian Shipping News.

Source: Fearnley & Egers Chartering Co. Ltd., Review 1971 (Oslo, January 1972), p. 12. 85.

AN.

明治 戸奈吉治

えいろうな 一下の やいまい

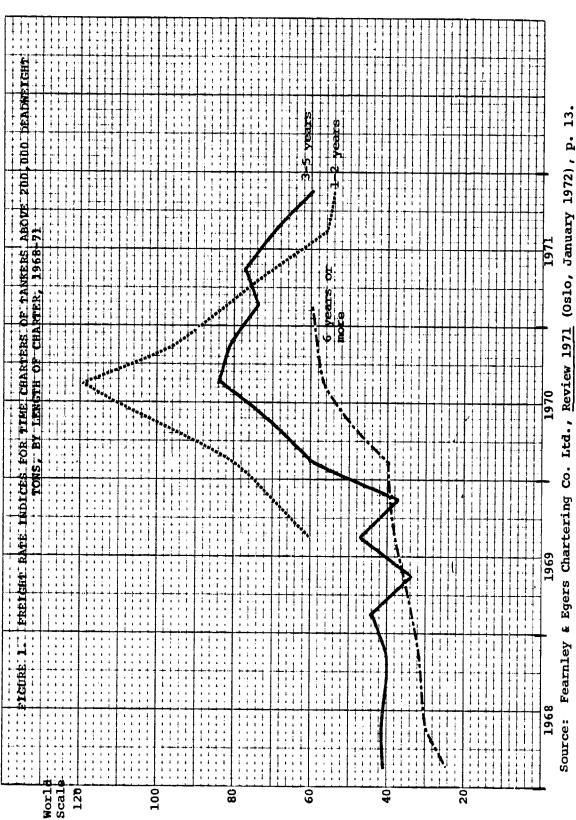
1

iii

1

. جد

Average Annual Freight Rates for Medium-Size Bulk Carriers, Single Voyage, 1967-71 Table 45.


Coal Grain	U.SJapan AustJapan U.S. gulf-W.Eur. U.S. gulf-Japan	dollars per trip	7.80 4.50 5.10 11.65	6.85 3.70 4.20 8.30	6.55 3.60 4.10 8.05	11.70 7.05 8.00 13.15	5.13 3.86 3.82 6.05
Coal	U.SJapan Aus		7.80	6.85	6.55	11.70	5.13
1.4	indices, major - bulka/	d.	94.1	92.4	85.2	119.4	81.2
	Year		1967	1968	1969	1970	1971

a/ Index numbers, by Norwegian Shipping News.

Review 1971 (Oslo, January 1972), 1971), p. 19. Fearnley & Egers Chartering Co. Ltd., p. 15, and <u>Review 1970</u> (Oslo, January Source:

86.

ĺ.

87.

88.

Price fluctuations in tanker and bulk carrier charter markets in response to short-term market conditions carry over to shipyard contracts for new tonnage. When backlogs are growing and available tonnage is relatively tight, as was particularly true in the late 1960's, prices (and hence first costs to vessel operators) are likely to rise rapidly (table 46). When market conditions slacken, as they did during 1971, prices are likely to move in the opposite direction. However, there appears to be some stickiness in this reverse movement where backlogs are particularly long, as has recently been the case for supertankers.

A more sensitive barometer of change in vessel ownership costs is the market for used ships. As strikingly revealed by table 47, their prices move rapidly and steeply in both directions. In time they must exercise an important influence on first costs of newly constructed ships since they are to an important degree in direct competition. The bleak short-term outlook for new tanker and bulk carrier tonnage, and the apparent fear by European shipyards of growing price competition with the Japanese (see chapter I), suggest that the recent downward trend in acquisition costs of new or used vessels may not yet have run its course.

Taken together, the preceding circumstances suggest that neither rates for shipping bulk commodities -especially in the spot market -- nor prices of new vessels at any given time are reliable indications of real cost, in either the short or long run. Both are evidently very sensitive to market conditions, which are constantly changing. For that reason, an attempt is made in chapter III to estimate the structure of ocean shipping costs on the basis of real costs rather than prices.

The Changing Market Structure

Historically, most ocean shipping arrangements for oil and dry bulk commodities were made on an <u>ad hoc</u> or short-term basis. That situation still governs the movement of all types of bulk commodities, but not of Table 46. Typical Prices for Newly Contracted Vessels, 1962-71^{ª/} (In millions of dollars^{$\frac{b}{2}$})

Vessel type and size (d.w.t.)	1962	1963	¢961	1965	1966	1967	1968	1969	1970	1791
Bulk carrier	0	- -	r v	עב רי	ی ۳	t م	ب م	9	۳ ب	5.4
30,000		3.7	n 8 	4. 4. 	4.4	4.9	5.4	5.7	8.7	8.1
Tanker 87,000	8.4	7.9	8.2	8.5	8.8	0.0	9.4	10.0	17.0	17.3
210,000	!	1	1	ł	13.2	14.7	16.6	19.0	31.0	33.5
<u>ово</u> 96,000	ł	ł	ł	ł	9.7	10.0	11.0		12.0 23.0	23.7
a/ At year end. b/ Current dollars, at valid rate of	, at va	lid ra	te of	exchange.	ge.					

Fearnley & Egers Chartering Co. Ltd., Review 1971 (Oslo, January 1972), p. 16, and <u>Review 1970</u> (Oslo, January 1971), p. 10. Source:

89.

ť 1

년 1817년 1917년

4 1

2

Table 47. Average Prices for Used Tankers and Bulk Carriers, 1966-718/

(In millions of dollars)

Vessel size (d.w.t.) and type	Year built	1966	1967	1968	1969	1970	1971
10.000							
18,000 Bulk carrier.	1963			2.1	2.2	2.8	2.2
Tanker	1963 1952-53	0.9	0.9	0.8	0.8	1.5	
25,000							
Bulk carrier.	1966		~-	3.5	3.6	4.8	
Tanker	1966 1958-59	1.5	2.0	1.8	1.9	4.0	2.2
35,000							
Bulk carrier.	1965			4.0	4.2	6.0	3.7
Tanker	1958-59	2.1	2.4	2.4	2.6	6.0	3.5
50,000							
Bulk carrier.	1967 1963-64			5.0	5.2	9.0 10.0	5.7
Tanker	1963~64	3.0	4.4	4.2	4.5	10.0	7.0
60,000	1972 ^b /					11.0	0 2
Bulk carrier. Tanker				5.5	5.8	12.0	
	1904-01		5.5	5.5		T0 • 0	0.0
70,000 Bulk carrier.	1966				7.5	11.0	6.5
	1900				1.5	11.0	0.5
80,000 Tanker	1966-67			77	<u>ه</u> ۵	19.0	12 0
	1300-01			/ • /	0.0	12.0	12.0
100,000	1967-68				12 0	26.0	16 0
Tanker	1 7301-08				14 · V	40.0	10.0
200,000	1000 70					40-45	20 0
Tanker	1969-70					40-45	30.0
	•						

a/ Market value estimates at year end for charter-free vessels in good condition and with fairly prompt delivery on a cash basis. b/ Resale. Source:

Fearnley & Egers Chartering Co. Ltd., <u>Review</u> 1971 (Oslo, January 1972), pp. 16 and 17.

90.

A STATE OF THE AND A STATE OF THE AND A STATE OF THE ADDRESS OF TH

all <u>shipments</u>. As has been indicated above, growth of markets and of larger, more specialized, and less flexible vessels stimulated development of long-term contracts and fixed continuing route patterns in recent years. These trends are also deeply rooted in the desires of investors, operators and users of ocean transport services to reduce risks and costs and to facilitate stability in both commodity and transport markets.

Growing vertical integration of many huge industrial enterprises on an international scale has contributed to those desires. Manufacturers heavily dependent on imported raw materials have increasingly invested directly in their exploitation, both to permit or to accelerate their development and to insure themselves of long-term supplies. This situation creates commitments to particular supply sources, usually an important if not essential condition to the making of longterm transport arrangements. The pattern has had special significance for Japan, whose recent large investments to develop new oil, iron ore, coal and grain resources in other countries for its own use are notable.

Furthermore, supercarriers require large capital outlays. Where future market conditions are uncertain or completely open, risks are correspondingly great. Thus relatively few lenders would support the purchase of such vessels in the absence of long-term agreements by prospective users, and they would insist on a higher return to compensate for risks -- partly negating their very advantage.

Whatever consequences price fluctuations may have in the case of smaller ships, they are magnified for the larger ones. Thus long-term transport arrangements are a virtual precondition to their construction. Most important, they offer the incentive of lower long-run costs to users who ship in appropriate large volume and over long distances. This is true for two reasons: first, because of the scale economies inherent in the use of large ships under these conditions; and second, because of greatly reduced market risks for ship operators and lenders. į,

ł

92.

Finally, the volatile nature of spot shipping rates is unsettling, not only to those engaged in the shipping business, but perhaps especially to users. Small users may not easily have effective recourse. But large firms -- particularly in oligopolistic industries like steel and petroleum -- are increasingly geared to long-term planning and decision-making of all kinds that require knowledge of prices and costs, including those for shipping. The more they can reasonably be defined in advance, the more advantageous such enterprises are likely to find them -- for institutional as well as for economic reasons.

Vessel Operating and Routing Patterns

Ocean vessel operators generally attempt to optimize the size and design characteristics of carriers employed in the movement of a commodity or commodities among relevant port links. The optimal vessel is the one which produces the lowest total costs for the given ports, volumes, distances and other conditions which apply to a particular trip or series of trips between terminal points. This often means that tankers or bulk carriers approach the maximum size physically feasible at the various ports served, but that is not necessarily Vessels may occasionally draw more water when fully so. laden than is available at a port and thus arrive or leave light-loaded; more commonly the vessel is smaller than could physically be accommodated. Apart from such constraints as water depth, berth space and narrowness of channels, choice of vessel size and design characteristics must also reflect such other major factors as loading or unloading rates, storage capacity, quantities of the commodity desired in a single shipment, and distance of voyage. There are a great many different ports and individual facilities within them for which these questions apply. Thus, in 1969, 125 U.S. and 549 foreign ports shipped or received one or more of the major bulk commodities covered by this study (see Annex G).

The extraordinarily dynamic character of bulk shipping markets makes optimization challenging and difficult. Relevant conditions applicable to the movement of a single commodity between countries or regions frequently change. Commodity volumes requiring shipment often increase substantially and sometimes decrease; new ports are developed or existing ones improved.

Furthermore, operation of a vessel for the movement of one commodity between two ports can often be supplemented by the vessel's further use for the transport of other commodities between the same points or other points. Where market conditions permit, it is almost invariably more efficient for a vessel hauling cargo in one direction to return with another. As explained in chapter I, this led to the development of multiple stowage factor bulk carriers and of combined carriers. These vessels have substantially increased possibilities of a voyage routing pattern among three or more countries which would often be more efficient than a simple round trip between two points.

In U.S. bulk commodity trades, the most commonly cited example of this type of operation is an oil/bulk/ ore (O/B/O) carrier (now 80,000 to 100,000 d.w.t., but soon to be 150,000 d.w.t.). It brings crude oil from the Persian Gulf to the east coast of the United States, loads partially with coal in Hampton Roads, and continues to Brazil or West Africa, where it completes its cargo with iron ore for a trip to Japan. Other examples of multiple routing patterns include coal from Hampton Roads to Canada or Brazil, with a short ballast leg to obtain a return cargo of iron ore for Baltimore or Philadelphia; iron ore from Chile or Peru to Japan, ballast leg to Indonesia, and oil movement to the United States; phosphate rock from Tampa to Vancouver, Canada, with a short ballast leg to another west coast port for wheat, timber or wood chips to Japan, and a return movement of Japanese cars to southern California. The latter voyage pattern is particularly interesting, because it suggests possibilities of efficient coordination of bulk and nonbulk commodity movements on compatible A few other examples could also be cited. Howroutes. ever, opportunities for these types of movements are necessarily limited.

and the former of the first of the second second second

On those links warranting the introduction of new large vessels, smaller ships are usually displaced. Most commonly, the latter are transferred to other (usually shorter) routes where distance and/or volume conditions make their use relatively more economic. If they are old, they may be scrapped. However, it is sometimes less costly to continue operation of a small vessel on the same link or to delay its replacement by a large ship. This could happen if there were no suitable alternative uses for the vessel and if it were able to cover marginal costs. Its relatively high unit operating costs might, at least for a while, be lower than the combined unit operating and investment costs of the new larger ships. These basic economic considerations help to explain why relatively old and small ships are sometimes found operating on transoceanic routes in direct competition for cargo which is also moved by much larger vessels, especially in the tramp market during periods of high spot rates.

Potential Supercarrier Markets in U.S. Trade

Because of the many factors and separate port facilities involved, valid global judgments as to ultimate developments in vessel size for the movement of each bulk commodity in U.S. foreign trade are impossible to make. Generally, average vessel size can be expected to increase progressively over time as markets grow and incremental improvements are made in relevant ports. But determination of optimum ship size depends on numerous trade-offs which will vary on a case-by-case basis. Thus there is likely to be a wide range of vessel sizes for any one commodity at any given time, each of which is more or less optimal for its particular mission.

Nevertheless, a few observations may be worth making as to the long-range potential of supercarriers in major U.S. bulk commodity trades. That potential is evidently greatest for crude oil, for numerous related reasons: huge projected total volumes of movement; large annual volumes of demand at individual refineries; substantial geographic concentration of crude origin and - 1

destination areas; typically long ocean shipping distances; and physical conditions in major overseas loading ports which are already conducive to their efficient use and which are becoming more so (see table 48).

On the other hand, petroleum products appear to be a marginal possibility at best. Although future volumes are expected to be large, distances of haul from the dominant Caribbean origin area are short, while the number of buyers at separate locations is great and their individual demands often variable as well as small for any single order.

Among the dry bulk imports, neither bauxite nor alumina appear to be strong candidates. Projected annual volumes of the latter are exceedingly small, and the annual input requirements for the largest aluminum plants are less than 0.5 million tons. Bauxite volumes are substantially greater in the aggregate as well as at some individual plant sites, but potential ocean shipping cost savings are otherwise exceedingly limited by the very short ocean shipping distances from major Caribbean origins as well as by draft constraints in relevant foreign ports (see table 49).

Iron ore is possibly a strong candidate because of large aggregate volumes as well as high demands of individual plants. Furthermore, many of the major overseas ports of origin now -- or prospectively -- can accommodate vessels of several hundred thousand tons deadweight (see table 50). On the other hand, distances of haul from most origin areas are rather short. The tentative economic and technical feasibility of several hypothesized deepwater ports in the United States to accommodate iron ore imports is evaluated in the benefitcost analysis in Annex F.

Of the three major U.S. dry bulk export commodities, phosphate rock is probably the weakest candidate for potential use of supercarriers. Projected volumes are moderately substantial, and distances to dominant overseas markets in Eur pe and Japan are long. However,

THE STORE STREET

	Existin	Existing situation	Futur	Future developments	lts
Zone, country and port	Depth (M.L.W. in feet)	Max. vessel size (d.w.t.)	Jepth (M.L.W. in feet)	Vessel size (d.w.t.)	Note
Zone 2 Venezuela: Puerto La Cruz.	60	150,000			
La Salina Lake Maracaibo. Puerto Mirando	41 44 39	70,000			
Mexico: Tampico.	30				
Netherlands Antilles: Aruba	39				
Colcmbia: Santa Marta Buenaventura	32 39	40,000			
Zone 3 Chile: Arica	30				
<u>Zone 7</u> Libya: Marsa El Brega.	100	500,000	140	N	New single
Ras es Sider		200,000			point mooting continued

Table 48. Major Foreign Ports for U.S. Imports of Crude Oil

96.

10.2.10.3.

i i

Table 48. Major Foreign Ports for U.S. Imports of Crude Oil continued	Existing situation Future developments	rt Depth Max. vessel Depth Vessel Note (M.L.W. size (M.L.W. in feet) (d.w.t.) in feet) (d.w.t.)	(UAR): 62 175,000	a: dos 70 250,000 500,000 in Gulf of Guinea	: Al Ahmadi. 100 500,000	• • •	90 400,000	Island70250,000105500,000island terminal	Al Amya 73 250,000 n and Abu	in 44 Dhana 60
Table 48		zone, country and port	Egypt (UAR): Port Said	<u>Zone 9</u> Nigeria: Forcados	Zone 10 Kuwait: Mina Al Ahmadi	Multa Abuulta Neutral Zone: Mena Saud Ras Al Khafji.	Saudi Arabia: Ras Tanura	Iran: Kharg Island	Iraq: Khor Al Amya Bahrain and Abu	Dhabi: Bahrain Jebel Dhana

97.

Table 48. Major Foreign Ports for U.S. Imports of Crude Oil	Foreign Po	rts for U.S. Imp	orts of Cru		continued
buc metanon onch	Existing	Existing situation	Futur	Future developments	ents
port port	Depth (M.L.W. in feet)	Max. vessel size (d.w.t.)	Depth (M.L.W. in feet)	Vessel size (ā.w.t.)	Note
Zone 12 Indonesia: Palembang- Pladju Dumai	38 51	40,000			
Source: MARAD; Ben 1971-72, 2		- Benn Brothers (Marine Publications) Ltd., 25th ed., London, 1971; and others.	tions) Ltd.		Ports of the World,
			·		

the second system of the secon

98.

Table 49. Major Foreign Ports for U.S. Imports of Bauxite and Alumina

作すり

1

and the second secon

الارد الفريد والمراجع مسلم والمديرية <mark>المس</mark>لم

Į,

ŕ

4-4-4-

i.

f

トロこん

	Existin	Existing situation	Futur	Future developments	. s
Zone, country and port	Depth (M.L.W. in feet)	Max. vessel size (d.w.t.)	Depth (M.L.W. in feet)	Vessel size (d.w.t.)	Note
		Bau	Bauxite		
<u>Zone 2</u> Trinidad: Port of Spain.	32				
Jamaica: Port Kaiser Ocho Rios	35-43 38				
Surinam: Paramaribo	31-35				
		Alu	Alumina		
Zone 13 Australia: Gladstone	42				
Source: MARAD; Be 1971-72,	l nn Brothers 25th ed., Id	Benn Brothers (Marine Publications) Ltd., <u>Ports of the World</u> , 2, 25th ed., London, 1971; and others.	tions) Ltd.	Ports of th	le World,

NAME AND DESCRIPTION OF

CHLOROS / HARDER WE ARE CARD

99.

ų

2

が分子を

10.10

-

Ŋ

				u.			
Table 50.	Major Forei	gn Ports for	U.S. Imports of	of Iron Ore	0)	100.	(). An order of Alexandread Alexandread Alexandread Alexandread Alexandread Alexandread Alexandread Alexandread Alexandread Alexandread Alexandread Alexandread Alexandread Alexandread Alexandread Alexandread Alexandread Alexa Alexandread Alexandread Alexandre
	Existing	g situation	Future	e developments	ents		and a strengt
zone, country and port	Depth (M.L.W. in feet)	Max. vessel size (d.w.t.)	Depth (M.L.W. in feet)	Vessel size (d.w.t.)	Note		έει :π#πλησοεροιηταια
Zone 1 Canada: Seven Islands Port Caitier Pointe Noire Texada Išland Toquart Bay	60 55 46 1/2 45	150,000 100,000 80,000 80,000 80,000		300,000	Offshore berth		м м., , , , , , , , , , , , , , , , , , ,
<u>Zone 2</u> Venezuela: Palua Puerto Ordaz	9 20 20 20 20 20 20 20 20 20 20 20 20 20	30,000 200,000 30,000 200,000		14			
Zone 3 Chile: Guayacan Huasco	40 65	40,000 200,000	28	250,000			
San Nicolas	57	150,000			continued		
			1977 1977 1977	. n	X	'u.	
		.1				i	

ţ

Ĩ,

i

下にある

continued--Table 50. Major Foreign Ports for U.S. Imports of Iron Ore

....

	Existin	Existing situation	Future	Future developments	ents
zone, country and port	Depth (M.L.W. in feet)	Max. vessel size (d.w.t.)	Depth (M.L.W. in feet)	Vessel size (d.w.t.)	Note
Zone 4 Brazil: Tubaraco Sepetiba Bay	55	100,000	90 82	250,000 350,000	Under construc.
<u>Zone 9</u> <u>Liberia:</u> Buchanan	80 20	000,00 000,00			
Zone 13 Australia: Port Latta Dampier	50 51	000,06 000,06		250,000	
Port Hedlund	51	000'06		300,000	ι.
ا <u>a/ Low water</u> level. <u>b</u> / High water level	1. el.				•

MARAD; Benn Brothers (Marine Publications) Ltd., Ports of the World, 1971-72, 25th ed., London, 1971; and others. Source:

101.

ļ

1

į,

ζ,

بيطحطه ورارا المعرام والالا

102.

「「「「「「「「「」」」」」

the number of buyers is very great; their individual yearly demands, modest; and their specific locations, very widely scattered. Furthermore, physical constraints in major foreign port areas are great (table 51).

Underlying circumstances and emerging trends for U.S. coal exports present interesting possibilities for the employment of supercarriers. Projected volumes are substantial, and average distances of movement to major markets are typically long. Furthermore, all buyers of U.S. metallurgical coal are steel companies, many of which are very large and whose annual coal requirements are great. Furthermore, existing draft constraints in many major port areas are being rapidly overcome (table 52). The feasibility of a possible deepwater port site for use by supercarriers in the U.S. coal export trade is evaluated in the benefit-cost analysis (Annex F).

Cereals are a particularly problematic commodity group. Although annual volumes are substantial, the wide geographic dispersal and typically small scale of numerous grain processors using U.S. cereals as inputs are not yet compatible with the employment of supercarriers. The basically segmented pattern of purchase is also incompatible with such use. Furthermore, the variety of physical constraints in overseas ports of reception are great. No overseas port recently significant in U.S. cereal trade can presently accommodate a grain supercarrier, nor are there any known plans of improvement which would permit this (table 53). Furthermore, apart from limited water depths, most of the major grain receiving ports abroad have exceedingly limited storage capacity as well as low-capacity handling facilities. Thus, for example, the largest grain importer in the world, Japan, has over 2 million tons of seaboard grain silos for storage. However, they are so widely scattered spatially that only one single facility exceeds 100,000 tons in capacity, while most have very much less (table 54). Circumstances are believed to be similar in most Western European countries. Although the obstacles are formidable, they could be overcome in time. We have accordingly tested the potential feasibility of several deepwater port concepts for U.S. grain exports in the benefit-cost analysis (Annex F).

Major Foreign Ports for U.S. Exports of Phosphate Table 51.

14.4

おおいち あいいたまし

í.

Dar watanoo oron	Existin	Existing situation	Future	Future developments	s
voue, country and	Depth (M.L.W. in feet)	Max. vessel size (d.w.t.)	Depth (M.L.W. in feet)	Vessel size (d.w.t.)	Note
Zone 5 Belgium:					
Antwerp	45				
Rotterdam	36 1/2				
Zone 15 Japan: Yokohama Nagoya Canada:	48-30 33-30 28-26				
Vancouver, B.C	36-40			v	

MARAD; Benn Brothers (Marine Publications) Ltd., Ports of the World, 1971-72, 25th ed., London, 1971; and others. Source:

103.

, ,

n U

and see the

يحادمنيه المحال والقعالي والمقالين والم

تانيدي بين مانيا م Table 52. Major Foreign Ports for U.S. Exports of Coal

	nui ctin	cituation	Futur	Future developments	ants
Pono contrar and	TISTI	EXISCING SICUACION	T n n T	mdotavan a	- Tra
port port	Depth	Max. vessel	Depth	Vessel	
	(M.L.W. in feet)	size (d.w.t.)	(M.L.W. in feet)	size (d.w.t.)	Note
Zone 5			1.		
W. Germany:	1				
Bremen	31				Cutor sout
Hamburg	40	000,02	ć	300,000	outer port
Bremerhaven	48	80,000	50		
Netherlands:			L	000	
Rotterdam	64 1/2	200,000	د ۲	250,000	
Amsterdam	49	000'06	62		Outer port at Ijmuiden
France:					
Fos	52 1/2	120,000	77		
Dunkirk	46	80,000	80	300,000	
Le Havre	46	80,000		250,000- 300,000	
Sweden:					
Gothenburg	26				
Oxelosund	41-45				
Belgium:	1				
Antwerp	45	80,000			
Cadiz	31				
Gijon	44	75,000		120,000-	
Bilbao	31-35				continued

「「「「「「」」」

104.

And the second second

Ý.

Ŀ

いたという形式をないないない。

and the second

continued--Major Foreign Ports for U.S. Exports of Coal Table 52.

Future developments	Depth Vessel Note (M.L.W. size in feet) (d.w.t.)	8			78 65
situation	Max. vessel size (d.w.t.)	80,000 120,000		150,000- 200,000 80,000	150,000 200,000 130,000 150,000
Existing	Depth (M.L.W. in feet)	26-36 34 30-27 46 52 1/2 30-26	28	60 48	58 57 59
	bort councry and port	Zone 6 Italy: Genoa Naples Leghorn Bagnoli Savona	Zone 7 Turkey: Istanbul	Zone 15 Japan: Kimitsu	Mizushima Kashima Chiba Tsurusaki

105.

. .

a Mil

81.1 L

	Existing	Existing situation	Future	Future developments	ents
sone, councry and port	Depth (M.L.W. in feet)	Max. vessel size (d.w.t.)	Depth (M.L.W. in feet)	Vessel size (d.w.t.)	Note
Tobata Muroran	57 5/12 45 11/12		71 52		
usaka Oita	1 8 89	300,000			Expansion underway Under construction
Kawasaki	44 1/4	- 70,000	75 1/2		тп верри вау

MARAD; Benn Brothers (Marine Publications) Ltd., Ports of the World, 1971-72, 25th ed., London, 1971; and others.

106

「「「「「「「」」」」

1

ţ

continued--Note STATE AND THE READ IN <u> Alfernen suere</u> Future developments size (d.w.t.) Vessel Depth (M.L.W. in feet) Max. vessel Existing situation (d.w.t.) size (M.L.W. in feet) 45-38 22 34-24 45-29 29-26 51-31 30 26-30 Depth 29 8 0 8 0 **8** Zone, country and Antwerp..... Gand-Ghent.... United Kingdom: Felixstowe.... Leghorn.... Trieste..... London..... Naples.... Hamburg.... Gothenburg... Amsterdam.... Rotterdam... Netherlands: Genoa.... Bremen.... port <u>Zone 5</u> Germany: Belgium: Sweden: Zone 6 Italy:

Major Foreign Ports for U.S. Exports of Cereal (Grain) Table 53.

;

1.3

4

107.

けましょう

and the second second second

		a trifficiation prim Serve American			
Table 53. Major Fc	Foreign Ports	for U.S.	Exports of Cereal	l (Grain)	continued
fore writing	Existing	g situation	Future	e developments	ts
port country and	Depth (M.L.W. in feet)	Max. vessel size (d.w.t.)	Depth (M.L.W. in feet)	Vessel size (d.w.t.)	Note
Zone 7 Turkev:			- - - -		
Istanbul	34				
Haifa	37				
<u>Zone 8</u> <u>Polan</u> d: Gdynia	36-40				
<u>Zone 11</u> India: Bombay	35 26				
Zone 12 So. Korea: Pusan	36-40				
Kaohsiung	36				
<u>zone 15</u> Japan:	See tab.	table 13			
Source: MARAD; Ben 1971-72, 2	nn Brothers 25th ed., Lo	Benn Brothers (Marine Publications) Ltd., , 25th ed., London, 1971; and others.	tions) Ltd., others.	Ports of	the World,

108.

AND AND AND

District and silo	Storage capacity (tons)	Maximum ves- sel size (d.w.t.)	Draft (meters)
Kanto District Kashima Silo Chiba Kyodo Silo Niohn Silo Chiba Grain Center. Toyo Seiyu Nitto Flour Nitto Flour Nisshin Flour Kokusai Futo Nisshin Seiyu Food Agency Silo	99,779 37,120 40,090 21,000 35,000 34,161 75,000 69,520 50,000 110,200 19,500	50,000 50,000 55,000 55,000 20,000 60,000 50,000 200,000 55,000 20,000	12 12 12 12 12 11 17.5 12.5
Chubu District Shimizu Futo Hohnen Seiyu Rnor Yusi Chita Futo Nagoya Futo Silo Toyo Grain Terminal Nisshin Flour Nakanihon Grain Shiko Silo	25,820 66,480 50,750 31,433 12,300 58,750 54,800 27,560 32,706	15-20,000 25,000 34,000 50,000 50,000 55,000 55,000 30,000	11 10 12 12 11.5 12 12
Kinki District Kobe Futo Momen Silo Kobe Silo Konan Futo Hanshin Silo Showa Sangyo	38,260 66,720 50,600 32,400 39,800 71,000	40,000 55,000 50,000 60,000 50,000 45,000	11.5 12.5 12.5 11.5
<u>Chugoku District</u> Nisinihon Grain Seto Futo Nihon Koyu	52,422 42,500 57,490	60,000 55,000 1,500	12
Kyushu District Moji Shibusawa Hakatako Silo	6,400 41,016	25,000 25,000	9.3 9.5

Table 54. Major Seaboard Grain Silos in Japan as of July 1971

continued--

2

314 N.C

「「「「「「「「」」」

i i

110.

District and silo	Storage capacity (tons)	Maximum ves- sel size (d.w.t.)	Draft (meters)
Genkai Silo	30,000	25,000	9.5
Meiko Silo	7,000	30,000	
Kamigumi	9,128	20,000	
Kagoshima Kumiai	4,000	21,000	

Table 54. Major Seaboard Grain Silos in Japan as of July 1971

Source: Japanese Ministry of Agriculture.

III. OCEAN TRANSPORT COSTS FOR BULK COMMODITIES

Introduction

The principal purpose of this chapter is to describe the real cost characteristics of ocean vessels engaged in the transport of bulk commodities, with emphasis on the economies of scale. To serve other related study needs, it treats the specific costs of vessels varying widely in size and draft.

A secondary purpose is to consider the technical possibilities and cost implications of achieving greater vessel size without correspondingly increasing the draft requirements. Physical constraints in most U.S. and foreign ports generally restrict permissible vessel draft well before they limit a vessel's other dimensions. It may therefore be advantageous to increase vessel capacity at a given draft by modifying other dimensional characteristics.

Means for satisfying the above objectives presented a challenge. Although detailed and comprehensive data on ocean shipping costs are held by shipbuilders, designers and operators, they are almost invariably proprietary. Numerous published articles and reports contain some information on the subject, but most tend to be either too general or too limited in focus for purposes of this study. Among these, appraisals by

傳書 過渡 原因 四周四

PROPERTY AND INCOMENTATION OF THE OWNER.

Heaver 1/ and Keith, 2/ both published in 1968, were found generally to be more comprehensive and detailed than most others.

However, even these documents were considered inadequate to serve intended purposes. Neither covers the entire broad range of vessel size and distance that is needed; estimated first costs are based on prices of some Japanese and other shipyards; and neither provides dimensional or other design characteristics associated with the various ships costed. Furthermore, both are somewhat dated for so dynamically changing a subject.

We therefore elected to make independent cost estimates. We were assisted in this effort by Hydronautics, Inc., a firm having skills in naval architecture and a computerized design and cost estimating program directly related to our needs. In this broad study, the cost estimates are necessarily made parametrically at a general order-of-magnitude level only. In addition, they are made predominantly for vessels operating under foreign flags, which dominate the relevant shipping markets.

Our cost estimates are made separately for each of numerous ocean vessels ranging in size from 30,000 to 500,000 d.w.t., in loaded draft from 35 to 95 feet, and in other design characteristics. Furthermore, the estimates are made separately by trip distances (one way) ranging from 1,000 to 15,000 nautical miles. The broad ranges of vessel size, draft, and distance are believed to substantially cover existing and possible future conditions governing major movements of wet and dry bulk commodities in U.S. foreign trade.

1/ Trevor D. Heaver, The Economics of Vessel Size (Ottawa: National Harbors Board, 1968, mimeo). 2/ Virgil F. Keith, <u>Analysis and Statistics of Large</u> Tankers (Ann Arbor: University of Michigan, Department of Naval Architecture and Marine Engineering, October 1968). Most of the estimates are presented in terms of the total average cost of moving 1 long ton of oil in a vessel of specified size and design characteristics over a given distance. They exclude loading, unloading, or other terminal costs except for typical ocean vessel time in port. To permit some understanding of the underlying cost structure, detailed breakdowns of cost components are presented illustratively for vessels of significantly different size.

All initial estimates of ocean shipping costs are presented as of early 1970 and are in 1970 dollars. Rather than a more recent date, 1970 has been used primarily because detailed data in appropriate technical format were already available for that year. In addition, uncertainties about dollar exchange rates after mid-1971 introduced unmanageable complications. Thus, if proper allowance were made both for inflation and for changing exchange rates, the estimates for foreignflag vessels presented herein would have to be increased by perhaps 25 to 35 percent to obtain 1972 dollar equivalents.

In the following sections the methodology and assumptions used for estimating 1970 foreign-flag tanker costs are first summarized, and are then followed by a presentation of the results. In sequence, the chapter then presents (1) 1970 estimated costs of tankers operating under U.S. flag; (2) cost relationships of tankers, dry bulk and combined carriers; (3) the implications of alternative assumptions about many key variables for initially derived 1970 estimates; and (4) the future level of ocean shipping costs.

Methodology and Assumptions

Our approach to the cost of tankships involved four major steps:

1. The careful selection of a limited number of vessel designs among a great many candidates to serve costing objectives

114.

2. The making of many parametric assumptions on major vessel design and operating characteristics common to ships costed

3. The establishment of the specific unit values of various cost components applicable to all vessels

4. The incorporation of all relevant design and cost parameters and assumptions in a computer program which calculates total unit costs per ton of cargo carried, separately by ship and distance.

These steps are described sequentially in the following paragraphs.

Selection of Vessels

For each 5-foot increment in draft between 35 and 60 feet, four vessels of significantly different size but of equal draft were finally selected for costing purposes from a larger matrix of ship designs and costs developed initially. Two vessels of "conventional" design were chosen, one at the lower end of the range of deadweight tonnage in the world tanker fleet, and the other at an intermediate or higher level in that range. Two vessels of modified design (restricted-draft tankers) were chosen, one of the maximum d.w.t. considered technically feasible at a given draft, and the other at a somewhat smaller, intermediate level.

For very large vessels exceeding 250,000 d.w.t. (usually requiring a draft of more than 60 feet), the selection procedure was somewhat different. For each of four size levels in the 250,000- to 500,000-d.w.t. range, two vessels were chosen for costing purposes. One was selected to represent a vessel of conventional or standard design at a given d.w.t.; the other was a vessel of modified design to indicate the minimum feasible draft for a ship of equal capacity. The technical procedures used in the selection process are described more fully in the appendix.

Basic Vessel Design and Operating Assumptions

All ship designs and corresponding cost estimates assume a standard tanker without such environmentally oriented features as double bottom or fully clean ballast systems. They also generally assume steam turbine and single-screw propulsion systems. Finally, all designs and cost estimates reflect, to a first approximation, recently promulgated Intergovernmental Maritime Consultative Organization (IMCO) standards which modestly restrict the size of cargo tanks.

Vessel operating assumptions include a 345-day service year; a 39.5-hour average port time; a uniform 16-knot service speed; a 50-percent load factor, with full cargo in one direction and ballast returns; sufficient bunker fuel for only one leg of a round trip; and crews at the low end of the range in recent manning scales: 26 men on all vessels through 200,000 d.w.t., with progressive increases to a 50-man crew for a 500,000-d.w.t. vessel.

The above design assumptions reflect recently prevailing conditions for the existing world tanker fleet, as well as for vessels on order. Most of those vessels, especially the larger ones, are likely to be in service for many years. The newly imposed tank size restrictions began to influence designs of tankships ordered in late 1971. However, they are expected to have no effects on the cost of vessels under 200,000 d.w.t., and only very minor effects on larger ones. Prospects for more restrictive environmental standards in vessel design are uncertain. However, the sensitivity of our cost estimates to several of them is considered later in this chapter.

Most of the indicated operating assumptions are in keeping with typical recent circumstances in world shipping. Any reasonable alternative assumptions would have very minor consequences on total costs, as is shown for most items in the sensitivity analysis. S.

「「「「「「「」」」」」

The assumption as to bunker fuel is necessarily arbitrary. Vessels often load sufficient fuel for a round trip voyage when bunker costs in various locations make that strategy useful. However, this practice varies widely by specific route, time, and company. The trade-off is usually close, since any savings in bunker costs must be related to the corresponding loss of cargo capacity.

There has been a long-term trend, which is expected to continue, toward smaller crews on vessels of all sizes. For costing purposes, crews are assumed to be modestly smaller than on most ships now operating, but they do reflect planned complements for many vessels now on order.

Although strictly technical and operating requirements for manning very large crude carriers (VLCC's) are not materially greater than for smaller vessels, Hydronautics suggests that institutional and political factors are likely to constrain the rate of crew reductions on the largest vessels. Furthermore, the economic incentives for crew reduction are relatively greater for smaller than for larger vessels, as indicated in the sensitivity analysis.

The assumption that the largest vessels (approximately those exceeding 250,000 d.w.t.) would be propelled by single-screw systems at 16-knot service speeds is not altogether realistic and has been made here only for convenience. In practice, such very large ships are likely to operate at somewhat less than 16-knot service speeds if designed for single-screw propulsion, or to operate with twin-screw propulsion. Either approach would effectively increase total unit costs modestly. More detailed analysis of numerous factors, including speed variation, than is possible in this study would be necessary to determine optimal design and operating conditions, and related cost characteristics, for such vessels. However, the cost implications of twin-screw propulsion for a 300,000-d.w.t. and a 500,000-d.w.t. vessel are indicated in the sensitivity analysis.

Values of Unit Cost Components

Table 55 specifies each of the cost components used in the computer program and the value, factor, or equation used for each item. Since the original program is related to U.S. costs, in some instances we simply applied a multiplier to convert them to foreignflag equivalents.

Investment costs for foreign-flag tankers were estimated in several stages. For each ship, independent estimates were made by Hydronautics of the approximate quantities of steel required for eight different construction items, as well as shaft horsepower and electric power requirements. Resulting values were then used as inputs to a subroutine of the computer program, which includes unit cost coefficients for each item and calculates total first costs (table 56). Coefficients were all based on actual unit prices of steel plate and machinery, and on a weighted average of shipyard labor costs, in the United States as of early 1970.

A multiplier was applied to total U.S. construction cost estimates for each ship to reflect lower foreign costs. In the absence of any data on real production costs in foreign shipyards, that value had to be based on a comparison of prices for equivalent ships. Unpublished Corps of Engineers' data for 1969-70 on prices of numerous foreign and U.S. tankers and bulk carriers of various sizes indicated a fairly consistent relationship of 46 foreign/100 U.S., which was therefore used initially as the multiplier. <u>All</u> Hydronautics' total unit cost estimates as shown in the appendix are based on that assumed relationship between U.S. and foreign first costs.

After the entire cost estimating program had been run, resulting estimates of foreign first costs were carefully appraised and found to be low relative to prevailing price levels of ships built abroad in 1967-68. Implied U.S. cost equivalents were also significantly lower than 1969-70 ship prices in the United States. 「「「「「「「「「」」」」

Assumed Values of Individual Cost Components Used in Estimated Total Unit Shipping Costs for Foreign-Flag Tankers (In 1970 dollars)	used in RRNA adjustment multiplier or total value for foreign costs	D.46X (initial) 0.55X (revised) 0.11746X 0.11746X 6,500/man 0.7 of U.S. 0.93 of U.S. + 9,500)]	- 0.69 (CN-1,500) 0.56 of U.S. (CN) (CN) 0.00006 d.w.t.)X 0.46X (initial) 0.55X (revised) 0.61 CN Same as U.S. (2.50/bbl.)Y	<pre>d.w.t. Total deadweight tons X Independent estimate for each vessel Y Independent estimate of propulsion requirements for each vessel at 16 knot speed and corresponding fuel consumption rate</pre>
Table 55. Assumed Values of Individual Cost Components Used i Unit Shipping Costs for Foreign-Flag Tankers (In 1970 dollars)	Cost component U.S. costs used in computer program	Total investment X Annual capital charge Annual operating costs: Manpower Subsistence Stores and supplies + 0.21(d.w.t. + 9,500)]	Maintenance and repair90,400 + 0.69 (CN-1,500)pair90,400 + 0.69 (CN-1,500)H&M insurance $+ 0.49 (CN)$ P&I insurance $\frac{0.01 + 0.0006 \text{ d.w.t.}}{1,000}$ P&I insurance $750M + 0.61 CN$ Annual overhead and $$ Fuel (Bunker C) $$	Definitions SHP Normal shaft horsepower CN Cubic number = (length x beam X x draft) ; 100 M Number of crew

四日間の大下り、

-

ł

Source: Hydronautics, Inc., and RRNA..

118.

000.00

1. • •

;

.

5

NECT 1987

Table 56. Initial Investment Cost Estimating Coefficients for Tank Vessel Computer Program, by Light Ship Weight Output Items

(In millions of 1970 dollars)

Item	Cost
1.0 <u>Steel</u> 1.1 Cargo section 1.2 Ends 1.3 Superstructure 1.4 Houses	(0.0004524 W + 0.78) (0.0005678 W + 0.3963) (0.000835 W + 0.031358)
2.0 <u>Outfit</u> 2.1 Passenger and crew 2.2 Cargo 2.2.1 Heating coils 2.2.2 Cargo pumps	(0.00338 W + 0.704)
2.2.3 Cargo oil sys. and misc 2.3 Electric plant 2.4 Fixed	(0.002264 W + 0.2032) (0.00045 P _{kw} + 0.450)
2.4.1 Steering gear and rudder 2.4.2 Dk. Mach'y, incl. anchors, chain, vindlas	in 19,120.1 Alleringi a. Alia ingi. Addis
warping gear, winches 2.4.3 Misc. items	
3.0 Machinery, steam turbine propulsion	$[0.103(SHP \times 10^{-3}) + 2.160]$

Definitions

W	Weight in long tons
Pkw	Power in kilowatts
SHP	Shaft horsepower

Source: Charles E. Dart, <u>Cost Estimating - Ship Design</u> and <u>Construction</u> (prepared for University of Michigan summer conference on Economics in Ship Design, June 8-12, 1970), pp. 25-26. (1) 四一、四一、

日本語語語の言い

A probable explanation for this discrepancy was soon found. All initial computer estimates of first cost had reflected an assumed quantity discount for multiple orders (five ships) in the United States. A1though such volume production has been highly relevant for major foreign tankship builders in recent years, U.S. shipyards have rarely had such good fortune. Their prices therefore had to absorb the higher costs of small orders and low volumes. However, if the same production conditions governed U.S. and foreign yards alike, differences in real costs (and in cost-based prices) would be smaller than they have been. Foreign production costs would accordingly represent a higher proportion of U.S. costs. After some testing for consistency and comparability with the earlier foreign and U.S. shipyard prices, we changed the initial multiplier of 0.46 to 0.55 and adjusted all original estimates of foreign investment costs accordingly (that is, by approximately 1915, percent). That increment corresponded almost exactly to the value of the assumed quantity discount. All Coul unit costs were also adjusted to reflect the

Annual capital charges of 11.746 percent were applied to all estimates of first cost. They consist of two elements: an assumed 10-percent return to capital, and an assumed 20-year useful vessel life, which requires a depreciation allowance of 1.746 percent annually based on a sinking fund approach. These assumptions are based principally on discussions with top officials of several international oil companies and large chartering firms, whose practices they reflect. On the other hand, many other enterprises are known to have different concepts of expected capital recovery, of vessel life, and of approaches to depreciation. However, the assumptions made here are considered reasonable. Nevertheless, the implications for unit shipping costs of alternative assumptions are considered in the sensitivity analysis.

THE PARTY AND

No provision for income taxes has been made in our annual capital charges, principally because they constitute transfer payments rather than <u>economic</u> costs. Since the cost estimates have been developed primarily as inputs to benefit-cost analysis, taxes cannot

120.

change',

TAN THE REAL PROPERTY.

「「「「「「「「「「」」」」

-1 + 4 + 2 × 4 × 307

properly be included. Furthermore, taxes actually paid by most foreign-flag operators are likely to be small. That is particularly true for vessels sailing under flags of convenience, which dominate carriage of U.S. crude oil imports. The incidence of such income taxes as some operators must pay is often effectively reduced through liberal tax allowances for accelerated depreciation, reinvestment, and the like.

Of the six operating cost items, five were based initially on estimated U.S. values and then adjusted as appropriate to fit foreign-flag conditions. The single exception to this approach was manpower. Reflecting the dominant role of flags of convenience in the U.S. oil trade, average foreign 1970 crew costs were based on the experience of several companies operating under those flags. In practice, the level of crew costs varies widely by flag. Although often higher for some Western European operators, average 1970 compensation was believed to have been in the same range for some other flag vessels, including those of Japan, Greece, and Norway.

Unit cost estimates for subsistence, stores and supplies, maintenance and repair, and insurance were initially based on early 1970 circumstances for U.S.flag ships as indicated by a major shipbuilding firm. They were then verified through personal interviews with officials of ship chartering and marine insurance firms.

Except for insurance, adjustments in estimated U.S. operating cost values for foreign-flag conditions were made primarily on the basis of unpublished Corps of Engineers' data, which indicated estimated annual costs for each item in 1969-70 for numerous U.S.- and foreign-flag vessels of varying size. As with manpower, actual values vary somewhat by specific case. However, since the quantitative significance of the combined three items in total shipping costs is quite small, any reasonable alternative assumptions would have only minor consequences.

The general level of insurance rates is essentially the same in the United States and abroad. However, types and extent of coverage purchased, relevant vessel operating conditions, actuarial experience, and insurers' perceptions of risk vary considerably in individual cases. Insurance costs assumed here reflect extended discussions with leading brokers and are considered indicative of 1970 conditions.

The two main components of insurance charges are hull and machinery (H&M) and protection and indemnity (P&I). H&M insurance covers loss and damage to the insured vessel itself, while P&I protects against loss of life or injury of crew or other persons, cargo loss or damage, and damages to other vessels or property, including those arising from water pollution. Recently, H&M insurance has been the far more important risk for insurers.

The structure of H&M insurance rates in relation to vessels of varying sizes has changed substantially in the last few years. Historically, insurance costs per d.w.t. tended to decline with vessel size. Because actuarial experience with the very large carriers is limited, several major losses of VLCC's resulted in a changing rate structure. By 1970, rates for H&M insurance per d.w.t. tended to increase with vessel size. The stability of this recent rate structure is subject to considerable uncertainty, and major changes could have significant impacts on costs. Issues and implications involved are treated further in the sensitivity analysis.

The assumed value for general overhead costs is necessarily arbitrary. Most ocean shipping enterprises operate a number of vessels often of different types and in significantly different markets. No empirical data are available on such costs, and there would still be a difficult problem of allocation. The underlying assumption in our modest value is that only limited office support is required for vessels operating regularly on particular links, and that it would not vary materially by vessel size. Unit fuel costs are notoriously difficult to estimate generally. They vary considerably in different parts of the world at any given time and are highly volatile over time. The assumed value of \$2.50 per barrel for Bunker C appeared to be a reasonably typical value within a broad range of actual worldwide prices during 1970. Because it constitutes a significant proportion of total shipping cost, implications for alternative unit fuel costs are considered in the sensitivity analysis.

Results

The Influence of Vessel Size on Ocean Shipping Costs

Comprehensive estimates of total unit ocean shipping costs which reflect the above methods and assumptions are presented here in both statistical and graphic form. Table 57 indicates the total cost in dollars per long ton of cargo carried in each of 31 vessels for 1way trip distances ranging from 1,000 to 15,000 nautical miles. For the same ships and trip distances table 58 indicates those costs in terms of mills per ton-mile. The latter are also represented in the form of curves in appendix figures 4 through 14, based on the modestly lower, unadjusted cost estimates. Supplementary figures and tables drawing selectively upon these comprehensively presented data are also introduced in the discussion to facilitate understanding.

To illuminate the general influence of scale economies in ocean shipping, we have prepared a single curve (figure 2) which shows for trips (one way) of 5,000 miles the total cost of transporting a long ton of oil in tankers ranging from 30,000 to 500,000 d.w.t. As strikingly indicated by the curve, unit costs decline continuously as vessel size increases. However, the degree of cost reduction diminishes progressively over the full range.

Table 57.	Estimated Unit Co	osts Per Cargo-To	n, by Foreign-
	Flag Vessel S	Size and Distance	
	(T- 1070 d	lonal long	

भार्त्र का संघ

de la competition de la compet

ŗ

1

(In 1970 dollars)

Vessel draft and	One-way	trip	distar	nces (r	autical	miles)
d.w.t.	1,000 2	,000	5,000	7,500	10,000	15,000
35-foot draft 30,000 40,000 50,000 51,500	.806 1	.808 .518 .356 .340	4.040 3.385 3.020 2.985	5.948 4.988 4.433 4.380	7.890 6.610 5.910 5.800	12.000 10.005 8.925 8.790
40-foot draft 45,000 60,000 75,000 78,500	.654 1	.416 .206 .096 .076	3.165 2.680 2.435 2.395	4.658 3.953 3.593 3.518	6.190 5.250 4.750 4.650	9.375 7.890 7.200 7.035
<u>45-foot draft</u> 65,000 80,000 95,000 110,000	.618 1 .576	.156 .044 .980 .914	2.595 2.320 2.180 2.055	3.810 3.413 3.203 3.015	5.060 4.520 4.230 4.000	7.635 6.810 6.360 6.015
50-foot draft 90,000 120,000 140,000 157,000	.515	.970 .870 .840 .828	2.160 1.935 1.875 1.835	3.180 2.835 2.745 2.700	4.200 3.760 3.620 3.570	6.315 5.640 5.460 5.385
55-foot draft 120,000 140,000 180,000 210,000	.479	.842 .818 .796 .784	1.870 1.830 1.780 1.750	2.738 2.678 2.618 2.573	3.620 3.540 3.460 3.410	5.445 5.325 5.205 5.130
60-foot draft 150,000 200,000 263,000	.462 .445 .448	.770 .760 .764	1.715 1.690 1.695	2.498 2.475 2.475	3.310 3.290 3.290	4.950 4.935 4.935
58½-foot draft 250,000	.454	.760	1.685	2.468	3.270	4.905
65-foot draft 250,000	.454	.760	1.680	2.460	3.270 cont	4.905 tinued

124.

Table 57. Estimated Unit Costs Per Cargo-Ton, by Foreign-Flag Vessel Size and Distance continued--

(In 1970 dollars)

Vessel draft and	One-wa	ay trip	dista	nces (1	nautical	miles)
d.w.t.	1,000	2,000	5,000	7,500	10,000	15,000
<u>62-foot draft</u> 300,000	. 446	.746	1.655	2.423	3.200	4.770
<u>71-foot draft</u> 300,000	.417	.692	1.530	2.235	2.950	4.425
68½-foot draft 400,000	.430	.716	1.575	2.310	3.050	4.560
83-foot draft 400,000	.388	.654	1.440	2.108	2.790	4.170
75-foot draft 500,000	.432	.718	1.580	2.318	3.050	4.560
<u>95-foot draft</u> 500,000	.386	.644	1.420	2.078	2.740	4.080

Source: Hydronautics, Inc., estimates, with RRNA adjustments.

125.

4

14 men

126.

Table 58. Estimated Unit Shipping Costs Per Ton-Mile, by Foreign-Flag Vessel Size and Distance

(In 1970 mills)

Vessel draft and	One-way	y trip	distar	nces (1	nautical	. miles)
d.w.t.	1,000	2,000	5,000	7,500	10,000	15,000
35-foot draft 30,000 40,000 50,000	1.079 .909 .806	.904 .759 .678	.808 .677 .604	.793 .665 .591	.789 .661 .591	.800 .667 .595
51,500 40-foot draft	.798	.670	.597	.584	.580	.586
45,000 60,000 75,000 78,500	.848 .717 .654 .638	.708 .603 .548 .538	.633 .536 .487 .479	.621 .527 .479 .469	.619 .525 /.475 .465	.625 .526 .480 .469
<u>45-foot draft</u> 65,000 80,000 95,000 110,000	.685 .618 .576 .547	.578 .522 .490 .457	.519 .464 .436 .411	.508 .455 .427 .402	.506 .452 .423 .400	.509 .454 .424 .401
50-foot draft 90,000 120,000 140,000 157,000	.571 .515 .500 .489	.485 .435 .420 .414	.432 .387 .375 .367	.424 .378 .366 .360	.420 .376 .362 .357	.421 .376 .364 .359
55-foot draft 120,000 140,000 180,000 210,000	.500 .479 .470 .462	.421 .409 .398 .392	.374 .366 .356 .350	.365 .357 .349 .343	.362 .354 .346 .341	.363 .355 .347 .342
60-foot draft 150,000 200,000 263,000	.462 .445 .448	.385 .380 .382	.343 .338 .339	.333 .330 .330	.331 .329 .329	.330 .329 .329
58½-foot draft 250,000	.454	.380	.337	.329	.327	. 327
<u>65-foot draft</u> 250,000	.454	.380	.336	.328	.327 contin	.327

Table 58. Estimated Unit Shipping Costs Per Ton-Mile, by Foreign-Flag Vessel Size and Distance continued--

(In 1970 mills)

Vessel draft and	One-way trip distances (nautical miles)					
d.w.t.	1,000	2,000	5,000	7,500	10,000	15,000
<u>62-foot draft</u> 300,000	.446	.373	.331	.323	.320	.318
<u>71-foot draft</u> 300,000	.417	.346	.306	.298	.295	.295
683-foot draft 400,000	.430	.358	.315	.308	.305	.304
83-foot draft 400,000	.388	.327	.288	.281	.279	.278
<u>75-foot draft</u> 500,000	.432	.359	.316	.309	.305	.304
<u>95-foot draft</u> 500,000	.386	.322	.284	.277	.274	.272

Source: Table 57.

127.

, , , , , , , , , , , , , , , , , , ,				100. CD		TOW TANKSHIPS	
	<pre></pre>						
	,						
	· · · · · · · · · · · · · · · · · · ·						
		· · · · · · · · · · · · · · · · · · ·					
					• • • • • • • • • • • • • • • • • • • •		
					•		
							• • •
	+						
			+ • • • • • • • • • • • • • • • • • • •				
		• • • • •	* • • • • • • • • •			-+	
			1		• • • • • • • •		
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • •	•		
	· · · · · · · · · · · · · · · · · · ·	• • • • • •	6 6 6 6 6 6 6 6				
							* * * * * * * *
· • - · · · + · · • • •		• • • • •	8 4 4 4 1 1			• • • • • •	
					1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·	* * * * * *
* * * * * * * * * * * * * * *		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •				
					-draft design	tan t	

						+ +	
						· · · · · · · · · · · · · · · · · · ·	
						1	
	ventional design	1101					
						-	
	150	200	250	300 35	350 400	0 450	0 2 0 0

All Cy Stern Los

•

Whereas shipment in a 30,000-d.w.t. vessel would cost a little over \$4 per ton, the unit cost would be around \$3 in a 50,000-d.w.t. vessel and approximately \$2.10 in a 100,000-d.w.t. vessel. An additional doubling of vessel size to 200,000 d.w.t. would further reduce unit costs by less than 20 percent to the \$1.70 range. A jump to still larger ships would produce further, but more modest, savings. A 500,000-d.w.t. vessel would be expected to lower unit costs by only some \$0.12 to \$0.30 a ton over the 200,000-d.w.t. vessel, depending upon its design characteristics. As is subsequently explained further, however, the <u>absolute</u> cost advantage of ship size also depends upon voyage length and therefore increases with distance.

A review of the internal structure of costs for tankers of different sizes may further illuminate the question of scale economies. To facilitate presentation, only three vessels are treated in depth, all of which are of conventional design and proportions but of sharply contrasting size. These are vessels of 40,000, 120,000, and 300,000 d.w.t. ("small," "medium" and "large" vessels). More detailed design characteristics of the three ships are specified in table 59, which also indicates total annual costs by various components for each vessel. Except for fuel, those components would be the same regardless of trip distances. Fuel costs are represented for 5,000-mile journeys. They would be somewhat higher for longer trips and lower for shorter ones, but not greatly different except for relatively very short journeys.

For analytic purposes it is more convenient to represent those annual costs by percentage distributions and by vessel capacity. As indicated in table 60, each cost component's proportion of total annual costs varies somewhat by vessel size. Annual capital charges represent somewhat less than half the total costs of all three vessels; operating costs, more or less than one-fourth; fuel, most of the balance. Some operating costs, notably crew, subsistence, and maintenance as well as overhead, decline sharply as a proportion of total annual cost in the larger vessels. The reverse is true, however, for H&M insurance, which accounts for nearly 11 percent of the 300,000-d.w.t. vessel's, but

Table 59. Estimated Annual Ocean Shipping Costs for Three Sizes of Foreign-Flag Tankers, by Cost Category

Vessel d.w.t.				
$40,000^{a}$	120,000 ^b	300,000 <u>c</u> /		
739.4	1,286.1	2,409.4		
169.0 50.6 17.9 70.2 78.3 37.6	169.0 87.4 17.9 104.3 188.2 68.3	221.0 169.1 23.5 178.3 574.2 141.0		
423.6	635.1	1,307.1		
25.0	25.0	25.0		
1,188.0	1,946.2	3,741.5		
351.4	729.8	1,583.1		
1,539.4	2,676.0	5,324.6		
4,100; spee B.P. 900'; 28,100; sp B.P. 1,095'	d, 16 knots breadth, ml beed, 16 kno ; breadth,	;; crew, 26. .d. 136'; ots; crew mld. 190';		
	40,000 [±] / 739.4 169.0 50.6 17.9 70.2 78.3 37.6 423.6 25.0 1,188.0 351.4 1,539.4 B.P. 650'; 4,100; spece B.P. 900'; 28,100; sp B.P. 1,095'	$40,000^{a}$ $120,000^{b}$ 739.4 $1,286.1$ 169.0 169.0 50.6 87.4 17.9 17.9 70.2 104.3 78.3 188.2 37.6 68.3 423.6 635.1 25.0 25.0 $1,188.0$ $1,946.2$		

(In thousands of 1970 dollars)

1

Source: Hydronautics, Inc., estimates, with RRNA adjustments.

130.

IN PROPERTY AND IN THE OWNER OF

THE THE PART AND ADDRESS

Table 60. Estimated Distribution of Annual Ocean Shipping Costs for Three Sizes of Foreign-Flag Tankers, by Cost Category

the PA Col Differentiate taxabase

(In percent)

Cost component	Vessel d.w.t.					
	40,000 (35' draft)	120,000 (50' draft)	300,000 (71' draft			
Investment	48.0	48.1	45.3			
Operating:						
Crew Stores and	11.0	6.3	4.2			
supplies Subsistence Maintenance,	3.3 1.2	3.3 0.7	3.2 0.4			
repair H&M insurance P&I insurance Subtotal	4.6 5.1 2.4 27.5	3.9 7.0 2.6 23.7	3.3 10.8 2.6 24.5			
Overhead	1.6	0.9	0.5			
Total annual cost excluding fuel	77.2	72.7	70.3			
Annual fuel costs - 5,000-mile, one- way trips	22.8	27.3	29.7			
Total annual cost	100.0	100.0	100.0			

Source: Table 59.

131.

Ĩ,

Ϋ.

「「「「「「「「」」」

only 5 percent of the 40,000-d.w.t. vessel's, total annual costs. In addition, while nearly 30 percent of a supertanker's total annual costs are attributable to fuel, the latter accounts for less than 23 percent of total costs for the 40,000-d.w.t. vessel.

The influence of scale economies in ocean shipping by type of cost is revealed in table 61 for the same three representative vessels. Nearly half the difference in total annual cost per d.w.t. between a 120,000-d.w.t. vessel and a 40,000-d.w.t. vessel is due to economies in construction costs. Another third of the difference is attributable to the larger vessel's lower unit crew and fuel costs, and the balance to minor economies in other elements.

Differences in total costs per d.w.t. between 120,000-d.w.t. and 300,000-d.w.t. vessels are very much smaller. However, the same three cost components account for all but a small part of the difference: capital costs, for nearly 60 percent; and fuel and crew costs combined, for nearly another third.

The preceding paragraphs pertain to voyages of 5,000 miles. Unit costs of ocean shipping are of course highly sensitive to voyage distance: the longer the trip, the greater the cost. However, incremental costs of transport per ton-mile tend to decrease with distance, up to a point which differs somewhat by vessel size.

The first point is documented by table 62, which shows unit shipping costs for the three representative small, medium and large vessels over a wide range of distances. The table also indicates cost differences among those vessels by trip length. Clearly, scale effects have their biggest payoffs on long journeys. It is precisely for this reason that large tankers and bulk carriers are engaged primarily in voyages exceeding 5,000 miles.

Table 61. Estimated Annual Ocean Shipping Costs Per Deadweight Ton for Three Sizes of Foreign-Flag Tankers

(In 1970 dollars)

	Vessel d.w.t.				
Cost component	40,000 (35' draft)	120,000 (50' draft)	300,000 (71' draft)		
Investment	18.49	10.72	8.03		
Operating:			1		
Crew	4.23	1.41	0.74		
Stores and supplies Subsistence	1.27 0.45	0.73 0.15	0.56 0.08		
Maintenance, re- pair H&M insurance P&I insurance	1.76 1.96 0.94	0.87 1.57 0.57	0.59 1.91 0.47		
Subtotal	10.59	5.29	4.36		
Overhead	0.63	0.21	0.08		
Total annual cost excluding fuel	29.70	16.22	12.47		
Annual fuel costs, 5,000 mile, one- way trips	8.79	6.08	5.28		
Total annual cost.	38.49	22.30	17.75		

Source: Table 60.

133.

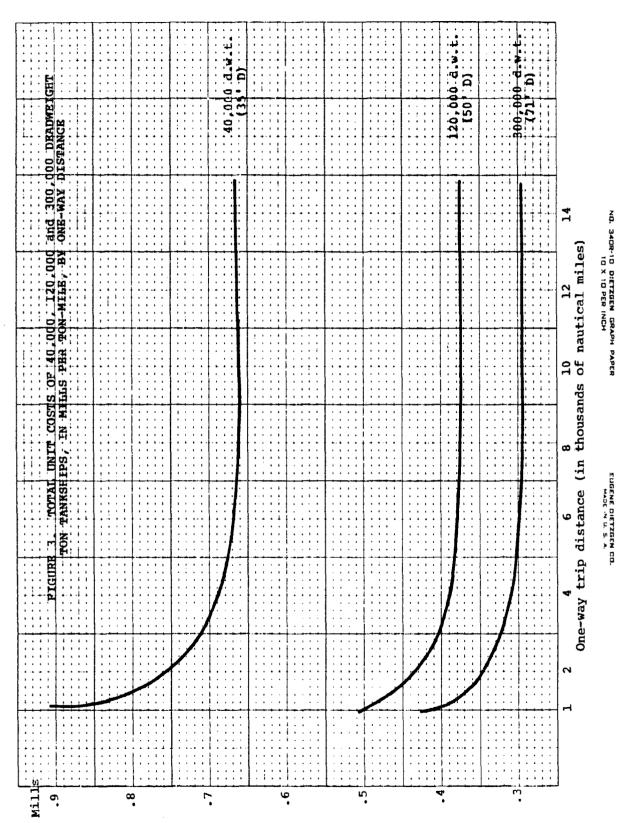
Table 62. Total Unit Cost, and Absolute Differences in Total Unit Cost, Per Cargo Long Ton by Distance, for Three Selected Foreign-Flag Vessels

(In 1970 dollars)

Vessel	One-way distance (nautical miles)				
	1,000	2,000	5,000	10,000	15,000
		То	tal uni	t cost	
40,000 d.w.t. (35' draft)	0.91	1.52	3.39	6.61	10.01
120,000 d.w.t. (50' draft)	0.52	0.87	1.94	3.76	5.64
300,000 d.w.t. (71' draft)	0.42	0.69	1.53	2.95	4.43
1	Absolut		rences cost	in total	unit
120,000 d.w.t. over 40,000 d.w.t	Absolut	÷ · · · · ·			unit 4.37
over 40,000 d.w.t 300,000 d.w.t. over 40,000 d.w.t		1)	cost 1.45	2.85	
over 40,000 d.w.t 300,000 d.w.t. over 40,000	0.39	0.65	cost 1.45	2.85	4.37

Source: Table 60.

ALC: MANTER ST. MANY LOW


While the effect of voyage distance on incremental costs is suggested in table 62, it is more sensitively illustrated by figure 3. This figure clearly shows the substantial decrease in unit costs of ocean shipping per ton-mile up to 5,000 miles, and to a much more limited degree for greater distances, in our three representative vessels. The pronounced downward slope of the three curves over the shorter distance range is explained by the rapid increase in the proportion of total round-trip time spent at sea rather than in port, total daily costs for which are the same except for fuel. Whereas under our basic costing assumptions, nearly 39 percent of complete round-trip voyage time for vessels of all sizes would be spent in ports on 1,000-mile movements, it would fall to about 11 percent on 5,000-mile journeys and to only 4 percent on 15,000mile trips. Conversely, a ship continuously engaged in the latter run would have 57 percent more miles at sea than if it operated on the 1,000-mile link. Its annual costs, which are mostly fixed, would therefore be spread over a substantially larger ton-mile base.

On relatively long voyages, incremental costs per ton-mile begin to level off and actually rise at some point. This reflects the need to use relatively more of the vessel's deadweight for fuel, making less deadweight available for cargo. When the effect of reduced cargo tonnage offsets the opposite influence of increased sea miles, average costs per ton-mile rise. As indicated in figure 3, that point is reached soonest by small ships, but in the case of all three representative vessels, is reached between 10,000 and 15,000 miles. This factor contributes to the cost advantage of large vessels over smaller ones on long hauls, although it is a very modest contribution.

Cost Implications of Increased Vessel Size with Restricted Drafts

Generally speaking, very substantial scale economies in ocean transport can be realized only by increasing all vessel dimensions, including draft. However, within certain practical limits, moderately significant reductions in unit shipping costs can be achieved

135.

at a given draft by increasing the vessel's other dimensions (beam and length); that is, by altering its proportions. Since draft is usually the least costly dimension to increase, this approach to realization of scale economy normally incurs a penalty in relation to a vessel of equal capacity designed without regard to draft restriction. The quantitative value of the penalty, however, is very sensitive to specific design considerations.

Estimated unit costs for all the restricted-draft vessels1/ are included with the others in tables 57 and 58. However, to facilitate appraisal, table 63 arranges the data for relevant vessels by comparable size groups. Unfortunately, no vessels of precisely the same d.w.t. and different draft requirements were designed and costed below 120,000 d.w.t. Thus, to permit reasonable comparison, some interpolation was necessary for smaller ships. The data suggest that, at least for vessels up to 200,000 to 250,000 d.w.t., relatively modest draft restriction of about 8 to 12 percent for a given vessel size results in very small cost penalties. For the particular vessels costed up to 250,000 d.w.t., they range from virtually zero to 4 percent in total unit costs per cargo-ton.

It should be emphasized, however, that the precise penalties are subject to gross estimating error which probably exceeds the minor differences shown. Nevertheless, their general implication is clear. Furthermore, a firm associated with naval architects at the Webb Institute has been making more detailed studies of a similar nature. They reportedly indicate that incremental costs of increasing vessel capacity at a given draft constraint are very small. Unfortunately, these studies are proprietary.

A comparison of each pair of vessels designed for 300,000, 400,000 and 500,000 d.w.t., respectively,

1/ Sometimes casually referred to as "broad beam" ships. Since both length and beam are usually modified, the more general concept of "restricted draft" vessel is preferred.

Table 63. Estimated Total Unit Costs Per Long Ton of Cargo for Restricted-Draft vs. Standard Design Foreign-Flag Tankers of Selected Sizes

(In 1970 dollars)

Draft and d.w.t.		Cost per lon	g ton by 1	-way journey
		2,000 miles	5,000 miles	10,000 miles
35'	30,000	1.808	4.040	7.890
35'	40,000	1.518	3.385	6.610
35'	50,000	1.356	3.020	5.910
35'	45,000 <u>a</u> /	1.437	3.203	6.260
40'	45,000	1.416	3.165	6.190
40'	60,000	1.206	2.680	5.250
40'	75,000	1.096	2.435	4.750
40'	65,000 <u>a</u> /	1.169	2.598	5.083
45'	65,000	1.156	2.595	5.060
45'	80,000	1.044	2.320	4.520
45'	95,000	0.980	2.180	4.230
45'	90,000 <u>a</u> /	1.000	2.230	4.330
50'	90,000	0.970	2.160	4.200
50'	120,000	0.870	1.935	3.760
55'	120,000	0.842		3.620
50'	140,000	0.840	1.875	3.620
55'		0.818	1.830	3.540
55'	180,000	0.796	1.780	3.460
55'	210,000	0.784	1.750	3.410
55'	200,000 <u>a</u> /	0.788	1.760	3.427
60'	200,000	0.760	1.690	3.290
58½'	250,000	0.760	1.685	3.270
65'	250,000	0.760	1.680	3.270
62'	300,000	0.746	1.655	3.200
71'		0.692	1.530	2.950
68½' 83'	400,000	0.716 0.654	1.575	3,050
75'	500,000	0.718	1.580	3.050
95'	500,000	0.644		2.740

a/ Interpolated. Source: Table 60.

138.

suggests that cost penalties of draft restriction may be somewhat greater for very large vessels. In the three cases represented, they range from about 8 to 11 percent. However, the degree of draft restriction, from 13 to 21 percent, is also substantially greater than in the case of the smaller vessels. Furthermore, because of the very limited data available for such large vessels, the estimates are subject to greater error than for other vessels.

Further light on this subject may be cast by recent studies of a restricted-draft design for a 425,000d.w.t. tanker by a Dutch group.1/ Preliminary reports of study findings, which were presented at a Rotterdam conference in mid-September 1971, suggested negligible differences in total unit costs between the specially designed tanker drawing only 72 feet and a tanker of the same capacity of "normal" design drawing 88 feet.2/ However, as of this writing, the relevant studies were still awaiting publication. In any event, much further investigation, well beyond the scope of this study and probably beyond that of the Dutch studies, is likely to be required to resolve numerous uncertainties.

Penalties may be incurred in the design of restricted-draft vessels relative to others of equal size whose draft is unconstrained. However, restricteddraft vessels may nevertheless provide significant cost gains over smaller ships of equal draft. It is, of course, precisely under the common conditions of constraint in available water depth that modified vessel design offers potential payoffs. Table 63 can now be appraised from a new vantage point. Instead of comparing the costs of vessels of equal capacities at different drafts, one can compare the costs of ships of different sizes at a given draft. As indicated in the table, restricted-draft designs (those of larger

1/ VeroIme United Shipyards, Netherlands Ship Model Basin of Wageningen, Municipality of Rotterdam, and the Dutch Ministry of Transport.

2/ As reported in the Journal of Commerce, October 4, 1971.

capacities at a given draft) have lower total unit costs. This fact is in keeping with the general pattern of scale economies in ocean shipping discussed above. For example, total unit costs of a 50,000-d.w.t. vessel drawing 35 feet of water are approximately 25 percent lower than those of a 30,000-d.w.t. vessel of equal draft. The difference in total unit costs between a 75,000-d.w.t. and a 45,000-d.w.t. ship, each drawing 40 feet, is nearly as great. At 55 feet draft, the advantage in total unit costs of a 210,000-d.w.t. over a 140,000-d.w.t. vessel is less than 4 percent. Equivalent appraisal of larger vessels is difficult because none of the design drafts are directly comparable. However, a close examination of the table clearly suggests that differences would be relatively minor or inconsequential.

Estimated 1970 Unit Costs of U.S.-Flag Tankers

For study purposes, cost characteristics of ocean vessels operated under foreign flags are of primary interest. They have recently dominated carriage of bulk commodities in U.S. foreign trade, a situation which is expected to continue (see chapter I). The Merchant Marine Act of 1970 has provided a new subsidy program to builders and operators of U.S.-flag tankers, bulk carriers, and other types of ships which serve U.S. foreign commerce. In principle, the amount of subsidy for a particular vessel is designed to cover most of the difference between U.S.- and foreign-flag costs. Although effective interest by industry groups in the new program evolved slowly, by mid-1972, construction subsidies had been approved for 16 oil tankers and two O/B/O's, ranging in size from 35,000 d.w.t. to 265,000 d.w.t., as well as for 25 vessels of other kinds.

The degree to which this new subsidy program will increase the U.S.-flag carrier share of the large and growing market in seaborne trade of oil and dry bulk commodities is highly uncertain. The outcome is dependent mostly upon the number, type, and size characteristics of vessels actually put into service, their effective ability to compete in various cargo markets, and the rate of growth in those various markets. Nonetheless,

one relevant ocean-shipping market is certain to be controlled by U.S.-flag ships: the Alaskan oil trade with the continental United States, when and if the proposed pipeline to Valdez is finally approved and constructed. Vessels operating exclusively in this domestic market would, of course, not qualify for subsidy under the Act. We have accordingly estimated total unit costs of oil movements in U.S.-flag tankers the same way as for foreign-flag vessels. All concepts and assumptions are identical. Differences arise only as to values of individual cost components.

ala Leof

100

Most of the corresponding foreign-flag values were arrived at by the application of various adjustment factors to U.S. costs, which have been explained earlier. For convenience, however, they are repeated in table 64. There are three exceptions: manpower, overhead and fuel. Values shown for them reflect discussion with several U.S.-flag shipping concerns, among which conditions vary somewhat. However, they are believed to be reasonably representative of prevailing circumstances in 1970.

The prior U.S. values were then substituted for corresponding foreign-flag cost components to derive estimates of total annual costs for the representative small, medium, and large tankers operating on a regular 5000-mile journey with return in ballast. Results are shown in table 65, which is directly comparable to foreign-flag data contained in table 59.

Since U.S.-flag vessels are projected in this study only to carry oil from Valdez to major west coast ports, the distances of haul involved are relatively short. For each of the three representative tankers and for estimated distances on the three pertinent links, total annual costs in both U.S. and foreign vessels were estimated, as shown in table 66. Since vessel design and operating conditions are identical, relationships of total unit costs per cargo-ton would be the same.

As indicated in table 66, estimated unit costs are substantially higher for U.S.-flag than for

Table 64. Assumed Values of Individual Cost Components in Estimating Total Unit Shipping Costs for U.S.-Flag Tankers

(In 1970 dollars)

Cost component	Values
Total investment	x
Annual capital charge	0.11746X
Annual operating costs	
Manpower	19,500/man
Subsistence	986/man
Stores & supplies	$1.84 \left[4,500 + \frac{\text{SHP}}{3} + 10,000\right]$
	+ 0.21 (d.w.t. + 9,500)
Maintenance & repair	90,400 + 0.69(CN - 1,500)
	+ 0.49(CN)
H&M insurance	$(0.1 + \frac{0.00006}{1,000})$
P&I insurance	750M + 0.61CN
Annual overhead &	
general	50,000
Fuel (Bunker C)	(2.50/bb1.)Y

Definitions:

SHP Normal shaft horsepower CN Cubic number = (length x beam x draft) ÷ 100 M Number of crew d.w.t. Total deadweight tons X Independent estimate for each vessel Y Independent estimate of propulsion requirements for each vessel at 16 knot speed and corresponding fuel consumption rate

Source: Hydronautics, Inc., and RRNA.

HC.

Table 65. Estimated Annual Ocean Shipping Costs for Three Sizes of U.S.-Flag Tankers, by Cost Category (In thousands of 1970 dollars)

DATE OF THE TAX

Cost component	Vessel d.w.t.			
-	40,000 <u>a</u> /	120,000 <u>a</u> /	300,000 <u>a</u> ,	
Investment	1,344.4	2,338.4	4,380.7	
Operating:				
Crew Stores and supplies Subsistence Maintenance, repair H&M insurance P&I insurance Subtotal Overhead.	507.0 54.4 25.6 125.4 142.4 37.6 892.4 50.0	507.0 94.0 25.6 186.3 342.0 68.3 1,223.2 50.0	663.0 181.8 33.6 318.4 1,044.0 141.0 2,381.8 50.0	
Total annual cost, ex- cluding fuel	2,286.8	3,611.6	6,812.5	
Annual fuel cost, 5,000 mile, 1-way trips	351.4	729.8	1,583.1	
Total annual cost	2,638.2	4,341.4	8,395.6	

a/ For design characteristics, see table 59.

Source: RRNA estimates.

		Vessel d.w.t.			
	40,000 ^b	120,000 ^b /	300,000 <u>b</u> /		
5,000-mile trip ^C					
Total annual cost					
(\$1,000): U.S. flag	2,638.2	4,341.4	8,395.6		
Foreign flag	1,539.4	2,676.0	5,324.6		
Ratio, U.S. to foreign (percent)	171.4	162.2	157.7		
2,300-mile trip ^{C/}					
Total annual cost					
(\$1,000): U.S. flag	2,612.2	4,259.7	8,150.6		
Foreign flag Ratio, U.S. to foreign	1,513.4	2,594.3	5,079.6		
(percent)	172.6	164.2	160.5		
2,000-mile trip ^{C/}		,			
Total annual cost					
(\$1,000): U.S. Flag	2,602.1	4,239.5	8,108.9		
Foreign flag	1,503.3	2,574.1	5,037.9		
Ratio, U.S. to foreign (percent)	173.1	164.7	161.0		
1,200-mile trip ^{C/}					
Total annual cost					
(\$1,000):	2,558.6	4,152.9	7,930.1		
U.S. flag Foreign flag	1,459.8	2,487.5	4,859.1		
Ratio, U.S. to foreign (percent)	175.3	167.0	163.2		

Table 66. Total Annual Costs, $\frac{a}{}$ and Ratio of U.S.-Flag to Foreign-Flag Ocean Shipping Costs For Three Sizes of Tankers, by Selected Distances

<u>a/ In 1970 dollars.</u> <u>b/</u> For design characteristics, see table 59. <u>c/</u> One-way, with return in ballast.

Source: RRNA and Hydronautics, Inc., estimates.

foreign-flag vessels. However, cost differences vary by ship size and trip distance. The increment in U.S. costs is greater for small ships on short hauls than for large ships on long hauls. This pattern largely reflects the significance of fuel consumption, the relative importance of which in total costs increases with ship size and distance at the constant 16-knot speed assumed for all vessels. Since fuel cost is assumed to be the same for tankers of any flag, it has the effect of reducing differences in total unit costs among the other cost components.

Unit Costs of Dry Bulk and Combined Carriers

The preceding discussion and analysis pertains to cost characteristics of vessels specifically designed for the carriage of crude oil or petroleum products. However, this study is also concerned with ocean transport of dry bulk commodities. It is therefore necessary to consider the way in which costs of the specialized vessels which carry dry bulk commodities may differ. Furthermore, with the recent emergence and growing importance of combined carriers, the nature of their costs also warrants treatment.

It would have been ideally desirable to develop cost estimates for these other vessel types in the same detail as was done for tankers. That approach was not used here because the substantial additional effort required would have had only marginal value. The cost differences involved are known to be modest. This reflects the fact that basic design and operating features of vessels engaged in either wet or dry bulk trades are generally similar, differing mostly in internal arrangements and design of cargo holds.

As far as ocean transport of ore, grain, coal and other dry bulk cargoes are concerned, several major chartering companies have advised us that real cost differences involved between tankers and dry bulk carriers of comparable size, speed and operating circumstances are negligible. This is partly confirmed by several 146.

published reports, which indicate that first costs of bulk carriers are some 3 to 4 percent higher (table 67).

Properly comparable published data on other specific cost elements of dry bulk vessels in relation to tankers are more difficult to find. However, crew size, average wages, subsistence, and general overhead reportedly would be comparable. On the other hand, maintenance and repair costs would perhaps slightly exceed those incurred in the operation of tankers of equal capacity because of the slightly greater lightship weight.

Combined carriers are relatively more costly than dry bulk carriers of equal size to build and to operate, reflecting their inherently more elaborate design. As shown in table 67, their investment costs are reportedly from 8 to 16 percent higher than those of tankers of equal d.w.t., depending largely upon the commodity mix for which they are designed. Ore/oil carriers are at the low end and ore/bulk/oil carriers are at the high end of that percentage range.

Detailed data on other cost elements of combined carriers permitting direct comparison with tankers or with dry bulk carriers are unavailable. Overall, they would certainly be higher than for tankers of equal capacity, for the same reasons as they are for dry bulk ships. One recent study examined costs of several 60,000-d.w.t. ships having similar dimensional characteristics but designed for different combinations of cargc. It suggests that the increment in capital costs for combined carriers would be significantly greater than the increment in all other costs (table 68).

Although total vessel costs of combined carriers per ton of capacity exceed those for tankers and dry bulk carriers, their costs per ton of cargo carried are likely to be somewhat lower. This is because they are built and operated entirely on the expectation of reducing voyage time in ballast. Thus, combined carriers should normally improve upon the 50-percent average load factor assumed in our estimates of tanker and dry

Type of vessel	Index number	Source
Conventional tanker	100	· · · ·
Dry bulk carrier	103-4 104	A B
Single stowage factor Multiple stowage factor		C,D C,D
Combined carrier	· .	
Ore/oil (0/0)	109 108 1.05x	E A D
Ore/coal/oil (SOCO)		Е
Bulk ^ª /oil (B/O)	108X	C,D
Ore/bulk/oil (O/B/O)	116 115	E A

Table 67. Investment Cost Relationships of Tankers, Dry Bulk Vessels, and Combined Carriers of Equal Deadweight

a/ Low density.

Sources:

A.	"The Com	oination	Bulk Car	rier,"	Survey	or
	(quarter)	ly public	ation of	the An	erican	
	Bureau of	f Shippin	g), Augu	st 1970	, p. 22	•
в.	Trevor D.	Heaver,	"The Co	st of L	arge Ve	ssels

- National Ports Council Research and Technical Bulletin No. 70 (London, August 1970), p. 348 (Table 1-100,000 d.w.t. vessels).
- (Table 1-100,000 d.w.t. vessels).
 C. Booz-Allen Applied Research, Inc., <u>Trading</u> <u>Opportunities for U.S. Flag Dry Bulk Carriers</u> (Federal Clearinghouse, PB 185761, August 1969), p. 13.
- D. Booz-Allen Applied Research, Inc., Bulk Carrier Program Technical Requirements (Federal Clearinghouse, PB 185763, August 1969), p. 32.
- E. John I. Jacobs & Company Ltd., World Tanker <u>Fleet Review, 31 December 1970</u> (London, 1971), p. 7.

147. A CALL AND A CALL AND

Table 68. Relationships of Capital and Total Costs Per Cargo-Ton for Selected Vessel Types of 60,000 Deadweight Tons

Vessel	First cost	Total unit cost
Single stowage factor dry bulker	100	100
Combination ore/bulk (multiple stowage factor dry bulker)	103	102
Ore/oil carrier	1.5	103
Bulk/oil carrier (low density)	108	105
Ore/bulk/oil	Not repor	ted

(Index: single stowage factor dry bulker = 100)

Source:

Booz-Allen Applied Research, <u>Bulk Carrier</u> <u>Program Technical Requirements</u> (Federal <u>Clearinghouse PB 185763</u>, August 1969), p. 32; and table 67.

148.

bulk carrier costs. If total annual costs for a given combined carrier were 10 percent higher than those of a tanker of equal size, its average total costs per ton of cargo actually carried would be approximately the same with a load factor of 55 percent. In practice, many combined carriers would be able to exceed that rate, thereby reducing transport costs per ton. For example, if the same vessel transported cargo two-thirds of its time at sea, average unit costs per ton of cargo would be 17.5 percent lower than they would be for a tanker of equal size having only a 50-percent load factor (see table 69).

Sensitivity Analysis

All unit cost estimates and comparisons presented earlier necessarily reflect a single set of assumptions about numerous variables. Since other assumptions might often be warranted, it would be instructive to determine their implications for our costs as initially derived. Because of the great number of factors generally affecting ocean shipping costs, as well as the highly varied cost conditions which at any given time apply to shipping of bulk commodities throughout the world, only a few alternatives can be considered here. However, an effort has been made to include the more obvious and possibly important ones.

Since a major purpose of this chapter is to examine the question of scale economies in ocean shipping, the sensitivity analysis is applied basically to each of the three representative small, medium and large vessels, with some additional treatment of a 500,000d.w.t. ship. To keep the presentation within manageable limits, the sensitivity of total unit costs to each alternative assumption is tested only for 5,000-mile (one-way) movements with return in ballast. Generally, the indicated rate of change in total unit costs for a given vessel would not vary significantly on journeys of different lengths, except for very short ones. However, with the same exception, absolute monetary values would change greatly, more or less in proportion to distance in most cases. 150.

Table 69. Comparative Unit Costs^a/Per Long Ton of Cargo, in a Foreign-Flag Tanker, and Combined Carrier of Equal Size^D/

120,000 d.w.t., 50' draft v		
Item	Tanker	Combined carrier
Total annual cost (\$1,000)	2,676 ^C /	2,944 ^d /
50% load factor		
Total annual cargo (1,000 long tons)	1,383 ^C /	
Average cost per long ton (\$)	1.935	
55% load factor		<i>μ</i>
Total annual cargo (1,000 long tons)		1,521
Average cost per long ton (\$)		1.935
66 2/3% load factor		D.
Total annual cargo (1,000 long tons)		1,844
Average cost per long ton:		
In dollars		1.597
As percent of average cost per long ton at 55% load factor	 	82.5
a/ In 1970 dollars. b/ Data based on 5,000- 39.5 hours average time		

b/ Data based on 5,000-mile (cargo or ballast) legs, 39.5 hours average time in each port, 50 percent load factor. c/ From table 68.

c/ From table 68. d/ 10 percent higher than tanker, by rough interpolation from tables 67 and 68.

Source: RRNA estimates.

In table 70, 14 hypothesized changes in the value of cost components or in vessel operating conditions are briefly identified, and the indicated percentage effects on total unit costs are shown separately for each selected vessel. Table 71 expresses those effects in monetary terms.

The nature of most changes is, it is hoped, selfexplanatory. A few comments may help to clarify one of them. Under annual capital charges, the fourth hypothesis is intended to reflect either a higher (or lower) than 10-percent net private return on total investment, some income tax payment, or any combination of the two. Because debt usually constitutes a substantial proportion, and equity a small proportion, of investment costs, and because liberal depreciation methods and investment credits are often available, the effect of a 50-percent income tax rate on annual average capital charges would be rather modest.

Generally, total unit costs of the representative vessels are quantitatively most sensitive to changes in investment costs or in capital charges, in both percentage and in absolute terms. This important result reflects the fact that capital costs and related charges constitute the largest single element of total unit costs for all ships.

Of equal or greater significance are the differential effects among the small, medium, and large vessels. For any given hypothesis, the percentage rate of change in total unit cost is sometimes approximately the same for all three ships, while in other cases it varies somewhat by vessel size. However, with only one exception, the smaller the vessel is, the greater is the monetary effect (usually upward) on costs per ton. This is attributable to scale economies, which apply not only to total unit costs but also to most of their individual components. The one exception to the preceding pattern is H&M insurance, reflecting a peculiar structural quality noted earlier. The cost implications of a possible change in that structure for large ships is noted below.

の、中国では、市政の時代のでは、

Table 70. Sensitivity of Total Unit Costs of Three Sizes of Foreign-Flag Tankers to Hypothesized Changes in Cost Components^a/

(In percent)

Assumed nature of change	Vessel d.w.t.			
mesunet nature of change	40,000	120,000	300,000	
Total investment: 25% higher	12.0	12.0	11.3	
Annual capital charges: 15-year useful life 25-year useful life 7% return on investment. 15% return on investment, including taxes	5.7 -3.0 -12.2 20.3	5.7 -3.0 -12.3 20.5	5.4 -2.8 -11.6 19.3	
Crew: 50% increase/man	5.5	3.2	2.1	
Maintenance and repair: 50% increase	2.3	2.0	1.7	
P&I insurance: 50% lower	-1.2	-1.3	-1.3	
H&M insurance: 50% higher	2.6	3.5	5.4	
Overhead and miscellaneous: 100% increase	1.6	0.9	0.5	
Fuel: 25% higher or lower	<u>+</u> 5.7	<u>+</u> 6.8	<u>+</u> 7.4	
Average time in port: Each additional day in port Average of 5 days/port	2.7 17.5	2.5 16.5	2.4 16.1	
Annual days in service: Reduce from 345 to 335	2.9	2.9	2.9	
a/ For 5,000-mile journeys o	nly.			

بديرون بودا وبوسطا

11

Source: RRNA estimates.

152.

Table 71. Sensitivity of Total Unit Costs of Three Foreign-Flag Tankers to Hypothesized Changes in Cost Components

(In 1970 dollars)

Assumed nature of themes	Vessel d.w.t.			
Assumed nature of change	40,000	120,000	300,000	
Total investment: 25% higher or lower	±0.41	±0.23	±0.17	
Annual capital charges: 15-year useful life 25-year useful life 7% return on investment 15% return on investment, including taxes	0.19 -0.10 -0.41 0.69	0.11 -0.06 -0.24 0.40	0.08 -0.04 -0.18 0.30	
Crew: 50% increase/man	0.19	0.06	0.03	
Maintenance and repair: 50% increase	0.08	0.04	0.03	
P&I insurance: 50% lower	-0.04	-0.03	-0.02	
H&M insurance: 50% higher	0.09	0.07	0.08	
Overhead and miscellaneous: 100% increase	0.05	0.02	0.01	
Fuel: 25% higher or lower	±0.19	±0.13	±0.11	
Port time: <u>a</u> / Each additional day Average 5 days/port	0.09 0.59	0.05 0.32	0.04	
Days in service: ^{a/ Reduce by 10}	0.10	0.06	0.05	
Total unit cost/long ton	3.39	1.94	1.53	

a/ Relatively insensitive to distance. Source: Table 70. 153.

The effect of port time on costs of ocean shipping is worthy of mention. As indicated in table 71, an increase to 5 days per terminal from the 39 1/2 hours originally assumed has a very significant effect on total unit costs, especially for small ships. In practice, this factor is likely to be less significant for oil than for dry bulk commodities at unloading terminals, many of whose handling facilities permit only slow rates of discharge.

Beyond their sensitivity to assumed changes in the value of given cost and time components, total unit costs of ocean shipping may be importantly affected by any number of other factors. For example, typical complements of tankers may exhibit a different pattern. As indicated in table 72, an assumption of much smaller crews for supertankers than was made initially would have very small effects on these tankers' total unit The impact would be even smaller if side effects costs. on other cost components were accounted for. The effect of a change in crew size on a 40,000-d.w.t. vessel is relatively much greater. It is partly for that reason that our basic unit cost estimates assumed greater emphasis on future crew reductions for small- and medium-sized vessels than for the largest ones.

One of the most controversial concerns about ocean transport of bulk commodities is their general safety and their implications for environmental damage. This concern is especially pronounced for oil movements in very large tankers. From the economic point of view, any human or physical damages or losses, including environmental ones, are costs. They may be private or social costs, but if they are attributable to a ship, they should be identified, measured and charged against its overall cost of operation.

語のない

In principle, these costs are reflected in insurance charges: H&M insurance covers damage to the insured vessel, and P&I insurance covers damage to other vessels or property, including oil pollution. However, to a large degree, the private sector (insurance) has until recently borne only an uncertain, but probably small, portion of the social costs above and beyond the more readily identifiable private ones.

Table 72. Estimated Order-of-Magnitude Effects of Selected Hypotheses on Total Unit Costs of Four Sizes of Foreign-Flag Tankers

(In 1970 dollars)

Item	Vessel d.w.t.			
	40,000	120,000	300,000	500,000
Ecology/safety features Wing tank size limit of 15,000- 25,000 m.3a Double bottomb/ Clean ballast	0.17 <u>°</u> / >.0515	0.09 <u>C</u> / >.051	0.01-0.03 0.07 <u>6</u> / 5.0515	0.03-0.1 0.069 <.051
<u>Crew and subsis-</u> <u>tence</u> Uniform 26-man crew Uniform 34-man			-0.02	-0.03
crew	0.13	0.04		-0.02
H&M insurance Supercarrier rate reduced 33 pct Twin screwse/			-0.06 0.18	-0.07 0.11
Initial total cost/ long ton	3.39	1.94	1.53	1.42

a/ Very crudely estimated and interpolated from data in the first source.

b/ Estimated from data in the second source, by interpolation for 500,000-d.w.t. vessel.

c/ Effect on total cost from additional capital cost only. Uncertain values for other cost increments must be added.

d/ Estimated from the first source on basis of 250,000d.w.t. vessel; range reflects "in ballast" displacement of 30 to 50 percent.

e/ Estimated from the third source.

continued--

「「「「「「」」」」」

156.

Table 72. Estimated Order-of-Magnitude Effects of Selected Hypotheses on Total Unit Costs of Four Sizes of Foreign-Flag Tankers continued--

Source:

1. E. Scott Dillon, Ship Design Aspects of Oil Pollution Abatement (MARAD, March 1971), p. 42 (figure 15) and p. 24.

2. Joseph D. Porricelli, Virgil F. Keith, and Richard L. Storch, <u>Tankers and the</u> <u>Ecology</u> (paper presented at the November 1971 Annual Meeting of the Society of Naval Architects and Engineers), p. 26 (table 5). 3. J. Ch. de Does and H.W. Rijksen (Verolme United Shipyards), <u>Design and Construction</u> of the R.D. II Design (unpublished paper presented in September 1971 at a Rotterdam symposium on the development of a 425,000d.w.t. tanker with "Restricted Draught"), figure 1.

4. Hydronautics and RRNA cost data in this study.

Unfortunately, total social costs have thus far largely been unmeasurable. Information is also lacking to fairly allocate them by type and Lize of vessel in relation to the various sets of risks involved. That information gap applies almost equally to the allocation of private costs. Until these issues can be factually illuminated and treated, growing concern by insurers as to private risks, and by environmentalists as to oil pollution, may bring tighter standards in the design of certain vessels, especially tankers.

Numerous proposals have been put forward to deal with the overall problem. Among the more dramatic and relatively costly concepts are:

1. Fully clean ballast systems, to completely eliminate overboard discharge of oily water

2. Double bottoms or hulls, to minimize vessel damage and oil spills from groundings, as well as to provide much of the space for clean ballast operation

3. Further size limitations on tanks used to carry oil, to reduce the volume of oil spill in accidents.

For reasons indicated above, there is presently no way of knowing whether the prospective benefits of any of these proposals are commensurate with their costs or whether various alternatives would be relatively more attractive. Nor is it possible to estimate when or if any new standards on vessel design will be implemented. However, it is possible to indicate the quantitative implications of the specified concepts for ocean shipping costs if and when they are adopted, as has been done in table 72. Of the three concepts considered, tank-size limits would penalize costs only of very large vessels, although by relatively modest amounts. On the other hand, double bottoms or clean ballast systems would presumably apply to all tankers regardless of size. Again, penalties seem rather modest. However, their incidence in costs per ton of

158.

cargo is greater for small vessels than for larger ones.

If any of the above features were incorporated in the design of new VLCC's, risks associated with their operation would presumably be reduced. This might result in a reduction of the premium insurance charges they must now bear. Although a hypothesized reduction of one-third in initially estimated H&M insurance charges would nave only a modest downward effect on VLCC total unit costs (table 72), it would also mitigate cost increases resulting from the newly imposed vessel design features.

Future Ocean Shipping Costs

All previously estimated unit shipping costs reflect 1970 dollar values for each of the various cost elements. With a few minor exceptions, they also reflect 1970 technological, engineering, design, construction, and operating standards or practice. The estimates allow for the influence of the new IMCO regulations limiting tank size on large tankships, for modest further reductions in average crew size over recently prevailing levels, and for some state-of-the-art improvements in design of restricted-draft vessels. Otherwise, however, they are essentially static.

For purposes of appraising long-range investments in facilities to accommodate deep-draft vessels, it is necessary to consider how total unit costs of ocean shipping for any given ship design are likely to behave in the future. Certainly they will rise generally in response to price inflation, but this study is not concerned with that question. For purposes of economic, including benefit-cost, analysis, the critical issue is possible long-run changes in constant 1970 dollars, or real terms.

Ideally that approach calls for a broad assessment of the prospects for dynamic changes in ocean shipping technology and practices, in the various determinants of each cost factor, and their implications for the future level of total unit costs in vessels of different sizes and design characteristics. However, the difficulties of making such an assessment are formidable.

Consider the following examples: By far the two most significant components of total unit shipping costs are first costs and fuel. For the smaller vessels, crew costs are moderately important. What will the real costs of these items be in the future? On the basis of recent trends and prospective market conditions, it seems reasonable to expect higher real costs: (1) per worker in the world's major shipyards, including those of Japan; (2) per individual crew member on vessels operating under major flags in world trade; and (3) per barrel of fuel. But these expectations alone may not be sufficient to indicate long-run increases in real shipping costs, for there may be significant offsets.

The dynamics of shipbuilding are highly illustrative. Real costs of vessel construction are a function of three major factors, apart from shipyard labor: (1) the costs of steel, (2) output, and (3) machinery and shipyard efficiency, including the number of orders for a particular design. The long-range outlook for steel, output, and machinery prices in the major shipbuilding countries is unclear. However, on the basis of historic trends, they could not be expected to increase more rapidly than, if as much as, the general price level.

Furthermore, there is undoubtedly room for still further automation and other improvements in the shipbuilding process which would increase labor productivity. Indeed, particularly in Japan, increased shipyard automation has been induced by a shortage of available labor and its rapidly rising prices. Quantities of steel needed to build a given size and type of ship have tended historically to decline substantially in response to improvements in metallurgy, vessel design, and production methods.

With prospective growth in the market and in the size of individual company fleets, multiple orders for

160.

standard designs may gain an increasing share of production volume and stimulate mass production methods of shipbuilding. In combination, these factors could more than offset the influence of rapidly rising shipyard labor costs.

Even if these factors did not offset increasing labor costs in today's most important shipbuilding countries, new yards in low labor cost countries could bridge the gap. Just as Japan, in the last 2 decades, has replaced Britain as the world's dominant (and presumably at one time its most efficient) shipbuilder, so too the newer yards of such countries as Singapore, Korea. Taiwan, and Greece could become cost competitive and ϵ tain leadership positions in the industry. Under these dynamically changing circumstances, it is most diff cult to predict the direction that world shipbuilding costs will take in the long run, let alone their magnitude.

Similar dynamics will influence the net effects of increasing unit crew costs. Historic reductions in the complements of tankers and bulk carriers constitute trends rather than ultimate developments. Rising wages could provide still further incentives for crew reductions beyond the levels assumed in our cost estimates, with crews perhaps approaching zero. The technology for completely unmanned ships at sea is already available and might one day be politically as well as commercially feasible. Although crew reductions imply at least partially offsetting investments in automated equipment, they also permit some reduction in ship cost.

The implications of higher fuel prices are equally uncertain. The cost of fuel for a given voyage is a function of engine efficiency, hydrodynamic factors, and vessel operating speed, in addition to the unit cost of fuel.

Fuel consumption can be lessened through reductions in hydrodynamic drag. Although the rate of change is uncertain, continual refinements in vessel shape and improvements in laminar flow can be expected. Improvements in propulsion efficiency could also reduce unit fuel consumption. Some indication of the rate of technological development in this area may be suggested by recent trends. As late as 1960, marine steam turbines consumed 0.54 pounds of fuel per shaft horsepower-hour. Largely through increases in steam pressures and operating temperatures, fuel consumption has recently been reduced to 0.39 pounds per shaft horsepower-hour. Similar, if less dramatic, development has characterized diesel engine technology.

Although still relatively costly for use in tankers and bulk carriers, gas turbine technology may eventually become attractive. The technology has historically been developed for and applied to aircraft. More recently it has been adapted for marine applications. Gas turbine efficiency is a direct function of maximum gas temperature, which has been continually increasing with advances in material technology and with such innovations as the cooled turbine blade.

Other technological developments on the horizon also offer possibilities for lessened fuel consumption. They include the use of a heat exchanger between exhaust gases and compressor air, and the use of exhaust heat to raise steam or refrigerant vapor, which in turn powers a vapor turbine.

Beyond changes in technology, future unit costs of transport in tankers and bulk carriers will be affected by vessel utilization. The latter is influenced by numerous factors, of which time in ballast is perhaps most important. The recent emergence of combined carriers and their prospective further development suggests that, at least on the supply side, opportunities for increasing payload time at sea will generally improve. But the extent to which world demand will permit realization of those opportunities is uncertain.

Many of the world's bulk commodity flows are unbalanced by link, offering no useful opportunities for backhauls or efficient multi-leg vessel routings. Changes in the complex world trade structure are likely

162.

over time, but their implications for improved vessel utilization are highly uncertain.

In light of all the preceding considerations, we have concluded that no sound judgment as to the longrun real unit costs of ocean shippingl/ can now be made. Perhaps this subject would be amenable to rigorously detailed analysis, despite the inherent difficulties. In the absence of more understanding, we have reluctantly assumed that future real unit costs of ocean shipping2/ by tankers and bulk carriers will be more or less the same as in 1970.

ALL STREET, ST

1/ For any given size and type of vessel. Increasing vessel size, and related terminal improvements, clearly have the effect of reducing real unit shipping costs. 2/ Ibid.

IV. WATER TRANSSHIPMENT

Introduction

The purpose of this chapter is to provide estimates of unit costs for transshipping bulk cargoes by water in the United States, where such estimates are relevant to the appraisal of investment alternatives under investigation. There are two basically different circumstances under which such transshipment could usefully be employed:

1. Ship-to-ship transfer (offloading, lightering) of imported crude oil from large tankers to smaller vessels outside existing harbors, in the absence of any new deepwater port facility

2. Carriage of crude oil or various dry bulk commodities by small vessel between a deepwater port and existing port facilities. Oil can also be transshipped by pipeline, which is treated in Annex C.

Ship-to-ship product transfer at sea is considered in this report only for crude oil. Although theoretically possible for dry bulk commodities, it is typically hazardous, awkward, and relatively inefficient. For these very reasons, it is not a common practice and is usually done under conditions of grossly inadequate shore facilities and/or extremely shallow water. 1/

1/ Gerald F. Manners, The Changing World Market for Tron Ore, 1950-1980 (Baltimore: Johns Hopkins Press, 1971), p. 176.

163.

Examples of its use include coal movements from Hampton Roads to Argentina, where the relevant port permits only 25-foot drafts; 1/ grain shipments to some Indian ports; and iron ore exports from Malaya and the Philippines.2/For reasons which are discussed in the benefit-cost analysis (Annex F), formal treatment of lightering in

Vessel transshipments are essential components in most hypothesized deepwater ports for dry bulk commodities, as well as in some concepts of possible new crude oil terminals. As is explained subsequently, these movements could probably best be handled by specially designed tug-barges operating in a virtually continuous shuttle between ports rather than by conventional tankers or bulk carriers.

this report is limited to three major importing areas: New York, the Delaware Bay, and San Francisco Bay.

As a preliminary step toward development of our unit cost estimates, this chapter first considers recent oil lightering operations in the major port areas and develops the conceptual approach that is later applied to future offloading of crude oil. It then outlines a system of shuttle movements to and from the deepwater port, followed by rough estimates of the unit costs involved. Estimates of lightering costs are presented last because they are related to, and have been built upon, the estimates for tug-barge shuttle operation.

Lightering of Crude Oil

Draft constraints at oil refineries receiving crude oil by water can often be partially overcome without any capital investment. The only requirement is

1/ Robert R. Nathan Associates, et al., <u>Pre-Investment</u> and <u>Pre-Feasibility Study of a Deep Water Port in</u> <u>Argentina</u>, December 1971 (in Spanish).
2/ In these cases, the ocean vessel is loaded partly at the terminal and partly at sea from the lighter ship, which is used to fill rather than to lighten the ocean vessel. that somewhat deeper water, preferably sheltered from the elements, be located nearby. Under these conditions, a much larger ocean vessel than could otherwise be used could carry oil to the deepwater area and transfer it to a smaller vessel or vessels awaiting its arrival.

This practice is now commonly employed for both crude oil and products on a large scale in the New York area and in Delaware Bay, on a relatively small scale in San Francisco Bay, and in numerous other U.S. port areas. Specific anchorage areas in protected waters are usually designated for the offloading operation. In New York, the designated anchorages are just inside the Verrazano-Narrows Bridge, on both the Staten Island and Brooklyn sides. In Delaware Bay, they are near Cape Henlopen or Big Stone Beach, and in San Francisco Bay, they are under the Bay Bridge. However, to an uncertain degree, lightering is sometimes performed in other places as well.

In New York and in Delaware Bay, oceangoing tankers offload their oil cargo primarily into barges which are relatively small. In New York, these barges range in capacity from under 50,000 to as large as 100,000 barrels (approximately 7,000 to 14,000 tons), while the capacity of Delaware barges ranges from 16,000 to 90,000 barrels (around 2,000 to 12,000 tons). In San Francisco Bay, lightering is sometimes performed by old T-2 tankers (about 16,000 tons).

Size characteristics of ocean vessels which offload vary considerably. Trade sources indicate that they sometimes approach 100,000 d.w.t. in New York and in the Delaware Bay area, and often range from 70,000 to 80,000 d.w.t. or more in the San Francisco Bay area. These vessels frequently offload only part of their cargo and then proceed to final terminal destinations, although on occasion they may offload their entire cargo.

In all three areas, lightering is performed by companies specializing in this type of service. Prices のなど、ため、ためのないないない。

166.

2月に約1日に、2月1日にあるとなった。1月1日に約1日で、2月1日にあるかいたたでは、1

are determined by market conditions. One can reasonably presume that prices reflect real cost, since there is a fair degree of competition in the provision of the services involved. In the New York area, recently prevailing rates charged for offloading were \$0.07 to \$0.08 per barrel (around \$0.52 to \$0.60 per long ton). This reflects both the size characteristics of the barges used and the average distances of haul, which are typically some 10 to 20 miles (one way). In the Delaware Bay, where distances between lightering areas and refineries range from 60 to around 100 miles, and where average barge sizes are about the same as or smaller than in New York, rates recently were some \$0.125 to \$0.14 per barrel (around \$0.94 to \$1.05 per long ton).

Our information on lightering in the San Francisco Bay area is limited to the practice of a single company, which may not be generally representative. A tanker of some 75,000 d.w.t. arrives with 570,000 barrels of crude oil. It offloads 120,000 barrels in a T-2 tanker, which then proceeds to the refinery some 35 miles away. The ocean vessel awaits the T-2 tanker's return, and then offloads an additional 120,000 barrels before proceeding to the refinery to discharge its remaining cargo. This operation takes 2 to 3 days, for which the price ranges from \$5,000 to \$8,000 per day. Taking mean values (\$6,500 per day for 2.5 days), offloading of 240,000 barrels costs slightly less than \$0.07 cents per barrel (about \$0.52 per long This rate approximates the corresponding charge ton). in New York, where typical barge size is smaller and where typical distance of movement is a bit shorter.

Ocean shipping of crude oil and associated lightering operations have not yet realized their full potential. Substantially larger and more efficient vessels could be used for offloading in all three areas. Size characteristics of the existing barges used for lightering in New York and the Delaware Bay reflect their more frequent use in the movement of petroleum products, which have entirely different requirements. Vessels especially suited for offloading crude oil in large volumes have not yet been developed, partly because the market has until recently been small and partly because uncertainties exist about the future provision of

「「「「「「「「」」」」」

deepwater port facilities, which could render lightering unnecessary.

Furthermore, substantially larger ocean vessels than are now commonly used could be offloaded in the designated anchorage areas. Present vessel size characteristics probably reflect short-term lags in adjustment to changing market conditions, as well as the relative inefficiency of existing lightering operations.

In the long run, it seems reasonable to expect that design and size characteristics of transoceanic and lightering vessels would be optimized. That generally implies resort to the maximum size tankers allowed by physical conditions in the anchorage areas. Permissible drafts, which reflect both mean low water depth and tide (but with a safety margin for clearance), would be approximately 45 feet in New York, 52.5 feet in San Francisco Bay, and 57.5 feet in Delaware Bay. For these three areas, tankers of up to 110,000, 183,000 and 236,000 d.w.t., respectively, could be accommodated if vessel designs were optimized for draft conditions (see Annex F).

For similar reasons, vessels used to lighten the large tankers would be expected to approach the largest size compatible with draft and other dimensional constraints imposed by connecting channels and terminal facilities. Such vessels might be in the 40,000-d.w.t. range or even larger. Since these constraints influence size characteristics of transshipment vessels at hypothesized deepwater port locations, this question is discussed further in the following section.

The above concepts of vessel size have important implications for one of the major trade-offs in lightering operations: Should the ocean vessel partially offload and proceed at reduced draft to the terminal to discharge its remaining cargo, or should it offload the entire cargo and then return to its overseas origin? Effective resolution of this issue requires detailed analysis of each case. However, to avoid unnecessary complications in this study, we have made the general

168.

assumption of complete offloading. This assumption was made because the largest feasible ocean vessels, even when partly lightened, would usually be difficult, if not impossible, to manuever in some of the narrow channels involved, and in some cases would be prohibited from doing so by existing regulations.

Water Transshipment at Deepwater Ports

The physical and operating conditions governing vessel transshipment between our hypothesized deepwater ports and existing ports for various bulk commodity movements have no exact current parallel in the United States. Intercoastal and Great Lakes traffic generally involves direct haul between ports of origin and destination without an intervening transshipment terminal, and distances of movement are relatively long. The extensive barge system on the inland waterways has evolved along unique lines because of its special physical circumstances. It is therefore necessary to design an approach to vessel transshipment at our hypothesized deepwater port that is best suited to its specific nature.

Several recent studies 1/ suggest that a tug-barge system may be preferable to self-propelled tankers or bulk carriers employed in ocean shipping. This judgment reflects the fact that pertinent conditions are extremely different. Links between the deepwater ports and relevant existing ports are very short. For ocean shipping of J.S. bulk commodities in foreign trade, oneway distances generally range from 1,500 to 15,000 miles, whereas corresponding distances for vessel transshipment would fall between 60 and 460 miles. Furthermore,

1/ Matson Research Corporation, <u>Transoceanic Tug-Barge</u> Systems: A Conceptual Study (Maritime Administration, Federal Clearinghouse No. PB 194535-6-7), July 1970; and Adrian S. Hooper, "The Application of Super Barges for Distributing Petroleum Products," <u>Maritime Reporter and</u> Engineering News, October 1, 1971. typical open-sea speeds of 16 knots are generally inappropriate, if not impermissible, on many waterways where transshipment vessels would be operating.

Tug-barge technology is particularly well suited to relatively low-speed, short-haul operations. In such uses, it promises improved efficiency over selfpropelled vessels. Its principal advantage lies in greatly reduced manning needs of around 9 to 12 men (all of whom serve on the tug, the barges being unmanned), as opposed to 26 men assumed in our cost estimates for self-propelled ocean vessels and up to 40 or more aboard those now in U.S. coastal service. This great difference in manning requirements is attributable much less to technology than to institutional barriers against crew reduction on traditional vessels.

Essentially because of their manning requirements, tug-barges with oceangoing capabilities have begun to appear in U.S. cabotage operations. The largest such vessels presently in service are around 30,000 to 31,000 d.w.t., but a 52,000-d.w.t. vessel drawing only 28.5 feet fully loaded is under construction.1/ These tug-barges are not to be confused with entirely different types of barges found in U.S. river transport, which are much smaller and shallower, cannot safely go to sea, and are usually tied together in groups of 3 to 30 for pushing at slow speeds by a single towboat.

The two studies referred to above show that unit costs per ton of cargo carried by tug-barges from 20,000 to 60,000 d.w.t. are modestly lower than when carried by self-propelled vessels of equal size on routes up to 1,000 miles or more. The comparative advantage of tug-barges increases inversely with distance. Although barges can be designed either to be pulled or pushed by the towboat, the latter type are demonstrably less costly. That would explain why most barges now in service along the Atlantic and gulf coasts are of this design.

1/ Traffic World, December 13, 1971, p. 27.

169.

Apart from their relatively low manpower costs, tug-barge systems offer two features which may enhance their appeal under certain conditions. The towboat can be detached and used elsewhere while the barge awaits loading or discharge. This flexibility would often be advantageous on very short links where terminal time is a large proportion of time at sea. Furthermore, barges can apparently be designed with somewhat greater capacity in relation to draft than tankers or bulk carriers, possibly a useful advantage in ports having particularly constrained water depths. The effective application of these features to the many different transshipment movements covered by this study, however, cannot be explored here.

For optimization of a tug-barge system, even for one particular port pair, is a complex matter requiring detailed feasibility analysis. Such an analysis would have to consider numerous alternative size, design, and operating characteristics for the system in light of various water, terminal and traffic conditions. Among the more important trade-offs involved are the number of barges per tug (e.g., tug "stay" with barge, or "swap" one for another), the choice of placing unloading equipment at the port or on the barges (mostly in the case of dry bulk commodities), and the rates of discharge to be used.

The broad nature of this study requires simplified assumptions about these questions. The assumptions we have made largely reflect discussions with several firms engaged in water transport, steel manufacture and barge design. A 40,000-d.w.t. barge was considered a reasonable order-of-magnitude size level generally suitable for the numerous gulf and east coast ports to be served, with an average service speed of 10 knots. Since relatively few of all hypothesized transshipment movements appeared to be short enough to make "swap" systems highly attractive, we have uniformly adopted a "stay" approach for costing purposes.

Tank barges transshipping crude oil at the deigwater port and d'scharging at port-based refineries would be equipped to self-unload at an hourly rate of 5,000 long tons. This reflects general practice in the design of tankers and oil barges, and the modest additional costs involved in self-unloading. On the other hand, iron ore imports would generally be discharged from barges at steel plants, which already have highspeed unloading equipment. Barges to accommodate ore have therefore not been designed for self-unloading, which is substantially more costly for dry bulk than for oil.

Dry bulk exports (coal and grain) passing through a new deepwater port present an entirely different tradeoff, since accommodation for product discharge must be made somewhere -- either on the barges or at the deepwater port. The former is often advantageous where trip links are very short and annual volumes per vessel are high, precisely the conditions presented. We have accordingly assumed grain and coal barge designs which include self-unloading gear permitting discharge at a rate of 5,000 long tons per hour. However, the specialized manning and electric power required to unload are presumed to be port-based, because of difficulties in providing them on either tug or barge.

The approach used to develop estimates of unit costs for tug-barge transshipment is somewhat different from that used for ocean shipping, which is discussed in chapter III. However, the same assumptions as to capital charges, vessel utilization and load factors have been made. Relatively little material on costs of tug-barge systems, and virtually nothing on the special costs incurred for self-unloading of dry bulk commodities, has been published. Our estimates have been based primarily on data contained in the two studies previously mentioned, supplemented by discussion with several operators. However, the allowance we have made for general and administrative costs is smaller than the prevailing practice because of the presumed longterm continuous shuttle operation between the same port pairs and on behalf of the same users.

Estimates were developed initially on an annual basis by cost component for a single tug and a 40,000d.w.t. tank barge, and were then converted to hourly White when i an inter the fail is failed

equivalents (table 73). These costs would be virtually the same for a dry bulk tug-barge of comparable size which is not self-unloading (iron ore). Annual estimates by cost component were then made for the additional costs of high-speed self-unloading equipment applicable to coal and grain (table 74).

The preceding data provided major inputs for estimates of total unit costs per long ton by trip distance. For round trips ranging from 100 to 900 miles, preliminary unit cost estimates were made separately for each commodity, allowing for combinations of port and sea time required on each link (tables 75 and 76). All resulting total unit costs per trip were then increased by 20 percent to allow for necessarily underutilized capacity of the tug-barge fleet over time. These figures are plotted in figure 4.

This underutilization of capacity arises from the inherent lumpiness of transport supply and the changing (usually growing) nature of demand. For example, on the basis of our operating assumptions, the full annual capacity of a single 40,000-d.w.t. tug-barge on a regular 300-mile (round trip) shuttle service would approximate 6.9 million tons. As soon as demand exceeded that level, another tug-barge of equal capacity would be required, although an extended time period would be necessary before growing traffic would utilize it fully. Furthermore, there are often seasonal fluctuations in demand for some commodities, and occasional work stoppages in U.S. or foreign ports or plants, which would have similar effects. Finally, the special design characteristics of the hypothesized tug-barge system would probably make it relatively unsuitable for shortterm deployment in other (coastal) service.

「「「「「「「「「」」」」

Lightering Costs

The tug-barge system used for oil transshipment at a deepwater port would seem to be equally suitable for lightering of large ocean vessels. Unit cost characteristics should also be essentially the same. However, we have assumed that the rate of barge loading

Table 73. Estimated Costs of Oceangoing 40,000 Deadweight Ton Tug-Barge For Oil Transshipment

Same and a second

(In 1970 dollars)

university of the second s

Item	Cost
First costs	
Tug Barge	1,500,000-2,500,000 6,500,000-7,500,000
Total	8,000,000-10,000,00
Annual capital charges	(average = 9,000,00
11.746% of first costs	1,057,000
Fixed operating costs	
Crew: 8-12 men; assume 10 men at \$20,000, including fringes Stores, supplies, subsistence	200,000 26,000
Maintenance and repair (at 2% of first costs) Insurance (at 4% of first costs)	180,000 360,000
Total	766,000
General and administrative costs	
10% of fixed operating costs	77,000
Total annual fixed costs (annual capital charges + total fixed operating costs + general and	
administrative costs)	1,900,000
Fixed costs/hour (345 days/yr.)	229
Variable costs/hour	
Fuel at sea, ± 10 m.p.h Fuel in port, maneuvering, misc	31 11
Total cost/hour	
At sea In port	260 240
Source: RRNA estimates.	1

)

Table 74. Estimated Incremental Costs of Self-Unloading Design Features in 40,000 Deadweight Ton Tug-Barge For Dry Bulk Transshipment

(In 1970 dollars)

Item	Cost
First costs	1,600,000
Annual capital charges 11.746% of first costs	188,000
Fixed operating costs	
Crew Stores, supplies, subsistence Maintenance and repair (at 6% of	
first costs) Insurance (at 5% of first costs)	96,000 80,000
Total	176,000
General and administrative costs	
10% of fixed operating costs	18,000
Total annual fixed costs	
Amount. As percent of basic tug-barge costs.	382,000 20
Increment for port-based manning and electricity to discharge	0.02/long to

Sec. and and a second second

Source: RRNA estimates.

174.

in 40,000 Deadweight Ton Tug-Barge From Deepwater Terminal, by Distance of Haul Estimated Unit Costs of Oil Transshipped

Table 75.

Ware and all three has

(In 1970 dollars)

	In port	rt	At sea	a	Total round-	Basic	Adjusted
kouna-trıp miles	Hours ^a / Cost		Hcurs ^b /	Cost	הפטט קבנו		
100	18	4,320	10	2,600	6,920	.173	.208
26.9	18	4,320	20	5,200	9,520	.238	.286
300	18	4,320	30	7,800	12,120	• 303	.364
400	18	4,320	40	10,400	14,720	.368	.442
590	18	4,320	50	13,000 L	17,320	.433	.520
600	18	4,320	60	15,600	19,920	.498	.598
700	18	4,320	20	18,200	22,520	.563	. 676
800	18	4,320	80	20,800	25,120	.628	.754
	18	4,320	06	23,400	27,720	• 693	.832
						•	•

a/ Loading at deepwater port (4 hours at 10,000 LT/hr. rate), discharging at refinery (8 hrs. at 5,000 LT/hr. rate), plus delay time at 2 terminals (6 hrs.). At assumed average speed of 10 knots.

includes 20% increment above basic cost to allow for underutilization of $\frac{b}{c}$ At assumed averation $\frac{c}{c}$ includes 20% incomponent over time.

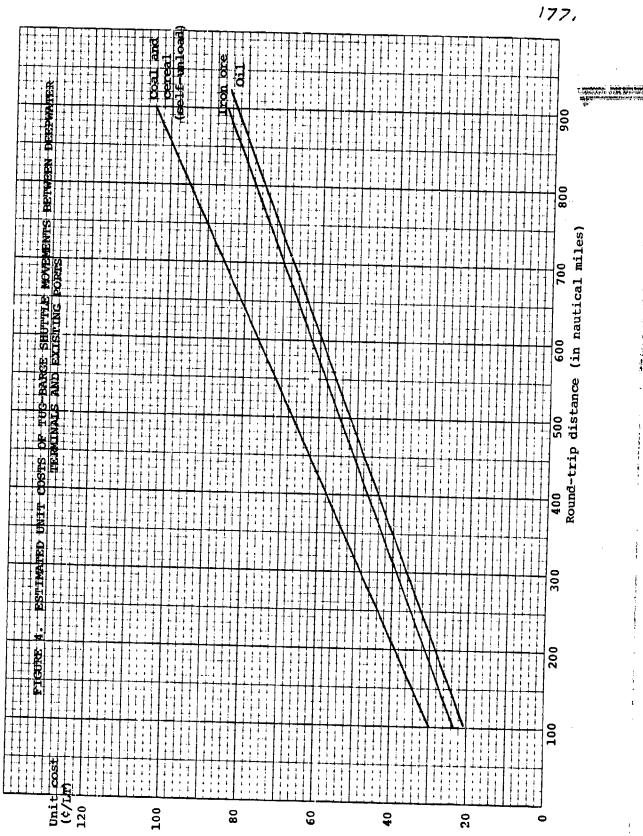
Source: RRNA estimates.

175.

4

f,

Table 76. Estimated Unit Costs of Dry Bulk Transshipped in 40,000 Deadweight Ton Tug-Barge at Deepwater Terminal, by Distance of Haul


(In 1970 cents per long ton)

Round- trip miles	Oil tqtal	Iron ore		Coal and grain		
		Incre- ment <u>a</u> /	Total	Incre- ment <u>b</u> /	Incre- mentC	Total ^d /
100	20.8	2.4	23.2	2.0	4.6	29.8
200	28.6	2.4	31.0	2.0	6.2	39.2
300	36.4	2.4	38.8	2.0	7.8	48.6
400	44.2	2.4	46.6	2.0	9.3	59.7
500	52.0	2.4	54.4	-2.0	10.9	67.3
600	59.8	2.4	62.2	2.0	12.4	76.6
700	67.6	2.4	70.0	2.0	14.0	86.0
800	75.4	2.4	77.8	2.0	15.6	95.4
900	83.2	2.4	85.6	2.0	17.0	104.6
	l					

a/ Four additional hours loading time over oil (5,000 long tons per hour rate).
b/ Port-based electricity and manpower for self-unloading.
c/ Self-unloading barge design, 5,000 ton/hr. rate (20% of iron ore total).
d/ Oil total, plus increments 1, 2 and 3.

Source: RRNA estimates.

THE REAL PROPERTY OF A DESCRIPTION OF

A CHERRY CON

would be slower from ship to ship than from the deepwater port to ship. Furthermore, assumed waiting and delay time has been increased by 6 hours. This reflects an inherent disadvantage of all offloading systems dependent upon vessel arrival for product transfer: Ocean vessel arrivals can never be closely scheduled and are essentially random. For purposes of transshipment at deepwater ports, this problem does not exist, since exports are unloaded to storage and imports are loaded from normally sufficient quantities of cargo stored at the terminal. Shuttle movements would accordingly be independent of ocean vessel arrivals.

Estimates of total costs per long ton for lightering crude oil in the New York, San Francisco, and Delaware Bay areas, as indicated in table 77, reflect these factors. The estimated costs, however, are less than half of recently prevailing charges in the three areas. We therefore decided to cross-check their general reasonableness by consulting two of the major companies on the east coast now engaged in lightering operations. Under the market and operating conditions that we have assumed, their independent expectations of required revenue were basically consistent with our estimates, which were therefore allowed to stand.

「日本である」

「「「「「「「」」」」」

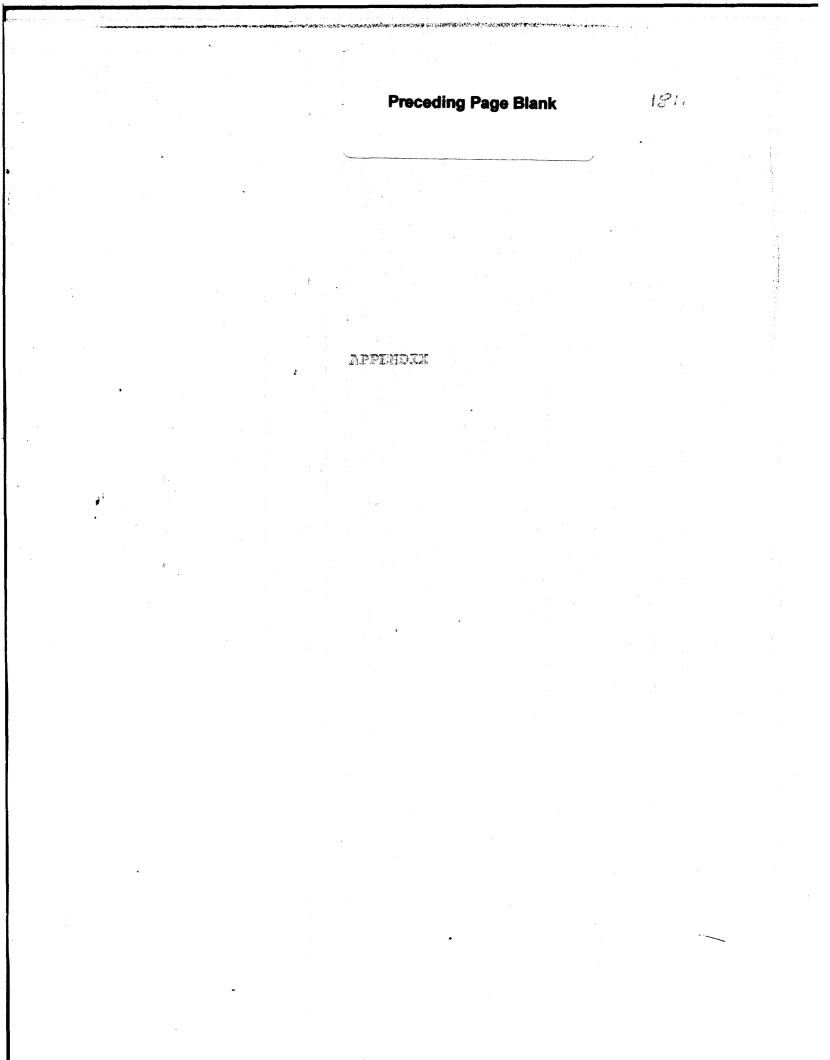

As in the case of ocean shipping costs, the question of long-term trends in real costs of lightering and of vessel transshipment at a new deepwater port presents itself. However, most of the uncertainties indicated earlier are equally relevant. For example, the relatively conservative assumptions made as to operating speeds, loading and unloading rates, vessel size, and underutilization suggest considerable scope for increasing the efficiency of both lightering and shuttle movements. We have accordingly assumed that our estimates of unit cost would generally be indicative of future levels as well.

Table 77. Estimated Oil Lightering Costs Per Long Ton For 40,000 Deadweight Ton Tug-Barge Operation in Three U.S. Port Areas

(In 1970 dollars)

Area and item	Cost/hour (\$)	Number of hours	Total cost (\$)
New York and San Francisco Bay 40 miles (round trip) at sea Loading at 5,000	260	4	1,040
L. tons/hr Unloading at 5,000 L. tons/hr Port delay, waiting.	240 240 240	8 8 12	6,720
Subtotal 20% increment for underutilized capa-		,	7,760
city Total cost/operation. Cost/long ton			1,552 9,312 0.23
<u>Delaware Bay</u> 200 miles (round	9		
trip) at sea <u>a</u> / Loading at 5,000 L. tons/hr	260 240	20 8)	5,200
Unloading at 5,000 L. tons/hr Port delay, waiting	240 240	8 12	6,720
Subtotal 20% increment for underutilized capa-			11,920
city Total cost/operation.			2,384 14,304
Cost/long ton			0.36

a/ Average round-trip distance more properly 160 miles, which would result in a cost per long ton of \$0.33. Error considered too small to justify revision of numerous later calculations based upon original figure. Source: RRNA estimates.

un naisse.

TECHNICAL REPORT 7216-1 FINAL

CHARACTERISTICS OF TANK VESSELS

FOR RESTRICTED DRAFT SERVICE

By

Donald P. Roseman January 1972

Prepared for

Robert R. Nathan Associates, Inc.

Preceding page blank

HYDRONAUTICS, Incorporated

TABLE OF CONTENTS

- 1.0 INTRODUCTION
- 2.0 STUDY REQUIREMENTS
- 3.0 METHODOLOGY
- Background Studies
 - 3.2 Parametric Studies
 - 3.3 Boundary Conditions
 - 4.0 RESULTS and DISCUSSION
 - 4.1 Draft and Deadweight Feasibility Limits
 - 4.2 Dimensional Limitations
 - 4.3 Cost Studies
 - 4.4 Study Limitations
 - 5.0 APPENDIX

REFERENCES

186.

HYDRONAUTICS, Incorporated

LIST OF FIGURES

FIGURE 1 - Total Deadweight vs. Draft Figure 2 - Deadweight-Dimension Relationship, Draft Variation Series Figure 3 - Deadweight Dimension Relationship, 250,000 DWT-500.000 DWT Series Figure 4 - Required Freight Rate vs. Voyage Length, 35 Ft.Draft Figure 5 - Required Freight Rate vs. Voyage Length, 40 Ft.Draft Figure 6 - Required Freight Rate vs. Voyage Length, 45 Ft.Draft Figure 7 - Required Freight Rate vs. Voyage Length, 50 Ft.Draft Figure 8 - Required Freight Rate vs. Voyage Length, 55 Ft.Draft Figure 9 - Required Freight Rate vs. Voyage Length, 60 Ft.Draft Figure 10- Required Freight Rate vs. Voyage Length, Panama Canal Transit Vessels Figure 11- Required Freight Rate vs. Voyage Length, 250,000 DWT Figure 12- Required Freight Rate vs. Voyage Length, 300,000 DWT Figure 13- Required Freight Rate vs. Voyage Length, 400,000 DWT Figure 14- Required Freight Rate vs. Voyage Length, 500,000 DWT HYDRONAUTICS, Incorporated

1.0 INTRODUCTION

The studies reported herein were directed toward the investigation of the relationship of tank vessel principal characteristics, and corresponding required freight rates, to draft restrictions. A primary objective was the determination of the maximum feasible tank vessel capacities for given draft restrictions and the estimation of corresponding penalties, relative to tank vessels of the same deadweight designed for unrestricted draft operation.

The primary investigative tool used was a computer design program developed by HYDRONAUTICS, Incorporated for concept design and cost studies of dry and liquid bulk carriers. The program was used successfully for studies covering vessels up to about 250,000 DWT capacity. Larger vessels were defined conceptually by conventional design procedures, and the corresponding costs obtained from a subroutine of the concept design computer program.

The scope of the study was necessarily restricted by time and cost limitations. Output of the studies was oriented toward determining practical feasibility of building tank vessels beyond current normal capacity, for given operating drafts Beyond the exercise of good design judgement, no attempt was made to obtain optimized ship characteristics and corresponding costs. Efforts in this direction are more properly made in detailed subsequent studies for specific conditions of interest.

2.0 STUDY REQUIREMENTS

The requirements are defined in terms of two parametric series:

- a) Draft variation series, for 35 ft. to 60 ft. drafts, in 5 ft. increments.
- b) Deadweight series for large vessels for

250,000 DWT 300,000 DWT 400,000 DWT 500,000 DWT

In addition, vessel configurations for Panama Canal transit are to be identified.

For each discreet case defined above, the analysis is reported in terms of required freight rate (RFR), for the following conditions:

Voyage length, one way (two leg voyages), cargo on one leg only:

1000 miles 2000 miles 5000 miles 7500 miles 10,000 miles 15,000 miles

HYDRONAUTICS, Incorporated

Number of vessels per production run = 5.

Other cost constants assumed for the study are given in the appendix.

To limit the scope of the study, an assumed service speed of 16 knots was held constant for both series. This value is near current practice for vessels up to about 225,000 DWT capacity.

3.0 METHODOLOGY

3.1 <u>Background studies</u> - As a prerequisite to defining a normal or standard baseline of ship characteristics, for each case of draft or deadweight, pertinent characteristics of existing and proposed tank vessels were tabulated and plotted. For the draft variation series, a clear lower bound of deadweight, as a function of draft, was identified and adopted as the starting point for parametric studies. For the larger 250,000 DWT to 500,000 DWT vessels, a summary of characteristics of existing and proposed vessels provided only limited trend information and a "standard" curve of deadweight vs. draft was adopted as the starting point for the investigation. These two baselines are shown as the lower curves on Figure 1.

3.2 <u>Parametric studies</u> - The computer design model used as the primary investigative tool defines ship characteristics in the iterative manner typical of the usual design process. The model provides characteristics, performance and cost data for

189.

a a secondar and a second a second and the Reality and a second and the second and the second and the second as

a single discreet design for each case of input requirements. For each draft in the first series, input data was prepared in parametric form to cover a range of deadweights from the low normal value to some value judged to be near the feasible limit. For each value of deadweight, three ship lengths and corresponding form coefficients were selected, based on good design practice. Other constants selected for the parametric study are summarized in the appendix. Computer output was examined for each case and one case of length was selected for each value of deadweight, on the basis of design judgement and an examination of the cost information. No formal optimization procedure was used, other than selection of the characteristics and costs by examination of the computer output.

A second limited iteration of the parametric study was usually required to define with reasonable assurance the maximum feasible deadweight for a given draft, or the minimum feasible draft for a given deadweight in the case of the 250,000 DWT - 500,000 DWT series. These limiting cases were identified by testing the design characteristics against specific boundary conditions chosen for this study.

Characteristics of the large vessel series were generally beyond the capability of the computer design program and manual procedures were used to define characteristics for the standard draft vessel and the minimum draft vessel for each deadweight.

3.3 Boundary conditions

From the point of view of simple physics, there is no inherent limit to the size of vessel, in terms of deadweight capacity, that may be designed for a given draft. The converse is also implied for the case of minimum feasible draft for a given deadweight for the large vessel series. Accordingly, it was necessary to establish certain boundary conditions to provide conservative limits to hull geometry. The following conditions which were adopted reflect the author's judgement of reasonable limitations in proportions that may be acceptable for tank vessel design, with limited near term development work.

3.3.1 Length, B.P./ Breadth \leq 5.75

This value is generally about 6.0 or greater for existing full seagoing tank vessels.

3.3.2 Breadth/Draft < 3.25 at full load draft

For existing seagoing tank vessels this value is normally in the range of 2.25 to 2.75. The value of 3.0 has been reached for certain U. S. flag coastal tankers, designed for restricted draft U. S. ports, and for a Dutch proposal for a 425,000 DWT restricted draft tanker (Reference 1)

3.3.3 Length, B.P./Depth < 15

This is a regulatory limit established by the classification societies and reflects limitations in the relationship

STATION AND A REPORT OF A SUC

A STATE OF THE STA

192.

of maximum bending moment to hull girder section modulus. 3.3.4 Draft/Depth, per Load Line Regulations (Reference 2)

For a given vessel geometry; e.g., length, depth, fullness, extent of effective superstructure; a discrete value of maximum permissible draft may be assigned by application of the Load Line Regulations. This requirement was coupled with the breadth/draft condition to define all vessels in the series as full scantling designs, i.e., designed to operate at the maximum permissible draft, and Length/Draft < 15. It is clear, for example, that for a given draft, length could be increased indefinitely by simply adding depth such that L/D < 15, while draft/depth would be well below regulatory limitations. This is analogous to the case of larger vessels operating at reduced draft. To provide a reasonable limit to the study, however, the condition of excess depth above freeboard requirements was not considered. This is a reasonable assumption consistent with current tank vessel design practice.

4.0 RESULTS AND DISCUSSION

4.1 Draft and deadweight feasibility limits.

4.1.1 Draft variation series - For the draft range of 35 ft.to 60 ft., the lower limits of existing normal deadweight values of about 30,000 DWT to 150,000 DWT, respectively, were identified. Parametric investigations of high deadweight values HYDRONAUTICS, Incorporated

resulted in obtaining the maximum feasible values shown in the lower grid of Figure 1. Intermediate deadweight vessels were also identified to permit use of the data in subsequent tradeoff studies relating port dredging requirements to vessel size. The range of feasible values of deadweight for a given draft is approximately 170% to 175% over the lower bound values for the entire range.

4.1.2 250,000 DWT - 500,000 DWT Series

Reference information for the large vessel series is limited to data in the 250,000 DWT to 326,000 DWT range, for existing vessels, one existing new vessel at about 375,000 DWT and numerous published proposals for designs to 1,000,000 DWT. The data is necessarily scattered and a plot of these data relating deadweight to draft lies within a broad band. Accordingly, a reasonable "standard" draft-deadweight relationship was assumed, as shown on Figure 1. To obtain the minimum feasible draft case for each of the deadweight values, manual design procedures were used to define geometry at the approximate point that the three boundary conditions coincide, i.e.,

> Length/breadth = 5.75 Length/depth = 15.00 Breadth/draft = 3.25

Results are shown as the minimum draft curve on the upper grid of Figure 1.

4.2 Dimensional limitations

Length and breadth values are given in Figure 2 for the end points at corresponding values of deadweight and draft, for the draft variation series. The values should be assumed as gross approximations only, particularly below the maximum deadweight value, since there exists an infinite possibility of combinations of length, breadth and hull fullness to obtain a required deadweight at a given draft. Unique values tend to be reached only at the upper values of deadweight where the boundary conditions are effective.

11

Similar information is given in Figure 3 for the large vessel series. Again, it should be noted that the values tend to be unique only at the minimum draft condition, for each value of deadweight, where the boundary conditions tend to be effective.

Characteristics of vessels designed for the constraints of Panama Canal transit are tabulated on Figure 10, for the unlimited seagoing case and for the 36'-O" canal transit condition. Dimensions of the 80,000 DWT, 45 ft. draft vessel are very close to comparable values of a U. S. flag 80,000 DWT ore-bulk-oil (OBO) carrier recently contracted to National Steel Co. of San Diego. The 85,000 DWT vessel indicated is probably near the maximum length for canal transit.

HYDRONAUTICS, Incorporated

It is of interest to compare the deadweight capacities for these vessels in the transit condition with the corresponding value given in Figure 1 for a "maximum feasible" vessel designed for the same draft. The 58,800 DWT maximum value given in Figure 10 is significantly greater than the value of 50,700 read from Figure 1 at the same draft. The discrepancy is even greater when the values are corrected for water density. This condition is discussed in section 3.3.4 wherereference is made to the case of large vessels operating at reduced draft, compared to a full scentling design such as the 50,700 DWT, 35 ft. draft vessel indicated in Figure 1.

Manual and the second second

4.3 Cost Studies

4.3.1 Draft variation series - Required freight rate (RFR) for a range of deadweights is given for each value of draft, as a function of voyage length, in Figures 4 through 9. The trend to decreased RFR with increase in deadweight is evident, as expected. For the smaller vessels particularly, an upturn in RFR is indicated for the long voyages. This illustrates clearly the effect of the high fuel capacity requirement on reduction in cargo deadweight.

Caution must be exercised in comparing the effect on RFR of reduced draft requirements, for any given deadweight. At the reduced draft, length and breadth will be greater, resulting in increased investment cost. However, increases in power requirements may be minimal, or even reduced, thus reducing the sensitivity to the draft restriction. Figure 11, for example, indicates no difference in RFR for a 250,000 DWT vessel designed for $58\frac{1}{2}$ ft. or 65 ft. draft.

A similar comparison between Figures 6 and 10 indicates the penalty in RFR for restricting breadth for Panama Canal transit to be very small. For 80,000 DWT and 45 ft. draft, the penalty is about 1% in RFR for the 5,000 mile to 15,000 mile voyage lengths. This difference is well within the study error.

4.3.2 250,000 DWT-500,000 DWT series - Required freight rate vs. voyage length, for "standard" and minimum draft conditions, is given in Figures 11 through 14. Comparisons for this series indicate that a vessel designed for unrestricted draft operation may be less costly to operate than a significantly larger vessel designed for minimum draft service. The following comparison taken from Figures 12 and 13 illustrates this point

clearly:

	Dra	ft	R1	FR
Deadweight	Standard	Minimum	5,000 miles	10,000 miles
300,000	71		0.278	0.269
400,000	-	68 1	0.283	0.275

No firm conclusions should be drawn from this comparison since factors other than draft restriction may be involved in affecting the RFR. Some ship owners, for example, have indicated that optimum tank vessels for their services are of about 250,000 DWT capacity; well below the size of several classes of existing tank vessels.

4.4 Study Limitations

It must be emphasized that this study was necessarily limited in scope and was directed toward establishing feasibility rather than obtaining optimum ship characteristics for minimizing RFR. The following limitations should be noted:

a) Program limitations - The computer design program has proven to be a useful and reliable concept design tool, particularly for tank vessels of less than 250,000 DWT capacity. Certain approximations are recognized, however, and would be refined by conventional design procedures in a more definitive study. Powering calculations, for example are based on the assumption that all propulsion plants are single screw systems. The largest single screw system in operation today are about CONTRACTOR OF THE REPORT OF THE PARTY OF THE P

198.

35,000 SHP and a 40,000 SHP plant for installation in an LNG carrier is planned. It is likely that 50,000 SHP single screw plants will be installed in the future. In the current study, powers as high as 70,000 SHP were estimated for the largest vessels operating at 16 knots service speed, which is well into requirements for twin screw installation.

b) Optimization - Beyond the exercise of good design practice and engineering judgement, no attempt has been made to optimize vessel design. In a more definitive study, considerable additional use of the design program in a limited region of interest, followed by manual design refinement, would be necessary to obtain optimum ship characteristics with respect to defined economic criteria. For specific voyage or port limitations, such studies would be necessary to obtain a reliable estimate of the tradeoff between port or terminal development costs and the design of larger vessels to suit existing port restrictions. HYDRONAUTICS, Incorporated

5.0 NOTE

Cost estimating methods used in this study are given in a recent paper by Dart, Reference 3. Other modifying cost constants and various assumptions used in the study are summarized in the following notes:

- 5.1 <u>Investment cost</u> = program estimate x 0.46, to obtain approximate foreign flag cost.
- 5.2 <u>Annual capital charges</u> = investment cost x 0.11746, corresponding to a 20 year life, no scrap value, sinking fund depreciation and 10% return on investment.
- 5.3 Operating and support costs.
- 5.3.1 Manpower = \$6,500 per man-year, reflecting foreign flag operation .
- 5.3.2 Stores and supplies = $0.93 \times \text{value given in Reference 3}$.
- 5.3.3 Subsistence = $0.7 \times \text{value given in Reference 3.}$
- 5.3.4 Maintenance and repair = $0.56 \times \text{value given in Reference}$ 3.
- 5.4 Voyage costs.
- 5.4.1 Terminal costs deleted.
- 5.4.2 Brokerage and commission costs deleted.
- 5.4.3 Fuel cost = \$2.50/bbl.
- 5.4.4 Other miscellaneous voyage costs given in Reference 3 are deleted.

200.

5.5 Overhead = \$25,000/year.

- 5.6 Taxes = 0
- 5.7 Manning A manning level of 26 men was assumed for vessels up to about 200,000 DWT capacity. Above that size the manning level was increased in an approximately linear manner to about 50 men at 500,000 DWT.

HYDRONAUTICS, Incorporated

REFERENCES

- 1.0 de Does and Rijksen, "The Development of a 425,000 DWT Tanker with Restricted Draft," Symposium on the Development of a 425,000 PWT Tanker with Restricted Draft, Netherlands Ship Model Basin, 9 September 1971, reprinted in Schiff und Hafen, October 1971.
- 2.0 Load Line Regulations, U. S. Coast Guard, CG-176, 1 February 1971.
- 3.0 Dart, Charles E., "Cost Estimating-Ship Design and Construction," Engineering Summer Conference on Economics in Ship Design, University of Michigan, Dept. of Naval Architecture and Marine Engineering, June 8-12, 1970.

中的是中国法法的东西的法律法律法律法律的问题。但是中国特殊法律的研究的研究

ないないというというという

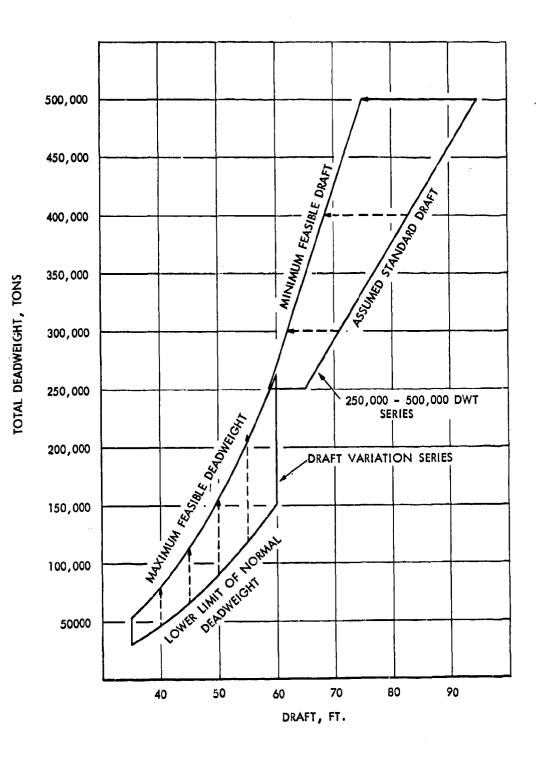
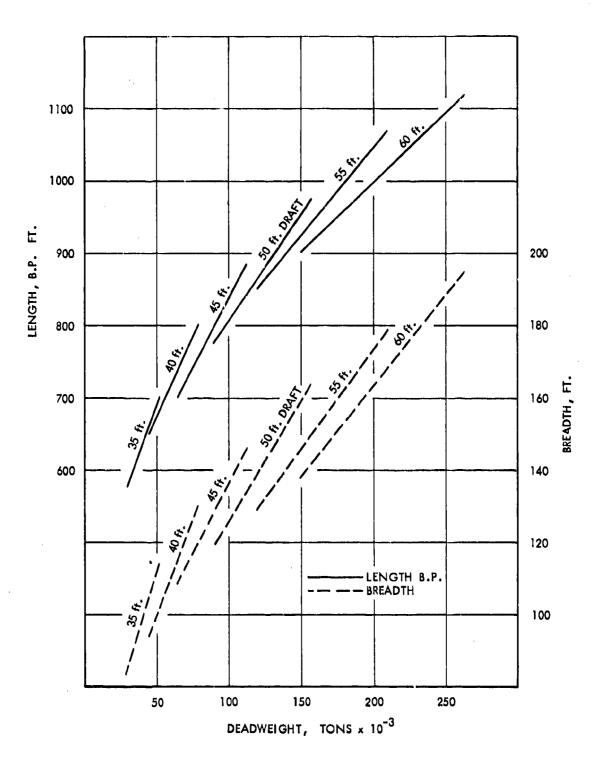
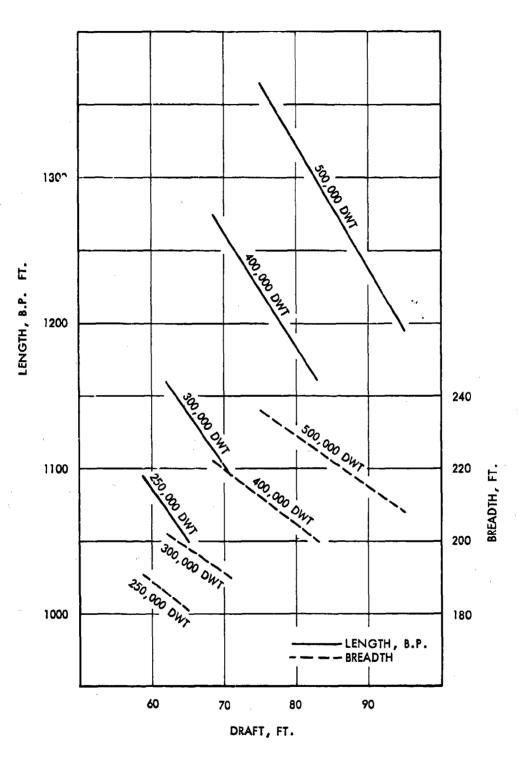
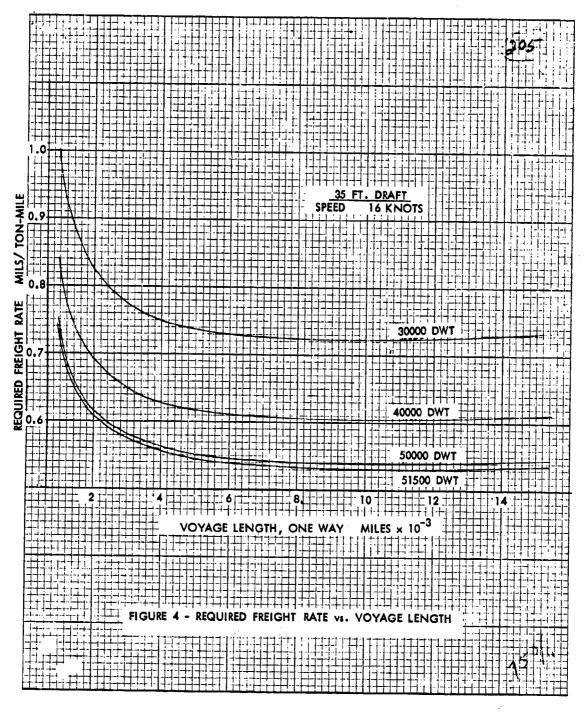


FIGURE 1 - TOTAL DEADWEIGHT vs. DRAFT

ļ

A HAR WAR - LAND BALLEN A CALLER AND A CALLER


FIGURE 2 - DEADWEIGHT - DIMENSION RELATIONSHIP DRAFT VARIATION SERIES

A.M.

FIGURE 3 - DEADWEIGHT-DIMENSION RELATIONSHIP, 250,000 DWT - 500,000 DWT SERIES.

States of

1-10

The Figure 1

19 13

204		
0.8	40 FT. DRAFT	
₩ ₩ 0.7	SPEED 16 KNOTS	
WIES/TON-MILE		
C C C C C C C C C C C C C C C C C C C	A 45000 DWT	
REGUIRED FREIGHT RATE	75000 DWT	
	6 = 8 = 10 = 12 = 14 VOYAGE LENGTH, ONE WAY MILES x 10 ⁻³	
	5 - REQUIRED FREIGHT RATE vs. VOYAGE LENGTH	

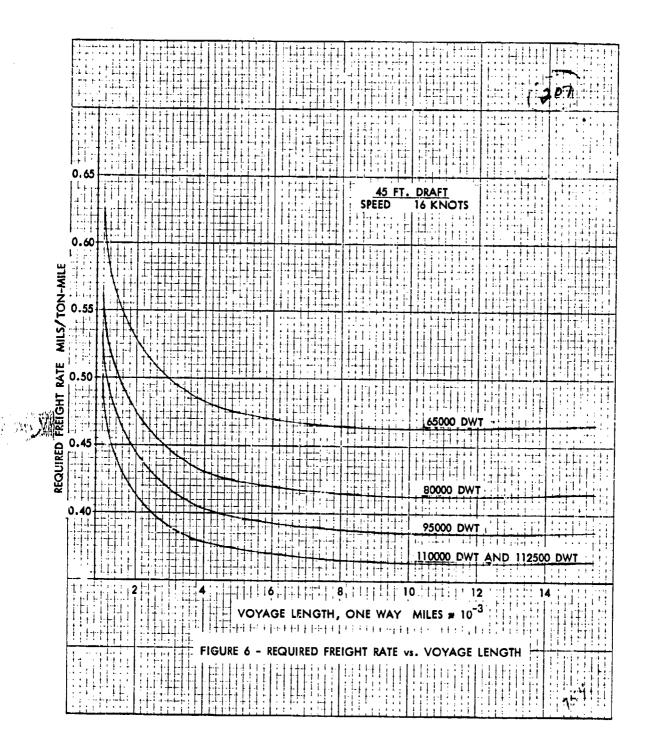
÷

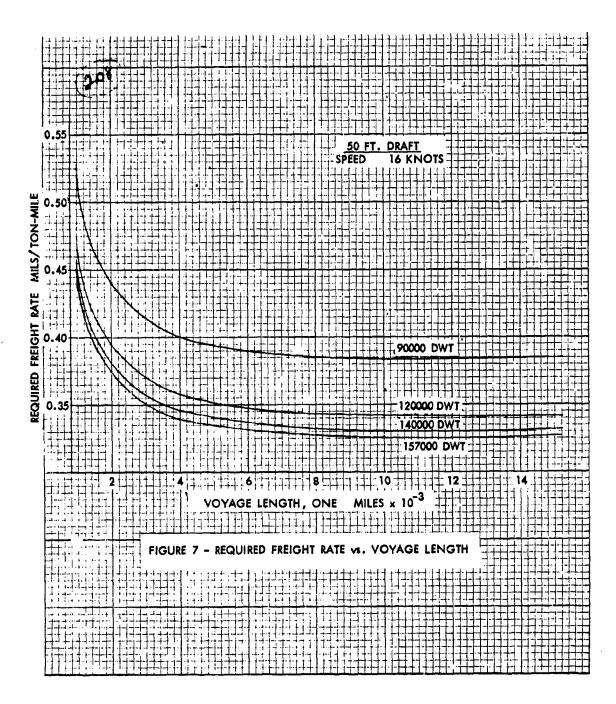
· · · ·

;

展すたい

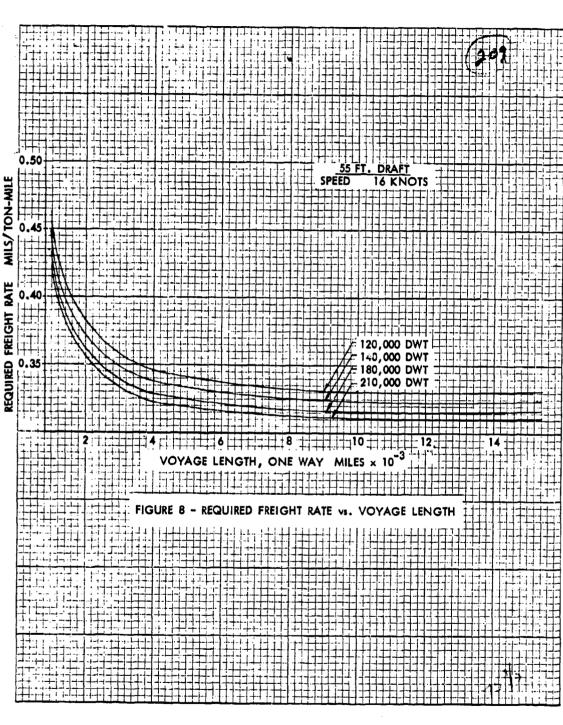
ちょうしょう ざいい ちりまたい ちょう

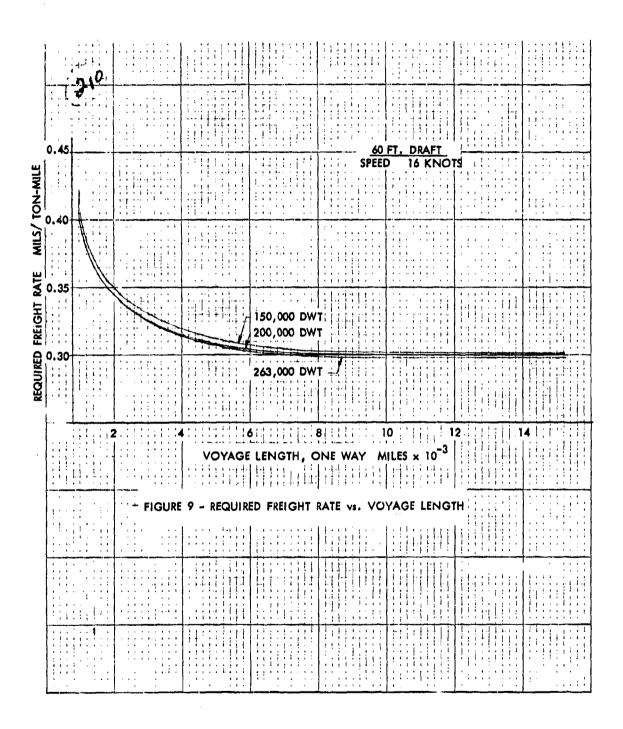

i


i

į

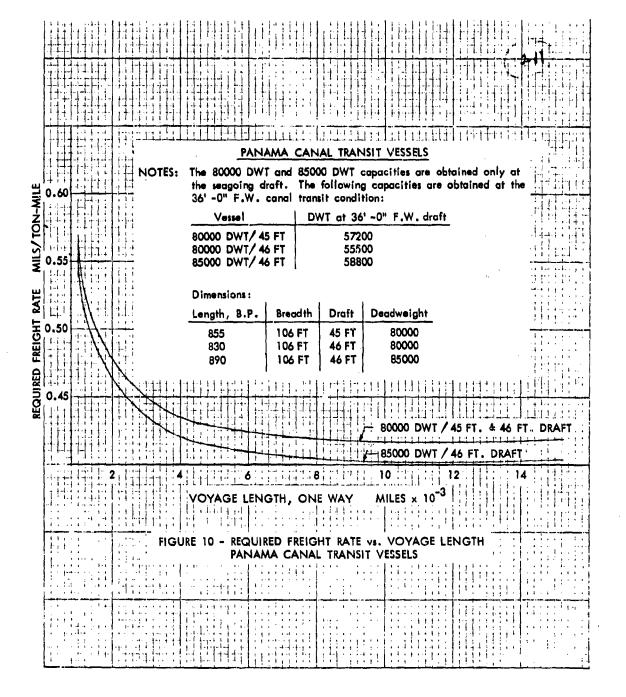
на. 5-10


h L r_1^*



MILS/TON-MILE RATE FREIGHT

٠.


i

and the state

,

and the second second

道道はなどのなりまで、「「「

i and

			-t-				1						;	 i						+			+				-																		- <u>+</u> - -+
			2																																										
ALE																														25	0	0	0		W										
ILS/ TON	0.4											-																· · · · · · · · · · · · · · · · · · ·					-			_	51 	\$							
RATE	0.3																												58		-6			A	N			5		2	\ F				
REQUIRED FREIGHT	0.3	30-																																											
REG					2					4			V	Y	G	+ +)	6			10					B		16			A`	- - - -		1 		ES			10	12				╶╸╸╴		
									 G				1- 1- 1- 1-					1- 1. 1.	RE	D	+++++++++++++			G		1 	 						V	'C	+ - - - - - -	A 1	G				- - -	H			
											╺╺┧┥┥┊╴╸╺╸╸			4								•																							

-|---|--

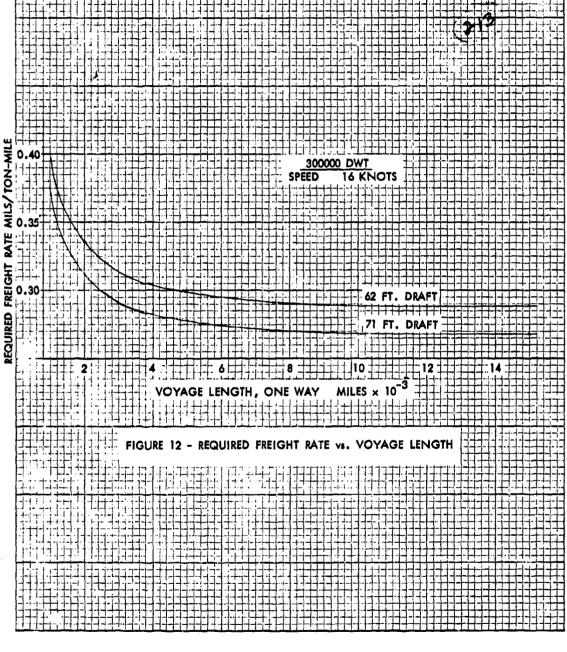
.....

4-

ł

t t

<u>+</u>-1


14 1

17-

-|------|--|-| -|-----

1-1-1

Ì

の言葉語の

A. S. San Street

1
22 ·
- B
- 1
16.16
- ¥ :
×
- X £
- Se ri
- 57
<u> </u>
- 11-
<u>ک</u>
<u>£</u> .
- A
- Y.
N.
1
. 1
5

, ф

			- -	•	1: 1:				-	-					+		- <u>}</u> . †					-		. . •		.		ļ	+		-	 -	ļ		-	+-	- 	+		. .	i	1		•	-	+			-	•	۱ †-		-	•					Ì						1	1	-	†	-	1	•						+ - !		.1		i		•	!			·	:	•
					7	N		-	-											•	-											 - -	1	1					•			+						-			[.].		1								-															_			1		1		•	: -		: 		1	_
																							-							-	-						4- 	1												-				-		-				1111							-					-	-			•	 -	 			i				-				-
					1.		-			+	+-		+							-									-		-								-	-	+			_		+ T.			•		<u> </u>					 			+++++						i T	+++++++++++++++++++++++++++++++++++++++							-	+			:	+				1			-+	- - -		1	
-WILE									-															-											•		.). 														1 						1			•													† · †_ 		-		1 1 1 1 1 1 1	-				-+					+++++++++++++++++++++++++++++++++++++++	-1	
/ TON-MILE	0. 斗	40					• -																-							-	-								-	-	Ļ	 		4			0	0	-		Þ	1 V	+ V 5	T		- -	+	4	т	ہے ح	 							-			•	-	-					1 1 1 1										 -}	-
MILS/				ľ				+ -		1 1 1							1 11.4		1	-												1		-					-							1				•					1-		+			-								-	111111	-									-	1 1 1 1 1			: ! ;					-
VTE	-+- -1-	35			ţ		. I.	+							+ -		+	+++++++++++++++++++++++++++++++++++++++							L									-+++							+		-		 					. -	†				-	 -	1			-											•		- -		-			++++ 1					-						
FREIGHT RATE	۳Ì.			i	/	<u> </u>															-			-		1				1														-									1	-+																						_			1 1	-							1	1	
FRE		::†	Ð	+							Ì										1 1 1 1					- -				-			+	4	-				-				-	-		1		-	-				-	-			-	6	8	•		i:	5"	, +		A			1 7				-	. .		-	Į.		-	•					+ + + +) 		•	
-	1	.i.f.	4.			• -•		• •		-t'	•																																										4	. 1	Ļ.		Ļ.	÷	_1	1.1																		-						÷.,	۰,		4	- 4	•
QUIRED	1		1 3				<u> </u>							+	+- +- +-		1						-												-	1			-					-				-			ŗ]				ł	+		9; =	-	 ===	+- F1 #*	 	• • •	ľ	+) 	+ V ‡	~+ \ ∓	-+ : =				-								.	"! - -		 -	- 	-			
REQUIRED			1 3				2									4		/	כ				3				E				T					c	+ + + + + +		E						Y									-	5	; ; ; ;	······································																	1		4							-						-
REQUIRED	1						2		-	÷	╱┼┼┼┼┽╉╋╂┽╎┼┼╸╸╸┊╌┊╌╶┨		★ · · · · · · · · · · · · · · · · · · ·				Ń	/ / +	י כ וי	.			١.	E	L		E										1(4								N		٠		-	S							- F1 														4													
REQUIRED	1		1 3			ŀ	2	-		-	4.	F		+			N	/() 4 4 4	-	-			E	ţ	L 		N + + +	1			+	+ F	R	21	C	1(V	E		† †			4		+-					A					Ļ	1	G .		0	- - - - - -															4		╆╸╷╶╌╋╅╅╅┿┿╍╼┊┆┼╍┠╺╺╍╅╸	L1 3								┊╼╼╼		
REQUIRED	1							-			1. 	F		+				/(-					t 	L 1		N + + +) 			+	+ F		21	C		V	H		† †			4	T	E				•	A					Ļ	1			0									╪ ╏╴╢ ╡┽╪┿┿╋╅╋╋╋╍┅╍╺┥┥┿┿┾┠							4		╊╾┍ ╺╍╋ ╅╅╅┯╾╾┊┆┅╍┠┨╍╍┧╸╸╸╻╹	☐ · · · · · · · · · · · · · · · · · · ·										
REQUIRED	1							-			1. 	F		+						-						L 1) 			+	+ F	R	21			ע 	H		† †			4	T	E				•	A 					Ļ	1			0																		╆╼╶╸┶╼╋╈╈┱╈┲╍╛╬┆╌╍┠┱╍╼╁╸╴╸╛╹╴┲┿╺╺╶┲╍	니는 그는 사람들은 아이는 것 같은 것 같			╞╏┹┼┫╌╌╴╷╸ ╷╸╷╸┨╺┅┯╆┅┅┾┅┅┨╺┄╴╶╸╷╴							
REQUIRED	1										1. 	F								-						L 1) 			+	+ F	R	21			ע 	H		† †			4	T	E					A 					Ļ	1			0										╴┎╌╢┾┰┹╞┾╪╪╉╫┆╴╴╴┊╢╎╌╌╞╢╴┈╴╴┈╧┾╞┍┆╢╖┊								╊╍╶ <u>╸┶╍╋</u> ╅┽╡┯╉╍╍┊┊┆╌╍┠╉╍┯┽┧╌╺╴╛╻╺╏╵╍╉┽╺╶╶╆╍╍╴┥╟╋┅	니는 그는 가슴에 가슴										
REQUIRED	1										1. 	F								-						L 1) 			+	+ F	R	21			ע 	H		† †			4	T	E										Ļ	1			0										╴╶╌╢┶┍┛╞╟┇╛┫┇╴╴╸┇┨┆┈┍╽┊┈╸╺╧┾╞┍┝╢┫┇╏┆╹┆┇								╊╸ ┆╶╌╀╂╶ ┧╡┯┲╾╼┊ <u>╴</u> ╷╌╸┠╏╍┯╼┧╼╷╸┊╷╻╏╵╌╾┊╸╵╴┢╌╌╸╴╸ <mark>┣┺╅╶┯╅╅┊╴╴╸</mark>	╡╡╌╌╸╎╢╌╴┍╌╎╡┥┽┍╸╸╻╴╴╺╼╼╶╴╸╸╴╸╸╴╸╴╸╴╸╴╸╴╸╴╸╴╸╴╸						╸╎┝╋┓╸┙╎╸╷╎╷╷╸╋╎╋╪╼┙╛╸╸╴╋╴╶╸╺╶┿╴╺┓╞╴┅┅┇╤╺			╺┿┿╌╋╺┶╸╸╷╋╼┺╶╻╴╷╴╸╸┯╦╦┯╋╈╴╌╴╴╼╶╴╼╶┿╧╺┿╸╸╼	

REQUIRED FREIGHT RATE MILS/TON-MILE

і .

			 -		!		+-	-	-	+++++++++++++++++++++++++++++++++++++++					! †	1		+	-] .		1	1				+		 		- - - 			+	1.			·	- 	-			+-		+	1-1 1 1 4-1		Ļ	t- t Lati		. 		·
	0.	40																																																-	20		2	14		4	
/ TON-MILE		35																													+ - - + - + -	SF	50 250 250 250 250 250 250 250 250 250 2			<u>50</u>			V 	Ľ	IC																
KATE MILS	0.3	30-				/		//						╸╸╸┷┷╼╴╤╶╪╌╋┍╸╾╋╺																																											
EU PKEIGHI	0.2	25						╶┯┯┾╺╌╱┽╾╋					╶╶┿╸╴╴┽╺┨╴															-										+			7	5	F	F.	С Т.)R. 	- -	-† - - - -									
KEGUIK																																																									
					2						:4 V	0	1- Y		C)E		.E	N	G		H			D	N	E	8 W	/A	 			M		.E	10 S		1 1 1 1	0	-3				2													
				┊┝╪┫╾╸┽┽┯╴┨	-	11	F	3l		E	1	4	1		R	EC	21	ור ד	R)	F	RI	EI	G	H	T	R	A'	TE		vs	• t : t :	V	νC	אי 	'A	G	E		EI		G1	FH													

「「「「「「「「「」」」」」

.

ì

Ă

1日日の一日日の一日日の一日日

and the second s

Preceding page blank

ANNEX F. TRANSPORT BENEFIT-COST RELATIONSHIPS FOR SELECTED INVESTMENT ALTERNATIVES

217.

State States

Preceding page blank

CONTENTS

I.	DEEPWATER PORT INVESTMENT ALTERNATIVES FOR CRUDE OIL	221
	General Conceptual Approach Methodology Mid-East Oil Movements to the United States Findings	221 222 227 231 232
II.	DEEPWATER PORT INVESTMENT ALTERNATIVES FOR DRY BULK COMMODITIES	249
	Conceptual Approach Methodology for Dry Bulk Transshipment	249
	Terminals Methodology for Incremental Improvement at	251
	Hampton Roads	255 256
ADDE		263

Preceding page blank

I. DEEPWATER PORT INVESTMENT ALTERNATIVES FOR CRUDE OIL

General

The purpose of this chapter is to provide a preliminary appraisal of the economic merits of numerous hypothesized deepwater port investments for crude oil on the basis of limited measures of benefits and costs. It attempts to determine the relative investment feasibility of these hypotheses, and thereby to identify those among them which may be worthy of further consideration and more detailed investigation. In essence, the measured feasibility of each deepwater port concept tested reflects the relation of its costs to the savings in ocean shipping costs generated.

The significance of the analysis presented herein should be qualified in three major ways. First, only a limited number of possible investments is considered. Other port improvements, beyond those treated here, could be made. Although considerable effort was made to include port developments of varied design and locational characteristics, time and budget constraints necessarily imposed limits on the number selected for detailed attention. Omission from the group in no way implies inferior standing. A proper judgment on omitted port concepts can be arrived at only through a process of appraisal comparable to the one applied here.

Second, measured values of both benefits and costs reflect numerous simplifying assumptions appropriate to a preliminary appraisal. They are thus subject to an uncertain, but possibly substantial, degree

221.

「「「「「「「「」」」

of error. The quantitative ratings for each alternative are accordingly to be taken only as very general order-of-magnitude indications of feasibility.

Third, at this preliminary stage of analysis, only the more readily measurable benefits and costs can be quantified. Since inclusion of unmeasured factors could often affect results, our presentation of findings attempts to identify some of the more important ones and to suggest their implications for relative feasibility among alternative investments.

Conceptual Approach

"Measured benefits are defined as the <u>difference</u> in otal ocean shipping costs for crude oil with a hypotrasized investment alternative and without it (that is, under the "existing" or base situation). Those measured "savings" in ocean shipping costs, however, are net of any required <u>vessel</u> transshipments under either the hypothesized deepwater port alternative or its corresponding base situation. Measured costs are defined as the total investment, operating, and maintenance costs required to provide the hypothesized facility, including any <u>pipelines</u> used for transshipment.

This limited definition of measured benefits and costs requires special comment. Most notable is the absence of any accounting for costs which may have to be incurred at refinery terminals under the existing or base situation, or under deepwater port concepts calling for vessel transshipments to the refineries. Similarly, under the same conditions, large volumes of crude movement in relatively small vessels could have further cost consequences: in harbors or connecting waterways heavily used by other ships, traffic might become congested, increasing both average trip times for all vessels and possibilities of collision or oil spill. In this broad study, no attempt can be made at even rough quantification of these possibly important factors, which require detailed examination of specifics in many places.

Generally, inclusion of the preceding elements in the limited benefit-cost measures made here would result in higher absolute and relative indications of feasibility for those hypothesized investment alternatives which -- through provision of pipelines -- eliminate, or substantially reduce, the need for product delivery by water at refineries. Where relevant to proper comparison of the various alternatives considered, attention is specifically directed to these points.

Size and design characteristics of ocean vessels transporting crude petroleum are optimized for each U.S. port served under all future conditions, with or without a new deepwater port. This generally means that their carrying capacities are the largest economically feasible for any given draft constraint, often somewhat greater than for a "typical" vessel of equal draft in today's world fleet. However, the largest size ship presumed to be available is 500,000 d.w.t., for reasons explained below. All vessels are also presumed to operate under foreign flags (except for Alaska origins) and at a 50-percent load factor, normally with full cargo in one direction and return in ballast.

As a broad generalization, future physical circumstances in major relevant crude oil loading ports abroad, and production levels at major U.S. oil refineries, are expected to be fully compatible with the use of the very largest tankers, including those of restricted-draft design, for single shipments. These conditions are closely approached today, and will be increasingly realized over time. Long-range choice of size and design characteristics for tankers used on each route would thus be governed primarily by physical conditions in U.S. ports and the economies of scale (see Annex E, chapter II).

Strategy and the second s

こころん たいにしまいい 小田市のないのであいませんでいたいがくないしいで

Vessels exceeding 500,000 d.w.t. have been excluded from treatment in this study for three reasons:

1. Detailed cost and other characteristics are subject to substantial uncertainty because available data are very limited 2. The pattern of scale economies for vessels of increasing size up to 500,000 d.w.t. implies that incremental savings, if any, would be quite modest for still larger ships (see Annex E, chapter III)

To BY & PARA MADE AND A STATE AND A STATE

224.

3. Growing worldwide environmental concern may result in absolute limitation of vessel size at about 500,000 d.w.t., or in design standards which could otherwise make ships of larger size uneconomic.

The foreign-flag and operating assumptions reflect dominant recent conditions, which are expected largely to continue (see Annex E, chapter I). Should recent U.S. subsidy programs or possible new protectionist legislation result in significant penetration of the crude oil import market by U.S.-flag carriers, somewhat higher average levels of ocean shipping costs, as well as differences in those costs among vessels of varying sizes, would be implied. On the other hand, growing use of combined carriers for crude movements will probably increase average vessel utilization rates. This would imply some decreases in average ocean shipping costs. However, directional imbalances in world trade patterns will probably impose major limits on the share of the U.S. crude import trade which combined carriers can realistically be expected to capture (see Annex E, chapter III).

Two alternative concepts of ocean transport in the base situation are often used to derive transport cost savings produced by a related deepwater port hypothesis:

1. Movement of an ocean vessel from its overseas origin to its final destination at the terminal of an oil refinery

2. Movement of a significantly larger ocean vessel to relatively deep water near the final destination, with offloading of cargo to smaller transshipment vessels which complete the journey. This dual approach to the comparative base situation is employed for two principal reasons. First, it illuminates the potential significance of a large-scale, efficient offloading system for reducing ocean shipping costs (see Annex E, chapter IV for description). Secondly, it implies uncertainty as to whether lightering on the scale contemplated would be considered a generally acceptable approach in relevant U.S. port areas, and, if so, under what particular conditions. These matters seem to present major policy questions which to our knowledge have never been adequately formulated or appraised at a national, or perhaps even a local, level.

In this benefit-cost analysis, resort to lightering of crude oil from larger tankers to smaller vessels for transshipment to refineries is hypothesized only for New York, the Delaware Bay, and San Francisco Bay. These three areas have formally designated anchorages for the offloading of oil. They are well protected and offer significantly deeper water for incoming tankers than is available in channels leading to the refinery terminals. This circumstance offers the opportunity for substantial reduction of ocean shipping costs, which would generally be offset only in small part by the additional lightering costs involved. Comparable physical conditions do not exist in the gulf or in southern California.

In theory, lightering could be undertaken outside designated and well-protected areas. Further off shore, there are numerous places where water depth would often be great enough for vessels of 300,000 to 500,000 d.w.t. However, weather conditions would sometimes make offloading difficult and hazardous in such unprotected areas. From the commercial point of view, offloading in unprotected areas might present a problem of uncertain scheduling, since tankers would sometimes have to wait indefinitely before lightering. From the public standpoint, at least under marginal weather conditions, possibilities of oil spill are probably increased. For purposes of quantitative analysis we have assumed that lightering would be undertaken only in designated lightering areas, as described in chapter IV of Annex E. This is not to imply any preference or

recommendation on our part. It is simply a question of trade-offs, which would probably vary in individual cases. Presumably, uncertainties as to vessel scheduling and possibly increased environmental risks would have to be weighed against potential incremental savings in transport costs. 콋

S. Sales

Because the time distribution of benefits and of costs differs greatly, the stream of both benefits and costs is estimated annually over the useful economic life of each facility and is then discounted at several different rates to attain present (1980) values. Benefit-cost ratios are accordingly based on the relationships of those present values.

To allow sufficient lead time for additional study, investment decision, financing and construction, 1980 is assumed to be the first year any investment alternative could begin actual operation. Construction costs are time-phased in each case as necessary to permit full operation by January 1980.

The useful economic life of port and related investments, as distinguished from their physical life, is a matter of judgment which is somewhat arbitrary. This judgment is dependent on imperfect vision of longrange conditions. The economic life of any investment could be as long as one might confidently expect that its usefulness would not be impaired by changing technology, markets, etc., up to its physical age limit. In general, 20 to 30 years have been considered reasonable in many other studies for similar investments. We have assumed that all facilities would operate through the year 2009. This assumption implies a maximum life of 30 years (1980 through 2009) for all initial investments. However, for many facilities, additional investments are made in subsequent years (in some cases into the 1990's) to reflect growth in throughputs. For these investments, assumed lives are less than 30 years, but they usually represent a small proportion of total investment. Since discounted values of both benefits and costs so far into the future are relatively small, any alternative treatment of this difficult issue would have minor effects on investment feasibility,

11.4

In economic feasibility analysis, the appropriate criterion for selection of a discount rate is the opportunity cost of capital. In principle, this concept reflects the return on investment expected by prudent investors in light of the particular risks involved. Furthermore, when the appraisal is based on real costs, as in this study, expected returns should be net of anticipated inflation. This factor sharply differentiates the opportunity cost concept from conventional financial concepts, such as market rates of interest. Unfortunately, the "pure" opportunity cost of capital is unknown, and the special ingredients of economic risk associated with the investments at issue are impossible to value.

We have skirted this problem by applying three alternative discount rates -- 5 percent, 7 percent, and 10 percent -- to all benefit-cost calculations. Confronted with the same problem for public investments in developing countries, the World Bank has generally used rates in the 8 to 12 percent range, presumably somewhat higher than appropriate for the United States. On the other hand, 10 percent is the minimum standard currently considered desirable by the President's Office of Management and Budget for public investments in water resources projects. Hopefully, the range of rates used here will satisfy varying preferences. In any case, <u>comparative</u> positions of the various alternatives are not very sensitive to this question.

Methodology

1. Projected 1980 and 2000 crude oil imports in barrels per day (from Annex A) were converted to annual long ton equivalents and prepared in the form of an origin-destination zone matrix for purposes of transport analysis. All volumes were assigned to deepwater ports when provided.

2. Ocean shipping costs per long ton of cargo for 1980 and 2000 were estimated for the appropriate vessel and distance of haul from the ocean shipping cost analysis in chapter III of Annex E, separately for each hypothesized deepwater port investment alternative and for each link in the aforementioned matrix. In each instance the vessel selected provided the lowest unit transport cost at the maximum permissible draft assumed for that port alternative. Where no vessels initially costed corresponded precisely to that draft, appropriate unit costs and vessel size characteristics were interpolated. In many cases, ships with restricted-draft design (i.e., larger than standard at a given draft) were selected.

Voyage distances on each link were estimated from the Naval Oceanographic Office's <u>Distances Between</u> <u>Ports</u> and, where appropriate, from the Coast and <u>Geodetic Survey's Distances Between United States Ports</u>. Because of extreme uncertainties about future operation of the Suez Canal, however, all projected crude oil imports from the Middle East were divided equally between the Persian Gulf and the Mediterranean for purposes of estimating shipping distances, as is explained more fully below.

3. For each hypothesized deepwater port alternative requiring, in whole or in part, vessel transshipment from the deepwater port to existing terminals, distances of movement on each relevant link were estimated from large-scale maps. Appropriate unit costs per ton of cargo on each link were estimated from data in chapter IV of Annex E.

4. Total annual transport costs for ocean shipping and for vessel transshipment (where incurred) associated with each deepwater port alternative were then calculated separately for the years 1980 and 2000. The data derived from the three previous steps were used as inputs.

5. The procedures described above were then essentially repeated for application to 1980 and 2000 movements of crude oil under the "existing," or base, situation (that is, the situation presumed to exist in the absence of any deepwater port investment). First,

unit costs of ocean shipping were estimated separately under conditions of no lightering and lightering. (Assumed vessel size characteristics for the various movements are shown in table 1.) Maximum permissible drafts at each existing port or lightering area were estimated on the basis of Corps of Engineers' data on mean low water depth and tide, with appropriate allowance for clearance. Additional costs for lightering were derived from chapter IV of Annex E. Resulting total unit costs were then applied to pertinent volumes transported on each link, separately for each base situation corresponding to one or more of the deepwater port alternatives. This procedure provided total annual shipping costs in 1980 and 2000 under all hypothesized base conditions.

6. For each hypothesized deepwater port alternative, estimates of total annual investment, operating and maintenance costs from 1975 through 2009 were made on the basis of unit cost factors developed in Annex C. These port cost data were then used as inputs to a computer program.

7. The computer program also included 1980 and 2000 projected volumes of traffic, and related ocean shipping costs, at each deepwater port. For each alternative, the computer output repeated the annual cost estimates (see first four columns of Computer Series 1 in the appendix), calculated annual throughput volumes on the assumption of linear growth from 1980 to 2000 and constant levels through 2009, and calculated corresponding annual ocean shipping costs over the same interval (see last two columns of Computer Series 1).

8. As part of the same computer run, the present (1980) value of the stream of deepwater port costs and of related ocean shipping costs through 2009 was calculated separately at discount rates of 5, 7, and 10 percent (see bottom three lines of Computer Series 1).

9. Steps 7 and 8 were then applied to 1980 and 2000 volumes and corresponding ocean shipping costs for

日のないというという

230.

Table 1. Assumed Maximum Permissible Draft and Ocean Ship Size, 1980 and 2000 Crude Oil Imports, in the Major Market Area

D.w.t. (thous.) 57 57 57	Draft (feet) 45 57.5	
57		
57		
•	57.5	236
57		
119		
263		
190		
57	52.5	183
	190	190

一世、世、中

Source: RRNA estimates.

日間のないであった。

the "existing" situation, with and without lightering (Computer Series 2).

10. A second computer program was then written to calculate benefit-cost ratios for each investment alternative considered. For costs, the program used as an input all present value calculations of deepwater port costs derived from the initial run. For benefits, it used as an input the earlier present value calculations of shipping costs related to each deepwater port and its corresponding existing situation. It then calculated the difference between the latter two figures to determine net "savings" in ocean shipping costs, and it computed the ratio of those savings (benefits) to port costs in each case at all three discount rates (see Computer Series 3).

Mid-East Oil Movements to the United States

For study purposes, future routing of tankers from dominant Persian Gulf/Red Sea crude oil origins to the U.S. east and gulf coasts presents a special problem because of great uncertainties about the Suez Canal and about competitive pipeline transshipment to the Mediterranean. The problem has important implications for distances of haul, and hence for potential savings in ocean transport costs. Although it seems reasonable to expect the canal eventually to reopen, no one now knows the effective conditions which will govern its future operation. For example, what types of improvements will be made, and when? What schedule of charges will apply?

So long as the canal remains closed, there are two possible routing patterns: the long haul around the Cape of Good Hope, or a much shorter transatlantic voyage from eastern Mediterranean points after transshipment by pipeline or by a combination of tanker and pipeline. Although transshipment elements of the latter movement are part of total transport costs, they can reasonably be assumed to be indifferent to the size of ocean vessel used in subsequent movement to the United States, the critical issue for present purposes. Recent

investment decisions by some major oil companies in relation to the huge European market indicate growing resort to the pipeline approach.

If the Suez Canal were to reopen with its physical constraints unchanged, it could be transited only by relatively small tankers that were fully laden, and by somewhat larger ones in ballast. In that event, the cost advantage of supertankers making the long circuitous journey would be reduced somewhat. If, on the other hand, the canal were eventually improved to permit transit by supertankers, distances to the United States would be substantially reduced for all ships. Therefore, either of these uncertain developments would have implications similar to those of the pipeline.

To take some meaningful account of these circumstances, we have assumed for purposes of ocean vessel routing and costing that half of projected total crude oil imports1/ from the Mideast would originate in the Mediterranean, and the balance would originate in the Persian Gulf, routed by the Cape of Good Hope.

Findings

Benefit-cost relationships for each of the various crude oil investment alternatives considered are summarized in tables 2 to 4. To simplify the presentation, all benefit-cost ratios shown in the tables are based on a 10-percent discount rate. As previously noted, this is the minimum standard currently considered desirable by the Office of Management and Budget. Ratios based on discount rates of 5 and 7 percent, which are shown in the appendix, Computer Series 3, are of course uniformly higher. However, they do not affect the relative standing of the various alternatives, nor (with one minor exception) do they imply feasibility for any alternatives which fail to qualify at the higher rate.

1/ To the U.S. east and gulf coasts. All Mideast crude oil imports to the west coast are assumed to originate in the Persian Gulf. Table 2. Benefit-Cost Ratios, East Coast Crude Oil Deepwater Port Alternatives, with Alternative Throughputs and Base Situations, at 10-Percent Discount Rate

Description	Comparison	Lightering	ering	No ligh	lightering
	number <u>a</u> /	Low vol.	High vol.	Low.vol.	High vol.
New York local 300,000-d.w.t. ship 400,000-d.w.t. ship	1, 3, 5, 7 2, 4, 6, 8	1.41 1.28	2.25 2.65	2.75 2.50	4.4 5 4.0 5
	9, 13, 17, 21 10, 14, 18, 22	2.20 2.04	2.85	6.99 6.46	9.30 8.96
400,000-c.w.r. snip: Onshore site Island site	11, 15, 19, 23 12, 16, 20, 24	2.08 1.94	2.70 2.61	6.59 6.14	8.80 8.51
East coast regional 300,000-d.w.t. ship: N.Y. site	25, 39, 53, 67 26, 40, 54, 68	2.34 2.91	2.88 3.45	6.Ål 7.98	8.22 9.86
96	7, 41, 55,	2.56	3.32	7.01	9.47
Island storage Vessel transshipt	28, 42, 56, 70 29, 43, 57, 71	2.46 1.47	3.22 2.12	6.74 5.66	9.20 8.44
×0	30, 44, 58, 72 31, 45, 59, 73	1.84 1.76	2.63 2.56	5.06 4.84	7.50 7.32
-	_				•

17(19)24

233.

continued--

and a second

l

ł,

.

State of the local division of the local div

Table 2. Benefit-Cost Ratios, East Coast Crude Oil Deepwater Port Alternatives, with Alternative Throughputs and Base Situations, at 10-Percent Discount Rate continued--Table 2.

	Comparison	Ligh	Lightering	No lightering	tering
nescription	number <u>a</u> /	Low vol.	Low vol. High vol.	LOW VOl.	Low vol. High vol.
400.000-d.w.t. ship:					
N.Y. bay site	46, 60,	2.16	2.69	5.92	7.68
Long Beach, N.J. site.	33, 47, 61, 75	2. 39	3.24	7.37	9.25
Delaware site:					
Onshore storage	48, 62,	2.37	3.07	6.49	8.78
Island storage	49, 63,	2.32	3.04	6.36	8.69
Vessel transshipt	36, 50, 64, 78	1.33	1.97	5.14	7.85
tion c					
sites:					
Comp. 2 and 11, etc	37, 51, 65, 79	1.71	2.45	4.68	6.95
Comp. 2 and 12, etc	52, 66,	1. 64	2.40	4.51	6.85

a/ Comparison numbers refer to those used in the appendix, Part I: East Coast Oil, Computer Series 3: Benefit-Cost Comparisons.

: :

234.

11000

111111

in a later the second

Table 3. Comparison of Benefit-Cost Ratios, Gulf Coast Crude Oil Deepwater Port Alternatives,<u>a</u>/ at 10-Percent Discount Rate

Description	Comparison	Volu	ne
Description	number <u>b</u> /	Low	High
210,000-d.w.t. ship			. ورون به بالمانين و و بالمراجع (بالمانين و و بالمراجع) . و و بالمراجع (بالمانين و و بالمراجع) . مراجع الماني و بالماني
Miss. site, vessel			
transshipment	1, 13	8.71	10.35
Texas site:			
Monobuoy Berth	2, 14 3, 15		7.21
DET []]	5, 15	4 • 4 0 • • • • • • • • •	OV€C Productional States
300,000-d.w.t. ship			
Miss. site, vessel			
transshipment	4,16	10.64	13.06
Texas site: Monobuoy	5, 17	7.70	8.48
Berth	6, 18	5.80	6.89
400,000-d.w.t. ship			
Miss. site, vessel			
transshipment Texas site:	7,19	10.05	12.39
Monobuoy	8, 20	7.70	8.49
Berth	9, 21	5.44	6.53
500,000-d.w.t. ship			
Miss. site, vessel			
transshipment Texas site:	10, 22	11.21	13.60
Monobuoy	11, 23	7.97	8.78
Berth	12, 24	4.24	5.21

 All alternatives are regional.
 D/ Comparison numbers refer to those used in the appendix, Part II: Gulf Coast Oil, Computer Series 3: Benefit-Cost Comparisons.

235.

清清

Description	Comparison number <u>a</u> /	Lightering	No Lighteriņg
Los Angeles-Long Beach local 300,000-d.w.t. ship. 400,000-d.w.t. ship.	1 2		4.01 3.40
San Francisco local 157,000-d.w.t. ship: Long Wharf, Richmond-Avon 250,000-d.w.t. ship:	3, 9 4, 10	0.57 0.48	3.85 3.23
Long Wharf, Richmond Richmond-Avon 400,000-d.w.t. ship:	5, 11 6, 12	0.79 0.47	3.15 1.86
Moss Landing Puget Sound, pipe- line transshipt	· · · · · · · · · · · · · · · · · · ·	1.25 0.51	3.30 1.12
Regional: combination Comp. 1 and 3 or 9 Comp. 1 and 4 or 10. Comp. 2 and 3 or 9 Comp. 2 and 4 or 10. Comp. 1 and 5 or 11. Comp. 1 and 6 or 12. Comp. 2 and 6 or 12. Comp. 2 and 6 or 13. Comp. 1 and 7 or 13. Comp. 1 and 8 or 14. Comp. 2 and 8 or 14.	15, 30 16, 31 17, 32 18, 33 19, 34 20, 35 21, 36 22, 37 23, 38 24, 39	2.02 1.82 1.88 1.71 1.90 1.31 1.79 1.25 2.12 0.93 2.01 0.91	3.92 3.53 3.64 3.31 3.45 2.37 3.25 2.27 3.53 1.46 3.34 1.43
Regional: integrated 300,000-d.w.t. ship: Los Angeles-Long Beach, pipeline to San Francisco		1.49	2.68

Table 4. Comparison of Benefit-Cost Ratios, West Coast Crude Oil Deepwater Port Alternatives, at 10-Percent Discount Rate

continued--

236.

They have been a provided the second s

Table 4. Comparison of Benefit-Cost Ratios, West Coast Crude Oil Deepwater Port Alternatives, at 10-Percent Discount Rate continued--

Description	Comparison numberª/	Lightering	No Lightering
400,000-d.w.t. ship: Los Angeles-Long Beach, pipeline to San Francisco Puget Sound, pipe- line to Los	28, 43	1.41	2.53
Angeles and San Francisco	29, 44	0.73	1.01

a/ Comparison numbers refer to those used in the appendix, Part III: West Coast Oil, Computer Series 3: Benefit-Cost Comparisons.

b/ Combination of two local (Los Angeles/Long Beach and San Francisco) improvements.

238.

East Coast

The 20 basic crude oil investment alternatives considered for the east coast are arranged to facilitate proper comparison of the numerous variables governing major choices. Those alternatives which are designed to serve only the Greater New York refineries are presented first, followed by alternatives serving only refineries accessible to the Delaware Bay. The larger number of alternatives of regional scope follow.

For each physically distinct alternative and related ocean vessel size listed, four benefit-cost ratios are shown. Each reflects a different set of assumptions on two other variables: (1) high or low volumes of annual throughput, and (2) with or without full resort to lightering of imported crude oil in the comparative base situation.

All of the investments considered are at least marginally feasible on the basis of measured concepts, ranging from a high of nearly 10:1 to a low of 1.3:1. Absolute values are moderately sensitive to differences in assumed volumes, and are extremely sensitive to whether or not one presumes general resort to lightering of large tankers in the absence of a new deepwater port. However, the <u>relative</u> position of the various options is not importantly affected by those variables.

Thus, each facility has a higher benefit-cost ratio when designed to accommodate 300,000-d.w.t. rather than 400,000-d.w.t. ships. This reflects the fact that additional terminal costs are incurred in the latter case, while ocean shipping costs of restricted-draft, 400,000-d.w.t. vessels are approximately the same as those of a 300,000-d.w.t. ship at the assumed available draft of 70 feet. (At a deeper draft, the 400,000-d.w.t. ship would be less costly.)

Similarly, most of the regionally integrated facilities serving both the New York and Delaware Bay areas have higher benefit-cost ratios than any local investment designed to accommodate crude oil imports

「「「「「「「「「「」」」」

見ている意識で聞い

41

only in one area, or any combination of two such local investments. This suggests inherent efficiencies in a regional approach to deepwater port planning for the east coast.

Among the five regionally integrated port development concepts, the consistently least attractive under any combination of assumptions as to lightering, volumes, or vessel size is the site off the Delaware Capes utilizing vessel transshipment. At least under the circumstances governing the facilities under investigation here, pipeline transshipment is clearly a preferred approach from the viewpoint of transport benefits and costs.

Of the remaining four regional port designs, benefit-cost ratios for the site in Lower New York Bay are uniformly lower, by a moderate degree, than for other sites. Placement of oil storage at the offshore Delaware site appears to make it slightly less attractive than when it is located on shore. However, neither of these Delaware locations has as favorable a benefitcost ratio as the facility located near Long Branch, New Jersey. Its measured feasibility ranges from 2.9:1 under the more constructive assumptions to 9.9:1 under the more favorable ones.

However, the degree of error to which the estimated benefit-cost ratios are subject probably exceeds the modest differences shown among the four indicated alternatives. Furthermore, environmental factors might also influence them differentially. More refined analysis of these alternatives is therefore certainly in order.

Gulf Coast

Only three basic design alternatives, all regional in scope, are considered for the gulf coast: a site at the mouth of the Mississippi River with complete reliance on vessel transshipment to various major refinery locations along the coast; an offshore monobuoy near Freeport, Texas; and a fixed terminal at ALC: NOT ALC

240.

Freeport. Both Freeport alternatives provide for transshipment to refineries predominantly by pipeline. For each of these three basic design concepts, four different ship sizes and corresponding drafts, as well as two alternative sets of projected annual throughputs, are hypothesized. Presentation of the benefit-cost ratios in table 3 is arranged to facilitate appraisal of those variables.

As on the east coast, benefit-cost ratios for all options are favorable, ranging from 13.6:1 to 4.2:1. The higher range of values as compared with the east coast is due to: (1) the assumed avoidance of lightering in the gulf in the absence of a deepwater port; (2) somewhat larger volumes; and (3) modestly higher unit shipping cost savings because of greater average link distances.

Under all alternative concepts of vessel size and throughputs, the fixed terminal at Freeport is less attractive than the other facilities, especially where larger vessels are employed. This suggests substantial diseconomies from dredging.

Benefit-cost ratios for all other investment alternatives increase with increases in draft and corresponding ship size from 210,000 d.w.t. to 500,000 d.w.t. (except that, at the assumed draft of 70 feet, use of 400,000-d.w.t. vessels offers no advantage over, or is less favorable than, use of 300,000-d.w.t. vessels, for the same reasons indicated above in relation to the east coast). These circumstances reflect advantages of naturally deep water for accommodating vessels of very deep draft (up to 95 feet).

Surprisingly, and in marked contrast to analogous relationships on the east coast, measured feasibility for the Mississippi site, with full dependence on vessel transshipment, is significantly <u>higher</u> than for the Freeport monobuoy and pipeline transshipment concept over the full range of assumed vessel sizes and throughputs. This principally reflects the very substantial costs required to provide pipeline links to most of the widely scattered refinery locations along the gulf. For reasons indicated earlier, however, benefitcost ratios presented herein for any investment alternatives not dependent on large-scale vessel transshipment must be adjusted upward, to an uncertain but possibly substantial degree. This adjustment is to reflect their favorable impact on vessel traffic in possibly congested waterways and on reduced requirements for terminal improvements at the refineries. Thus, the Freeport monobuoy design concept, in addition to the Mississippi site, appears worthy of more detailed appraisal -especially for accommodation of the very largest supercarriers.

West Coast

The numerous investment alternatives considered on the west coast fall into four broad groups. These are comprised of local approaches for two separate areas (the dominant southern California and northern California refinery concentrations) and regional approaches of two different types (those which constitute a combination of two separate improvements, each serving one of those local areas, and those which concentrate on a single deepwater site for the entire region, with pipeline transshipment as necessary). Benefit-cost ratios for each option within those four groups are shown sequentially in table 4. Except for local investments serving only southern California, two benefit-cost ratios are indicated, as they are on the east coast, to reflect alternative assumptions as to the use of lightering in the comparative base situation.

Most benefit-cost ratios are highly sensitive to whether lightering from large tankers in San Francisco Bay is assumed in the absence of a new deepwater port. Furthermore, measured indications of the relative, as well as the absolute, feasibility of alternatives affecting northern California are sensitive to this assumption.

Before considering that issue further, certain findings can be established which are not dependent on its resolution. First, the benefit-cost ratio of 4:1 clearly establishes that dredging of Los Angeles-Long Beach for the accommodation of 300,000-d.w.t. tankers drawing 70 feet to serve the southern California market would be advantageous (more so than for the accommodation of 400,000-d.w.t. vessels at the same draft, for the same reasons as have been discussed earlier). That ratio would be still higher if an uncertain part of estimated costs had been subtracted to allow for the use of dredged materials in other harbor improvements.

It is also clear that regionally integrated investment alternatives are substantially less advantageous than most combinations of investments designed to separately serve the northern and southern California markets. This result reflects the relatively high cost of pipeline transshipment. Its disadvantage is particularly marked in the case of the hypothesized movement of all incoming tankers to the Puget Sound area, with pipeline transshipment to both northern and southern California refinery locations. Further consideration of all these options would appear justified only if unmeasured values, particularly those pertaining to the environment, should dictate a relatively much higher ranking.

We can now return to the issue previously mentioned. Since all remaining regional investments are combinations of two local solutions for northern and southern California, and since the latter has already been treated, attention may be concentrated on the six major options hypothesized for the San Francisco Bay area.

The first four of these six alternatives shown in table 4 are closely related. They are designed to consider two trade-offs regarding possible deepwater port improvements inside the San Francisco Bay area:

1. Incremental costs for providing deeper draft versus incremental savings in shipping costs through the use of larger vessels

2. Costs of deepening channels above Richmond, which would permit direct vessel access to all refineries, versus costs of pipeline transshipment to most refineries from a central tanker terminal at Richmond.

Examination of the benefit-cost ratios indicates that crude oil distribution by pipeline transshipment from Richmond is significantly more favorable under all conditions. However, resolution of the trade-off on Ship size depends on the choice of base situations. Where no lightering is presumed, accommodation for relatively smaller tankers has a higher benefit-cost ratio than provision for larger ones. Where lightering is presumed, the reverse is true. However, in the latter instance, absolute feasibility is doubtful.

The two prior alternatives (for the Richmond site with pipeline transshipment) have considerably higher benefit-cost ratios than the sixth-listed option of we supertanker movement to the Puget Sound area, with pipeline transshipment to northern California. The same . observations made above on regionally integrated approaches apply equally to this alternative.

dill H.

The last remaining option, a site at Moss Landing in Monterey Bay with pipeline transshipment to all refineries, is the only one whose benefit-cost ratio is favorable under both presumptions as to the base situation. It is modestly less favorable than for one of the Richmond choices where no lightering is allowed, but is very significantly more favorable where that restriction is removed.

Investment priorities among hypothesized northern California alternatives implied by the benefit-cost ratios do not, however, make any allowance for differential consequences among them as to traffic congestion in affected waterways. In general, those implications seem most favorable for the Moss Landing alternative, which is unique in the group in that it requires no vessel movement into San Francisco Bay. Further appraisal of the quantitative significance of this feature in relation to its absence in other deepwater port

alternatives, as well as of the suitability of largescale lightering in the base situation, would be highly instructive in resolving the uncertainties involved.

An Interregional Issue

One final issue with respect to deepwater port alternatives for the accommodation of crude oil imports can be illuminated from data developed earlier: the economic significance of not providing an east coast deepwater port to accommodate its projected crude oil import requirements. Among other approaches to the question, one might presume as a viable alternative the movement of oil in large vessels to a deepwater port in the gulf, with local refining and transshipment by product pipelines to the east coast. It was partly to test this approach that projected 1980 and 2000 import volumes for both east and gulf coasts were made in the alternative. Differences in the range of projection were the same in each case: 50 million long tons in 1980 and 150 million long tons in 2000. Those values are somewhat arbitrary, but would certainly be larger if full account were taken of the recent interregional flow of oil from the gulf to the east coast.

One way to express the economic penalties in-Volved is to estimate the benefit-cost ratio for a gulf coast deepwater port serving the east coast market, including the interregional pipeline, and then compare it with benefit-cost ratios for some of the east coast regional facilities. Accordingly, we developed a benefit-cost ratio for a relatively favorable situation -- a deepwater port site near Freeport with a monobuoy for accommodating 500,000-d.w.t. ships -- and considered only the incremental costs of its provision to serve the east coast market. In this case, ocean shipping cost savings are measured by differences in costs for large tanker movement to the gulf coast and smaller vessel movement to the east coast, with and without lightering. As indicated in table 5, the absolute feasibility of this approach is at best marginal, and its relative feasibility is very low in relation to numerous east coast deepwater port alternatives.

「日本語」を言語はないないでは、「日本語」のないで、

Table 5. Illustrative Investment Feasibility of Gulf Coast Deepwater Port with Pipeline Transshipment to Serve the East Coast Market,^a at 10-Percent Discount Rave

(In present [1980] values of mil. of 1970 dol.)

Them	East coast ba	se situation sumes:
Item	No lightering	Lightering
Benefits		
Ocean shipping costs:	p.	
To east coast, exist- ing situation	4,425.5	3,062.7
To gulf coast deepwater port (Freeport mono- buoy, 500,000-d.w.t. ship)	2,517.2	2,517.2
Savings (benefits)	1,907.3	545.2
Costs		
Incremental costs of gulf coast deepwater port	204.7	204.7
Costs of interregional pipeline to east coast	1,381.4	1,381.4
Total costs	1,586.1	1,586.1
Benefit-cost ratio	1.20	0.34

a/ 50 million long tons in 1980, increasing to 150 million in 2000 through 2009.

Source: Appendix and Annex C.

245.

A closely related issue is the economic significance of possible constraints on expansion of east coast refineries, assuming that a regional deepwater port was located on that coast. In that event, again assuming (1) the alternative of ocean shipment to the gulf coast, (2) local refining, and (3) pipeline transshipment to the east coast, the penalties involved would include:

1. The cost of pipeline transshipment (the unit costs of which are given in table 6)

2. The increment in ocean shipping costs to the gulf over the east coast

3. The increment in gulf coast deepwater port costs over the east coast.

As shown in table 7, these penalties collectively amount to around \$1.50 to \$1.85 per long ton, or \$0.20 to \$0.25 per barrel.

247.

Table 6. Estimated Unit Cost of Product Pipeline Transshipment, Gulf Coast-East Coast

(In 1970 dollars)

Item	1980	2000
	million	s of \$
First cost	572.2	1,185.4
Annual costs:		
10-percent capital change	57.2	118.5
Operating	10.8	36.2
Maintenance	1.8	4.7
Total annual cost	69.8	159.4
	- mil. of	long tons
Annual throughput	50.0	150.0
	dol	lars
Cost per long ton	1.40	1.06

Source: Appendix, Part IV: Texas-East Coast Products Pipeline.

Table 7. Estimated Penalty Per Barrel for Routing of East Coast Crude Import Requirements to Deepwater Port on Gulf Coast Rather Than on East Coast

(In 1970 dollars)

Item	Cost per long ton
Interregional pipeline ^{a/}	1.06-1.40
Ocean shipping ^{b/}	.35
Barge transshipment ^{C/}	.06
Gulf coast deepwater port cost increment over east coast <u>d</u> /	.0304
Total cost:	
Per long ton	1.50-1.85
Per barrel (at 7.5 barrels per long ton)	.2025

a/ From table 6.

5/ 300,000-d.w.t. ship to Freeport, Texas over 300,000d.w.t. ship to Long Branch, New Jersey.

c/ Weighted average (10-percent of Freeport volume goes by barge, balance goes by pipeline to gulf coast refineries).

d/ Present (1980) value of this increment is \$41.1 million, about 3 percent of present (1980) value of \$1,381.4 million for the interregional pipeline.

Source: Table 6 and appendix.

248.

II. DEEPWATER PORT INVESTMENT ALTERNATIVES FOR DRY BULK COMMODITIES

Conceptual Approach

In this chapter, the feasibility of a limited number of deepwater port improvements to serve dry bulk commodity movements are tested at a very preliminary level. As in the case of crude oil, other improvements might also be studied. However, from our analysis of traffic and market conditions, the improvements included here appear to be especially worthy of consideration. Except for a single hypothesized deepening by 10 feet of channels serving existing port facilities at Hampton Roads for coal exports, all deepwater port concepts examined here are entirely new facilities requiring water transshipment to or from existing ports.

On the east coast, a single transshipment terminal -- at Big Stone Beach in the mouth of the Delaware Bay -- is hypothesized. It would accommodate coal exports from Hampton Roads and Baltimore, with and without additional facilities to serve iron ore imports destined mostly for Baltimore and Trenton. On the gulf coast, two sites are considered. The more advantageous from the traffic standpoint is located at the mouth of the Mississippi River. It is designed to serve cereal exports or a combination of cereals and regional imports of iron ore. However, if the hypothesized site at Freeport, Texas, were developed for crude oil, incremental costs for further accommodation of cereals might be sufficiently low to offset the locational disadvantage. The Freeport site is therefore also considered.

The basic approach taken in measuring benefits and costs of investment alternatives for dry bulk commodities is essentially the same as that for crude oil. However, one major qualification made earlier no longer applies. Since all transshipments between hypothesized new terminals and existing ports are by vessel, any costs incurred in existing ports or connecting waterways (which are not encompassed by measured benefit or cost values) would be more or less the same under all circumstances. They would therefore not significantly affect comparisons.

Furthermore, the determination of "optimal" vessel sizes for ocean shipment of dry bulk commodities, in the absence of existing U.S. port draft constraints, is far more complex than for crude oil, as is indicated in Chapter II of Annex E. A ture draft circumstances in the many hundreds of relevant overseas ports (especially for the reception of coal and grain) are uncertain. The long-term significance of numerous other physical constraints in those ports, including storage, berths, channel widths, handling equipment, etc., is unknown. Apart from physical limitations, judgments as to maximum desired shipment sizes among numerous overseas (or domestic) buyers are now necessarily speculative.

The only acceptable means of coping with these difficult questions in this study is to go around them. Instead of attempting to project the unknown, we have reformulated the guestion to fit the circumstances. Assuming no significant future physical constraints on vessel size abroad, and further assuming the general acceptability of very large individual shipments, how attractive might transshipment terminals serving dry bulk commodities be? In all cases we have hypothesized full reliance on a 250,000-d.w.t. vessel for any movement where such vessels would be less costly (after allowing for vessel transshipment costs) than smaller ships operating directly between existing ports of origin and destination. The choice of that size vessel is arbitrary, but a 250,000 tonner is certainly much larger than any dry bulk vessel now operating or planned. In addition, since so large a vessel may be especially unrealistic for cereals, we have hypothesized

き 二二日本 いちち

the use of a 120,000-d.w.t. ship for their evacuation from both deepwater port sites considered.

and the second second

Finally, the circumstances which make sound projection of vessel size so difficult apply with equal force to vessel design characteristics. The practicability of restricted-draft vessel design is uncertain. We have accordingly made two alternative hypotheses as to vessel design characteristics in the existing or base situation: at any given draft, all vessels are assumed to be of typical design and average capacity, or they are assumed to be of restricted-draft design and maximum feasible capacity.

Methodology for Dry Bulk Transshipment Terminals

Initially projected 1980 and 2000 zone-to-1. zone trade flows (from Annex A) were reviewed separately for each investment concept and for each commodity (coal, iron ore, and cereal) to determine which particular links were clearly unsuitable candidates for supercarrier service. For coal, only projected exports to west coast South America, Eastern Europe, and the Mideast were excluded, principally because of the very small volumes and partly because of extreme doubts as to the adequacy of port facilities for supercarriers in those areas. For the same reasons, projected cereal exports to all overseas zones other than to Western Europe and Japan were excluded from further consideration. However, over two-thirds of total projected 1980 cereal exports, and over three-quarters of total projected 2000 cereal exports, remained as potential candidates for supercarrier transport. All projected 1980 and 2000 iron ore imports from various overseas origins were considered potentially assignable to such large vessels.

2. The basic 1980 and 2000 projections of cereal exports from the gulf coast and of iron ore imports to the gulf coast did not distinguish port areas within the coastal region. For purposes of transport analysis, this information is essential. The percentage distribution of cereal exports by initial gulf port of departure was assumed to be the same as in 1968-69, with or

Ĵ

without a new transshipment terminal. The same basic assumption was made for iron ore imports to the gulf coast, except that, to reflect expectations discussed in the commodity analysis (Annex A), the Houston share of total gulf coast imports in 1980 and 2000 was increased modestly. The overseas origin distribution of projected iron ore imports to each of the three major receiving areas is assumed to be the same as was projected for the entire gulf region.

3. Ocean shipping costs per long ton for 1980 and 2000 were estimated separately for each deepwater port investment concept, and for traffic on each U.S.overseas route considered potentially suitable for assignment to very large bulk carriers. All cargoes were assumed to move in 250,000-d.w.t. ocean vessels. Cereal exports were also assumed, in the alternative, to be evacuated in ocean vessels of 120,000 d.w.t. from the transshipment terminal. Unit ocean shipping costs for those vessels (assumed to be the same as for tankers of equal size) were estimated for the distance of haul on each link from the ocean shipping cost analysis in chapter III of Annex E. Voyage distances in each case were estimated in the same way as for crude oil movements.

4. For each hypothesized transshipment terminal and for each commodity, costs of vessel transchipment to or from relevant existing terminals were estimated from unit cost data given in chapter IV of Annex E. Transshipment link distances between offshore terminals and existing ports were estimated from large-scale maps. Unit costs of vessel transshipment ranged from \$0.33 to \$1.03 per long ton among the many links involved.

5. The methods described in step 3 above for the determination of ocean shipping costs were then applied to the existing or base situation. Unit costs of ocean shipping on each link were estimated separately for two different concepts of vessel design: for a ship whose capacity in deadweight tons is "typical" for a given draft; and for a vessel of restricted-draft design (i.e., longer and wider than normal) whose capacity is the maximum feasible at the same draft level. Maximum permissible drafts at each relevant existing port were estimated from Corps of Engineers' data on mean low water depth and tide, with appropriate allowance for clearance. To simplify calculating procedures, a typical permissible draft of 36 feet was assumed for the many gulf ports evacuating grain, which in fact governs most of them (see table 8).

Total unit shipping costs (including vessel 6. transshipment) were compared with like costs of ocean shipping under the existing situation, separately for each hypothesized transshipment terminal and for each transport link. This comparison was made separately for the two different vessel concepts in the existing situation. Where unit shipping costs -- including vessel transshipment -- on a particular link exceeded unit costs under the existing situation, traffic on that link was eliminated from consideration for the new deepwater port. The balance of the traffic was then assigned to it, and potential savings per ton in shipping costs on each relevant link were multiplied by projected link volumes to obtain potential aggregate savings in 1980 and 2000.

7. Estimated total investment, maintenance, and operating costs for each year from 1975 through 2009 were developed from unit cost factors given in Annex C, and were applied to the design of each hypothesized transshipment terminal. The resulting port cost data were then used as inputs to a computer program.

8. That program also included 1980 and 2000 projected volumes of traffic at each deepwater port. For each transshipment terminal concept, the computer output repeated the annual cost estimates (see the first four columns of Computer Series 1 in Part V of the appendix), with annual throughput volumes being calculated on the assumptions of linear growth from 1980 to 2000 and of constant levels through 2009 (see the fifth column of Computer Series 1, Part V).

9. As part of the same computer run, the present (1980) value of the stream of deepwater port costs

法情報の

<u>ा</u> (ख्रु

warmenter.

ł

į.

Table 8. Assumed Ship Draft Exports and Imports,	and Size Cha in the Base	rracteristics, Situation, By	y 1980 an y Commodi	1980 and 2000, Dry Bulk Commodity and Area
Commodity and area	a	Draft	D.w.t.	(thousands)
		(feet)	Typical	Restricted draft
Coal				
Hampton Roads}	Japan Other	36 47	57 ^{4/} 68	57 <u>4</u> / 91
Baltimore	Europe	38	52	68
Iron ore		36	57 <u>a/</u>	57 <u>a/</u>
Baltimore}	West COAST 3. Aut.	9 8 7 7	52 _a /	68 68
Trenton	West coast S. Am. Other	36 36	57 <u>~</u> / 44	57
Mobile	All	36	44	57
Houston)				
Cereals Gulf	Japan Other	36 36	57 <u>a/</u> 44	57 <u>a</u> / 57
	•			

Special Panama Canal vessel.

वि

RRNA estimates. Source: through 2009 was calculated separately at discount rates of 5, 7, and 10 percent (see the bottom three lines of Computer Series 1, Part V).

10. A second computer run was then made to calculate present (1980) values of the stream of <u>savings</u> in ocean shipping costs (determined for 1980 and 2000 in step 6 above) over the life cycle of each deepwater port at the same three discount rates (see Computer Series 2, Part V).

11. Another computer program was then written to calculate benefit-cost ratios for each investment alternative considered, using data from steps 9 and 10 as inputs (see Computer Series 3, Part V).

Methodology for Incremental Improvement at Hampton Roads

The various analytic steps followed to determine investment feasibility of an incremental improvement at Hampton Roads for coal exports were exactly the same as for hypothesized transshipment terminals, with one major exception. Instead of assuming that all potential traffic would move in vessels of one common size, an effort was made to project 1980 and 2000 ship size distributions on each relevant link as realistically as possible. The projections are based partly on a crude extrapolation of recent trends (as best as they can be estimated from inadequate data) and partly on an evaluation of planned improvements in selected major overseas areas. They all assume vessels laden to their capacity and operating round trip on a single leg, and they make no allowance for partial loading of combined carriers which complete their cargo in another port. Projections should accordingly be considered highly approximate. A more detailed study ought probably to explore issues of shipment size and vessel routing patterns in greater depth, including direct contact with major coal importers in leading markets.

Projected 1980 and 2000 total coal exports from Hampton Roads were first distributed by five vessel size groups in terms of draft, assuming a maximum of 52 feet when the channel is improved (see table 9). For each of the four vessel size groups above 42 feet, an appropriate vessel was selected as representative, assuming, in the alternative, either typical or restricted-draft design concepts. In the absence of the 52-foot improvement (the existing or base situation), all traffic projected to utilize the greater draft was assumed to move in vessels of 42-foot draft, the maximum available under the existing situation, again assuming two alternative vessel design concepts (see table 10).

Findings

A summary of benefit-cost ratios for all dry bulk investment alternatives considered, based on a 10percent discount rate, is given in table 11. Calculations have also been made on the basis of 5 and 7 percent discount rates, as shown in the appendix, Computer Series 3, Part V. However, as in the case of crude oil investments, findings are generally insensitive to choice of rate. To simplify presentation, table 11 is therefore limited to results which reflect the high value.

Investment alternatives in table 11 are arranged first by location and then by design concept. For each alternative listed, two benefit-cost ratios are shown. The first is based on the presumed uniform use of conventionally designed vessels in the absence of a deepwater port, and the other presumes full resort to restricted-draft design vessels under the same conditions. In actuality, some uncertain mix of the two would be expected. The latter approach tends to reduce savings in ocean shipping costs, and hence the benefitcost ratios.

All of the alternatives listed, <u>except</u> for the incremental improvement at Hampton Roads for coal export, are decidedly unfavorable on the basis of measured

Projected 1980 and 2000 Ship Size Distributions, by Draft Range, for Coal Exports from Hampton Roads with 52-foot Draft Table 9.

いたい ビジレント

Contraction of the

			Overseas destination area	destinat	ion area	-
		10-throoth	Nouthroat Conthurat	South	South America	Other Wediterranean
icar and projected draft range	Japan	Europe	Europe	East coast	West coast	and Eastern Europe
1980						
Under 42	40	00	30	02	007	ONT
42-45	1	DT	0T	707	•	:
45-50	20	30	30	TO		8
50-52	20	10	10	ļ		1
52	20	20	20	ļ		ł
Total long tons (in millions)	11.5	16.0	12.2	4.4	0.5	1.5
2000						
Under 42	25	15	15	40	100	65
42-45	!	10	10	15	ł	35
45-50	10	15	15	25	1	ł
50-52	15	20	20	50		1
52	50	40	40	ł		1
Total long tons	6 4	181	3.01	6,1	α Ο	2.6
	۴ • • • •		-	1	•	•
Source: RRNA estimates.	ates.					

257.

1

5

á

Table 10. Assumed Vessel Characteristics for Projected Traffic at Hampton Roads if Left at 42-Foot Draft or if Deepened to 52-Foot Draft

Projected vessel	Represe	ntative ve	ssel in proje	cted range
draft	Typic	al design	Restricted-	draft design
(feet)	Draft (ft.)	D.w.t. (1,000)	Draft (ft.)	D.w.t. (1,000)
		Left at	42-foot draf	t
42	42.0	68.0	42.0	91.0
	Dee	pened to 5	2-foot draft	
42-45	43.5	74.0	43.5	101.5
45-50	47.5	100.0	47.5	133.5
50-52	50.0	120.0	50.0	157.0
	52.0	128.0	52.0	179.2

Source: RRNA estimates, based on data in Annex E, chapter III.

258.

Description and	Com- pari-	Benefit-c suming b	cost ratios as- ase vessels of
commodity handled	son no. <u>a</u> /	Typical design	Restricted- draft design
Transshipment terminal in Delaware Bay, all 250,000-d.w.t ships Coal: High storage	1,3	0.25	0.21
Low storage Coal and iron ore:		0.35	0.30
High coal storage Low coal storage		0.28	0.21 0.26
Transshipment terminal at Mississippi River mouth			
Cereals: 250,000-d.w.t. ships.	11,12	0.58	0.45
120,000-d.w.t. ships.	13,14	0.61	0.32
Iron ore: 250,000-d.w.t. ships. Cereals and iron ore: Combination of com- parisons 11 + 15,	15,16	0.27	0.17
12 + 16 Combination of com- parisons 13 + 15,	17,18	0.54	0.40
14 + 16	19,20	0.55	0.31
Transshipment terminal near Freeport, Texas Cereals:			
250,000-d.w.t. ships. 120,000-d.w.t. ships.		0.47 0.25	0.11 <u>b</u> /
Incremental improvement at Hampton Roads	-	0.17	1 (1
Coal	9,10	2.17	1.61
			continued-

Table 11. Benefit-Cost Ratios for Selected Deepwater Port Investments Serving Dry Bul. Commodities at 10-Percent Discount Rate

continued--

Table 11. Benefit-Cost Ratios for Selected Deepwater Port Investments Serving Dry Bulk Commodities at 10-Percent Discount Rate continued--

17.7/10/08 AUGUNT CON

a/ Comparison numbers refer to those used in the appendix, Part V: Dry Bulk, Computer Series 3: Benefit-Cost Comparisons. b/ No potential traffic. \overline{c} / Deepening from 42- to

Deepening from 42- to 52-foot draft.

benefit-cost relationships under either concept of vessel design. They would be even less favorable, especially in relation to cereals, if realistic projections of ship size distributions could be made. As explained earlier, for purposes of benefit-cost analysis, all traffic to or from major overseas links was assigned to the largest ship size hypothesized at the deepwater port when shipping costs (after allowance for vessel transshipment) could theoretically be reduced. In fact, however, overseas market and physical constraints would often preclude the use of such large vessels for many movements.

这些时间,我们的时候,这个时间的时候,我们的时候,我们的时候,

The unattractive prospects for economically feasible investments in transshipment terminals to accommodate dry bulk commodities thus contrast strikingly with like investments for crude oil. This importantly different result reflects the combined impact of four major factors. In relation to the circumstances of transshipment terminals for crude oil, it appears that dry bulk transshipment terminals:

1. Generally have much smaller annual throughputs over the entire life cycle

2. Cannot provide as great an average saving in ocean shipping costs per ton of cargo, mostly because distances of haul are typically shorter or are subject to penalties of circuity (e.g., the Panama Canal)

3. Incur significantly greater investment, maintenance, and operating costs per ton of cargo handled, largely because of the inherently more costly nature of dry bulk storage and handling facilities and partly because of smaller throughputs

4. Are usually subject to higher unit costs for transshipment. This reflects the fact that transshipment by pipeline, available for oil and other wet bulk products, is often less costly than by water, the only suitable technology for dry bulk. However, even where oil and dry bulk are transshipped by vessel, unit costs

うう 一般の一般の一般の

for the latter are usually higher because of inherently more costly handling requirements.

The preceding findings as to dry bulk transshipment terminals are totally inapplicable to the one investment option considered which involves deepening of an existing port. It therefore does not have to bear, as the others do, the substantial costs for construction and operation of new storage and handling facilities and for vessel transshipment. That alternative calls for deepening of channels serving Hampton Roads to permit the use of vessels drawing 52 feet instead of the present 42 feet. Measured benefits are 1.6 to 2.2 times measured costs, depending upon one's choice of vessel d sign characteristics. Results may be sensitive to the c) dely projected ship size distributions for this alte native, but those projections are very much more conservative than they are for all other hypothesized dry bulk facilities. This investment alternative therefore seems highly appropriate for more detailed study.

APPENDIX. BENEFIT-COST CALCULATIONS, INCLUDING ANNUAL COST ESTIMATES FOR DEEPWATER PORT ALTERNATIVES, ANNUAL THROUGHPUT PROJECTIONS, AND ANNUAL SAVINGS IN_SHIPPING COSTS

263.

.

HAR INTERIOR TO TO THE WARRANT

....

(All costs are in millions of 1970 dollars; all volumes are in millions of long tons)

1

. . ه. . عامل . .

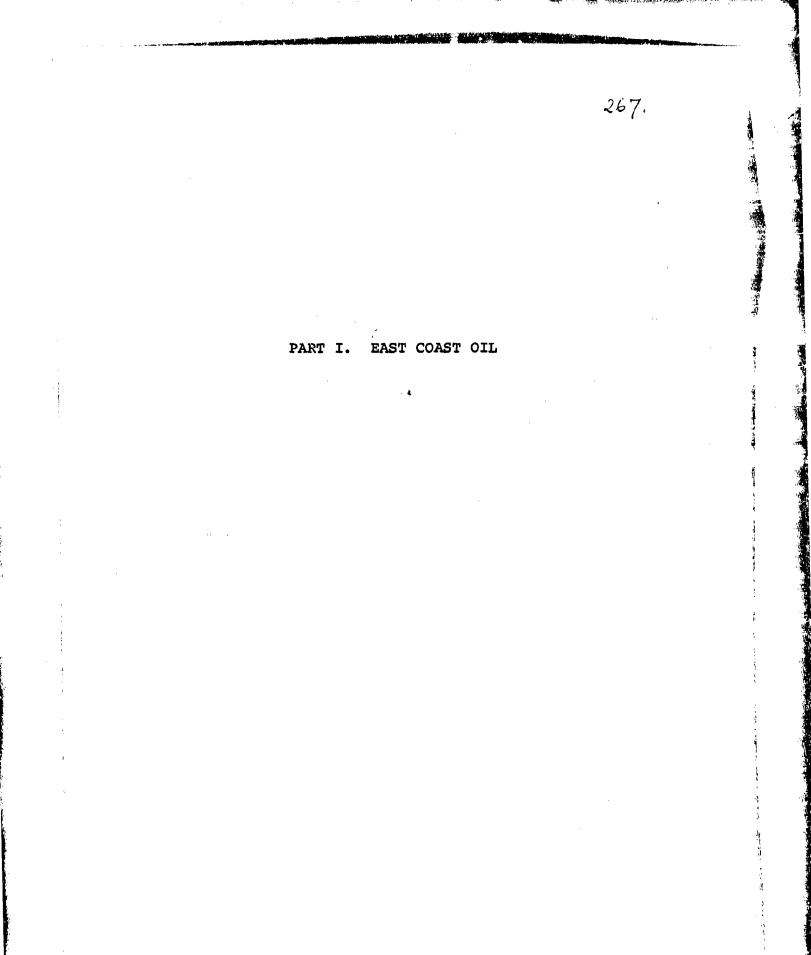
「「「「「「「「」」」」

Preceding page blank

ere ere

" THE REAL PROPERTY OF THE PARTY OF

CONTENTS


PART I. EAST COAST OIL	267
Series 1. Deepwater Port Alternatives No. 10 through 320: Annual Port Costs, Throughputs, and Shipping Costs, 1975-2009; Present (1980) Values of Port Costs and Shipping Costs at 5-, 7-, and 10-Percent Discount Rates	269
Series 2. Base Situation Alternatives No. 1 through 111: Annual Throughputs and Shipping Costs, 1975-2009; Present (1980) Values of Shipping Costs at 5-, 7-, and 10-Percent Discount Rates	301
Series 3. Present (1980) Values of Deepwater Port Costs (PC); of Shipping Costs (SC); of Related Savings; and Benefit-Cost Ratios for 80 Alternatives, at 5-, 7-, and 10-	212
Percent Discount Rates	313
PART II. GULF COAST OIL	341
Series 1. Deepwater Port Alternatives No. 33 through 560: Annual Port Costs, Throughputs, and Shipping Costs, 1975-2009; Present (1980) Values of Port Costs and Shipping Costs at 5-, 7-, and 10-Percent Discount Rates	343
Series 2. Base Situation Alternatives No. 121 through 131: Annual Throughputs and Shipping Costs, 1975-2009; Present (1980) Values of Shipping Costs at 5-, 7-, and 10-Percent Discount Rates	367
Series 3. Present (1980) Values of Deepwater Port Costs (PC); of Shipping Costs (SC); of Related Savings; and Benefit-Cost Ratios for 24 Alternatives, at 5-, 7-, and 10-	507
Percent Discount Rates	369

A CONTRACTOR AND A DESCRIPTION

同時の見見

PART III. WEST COAST OIL	377
Series 1. Deepwater Port Alternatives No. 570 through 670: Annual Port Costs, Throughputs, and Shipping Costs, 1975-2009; Present (1980) Values of Port Costs and Shipping Costs at 5-, 7-, and 10-Percent Discount Rates	379
Series 2. Base Situation Alternatives No. 141 through 181: Annual Throughputs and Shipping Costs, 1975-2009; Present (1980) Values of Shipping Costs at 5-, 7-, and 10-Percent Discount Rates	390
Series 3. Present (1980) Values of Deepwater Port Costs (PC); of Shipping Costs (SC); of Related Savings; and Benefit-Cost Ratios for 44 Alternatives, at 5-, 7-, and 10-	
Percent Discount Rates	395
PART IV. TEXAS-EAST COAST PRODUCTS PIPELINE	411
Annual Costs, 1975-2009, and Present (1980) Values of These Costs at 5-, 7-, and 10- Percent Discount Rates	413
PART V. EAST AND GULF COAST DRY BULK	415
Series 1. Deepwater Port Alternatives No. 680 through 880: Annual Port Costs and Through- puts, 1975-2009; Present (1980) Values of Port Costs at 5-, 7-, and 10-Percent Discount Rates	417
Series 2. Base Situation Alternatives No. 191 through 371: Annual Throughputs and Net Savings in Shipping Costs, Attainable Over Base Situation by Corresponding Deepwater Port Alternative; Present (1980) Values of Savings in Shipping Costs at 5-, 7-, and 10-	
Percent Discount Rates	438
Series 3. Present (1980) Values of Deepwater Port Costs and of Related Savings in Shipping Costs; Benefit-Cost Ratios for 23 Alterna- tives, at 5-, 7-, and 10-Percent Discount	
Rates	457

ۇم ئرېكىنە

Series 1

N.C.

ALT-EKATIVE NG. 10 LeneYedayedekving f_eyesfixed berthsitsland sfukagfeju filoñafi.300,000 <mark>0mt, 30-35 miasikepipelinese</mark>i 1065.0 891.3 694.8 66.3 66.4 66.5 66.5 66.7 66.7 66.8 66.9 66.9 66.9 66.9 67.1 67.2 67.3 67.4 67.4 67.5 67.6 67.7 SHIPPING CUST CUMULATIVE PRÉSENT VALUE AT INÙICATED INTÈREST RATÉ 230.6 221.6 215.8 VOLUME 35.0 TUTAL TOTAL TOTAL 30.7 000 6 PAINTENANCE CUST 6.6 ŝ UP-RATING CAST 3.3 * * * * * * * * 11 0 01 11 0 01 ... m ... 10 m • • • • 3. 3 3.3 **:•**: 53.5 43.8 34.2 0.0 140.6 152.6 161.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 +IXXI+ [-1-A). 5.05 7.65 10.02

269.

Preceding page blank

「「日本」の「日本」

	N_Y_,FIXEU BERTHS+ISLAND STURAGE,70 FT_DRAFT,300,000 DFT, 35-70 MTA,TR_PIPELINES,1
	FIXEE BERTHS
ALT I DATIL NU. 20	L-N-Y-EAY, SERVENC:N-Y-

SHIPPING COST ADLUME UPERATING CUST RAINTERANCE CUST I-1-21. YEAR FINST CCST 1975 1975 110-0 1976 110-0 1977 14-1

		7-67	83•2	87 . 1	51.1	95•0	0*66	103.0	106.9	110.9	114.8	118.8	122.8	126.7	130.7	134.6	138.6	142.6	146.5	150.5	154°4	158.4	158.4	158.4	158-4	158.4	158.4	158.4	158.4	158.4	158.4	
		35.0	36.8	34.5	40.3	42.0	43 . B	45 • 5	47.3	49 ° 0	50.8	52.5	54.3	56.0	57.8	59 . 5	61.3	63.0	64 . 8	66.5	68 . 3	70.0	70.0	70-0	70-0	70-0	76.0	70-07	70-0	70-0	70-0	
		1.9	1.9	L.4	с. • т	i9	1.04	1.9	1. 9	1.9	1. 9	1.9	2•0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2•0	2.0	2•0	2.0	2•0	2.0	2•0	2.0	2.0	2-0	2•0	
		3.4	1.44	3.4	3.4	3 . 5	3.5	3.5	3 . 5	3 . 5	č•č	3.5	3.7	3.7	3.7	3.7	3.7	3.7	37	5 - 7	3.7	3.7	3.7	3. 7	3 . 7	3.7	3.7	3.7	3.7	3.7	3.7	
	e3. l	0-0	ن ، 0	0.0	0.5	C. 0	0-0	0°0	0.0	0.0	0•0	0•0	0.0	0•0	0.0	0.0	6.0	0*0	0.0	0-0	3 ° 0	0•0	U • J	0-0	0°0	0.0	0-0	0-0	0-0	0•0	0.0	
5164	SLET	DRGI	1961	1962	2 9 E J	1-384	C861	1586	1987	1980	1965	1990	1991	1991	1 JG.	755T	144,0	1 496	1997	365 T	1959	2000	2001	2002	2003	2004	2005	2006	2007	2005	2005	

CUMULATIVE PRESENT VALUE AT INUICATED INTEREST RATE

236.9	226.6	219.5
TOTAL	TOTAL	TOTAL
31.4	25 . 8	20-0
57.6	47.2	36.6
147.3	153.7	162.8
5 . ùZ	7.03	10-05

1929**.**9 1533**.**8 1142**.**2

د <u>تا م</u>

जे के की सिंहे के प्

4

270.

a characteristic and the second s

271.
 All Familie
 And the second by a second 1085•0 891•3 694•8 CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE 252.9 243.7 237.8 FOT AL TOTAL TOTAL 35.5 29.2 22.8 53.3 43.8 34.2 104.2 170.6 180.5 5-0% 7-0%

DL RV

ţ ¢

「「「「「「「」」」」

のないで、「ない」の

	; A.Y., FIXEL BERTHS, ISLAND STURAGE, 70 FI.DRAFI, 400,000 DMI, 35-70 MIA, IR-PIPELINES, (
	FI.DRAFT,400,000 DHT,
	BERTHS, ISLAND STURAGE, 70
FERBELVE NO. 40	N.Y.BAY,SERVING A.Y.,FIXEL B

FT,400,000 DHT,	SHIPPING COST
, TO FT.DRA	VULUHE
ALTERMETIVE NG. 40 L.n.t.emat.serving n.y.fixed berths, Island Storage, 70 fi.draft,400,000 dMT,	I+I-U). Year First Cost Oferating Cost Maintenance Cost Volume Shipping Cost 1375 10.0
ALTERMATIVE NG. 40 L.N.Y.BAY,SERVING N.Y.	I+I−U). Yeån FIRST COST ÜFÉRA 1376 - 10 0

10.0 10.0 15.9 11.7 71.7 0.0

	79.2	83.2	£7.1	1-16	95.0	0*55	103.0	106.9	110.9	114.8	115.3	122.8	126.7	130.7	134.6	135.6	142.6	146 + 5	150.5	154.4	158.4	158.4	158.4	158.4	158.4	158.4	158-4	158.4	156.4	158.4	
	35.0	36.8	38.5	40.3	42.0	43 . 8	45.5	47.3	4 9. 0	50.8	52.5	54.3	56.0	57.8	59.5	61.3	63.0	64.8	66 . 5	68.3	70-0	70-0	70.0	70-0	70-0	70.0	73.0	70.0	70-0	70-0	
	2.02	2 • C	2.2	2•2	2•2	2.4	2-2	2•2	2.02	2•2	59 • 19	2•2	2•2	2•2	2•2	2.02	2•2	0 • •	2.2	2.•2	2•2	2-2	2.5	2.2	2.2	2=2	Z	6J •	2.02	€.) ●	
	3.6	4.0	3.4	3.4	ت • 1	ت ہ 5	3.5	3 . 5	3 . 5	() • 5	2°2	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	2.7	·•• • • •		•	₽ • •	3.7	
14.5	0•0	0•0	0 - 0	0. 5	. 0°C	0.0	0°0	0-0	0°0	C• 0	0. -	0.0	0.0	Ú. Ú	0.0	0•0	0.0	C•0	0-0	0•0	0.0	0.0	0°0	0•0	0•0	0.0	0.0	0-0	6.0	0.0	
×1 × 1	1040	1561	2221	1, 5	1464	1:151	138r	1927	1.251	5967	05.e T	LjsL	745	1 33 1	1994	1995	155c	7997	1 455	66-61	2000	2001	2002	2002	2004	c () n .		1.	, 0,	2005	

CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE

1929-9 1533-8 1142-2	
258•5 243•1 241•1	
TOTAL TUTAL TUTAL	
35.e2 25.e2 22.e8	
57€ċ 47€č 36€6	
165.3 L71.7 L31.7	
5.63 7.02 10.05	

j.

¢

 $\frac{1}{2}$

ł

ţ.

272.

「おいい」

A COL

DMT. 100-150 MTA.TR. PIPEL

200

£

Lites (1-2-A). CAAA FILAT CUST OF 975 FILAT CUST OF 976 HILO 971 LES 2 973 E5 2 973 LES 3 973 LES 3 950 0.0 950 0.0	0PLKATI NG CGS F 5.7 5.7 5.7 5.7 5.7 5.7 5.7	MAINTENANCL CUST	VOLUME	SHEPPING COST
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
11 11 12 12 12 12 12 12 12 12 12 12 12 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	L L		
N 9 0 0 0 0 0 0 0 1		3 E		
9000 0000 0000		и с		
000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		100-0	250-0
000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 • 5	L 02.5	235•0
0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.5	105.0	240.1
		2.5	107.5	245.1
0.0	5 • 7 5 • 7 5 • 7	2.5	110-0	250.2
0 - 0	5.7	2 - 2	112-5	255.2
0-0	5.7	2.5	115-0	260.3
0•0		2.5	117.5	265.3
d . 1	5.7	2-5	120.0	270.4
0•0	7.5	2.1	122.5	275.4
6.0	7.3	2.7	125.0	260.4
0-0	7.9	2.07	127.5	285.5
0°0	7.8	2.7	130-0	250*5
0.0	7. ĉ	2-2	132.5	295.6
0.0	7.8		135.0	300-6
0.0	7.8	2.1	137.5	305.7
0.0	7.8	2.7	140-0	310.7
0°0	7.5	2.7	142.5	315.8
0-0	7.8	2.7	145.0	320-8
0°0	7.5	2.7	147.5	525.9
0° C	7.5	2.1	150.0	330.9
6. 0	7.8	2.7	<u>150-0</u>	330.9
C.J	7.8	2.7	150.0	330.9
0.0	7.8	2.7	150.0	330.9
0.0	7.0	2.7	150-0	330.9
0°C	7.8	2.J	150.0	336.9
0.0	3-5	Z. 7	150.0	330.9
Ú.J	7.3	2.7	150.0	330.9
0-0	1.6	2.7	150.0	330.5
		L	160.0	0 UEE

CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE

4542.5 3668.3 2793.9 409.5 388.6 372.4 TOTAL TOTAL TOTAL 42.1 34.5 26.7 L10.2 d9.3 67.6 257.2 265.5 275.1 5.0£ 7.02 10.02

273.

Ņ

1000

の時間に

ł 4

;

• • • ,

11111

1. **F**. .

de la c

.

9.3 9.1 150.0 9.3 9.1 157.5 9.3 9.1 157.5 9.4 9.1 172.5 9.4 5.1 165.0 9.4 5.1 165.0 9.4 5.1 165.0 9.4 5.1 165.0 9.4 5.1 172.5 9.4 5.1 172.5 9.4 5.1 172.5 9.4 5.1 217.5 9.4 5.1 217.5 9.5 5.1 217.5 9.5 5.1 217.5 9.5 5.1 217.5 13.5 5.1 217.5 13.5 5.1 217.5 13.5 5.1 217.5 13.5 5.1 217.5 13.5 5.1 217.5 13.5 5.1 217.5 13.5 5.1 200.0 13.5 5.1 300.0 13.5 5.1 300.0 13.5 5.1 300.0 </th <th>Y.64Y,5XVIG0 (S. (1-2-8).</th> <th>FAST CGASTOFIXED GOSEATING CONT</th> <th>MATELEAAECE COST VAN HAE SHEDDING COST</th> <th>VILLERE</th> <th>TOUL DALUGING</th> <th></th>	Y.64Y,5XVIG0 (S. (1-2-8).	FAST CGASTOFIXED GOSEATING CONT	MATELEAAECE COST VAN HAE SHEDDING COST	VILLERE	TOUL DALUGING	
9.3 9.3 9.3 9.3 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4	13.0	ONLIANT TU				
9.3 9.3 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4	16.0					
9.3 3.1 150.0 9.3 3.1 157.5 9.3 3.1 157.5 9.4 3.1 157.5 9.4 3.1 187.5 9.4 3.1 187.5 9.4 3.1 187.5 9.4 3.1 187.5 9.4 3.1 187.5 9.4 3.1 187.5 9.4 3.1 202.5 9.4 3.1 210.0 9.4 3.1 210.0 9.4 3.1 210.0 9.4 3.1 210.0 13.4 3.5 217.5 13.5 3.5 217.5 13.4 3.7 262.5 13.5 3.7 262.5 13.5 3.7 262.5 13.5 3.7 262.5 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 <td>95.2</td> <td></td> <td></td> <td></td> <td></td> <td></td>	95.2					
9-3 5-1 157.5 9-3 5-1 187.5 9-4 5-1 187.5 9-4 5-1 187.5 9-4 5-1 187.5 9-4 5-1 187.5 9-4 5-1 187.5 9-4 5-1 187.5 9-4 5-1 187.5 9-4 5-1 202.5 9-4 5-1 202.5 13-5 5-7 210.0 13-5 5-7 210.0 13-5 5-7 210.0 13-5 5-7 210.0 13-5 5-7 210.0 13-5 5-7 210.0 13-5 5-7 210.0 13-5 5-7 200.0 13-5 5-7 200.0 13-5 5-7 200.0 13-5 5-7 300.0 13-5 5-7 300.0 13-5 5-7 300.0 13-5 5-7 300.0 13-5 5-7 300.0 13-5 5-7 300.0 13-5 5-7 300.0 13-5 5-7 300.0 13-5 5-7 300.			-	0 0 9 1	0 036	
9-3 9-1 1650 9-4 3-1 172.5 9-4 3-1 172.5 9-4 3-1 172.5 9-4 3-1 172.5 9-4 3-1 172.5 9-4 3-1 172.5 9-4 3-1 172.5 9-4 3-1 172.5 9-4 3-1 272.5 13-5 3-7 225.6 13-5 3-7 277.5 13-5 3-7 270.0 13-5 3-7 262.5 13-5 3-7 262.5 13-5 3-7 200.0 13-5 3-7 200.0 13-5 3-7 300.0 13-5 3-7 300.0 13-5 3-7 300.0 13-5 3-7 300.0 13-5 3-7 300.0 13-5 3-7 300.0 13-5 3-7 300.0 13-5 3-7 300.0 13-5 3-7 300.0 13-5 3-7 300.0 13-5 3-7 300.0 13-5 3-7 300.0 13-5 3-7 300.				157.5	0.465	
9.4 9.1 172.5 9.4 9.1 172.5 9.4 9.1 172.5 9.4 9.1 180.0 9.4 9.1 180.0 9.4 9.1 180.0 9.4 9.1 180.0 9.4 9.1 180.0 9.4 9.1 180.0 9.4 9.1 180.0 9.4 9.1 180.0 9.4 9.1 180.0 9.4 9.1 202.5 13.9 9.7 225.0 13.9 9.7 247.5 13.9 9.7 262.5 13.9 9.7 205.0 13.9 9.7 205.0 13.9 9.7 205.0 13.9 9.7 205.0 13.9 9.7 200.0 13.9 9.7 300.0 13.9 9.7 300.0 13.9 9.7 300.0 13.9 9.7 300.0 13.9 9.7 300.0 13.9 9.7 300.0 13.9 9.7 300.0 13.9 9.7 300.0 13.4 9.114 59.1				165-0	394.99	
9.4 5.1 180.0 9.4 5.1 135.0 9.4 5.1 212.0 9.4 5.1 213.0 9.4 5.1 210.0 9.4 5.1 210.0 9.4 5.1 210.0 9.4 5.1 210.0 9.4 5.1 210.0 13.4 5.1 210.0 13.4 5.1 210.0 13.4 5.1 210.0 13.4 5.1 210.0 13.4 5.1 210.0 13.4 5.1 210.0 13.4 5.1 200.0 13.4 5.1 200.0 13.4 5.1 200.0 13.4 5.1 300.0 13.4 5.1 300.0 13.4 5.1 300.0 13.4 5.1 500.0 13.4 5.1 500.0 13.4 5.1 500.0 13.4 5.1 500.0 13.4 5.1 500.0 13.4 5.1 500.0 13.4 5.1 500.0 13.4 5.1 500.0 15.2 5.1 50	0.5		3-1	172.5	412.8	
9.4 5.1 187.5 9.4 5.1 187.5 9.4 5.1 2102.5 9.4 5.1 2102.5 9.4 5.1 2102.5 9.4 5.1 2102.5 9.4 5.1 2102.5 9.4 5.1 2102.5 9.4 5.1 2102.5 9.4 5.1 2102.5 13.5 5.7 2100.0 13.5 5.7 247.5 13.5 5.7 262.5 13.5 5.7 262.5 13.5 5.7 262.5 13.5 5.7 262.5 13.5 5.7 262.5 13.5 5.7 262.5 13.5 5.7 200.0 13.5 5.7 200.0 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7	0.0		3.1	180.0	430° 8	
9.4 3.1 135.0 9.4 3.1 202.5 9.4 3.1 202.5 9.4 3.1 202.5 9.4 3.1 202.5 13.9 3.5 217.5 13.9 3.5 217.5 13.9 3.7 255.0 13.9 3.7 255.0 13.9 3.7 262.5 13.9 3.7 265.5 13.9 3.7 265.5 13.9 3.7 265.5 13.9 3.7 265.5 13.9 3.7 265.5 13.9 3.7 265.5 13.9 3.7 265.5 13.9 3.7 265.5 13.9 3.7 265.5 13.9 3.7 200.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 <t< td=""><td>0-0</td><td></td><td>5.1</td><td>187.5</td><td>448-7</td><td></td></t<>	0-0		5.1	187.5	448-7	
9.44 3.1 202.5 9.44 3.1 217.5 9.44 3.1 210.0 9.44 3.1 217.5 13.9 3.7 247.5 13.9 3.7 247.5 13.9 3.7 247.5 13.9 3.7 247.5 13.9 3.7 247.5 13.9 3.7 247.5 13.9 3.7 247.5 13.9 3.7 262.5 13.9 3.7 265.6 13.9 3.7 265.5 13.9 3.7 265.5 13.9 3.7 285.0 13.9 3.7 285.0 13.9 3.7 285.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7	0.0	9 • 4	3• E	195.0	466.7	
1 9.4 3.1 210.0 13.9 3.5 217.5 217.5 13.9 3.7 247.5 23.7 13.9 3.7 247.5 23.7 13.9 3.7 247.5 23.7 13.9 3.7 247.5 255.0 13.9 3.7 247.5 255.0 13.9 3.7 247.5 270.0 13.9 3.7 262.5 3.7 13.9 3.7 262.5 3.7 13.9 3.7 262.5 3.7 13.9 3.7 262.5 3.7 13.9 3.7 262.5 3.7 13.9 3.7 205.0 3.7 13.9 3.7 205.0 3.7 13.9 3.7 205.0 3.7 13.9 3.7 300.0 3.7 13.9 3.7 300.0 3.7 13.9 3.7 300.0 3.7 13.9 3.7 300.0 3.7 13.9 3.7 300.0 3.7 13.9 3.7 300.0 3.7 13.9 3.7 300.0 3.7 13.5 3.7 300.0 <td>0.0</td> <td>5.4</td> <td>3.1</td> <td>202-5</td> <td>494.6</td> <td></td>	0.0	5.4	3.1	202-5	494.6	
13.9 5.5 217.5 13.5 13.5 5.7 247.5 13.5 5.7 247.5 13.5 5.7 247.5 13.5 5.7 247.5 13.5 5.7 247.5 13.5 5.7 247.5 13.5 5.7 245.5 13.5 5.7 245.5 13.5 5.7 245.5 13.5 5.7 245.5 13.5 5.7 245.5 13.5 5.7 245.5 13.5 5.7 245.5 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7 300.0 13.5 5.7 300.0 15.6 5.7 300.0 15.5	7.1	9.4	3 • 1	210.0	502•o	
13.5 5.7 225.0 13.9 5.7 232.5 13.9 5.7 240.0 13.9 5.7 247.5 13.9 5.7 247.5 13.9 5.7 247.5 13.9 5.7 247.5 13.9 5.7 247.5 13.9 5.7 265.0 13.9 5.7 265.5 13.9 5.7 265.5 13.9 5.7 265.5 13.9 5.7 265.5 13.9 5.7 200.0 13.9 5.7 300.0 13.9 5.7 300.0 13.9 5.7 300.0 13.9 5.7 300.0 13.9 5.7 300.0 13.9 5.7 300.0 13.9 5.7 300.0 13.9 5.7 300.0 15.9 5.7 300.0 15.9 5.7 300.0 15.0 5.7 300.0 15.0 5.7 300.0 15.0 5.7 300.0 15.0 5.7 300.0 15.0 5.7 300.0 15.0 5.7	ω 19	13.9	3 • 5	217.5	520-5	
13.9 5.7 232.5 13.9 3.7 247.5 13.9 3.7 262.5 13.9 3.7 262.5 13.9 3.7 262.5 13.9 3.7 262.5 13.9 3.7 262.5 13.9 3.7 262.5 13.9 3.7 262.5 13.9 3.7 270.0 13.9 3.7 277.0 13.9 3.7 277.0 13.9 3.7 200.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.5 3.7	0-0	13.5	5.7	225.0	538•4	
11.5 5.7 247.5 12.5 13.5 3.7 247.5 13.5 3.7 262.5 13.5 3.7 262.5 13.5 3.7 262.5 13.5 3.7 262.5 13.5 3.7 262.5 13.5 3.7 262.5 13.5 3.7 277.5 13.5 3.7 277.5 13.5 3.7 292.5 13.5 3.7 292.5 13.5 3.7 200.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5	° •3	5°21	3.7	232.5	556.4	
13.9 3.7 247.5 13.9 3.7 262.5 13.9 3.7 262.5 13.9 3.7 262.5 13.9 3.7 265.5 13.9 3.7 265.5 13.9 3.7 265.5 13.9 3.7 265.5 13.9 3.7 265.5 13.9 3.7 205.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.5 3.7	0 0	13.5	3.7	240-0	574.3	
0 13.9 3.7 255.0 13.9 3.7 262.5 13.9 3.7 262.5 13.9 3.7 245.0 13.9 3.7 245.0 13.9 3.7 245.0 13.9 3.7 245.0 13.9 3.7 245.0 13.9 3.7 245.0 13.9 3.7 300.0 13.5	0-0	.13.6	3.7	247.5	552•3	
13.5 3.7 262.5 13.9 3.7 277.5 13.9 3.7 295.0 13.9 3.7 295.0 13.9 3.7 295.0 13.9 3.7 295.0 13.9 3.7 292.5 13.9 3.7 300.0 13.5 3.7	0-0	13.9	3.7	255.0	610.2	
13.9 3.7 277.5 13.9 3.7 245.0 13.9 3.7 295.0 13.9 3.7 295.0 13.9 3.7 295.0 13.9 3.7 295.0 13.9 3.7 300.0 13.5 3.7 300.0 15.0.4 5.1	0.0	13.5	(c) :	262.5	628 - 2	
13.9 3.7 245.0 13.9 3.7 245.0 13.9 3.7 292.5 13.9 3.7 202.0 13.9 3.7 300.0 13.5 3.7		5. G 1	- r • (040	
13.5 3.7 292.5 13.5 3.7 300.0 15.5 5.1 107.4 152.6 34.5 107.4 152.5 34.5 <td>2 c</td> <td>2°51 3 5 1</td> <td>4) (4 9</td> <td>211-2</td> <td></td> <td></td>	2 c	2°51 3 5 1	4) (4 9	211-2		
13.5 3.7 300.0 152.6 5.1 101.4 152.8 34.5 101AL 152.1 34.5 </td <td></td> <td>12.0</td> <td></td> <td>5000</td> <td>0-002</td> <td></td>		12.0		5000	0-002	
13.9 3.7 300.0 152.6 5.1 1014 152.6 34.5 1014 14.6.5 34.5 <td>0-0</td> <td>13.5</td> <td>5-5</td> <td>300-0</td> <td>717-9</td> <td></td>	0-0	13.5	5-5	300-0	717-9	
13.5 3.7 300.0 150.4 5.1 1010.1 152.6 5.1 10714 152.6 34.5 7074 152.6 34.5 7074	0.0	13.9	3.7	300-0	717.9	
0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 5.7 300.0 13.9 5.7 300.0 152.6 5.4 107AL 152.8 44.8 707AL 115.3 34.5 707AL	0°0	13-5	3.7	300.0	717-9	
0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 5.7 300.0 13.9 5.1 1074L 19.0 44.8 1074L 152.6 44.8 1074L 115.3 34.5 1074L	0-0	13.5	3.7	300-0	5°L1L	
0 13.5 3.7 300.0 15.6 3.7 300.0 15.6 3.7 300.0 13.6 3.7 300.0 13.6 3.7 300.0 13.6 3.7 300.0 13.6 3.7 300.0 13.6 3.7 300.0 13.6 3.7 300.0 13.6 3.7 300.0 13.6 3.7 300.0 13.6 3.7 300.0 13.6 3.7 300.0 13.6 3.7 300.0 13.6 3.7 300.0 13.6 3.7 300.0 13.6 3.7 300.0 13.6 3.7 300.0 15.2.6 5.4 107AL 152.8 44.8 707AL 115.3 34.5 707AL	0°0	13.9	3.7	300-0	717.9	
0 15.4 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 13.5 3.7 300.0 15.5 3.7 300.0 15.5 3.7 300.0 15.5 3.7 300.0 150.4 55.1 107AL 152.8 44.8 107AL 115.3 34.5 107AL 538.5 115.3	0-0	13. 3	3 • 7	300-0	717.9	
0 13.5 3.7 300.0 1 13.5 3.7 300.0 1 13.5 3.7 300.0 1 13.5 3.7 300.0 1 13.5 3.7 300.0 1 15.5 3.7 300.0 1 152.8 VALUE AT INDICATED INTEREST RATE 1 152.8 55.1 107AL 1 15.3 34.5 101AL 1 115.3 34.5 101AL	0.0	L).G	3.7	300-0	717.9	
0 13.° 5.7 300.0 13.° 3.7 300.0 13.° 3.7 300.0 14.° 3.7 300.0 15.° 3.7 300.0 150.4 55.1 10164 150.4 55.1 1014 152.8 44.8 1014 115.3 34.5 1014	0 	13° 5	7.5	300-0	717-9	
D 13.5 3.7 300.0 CUPULATIVL FRESENT VALUE AT INDICATED INTEREST RATE 150.4 55.1 TUTAL 611.4 152.8 44.8 TUTAL 513.5 152.8 34.5 TUTAL 538.5	a•0	13•¢	5.67	306.0	111.04	
CUMULATIV. FRËSËNT VALUE AT INDICATED INTEREST RATE 190-4 55-1 TUTAL 611-4 152.6 44-8 TUTAL 572-1 115-3 34-5 TUTAL 538-5	0°0	2•21	3.7	300-0	717-9	
190.4 55.1 TUTAL 611.4 152.6 44.8 TUTAL 572.1 115.3 34.5 TUTAL 538.5		UPULATI V.	VALUE AT	N ED INTERE		
190.4 55.1 TUTAL 611.4 152.8 44.8 101AL 572.1 115.3 34.5 101AL 538.5						
34.5 TOTAL 538.5	ហំទំ	150.4 152.6	55 •1 44 • 8	TCTAL TCTAL		20
	.0	115.3	34.5	TOTAL		0

a second control is an experimental control and a second second second second second second second second second

CWT,100-150 MTA,TR.PIPEL																																									ĸ
IRAFT +400 +000	SHIPPING COST					0 020		U=662	240.1	245.1	2.062	7.642	260.3	20202	4 °n/ ?	275-4	2.80.4	C.CBS	290•5	295.6	300.6	305.7	310.7	315.8	320.5	325.9	330.9	330.9	330.9	330.9	330.9	330.9	330.9	330.9	330.9	330-9	T RATE				403°3 2193°9
AGE ,70 FT. 0	VOLUME S						100-0	6•20T	1 65.0	107.5	110.0	112-5	115-0	117.5	126.0	122.5	125.0	127.5	130.0	132.5	135.0	137.5	140-0	142 • 5	145.0	147.5	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0	1.50.0	150-0	TWOICATED INTERECT RATE				TOTAL 4
BERTHS, ISLAND STURAGE, 70 FT, DRAFT, 400,000	MAINTENANCE COST						• • • • • • • • • • • • • • • • • • •	2°2	2*5	2.9	2.9	2° 3	2.9	2.9	2-9	3.1	3.1	3.1	3.1	3.1	j. l	3 a I	1 •5	3.1	3.1	3•1	3.1	1 e C	3•1	3.1	3.1	3 • I	3.1	3.1	#1 1 1	3.1			48 • 5	39-8	9°0F
10 IST CLAST.FIXED	UPERATING CUST						5.7	5.7	5.7	5.47	5.7	5.7	5.7	5.7	5.7	7.8	7.8	7. b	7.8	7.3	7.8	7.0	7.6	7.8	7.8	7.8	7-8	7.B	7.3	7.8	7-8	7.8	7.8	7. 8	7.8	7.6		CURULATIVE PRESE	110-2	E 8* 5	67-6
ALTERNATIVE NU. 7 N.Y.BAY,SENVING 22	-2-01. KST C05T	12.0	12.0	17-0	70.4	2 ° C C T	0.0	0.0	0-0	C.0	0-0	0.0	0-0	0-0	3 	0.0	0-0	0.0	0-0	0-0	0	0-0	0-0	0-0	0.0	0-0	0-0	0.0	0.0	0-0	0.6	0-0	0-0	0.0	0-0	0.0		-	281-6	290.6	304-8
AL TERNA N.Y.BAY	TPESS TER	1975	157c	1 + 77	1:71	5191	1380	1621	2982	1403	1484	Carl	Ljbc	1967	5461	6H61	1990	1991	1497		1954	5000	1001	1991	0.0	5551	2000	2001	2002	2003	2004	2003	-006	2007	2003	2005			5-62	20.7	10-0£

大学の方法の

1011

に日本語があ

1

- in the second second

0wT,150-300 MTA,TR.PIPEL																																·	
STURAGE, 70 FT.DRAFT,400,000	SHI PPI NG COST	•••	359-0	376.9	394°.9	412.8	4 30 . 8	448° 7	466.T	484.6	502.6	520 . 5	538 . 4	556.4	574.3		610-2		646.1	664.l	682+0	700-0	717-9	717-9	717.9	717.9	717.9	217-9	117-9	•	117.9	717-9	
AGE, 70 FT	VOLUME		150-0	157.5	165.0	172.5	180.0	187.5	195•0	202.5	210-0	217.5	225-0	232.5	240.0	247.5	255.0	262.5	270-0	277.5	285.0	292.5	300.0	300.0	300-0	300 - 0	300-0	300-0	300-0	300-0	300.0	300-0	
EERTHS, ISLAND STUR	MAINTENANCE COST		3.5		3.5	3.5	3 . 5	3.5	3.5	3.5	3.5	4.0	6. 0	4. 0	4•0	4 •0	4.2	4.2	4 •2	4.•2	4• 2	4• 2	4. 2	4 •2	4• 2	4 •2	4 •2	4.2	4. 2	4.2	4 •2	4 •2	
AST COAST, FIXED 6	OPERATING COST N		9.3	5.3	- ₩ • Φ	6 •3	5.4	5 •6	9°4	9.4	9 . 4	.13.5	5 1 1 1 1	13.5	13.5	13.9	13.5	13.9	I3• 5	13.9	13.9	13.9	13 - 5	13•5	13.9	13.9	I3•9	13.9	13.5	13-9	I3.9	15.9	
ů V Ž	L C D	17.4 106.5		0.0	0-0	0.5	0*0	0.0	0.0	0-0	17.L	0-0	Ū.Ū	0-0	0-0	18.2	0-0	0-0	0-0	0-0	0•0	0-0	0-0	0.0	0-0	0-0	0-0	0-0	0-0	0-0	0.0	0-0	
ALLENNALIYE NU N.Y.6AY,SERVIN FN-S. (1-2-0)	YEAK FIRST CC 1975 11975 15 1976 15	1576 1576	29791 1960	INEI	1932	1363	1984	1985	158¢	1937	19bc	589.	05cT	1551	7661	E991	1994	555 T	1956	1997	1958	1959	2000	2001	2002	2003	2004	2005	2606	2007	2005	2009	

DA RAI 2 RULLAN **CUMULATIVE** 8747.2 6952.0 5177.0 650.5 610.5 577.0 TOTAL TOTAL TOTAL 62**.**0 50**.**4 38**.**8 190.4 152.8 115.3 398**.** 1 407.5 423.0 5.01 7.01 10.01

276.

A State of the sta

																										277	•	
DWT,100-150 MIA,TR.PIPEL											-								ĩ	•						ŕ		
[, 300 , 00ü	SHIPPING COST		230-0	0.452	245.1	250.2	255.2	265.3	270.4	280.4	285.5	290-5	0°C67	305-7	310.7	515-63 8-028	325.9	330-9	330 . 9	330.5	330.9	330.9	530.9 330.9	330.9	330 . 9	ATE		• 9008•3 1 2793•9
0 FT_URAFI			100-0	102-5	107.5	110-0	112.5 115.0	117.5	0.0	125.0	127.5	130-0	132.0	137.5	140-0	142.5	7.5	0.0	150.0	50.0	150.0	50.0	50.0	50. Ū	50-0	INDICATEL INTERÈST RATE		L 322.4
GRAGE, 71	T VGLUAE												-								-	-	-	4	i i	CATEL II		5 TUTAL 7 TUTAL
EUOYS,ONSHORE STGRAGE,70 FI.bRAFI,300,000	MAINTENANCE CUST		2.5	~ ~ ~	• •				2	v v	-2	%	• •		2.		2°.	2.		2 °	2.7	2.	20		2-1	VALUË AT	42.0	34+5 26+7
50 EAST COAST,MONC-EUOY	OPERATING COST		6 .	6•1 • 1	0•1 5•1		بر د. به وه	6. i	6.1	5°2	2°2	1.9		5 1	5°2	5°L	5 L	5°L	7.9	6"Z	7.9	5*1	7.0 7.0	2~Z	1.9	CUPULATIVE PRESENT	i14•1	52• 3 70•5
ALTERNATIVE NO. Lean, J., Serving E		0°0 51°2	0.0	0.0		0.0	000		6. 5	000	0.0	0.0		0-0	0.0	000	0-0	0.0	0-0		0.0	0-0	0.0		0.6	J	191.6	195. ¢ 201.9
ALTes Lber	Y: AK 1975	1976 1573 1573	1360	1961	11 11 11 11 11 11 11 11 11 11 11 11 11	1 304	565	1361	1308	2057	Ibel	255T		1935 1935	1.990	1551	1000	000	2001	2002	2004	2005	000 2000	2008	2005		5 . Už	1.0°01

......

supposed in trace

UNT,150-300 HTA,TR.PIPEL																																					
	SHIPPING CGST				: 03C	9-6CF	310-9	6-469	412•3 430.8	1-9447	466-7	454.6	502-6	520.5	538.4	556.4	574.3	552.3	610-2 256 2	7 9 9 9 9	04001 664-1	682-0	706.0	717.9	717.9	717.9	717-9	5°JTJ	217.9	717-5	717-9	117.9	Ļ	U	8747.2	6552.0	5177.0
.DRAFT.	GHIPP																																	191 P.1	534.7	490.5	449.1
4GE, 70 FT	VOLUME					0-051	C •	165.0		187.5	195-0	202.5	210.0	217.5	225.0	232.5	240.0	247.5	255.0	C 707		285-0	292.5	300.0	300 - 0	3 JO. O	300-0	500° 0	0.000	300.0	300.0	360.0		LAULCALCU INITKEN NALE	JUTAL	TUTAL	TUTAL
C STORI	COST				ŝ	4 . • •	4 • •	4" · •	* ×	1 4	1 4 1 1 1 1	4.0	3.4	3.7	4.4	4.4	4.4	4.4	4.4	*	+ · ·	4-4	4.4	4.4	4.4	5 ° 5	4 • •	4 4 4 4	- 4 - 4	4 4	4.4	4-4		TUNT	i.	51.61	39-0
MONG-BUDYS, URSHUND STORAGE, 70 FT. DRAFT, 300, 000	KAINTÉNENCÉ			• •		•	•		ч <u>а</u> .				• ,						·., ,						, ,.				.1		• • •			ESERI VALUE AI			
CUAST,	CPERATING COST					\$•0 •		8°4	3.•2	* 4 0 3	1 0 d	3.4	٩°٢	E3•2	13.5	15.3	13-3	13.3	E1 .	ເ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			E1	5.51	13.3	13.3	13.5		13.5	13.3	13•E	Ċ	LURULA I I VE PKESE	L 72.0	142.44	106.8
Lark.J.SEKVING EAST	FIRST CUST OF	0 10	0.0	77.1	0°11	0-0	0 0 0 0	0.0	000			0.0	15.2	12.5	0-0	ت ل	0.0	C• C	0-0	0.0	: : :		0°0	0.0	C. C	0.0	0.0	0-0		0.0	0 0	0-0	Ĭ	0	293.6	0-162	303.3
Loffol		197c	: 1-1	l ÷7u	1970	0.251	1321	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		 	1651		122	0	1331	7561	[66]	45.5		1750 1751 1751	- 1 N J			EJC I	<u>2</u> 002	- C C -	2004	2016	2007	- jůc	-00-			10°C	1.02	10.0%

 ~ 1.07

墹

11111

Ţ,

278.

UWT,100-150 MTA,TR.PIPEL

san n ¥y

1

•

• • • • •

١

÷

Ċ,

1

ALILAATIVE NJ. 110 LEHLAATIVE NJ. 110 LEHLJASJAVING EAST CJAST,MCMTHEUNYS,UMSHUKE STUHAGE,70 FT.DRAFT,400,000 Inest (1-2-C1. VLAR FIRST CCST UFERATIAG CUST MAINTENANCE COST VOLUME SHIPPING COST 1975 D.O

		230.0	235.0	240.1	245.1	250•2		260.3	265.3	270.4	275.4	280.4	265.5	290.5	295.6	300-6	305.7	310.7	315.8	320.8	325.9	330.9	330.9	930 . 9	330.9	330.9	330.9	330.9	330.9	= 330 - 9	330.9
		100-0	102.5	105.0	107.5	110.0	112.5	115.0	117.5	120.0	122.55	125.0	127.5	130.0	132.5	135.0	137.5	140°U	142.5	145.0	147.5	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0	1.50.0	150.0
		2.9	2.0	2.9	2.9	2.09	2.9	5-2	2.9	2.6	3•1		3.1	3.1	3.1	3=1	3•ĭ	3• I	3.1	3.1	3 •1	3.1	3.1	3•L	3.1	14 °C	3•1	j. l	3•1		3.1
		6.7	6.7	6.7	5.7	6.7	6.7	6.7	6.7	6.7	8.6	8.6	8.¢	ð_6	d •6	8.5	8.6	ы. С	5-5	8.6	.0 • 0	8. O	5.5	5.6	8. 6	b •ć	d •0	8 . 6	\$•2	8 . 6	e . D
0.0	0.C 6. 7	0.0	0-0	0.0	0°0	0-0	6. J	0-0	0-0	6. 8	6-0	J • C	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0	0.0	0.0	Ú.Ú	0.0	0. 0	9.0	0*0	0.0	0.0	0-0	0.0
1570	1977	 1950	1	1 32		1:04	Lýru	Lyoc	19-1	Lyes		1 - 50	Lval	1.5.1	[65]	オント【	:547	1 - 1.5	Luri	1953	r651	2000	2001	-00-	≥00≤	2304	2005	2006	2017	2008	2064

No. Constitution

279.

4542.5 3668.3 2793.9

378**.1** 350**.**0 324**.**1

107AL 107AL 107AL

48.5 39.6 30.9

124•6 130•9 77•1

204.3 209.3 216.1

5.02 7.02 10.04

	κ.									(51).	-		±۲,12	7,788	•••• *:		a tr		** ****				*1													
	SHIPPING COST						359-0	376.9	39 4° 9	412.8	430*8	448°7	466• T	484-6	502-6	520-5	538.4	550.4	574.3	592.3	610.2	628-2	646.1	664.1	682.0	700-0	717-9	117.9	717-9	6-112	2117-9	717-9	6*212	717-9	717-9	717-9
	VOLUME						150-0	157.5	165.0	172.5	180-0	187.5	195.0	202.5	210-0	217.5	225.0	232.5	240.0	247.5	255.0	262.5	270°	277.5	285.0	292.5	300-0	300-0	300.0	300-0	300.0	300-0	300-0	300.0	300-0	300.0
	MAINTENANCE COST						3.9	3.0	0°0	3•6	3.9	5.9	3.9	3.9	3.9	£•4	4.3	4 • 3	4 .3	4 • A	5 .0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
	CPERATING COST						9 - 1	9.1	5•1	9 . 1	1 •6	5.1	1.9	9.1	9.1	13.8	13.8	13.8	13.8	13-8	14.7	14•7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7
Ines, (1-s-C).	5	n•n	n-0	n	82.7	187.2	0-0	0-0	0"0	0-0	0-0	0•0	0-0	0°0	. 15.2	0•0	0•0	0-0	0*0	23.0	0.0	0*0	0-0	0°0	0-0	0-0	0•0	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
I Ne Sa	YEAR 7			T.) (T	1978	1:75	1980	IseI	1962	1965	1 364	1985	1966	138T	1983	1 96 L	0661	1661	1 552	1933	1 354	1995	1996	1997	96é T	656 I	2000	2001	2002	2003	2004	2005	2006	2007	2003	2009

i. L

and and a second se

4

وبيعانا دادهمات والشامع

8747.2 6952.0 5177.0

573-5 524-4 478-7

TOTAL TOTAL TOTAL

70-4 57-0 43-6

192.8 154.0 115.4

310.2 313.4 319.7

5.01 7.03 16.02

..

280.

where the second strategy and

A COMPANY AND A PARTY

9 No. 1 H. K. S.

STATE IN

ż

Щ

į

÷ ş

																																									че 1977 г.	
300,000 DWT,70-115 MTA,T																								•									1.		*							
RAF T .	TAC DAT						163.7	168.7	173.6	178-6	183.5	188.5	193.4	198.4	203.3	208.3	213•2	218-2	223-2	228.1	233.1	238.0	243.0	247.9	252.9	257 . 8	262.8	262.8	262 . 8	262 -8	202.8	8 • 707	202 0 0	00707 0723	262.8			3457.6	2777-0	2099.1		
STURAGE, 70 FI.DRAFI,	SUTODINC																																				REST RATI	301.4	278.4	256.7		
							70.0	72.3	74.5	76.8	0~62	81.3	83.5	85.8	88-0	90•3	9 2 •5	94°8	9 7 •0	99.3	101.5	103.8	106.0	108.3	110.5	112.8	115.0	115.0	115.0	115-0	115.0	112.0					INDICATED INTEREST RATE	TOTAL	TOTAL	TOTAL		
	MATNTLAND, CGC	HALMICHARGE CUOL					i •5	1.5	1.5	1.5	. 1.5	1.5	1-7	1 • 7	1-7	2.07	1.7	1.7	Le 7	1.7	1.7	1.1	1.7	1.1	1.7	1.7	1.7		<u>1.7</u>	1.7			/ • T	- • T			PRESENT VALUE AT INDICAT	26.4	21-6	16.7		
	(-A).	LCCALING COSI					5 . 7	5.1	5.7	5.1	5.7	5.7	6.0	6 . C	6.0	6.6	7.3	7.3	7.3	n • •	7.3	7.3	7.3	7.3	1.3	7.3	7.3	7.3	7 •3	7.3	2•2 -		- r - r	0 0 - r			CUMULATIVE PRESE	105-7	85.6	65•5		
	• VIPALINAS • [2-1-A	1×31 1×31 U	0-0		53 . 1	86 . U	0.0	5.5	0.0	0 • 0	0-0	21.6	0"0	0.0	0.0	11 1 1	0-0	0.0	0.0	0.0	0-0	0-0	C. O	0-0	0.0	0-0	0.0	0.0	0.0	0.0	0.0	0.0	2			2	CU	169 <u>-</u> 3	171-2	174-6		
BUG, UELANA, E BAY, SEXV			101	1 - 7 7	101c	1979	1950	1961	1902	1903	1964	1985	0451	1967	1 3 6 6	585 T	1990	1961	1992	1961	1954	506T	1956	1661	1958	5551	2000	2001	2002	2003	2064	2005	2005			5002		5.02	7-02	10-01		

A farmer in scients - Therein territe to and of the di kana and the second A MORE FARTER

K

ł

300,000 EMT,115-230 MTA,																																					
DST 0				970 0	0°417	3.07.8		335.7	346.7	363.7	377.7	391.7	405.7	415.6	433.6	447°6	461.6	475.6	49° 9	503-6	517.5	531.5	545.5	555°5	559.5	555.5	555.5	559•5	559.5	559.5	555.50	559.5	559 . 5	ATE	7 6817•2		
STORAGE, 70 FT.URAFT. VOLUME SHIPPING C				0 311	0.011	5 . Y . I	120 2	135.0	142.0	149.5	155-3	161-0	166.8	174.5	178.3	184.0	189.8	195.5	201.3	207-0	212.8	213.5	224+3	230.0	230.0	230.0	230.0	230.0	Z30•0	230.0	230.0	230.0	230.0	INDICATED INTEREST RATE	TCTAL 437.77	TOTAL 371.2	
EL.,FIX.U BERTHS,UNSHURE S CUST MAINTENANCE CUST				r	107	107	1 0 1 1 (2.41 7.1	i	2 - 2 2 - 2	- 1	2.4	2.44	2.07	2.07	2.7	2.7	2.07	2.07	2.7	2.7	2.7	. 2.7	2.07	2.1	2.5	Z•2	2.1	2.7	2-2	7 • 7	2.1	2.7	PRESENT VALUE AT INUICATE	39.95		
= BAY\$SëXVING DEL_•FIX S\$(Z-1-b) COST uPE>ATING CUST				e F			0 a • •					d. L	H.H	U.I.I	11.6	11.0	11.0	11.0	11.0	1.0	11-0	11.0	11•C	11-0	11• C	11.0	11.0	11-0	11.0	11.0	11.0	11.0	i1.0	CUMULATIVE PRESEN	152.4	53•0 53•0	
LAARS DATAS	0.0	0.0	76.3	121.55				່ວ	י ט ט ט ט		0-0	0.0	i1.0	0-0	C. C	0-0	ວ ະ ບ	ر . 0	0-0	ວ • ວ ວ	0.0	0.0	0.0	0°C	0.0	0° 0	0.0	0-0	0.0	ပ ပ	0.0	0.0	0.0	CU	245.7 245.4	234.6	
DSA,2 LAAAKS TRAPLALNES YEA: FIAST C	1°75 1976	1977	137c	1975	000r	1041		1146		1	19.77	(1) (1) (1) (1)	536T	05e 1	1561	26tT	£5± 1	1994	1 395 L	936T	1347	25E l	Dati	2000	2001	2062	ί JC z	2004	5000	2006	2007	ZOGE	2 00 5		5 • C #	10.0z	

i ya yenyiki inaya¢ana bandkilan" βa

IL.

Sale and

10.0

10-70-78

400,000 DMT, 70-115 MTA, T

 ALTGAATIVE No. DU
 STRAGETO FLEMMS. STRAGETO FLEMMS.

 Sisperture
 Sisperture

 Sisperture
 Superture

 Sisperture
 Superture

 Sisperture
 Superture

 Sisperture
 Superture

 Sisperture
 Superture

 Sisperture
 Superture

 Size
 Superture

 Size
 Superture

 Size
 Superture

 Size
 Superture

 Size
 Superture

 Size
 Lee

 Size
 Superture

 Size
 Lee

 Size
 Superture

 Size
 Lee

 Size
 Lee

 Size
 Lee

 Size
 Lee

 Size
 Size

 Size
 Size

 Size
 Size

 Size
 Lee

 < 3457**.**6 2777**.**0 2099**.**1 163.7 163.7 163.7 163.7 163.5 163.5 163.5 198.4 198.4 198.4 198.4 203.3 203.3 203.8 SHIPPING COST CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE 320.5 295.6 272.3 TOTAL TOTAL TUTAL 32•3 26•2 20•1 104.4 64.9 64.9 133.4 134.5 187.3 5-UT 7-CE 10-02

An and the second s

283.

to the R

たいないというない、ないないので、

284.																																			
																											-,*		¹⁰		- ئې				, g t
SHIPPING COST			279.8	293-8	307.8	321.8	335.7	349.7	363.7	377.7	1-166	1.02		435.0		40T*0	4 C 2 C 4	503 6	517-5	531.5	545.5	559.5	559 . 5	559.5	559.5	559•5	0.000 1.000			559-5			4	6817•2 5419 1	
SHIPI																																PECT DAT		462.4 422.4	392.2
VOLUME			115.0	120-8	126.5	132.3	138 .0	143 - 8	14° 5	155.3	161.0	106 . 8				135.0	C.C.C.T	C 107	2 - A - A - A - A - A - A - A - A - A -	218.5	224.3	230-0	230.0	230-0	230.0	230.0	0-052	0.015		230-0		STAUTSSEENE GETATION		TUTAL	TOTAL
PAINTENANCE COST			2.6	9•7	2.6	2•é	2.6	2.60	2.e6	2.6	2 • C	9•0 • •	() / ● () /	ייני פ ס		2 • C	0 6 0 0	i] " ● 1 C			3.2	3•2	3.2	3.2	3.2	3.2	1 1 1 1 1 1		1 0 •	N V • •	4 • •	T VALUE AT		46 a 3 2 0 0	29-1
-LJ. ĈPĒKATING CUST			7. E	7 • ć	9-9	7.8	7 . F	7.3	7 • S	7.5	7.8	2°5		1:0	0.11	11-0				11.0	11-0	11.0	11.0	l1.0	11.0	11•0	11-0					VIDEC DOCCHA	CLUCHITIC LUCIC	151.6	9 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
TR.PIP:LIN-S,(z-i-č). Zar first Cust öperating Cust 975	0°0 0°0 8¢°2	1.56.5		0.0	0.0	0.0	0.0	0.0	0-0	0•0	0•0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n - 1	0.0	2 0 1 0	0.0				0.0	0.0	0*0	0.0	0.0	0-0	0•0	0°0					Ĺ	ر	264.0	270-6
TR.P11 Y-A6 1975	1976 1977 1975		1930	100	32	1963	41.1	č664	14E6	1987	201	1969	コムトゴ	1541	1476		1 4	сі · Р	L7.0	1998	-55T	2000	2001	2002	2005	2004		2006	1002	4002	5			-0- -0-	10-02

三日二日二日二日二日 二日二日 二日

300,000 DHT, 70-115 HTA, T				и 	Mart, T.
FT.DRAFT.	SHIPPING CUST	163.7 168.7 173.6 178.6 183.5 183.5 193.6	2088 2038 2038 2038 2088 2088 2088 2088		323-0 3457-6
ŠTORAGE • 70	VOLUNE	70°0 72°3 74°5 76°8 79°0 81°3 81°3	85.0 88.0 88.0 88.0 90.3 97.0 97.0 97.0 97.0 101.5 101.5 108.3 108.3	2.0 112.8 2.0 112.8 2.0 115.0 2.0 115.0	TCTAL 3
SEEVING DEL.FIXED BERTHS, ISLAND	MAINTENANCE COST	∠•1 ∠•1 ∠•1	5 % 6 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AT AT	30.4
SEEVING DEL.FI)	DPE LATING CJST	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 0 0 C C C C C C C C C C C C C C C C	7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.3 7.8 7.8 7.8 7.8 7.8 7.8	112.9
ы. Е ВАХ, -12-2-	200 200 200 200 200 200 200 200 200 200	67 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1.907
BSG9 DELAKAS 2. DIDAS TRAS	VEAR FLAST 1975 1975 1975 1977 1977	5791 540 1582 1582 1582 1582 1582 1582 1582 1582	2661 2661 2661 2661 2661 2661 2661 2661	1995 1995 2005 2005 2005 2005 2005 2005 2005 2	5.63

精査が計算にしたからいた

285.

..... نې نې د

			i	28	36	5 .																																			
		ANNOUND STREET STORE																										t													
			SHIPPING COST						279-8	293.8	307.8	101 B	335.7	349.7	363.7	577.5	391.7	405.7	419-6	433.6	447.6	461-6	475.6	485°6	503.6	517.5	531.5	545.5	559.5	559.5	559.5	2 - 6 - 1 1 - 6 - 1				1 ° 1 ° 1 ° 1	559.5	ų		5418.1	4034-8
	70 CT 00					1																																KEST RAT	2 007	415.5	385.6
	- 2 V GUL3		VOLUME						115-0	120.8	126-5	5725	138-0	143-6	I49-5	155.3	161.0	166.8	172.5	L78.3	184.0	L49.8	L95 - 5	201.3	207.0	212.8	218.5	224.3	230-0	230-0	230.0			0.050	230-0	230-0	230.0	INDICATED INTEREST RATE	TOTAL	TUTAL	TOTAL
	X 60 8 -61 46 - 17 460 18 1990 19 - 18 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18	,	MAINTENANCE COST						2.1	2.1	1-2	110			2.4	2.e 4	2.4	2.4	2. T	2.7	2.1	2.7	2.7	2.7	2.7	2.7	2.1	2.7		2.1	2.07	1.02	- • J				2.7	VALUE AT	7 01	32.1	24•5
c	0 * êv 136 û êl _ - Fix e		CPERATING COST						5°1	5°L	7.9	6-2	5-2	7.5	3°C	3.0	d •0	3.0	11.1	11.1	1-11	II	11.1	11.1	L1. I	11.1		1			7 • 7 • 7	1.1.1	1.1.1	11-1	11-1		11.1	CUMULATIVE PRESENT	5.55	123.6	93.7
	6411VE NG - 18 -18már: 34V-5	LINES, [2-2	FIRST CUST D	3.5	41 1	1.4	80 . 7	118.6	0.0	0.0	0-0	C. 0	0• Û	6 1 3	0.0	0*0	3°0	12.0	0.0	0°0	0.0	0.0	0•0	0.0	0.0	0.0	0.0		ວ ເ	ہ د ہ			0-0	0.0	0.0	0.0	0-0	CUF	255.6	259.8	267.4
۲ •	AL LESS	TrePL	Ycć.	5277	1976	1161	1975	Lyty	1 4 A C	1361	1,162	[;:3	486T	2017	1966	1987	1955	1484	065T	1351	1,42	1953	1994	1-355	1500	1561	1955	56.6T	2222	1007		2004	2005	2006	2007	2005	2005		5.02	7.0%	lù . 0%

ميافية فألاعت فالمناء المأكر فانفقت فاست

「田子」

، .

ų

1

a uith an a'

Έ.

ġ

. .

1

ţ

Jeffa Ale

						~~~					den.	nai (P	- <b>-</b> -144				 					-1411									, 121, 8				
								·																									287	٠	
F																																			
LS MTA,T																																			
r, 70-11																																			
400,000 DHT,70-115																																			
4004																																			•
•	COST				163.7	168.7	173.6	178.6	163.5	188.5	195.4	202.2	208.3	213.2	218.2	223•2	228.1	233.1	238.0	243.0	26.2 0	257.B	262.8	262.8	262.8	262.6	262.3	262.8	262.8	262.8	262.8	262.3			3457-6 2777-0
FT.DRAFT.	SHIPPING																																RATE		339•6 314•8
					0	ŝ	ß	с S	0		n a			5	Ð	0	ŝ	5		<b>.</b>	ባሠ	۰ <i>«</i>	5	<b>ა</b> თ	0	0	0	0	0	0	0	0	EP≟ST		m m
STURAGe•70	VULUME				70-1	72.	74.	76.	15.	31.	5 9 7 5	H H	207	92	94• Û	9-79	99 <b>°</b> 3	101-	103	on 1			- 4 1 1	115.6	115.	115.	115.	115.	115.	115.0	115.	115.	INDICATED INTEREST		TOTAL
	ĊUST				<b>1.8</b>	<b>1</b> •3	<b>l</b> •6	1.8	39 - 	1•3	2 .			) 	2.3	2.3	č•3	رو می م	2•3		<b>.</b>	• • •			2.3	2.3	2•3	2•3	2• j	د•۶	2 <b>.</b> 3	خ•2	NUICAT		33•1
ŔTHS <b>, iSLA</b> ₩Ŭ	ENANCE CUST																												. 1				АŢ		
ي. م	FAINI Ü																																T VALUE		
ͽϲϹ϶϶ϜͿΧ;ϧ	COSE				6.2	¢2	6.2	6• 2	<b>b.</b> ²	~]   ₽	200		2.09	7.8	2.5	7.6	7. č	7.8	<b>7.</b> 57		1. C	 • .	0 a • r	0 9. •		7.5	7.5	7.5	7.5	7.3	7.5	3.5	PKESENT		112.9 51.5
ואפ טרו	?																																		1.0
1y0 ,SEKV1	EPER!																																CUMULAT I VE		
г №. 84 да¥	1503 COST	ំកំ កំ កំ	2.5	62•1	0.0	0.0	u.0	0.0	0-0	0			77.6	0	0.0	0-0	<b>c</b> • 0	0.0	ວ <b>ໍ</b> ວ	0 ·				0.0	0.0	с <b>.</b> О	0.0	C.0	0.0	Ú.Ũ	0-0	0•0			190.6 136.5
ALT MATIVE NO. 190 050-001 Anaré BAY,Serviné	F EL INC F I E S I																																		
aLT - USSO	ver H Ve Asi ve Asi	171 147u	1271	-016T	1,50	1951	11 11 11	いうにす	サイトー	1 365	1900			1950	75+1		7.56T	1954	456T			1000		2001	2002 2002	2002	2004	2005	2000	5003	2008	2003			5.02 7.05

日本の時間になったからのです。

NULL AND AND ADD

RU:

Ż

	2	8	8.	•																																			·. 、	
	SHIPPING COST				0 026		0 • C C Z	301-8 202	321-8	335.7	349.7	363.7	377.7	391.7	405.7	419.6	433.6	447-6	461.6	475.6	489.6	503.6	<b>C-11</b>	C.15C		0.74. 2.55.		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.05.5	559.5	555°2	559.5	559 <b>•</b> 5	5-54-5	Tć		5413•1 4036-9			
						2.0	E,	Ň.	m,	õ	8	5	'n	0	20	ŝ	Ú,	0	8	ŝ	n i	<b>0</b> (	20 H	Ū,	ņ <	2				0	0	0	0	0,	lekest ra	470.5	436.6 405.7			
	VULUME				0 211									161.0								207.0				0.052			230.0			~	~	230.0	ATED INI		TOTAL			
- I	PAINTENANCE COST						<b>1 0 7</b>	<b>5</b> •2	2.4	2.4	2. <del>4</del>	2.04	2.4	2.4	2.4	3.0	0 • č	3.0	3 <b>•</b> 0	0°		3•0 2	0 ° 8	0 ° C						3.0	3.0	3.0	3.0	3.0	AT VALUE AT INDICATED INTEREST RATE	43.6	35.3	1017		
	CFERATING CUST	١					л С - I	6 • J	<b>1</b> •9	7.º:	<b>5°2</b>	<b>1</b> •9	2.5	1.9	1.9		1.11	11-1	11.1		I P P I	11.1	1-11		1013		1 1 1	1-11	1-11	1-11	I I	1-11	11.1	II.	CUMJLATIVE PRESENT	153 <b>-</b> 2	123•3 62 F	n +n,		
Ņ.		n u 0 r	<b>n</b> 4	0 ° ° °	 1.20 <b>.</b> 3		0°0	0.0	0•0	0 <b>-</b> U	0•0	0-0	0°C	0-0	37.8	0 <b>•</b> 0	0-0	0° 0	0.0	0.0	0.0	0•0	0.0	0.0	0.0				0-0	0.0	0.0	0.0	Ü.Ü	<b>U</b> .U	CUF	274.1	211.5	70667		
<u>c</u> ⊢• •	C1 (	1717	0127	167.	- 1 - 1	05AT	1961	725T	1983	4957	Ljėj	0-41	1947	1983	140×1	1550	1661	255T	£6£ <b>T</b>	7994	1559 1	1 ; 5e	1551	255 <b>1</b>	- 5 - 1 - 5 - 1 - 1	2000	1002	2002	2004	2005 2005	2000	2007	.00.5	2063		5.06	7.02	* <b>n</b> *n <b>t</b>		

ŝ

:

1

ļ

0-0 197c

1477	<b>U</b> _U			
ŗ	83.7			
·5	1-3-1	,	с ,	001
0	0.0	6.4		
	0	6-4	0.0	102
-			2-0	105,
				101
*	0_0	6.4	7.07	
1		6.4	2.0	110.
<b>†</b>			0-0	112.
r.	<b>0-0</b>	0°4		
	<b>1</b>	6.4	2.0	
5			•	117
57	0.0	7.1	2.02	
			•	

0.020		233°U	240.1	245.1	250•2	255 <u>-2</u>	240-3	166.3	C.02	270-4	275.4	280-4	285.5	290•5	295.6	300.6	2000 2015		1.010	315-8	320•8	325-9	330.5	330.9	330.9	330.9	330.9	330.9	330.9	330.0		7 ° 0 C C	330.9	
	1 ono 1	102-5	105.0	107.5	110-0	112.5	11607		<b>C-11</b>	120-0	122.5	125-0	127-5	130-0	132-5			131.0	140°0	142.5	145.0	147.5	150-0	150.0	150-0	150-0	150-0	150-0			n•nc1	150.0	150.0	
	2.0	0.0	2.0	2.0					ž.1	2.1	2.1	1 - 2						2.5	2.1	2.1	2.1	2.1					2.1	2-1-2	- - -		2.0 L		2.I	
	6.4	6.4	6.4			† 0	6.4	6.4	7.1	7.1		•	- 6		•	1.1	7•1	7.i	7-1	7.1	7.1	•						 	-1 - 	7.1	7.1	7.1	7.1	•
1.13.1	0-0	0-0			5 ° C	0.0	<b>0-</b> 0	3.3	0-0					2 - -	0.0	0-0	0.0	0-0	0-0				י הי הי	0.0	ם ה ניי	0 ° 0	0.0	0.0	0.0	0.0	0.0	0.0		>
- 17 -	0201		1361	「カア	1961	1984	1965	1956	2007	1367	1 7 4 5	1435	0661	1651	1392	1 ÷5 J	1694	100				555 <b>1</b>	1995 J	2005	2001	2002	2003	2004	2005	2006	2007		2002	くいつ

CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE

4542•5 3668•3 2793•9
378 <b>•1</b> 358 <b>•0</b> 340•7
TŪTAL TŪTAL TŪTAL
33 <b>.</b> 3 27 <b>.</b> 3 21 <b>.</b> 2
110•3 50•2 69•9
234.5 240.4 249.5
5.03 7.02 10.03

-100-1

6.ja

1

9 7

아파 : 말했는 ~~~ : ~

			t a	• • • • •	
S CIST MAINTENANCE CLST - VULUME SHIPPING COST	359.0 376.9 354.8	412-0 448-1 466-1 502-6 502-6 502-6	520.55 556.4 574.3 574.3 610.2 628.2 628.2	646.1 664.1 682.0 717.9 717.9 717.9	6-117 2-117 2-117
NULUM: S	150°0 157°5 165°0	182.0 187.5 195.0 202.5 220.5	21.1.5 225.0 240.0 247.5 255.0 252.5	270.0 277.5 285.0 285.0 285.0 300.0 300.0 300.0	300 <b>.</b> 0 300 <b>.</b> 0
MAINTCHANCE CLST	ທີ່ ທີ່ ທີ່ 4 ອີ້ອີ້ອີ ເດັບເດັນ 4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ッ う う う う う う う う う う う う う う う う う う う		
3-6). GPEKATING CUST	ი. თ. თ. თ. ო ⁵ ლ ⁵ ო ⁵ ა	8.9 11.5 11.5 11.5 11.5 11.5 11.5 11.5 10.5 11.5 10.5 11.5 10.5 10	23399654 23399654		
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	11-1 0-0 0-0 35-1			
Y C F S I	157c 157c 198i 198i	「 ようらうらい」 このでする ので して して して して して して して して して して して して して	1985 1985 1992 1992 1994 1994 1994 1994 1994 1994	2002 2007 2012 2012 2012 2012 2012 2012	2005 2005 2005 2005

•

# CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE

T0TAL 555.0	38.1 TOTAL 510.3 6552.0	TOTAL 467.5
-	153.2 38	
318-4	319-0	321.8
5.62	7.02	10-01

ō

## 290.

and the second second

į.

ALT-TATIVE NG. 220 PSG-ALAARE BAY-SERVING EAST COAST FIXED BEATHS, GNSHURE STORAGE, 70 FT-DRAFT, 400, 000 DNT, 100-150 MTA *1r-JIPELINES, (2-3-C1)-YEAR FIELT GEST OPERATING COST MAINTEMANCE COST VOLUME SHIPPING COST 1375 0.0 4575 0.0 1577 C.Q

1

1

.....

ţ

1 1 1

į

į

÷

		230.0	235.0	240.1	245 <b>.</b> 1	250.2	255.2	260.3	265.3	270.4	275.4	280.4	285.5	290-5	295-6	300.6	305.7	310.7	315.8	320.8	325.9	330.9	33 <b>0.</b> 9	330.9	330.9	330.9	330.9	330.9	330.9	330.9	330 <b>.</b> 9	
		130.0	102.5	105.0	107.5	110.0	112.5	115.0	117.5	120-0	122.5	125.0	127.5	130-0	132.5	135.0	137.5	140.0	142.5	145.0	147.5	150.0	150°0	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.C	
		Z•Z	<b>2.</b> 2	2•2	2•2	2.02	2•2	2.02	2.3	ž.3	ž • ž	2. j	2.	2•3	2.3	2+3	2.5	23	2.03	Z.3	2°3	2.3	2.3	2.3	2•3	2.3	2.3	2. J	2•3	2.3	<b>2</b> •3	
		<b>6.</b> 8	င် မ ဒိ	6 • ů	6.3	0. ° 3	6. č	<b>6.</b> B	7.6	7.6	7.6	7.6	7.0	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7-6	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.6	
515	142.	0-0	0.0	0•0	Ú.Ú	0-0	0-0	ດາ ອີນ	0-0	0°0	0-0	0.0	0.0	0-0	0-0	0-0	0.0	0.0	0-0	0-0	0.0	0-0	0°0	0-0	u.0	0.0	G. 0	0.0	0-0	C-0	0.0	
	- / - T	1930	1451	19a2	Lyda	1934	1965 1965	1986	1967	1922	5541	1551	15AT	7651	1953	1934	355T	1956	1361	135ê	65ē1	2000	2001	2002	2003	2004	2005	2006	2007	2003	2003	

CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE

408**.1** 386**.5** 368**.0** 

TOTAL TOTAL TOTAL

30.5 30.0 23.3

26°3 26°3 74°5

253.7 260.2 270.1

5-07 7-02 10-07

٠

5 *****20

291.

大手に ほうしき 見たる

1

. 1

1

į ٩

ł

Ţ

١

ł

「「「「「「」」」

÷

FINST COST     OPCRATING COST     MINEMANCE COST     VOLUME     SHIPPING       171.2     9.5     2.9     150.0     9.5       171.2     9.5     2.9     150.0     9.5       10.0     9.5     2.9     150.0     9.5       10.0     9.5     2.9     150.0     9.5       11.1     9.5     2.9     150.0       0.0     9.5     2.9     150.0       0.0     11.2     2.5     112.5       0.0     12.2     3.4     202.6       0.0     12.2     3.4     202.6       0.0     12.2     3.4     202.6       0.0     12.5     3.4     202.6       0.0     12.5     3.4     202.6       0.0     13.5     3.4     267.6       0.0     13.5     3.7     262.6       0.0     13.5     3.7     262.6       0.0     13.5     3.7     262.6       0.0     13.5     3.7     262.6       0.0     13.5     3.7     262.6       0.0     13.5     3.7     262.6       0.0     13.5     3.7     262.6       0.0     13.6     3.7     262.6       0.0	Tise II						
1711.2     9.5     2.9     150.0       1711.2     9.5     2.9     150.0       0.00     9.5     2.9     150.0       0.00     9.5     2.9     150.0       0.00     9.5     2.9     157.5       0.00     9.5     2.9     157.5       0.00     9.5     2.9     157.5       0.00     12.2     3.1     187.5       0.00     12.2     3.1     210.0       12.2     3.1     210.0     2.55       0.00     12.2     3.1     210.0       0.00     12.2     3.1     210.0       0.00     12.2     3.1     210.0       0.00     12.5     3.1     210.0       0.00     12.5     3.1     210.0       0.00     13.5     3.1     210.0       0.00     13.5     3.1     210.0       0.00     13.5     3.1     217.5       0.00     13.5     3.1     255.0       0.00     13.5     3.1     255.0       0.00     13.5     3.1     255.5       0.00     13.5     3.1     255.5       0.00     13.5     3.1     292.5       0.00     13.5	rear Fl 1975		OPERATING COST	PAINTENANCE COSI	r volume	SHIPPING C	357
0.0     0.0     9.5     5.9     150.0       171.2     9.5     5.9     150.0       0.0     9.5     5.9     150.0       0.0     9.5     5.9     150.0       0.0     9.5     5.9     157.5       0.0     12.2     3.1     187.5       0.0     12.2     3.1     187.5       0.0     12.2     3.1     187.5       0.0     12.2     3.1     202.5       12.2     3.1     202.5       0.0     12.2     3.1       2.2     3.1     202.5       0.0     12.2     3.2       2.2     3.2     217.5       0.0     12.5     3.2       0.0     13.5     3.2       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5	1976	0-0					
171.2     9.5     2.9     150.0       171.2     9.5     2.9     150.0       0.00     9.5     2.9     150.0       0.00     9.5     2.9     150.0       0.00     12.2     3.1     195.0       0.00     12.2     3.1     195.0       0.00     12.2     3.1     195.0       0.00     12.2     3.1     195.0       0.00     12.2     3.1     202.5       0.00     12.2     3.1     202.5       0.00     12.2     3.1     202.5       0.00     12.2     3.1     202.5       0.00     12.4     3.3     247.5       0.00     13.5     3.3     247.5       0.00     13.5     3.7     205.5       0.00     13.5     3.7     205.5       0.00     13.5     3.7     200.0       0.00     13.5     3.7     200.0       0.00     13.5     3.7     200.0       0.00     13.5     3.7     200.0       0.00     13.5     3.7     200.0       0.00     13.5     3.7     300.0       0.00     13.5     3.7     300.0       0.00     13.5	1161	0• C					
171.2     9.5     5.9     150.0       0.00     9.5     5.9     155.0       0.01     12.2     3.1     188.5       0.00     12.2     3.1     188.5       0.00     12.2     3.1     188.5       0.00     12.2     3.1     188.5       0.00     12.2     3.1     200.0       17.8     12.2     3.1     210.0       0.00     12.2     3.1     210.0       0.00     12.2     3.1     210.0       0.00     12.2     3.1     210.0       0.00     12.2     3.1     210.0       0.00     13.5     3.2     232.5       0.00     13.5     3.7     255.0       0.00     13.5     3.7     255.0       0.00     13.5     3.7     255.0       0.00     13.5     3.7     200.0       0.00     13.5     3.7     200.0       0.00     13.5     3.7     200.0       0.00     13.5     3.7     200.0       0.00     13.5     3.7     300.0       0.00     13.5     3.7     300.0       0.00     13.5     3.7     300.0       0.00     13.5	576	E03.5					
0.0     9.5     2.9     150.0       0.0     9.5     2.9     157.0       0.0     12.2     3.1     187.5       0.0     12.2     3.1     187.5       0.0     12.2     3.1     187.5       0.0     12.2     3.1     187.5       0.0     12.2     3.1     187.5       0.0     12.2     3.1     187.5       0.0     12.2     3.1     202.5       12.2     13.5     3.1     202.5       13.5     13.5     3.2     217.5       0.0     13.5     3.2     217.5       0.0     13.5     3.2     247.5       0.0     13.5     3.7     270.0       0.0     13.5     3.7     270.0       0.0     13.5     3.7     270.0       0.0     13.5     3.7     200.0       0.0     13.5     3.7     200.0       0.0     13.5     3.7     200.0       0.0     13.5     3.7     200.0       0.0     13.5     3.7     200.0       0.0     13.5     3.7     200.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7 <td< td=""><td>575</td><td>171.2</td><td></td><td></td><td></td><td>1</td><td></td></td<>	575	171.2				1	
0.00     9.5     2.9     157.5       11.1     9.5     2.9     157.5       0.0     12.2     3.1     180.0       0.0     12.2     3.1     187.6       0.0     12.2     3.1     187.5       0.0     12.2     3.1     202.5       37.8     12.2     3.1     202.5       37.8     12.2     3.1     202.5       12.2     13.5     3.1     202.5       0.0     12.2     3.1     202.5       0.0     13.5     3.2     225.0       0.0     13.5     3.3     232.5       0.0     13.5     3.3     232.5       0.0     13.5     3.7     277.5       0.0     13.5     3.7     277.5       0.0     13.5     3.7     277.5       0.0     13.5     3.7     277.5       0.0     13.5     3.7     200.0       0.0     13.5     3.7     200.0       0.0     13.5     3.7     200.0       0.0     13.5     3.7     200.0       0.0     13.5     3.7     200.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7	980	0•0	5°6		~~	32	0.0
11.1     9.5     5.5     105.0       0.0     12.2     3.1     187.5       0.0     12.2     3.1     187.5       0.0     12.2     3.1     187.5       0.0     12.2     3.1     187.5       0.0     12.2     3.1     202.5       17.2     3.1     202.5       17.2     3.1     202.5       12.2     3.1     202.5       12.2     3.1     202.5       12.2     3.1     202.5       0.0     13.5     3.2       0.0     13.5     3.3       0.0     13.5     3.3       0.0     13.5     3.3       0.0     13.5     3.3       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5     3.7       0.0     13.5	135	0*0	3°2	2.0		37	5°3
11.1     9.5     5.5     172.5       0.0     12.2     3.1     187.5       0.0     12.2     3.1     195.0       0.0     12.2     3.1     195.0       0.0     12.2     3.1     195.0       0.0     12.2     3.1     195.0       0.0     12.2     3.1     202.5       0.0     12.2     3.1     202.5       0.0     13.5     3.2     225.0       0.0     13.5     3.2     225.0       0.0     13.5     3.2     255.0       0.0     13.5     3.2     255.0       0.0     13.5     3.7     255.0       0.0     13.5     3.7     255.0       0.0     13.5     3.7     255.0       0.0     13.5     3.7     255.0       0.0     13.5     3.7     255.0       0.0     13.5     3.7     255.0       0.0     13.5     3.7     200.0       0.0     13.5     3.7     200.0       0.0     13.5     3.7     200.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7 <td< td=""><td>982</td><td>0.0</td><td>5°2</td><td>2-5</td><td></td><td>5E</td><td>6•9</td></td<>	982	0.0	5°2	2-5		5E	6•9
0.0     12.2     3.1     180.0       0.0     12.2     3.1     195.0       0.0     12.2     3.1     195.5       0.0     12.2     3.1     202.6       12.2     13.5     3.1     202.5       12.2     13.5     3.1     202.5       12.2     13.5     3.1     202.5       0.0     12.4     3.1     202.5       0.0     13.5     3.2     217.5       0.0     13.5     3.3     247.5       0.0     13.5     3.3     247.5       0.0     13.5     3.3     247.5       0.0     13.5     3.3     247.5       0.0     13.5     3.7     255.0       0.0     13.5     3.7     262.5       0.0     13.5     3.7     270.0       0.0     13.5     3.7     270.0       0.0     13.5     3.7     270.0       0.0     13.5     3.7     270.0       0.0     13.5     3.7     270.0       0.0     13.5     3.7     270.0       0.0     13.5     3.7     200.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7	29G	1-11	9 <b>°</b> 2	() ()		14	2.8
0.0 12.2 3.1 187.5 17.8 12.2 3.1 210.0 2.2 17.5 3.1 210.0 2.2 17.5 3.2 217.5 0.0 12.2 3.2 217.5 0.0 13.5 3.2 25.0 0.0 13.5 3.2 247.5 0.0 13.5 3.3 247.5 0.0 13.5 3.4 247.5 0.0 0.0 13.5 3.4 7 200.0 0.0 0.0 13.5 3.5 3.6 7 00.0 0.0 0.0 13.5 3.5 3.6 7 00.0 0.0 0.0 13.5 3.5 3.6 7 00.0 0.0 0.0 13.5 3.5 3.7 300.0 0.0 0.0 13.5 9 3.7 300.0 0.0 0.0 13.5 0.4 100.0 0.0 0.0 13.5 0.4 100.0 0.0 0.0 0.0 13.5 0.4 100.0 0.0 0.0 13.5 0.4 100.0 0.0 0.0 0.0 13.5 0.4 100.0 0.0 0.0 0.0 13.5 0.4 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	204	0"0	12.2	3.1		19 19	0.8
0.0     12.2     3.1     195.0       77.8     12.2     3.1     210.0       77.8     12.4     3.2     211.5       2.2     13.5     3.3     232.5       0.0     13.5     3.3     232.5       0.0     13.5     3.3     232.5       0.0     13.5     3.3     247.5       0.0     13.5     3.3     247.5       0.0     13.5     3.3     247.5       0.0     13.5     3.3     247.5       0.0     13.5     3.3     247.5       0.0     13.5     3.7     255.0       0.0     13.5     3.7     262.5       0.0     13.5     3.7     200.0       0.0     13.5     3.7     200.0       0.0     13.5     3.7     200.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     <	955	0-0	12.2	1. U		4	8.7
37.8     12.2     3.4     202.5       37.8     12.2     3.4     210.0       2.2     12.4     3.4     210.0       2.2     12.5     3.4     217.5       0.0     13.5     3.3     232.5       0.0     13.5     3.3     232.5       0.0     13.5     3.3     232.5       0.0     13.5     3.3     232.5       0.0     13.5     3.3     232.5       0.0     13.5     3.3     240.0       0.0     13.5     3.3     247.5       0.0     13.5     3.3     247.5       0.0     13.5     3.7     202.6       0.0     13.5     3.7     202.0       0.0     13.5     3.7     202.0       0.0     13.5     3.7     202.6       0.0     13.5     3.7     202.0       0.0     13.5     3.7     202.0       0.0     13.5     3.7     202.0       0.0     13.5     3.7     202.0       0.0     13.5     3.7     202.0       0.0     13.5     5.7     300.0       0.0     13.5     5.7     300.0       0.0     13.5     5.7     <	5	0-0	12-2	1 <b>•</b> 1		19 <b>1</b>	6• 7
37.8       17.8       12.2       3.1       210.0         2.2       12.5       3.2       217.5       3.2       217.5         0.0       13.5       3.3       225.0       3.3       247.5         0.0       13.5       3.3       247.5       3.3       247.5         0.0       13.5       3.3       247.5       3.3       247.5         0.0       13.5       3.3       247.5       3.3       247.5         0.0       13.5       3.3       247.5       3.3       247.5         0.0       13.5       3.3       247.5       3.4       255.0         0.0       13.5       3.7       270.0       3.7       277.5         0.0       13.5       3.7       277.5       300.0       3.7       277.5         0.0       13.5       3.7       200.0       3.7       200.0       3.7       200.0       3.7       200.0       3.7       200.0       3.7       200.0       3.7       200.0       3.7       200.0       3.7       200.0       3.7       200.0       3.7       200.0       3.7       200.0       3.7       200.0       3.7       200.0       3.7       200.0	792	0-0	12.2	n. M		48	5.e 6
27.2     12.5     3.3     225.0       0.0     13.5     3.3     247.5       0.0     13.5     3.3     247.5       0.0     13.5     3.3     247.5       0.0     13.5     3.3     247.5       0.0     13.5     3.3     247.5       0.0     13.5     3.3     247.5       0.0     13.5     3.3     247.5       0.0     13.5     3.7     255.0       0.0     13.5     3.7     262.5       0.0     13.5     3.7     262.5       0.0     13.5     3.7     292.5       0.0     13.5     3.7     292.5       0.0     13.5     3.7     290.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7 <t< td=""><td>5.56</td><td>A_TF</td><td>12-2</td><td></td><td></td><td>205</td><td>26</td></t<>	5.56	A_TF	12-2			205	26
0.0     13.5     3.3     225.0       0.0     13.5     3.3     232.5       0.0     13.5     3.3     232.5       0.0     13.5     3.3     232.5       0.0     13.5     3.3     240.0       0.0     13.5     3.3     247.5       0.0     13.5     3.3     255.0       0.0     13.5     3.7     270.0       0.0     13.9     3.7     270.0       0.0     13.9     3.7     270.0       0.0     13.9     3.7     270.0       0.0     13.9     3.7     200.0       0.0     13.9     3.7     200.0       0.0     13.9     3.7     300.0       0.0     13.9     3.7     300.0       0.0     13.9     3.7     300.0       0.0     13.9     3.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7 <td< td=""><td>1.1</td><td></td><td>12-6</td><td></td><td></td><td>52</td><td>0<b>.</b> 5</td></td<>	1.1		12-6			52	0 <b>.</b> 5
0.0     13.5     3.3     232.5       0.0     13.5     3.3     247.5       0.0     13.5     3.3     247.5       0.0     13.5     3.3     247.5       0.0     13.5     3.7     255.0       0.0     13.5     3.7     255.0       0.0     13.5     3.7     270.0       0.0     13.5     3.7     270.0       0.0     13.5     3.7     270.0       0.0     13.5     3.7     270.0       0.0     13.5     3.7     270.0       0.0     13.5     3.7     292.5       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     5.7     300.0       0.0     13.5     5.7     300.0       0.0     13.5     5.7     300.0       0.0     13.5     5.7     300.0       0.0     13.5     5.7     300.0       0.0     13.5     5.7     300.0       0.0     13.5     5.7 <td< td=""><td>000</td><td>0-0</td><td>13-5</td><td></td><td></td><td>53</td><td>8.4</td></td<>	000	0-0	13-5			53	8.4
27.3     26.0     13.5     3.3     247.5       6.0     13.5     3.3     247.5       6.0     13.5     3.7     262.5       0.0     13.5     3.7     262.5       0.0     13.5     3.7     270.0       0.0     13.5     3.7     270.0       0.0     13.5     3.7     270.0       0.0     13.5     3.7     270.0       0.0     13.5     3.7     270.0       0.0     13.5     3.7     292.5       0.0     13.5     3.7     200.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     5.7     300.0       0.0     13.5     5.7     300.0       0.0     13.5     5.7     300.0       0.0     13.5     5.7     300.0       0.0     13.5     <		0-0	13.5			52	5a 4
27-3       13-5       5-3       247-5         0.0       13-5       5-3       247-5         0.0       13-5       5-7       262-5         0.0       13-5       5-7       262-5         0.0       13-5       5-7       262-5         0.0       13-5       5-7       262-5         0.0       13-9       3-7       295-6         0.0       13-9       3-7       295-6         0.0       13-9       3-7       295-6         0.0       13-9       3-7       295-6         0.0       13-9       3-7       290-0         0.0       13-9       3-7       300-0         0.0       13-9       3-7       300-0         0.0       13-9       3-7       300-0         0.0       13-9       3-7       300-0         0.0       13-9       5-7       300-0         0.0       13-9       5-7       300-0         0.0       13-9       5-7       300-0         0.0       13-9       5-7       300-0         0.0       13-9       5-7       300-0         0.0       0.0       13-9	Ĵ.	0-0	13.5			215	6•3
6.0     13.9     3.7     25.0       0.0     13.5     3.7     255.0       0.0     13.5     3.7     271.5       0.0     13.5     3.7     272.5       0.0     13.5     3.7     271.5       0.0     13.5     3.7     272.5       0.0     13.5     3.7     272.5       0.0     13.5     3.7     272.5       0.0     13.5     3.7     292.5       0.0     13.5     3.7     300.0       13.5     3.7     300.0     3.7       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     5.7     300.0       0.0     13.5     5.7     300.0       0.0     13.5     5.7     300.0       0.0     13.5     5.7     300.0       0.0     13.5     5.7     300.0       0.0     13.5     5.7	1.5	27.3	13 <b>-</b> 5			265	2•3
0.0 13.5 3.7 262.5 3.7 270.0 13.5 3.7 270.0 13.5 277.5 277.5 277.5 277.5 277.5 277.5 277.5 277.5 277.5 277.5 277.5 277.5 277.5 277.5 277.5 277.5 277.5 277.5 277.5 277.5 277.5 277.5 277.5 277.5 277.5 270.0 0.0 13.5 3.5 3.7 200.0 0.0 13.5 3.5 3.7 200.0 0.0 13.5 3.5 3.0 0.0 0 13.5 3.5 3.0 0.0 0 13.5 3.5 3.0 0.0 0 13.5 3.5 3.0 0.0 0 13.5 3.5 3.0 0.0 0 13.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	11	0°0	13.9		-	61:	0.2
0.0       13.9       3.7       270.0         0.0       13.9       3.7       277.5         0.0       13.9       3.7       277.5         0.0       13.9       3.7       277.5         0.0       13.9       3.7       292.5         0.0       13.9       3.7       292.5         0.0       13.9       3.7       292.5         0.0       13.9       3.7       202.0         0.0       13.9       3.7       300.0         0.0       13.9       3.7       300.0         0.0       13.9       3.7       300.0         0.0       13.9       3.7       300.0         0.0       13.9       3.7       300.0         0.0       13.9       5.7       300.0         0.0       13.9       5.7       300.0         0.0       13.9       5.7       300.0         0.0       13.9       5.7       300.0         0.0       13.9       5.7       300.0         0.0       0.0       13.5       5.7       300.0         0.0       13.6       5.7       300.0       3.7         0.0 <t< td=""><td>255</td><td>0.0</td><td>13.5</td><td></td><td></td><td>6<u>7</u>1</td><td>8.2</td></t<>	255	0.0	13.5			6 <u>7</u> 1	8.2
6.0       13.9       3.7       277.5         0.0       13.9       3.7       277.5         0.0       13.9       3.7       277.5         0.0       13.9       3.7       275.0         0.0       13.9       3.7       292.5         0.0       13.9       3.7       292.5         0.0       13.9       3.7       200.0         0.0       13.9       3.7       300.0         0.0       13.9       3.7       300.0         0.0       13.9       3.7       300.0         0.0       13.9       3.7       300.0         0.0       13.9       5.7       300.0         0.0       13.9       5.7       300.0         0.0       13.9       5.7       300.0         0.0       13.9       5.7       300.0         0.0       13.9       5.7       300.0         0.0       13.9       5.7       300.0         0.0       13.9       5.7       300.0         0.0       0.0       13.5       5.7       300.0         0.0       13.6       5.7       300.0       5.7         0.0 <t< td=""><td>356</td><td>Ū.Ŭ</td><td>13.9</td><td>3.</td><td></td><td>49</td><td>6e 1</td></t<>	356	Ū.Ŭ	13.9	3.		49	6e 1
0.0     13.9     3.7     285.0       0.0     13.9     3.7     292.5       0.0     13.9     3.7     292.5       0.0     13.9     3.7     292.5       0.0     13.9     3.7     200.0       0.0     13.9     3.7     300.0       0.0     13.9     3.7     300.0       0.0     13.9     3.7     300.0       0.0     13.9     3.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       13.45.2     345.2     345.2       345.2     61.6     53.2 <td>15.</td> <td>2° 3</td> <td>13.9</td> <td>9 - F</td> <td></td> <td>ê.</td> <td>f]</td>	15.	2° 3	13.9	9 - F		ê.	f]
0.0     13.9     3.7     292.5       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       13.5     3.7     300.0     3.7       3.45.2     3.7     300.0     3.7       3.45.2     3.45.2     3.05.0     3.7       3.45.2     3.45.2     4.3.2     5.98.2	1070	0.0	13+9	ы. •		689	2•0
0.0 13.5 3.7 300.0 0.0 13.9 3.7 300.0 0.0 13.9 3.7 300.0 0.0 13.9 3.7 300.0 0.0 13.9 5.7 300.0 0.0 13.9 5.7 300.0 13.9 5.7 300.0 13.9 5.7 300.0 13.9 30.0 13.9 3.7 300.0 13.9 30.0 13.9 3.7 300.0 13.9 30.0 13.9 5.7 300.0 13.9 10.0 13.9 5.0 13.0 10.0 13.9 5.0 13.0 10.0 13.9 5.0 13.0 10.0 13.9 5.0 13.0 10.0 13.9 5.0 13.0 10.0 13.9 5.0 13.0 10.0 13.0 10	555	0.0	L3.9	.• m		10	0•0
0.0     13.9     3.7     300.0       0.0     13.9     3.7     300.0       0.0     13.9     3.7     300.0       0.0     13.9     3.7     300.0       0.0     13.9     3.7     300.0       0.0     13.9     3.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     3.7     300.0       0.0     13.6     5.7     300.0       0.0     13.6     5.7     300.0       0.1     13.5     5.7     300.0       13.45.2     5.44.9     260.0     5.8.2       345.2     161.6     53.3     1074.550.1	000	0-0	13.5	3.		.12	7.9
0.0     13.5     3.7     300.0       0.0     13.9     3.7     300.0       0.0     13.9     3.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.5     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.6     5.7     300.0       13.5     5.7     300.0     5.7       0.0     13.6     5.7     300.0       13.5     5.7     500.0     5.8       13.5     5.44.5     5.8     5.8       545.2     53.3     61.6     53.2	2 <u>0</u> :	0-0	13.9	ц. •		11	7.9
0.0 13.9 3.7 300.0 0.0 13.9 5.7 300.0 0.0 13.9 5.7 300.0 0.0 13.9 5.7 300.0 0.0 13.9 5.7 300.0 13.9 5.7 300.0 0.0 13.9 5.7 300.0 13.9 3.7 300.0 14.9 15.5 3.7 300.0 14.9 200.0 14.9 200.0 14.5 200.0 144.9 200.0 141.6 53.3 101AL 598.2 161.6 53.3 101AL 598.2	2C ź	0-0	13•5 1	0 • 0		11	7.9
0.0 13.9 5.7 300.0 0.0 12.5 5.7 300.0 0.0 13.5 5.7 300.0 0.0 13.9 5.7 300.0 0.0 13.9 5.7 300.0 13.9 3.7 300.0 0.0 13.9 3.7 300.0 14.5 3.0 15.5 ATE CUPULATIVE PRESENT VALUE AT INCICATED INTEREST RATE 544.5 200.0 145.2 1014L 550.1 161.6 53.3 1014L 550.1	¥00	0-0	13.9	( • E		11	7.9
0.0 13.5 3.7 309.0 3.0 13.5 3.7 300.0 0.0 13.5 5.7 300.0 0.0 13.9 3.7 300.0 13.9 3.7 300.0 13.9 3.7 300.0 14.5 300.0 14.5 3.1 300.0 14.5 200.0 14.5 200.0	904	0"0	13.9	1.01	•	112	7.9
0.0     13.5     5.7     300.0       0.0     13.5     5.7     300.0       0.0     13.9     5.7     300.0       0.0     13.9     3.7     300.0       0.0     13.5     3.7     300.0       0.0     13.5     3.7     300.0       0.0     14.5     3.7     300.0       0.0     14.5     3.7     300.0       0.1     14.5     3.7     300.0       13.7     300.0     3.7     300.0       0.1     14.5     3.7     300.0       13.45.2     200.0     53.3     101AL 598.2       144.3     260.0     53.3     101AL 598.2	003	0.0	13.5	[●E		12	6*2
C.0 13.9 5.7 300.0 0.0 13.9 3.7 300.0 0.0 13.9 3.7 300.0 0.0 13.5 3.7 300.0 14.5 3.7 300.0 15.2 100LATIVE PRESENT VALUE AT INDICATED INTEREST RATE 544.5 200.0 53.3 TOTAL 598.2 161.6 53.2 TOTAL 550.1	CC6	0°0	13 <b>-</b> 5			11	7.9
0.0 13.9 3.7 300.0 0.0 13.5 3.7 300.0 CUPULATIVE PRESENT VALUE AT INCICATED INTEREST RATE 544.9 260.0 53.3 TOTAL 598.2 161.6 53.2 TOTAL 550.1	0C7	0.0	29-61	Ū č		.11	7-9
0.0 13.5 3.7 300.0 CUPULATIVE PRESENT VALUE AT INDICATED INTEREST RATE 544.9 200.0 53.3 TOTAL 598.2 1 345.2 161.6 43.2 TOTAL 550.1	200	0-0	13.9	3.61		2	7•9
CUPULATIVE PRESENT VALUE AT INDICATED INTEREST RATE 544.9 200.0 53.3 TOTAL 598.2 1 345.2 161.6 43.2 TOTAL 550.1	500	0-0	2.11	3.0	•	11	2.9
CUPULATIVE PRESENT VALUE AT INDICATED INTEREST RATE 5344.9 200.0 53.3 TOTAL 598.2 1 345.2 161.6 43.2 TOTAL 550.1							
t 345°2 260°0 53°3 101AL 598°2 t 345°2 161°6 43°2 101AL 550°1		CU		VALUE AT	ATED INTER		
t 345°2 idle6 43°2 TOTAL 550°L		4 <b>4 5 5</b>	0.026	53		-	<b>67</b> . 2
		7 <b>010</b>	24000				52.0
22 1 TUTE: 52 2 1 TUTE: 507 4		6					

.....

292.

۲

Ł

and the second second

1

3

ł

١

. .

ALTEGNATIVE NUE 250 856,021AM/RE BAY-SERVING 4AST COAST,FIXED EERTHS,ISLAND STORAGE,70 FT.DRAFT,300,000 DMT,100-250 MTA, 18.Pideling.(2-4-A). Yea. Fist cust opeaating cust maintenance cust volume shipping cost 1575 3.5

101171

ł

...,

1.1 2

Contraction of the second

1

	 • 5	7.0
<u></u>	-97e	177

	23.0-0	235-0	1-042	245.1	250-2	255.2	260.3	265.3	270.4	275.4	280.4	285.5	290.5	295.6	300.6	305.7	310 <b>-</b> 7	315.8	320.8	325.9	33 <b>0.</b> 9	330.9	330.9	330.9	330.9	330.9	330.9	530 <b>.</b> 9	330.9	330.9			2 677 F	3668.3	2793.9
1.																																AT INDICATED INTEREST RAFE	3 792 2	369-0	354.0
·	1 00-0	102.5	105-0	107-5	110-0	112-5	115-0	117.5	120-0	122-5	25	127.5	130-0	132.5	135.0	137.5	140-0	142.5	142.0	147.5	150.0	150-0	150-0	150-0	150-0	150-0	150.0	150.0	150.0	150.0		TED INTE	TOTAL	TOTAL	TOTAL
	0-0		2.0	0.0		2.0	2.0	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	Z•1	4.3	2.1	2.1	2.1	2.1	44 9 9	. 2.1	2.1	2.1	2.1	2.1	2.L	2.1	2.1		L INUICA		21.5	21.2
			• •			•		7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.C	7.0	7.0	7.0	7.0	7. C	7.0	7.0	7.0	7.0	7 <b>C</b>	7.0	7.0	7.0	7.0	7.0		CUPULATIVE PRESENT VALUE AI	3 201	LUI-3 a7-6	61•8
2000 - 1 2000 - 1 2000 - 1	0-0					0.0	3.6	0.0	0.0	0.0	0.0	ر. ر.	0°0	0°0	0•0	0.0	<del>ر.</del> ٥	0•0	0.0	0.0	0-0	C. J	0-0	0 <b>.</b> U	0-0	0-0	0.0	0-0	0.0	0-0		C UM	F 991	25%-9	265.0
157c	11.0			1075	1954	1985	1986	1967	7051	900 -	0€ > [	1951	1992 I		1944	556T	1355	1997	1955	2.5c	2003	1502	2002	2002	2004	2005	2006	2007	200-	200-	1.			0• C4	Lu. 05

٩

-----

Ņ

	9
	CIVIN
	FOR CO
	日の書い
260	Constraints of
2	
NC. 2	0 0
NE	
ANT IVE	• •

0,000 DWT,150-300 MIA,

CAN FLIST CCST	ST GPERATING	COST MAINTENANCE	NČE CUST	<b>VOLUM</b> ®	SHIPPING COST
1	• •			•	
	<u>د</u>				
-15 SIC	5.				
14	•				
	0°0	8 <b>.</b> 8	2•5	150-0	359.0
	0-0	d.5	2.5	157.5	376.9
<b>0</b>	U.O	ġ•3	2.5	L55.0	394.9
-	2.0	č. 8	2.5	172.5	412.8
	0.0	11.7	2.6	130.0	430.8
	C. O	11.7	2.6	147.5	446.7
	0.0	il.7	2. ĉ	195.0	466.7
0 165	U.U	11.7	2.8	202.5	484.6
4	33	1i.7	2•3	210-0	502.6
-	0.	12.3	51 • NI	217.5	520.5
	C. C	13.0	3•2	225.0	538.4
	<b>0.</b> 0	13.0	<b>5•</b> 2	232.5	556.4
	0.0	13.0	3.2	240-6	574.3
	0.0	13.0	0 5	247.5	592•3
	0•U	13•U	5.2	255.0	610-2
, U	1.0	13.0	3.2	262.5	626•2
C	0.	13.0	3.2	270.0	646•L
	U.U	13.0	<b>j</b> •č	217.5	664.1
.945 O.	0.0	15.0	3•2	285.0	682.0
	0.0	13.0	3.2	292.5	700-0
	0.0	13.0	3.2	300-0	717-9
	0.0	13.0	3.2	300 <b>-</b> 0	117.9
	U.J	13.0	غہد	0 <b>00</b> 5	117.9
	c. J	13.0	3.5	300.0	717-9
	0-0	13.0	N • •	300-0	717-9
	C.0	13.0	5•2	300-0	717.9
	0-0	13.0	3.2	300.0	717.9
	Ŭ•Ŭ	13.0	3.2	200-0	717.9
	0.0	13.C	3 <b>.</b> 2	200 <b>*</b> 0	717-9
	c		1. L		

CUMULATIVE PRESENT VALUE AT INUICATED INTEREST RATE

565.2 522.0 481.5 TOTAL TCTAL TOTAL 47.4 38.4 29.5 188.9 152.7 116.2 329.0 330.9 335.9

5.02 7.02 102

ļ

ŗ

8747.2 6952.0 5177.0

· · Maria diana

and the second

294.

i

· •

•••••

	/ING EAST CUAST+FIXED BERTHS+ISLAND STURAGE+TO FT+URAFT+400+000 DMT+100-150 MTA+
	20
	5
	1.10
	Ю
	000
	ğ
	RAFI
	1•0
	iL O
	E, 7
	F AG
	510
	9
	SLA
	<b>S</b> , I
	RT-
0	9.9
	UE X I
	Ę
	<b>I</b> AST
	3
	EASI
	ş
	۲L
270	• Sti
י • ר	3AY
ALTEFNATIVE NJ. 270	BSD. JELAMARE BAY, SERVING
τιν	ANA
i N i	ü E L
LTE	Sb.
-4	ත

Ş

	FIRST CUST UPERATING CUST MAIN	3.5	3.5	7.5	C7 2
L. FLFC	ÅL FI	75	70	17	ر بر

36.5     10     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2	100.0 100.0 102.0 102.0 110.0 1115.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.
6.1 2.2 6.1 2.2 6.1 5.1 2.2 6.1 5.1 2.2 6.1 5.1 2.2 6.1 5.1 2.2 7.0 7.0 2.2 7.0 7.0 2.3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	100.0 100.0 102.0 102.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0 112.0
6.1 2.2 6.1 2.2 6.1 2.2 6.1 2.2 6.1 2.2 6.1 2.2 6.1 2.2 7.0 2.2 7.0 7.0 2.3 7.0 7.0 2.3 7.0 7.0 2.3 7.0 7.0 2.3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	100.0 102.5 102.5 102.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5
6.1 2.2 2.2 2.2 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	100.0 102.5 102.5 102.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5 112.5
6.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2	100-0 102-5 105-5 112-5 112-5 112-5 112-5 112-5 1220-0 132-5 132-5 142-5 142-5 142-5 142-5 142-5 142-5 142-5 142-5 142-5 142-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5
CUMULATIVE PRESENT VALUE AT INJICATED	102-55 105-0 112-5 112-5 112-5 112-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5
6.1 2.2 2.2 2.2 2.2 2.5 7.0 2.2 2.5 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 2.2 2.5 7.0 7.0 7.0 2.2 2.5 7.0 7.0 7.0 2.2 2.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	105.0 112.5 112.5 112.5 112.5 112.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 12.5 1
6.1     6.1     2.2       6.1     5.1     2.2       6.1     2.2       7.0     7.0       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3       7.0     2.3	187.55 112.55 1112.55 1112.55 1122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 125 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 12
6.1 2.2 6.1 2.2 6.1 2.2 6.1 2.2 7.0 7.0 2.5 7.0 7.0 2.5 7.0 7.0 2.3 7.0 7.0 2.3 7.0 7.0 2.3 7.0 7.0 2.3 7.0 7.0 2.3 7.0 2.3 7.0 2.3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	110.0 112.5 112.5 117.5 120.0 1220.0 1220.0 125.0 125.0 132.5 132.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 150.0
6.1 2.2 6.1 2.2 7.0 7.0 2.5 7.0 7.0 2.5 7.0 7.0 2.5 7.0 7.0 2.3 7.0 7.0 2.3 7.0 7.0 2.3 7.0 7.0 2.3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	112.5 112.5 112.5 1120.0 1220.0 1220.0 122.5 132.5 132.5 132.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 150.0
6.1 7.0 2.2 7.0 2.5 7.0 7.0 2.5 7.0 7.0 7.0 2.5 5.3 7.0 2.5 5.3 7.0 7.0 2.5 3 7.0 2.5 3 7.0 7.0 2.5 3 7.0 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 2.5 3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	115.6 117.5 117.5 122.5 122.5 122.5 122.5 127.5 147.5 147.5 147.5 147.5 147.5 147.5
7.0     7.0     2.5       7.0     7.0     2.5       7.0     2.5     2.5       7.0     2.5     2.5       7.0     2.6     2.5       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6       7.0     2.6     2.6 <td>117.5 122.5 122.5 122.5 127.5 133.6 133.6 133.6 147.5 147.5 147.5 147.5 147.5 147.5 147.5</td>	117.5 122.5 122.5 122.5 127.5 133.6 133.6 133.6 147.5 147.5 147.5 147.5 147.5 147.5 147.5
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	120.0 122.5 122.5 127.5 137.5 137.5 147.5 147.5 147.5 147.5 147.5 147.5 147.5
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	122-5 122-5 127-5 132-0 132-5 142-5 142-5 142-5 147-5 147-5 147-5 147-5
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	125.0 127.5 132.5 132.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 142.5 143.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5 145.5
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	127.5 132.5 132.5 142.5 142.5 142.5 142.5 142.5 147.5 147.5 150.0
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	130.0 132.5 132.5 140.0 142.5 147.5 147.5 147.5 147.5 147.5 147.5
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	132.5 135.0 137.5 140.0 142.5 147.5 147.5 147.5 150.0
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	135.0 137.5 140.0 142.5 147.5 147.5 150.0 150.0
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	137.5 140.0 142.5 145.0 147.5 147.5 150.0
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	140.0 142.5 145.0 147.5 150.0 150.0
7.0 2.3 7.0 2.3 7.0 2.3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	142.5 145.0 147.5 150.0 150.0
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	145.0 147.5 150.0 150.0
7.0 2.5 7.0 2.3 7.0 2.3 7.0 2.3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	147.5 150.0 150.0
7.0 2.3 7.0 2.0 2.3 7.0 2.0 2.3 7.0 2.0 2.3 7.0 2.3 7.0 2.3 7.0 2.3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	150.0 150.0
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	150.0
7.0 2.3 7.0 2.0 2.3 7.0 2.0 2.3 7.0 2.3 7.0 2.3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	
7.0 2.3 7.0 70	150.0
7.0 7.0 7.0 7.0 7.0 7.0 7.0 2.3 7.0 2.3 7.0 2.3 7.0 2.3 7.0 2.3 7.0 2.3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	150.0
7.0 2.3 7.0 70	150.0
7.0 2.3 7.0 2.3 7.0 2.3 7.0 2.3 7.0 2.3 2.3 7.0 2.3 107.5 36.5 TO 20.0 TO	150.0
7.0 2.3 7.0 2.3 2.3 CUMLATIVE PRESENT VALUE AT INUICAT 107.5 36.5	150-0 330.
7.0 2.3 CUMULATIVE PRESENT VALUE AT INUICAT 107.5 36.5	150.0 3
PRESENT VALUE AT INUICAT 17.5 36.5 27.0	150.0 330.
36•5 37•5 36•5 30 0	UICATED INTEREST BATE
36.5 20.0	
0.00	T0TAL 409.0
	0.0 TOTAL 390.4 3668.3

295.

ł

5	
<b>2</b> 8	
N.J.	
I I Vc	
EKNA1	

, ī ALTERNATIVE NU, 280 650+ÚELAMPRE BAY-SERVING EAST CUAST,FIXED BERIHS,ISLAND STORAGÉ,70 FT.DRAFT,400,000 DNT,150-300 MTA, TR.PIPELINES,(2-4-L). Yeak Fikst Cost UPERATING CUST MAINTENANCE COST VOLUME SHIPPING COST 1972 3.5 1972 3.5

				359.0	376.9	394.9	412.8	430.8	448 <b>.</b> 7	466.7	484.6	502.6	520.5	538.4	556 <b>.</b> 4	574.3	592.3	610.2	628•2	646.1	664.l	682 <b>.</b> 0	700-0	717.9	717.9	717.9	717.9	717.9	717.9	717.9	717-9	717.9	717.9	RATE
				150.0	157.5	165.0	172.5	180.0	187.5	195.0	202.5	210.0	217.5	225.0	232.5	240.0	247.5	255.0	262.5	270.0	277.5	285.0	292.5	300-0	300-0	300 <u>+</u> 0	300-0	300-0	300.0	300-0	300.0	300-0	300.0	AT INDICATED INTEREST RI
				2.8	2.4	2.8	2.6	3.1	3.1	3 <b>.</b> L	3.1	3.1	3.3	3•3	3.3	3.3	3 <b>.</b> 3	3.6	3.6	3.6	3 <b>•</b> 6	3.6	3.6	3•6	3.6	3.6	3=6	3 <b>.</b> 6	3.6	3.6	3•6	3.6	3.6	
				8-3	8.5	d <b>.</b> 6	8.3	11.7	11.7	11.7	11.7	11.7	12.3	13-0	1.3+0	13.0	13 •C	13.C	13.0	13.0	13•C	13.0	13.0	13.0	13.0	13.0	13 •0	13.0	13-0	13.0	13-0	13.0	13.0	TIVE PRESENT VALUE
ມ. ຕ້	0.6	±02.2	154. E	0-0	Ú. Ú	0-0	12.0	<b>C. O</b>	0-0	0.0	0-0	41.8	2.2	0-0	0.0	0.0	2i.9	0 • 0	0-0	0.0	0•0	0-0	0*0	0-0	C•0	0-0	0-0	0-0	0-0	0.0	<b>0-0</b>	0.0	0*0	CUMULATI VE
1576	1151		5251	1980	Liel	1982 L	1 483	1954	1985 I.	1566	1987	1961	585I	0661	166 7	390I	1953	1994	1995	1 956 I	1997	1996	1955	2000	2001	2002	2005	2004	2005	2006	2007	2003	2009	

and the second second

8

i

8747**.**2 6952**.**0 5177**.**0

595.0 550.8 509.7

TCTAL TOTAL TOTAL

52**.**4 42**.**5 32**.**6

136.9 152.7 116.2

353. d 355. 6 360. 9

5-01 20-01

296.

 $^{\circ}$ 

j

Ŷ

T_As         FIKSI CUSI         UPERAIING           1975         35.0         1975           1976         35.0         52.7           1977         52.7         52.7           1978         48.7         60.0           1981         0.0         0.0	1				
		MAINIENANCE CUSI	VULUME	SHIPPING CUST	
				-	
	5.6	2.5	100-0	257-7	
	Ĵ•Ć	2-5	102.5	263-4	
	5.6	2.5	105-C	269-1	
	5.6	2.5	107-5	274-8	
	5.6	2.5	110-0	280-5	
	5.ú	2•5	112.5	286.2	
	5.5	2.5	115.0	291-9	
	5.6	2•5	117.5	297.6	
	5.6	2.5	120-0	303.3	
	5. ć	2.5	122.5	309-0	
c 0-0	5.6	2.5	125.0	314.6	
	5.6	- 2.5	127.5	320.3	
	5.6	2.5	130.0	326.0	
	5.6	2.5	132.5	331.7	
4 0.0	5.6	2.5	135.0	337.4	10
	5.6	2.5	137.5	343 <b>.</b> I	
	5.6	2•5	140.0	348-8	
	5.6	2.5	142.5	354.5	
	5.6	2.5	145.0	360.2	
6 <b>00</b> 5	9•c	2.5	147.5	305.9	
	5.6	2.5	150.0	371.6	• .
	5.6	2.5	150.0	371-6	227-0
	5.6	2.5	150.0	371.6	
3 0°0	5 <b>.</b> 6	2.5	150.0	371-6	
	5.6	2•5	150.0	371.6	
2005 0.0	5.ó	2.5	150.0	371.6	
	5•6	2•5	150.0	371-6	•••
	5.6	2.5	150.0	371-6	
2005 0.0	5.6	2.5	150-0	371.6	•••
.0	5.5	2.5	150.0	371.6	

297.

5096•6 4115•2 3133•8

372•4 363•1 361•8

TUTAL TOTAL TOTAL

40.4 33.2 25.9

50°4 74°4 53°1

241.7 255.6 277.8

5. Cž 7. 0% 10. Cž

金える

i

1. A.

and the second

ると言語の調整にいけるに、

	5
	PUS-PL-,50KVING PAST CEAST,FIXED EEKTHS,ISLAND STUPAG_,70 FT_DAAFT,300,000 EM1
	STUPAGL. 70
	<b>BERTHS, ISLAND</b>
	CEAST, HIXED
<u>300</u>	e A S T
ALT "RAATIVE NG. 300	PUS-TLL. SURVING

CWT,150-300 MTA,TR.BARGE				ţ.								**													~	, e 1		: 			and the second sec					
• UXAFT • 300• 000	SHIPPING COST						349-6	419.6	439.6	459-5	475.5	499-5	519-5	539 <b>.</b> 5	559.4	579.4	<b>**6</b> 55	619-4	639.4	659.3	679.3	659.3	719.3	739.3	759.2	7-611	2*652	2-661	- 155° 2	199.2	7-56-2	799.2	799 <b>-</b> 2	2*651	799.2	799.2
.46±•70 FT	VOL UME	1					150-0	157.5	L65.0	172.5	180.0	187.5	195.0	202.5	210.0	217.5	225.0	232.5	240.0	247.5	255.0	262.5	270.0	277.5	245.0	202.5	300-0	300-0	300-0	300-0	0 <b>.</b> 002	300.0	300-0	300.0	300-0	300-0
EERTHS.ISLAND STUPAGE.70 FT.CAAFT.300.000	RAINTENANCE CUST		·				Ξ, e E	3.1	3.1	1.0	3.1	3.1	3.1	3.1	<b>J</b> •I	<b>j•</b> L	9.4	3.4	4.4	<b>3</b> • <b>¢</b>	3.4	3•5	10 4 • 12	4.0	3.4	3-4	<b>₹</b> • £	4°C	3.4	19 <b>4</b> 4	3-5	4•5	3.4	3.4	3.4	3•4
EAST CEAST, HIXED	CPEKATING CUST	,					5.7	5.7	5.7	5.7	7.4	<b>5</b> • a	5.0	6. <b>•</b> 6	5.8	5.6	5-3	6. C	6.0	6• C	ô.0	0.0	6. G	6.1	<b>D</b> • <b>1</b>	6.1	6•1 ,	5. L	0.1	6.1	6.1	5. 5. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6•1	6.1	6.1	6.1
VINC	FIKST CCST	45.0	45 <b>.</b> 0	. 06. 2	47•2	6 <b>0</b> •5	0-0	0.0	0-0	0.0	2.0	0°0)	0-0	0•0	0•0	19.4	2.0	0-0	0-0			0-0	2.0	0.0	0.0	0-0	0	0 ° 0	0.0	0° C	0-0	0.0	0-0	0.0	0" C	0-0
řůşν:L.,SiK S.(2-5-b).	Υ τ το	515T	197c	1477	1978	526T	1980	1961	1935	1985	1964	1995 1	196c	1.11	Ives	1965	2567	ゴシバゴ	Line	1950	1924	4) 1 1 1	2517		1350	not T	2000	1001	1.001	5002	2004	5002	2006	2007	2005	5007

12 구 -

Contraction of the second

tintur antibiotic di tente an and an and an and a second second

9737.3 7736.9 5762.9

468•9 457•3 455•5

TUTAL TUTAL TUTAL

52.4 42.9 33.2

95°1 76°0 60°6

321.3 336.5 361.7

5.05 7.06 10.04

1

CUPULATIVE PRESENT VALUE AT INUICATED INTEREST RATE

298.

Dat, 100-150 MTA, TR. BARGE

1

f

Ļ

} }

-----

ALT_F NATIVE NG. 310 28,01 L. STRVINUS LAST CUAST_FIXED BERTHS_ISLAND STORAGE_TU FT_GRAFT_400,000 5,12-5-01 YEAR FIXET COST UPLAATING COST MAINTENANCE COST VULUME SHIPPING COST 1975 37.5 1976 37.5 1977 56.c 1977 55.c 1973 57.8 1973 57.8

	257.7	263.4	269.1	274.8	280.5	286.2	291-9	297.6	303.3	309-0	314.6	320.3	326.0	331.7	337.4	343 <b>.1</b>	346.8	354.5	360.2	365.9	371.6	371-6	371.6	371.6	371.6	371.6	371.6	371.6	371.6	371-6
	100.0	102.5	105.0	t07.5	110.0	112.5	115 <b>.</b> ŭ	i17.5	120-0	122.5	125.0	127.5	136.0	132.5	135.0	137.5	140.0	142.5	145.0	147.5	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150-0	150-0
	2.6	2.8	2.68	21 • •N	2.05	2.8	2 • 3	2 <b>.</b> 8	2. E	2.8	2•B	2.8	2 °0	2.3	2.6	2.8	2.5	02 • 04	2.8	2.8	5.8	2. S	2.03	2.66	2.8	Z.8	2.8	2.8	ž. 5	2-4
	5.6	5.6	5.eo	5.6	<b>5.</b> 6	5.6	5.6	5.6	5.6	<b>5.</b> 6	5. E	5.66	5.6	55	5.6	5.6	5 • 6	5-¢	5.6	5.0	5.6	5•¢	5.6	5.6	5.6	5.6	5.5	5.6	5.6	5.6
	0•0	0-0	0-0	0-0	0.0	0.0	0-0	0.0	0-0	0•0	0.0	Ú.0	0•0	0*0	0.0	0.0	Ú.Ű	C. C	0-0	0.0	0.0	0.0	0.0	0.0	U.O	0-0	0-0	0-0	0.0	0.0
7777	1480	1301	1982	1463	1584	1965	1950	1557	14ch	1 :es	1940	<b>1</b> 55 <b>1</b>	2551	1995	565 T	2935	1950	2541	1998	ワジケー	2000	2002	2002	2005	2004	2005	2006	2067	2005	.00

*

j.

CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE

5096.6 4115.2 3133.8 407.1 398.4 398.3 TUTAL TUTAL TUTAL 45.2 37.2 29**.0** 58•L 271.6 286.8 311.2 5-0% 7-0%

299.

Ĩ

4 -----

1

「「「「「「「「「」」」」」

ġ

	300.			
L. BARGE				· · · · · · · · · · · · · · · · · · ·
DWT#150-300 MTA#TR&BARGE				н
DWT+150-				
400+000	SHIPPING COST	359 <b>° 6</b> 419 <b>° 6</b> 439 <b>° 6</b> 459 <u>°</u> 5 479 <u>°</u> 5	499°5 539°5 539°5 599°5 599°5 599°5 599°5 799°2 799°2 799°2 799°2 799°2	799.2 799.2 799.2 799.2 799.2 799.2 7937.3 7738.9 5762.9
T. DRAFT.	IddIHS			4.0 300.0 4.0 300.0 4.0 300.0 4.0 300.0 4.0 300.0 4.0 300.0 4.0 300.0 60.6 TOTAL 505.8 49.5 TOTAL 505.8 49.5 TOTAL 489.8
<b>RAGE 70 F</b>	VOLUME	150.0 157.5 165.0 172.5 180.0	187.5 195.0 210.0 217.5 217.5 225.0 267.5 262.5 262.5 262.5 262.5 262.5 285.0 262.5 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.0 285.00 285.000000000000000000000000000000000000	300.00 300.0 300.0 300.0 300.0 300.0 300.0 300.0 101AL 101AL 101AL 101AL
BERTHS+ISLAND STORAGE 70 FT+DRAFT+400+000	MAINTENANCE COST		u u u u u u u u u u u u u u u u u u u	4-0 4-0 4-0 4-0 4-0 4-0 4-0 4-0 4-0 4-0
CGAST, HIXED	UPERATING CUST	10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	ѿѿѿѿѿѿ <b>ѽѽѽѽѽѽѽѽѽѽѽ</b>	6 • 1 6 • 1 7 • 6 7 • 6 7 • 6
320 East				CUMULATIVE
ALTERNATIVE NU. KB.ÚLL.SÉKVING S.FZ-F-DE		71-7 0-0 0-0 0-0 2-0 2-0	00000000000000000000000000000000000000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ALTERS KBJÜLL Siefere	YEAR FIRST 1975 1976 1976 1977 1977	1979 1980 1581 1982 1985 1984	1985 1985 1987 1987 1988 1988 1999 1995 1995 1995 1995 1995	2004 2005 2006 2003 2003 2003 2003 2003 2003 2003

4

No. of Case, of

Ż

A CONTRACTOR OF A CONTRACTOR O

ł

è

렩

وستعتقد

Series 2

の部にあり、「「「「「」」というないであっている」

いた いたいれ

ť

「いまれたいと

Ļ

Ļ

ļ,

· · ·

ALTGRNATIVE NO. 1 EXISTING SITUATION, SFRVING N.Y., 30-35 MIA, NU LIGHTERING, (1-1X).

	G COST				123.0	123.2	123.3	123.5	123.6	123.8	124.0	124.1	124.3	124.4	124.6	124.8	124.9	125.1	125.2	125.4	125.6	125.7	125.9	126-0	126.2	126-2	126.2	120.2	126.2	126.2	126.2	126.2	126.2	126•2			2011-7	1652.6	1288.4
•(X1-1)	SHIPPING																																			ST RATE	0-0	0.0	
NC LIGHIERING.	VOLUME				30-0	30•3	30.5	30-8	31.0	31.3	31.5	31.8	32.0	32+3	32.5	32.8	33.0	33•3	33.5	33.8	34=0	34•3	34.5	34.8	35.0	35.0	35.0	30.0	35.0	35.0	35.0	35.0	35-0	35.0		INDICATED INTEREST	TOTAL	TOTAL	
	COST				0.0	0.0	0.0	0.0	0.0	0-0	0.0	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0•0	0-0	0-0	0-0	0	0-0	0-0	0-0	0.0	2.0	0-0	0-0	0-0	0.0	0-0	0•0		NDICA	0-0	0.0	
30-35 MIA.	MA INTENANCE																						P												·	VALUE AT			
КС М. Т	CUST				0.0	0-0	0.0	0-0	0.0	0-0	0-0	0-0	0-0	0-0	0-0	0~0	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0.0	0-0	0-0		0°0	0~0	0.0	0-0	0-0	0-0	0-0		PRESENT	0-0	0.0	
STIURI LUN. SCHUING N.Y	UPERATING																																			CUMULATI VE			
ITUAL	CUST C. C	000	0-0	0.0	0-0	0-0	0-0	Ū.0	0.0	0"0	0-0	0-0	0-0	0-0	0-0	<b>C</b> '3	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0.0	0-0	0.0	0.0	3 0	0-0	0.0	0-0	0.0	0-0	0•0		-	0•0	0.0	5°5
EXISTING S	FIRST														. '																							<b>M</b> -	
	Y EAR 1975	1976 1976	157¢	1470	1980	1931	1932	E821	1934	1985	1986	1967	1588	1385	065 T	1551	1992	1993	1994	1 955	1996	1997	<b>1</b> 55d	566 <b>1</b>	2000	2001	2002	2003	2004	2005	2006	2002	2008	2009			5.03	7-02	n •n T

301.

ę

14

1

「二日」

ALTERNATIVE NG. IL Existing situatier, serving n.V., 35-70 MTA, ne lightering, (1-1V).

146.9 154.2 161.6 161.6 161.6 161.6 161.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 193.6 SHIPPING COST CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE VOLUHE MA INTENANCE COST **DPFRATING CUST** CLST C_0 FIRST Y..AF 1975

and the second s

3579**.**6 2845**.**0 2118**.**6

000

TOTAL TOTAL TOTAL

0.0

000

0000

5.05 7.05 10.05

302.

The second second

ALT#FNATIVE NC. 21 _XISTIMS SITUATION, SERVING DEL., 70-115 MTA, NC LIGHTERING, 12-1X).

Same and the first second

N.C.

1000

あんどうがたい。

and the second second

H. Child

SHIPPING COST VULUNE MAINT-NANCE COST OPERATING COST FIRST CONT Y. 45

SHIPPING CUSI					303-7	312.9	322 <b>. l</b>	331.3	340.5	349.7	358.9	368.1	377.3	386.5	395.6	404• A	414.0	423 <b>-</b> 2	432.4	44 <b>1</b> •6	450.8	460-0	469•2	478-4	467-6	487.6	487-6	487 <b>.</b> 6	487.6	487.6	487.6	487.6	487.6	487.6	161	6-16-6	5152.2	3894 •4	
I dd I HS																																			ST RATE	0-0	0.0	0-0	
VULUNE					70-0	72.3	74.5	76.8	79°C	81.3	83.5	85.8	88.0	€ <b>°</b> 06	92.5	94.8	0-79	99 <b>.</b> 3	101-5	103.8	106.0	108.3	110.5	112 <b>.</b> E	115.0	115.0	115.0	115.0	115.0	115.0	115.0	115.0	115-0	115.0	INULUATE INTEREST	TOTAL	TCTAL	TOTAL	
MAINTENANCE COST					0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0.0	0.0	0-0	0-0	0-0	0.0	C.O	0.0	6°0	0.0	0.0	0.0	0.0	0-0	0-0	0*0	0.0	0-0	0-0	0-0	PRESENT VALUE AT INULUA	U U	0.0	0-0	
OPERATING COST					0•0	0-0	0-0	0-0	0°0	0.0	0-0	0.0	0.0	0-0	0.0	0.0	0.0	0-0	0-0	0.0	0.0	0-0	0.0	0.0	0-0	0.0	0.0	0•0	0-0	0-0	0.0	0.0	0.0	0-0	GURVLATIVE PAESE		0.0	<b>6.</b> 0	
FIASI COST 0.0	0-0	0 <b>-</b> U	0-0	0-0	0.0	0-0	0-0	0-0	0.0	0°0	Ú. 0	6-0	0.0	0-0	0°0	0-0	0*0	0-0	0-0	0.0	0.0	0.0	0.0	U•0	0°C	0-0	0.0	0•0	0-0	0.0	0.0	0-0	0.0	0-0	-			0-0	
Y. AN 1975	1376	1577	9791	1973 - E	1360	1961	2551	£83 <b>T</b>	1384	1935	19du	1987	1958	1963	C551	1561	1 362	1952	1994	934I	1996	Lif T	3443	50.ET	2000	2001	7907	20C)	2004	2005	2000	2003	2005	5007		90 J	30°	10-0£	

303.

백년구

and a substant and the substance of the

1

+ 4 - Txi-

ļ

	0-0 10055-1	•0 7487-8
	FOTAL 0.	
	L 0-0	•
0=0	0-0	0*0
0-0	0-0	0-0
5.02	7.02	10-61

ča .

1.441

للمعافية المعالمة والمسالحة والمالية

-

SHIPPING COST	519.2 5455.2 571.1 523.0 649.0	675.0 700.9 126.9 778.8 804.8 830.7 856.7	A A A A A A A A A A A A A A A A A A A	
VOLUME	115.0 120.8 126.5 132.3 138.0 143.8	149.5 155.3 161.0 166.8 172.5 178.3 178.3 178.3 184.0 199.8 199.8	0.0 195.5 0.0 201.3 0.0 201.3 0.0 201.3 0.0 212.8 0.0 218.5 0.0 218.5 0.0 224.3 0.0 230.0 0.0 230.0	
MAINTENANCE COST			0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
OPEKATING COST	9000000		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
FIKST CUST 0.0 0.0 0.0 0.0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	
YëA6 1976 1976 1975 1975 1975	12851 12851 12851	2551 2551 2551 2551 2551 2551 2551 2551	1995 1995 1995 1995 1995 1995 1995 1995	

NO DESCRIPTION

304.

The state of the s

ALTERNATIVE NO. 31 Existing Situatium, Serving Del., 115-230 MTA, NG LIGHTERING, (2-1Y).

1

ŀ

/LICRATIVE NU. 41 Existing Situatiun, Serving East Coast, 100-150 Mta, Nú Lightering.

, **v** 

ļ

SHIPPING CCST VULUNE FIRST COST OPERATING CUST MAINTENANCE COST YEAR

			•	
SHIPPING CCST	426-6 436-0 455-3 454-7	464.0 473.4 482.1 482.1 482.1 501.4 520.1 520.1 520.1	538.9 548.2 548.2 557.6 557.6 595.0 513.7 613.7 613.7 613.7 613.7 613.7 613.7 613.7	RATE 6.0 8425.0 1.0 6803.5
HS				
VULUME	100.0 102.5 105.0 107.5	112-5 112-5 117-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5 122-5	130.0 132.5 132.5 132.5 147.5 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.00	TED INTEREST TOTAL TOTAL TOTAL
COST	0000			INEICATED 
MAINTENANCE CUST		- <b>x</b>		VALUE AT
C051	0000			PRESENT 0.0 0.0 0.0
GPERATI NG				CUMULATIVE
				0.00
FIkST				
YcAr 1975 1976 1976 1978 1978	1987 1980 1981 1982 1982	1985 1985 1988 1988 1988 1988 1988 1988	1992 1993 1993 1993 1993 1993 2000 2000 2000 2000 2000 2000 2000 2	5.02 7.02 10.02

305.

Ą.

Ą

ちょうちょう ちょうちょう

ALTERMATIVE NO. 51 Cxisting Situation, Serving East Cuast, 150-300 Mia, NU Lighterin

UPERATING COST MAINTENANCE
0.0
0*0
0-0
0.0
0.0
0-0
0.0
0.0
0.0
0.0
0.0
0*0
0.0
0-0
0.0
0.0
0.0
0.0
0-0
0-0
0.0
0-0
CUMULATIVE PRESENT VALUE AT
0-0
0.0

306.

ALTERNATIVE NU. 61 Existing situation, sekving n.V., 30-35 Mia, Lightering, (1-1X).

1563**-0** 1283**-4** 999**-9**  $\begin{array}{c} \mathbf{9}\\ \mathbf{9}\\$ SHIPPING COST CUPULATIVE FRESENT VALUE AT INCICATED INTEREST RATE 000 VOLUME TOTAL TUTAL TOTAL 000 UPERATING CUST PAINTENANCE COST 000 000 0.0 0000 FLAST 5. J. 

307.

and a street

19199-00 1919-00 1919-00 ALTE-NATIVE N.º 71 LAISTING SITUATION, SERVING N.V., 32-70 MIA, LIGHTERING, (1-1Y).

KISTING SITUATION, SERVING N.Y., 32-70 MIA, LIGHLIKING, UT-171.

SHIPPING COST	113.4 119.1 124.7 130.4	136.1 141.4 141.4 153.1 158.8 158.8 158.8 158.8	175.8 161.4 187.1 192.8 198.4 204.1 204.1	2256-8 2256-8 226-8 226-8 226-8 226-8 226-8 226-8 226-8 226-8 226-8 226-8	2763 <b>.</b> 3 2196 <b>.</b> 2 1635 <b>.</b> 4
IIddIHS					INTEREST RATE AL 0.0 AL 0.0 AL 0.0
VCLURE	35 <b>°0</b> 36 <b>°</b> 8 38 <b>°</b> 5 40 <b>°</b> 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	54.0 57.8 53.8 61.4 61.4 6	64 6 66 6 66 6 70 0 70 0 70 0 70 0 70 0 70	
MAINTENANCE CUST	0°0000				NT VALUE AT INDICATED 0.0 TOT 0.0 TOT 0.0 TOT
.DPĒRAFING COST	0°0 0°0				CUMULATIVE PRESENT C.O C.O C.O
FIAST COST 0.0 0.0 0.0 0.0			9999999 9999999		
YEAK 1975 1576 1976 1976 1976	1352 1352 1352	1985 1985 1985 1985 1985 1985 1985	1991 1995 1995 1995 1995 1995 1995 1995	1448 1498 14999 14999 14999 19905 19005 1005 1005 1005 1005 1005	5°℃ 7°℃ 10°01

•

ų

ţ

a and

Dia 12 a Maria

308.

ſ

والمتحافظ ومعاملتهم والمراجع

a baaring taken

чį.

ALFLENATIVE NG. BI EXISTING SITUATION, SERVING DEL., 70-115 MTA, LIGHTERING, (2-1X).

ļ

SHIPPING COST	, 207. 207. 207. 207. 207. 207. 207. 207.
AULUME	70.0 772.3 76.5 772.3 76.5 88.6 88.6 88.6 88.6 88.6 88.6 88.6 8
MAINTËNANCE COST	
OPERATING COST	
FIRST COST 0.0 0.0 0.0 0.0 0.0	
YEAN 1975 1976 1976 1977 1978	1488 1488 1488 1488 1488 1488 1488 1488

309.

**4**391**.**6 3526**.**6 2665**.**1

000

TOTAL TGTAL TOTAL

0000

0.00

0.00

7.05 10.01 Ï

· 44 6 。

------

(Z-1Y).	
IGHTERING.	
115-230 MTA. L	
SERVING DEL.	
ALTERNATIVE NU. 91 Existing Situation, Serving Del., 115-230 MTA, Lightering, (2-17).	

16 COST	353. 1 370. 8 370. 8 370. 8 370. 8 461. 4 461. 4 465. 1 465. 7 512. 0 557. 6 567. 9 567. 9 577. 9 57	6838.3 5092.3
SHIPPING	EST RATE	
VOLUME	0.0 115.0 0.0 126.8 0.0 126.5 0.0 126.5 0.0 155.3 0.0 149.5 0.0 166.8 0.0 155.3 0.0 155.3 0.0 155.3 0.0 155.3 0.0 155.3 0.0 155.3 0.0 155.3 0.0 155.3 0.0 155.3 0.0 189.8 0.0 189.8 0.0 189.8 0.0 189.8 0.0 230.0 0.0 0.0 230.0 0.0 0.0 230.0 0.0 0.0 230.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	TOTAL
E CUST		
MALNTENANCË	. VALUE AT	
CuST	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	000
GPERATING	CUMULAT IVE	
FIKST CUST 0.0 0.0 0.0		
	1575 1988 1988 1988 1988 1988 1988 1988 198	7-01

310.

1

「「あました」 ゆんのようようないのしても もってき

ĩ

8." • •  $\tilde{\tau}^{\,\rm u}$  영상 이상 문서

A THE REPORT OF THE PARTY OF TH

STREETSBERGER & CARDERSON AND SOLD FROM HOUSE

ł

ういてきし

ALTERNATIV, MU. 101 éxisting situation, serving east coast, 100-150 PTA, Lightering.

ŝ,

SHIPPING COST	302.6 309.1 315.6 322.1 322.1 335.1 335.1	348.1 354.6 361.1 361.2 374.2 380.7	387°2 393°7 400°2 400°2 413°2 413°2 432°7 432°7 432°7 432°7 432°7 432°7 432°7 432°7 432°7 432°7 432°7 432°7 432°7 432°7 432°7 8ATE	0.0 5954.6 0.0 4810.0 0.0 3665.0
VOLUME SH	100.0 102.5 105.0 107.5 110.0 112.5		132.5 135.0 135.0 140.0 147.5 147.5 147.5 147.5 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.00	TUTAL 0. Total 0. Total 0.
MAINTENANCE CUST			0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0-0-0
OPERATING CLST	90000000 90000000 90000000		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
FIRST CUST 0.0 0.0 0.0 0.0 0.0			000000000000000000000000000000000000000	000
Ycax 1975 1975 1975 1976 1976	1961 1962 1982 1983 1983 1965	1982 1982 1982 1982 1991	1993 1993 1993 1993 1993 2005 2005 2005 2005 2005 2005 2005 200	5.02 7.62 10.02

311.

2

تاليا قيري

1

;

۰,

ALTERNAJIVE NJ. 111 Existing situation, serving east coast, 150-300 mta, lightering.

11367•5 9034•5 6727•7 466.5 489.8 5513.1 555.8 555.8 555.8 555.8 555.8 653.1 765.4 653.1 765.4 765.4 765.4 765.4 765.4 773.1 765.4 773.1 765.4 773.1 765.4 773.1 765.4 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 773.1 SHIPPING COST **INDICATED INTEREST RATE** 0.00 **SHULCV** TUTAL TUTAL TUTAL 000 UPERATING COST MAINTENANCE COST CUMULATIVE FRESENT VALUE AT 0000 0.0 0-0 0.0 0.0 0.0 0-0 0.00 CUST 0.0 0.0 0.0 0.0 FIKST 5.0% 7.0% 10.0£ 

States and the second s

312.

Series 3 (Note: Alternative 2 signifies dummy)

3

					й.		
						:	313.
		6/C RATIO 4_0191 3_4354 2_7506			B/C_RATIU 3.6640 3.1248 2.4963		B/C RATIC 6.9650 5.7867 4.4489
		SAVINGS 926.7 761.4 593.6			5A VINGS 926. 7 761. 4 593. 6		SAVINGS 1649. 7 1311. 1 976. 4
		COST 230.6 221.6 215.8		\$	COST 252.9 243.7		CDST 236-9 226-6 219-5
		SC 0.0 0.0		2	0°0 0°0		0.00 0.00 0.00 0.00
ı	2	0°0 0°0			PC 0.0 0.0		0000
•	10	SC 1085.0 891.3 894.8		30	SC 1025•0 891•3 694•8	i	20 5C 1929.6 11533.3
		РС 230.6 221.6 215.6		,	PC 252°5 243°7 237°3		PC 236+5 226+6 215+5
	× ×			SA			>
	2	50 0°0 0°0	Э	: <b>N</b>	0 0 0 0 0 4 0 0 4 0		N 0 0 0 0 0 0 0 0 0 0
		PC 0.0 0.0			000 000 000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	1	51 2011.67 1655.65		1	50 2011-7 1632-6 1230-4		11 SC 2575-0 2245-0
		0.00 0.00 0.00			90 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	~	PC 0.0 0.0
COMPARISON Nr.	ALTERNATIVE NU.	5-05 7-05 10-05	CGMPAKTSUN Nu.	alTeraTive no.	0 • 0 5 7 • 0 5 • 0 • 0		ALTCRNATIVÊ 14J. 5.J% 7.C;5 10.05

1

今 うちょう

山

ł

ł

¢

ĥ

3

. 6 5 . . . . . .

ζ

314.							
	B/C RATIO 6-3827 5-2851 4-0493			B/C RATIU 2.0732 1.7694 1.4138		·	6/C RATIO 1-8900 1.6094 1.2831
	SAVINGS 1649.7 1311.1 976.4			SAVING S 478.0 92.1 392.1 305.1			SAVINGS 478.0 192.1 305.1
	CUST 258-5 248-1 241-1 241-1			CUST 230.6 221.6 215.8			CUST 252.9 243.7 243.8
	0 • 0 0 • 0		. 2	SC 0.0 0.0		2	0000
	0°00 0°00			0°0 0°0 0°0			
4	SC 15∠564 1533•8		10	SC 891. 694.8 694.8		30	SC 1085.0 891.3 694.6
	PC 25355 24361 24361			PC 230-6 221-6 215-8			PC 252.e 9 243.e7 237.e8
>			<>>			VS V	
. <b>U</b>	000 000 000		N	0°0 0°0 0°0		2	80 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0°0 0°0 0°0		•	0 • 0 0 • 0 0 • 0
	50 2579.55 2545.0 2118.6		5L	SC 1562-0 1730-4 595-9		t l	SC 1553.0 1282.4 599.9
۰. ۲	1 1 C C C C C C C C C C C C C C C C C C	10		0.00 0.00 0.00	Q		04 040 040 040
LGPPAKISCA AC. Alternative ac.	5.0° 7.05 10.04	ร มีเป็นคุณรายหน่ายเป็น	ALTERNATIVE AU.	5 - U & 7 - U & 1 - U &	CURPARISUN NU.	ALTERNATIVE NG.	5 - 03 7 - 03 10 - 03

0051.024

And in case which

1. A. -

~
NU.
<b>CUMPARISUN</b>

ALTERNATIVE NG.		71		2	SN		20	N		í			
5-04 7-04 10-01	000 000 000	5C 2763.3 2196.2 1635.4	0000 0000 0000	0°00 0°00 0°00		PC 236.9 226.6 219.5	5( 1929-9 1533-8 1142-2	0°0 0°0 0°0	0 0 0 0 0 • 0	COST 236.9 226.6 219.5	SAV I NGS 833.4 662.3 493.2	8/C RATIO 3•5185 2•9233 2•2475	
COMPARISCN NC.	ø				r.	•							
ALTERNATIVE NC.		11		(N	SN	•	40	2					
5.02 7.02 10.05	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SC 2763•3 2196=2 1635•4	0000 0000 0000	0 ° 0 0 ° 0 0 ° 0 0 ° 0 0 ° 0 0 ° 0 0 ° 0 0 ° 0 0 ° 0 0 ° 0 0 ° 0 0 ° 0 0 ° 0 0 ° 0 0 ° 0 0 ° 0 0 ° 0 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 °		PC 258.5 248.1 241.1	SC 1929.9 1533.8 1142.2	700°0 0°00	000 300 300	COST 258.5 248.1 241.1	SAV I NGS 833. 4 662. 3 493. 2	8/C RATIO 3.2244 2.6699 2.0456	
COMPARISON AU.	ŝ						1						
ALTERNATIVE NO		21		r <b>a</b> l	VS	-	130	2					
5 °0\$ 7 °0\$ 10 °0\$	0°00 0°00 0°0	\$C 6414°5 5152°2	0.0 0.0 0.0	0°0 0°0 0°0		PC 301.4 278.4 256.7	5C 3457.6 2777.0 2099.1	PC 0.0 0.0	0*0 0*0	COST 301.4 278.4 256.7	SAVENGS 2957.4 2375.2 1795.4	B/C RATIO 9.6128 8.5321 6.9930	315.

STATES IN CONTRACTOR

cΩ.

ł

...... ð

書を見ていたい

-

3

316	ò.	SAVINGS B/C RATIO 2957.4 9.1546 2375.2 7.9312 1795.4 6.4554			SAVINGS B/C RATIO 2957.4 9.2262 2375.2 8.0344 1795.4 6.5940			SAVINGS B/C RATIO 2957.4 8.7078 2375.2 7.5448 1795.4 6.1396
		COST So 323.0 299.5 278.1			COST S4 320.5 295.6 272.3			CGST SA 339.6 2 314.8 292.4 1
	N	0000 0000 0000		N	0°0 0°0		2	0°0 0°0
		0 • 0 0 • 0 0 • 0			PC 0•0 0•0			0000 0000 0000
	170	sc 3457.6 2777.0 2099.1		150	5C 3457.6 2777.0 2099.1		190	SC 3457•6 2777•0 2099•1
		PC 323 <b>•0</b> 299 <b>•5</b> 278•1			PC 320-5 295-6 272-3			PC 339 <b>°</b> 6 314•8 292•4
	VS			4 S			٧S	
	ŝ	00°0 00°0 00°0		5	0 • 0 • 0 • 0		~	0 • 0 0 • 0 0 • 0
		0°0 0°0 0°0			P.00 0.00 0.00			0000
	21	6414•5 5452•6 3894•4		21	5C 6414.9 5152e 2 3894e 4		21	SC 6414.9 5152.2 3894.4
01		0 • 0 • 0 • 0	11		0°0 0°0 0°0	12		0°00 0°00
CURPARISON NU.	ALTERNATIVE NC.	5°05 7°05 10°03	COMPARISON NO.	ALTERNATIVE NU.	5-02 7-03 10-04	CGMPARISUN NU.	ALTERNATIVE NO.	5=02 7=02 10=33

Law and the second s

1

à

1

ガート

2 • 

Ţ

đ

ģ

1 9

:

.....

1

CUMPARISUN NG. 10

Contraction of the local distance of the loc

CUMPAKISCH NG. 13

......

							317.
	B/C RATIO 13.3302 11.4962 9.3019			B/C RATIC 13.0091 11.1603 8.9552			B/C RATIO 12.6178 10.8834 8.8044
	SAVI NGS 5834=5 4637=0 3453=0		Ţ	SAVINGS 5834•5 4637•0 3453•0			SA VI NGS 5834.5 4637.0 3453.0
	COST 437.7 403.3 371.2			COST 448.5 415.5 385.6			C0ST 462.4 426.1 392.2
2	000 000 00 00		2	0°0 0°0 0°0		2	0000 0000
	0000			.0°0 0°0			0000 0000 000
140	SC 6817.2 5416.1 4034.8	1	160	SC 6817e2 5418e1 4034e8		loŭ	SC 6817•2 5418•1 4034•8
	PC 437.7 403.3 371.2			PC 448.5 415.55 385.65 385.6			PC 462.4 426.1 392.2
\$ A			SA			SA	
N	0.0 0.0 0.0		N)	0°00 0°00 0°00		2	0°0 0°0 0°0
	0°0			9000 0000 0000			00°0 00°0 000
31	SC 12651.7 10055.1 7487.3		16	SC 12651.•7 10055.•1 7437 ⁶		19	5C 12651•7 16055•1 7487•8
ı	0.0 0.0 0.0	14		0°0 5°10 5°10 5°10 5°10 5°10 5°10 5°10 5	रा		90 0.00 0.00 0.00
ALTERNATIVE NG.	5-0% 7-0% 10-14	COMPARISON NO.	ALTËRNATIVE ML.	5.05 7.05 10.05	CUMPARISCH ND.	ALTERNATIVE NO.	5.04 7.03 10.03

.

/1

ł

この時間の日本あって、アート

14900

10.11

ì

winner .

1

318.

San Street

8.							
	8/C KATFO 12.3911 10.6210 8.5115			B/C_RATIC 3-0992 2.6927 2.5047			8/C RATIO 2.8913 2.5031 2.0352
	SAVI NG S 5834°5 4637°0 3453°0 3453°0			SAVI NG S 934.0 749.6 566.0	·		SAVINGS 934.0 749.6 566.0
	CUST 470.9 436.6 405.7			CUST 301.4 278.4 256.7			COST 323.0 299.5 278.1
2	0°0 0°0 0°0		2			2	5C 0.0 0.0
	0.000			0.000			PC 0.0 0.0
200	SC 6817.e2 5418.e1 4034.e6		051	5C 3457.6 2777.0 2099.1 2099.1		170	5C 3457•6 2777•0 2099•1
	PC 470.9 430.6 405.7			PC 501-4 273-4 256-7			PC 323•0 299•5 278•1
< S >			VS			<b>VS</b>	
.7	0000		2	5C 0.0 0.0		<b>N</b>	۲ 0 0 0 0 0 0
	0000			9.00 9.00 9.00			50 0 0 0 0 0
31	50 126517 14876 74876		5]	61350 613166 2523000 26551		13	55. 554. 2526. 2526.
	14 0.0 0.0	۲		PC 0.4 0.0	α.		0 0 0 0 0 0
ALTČRNATIV ² nú.	5.02 7.02 10.04	CUMPAKISUN NU. 17	ALTERNAFIVE NO.	5.04 7.04 10.02	CUPPARISUE No. 15	ALTERNATIVE RG.	5.∎05 7.∎02 ±0.∎0

COMPARISCH NU.

•n • 4

LU-PARISON NL. L.

1

Ś

\$ 1 4

;

2

							319.
	B/C RATIG 2.9139 2.5357 2.0789			6/C RATIU 2.7502 2.3811 1.9356			B/C RATIU 4.0828 3.5210 2.8488
	566.0 566.0 566.0			SAVINGS 534-0 749-6 566-0		ı	SAVINGS 1787.0 1420.2 1057.5
	CuST 320-5 295-6 272-3			COST 339-6 314-8 292-4			COST 437.7 403.5 371.2
7	00°C 00°C		2	0000 0000 0000	• <b>-</b> 1.1 ⁻²⁻¹	~~~~	0°0 0°0
. v	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		. •				
0¢1	SC 3457.60 2777.0 2699.1		06 1	SC 3457-6 2777-0 2099-1		140	SC 6517.2 5418.1 4034.8
	рС 320,5 295.с 272.3			PC 33566 314.8 292.4	•		PC 437.7 403.3 371.2
¥5			٧S			VS	
Z	5C 0.0 0.0		14	0°0 0°0		64	0.0 0.0 0.0
	PC 0.0 0.0			PC 0-0 0.0			0 • 0 • 0 • 0
19	4 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		d]	56 4531.00 3526.00 2660.1		ر ۲ د ۲	5092. 5092. 5092.
	0.00 0.00 0.00 0.00	0			-		000 000 000
ALTERNATIVE NO.	C - 4 5 C - 4 6 C - 4 6	COMPARISON NO. 20	ALTSKNATIVÉ NU.	د. 10° 05 110° 05	CUMPARISUN AD. 21	ALTEXNATIV= AC.	5= 0% 7=04 LG=04

ġ

i N

	32	0.							
		••	B/C RATIO 3.9844 3.4181 2.7426		μ.	B/C RATIO 3.8646 3.33333 2.6964			8/C RATIU 3.7951 3.2529 2.6067
			SAVINGS 1787.0 1420.2 1057.5			SAVINGS 1787.0 1420.2 1057.5			SAVINGS 1787.0 1420.2 1057.5
			COST 448.5 415.5 385.6			COST 462.4 426.1 392.2			COST 470.9 436.6 405.7
		2	sc 0•0 0•0		2	5C 0.0 0.0		2	00°0 0°00 0°0
			0.00 0.00 0.00			34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0°00 0°00 0000
ιι • • • •			SC 6917-2 5418-1 4034-9		160	-SC 6817-2 5418-1 4034-8		200	5C 6817.2 5418.1 4034.8
	11		PC 448.5 415.5 385.6			PC 462 <b>.</b> 4 426 <b>.1</b> 392.2			PC 470°9 436°5 405°7
	1	VS			< S >			VS	
		(N	00°0 0°0		2	50 0.0 0.0		2	0 0 0 0 0 0 0 0 0
			0000 0000 0000			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			6 0 0 0 0 0 0 0
		16	SC 8004.€2 6838.5 5092€3		16	SC 8604.2 6038.7 5092.5		16	5C 8604.2 6638.3 5092.3
			PC 0.0 0.0	τ. Έ		0.0 0.0			0 0 0 0 0 0 0 0 0
.1	CGMPAKISUN NJ. 22	ALTERNATIVE NU.	20°01 2°°4 20°4	COMPARISON NG. 23	ALTERNATIVE NC.	5 - 02 7 - 02 1 0 - 02	CUMPARISUN NG. 24	ALTERNATIVE NC.	5°01 7°01 10°01

the second s

٤۶
COPPAPISCA AG.

						321.
	8/C RATIU 9.4809 8.0671 6.4126			8/C %ATIO 11-1650 9.7253 7.9837		B/C RATIO 10, 2674 9,7580 7,0096
	SAVINGS 3882.5 3135.2 2367.9			SAVINGS 3882.5 3135.2 2387.9		SAVENGS 3882.5 3135.2 2387.9
	CGST 409-5 388-6 372-4			COST 347.7 322.4 299.1		COST 378•1 358•0 340•7
~	0 0 0 0 0 0 0 0		~ ~	0°0 0°0 0°0	~	000 000 000
	0000 0000 0000			0°0 0°0		0°0 0°0
50	SĽ 4542 <b>-5</b> 2608-3 2793-9		05	Sr 4542.65 3668.3 2793.9	210	SC 4542。5 3668。3 2793。9
	PC 405_5 388_6 372_4			PC 347 <b>.</b> 7 322 <b>.</b> 4 259 <b>.</b> 1		PC 376.1 358.0 340.7
٧S			٧S		S N	
<b>N</b>	0.0 0.0 0.0		7	5C 0 • 0 0 • 0	N	0.0 0.0 0.0
	000 000 000 00 00 00 00 00 00 00 00 00			PC 0.0 0.0		0 - 0 0 - 0 0 - 0
	56 24-55 620355 5182.68		41	5C 84250 6d0305 514100	41	\$C 6425¢0 6005¢5 5131•§
	PC 0.00 0.00 0.00			0 • • • • •	~	7 0 0 0 0 0 0 0
ALTERNATIVE NU.	5.0° 3.0° 10.01	CUMPARÍSLA NE. 26	ALTERNATIVE NC.	5.0£ 7.J5 10.05	CUMPAKISHA NG. 27 Alternative nc.	5.0% 7.0% 10.0%

. I.

A . . . . .

ì

à

1.5

いたいため、ために

÷
N.
Ŭ,
- <del></del> -
-
<
<b>U</b>
S
-
فهم
1
4
::
1
-

322.							
	8/C RATIO 10.0191 8.4975 6.7448			B/C RATIO 8.9370 7.4027 5.6609			e/C_RATIC 7.3015 6.2730 5.0554
	SAVI NGS 38824 5 313525 238749 238749	·		SAVI NGS 3328.4 268.3 2048.0			SA VI NG S 3884. I 3136. 5 2389. 0
	CUST 387~5 389~0 359.0			6057 372.4 363.1 361.8			C051 532.0 500.0 472.6
2	5C 0.0 0.0 0.0 0.0 0.0		2	0 0 0 0 0 0 0 0 0 0 0 0 0		0	55. 3457.6 2777.0 2099.1
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0 0		120	PL 301.4 278.4 255.7
250	SC 4542 <b>5</b> 3668 <b>•</b> 3 2793 <b>•</b> 9	·	290	5096.6 4115.6 3133.0		ĨŪ	5C 1085.0 831.5 094.0
	PC 3&7 <b>~</b> 5 3&5 <b>~</b> 0 354 <b>~</b> 0			PC 372.4 362.8 361.8			PC 220.6 221.6 215.8
VS			V.S			SA	
~	3 0 ° 0 0 ° 0 0 ° 0		24	0 ° 0 0 • 0 1 • 0		21	5152 5 5354 5 3354 4
	PC 0.0 0.0			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0 0 0
41	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		41	50 8425.0 8425.0 5121.5		Ţ	sc 2011-7 1652-6 1298-4
	0.00 0.00 0.00	ው የ1		PC 0.0 0.0 0.0	ŝ		)4 0.0 0.0 0.0
ALTERNATIVE NC.	5.0% 7.42 6.05	CUMPARISU: Au-	ALTLÄNAFINE NC.	5=0% 7=0% 10=04	CUMPARISON Rue	ALT-KNATIV - AC.	5 - 02 7 - 03 1 - 03

- Martin - Martin -

.....

-124 - 121-

'n

ALL STREET, ST

3

3:

ł

1

	B/C RATIC 7.0157 6.0191 4.8366	
	SA VI NG S 3884. L 3136.6 2389.0	
e.	C0ST 553.65 521.1 493.9	
ō	5C 3457.6 2777.6 2059.1 2059.1	
170	РС 323•0 295•5 278•1	
10	SC 1Ud5•Ü 291•3 694•8	
	PC 230en 22366 21568	
٧S		
.21	SC 0414e 9 5152e2 3444e	
	0°0 0°0	
••••	2011.7 1022.0 1288.4	
	0.00 0.00 0.00	N
ALTERNATIV. NÉ.	5.0% 7.02 10.03	CũAPANISIN NU - 22
ALTeke		CũAPà.

	6/C RATIO 8.8170 7.4782 5.9217				8/C RATID 10-2682 W 8-9578 W 7-3675 •
	SA VI NG S 3682.5 3135.2 2387.9				SAV1NGS 3882.•5 3135.2 2387.9
	CCST 440°3 419°2 403°3				COST 378-1 350-U 324-1
~	0 0 0 0 0 0 0 0	::		2	0°0 0°0 0°0
	000 000 000				6 0 C C C C C C C C C C C C C C C C C C
70	6562 6562 3600 2791 29			110	SL 4542+5 3688+3 2792+5
	PC 440•3 413•2 403•3				PC 376.1 350.0 324.1
<b>~</b>				<b>V</b> S	
24	0 • 0 0 • 0 0 • 0			N	50 000 000 000
	0 • 0 0 • 0 0 • 0				0.00 0.00 0.00
4	St 8423.0 6301-65 51-1.0			41	50 54 1500 540 500 540 50 540 50
	PC 00.0 0.0 0		. 7		FC C = 0 U = 0
ALT-PGATIVE NG.	5.05 7.05 10.05		COMPACES NO. 20	ALTERNATIVE TL.	5 °05 7 °05 7 °05

ļ

ţ

- agente -

ū.

ちょうちょう しょうちょう

<del>الم</del>.

•

324.

N

230

VS

N

41

ALTERNATIVE NC.

B/C RATTU 9.5147 8.1125 6.4893			B/C RATIO 9.4934 8.0310 6.3556		B/C RATIO 8.1751 6.7484 5.1425
SAVI NG S 3882. 3135. 2 2387. 9			5AVING S 3882.5 3135.2 2387.9 2387.9		SAVINGS 3328.4 2688.3 2048.0
COST 408•1 396•5 368•0			CUST 409.0 390.4 375.7		CUST 107.1 398.4 398.4
000 0000 0000		7	0°0 0°0 0°0	N	0°00 0°00 0°00
50 0°0 0°0			0.0		0°0 04
\$6 \$5\$2.5 3665.5 2793.9		270	SC 4542.5 3604.3 2793.09	310	5096•6 4115•2 3133•8
PC 408.1 386.5 366.0		-	PC 405-0 375-7		PC 407. L 398. 4 398. 3
		0) >		<pre>S</pre>	<b>x</b>
SC 0.0 0.0		د،	0°0 0°0 0°0	N	SC 0.0 0.0
PC 0.0 0.0			6.00 6.00 6.00		000 000 000
5C 8429.0 8429.5 8181.8		4	5 6 4:5 6 6:0 3 6 5 1 8 1 8 1	41	5C 5C 54230 548135 51813
2000 2000 2000	10		0 • 0 • 0 • 0	-	00°0 0°00 0°00
5 . U 8 7 . C . 1 C . U 4	CUMPARISON NC. 35	alt-≈nattv_ n: •	5.00 7.05 10.05	LGMPARISCH, NU = 5 Alt=knativé nů.	5 - UZ 7 - UZ 1 0 - OZ

1

「「「「「「」」」

ł

î

Į

COMPARING NL.

	8/C RATIO 6.7730 5.8162 4.6836			B/C_RATI0 6.5549 5.6164 4.5056		B/C RATIO 12.2410 22 10.3369 22 8.2247 •
				B		8
	SAVINGS 3884.1 3136.6 2389.0			SAVINGS 3884.1 3136.0 2389.0		SAVI NGS 7484°2 5948°1 4429°3
	CUST 573.5 539.3 510.1			COST 592.55 558.55 530.2		C05T 611.4 572.1 538.5
150	\$6 3457.6 2777.0 2099.1		190	SC 3457.6 2777.0 2099.1	•'	0°0 0°0 80
15	PC 320.5 295.6 272.3		16	PC 339•6 314•6 292•4		0°0 0°0 0°0
30	SC 1085.0 891.3 694.8		30	SC 1085.0 891.3 694.8	60	SC 8747.•2 6952.0 5177.0
	PC 252.0 243.07 243.07 237.8			PC 252•9 243 <b>•</b> 7 237•8		PC 611.4 572.1 538.5
VS			<b>V</b> S		vs	
21	SC 6414•5 5152•2 3894•4		21	SC 6414e9 5152e2 3894e4	7	0 0 0 0 0 0 0 0 0 0 0 0
	PC 0.00 0.00 0.00			0 • 0 0 • 0 0 • 0		000 000 000 00
	SC ZULL=7 2c3_co 1.2d8.4		1	SC 2011.e7 1652.e6 1203.e4	51	5C 16231.3 12900.1 9606.3
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			PC 0.0 0.0 0.2	-	50 0 0 0 0
ALT LKNATIV= NU.	5.02 7.02 10.01	CEMPAKISEN NU. 38	ALT FANATIVÉ MÛ.	5.05 7.05 10.05	CUMPARISON NU. 39 Alternative Nu.	5 <b>-02</b> 7-02 10-03

CURPARISON NO. 37

325.

:

٠t

the state of the s

The second second

326.

40

COMPARI SEN NO.

8/C RATIO 13.9961 12.1277 9.8628			8/C RATIO 13.4850 11.6567 9.4745		8/C RATIO 13.2406 11.33339 9.1982
SAVI NGS 7484. 2 5948. 1 4429. 3			SAVI NG S 7484. 2 5948. 1 4429. 3		SA VI NG S 7484° 2 5948° 1 4429° 3
COST 534.7 490.5 449.1			COST 555.0 510.3 467.5		C0ST 565.2 522.0 481.5
0°00'0 %000		2	0°0 0°0		0000 0000 0000
0°0 0°0 0°0			PC 0*0 0*0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SC 8747.e2 6952.e0 5177.e0		220	SC 8747°2 6952°0 5177°0		260 8747°2 6952•0 5177•0
PC 534.07 490.5 449.1			PC 555°C 510°3 467°5		PC 565•2 522•0 481•5
		VS		1	S
2000 0000 0000		۲.	0°0 0°0 0°0	ſ	0°0 0°0 75
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			0 0 0 0 0 0 0 0 0 0 0		000 000 000 000
50 1 c c 31 e 3 1 c 200 e 1 5606 e 3		5.	5C 16231+2 12500+1 9605+3		51 SC 16231-5 12900-1 5446-3
PC 0.00 0.00			0°0 0°0 0°0	01	0 0 0 0 • 0 0 • 0
5.04 7.05 10.03	COMPARISON NU. 41	ALTENNATIVE NC.	5.0% 7.0% 10.05 10.05		ALI EXMALIVE NU- 5.02 7.02 10.02
	PC SC PC SC PC SC PC SC PC SC PC SC C051 SAVINGS B/C 3-0 1c 21a 3 0.c 0.0 534.7 7484.2 1 0.0 1c 300.1 0.0 0.0 0.0 634.7 7484.2 1 0.0 1c 300.1 0.0 0.0 0.0 490.5 5948.1 1 0.0 5006.3 0.0 0.0 449.1 5177.0 0.0 0.0 449.1 4429.3	PC SC PC SC PC SC PC SC PC SC COST SAVINGS B/C 3-0 1c 513 0.0 0.0 534.7 7484.2 1 0-0 1c 30.0 0.0 534.7 7484.2 1 0-0 0.0 0.0 490.5 5948.1 1 0-0 0.0 0.0 449.1 5177.0 0.0 449.1 4429.3 1 449.1 4429.3 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PC         SC         PC         SC         PC         SC         PC         SC         SC         SC         SC         SC         SAVINGS         B/C         SAVINGS         B/C	PC     SC     PC     SC     PC     SC     PC     SC     CGST     SAVINGS     D/S       1-0     12-00.1     0.0     0.0     0.0     0.0     0.0     0.0     544.7     7484.2     1       1-0     12-00.1     0.0     0.0     0.0     0.0     0.0     544.7     7484.2     1       1-0     10.1     0.0     0.0     0.0     0.0     0.0     544.1     1       1     0.0     0.0     0.0     0.0     0.0     0.0     544.1     1       1     1     1     1     1     1     1     1     1       1     1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1 <td< td=""></td<>

			· · _ *	· <b>x</b>					327.
		8/C RATIO 13.8493 11.2856 8.4373			×	8/C RATIO 11.0952 9.4426 7.4988			B/C RATIC 10.9203 9.2640 7.3207
ч		SAV INGS 6494. 0 5161. 2 3843. 4				SAVINGS 7484			SAVI NGS 7484. 2 5948. 1 4429. 3
		COST 466.9 457.3 457.3		ļ		CGST 674-5 629-9 590-7			COST 685.3 642.1 605.0
	5	0°0 0°0 0°0			140	5C 6817.2 5413.1 4034.8		130	SC 6817.2 5416.1 4034.8
		PC 0.0 0.0			14	PC 437 <b>°7</b> 402°3 371°2		13	PC 448°5 415°5 385°6
	300	50 9737.3 7738.9 5762.9			20	SC 1929-9 1533-6 1142-2		2U	sc 1429_9 1533_8 1142_2
	.,	PC 463.99 457.33				PC 236.4 226.5 219.5			PC 236.9 226.6 215.5
	\$ A				٨S			٧S	
	64	ر 0•0 200			31	SC 12651.07 10055.1 74873		16	5C 12651.7 1000-1 7427-8
		00°C 00°C				0000 0000 000			PC 0.0 0.0
	51	SC 1∈25_e¢ 1,259005 900005			11	5579.0 2579.0 2112.0 2112.0		11	56 3573.0 23575.0 2318.6
rf 1		0.0 .0 .0 .0				0000 0000	<u>,</u>		0.00 0.00 0.00
COMPARISON NO. 43	ALTERNATIVÉ No.	5 - 07 7 - 6 - 10 - 03		CCMPARISEN Nu. 44	ALTERVATIVE AC.	5.06 7.05 10.05	COPPARISCA AL. 45	ALTLANATIVE 3G.	5.0. 7.05 10.05

- 1

COMPARISON

ì

*1*[

ことの東京城

「「「「「「」」」」」

. .

8.

ţ

B/C RATIO 11-5047 9-7429 7-6762		8/C RATIO 13.0497 11.3422 9.2519
SAVI MGS 7484。2 5948。1 6429。3		54V1 NG S 7484. 2 5548. 1 4429. 3
COST 650.5 610.5 577.0		CCST 573.5 574.4 478.7
0°00 8°00 8		2000 2000 2000
9 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0
552 8747.02 6952.0 5177.0	c 	5C 8747.e2 6352.e0 5177.e0
PC 650°5 610°5 577°0		PC 573.55 524.44 478.7
	ол Х	
0°0 0°0 0°0	(X	000 000 000 000
00°0 0°0		0000 0000 0000
PC SC CeO 15_3[e2 OeO 15_3[e2 OeO 'spOe_	. − Jc	
0.00 0.00 0.00		0000 0000
5 - ا د ۵ - ۲ د ۵ د	GUMPAKISER AL. 47 Alterrative ac.	5° د: ۲۵° ۵۲ ۲۵° ۵۲

COMPARISER IL. 43

	8/C RATIG 12=5111 10=8134 8=7807
	SAVI NG S 7484. 2 5948. 1 4429. 3
	CUST 598.2 550.1 504.4
Z	SC 0°0 0°0
	0°0 0°0
24Û	SC 8747.2 6952.0 5177.0
	PC 558.2 550.1 504.4
۷S	
17	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	000 000 000 000
4	SC 16231.2 12900.i 900.3
	20 0.0 0.0
ALTERNATIVE NC.	ن ۲۰ مل ۵۰ مل

1

2

£О

**V**S

 $\sim$ 

15

ALTERNALIVE NC.

CCKPArlSUN NC. 40

4
<u>ж</u> С.
SUR
COMPARI

						329.
	6/C RATIC 12.5778 10.7999 8.6902			B/C RATI0 12.8385 10.4758 7.8463		B/C RATIÚ 10.3822 8.8232 6.939
	SAVI NGS 7484°2 5948°1 4429°3			SAVINGS 6494.0 5161.2 3843.4		SAVINGS 7484.2 5948.1 4429.3
	503.8 595.0 509.8 509.7			COST 505.8 492.7 489.8		C05T 720.9 674.1 633.3
2	0 0 0 0 0 0		2	00°0 00°0		5418°1 4034°8
				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	PC PC 462.4 426.1 392.2
280	SC 8747e2 6952e0 5177e0		320	97373 97373 773ê9 57629	9	40 \$C 1929 <b>.</b> \$ 1533.8 1142.2
	PC 595.0 550.8 505.7			PC 505. 8 459. 8		PC 258°5 248°1
٧S			57		:	~ <b>^</b>
r <b>u</b>	0.00 0.00 0.00		N	0-0 0-0		31 SC 12651.7 10055.1 7457.3
	000 600 600 600			0°0 0°0 0°0		0-0 0-0 0-0
15	\$C 16231.5 16231.5 5606.5 5606.5		51	5C 162315 125001 9606-3		11 SC 5579•0 2845•0 2118•6
	P.0 0.0 0.0	50		2 0 0 0 2 0 0 0	51	PC 0.00 0.00
ALTERNÀTIVE AL•	5.0% 7.0% 10.0%	COMPARISON NG.	ALTERNATIVE NU.	5.02 7.05 10.05		ALTERNATIVE NU. 5.02 7.04 10.05

, y

1. A.

**.** 

BOARDY A PARAMENTAL AND AND A PARAMENTAL
A CONTRACTOR OF A CONTRACTOR O
<ul> <li>Construction of the state of th</li></ul>

A AND A AND

The second of the

COMPARISON NU. 5	52												330
ALTLÂNATIVE NO.		11		31	۸S		40	5	200			-	•
5.02 7.02 10.02	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5579⊾6 25495€6 218÷6	0.00	SC 12651. 7 10055.1 7487.8		PC 258.5 248.1 241.1	SC 1929-9 1533-8 1142-2	PC 470°9 436°5 405°7	SC 6817=2 5418•1 4034•8	COST 729.3 684.7 646.8	SAVINGS 7484.2 5948.1 4429.3	B/C RATID 10.2615 8.6875 6.8480	
CCMPARISON NU. 5	53												
AL TËRNATIVË NÚ.		101		2	SN		50		8				
5 <b>-0%</b> 7-0% 10-0%	90 0.0 0.0	SL 5454.6 4810.0 3665.0	0°0 0°0	0 ° 0 0 • 0 0 • 0		PC 409 <b>-</b> 5 388 <b>-</b> 6 372-4	SC 4542•5 3668•3 2793•9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CDST 409 <b>.</b> 5 388.6 372.4	SAVINGS 1412-1 1141-7 871-2	8/C RATIO 3 <b>.44</b> 82 2.9378 2.3394 2.3394	
COMPARISCN NC.	5 4												
ALTERNATIVE NO.		10 i		5	SN		06		5				
2°07 2°07 10°2	PC 0.0 U.0	SC 5954.6 4310.0 3665.0	0.00 0.00 0.00	0°0 0°0		PC 347.7 322.4 299.1	SC 4542 <b>°</b> 5 3668°3 2793°9	00°0 00°0	0°0 0°0	COST 347.7 322.4 299.1	SAVINGS 1412.1 1141.7 B71.2	B/C RATIO 4.0607 3.5416 2.9126	

Ī

í

5

A STATE OF A

神人見

No. of Concession, Name

ţ
÷CN
SUM
CUMPARI

...

ť,

4.

							223	
	ATI 0 7343 1893 5572			ATIG 6439 0945 4606			. RATIO 2.3038 5 1.9132 1 1.4684 •	<b>بر</b> ا
	8/C RATIO 3.7343 3.1893 2.5572 2.5572			B/C RATIO 3.6439 3.0945 2.4606			8/0	
	SAVINGS 1412-1 1141-7 871-2			SAVINGS 1412.1 1141.7 871.2			SA VI NG S 858•0 694•8 531•2	i i i i i i i i i i i i i i i i i i i
	COST 378•1 358•0 340•7			COST 387.5 369.0 354.0	н ^н		COST 372.4 363.1 361.8	, 
~	SC 0 0 0 0 0 0		2	0°0		2	000 000 000	- ment benedites and a for state (1) and for the state of the stat
	0.0			000 000 000			0°0 0°0	، بی پار
210	SC 4542.65 3668.3 2793.9		250	SC 4542°5 3666°3 2793°9		290	5096°6 4115°2 3133°8	
	PC 376.1 356.0 340.7		·	PC 387.5 354.0 354.0			PC 372.4 363.1 361.8	
VS			٨S			<b>VS</b>		
2	0 0 0 0 0 0 0 0 0 0 0 0		~	0 0 0 0 0 0 0 0 0 0 0 0 0 0		CN.	0°0 0°0	i
	0 0 0 0 0 0		•	0 0 0 0 0 0 0 0 0 0 0 0			2000 0000 0000	· Ţ · ·
101	25 SC 4 - 5 SC 3 6 6 1 0 0 0 0 3 6 6 1 0 0 0 0		101	SC 5954.6 4810.0 3665.0		101	50 5954.6 4310.0 3665.0	
•	0 0 0 0 0	5a		0000 0000 0000	15	·	0°00 0°0	
ALTERRATIVE AL.	5 - 05 7 - 05 1 0 - 05	CUMPARISEN NO. 5	ALTÉKNATIVÉ №.	5 - 02 7 - 41 10 - 01	COMPARISCN NO. 5	ALTERNATIVE NC.	5.04 7.05 10.02	

1

ter an an ber und feld die men ein an eine befter beiter beite ber eine befter bereiter beiter beite

332.

-	B/C RATIO 2.6545 2.2835 1.8435 1.8435			8/C RATI0 2.5506 2.1911 1.7637	:
	SAVINGS 1412-1 1141-9 871-2			SAVING S 1412•1 1141•8 871•2	
	C051 532.0 500.0 472.6			COST 553.6 521.1	
130	SC 3457.6 2777.0 2099.1		170	SC 3457.6 2777.0 2099.1	
-	PC 301.4 278.4 256.7		1	PC 323•0 299•5 278•1	
10	SC 1085.0 691.3 694.8		10	SC 1085.0 391.3 694.8	
	PC 230.6 221.6 215.8			PC 230.6 221.6 215.8	
٨S			VS		
18	SC 4-91.66 3526.0 2605.1		16	50 4391e6 3320e6 2665e1	
	0 • C 0 • C			50°0 0°0	
ol	SC 1563•0 1283•4 559• 9		61	SC 1563•0 1253•4 233•4	
	000 000 000 000	(5		90° 0°0 0°0	
ALTERNATIVE NU.	5. 05 7. 05 1. 05	CCMPARISUN NU. 53	ALTERNATIVE NU.	5.05 7.55 10.05	C GMPARISUN NG. 60

SAVINGS 1412-1 1141-7 871-2 CuST 440-3 419-2 403-3 0.00 0.00 0.00 0-0 SC 4542•5 3668•3 2793•5 PC 440•3 419•2 403•3 0°0 0°0 0.00 St 5954.6 4210.6 3565.0 , 0 0 0 , 0 0 0 , 0 0 0 ALTERNATIVE NU. 5.0% 7.0% 10.0%

~

20

۲S

 $\sim$ 

101

A REAL PROPERTY OF A REAL PROPER

and the second second

ţ

i

ł

. · .

8/C RATIO 3.2067 2.7233 2.1603

CUMPARISCA NÜ-

ŝ

CUMPARISCH NU. 61

ł

Ţ

						333.
	B/C RATIO 3.7345 3.2621 2.6878			B/C RATIO 3.4605 2.9543 2.3674	γ	B/C_RATIU 3.4527 2.9246 2.3186
	SAVINGS 1412.1 1141.7 871.2			SAVINGS 1412•1 1141•7 871•2		SAVINGS 1412-1 1141-7 871-2
	COST 378.1 350.0 324.1			COST 408•1 386•5 368•0		COST 409-0 390-4 375-7
2	0°*0 0°*0 0°*0		C)	0.00 0.00 0.00		0.00 0.00 0.00
	PC 0.00 0.00			0°0 0°0 0°0		000 000 000
110	SC 4542.5 3668.3 2793.9		0EZ	50 4542•5 3668•3 2793•9	270	SC 4542•5 3668•3 2793•9
	PC 374 <b>.1</b> 350 <b>.0</b> 324 <b>.1</b>			PC 408•1 386 <b>•</b> 5 366 <b>•</b> 0		PC 409_0 390_4 375_7
< s			٨S		s >	
6	0.0 0.0 0.0	•	ي لايا	55 0 0 0 0 0	1	0°0 0°0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 C		0°0 0°0
101	55 5554 ev 4 ē 10 e C 5 6 5 e U		101	SC 5954.ec 4310.0 3665.0	101	\$C \$554_6 4810_0 3665_0
	PC 0.0 0.0			000 000 000		2 4 0 0 2 4 0 0 2 4 0 0 2 4 0
AL TERNAT IVE NC.	5.0% 7.0% 10.01	CUMPARÍSCA NC. 02	ALT-ASATIVE AU	5 • 05. 7 • 4 8 1 0 • 0 4	CLPFAPISCA NG. 63 Alternative nG.	5.02 7.03 10.02

(橋間)

ţ

\$

ş

ų.

ģ

	334	•								
			B/C RATIO 2.1074 1.7441 1.3339			6/C RATID 2.4623 2.1172 1.7079			B/C RATIG 2.3330 2.0444 1.6430	
			SAVINGS R58.0 694.8 531.2	1	ı	SAVINGS 1412. 1 1141.8 871. 2			SAVINGS 1412•1 1141•8 871•2	
•1			COST 407-1 398-4 396-3			COST 573.5 535.3 510.1	·		CUST 592•5 530•2	
		2	SC 0 0 0 0 0		50	sc 3457.6 2777.0 2099.1		190	\$6 3457.6 2777.0 2099.1	
			۲۲ ۵۰۵ ۵۰۵		μ.	PC 320.5 255.6 272.3			PC 339.66 314.6 292.4	
		016	50%646 511562 513368		0 ⁵	5C 1085.0 891.5		30	SC 91.3 594.8	
	1		PC 407e1 392e4 392e4			PC 252.5 243.01 243.01			PC 252.9 242.7 237.6	្នុំ វៀកស្រុងព្រំការការការការសារ ក្នុ
		S N			٨S			5 >		
	•	N	0 0 0 0 0 0 0 0 0 0		13	5C 4341.6 3526.6 2603.1	·	E1	5C 4391-6 3526-6 2405-1	
			0.00 0.00 0.00		ī	PC 0-0 0-0			0000 0000 0000	
		10.	50 5+54-6 4610-0 30-5-0		сl	50 1565 0 11565 0 1156		сl	50 1563-0 1233-6 504-9	
			0 0 0 0 0				2		0.00 0.00 0.00	
τ.	COMPA-ISLA M	ALTERNALIVE NO.	5.05 7.05 10.02	CumPdis[5_n litu c)	ALTERATIVE NG.	5- 3% 7-0% 10-03	COMPARISCA KC. SO	ALTERNATIVE NC.	5.0₹ 7.02 10.38	

สรารที่

COMPARISON NL. 67

-----

والمحافظ المعادي والمراجع

u

.

1

٢.

							335.
	B/C RATIO 4.2858 3.6401 2.6795		l.	B/C RATIO 4.9003 4.2461 3.4530			B/C RATIC 4.7214 4.0812 3.3171
	SAVI NGS 2620.4 2082.5 1550.7	1122 (SINS)		SÄVINGS 2620.4 2082.5 1550.7			SA VI NGS 2620.4 2032.5 1550.7
	CGST 611-4 572-1 538-5			CUST 534.7 490.5 449.1			COST 555.0 510.3 467.5
2	0°0 0°0 0°0		2	0°0 0°0 0°0		2	000 000 000
	0°00 0°00 0°00			PC 0.0 0.0			0°0 0°0 0°0
60	SC 6747•2 6952•6 5177•0	n Konstant K	100	SC 8747e2 6952e0 5177e0	.e	220	5C 8747.2 6952.0 5177.0
	PC 611.4 572.1 53%.5			PC 534.7 490.5 449.1			PC 555• C 510•3 467• 5
VS			٧S			<b>V</b> S	
2	0 0 0 0 0 0 0 0 0 0 0 0		N	0000 000 000 000 000 000 000 000 000 0		r <b>N</b>	0°0 0°0 0°0
	000 000 000		,	5 6 6 6 C			0000 000 000 00 00 00
111	SC 11507•5 9634•5 6727•7		111	SC 501367.5 5034.5 6727.7		Li.	5č 11367.5 9034.5 6727.7
	0 0 0 0 0 0 0 0	th.		0.0 0.0 0.0 0.0	10		0.00
ALTÉRNATIVË NC.	5 • U\$ 7 • 0\$ 10 • 0\$	COMPARISON NO. 63	ALTERNATIVE NC.	5 - 02 7 - 05 10 - 05	CUMPARISUN NÚ. 65	ALTERNATIVE NG.	5 • 0 \$ 7 • 6 \$ 1 0 • 0

「中国によった」の「「「「「」」」

ţ

San Browners

Reader of the state of the second

Ever an grant with the

*

二月二十

?

-Harry

ł

3	3	6	
---	---	---	--

336.							
	B/C RATIC 4.6358 3.9892 3.2203	-1		8/C RATIO 3.4766 2.8331 2.1180 2.1180			B/C_RATIO 3.8847 3.3060 2.6254
	SA VI NG S 2620.4 2082.5 1550.7			SA VI NG S 1630.2 1295.6 964.8			SAVINGS 2620-4 2082-5 1550-7
	C0ST 565•2 522•0 481•5			COST 468.9 457.3 455.5			CUST 674.5 629.9
2	0 0 0 0 0 0 0 0		2	0°0 0°0 0°0		140	SC 6817•2 5418•1 4034•8
	PC 0.0 0.0			50 00 00 00 00 00 00 00 00		ì	PC 437.7 403.3 371.2
26Û	SC 6747.e 6952.e0 5177.e0		300	5C 9737.3 7738.5 5762.9		20	\$C 1929.9 1533.8 1142.2
	PC 565.2 522.0 481.5			PC 468. 9 457. 3 455. 5			PC 236.9 226.6 219.5
NS.			۸S			VS	
24	0°0 0°0 0°0		. 1	0°0 0°0 0°0		16	SC 8604.2 6839.3 5092.3
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			PC 0.0 0.0			0000 0000 0000
111	50 11367.5 11367.5 1134.5 127.5		111	56 11267.55 5034.55 6727.4		11	SC 2763.5 2196.7 1635.4
	5000 6000 6000	11		000 000 000	72		0 0 0 0 0 0 0 0 0
CUMPAKI SUR AU. 70 ALTERIATIVE AU.	zu 7.0. 1.0.1	COMPARISON NU.	ALTÊRNATIVE NU•	5.05 7.03 10.03	COMPARISON NO.	ALTERNATIVE NG.	5 - 05 7 - 02 10 - 02

j

12.2

					337.
ی این این این این این این این این این ای	B/C RATIO 3.8234 3.2435 2.5630		B/C RATIO 4.0280 3.4111 2.6875		B/C RATIU 45690 39711 32392
.a ⇔ngg - Nga⊒t a.a	SAVING SAVING SAVING SAVING SAVING S020.4 1 2082.5 5 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 0 7 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		SAVINGS 2620.4 2082.5 1550.7	1. 19	SAVINGS 2620-4 2082-5 1550-7
·	COST 685.3 642.1 605.0		CUST 650-55 610-5 577-0		COST 573、5 524-4 478-7
180	SC 6817.2 5418.1 4034.8	N	0 0 0 0 0 0 0 0 0 0 0 0	7	0 0 0 0 0 • 0 0 • 0
1	PC 448.5 415.5 135.6 1385.6		000 000 000		0 0 0 0 0 0 0 0 0
07	\$C 1925.9 1533.8 1142.2	Q Q	5177.0 5177.0	120	5747.2 5747.2 6952.0 5177.0
	PC 236•5 226•b 219•5		PC 650-5 516.5 577.0		572.55 524.64 478.7
v s		<b>×</b> S		S A	
15	SC 8604.2 6334.3 5052.5		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		80 8.0 0.0
	0 0 0 0 0 0 0 0 0 0 0 0		000 C		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ĩ	2703.50 2156.9 1655.4	1i1	50 11267+5 5024+5 6727+7	II	SC 5034•5 6127•5 6127•5
×,	7 6 6 6 7	.+	4.7 C 2 9 7 6 2 9 7 6 2	Ð	0 0 0 0 0 0 0 0 0
CUMPARISJA NU. 73 Altërnative nc.	、 5.4.0% 1.4.0% 1.0.4 2.5 2.5 2.5 2.5 2.5 5.5 5.5 5.5 5.5 5.5	GUPPAKISUN Nuo 74 Alternai ive nuo	<b>ちょう</b> よっ い も し の よ	LORPAKISCH PL - 75 ALTERGYTIVE AL-	ين . و د د د د د د و د د

í

Ĩ.

ŝ.

9. X

۱ ۱ į

į

ł

and a second

l

338.			
	B/C RATIO 4.3804 3.7860 3.0742	B/C RATIC 4.4037 3.7812 3.0425	B/C RATIC 3.2229 2.4628
	SAVENGS 2620-4 2082-5 1550-7	SAVI NGS 2620.4 2632.5 1550.7	SAVLNGS 1630+2 1295+6 964+8
	CDST 598e Z 504e 4 504e 4	CDST 555.0 550.6 550.7 509.7	CCST 505.8 492.87
2	0000 0000	0.00 0.00 0.00	0°0 30°0 7
	34 0°0 10°0	0°0 0°0	0°0 0°0 0°0
24J	8747°2 8552°0 5277°0	280 8747•2 8747•2 5177•6	220 9737_3 7726_5 5722_9
	FC 598.62 504.64	PC 595.0 530.6 539.7	₽C 565.8 462.8 489.8
S >		2	S S
, i	ು ೧೦ ೧೦ ೧೦ ೧೦	د 1 م ق 1 م 1 م 1 م 1 م 1 م 1 م 1 م 1 م 1 م 1 م	د و و د د د د د
,	000 00 00 00 00 00	0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0	0 - C 0 - C 0 - C 0 - C
111	PC		1+1 PC 5C 0-0 11307-5 0-0 5334-5 0-0 5727-7
CLMPTALSTA No. 70 Alternative A	4 × − − − − − − − − − − − − − − − − − −	uder-saata fi . 17 ALT: seatav As. 5.0. 7.0.	CUAPALISSE 1 7. ALT miATIV A 7.05 10.06

. . a....

CUNFUELSTANO. 74

ł.

	8/C RATID 3.6350 3.0892 2.4486			B/C RATID 3.5929 3.0417 2.3975
	SAVI NGS 2620.4 2082.5 1550.7			SAVINGS 2620.4 2082.5 1550.7
	C US1 720.5 674.1 633.3			CCST 729 - 3 684-7 646-6
1.00	SC 6317°2 5418°1 4034°8		200	SC 6817•2 541±•1 4034•8
	PC 462.4 426.1 392.e2		2	PC 470-9 436-6 405-7
<b>4</b> :	5C 1925•9 1535•b 1142•2		41	SC 1929.9 1533.8 1142.2
	РС 258.5 248.1 241.1			PC 255 <b>.5</b> 243.1 241.1
37			S A	
<b>1</b> 5	SC 8604-2 6838-3 5052-3		Чŕ	SC 8c04.2 6338.3 5092.3
	1000 000 000			0000 000 000 000
11	1000 1000 1000 1000 1000 1000 1000 100		7:	SC ZTEJeb ZTEPeb Ledber
	5 - 5 - 5 5 - 5 - 5 5 - 5	~		0.00 0.00 0.00
ALTE NATIVE AL.	5. ປະ 7. ປະ 13. 05	COMPASIZON AL. 33	ALLS AATIVE NO.	5•∪; 7•€€ 10•€€

339.

Sector Sector

A STATE

1

ł

i

÷

.

ķ

くたい、いたす様は

第.9%A、治療療養養養養養養養養養養

341, Preceding page blank الد ويعاد ما  $C_1$ million ... Inte - 41 reschud an 1919 - Angel Angel and Angel a 111 ù. 5 64 E -. <del>1</del>. PART II. GULF COAST OIL

ANT OF STATES OF DEGREES COM

	1																	,																	, P		· · · · · · · · · · · · · · · · · · ·	. F
50 <del>پېلىرىمىيە بەرسىمار</del> ى M <b>A</b>		,																																				
	•																																					
000	• • •																																	5				
	• _					381.5	448.3	515.0	20100 6468-6	715-3	782.1	848-9	915.6	982.4	1049.1	6°111	1-2811	1216-2	1383_0	1449-7	1516.5	1583.5	1650.0	1716.8	1716.8	1716-5 1710-5	1716-8	1716-8	1716.8	1716.3	1716.8	1716.8		17142•7 13105 0	6 - CATCT	0+0056		
SICKAGE-55 FT	SHIPPING COST																																EST RATE	494°9	403•0	n		
	VOLUME					100-0	5-211	135.0		387.5	205.0	222-5	240-0	257.5	275.0	292.5	310.0	345.0		80-08×	397.5	415.0	432.5	450.0	450.0	450°0		450-0	450.0	450.0	450.0	450.0	ED INTEREST	TOTAL	TOTAL			
THSLSL	E CUST					2.00		N 0 N ()	<b>N</b> 2		2 7	2.7	2.07	2.7		1. č		5) 6 9 7) 6		) ( ) ( ) (	3.6	3.6	3-6	3.6	3 <b>.</b> Ú	1 • •		9-6		3.6	3 <b>.</b> 0	3.6	INDICATED		- 1 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
السم ا		.''	1	Դ. դ. Դ																						-1							VALUË AT					
Seri (}} €	Live COST					5.6	5.46	υ ο ο	יי ג 1 1	ن د با ب	6.0	5• C	6.2	6 <b>.</b> 2	Ú•3	4 N 9 9	6•3 1	5° 5	0 ¥	10.1	10.1	10-1	10- i	10-i	10.1	1.0.1			101	10-1	10-1	10-1	ATLVE PRESENT VALUÈ	Lite.I				
ALTERATIV= NU= 330 ALTERATIV= NU= 330	ARUS (4-1-4). Arus (4-1-4). Fissi cüst operat	50.7	50.7 50.1	1 <b>1 1</b>	5	0•0	0-0	<b>6 - 6</b>	50. 2		0-0	4	0.0	54.6	0-0	0.0	1) • <b>1</b>	0.0		20•L	0-0	0•0	0.0	0-0	0°0	0.0				0.0	0•0	0-0	CUMULATI	325 <b>.</b> 3	333.7	20045		
ALTERATI 11 ALTERATI	Ta-bARU-S Yeks FIs 5	513	197ć 1277	157.	1975	1960	1961	1964	1 7 2 3	11/04	1326	1387	1968	1.76.3	1,90	1551	2661	5 5 5 T	1000 F	1445	1467	נרי ייש ייש	556T	2000	2001	2002	2002	1002	2005	2007	2008	2005		5.04	7-01	10.0 ⁴		

Preceding page blank

343.

		٩
		3
		۲
		ч
		20000
		2
		7
		đ
		5
		•
		-
		2
		Ę
		1

Y=AF 1975 1975

							الا الا ال	I			¢																	• •				
		572-3	658.1	744.0	829.8	915.6	1001-5	1087.3	1173.1	1259-0	1344.8	1430.6	1516.5	1602.3	1688.2	1774-0	1859.8	1945.7	2031.5	2117-3	2203.2	2289.0	2289-0	2289.0	2289.0	2289°C	2289.	2285 <b>-</b> C	2289 <b>-</b> C	2289-0	2289.0	
		150.0	172.5	195.0	217.5	240.0	262.5	235 <b>.</b> 0	307.5	- 330.0	352.5	375.0	397.5	420-0	442.5	465.0	487.5	510.0	532.5	555.0	577.5	600.0	600 <b>-</b> C	600.0	600,0	600.0	600.0	600.0	600.0	600.0	600.0	
		2.7	2.7	2.1	2.7	2.7	2.1	3.1	3.1	3.2	5°5 3•2	3.6	3.6	3.7	3.7	5 <b>4</b> •2	<b>4</b> •2	<b>4</b> •2	4.2	<b>4.</b> 2	· · 4•5	<b>4</b> •5	4 7		<b>2</b> ••			<b>4.</b> 5	<b>4</b> •5	4.5	<b>4</b> •5	1. a <u>n 1999</u> 1. an 1997 1. an 199
		6. C	6.0	6 <b>.</b> 0	6 <b>.</b> Û	6.0	6e.č	6•3	7.5	7.5	. 10.i	1.01	16•3	10.3	10.4	10.4	10.7	10.7	10.7	10.7	10.7	10.7	10-7	10.7	10.7	10.7	10.7	10.7	10-7	10.7	10.7	
64°2 67_1	75.4	0•0	C•0	0-0	0.0	4 <b>-</b> 5	34.6	0-0	4 <b>.</b> 8	0-0	35 <b>-1</b>	0-0	<b>4.</b> 8	0-0	36.2	0*0	4 <b>.</b> E	0.0	0 <b>-</b> 0	19-6	0-0	0-0	0•0	0.0	Ū. O	0-0	0-0	<b>0-0</b>	0•0	0-0	0•0	
1212	1979	1980	1961	1352	: 26 <b>1</b>	1 354	1965	1586	1967	1.383	いかい【	055T	156 <b>1</b>	1352 I	E9E T	1 ;54	155F	1440	1541	1998 1998	556 T	2005	2001	2002	2003	2004	2005	2006	2007	2005	2005	

CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE

23360**•1** 18051**•6** 12890**•**8

582.4 544.4 514.0

TOTAL TOTAL TOTAL

56.6 45.2 33.5

138.6 110.2 82.0

587.2 38**6.5** 398.1

5•02 7•03 10•02

-

đ

•

-

and the second second

÷ 1.

344.

 $\int_{U}^{U}$ 

22

ALTERENTIVE RU- 350 Gerrer enkleats, senving Gulf CGASI,fixed berths,island Storase,jo ft.draft, 300,000 DMT,100-450 MTA, TK.uakles,(4-2-4). Cal fingt CUST Gperating CDST Maintemance CCST Volume Shipping COST

ດ. ເດີຍ ເຊິ່ງ ເຊິ່ງ ເຊິ່ງ 

455 455 555

CUMULATIVE PRESENT VALUE AT INCICATED INTEREST RATE

15457.3 11898.5 8445.9

491.4 466.7 45ū.1

TCTAL TUTAL TUTAL

49°5 40°2 30°4

104.7 34.7 64.0

336•7 541.9 355**.**0

2.01 1.02 10.03

345.

1.4

And the second sec

「「「「「「」」」」

	100-000 M
	FT. OHAFT. 3
	STUDAGE-70
	C'AST STYLE
60	CONTRACTOR DATE
I ERENTING RUG SEO	0.000

あるというというなのないという

0DWT,150-600 MTA,T • SHIPPING CUST . 2 i. 5 VOLUME C_KINS ISLARC C.15T . J. . . LLASI + FIX cl ; F1-4 htmassistrates Strutad BULF
...beeness(4+2-4). ATTAC ų al Leel. Generati

																								·											
SHIPPING CUSI						516.0	593.4	670.8	748.2	825.6	903 <b>.</b> U		1057.8	1135.2	1212.0	1290-0	1367.4	1444 <b>-</b> 3	1522.2	1599 <b>.</b> 6	1677-0	1754.4	1831.6	1909+2	1986.6	2064.0	2064.0	2064.0	2004.0	2064.0	2064.0	2064.0	2064.0	2064.0	2064.0
VOLUME						150-0	1 12.5	195.0	217.5	240.0	262 <b>.</b> 5	285.0	307.5	530.0	352 <b>-</b> 5	375.0	397.5	420-0	442.5	465.0	4-37-5-4	510-0	532.5	555.0	577.5	600-0	600-0	600.0	630-0	600.0	600.0	6.00.0	600.0	60C. C	600.0
MATTENANCE CUST						0	2. 6	2.6	5 •	€. • N	6.8			\  € 	u) • !!	u 1 • •	ብ ም	10) • •	ن. ١	( <b>1</b> ) 10	1994) 1997	4.2	4 <b>•</b> 5	4 • 5	45	<b>4</b> •5	ハーナ	Ǖ4	4.5	4°5	C • 4	ي. 4 • 4	4 • 4	10 <b>1</b> 1	4 <b>•</b> 4
LFENETING ULST						ચ <b>્</b> જ	1 12 1 10 1 10		יט פייי נייי				0 - 1 0 - C	7.4	τ. <b>-</b>	C•7	7.5	7.7	7.7	7.7	2 <b>0</b> -2	<b>iu.</b> 5	10.5	10.5	10.5	j <b>0</b> •j	10.5	10.5	IU-5	10.5	10.5	10.5	1 G • 5	c.0.i	10-5
FLAT CUST	50.4	je o i	00	45.5	70.2	5			0-0-		17.7	0-0			0-0			() = ()	0 <b>.</b> 0	25.5	4. C	<b>U</b> • <b>U</b> ⁻	() <b>•</b> ()	0.0	0°C	U.G	Ú•Ů	5 <b>.</b> J	0-0	0° C	Ú.)	0°0	0°0	0. J	0°C
Y - 44	L>75	1+Jr	: L. •	7	1975		1421			•	  	· · · · · · · · · · · · · · · · · · ·			, .	1.5			1 - C -	1.1.1		, 1, ]!	7	- 14 - 15 - 15 - 15	16.51	2000	30.	ر. د	2002	2.54	200.	<u>S</u> UCE	171	200 -	200-

21063•5 16276•9 11623•4

568•0 532•3 504•4

TUTAL TUTAL TUTAL

57°. 45°6 34°č

174.03 100.3 79.0

334•5 200•4 3•5•6

346.

ALTELIATIVE FUE 370 BICPHON UNLARS,SIEVENG CULF CCAST,FIXEU PURTHS,ISLAND SIGNASE,70 FT-URAFT, 400,000 DNT,100-450 NTA, TP-DALGES,[4-z-C]. Y. AS FIEST CUST UPERAFIAG CUST MATATEMANCE CUST VOLUME SHIPPING COST Y. AS FIEST CUST UPERAFIAG CUST MATATEMANCE CUST VOLUME SHIPPING COST

				344.0	404.2	464.4	524.6	564.8	645.0	705.2	765.4	825-6	855• 8	946.0	1006.2	1666.4	1126-6	1136.8	1247.0	1307.2	1367.4	1427.6	1427.8	1546.0	1548.0	1548.0	1546.0	1548.0	1548.0	1548-0	1548.0	1548.0	1546.0		15457.3	11898.5	9445.9
																																		EST KATE	516.7	492.2	476.3
				100.0	117.5	135.0	152.5	170.0	137.5	205.0	222.5	240-0	257.5	275.0	292.5	310°U	a27.5	345.0	362.5	340-0	397.5	415.0	432.5	450.0	450.0	420.0	450.0	450.0	450.0	450.0	450.0	450.0	450 <b>.</b> 0	'e') INTER	TUTAL	TUTAL	TUTAL
				2	£=2	দ •	2.3	(n. ● /↓	2°07	2.9	2•5	3.0	en .#	т •	ሮ • ግ	еч • МЭ	3.4	3.7	3.7	5.7	0.1	4.1	4 e L	4 <b>.</b> l	4.1	4.1	4.i	4. E	4.1	4.1	4 <b>.</b> [	4.1	4.1	TRADICAL	54 <b>.</b> .	43.7	3.66
				5•C	2.eÉ	5.66	5 <b>.</b>	0 	5°57	5.8	an 10	€• ĭ	6•Ì	5.1	6. I	b.l	5°1	7.4	7.4	7.4	7.4	7. F	7.5	7.5	7.5	7.5	7• حَ	7.5	7.5	7.5	7.5	7.5	۲.5	Core D ATTVE PRESENT VALUE AT INCLORED INTEREST RATE	Ĩ(4+)Ĵ	84a 4	64 <b>.</b> 4
26•7 , 7	• •	1.12	(a.t	C. C	0.0	4	6.0	0.0	Ç. C	0.0	a) ● <b>†</b>	26.5	0°0	رن د	0°0	800 • • •	23.5	C•3	C*C	0-0	Ū•-:	3 <b>°</b> C	0.0	G•3	0°0	0.0	0• Ŭ	0-0	<b>ر. د</b> ر	Û. Ü	ن• ر. ن• ر	ù•ŭ	3 *3 5	( Trik )		364+2	275 <b>.</b> 7
157-		12/5	1.1.1 ·	<b>1</b> 36 <b>C</b>	1361				1932	1965	1327	1280	<b>1</b> -5-	1750	15-1	111 U 17	-55 <b>1</b>	1944	1-45	1996		1 35 t	1 - 5 - 1	2000	こいし		יטטי	1001	2005		2007	2010.5	2.0CF		5. • •	7.6%	٤J.ŭš

347.

العسابة كالمطلط الاست الأساف

1000

ì

380
AC.
ΞΛΞ
<b>TeA</b> NS
Ē

ALTERAATIVE AG. 380 GIERRE DALEANS,SERVING GULF CDAST,FIXED BERTHS,ISLAND STORAGE,70 FT.CRAFT, 400,000 DNT,150-600 MTA, Te.darges,44-C-D). Yeap Fikst CUST GPERATING COST MAINTEMANCE COST VOLUME SHIPPING COST

	516.0 593.4 470 0	010-00 748-2 835 6	903.0 903.0 980.4	1057-8	1212.e6 1212.e6	1290-0	1.50 (• • • 1 1.444 • 8	1522•2	1599-6	1754.4	1831.8	1509.2	1986-6	2064-0	2064.0	2064.0	2064-0	2064-0	2064.0	2004-0	Z004-0	2064.0	ST RATE
	150.0 172.5	217.5	262•5 285.0	307.5	352.5	375.0	420°0	442.5	465.0	510-0	532.5	555.0	577.5	0-009	600-0	600.0	600-0	600 <b>-</b> 0	600 <b>-</b> 0	600 <b>-</b> 0	600-0	0009	INDICATED INTEREST
		אני פ • ר י ר	M (N 4 1 € 0 1 (∩ 1		3•1 3•7	3.7	4•1 2•4	4+2	<b>4</b> •2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2. 2.	5.0	0 <b>0</b>		0.1	5°0	5-0	5.0	5.00	5.0	0•5	5.0	VALUÉ AT
	, , , , , , , , , , , , , , , , , , ,	ກີເຊິ່ງ ••• ຄຸດທີ່ມ	000 601 102	5. 1	4°1 2°4	4°1	2=J 7=T	T.T	7.7	1•1 8-0	8• C	10.5	10.5	10°5	10.5	10.5	10.5	10-5	10-5	10.5	I0-5	10.5	CUMULATIVE PRESENT
71K31 Cu31 36.7 36.7 54.5 57.1		000	4 - C		0.0	5 <b>1-0</b>	4•0 0•0	G-0	25• 8	<b>4</b> • • •	32°6	0-0	0.0			0-0	0-0	0-0	0•0	0-0	0-0	0•0	
1251 17975 17915 17915	1351	5 10 12 12 12 12 11 11 11 11 11 11 11 11 11	1964 1945	1937	1925	15-0	1 <del>5</del> 52 1 952	£55 <b>T</b>	1551	1995	1997	255 <b>1</b>	655T	2000	2002	2002	2004	2005	2006	2007	2008	2005	

an an ann airthe anns a fille

A CONTRACT OF A

ではれる人類の言語を見ていた。

「「「「「「「」」」」

21063**•**5 16276•9 11623•**4** 

597•2 560•3 531•7

T0TAL T0TAL T0TAL

62.3 49.7 37.2

122•5 97•4 72•7

412.3 413.2 421.8

5.02 7.02 10.02

348.

ť

第二日 単二年 におい P.

Ĩ

3 

ķ

ALTGENATIVE RJ. 340 GI&ALW UKLZANS,SERVING GULF CCASTFIXEU GERTHS,ISLANU STORAGE,95 FT.ORAFT, 500,000 DMT,100-450 MTA. TS-EGAČES/14-3-4). Yeak FIAST CGST UPERATING COST MAINTENANCE COST VOLUME SHIPPING COST 1975 - 36.7

ł

																		ŝ														
		319•0	374.8	430-6	<b>4</b> 86.5	542.3	598.1	653.9	709.8	765.6	821.4	877•2	933 <b>.1</b>	588.9	1044.7	1100.5	1156.4	1212-2	1268.0	1323.8	1379.7	1435.5	1435.5	1435.5	1435.5	1435.5	1435-5	1435.5	I435•5	1435•5	1435-5	
		100.0	117.5	135.0	152.5	170-0	187.5	205.0	222.5	240.0	257.5	275.0	292.5	310.0	327.5	345.0	362.5	380.0	397.5	415 <b>.</b> 0	432.5	450.0	450.0	450.0	450.0	450.6	450.0	450.0	450.0	: 450.0	450.0	44
		3.0	3.0	3 <b>.</b> 0	3 <b>•</b> 0	3.0	3 <b>.</b> 4	3.4	3.4	9 • ¢	9°6	3•8	3 <b>.</b> 8	3 <b>.</b> 6	5°°	. <b>4</b> . 3	4•2	4.2	4.2	<b>4</b> •2	1.4.7	4.7	4.7	4.7	4.T	4.7	L. 2	4.7	4.7	4.7	4.7	
		5.6	5.6	5.00	5° 00	5 . 5	5.03	5.00	5.8	6 <b>.</b> 1	6.l	6.ľ	<b>6.</b> I	6.1	7.3	74	7.4	7.4	7.4	7.4	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	
54.5 51.5 5	66.4	0"0	0.0	<b>6</b> •3	0•0	25•C	0•0	0.0	<b>4</b> • J	0•0	23.8	0°C	0.0	4 <b>a</b> fi	23.5	0.0	C. C	0-0	0-0	36.3	0.0	0-0	0=0	0.0	0.0	0°0 Jas	0-0	0.0	0.0	0-0	0-0	
1577	1-75	1920	1861	1362	:361	4057	1345	193o	1937	5341	1545	055T	1461	1452	6431	1954	2911	1996	1967	8561	566T	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	

INULAIEU INIEKESI KAIE ī CUMULAI IVE PRESENI

349.

i, . d - (

14333**.**9 11033**.**8 7832**.**1

531.8 502.8 481.8

TUTAL TOTAL TOTAL

60**.**4 58**.**4 36**.**6

104. 3 84. 3 64. 4

367.1 370.1 380.9

5.02 7.02 10.02

Ŧ.

З,

「ないない」の言語であると

it .

tų į

ALT FARTIVE VER 400 ULARE CALATSFOR VING OULF CLASTAFIXED OFFISALS SURAGE,95 FT-UKAFT, 500,000 DNT,150-600 MTA, T. 54 - 54(4-2-4). Ver FIST CUST CP_ANTIAG CUST MAINTEAANCE COST VULUME SHIPPING CCST 1970 - 30.7 1970 - 36.7

		478.5	550.3	622•0	693. B	765.6	837 <b>.</b> 4	1°606	980.9	1052.7	1124.5	1196.2	1268.0	1339.8	1411-6	1483•3	1555.1	1626 <b>.</b> 9	1698.7	1770-4	1842.2	1414.0	1914.0	1914.0	1914.0	1914.0	1914.0	1914.0	1914-0	1514.0	1914.0	
		150.0	172.5		217.5	240*0	262.5	285.0	207 <b>.</b> 5	= 30 <b>•</b> 0	352.5	375.0	547.5	420.0	442 <b>.</b> 5	465.0	487.5	0.010	532.5	555 <b>.</b> 0	577.5	00°0	600.0	600.0	600 <b>.</b> 0	60 <b>0.0</b> 0	¢00•0	600 <b>.</b> N	600.0	600.0	600 <b>.</b> 0	
		3.1	<b>J.</b> L	3.1	5 <b>.</b> 1	ي. ت	3.6	3 • ć	<u>م</u> 1	0 •1	3 <b>.</b> 9	2° • 7	<u>ት</u> ቀ በግ	3.6	<b>4</b> •5	4 • S	4.5	4°C	アーマ	か • す	5.4	5• 4	5.4	5.4	5.4	5•4	5.4	5.4	5.¢	5.4	5.4	-1-
		5.3	5.3	5 <b>.</b> E	5.65	5.8	6. l	<b>6.</b> l	6. l	7.5	7.4	7.4	7.44	7. t	7.0	7.6	7.6	7,0	7.5	7.0	lu.4	15.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	
	67.4	0-0	Ú.D	0°0	0.0	54.5	Ú. Ŭ	0°0	4• F	C3•5	C. C	0.0	4•3	26• 3	ŭ•ŭ	0.0	51 •4	<b>0</b> •0	0° G	55e-J	C• C	0.6	<b>0</b> •0	0°0	0-0	0°0	0.0	0.0	0.0	0.0	Ú.C	*.
171	1975	0241	1415 T	1926	1955	1-54	1365	ן ∍ ,p	19-7	7 35 T	1,465	1.1 :0	, 1 , 1 , 1	- 5, 1	1 / 2 /	1 : 1	2443		1551	2.54	T : ` `	ΰĊŪΞ	ÚČ.	~ . uC.2	- ŋr	2004	2002	- CC-	-401	2,05 2	2002	

CUPULATIVE PRESENT VALUE AT INLICATED INTEREST RATE

13532.7 15634.0 10775.7

£14•6 576•2 546•4

LUTAL TUTAL TUTAL

izunt 10.05 11.5

2.05 1.05

aan aan

A REAL PROPERTY OF A REAL PROPER

350.

A DESCRIPTION OF

おりとお

THE PART OF A DESCRIPTION OF A DESCRIPTI

ALTENATIVE AT 410 FREEPATIVE AT 410 FREEPATIX+SEEVING OULF CUAST,MONL-BUOYS,SAURE STGAAGE,55 FT.DFAFT,200,000 DMT,100-450 MTA,TR.PIPE LINE+BAGIS+(5-1-A). Vear FISSI CUET UPERATING CUST KAINTENANCE CUST VOLUPE SHIPPING COST 1575 0.0 1576 0.0 1577 7.04

i

į

-

1

1

ł

	3 6 3 • 0	455.9	8°72°	19165	7.7.5	795.4	863.2	155	1.659	161	1154.9	1202.5	1270.7	1338-6	1406.5	1474.4	1542.3	1610.2	1676.1	1746.0	1746.0	1746.0	1746.0	-	-	_	_	-		(vi 21	
	100.0	C•/11		0-021	197.5	20-00	222.5	240-0	251.5	775.0	232.5	510 <b>.</b> 0	327.5	345.0	362.5	3č <b>J.O</b>	3-7-5	415.0	432.55	450.0	450 <u>.</u> 0	45ú.0	450.0	450 <b>.</b> 0	450.0	450.0	650°0	450.0	45U.O		
	4•5 1	- - -		1 17 • 1 1 4		4.0	4 • 1	4 • 7	4 <b>.</b> 7	5*5	9•¢	5.1	6.3	6.1	6.7	د•۲	7.3	7.4	8.0	6 <b>~</b> 0	<b>ن•</b> د	F. 0	6°3	8 • 0	8.0	8 °C	8 <b>.</b> U	5. • C	8 <b>.</b> Ú		
	8.7		- 17 - 17 - 17 - 17 - 17 - 17 - 17 - 17	12.7	1-2-1	13.1	15.7	lool	EG. L	19.C	10 · · · · · · · · · · · · · · · · · · ·	2104	••• • •	20 <b>° 4</b>	5 - 10 5 - 10		5-12		• • •	2 • 00	5U•2				20° ×	50°C	20 • C	2 <b>•</b> 0	3 <b>U</b> • ć		
70.04 11.06 166-5	338.0 397.2	456.3	515.5	574.6	633.8	692.9	752.1	811.2	870.4	929.5	988.7	8./9UL	0./011	T-0011	V VOCI	3 CVCL	1407 7	1451 0	1521 0	1571 0	1571 0	1521 0	1521 D	1521 0	1521 D		1531 0	0.12C1	0.1264		
1251 2251	1961	104	· · · · · · · · · · · · · · · · · · ·	1)24	いちょう	1700	1.7.4	• •			<b>1</b> = 2 = 1 - 12 = -		1.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					0.10		1.1.1		200-200-200-200-200-200-200-200-200-200					3			

CUPULATIVE PRESEMT VALUE AT INDICATED INTEREST FATE

17434**.**4 13420**.**4 5526.2 955.8 849.2 747.3 TGTAL TCTAL TUTAL 67.4 08.3 49.5 310.9 235.5 176.9

15187.4 11690.6 8298.1

5. ch 7. už 13. č.

351,

and the state of the

in state

「二十二

the second s

ł

.

ą

1

 All FLANTIN, Va. 4.00
 MILENATIN, Va. 4.0

 All FLANTIN, Va. 4.0
 MILENATIN, Va. 4.0

 Lib
 Priority, Va. 4.0

 Lib
 MILENATIN, MILENATIN, COST

 Lib
 MILENATIN, MILENATIN, COST

 Lib
 MILENATIN, MILENATIN, COST

 Lib
 MILENATIN, MILENATIN, COST

 Lib
 MILENATIN, MILENATIN, COST

CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE

23757**.**7 16358**.**8 13110**.**1 1206.6 1072.6 941.6 TOTAL TOTAL TOTAL 113.7 83.0 64.7 375.4 295.2 212.6 20695.6 15992.6 11420.2 5.01 7.03 10.02 CALL A REAL

352.

にための町日になり

ALTERATIVE NJ. 430 FRUEPURT, IX., STRVING GULF CEAST, MENC-BUUYS, SHURE STERAGE, 70 FT. ERAFT, 360, 000 DWT, 100-450 MTA, TR. PIPE Lirë, Earges, (5-2-4). Yaat First COST upërating COST Maintenance COST VOLUME SHIPPING COST 1972 C.O

.

,

.

ţ, 

. . .

è

2

- Description

And the second second

14.00

۱ • þ

ţ,

k.

				258.5	350.7	403.0	455*2	507.5	559.7	611.9	664•2	716.4	766.7	820.9	873.1	925.4	9-17-6	1029.9	1082.1	1134.3	1186-6	1238-8	1291.1	1343.3	1343.3	1343.3	1343.3	1343.3	1343.3	1342.3	1343.3	1343.3	1343.3
				100-0	117.5	135.0	152.5	170-0	187.5	205.0	222•5	240.0	257.5	275+0	292.5	310.0	327.5	345.0	:6:•5	320.0	397.5	415.0	432.5	450.0	450.0	450.0	450.0	450.0	450.0	450.0	450.0	450-0	450 <b>.</b> 0
				3.1	3.1	3.1	3 <b>.</b> 8	4.0	<b>4</b> • 0	4• C	<b>b</b> •4	4 <b>•</b> 9	£ • 4	5.1	5 <b>.</b> 6	5.9	5.9	6•3	7.0	7.0	7.1	<b>1.</b> 5	7.9	1-9	7.9	5°L	7.9	7.9	7•5	7 <b>.</b> 9	7. ý	5°L	5°L
				<b>9.</b> 2	9.2	9 <b>.</b> 2	11.1	13.4	1.3. 4	13.8	16.7	17.1	27. i	19-5	21.5	22.0	∠2•3	20.6	∠ 7. É	27.6	23.4	30.2	30.9	3 <b>0-</b> 5	3 <b>0-</b> 5	30.5	5°°E	30.5	30.9	30.9	30.9	6 <b>-</b> 05	30*5
0.0	6C. I	88•S	179.5	G. O	0.0	62.5	7.7	0.0	L. 4	70.0	1.2	0.0	د <b>و</b> م	61.4	2.00	G3	38.4	3 <b>0.</b> 9	0 <b>.</b> č	2 <b>•</b> 2	54.5	2.e 6	0.0	0-0	C• 0	0.0	0.0	0-0	0.0	0-0	0-0	0 <b>.</b> U	0.0
1970	1977	197d	1575	1960	Ijbi	1 466	586 <b>T</b>	1 5c4	1985	1986	1-1-1	198c	1961	0551	7561	255 T	5651	1994	しょう	<b>1</b> 371	L 5 5 T	1998	かったて	2000	2001	2062	2003	2304	2005	20Cc	2067	zů0ě	2005

CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE

981**.4** 872**.**1 766.6 TUTAL TOTAL TGTAL 87.8 68.8 50.1 321**.** 7 248.8 177.9 571.9 554.5 538.8

10°02 7°05 5°03

12413•2 10325•0 7329•0

353.

.  man a the second se

and the second and the second s

and the second second

and the second second second second

来と日本語の言語を見たい

440
P.1.
2
177 - Y

ALTLAATIV - KUU 440 FRUTATIV - KUU SULF CEASTYMUNL-JUUYSYSNORE STURAGEYO FT-UMAFTY3009000 DMTy150-600 MTAYTR-PIPE Littylendes/15-2-b1. Littylendes/15-2-b1.

SHIPPING COST					447.8	515.0	5ë2•1	649 <b>.</b> 3	716.4	783.6	850.8	917-9	935 <b>•1</b>	1052-2	1119-4	1180-6	1253.7	1320-9	1368-0	1455•2	1522.4	1589.5	1656.7	1723-3	1791-0	1791.0	1791-0	1791.0	1791-0	1791-0	1791.0	1791-0	1791-0	1791-0	ST RATE
VOLUME					150.0	172.5	195.0	217.5	240-0	262.5	2 92.0	307.5	330.0	552.5	375-0	397.5	420-0	442.5	465.0	487.5	510.0	<u>5</u> 32 <b>.</b> 5	555.0	577.5	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600-0	600.0	600.0	INDICATED INTEREST
RALITERARCE CUST					6 ° 0	4.0	4 °C	<b>4</b> •6	5. <b>- 7</b>	4.9	<b>5</b> 6	9• ¢	5*5	6.7	6.7	Ć• Ċ	7.5	7.7	7.8	<b>č.1</b>	8.7	6 <b>•</b> 2	9 <b>-</b> 5		9•6	3°6	9-6	9-6	<b>6</b> •6	9*6	9-6	9°0	9*6	9-6	VALUE AT
UF-HATING COST					12.0	12.0	12-0	12 <b>•</b> 5	1.6	17.6	18.5	21.4	22	23.8	24-3	24.07	26.1	27• 3	4.62	32 • 2	5 <b>-</b> 5	34.5	35 <b>•</b> L	36-5	36.5	36.5	36.5	36.5	36-5	36.5	26.5	30.5	36.5	36.5	CUMULATIVE PRESENT
FIAJ C.51	0.0	13.1	i0+-0i	224.2	C.O	0.0	4 <b>-</b> C∑	34.0	<b>U</b> _U	2-52	53°1	r.] ● €	5 Е. 1		1.2	3.5.2	35.2	<b>ڊ</b> •3	57•2	C. C.	35.0	l.6	5 <b>.</b> 6	0•0	0.0	0.0	0°0	0•0	0.0	0-0	0-0	0.0	0.0	0-0	•
<b>7</b> 1 1	1+1c	. 1 . 4		197°	1350	1001	. 5.1	: 9t <b>]</b>	40.4	1,55	13:00	7.55 4	5-61	1950	130C	1991	1 3'5 L	2561	すらそて	435 <b>1</b>	1096	1	256	2.54 1	20102	2001	2002	- 007	2004	2005	2006	2007	SUCE	2005	

ц÷

Same and the second second

4.1.1

19277**.**9 14124**.**3 10086**.**3

1224.7 1089.5 957.9

TOTAL TOTAL TOTAL

105.7 86.1 63.0

392• 8 305•4 220•1

722**.**3 653**.**0 674**.**8

5.02 7.05

354.

į

こうけい 高齢を見た まんいやまたい とうし

1 . . . . . .

1

•

BELLAN AND

10日の中、10日 というないのでしょうます

あいいいですりいいいい

ŝ ţ, 2 1 214

> 5 ţ

147 41

Ĵ

11115

					298.5	350.7	403.0	455•2	507.5	559.7	611°9	664e2	716.4	768.7	320.9	873.1	925.4	577.6	1029.9	1082.1	1134.3	1186.6	1238 <b>-</b> S	1251.1	1343.5	1343.3	1343.3	1343.3	1343•3	1343.3	1343•3	1343.3	1343.3	1343.3
					1.00-0	117.5	135.0	152.5	170-0	187.5	205.0	222.5	240-0	257.5	275.0	292.5	310.0	327-5	345 <b>•</b> 0	362.55	580 <b>-0</b>	397.5	415 <b>.</b> 0	432.5	450.0	450.0	450 <b>.</b> 0	454.0	450.0	450.0	450.0	450°0	450.0	450.0
					3 <b>.</b> 4	3.4	5.4	10 10 10	4 <b>°</b> 4	4.4	4 <b>•</b> 5	4 <b>•</b> 0	4.1	5.4	5.6	5.1	5.3	5 <b>.</b> 8	7.0	7.6	7.0	7.1	7.9	8.0	8.0	ġ.0	6 <b>-</b> 0	0°.	8•0	8.6	0°0	3 <b>• C</b>	9.0	Ú.S
					9.2	21 m	4 <b>.</b> 2	10.2	13.4	13.4	13.a	I5• 5	16.4	17.1	14.5	2 <b>0-</b> 3	21.3	21•6	26.6	20.0	, o .	27. b	27.5	30.2	2 <b>0</b> -2	30.2	30•2	30 •2	10 <b>.</b> P	30.2	30.2	30.2	20.2	50° 2
	0-0	e0.I	34.56	Les. L	0.0	0-0	33. 5	59.7	0.0	4 •	44 <b>.</b> Ü	<b>L.</b> 2	Zc.1	5•3	34.0	<b>9</b> •		70.2	0.7	Ú•Ú	t • tì	jt. J	Z.•C	<b>0.</b> U	0.0	<b>ن</b> • ت	0.6	0.0	0-0	0.0	0"0	6.3	0.0	0-0
· · · ·	ن <i>د</i> د د	1111	Ly7≤	2575	1530	1551	1,32	5000	5 A A A A	1985	1130	1907	d d d	1., c :	150-		254	1001	1:94	505.5	0.	1001	55- I	ين بن ري بس	2000	- <b>J</b> ÙI	- 011-	2002	2004	2002	ZuCt	5007		- 30-

CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE

13413•2 10325•0 7329•0

975.7 969.3 767.3

TUTAL TCTAL TCTAL

90.3 70.9 51.9

315.0 242.8 174.4

570.5 534.6 540.5

5.04 7.04 10.04

355.

の時代を見ていた。

1. A. 4

00 MTA,TR.PIPE	356	5.																						• •			12. 1	k			,	
FT.DRAFT.400.000 DMT.150-600 MTA.TR.PIPE Shiddims cfst				0 674	515_0	582.1	649.3	716.4	723.6	850•8 c3 7- 0	21 16 3 QS5_ 1	1052-2	1115.4	1186.6	1253 <b>.</b> 7	1338.0	1455.2	1522-4	1589•5	1723.8	1791.0	1791-0	1791.0	1791.0	1791.0	0-1611	1.751.0	0-1211		RATE	0 13277.9	
STURAGE, 70 FT.				150 S	172-5	0-561	217.5					352.5		597.5						517.5		-		600 <b>.</b> 0				600 <b>-0</b> 600-0		INDICATED INTEREST RATE		TGTAL
GULF CCAST, MENG-RUUYS, SHURE 1 Matale cust - Matalemanes first						7 ° 7		7 • 4	5•5	10 H		6. 7	6.7	7•5 	7.6	5°2	0 • • • •	6•3	0.0	10-01	10-01	10-0	1 C* 0	10-01		10-0	10-0	10-01		VALUE AT	113.3	65.2
The GJLF CCAST.H D).					0•77 0•77	12.0	12.1	16.8	17.6	17•E	50.02	23.1	23.5	24.7	20.5	28-6	5 <b>0</b> .6		32.3	200 2012	35.7	35.7	35.7	35.7		25.7	35.7	35.7		CUMULATIVE PRESENT	382.7	214.7
Freiburt, Karne V Freiburt, IXa Sek Ve LINi, BARGS, (5-2-0).	000	13.1	115.6	5°0£2			14-0	28.1	0.3	96° 7°	00°00	1.0	53.7	ري م	35.2	6 • 0   • 1 •	0.0	5•3	35.7		0.0	0.0	0.0	0 0 2		0.0	0.0	0-0	)	ū	122.9	1-550 7-570
Freiv LINE	1975	1977	572J	5261	0151	1921	1.1.1	1954	1925	1985	1057	536T	1 5¢G	1661	1,252	1994	50; <b>1</b>	135¢	1947	044T	2000	2001	2002	2003	+004 1004	2006	2067	zdůs Zůdy	•		5•U€	1.0.03

*¦*,

No. of the other Distance

17 A 10

3

ų

-ALTERNATIVE NG. 470 Pre-PURT,TX.,Serving Culf Ceast,Munl-Juuys,Shore Storage,95 FT.DRAFT,500,000 DNT,100-450 MTA,TR.PIPE LINE,EARGES,(5-3-A). V.AR FIRST COST GREWATING COST MAINTENANCE CUST VGLUME SHIPPING COST 2373 0.0

ی از میگرمینده با تعدیدی کمیشند؟ میرد امراقه و «ارتباط» می میرد. ۱۳

" Alanti

0•0	60-1
1976	1377

																h.	-	-													
		272-5	320-2	367.9	415.6	463.3	510-9	558.6	606.3	654.0	701.7	749.4	1-161	844.8	892.5	940.2	987.8	1035.5	1083.2	1130.9	1178.6	1226.3	1226.3	1226.3	1226.3	1226.3	1226.3	1226.3	1226.3	1226.3	1226.3
		100.0	117.5	135.0	152.5	170-0	137.5	205-0	222.5	240•0	257.5	275-0	292.5	310-0	327.5	345.0	362.5	350.0	397.5	415.0	432.5	450.0	450.0	450.0	450.0	450.0	450.0	450.0	450.0	450.0	450.0
		2.7	3.7	3.7	3 <b>°</b> 8	4.0	6•4	5 • <del>4</del>	5.1	5.1	5.1	6 <b>.</b> 2	é3	6 • 4	6 <b>.</b> 4	7.6	1.6	7-6	7.7	7.6	5 <b>.</b> 3	8.8	8 <b>.</b> 8	<b>8</b> •8	8.8	8.3	8-8	5 <b>.</b> 8	8 <b>.</b> 8	6 <b>.</b> 8	8.6
	,	10.5	10.3	10.3	11.4	13.6	15.0	15.4	17-5	17.5	17 •5	5 • TU	22.7	23.2	2.0 S	29-62	29•1	29.1	29.4	31°0	32.99	32. 5	32.5	32.6	32.5	32.9	3Z• S	32.9	32.5	32.5	323
60.1 94.5	207.0	0•0	0•0	33.3	7.7	39 <b>.0</b>	L. 4	44°0	2.4	0.0	45.5	34 <b>•</b> C	2.0	0 <b>.</b> J	15.1	0.7	0 <b>•</b> 0	2.¢ú	3.e¢	44.5	0.0	0°0	0•0	0°0	0-0	0•0	ల <b>ి</b>	0.0	0 °0	0•0	0.0
1577	1.75	1580	1991	lycz	1963	1 504	1,45	1906	1367	Lead	2 16 S	1946	1641	6- ₹	2657	1.954	1955	1956 L	1351	P561	<u>j</u> 305 j	2000	zu0ī	2002	2003	2004	2005	2000	2007	2003	2002

CUMULATIVE PRÉSENT VALUE AT INDICATED INTEREST RATE

12244**.**9 9425**.**7 6690**.**6

1050.5 933.3 820.6

TCTAL TCTAL TOTAL

97**.**4 76**.**4 55**.**8

265_8 265_8 190_4

005.8 574.3

5-01 7-01 10-02

19.14 19.14

ġ,

and the second se

357.

358.					
•					
ING COST	408。8 470。1 531。4	574.0 715.3 715.3 838.0 960.6 4021.9	1063。2 1144。5 1205。8 1267。1 1328。4 1328。4 1328。4 1512。4	1573.7 1635.0 1635.0 1635.0 1635.0 1635.0 1635.0 1635.0 1635.0 1635.0	E 16685_9 12894.1 9207_8
IE SHIPPING	مندم	ŭ o n o n o n o n o n o n o	<b>νονον</b> όνό		INDICATED INTEREST RATE 121.7 TOTAL 1312.7 35.6 TOTAL 1366.7 70.3 TOTAL 1025.3
VOLUME	150 <b>•0</b> 172•5 195•0	285-9 285-9 285-9 30-9 30-9 375-5 375-9 375-9 375-9	597.5 420.0 442.5 465.0 487.5 510.0 532.5	577.5 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.0 600.00	ATED INT TOTAL TOTAL TOTAL
PAINTENANLE CUST	444 0000	1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.7.7 8.7 9.0 9.0 9.0 9.0 9.0 9.0	10.4 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8	SENT VALUE AT INDICA 95.6 70.3
CCST GPERATING CJST 0.0 0.0 72.7 10.9	13.6 15.6 13.6		26.02 26.92 24.97 26.94 22.5 24.65 25.44 25.65 25.65 25.65 25.65 25.65 25.65 25.65 25.65 25.65 25.65 25.65 25.65 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 25.75 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CUMULATIVE PRESER 418-8 526-1 235-6
0.0 0.0 0.0 0.0		ος ο Ν ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	N P N 4 N P N 4 N P N 4 N P N 4 N P N 0 N P N N N N N N N N N N N N N N N N N N		Cl 772. ì 7443 719.4
Yeak FlkST ( 1975 1976 1977 1977	1981 1981 1985 1985	4 4 6 9 2 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0	100 100 100 100 100 100 100 100 100 100	1999 2000 2000 2001 2005 2005 2005 2005 2005	5-02 7-02 10-02

تدرسني والإجار

ľ,

Martin Sta

ç
ŝ
2 H C C C
H r

ALTERNATIVE NU. 490 FREIPORT, IX., 32P VING GULF CEAST, FIXED BERTHS, SHUKE STUSAGE, 55 FI. GRAFT, 200, 00C DWT, 100-450 MTA, TR. PI PELTINE, BASGES, (5-4-A). YEAN FIPST CEST OPERATING CUST MAINTENANCE CUST VULUME SHIPPING CUST 1975 IT. 2 Lote IT.c Lote IT.c Lote IT.c Lote IT.c Lote IT.c

388-0	455.9	523.8	291•7	659-6	727.5	795.4	8ó3 <b>.</b> 3	931.2	1°665	1067-0	113 <b>4</b> •5	1202-6	1270.7	1338.6	1406.5	1474.4	1542.3	1610.2	1678.L	1746.0	1746-0	1746.0	1746 <b>°</b> 0	1746.0	1746.0	1746.0	1746.0	1746.0	1746.0
100-0	117-5	135.0	152.5	170-0	187.5	205.0	222.5	240.0	257.5	275-0	292.5	310-0	327.5	345.0	362.5	1380 <b>-</b> 0	<b>397-5</b>	415.0	432.5	450-0	450.0	450.0	450°0	\$50°0	450.0	450.0	450-0	450 <b>-</b> 0	450.0
2.09	2.05	2.9	3.1	ð•č	3.6	3 <b>.</b> 6	3.6	3.8	3-8	4•4	4•6	4 <b>-</b> 0		1•5 .	5.1	55	5.66	5 <b>.</b> 7	7.44	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
0 •6	0 <b>°</b> 5	J°6	10.1	12.0	12.6	12.49	15.0	2°51 -	15.5	18.0	29 e 2	19.7	20-02	24.3	24.5	27.41	27-9	29•0	29 <b>.</b> 6	29.6	24.6	29-62	29•6	29.6	29-6	23 • 6	29-6	29 <b>•</b> 62	29•6
176.5 0.0	0.0	41.4	30.3	0-0	1.4	44.0	1.2	ë.l	30.3	34.0	2.e U	0•3	38 <b>.</b> 4	ດ. ສາ	27.5	2.•b	3 <b>.</b> ë	2.6	0-0	0•0	0-0	ວ <b>ະ</b> ດ	0.0	Ū•Ŭ	0°0	0-0	0-0	0-0	0-0
197. 1980	1981	1562	1400	40.6 1	19d5	1 700	1957	1985	154-	0001	1361	7651	1495	1954	1995	145 <del>0</del>	1991	P661	5.5.5 T	2000	2UGE	2002	2003	2004	2005	2000	2007	2005	2003

1004.8 914.4 931.8 T0TAL T0TAL T0TAL 69.6 55.2 41.0 302.•2 223**•**4 166.6 633.0 625.8 62**4.1** 5-02 7-64 10-02

17434.4 13420.4 9526.2

Constraints.

· · · 1

į

....

Ś

359.

**のための時にすうためのないまたすないませんが**ない

500
NU.
<b>RATIVE</b>

ALTERNATIVE NUE 500 Friederijkingserving Gulf Cuast,fixed Berths,Shukë Storage,55 ft.draft,200,000 DNT,150-600 NTA,TR.PI Pelinë,Bakgës,(5-4-8). Fak first cost uperating cust kaintenance cost volume shipping cost 150.0

582.0 669.3 756.6 843.9 931.2 11018.5 11193.1 1193.1 1455.0 1193.1 1542.3 11542.3 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 11629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 126200.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 12629.6 120 2328•0 2328•0 2328•0 2328•0 2328•0 2328•0 172.5 217.5 2240.0 2240.0 2262.5 2262.5 3275.0 3375.0 3375.0 3375.0 3375.0 3375.0 3375.0 347.5 465.0 487.5 487.5 510.0 532.5 555.0 577.5 600.0 600.0 600.0 600**-0** 6.3 6.7 6.7 6.7 6.7 6.7 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 

CUMULATIVE PRESENT VALUE AT INUICATED INTEREST RATE

5.0%	775.3	359.55	81.6	TOTAL	1217-0	23757.
7. CX	762.2	279.6	64-7	TOTAL	1106.5	18358
10.03	754.0	201.4	48°I	TGTAL	1003.5	13110.

**P** 9 -

2328-0

500-0

33**.** 2

0-0

600-0 600-0 600-0

6.7 6. 7 5•7 5-7 5.7

6.7

0.0 0.0

0-0

and the state of the second second second

「「「「「「「」」」「「「」」」」」」」」」

360.

ALTERKATIVE NG. 510 FreeDURTIVE NG. 510 FreeDURTIX..5ERVING JULF COASTFIXED BERTHS.SHURE STORAGE,70 FT.DRAFT,300,000 DNT,100-450 MTA,TR.PI PELINE.BERGES.(S-5-A). VEAK FIXST CUST OPERATING CUST RAINTENANCE COST VOLUME SHIPPING COST 1975 39.7 1976 39.7 1977 99.8 1977 99.8 1977 195.6

		293 <b>.</b> 5	350.7	403.0	455•2	507.5	555.7	611.9	66 <b>4</b> •2	716.4	768.7	820.9	873.1	925 <b>.4</b>	9-112	1029-9	1082.1	1134.3	1186.6	1238.8	1291.1	1343.3	1343.3	1343.3	1343.3	1343.3	1343 <b>.</b> 3	1343•3	1343 <b>.</b> 3	1343.3	1343•3	
		100-0	117.5	135.0	152.5	170.0	187.5	205.0	222.5	240.0	257.5	275.0	292.5	310-0	327.5	345.0	362.5	380.0	397.5	415.0	432 <b>.</b> 5	450.0	450 <b>.</b> 0	450 <b>°</b> 0	450.0	450°0	450.0	450.0	450.0	450.0	450°0	
		5.2	5.2	5.2	5.3	5.5	5•5	5.6	5.9	6.0	6.0	<b>b. f</b>	6.5	6 <b>.</b> 6	<b>6•</b> 6	1.1	7.4	7.4	7.4	7.7	7.8	1.6	7.8	7.8	7.8	7.8	7.E	7.9	7.9	7.8	7.8	
		9 <b>°</b> 6	9-0	9°C	10.1	12.4	12.4	12.d	15.0	15.4	15.4	17.e	19.1	15.6	19.9	24°2	24.4	24.4	25.2	20.4	27.1	27-1	27.1	27.1	27.1	27.1	27.1	27•L	27.1	27.1	27.1	
	205.3	0.0	0-0	33.3	7.7	0•0	13.1	57.1	1.2	0-0	9 <b>.</b> 5	4-7-4	2. t	0.3	50.1	19.0	0•0	2 <b>.</b> 6	20.5	č•č	0•0	0-0	0°0	0=0	0-0	0-0	0.0	0-0	0-0	0-0	G. O	
してい	1979 1979	1930	1961	2861	1985	1964	Lyby	1586	1987	2005 T	1905	19-0	1551	290,1	1:95 1	1924	1995	7551	1661	パリンゴ	1935	2000	2001	2002	2002	2004	2005	200c	2007	200c	£00-	

CUAULATIVE PRESENT VALUE AT INDICATED INTEREST RATE

361.

13413•2 10325•0 7329•0

i172.0 1088.9 1018.8

TOTAL TOTAL TOTAL

103.4 83.1 62.9

265.1 224.5 161.5

734.4

5•C4 7•03 10•05

í

í

	36		•																														
IK.PI																																	ı
00 M [A.																																	
9-0c1 • 1 M																																	
, 'uu•uu' .	1 (1)				++7 <u>-</u> 8 -	515-0	582.1	649.3	716.4	783.6	850.8	917_9 Ωας_1	1052.2	1119.4	86 <b>.</b> 6	1253.7	360 9		1522.4	L589.5	1656.7	1 7 C1 0	0-1611	0-1611	1791.0	1791.0	1791.0		0.1611	0-1611		18277-9	14124•3 10086•3
	ISUD ONIGATING				4		, un	ġ.	1	ž		ה מ מ	01		11	21			15	151	16		17	17	17	179	11			511	I RATE		1273•3 141 1179•2 100
	VULUME				150-0	172.5	195.0	217-5	240.0	262.5	285.0	C-105	352.5	275.0	397.5	420 <b>-</b> 0	C*744	487.5	510.0	532.5	555 <b>•0</b>		600 <b>-</b> 0	600-0	600.0	600-0	600-0	600°0		600 <b>.</b> 0	INUICATED INTEREST RATE		TOTAL 12 TOTAL 11
LAER DERINGSONGRESSIGNAGESIG FILLART. 'NUSUUU UNISIDU-DUU HIASIKEPI. Astiteringe fist tot tot tot tot tot	FALTIENANCE CUSI				10 10	ເ ເ	10 m	5.7	6•1	6.1	( <b>5</b> .4)	0•0 7-3	7-0	1.1	1.1.7	7°2 7			8.1	8. 5 • 5	າ ບໍ່ເ			8.7	8.7	8.7	8ª7 ° -	8° 1		8.7	VALUE AT	114•2	
JULI CUASTIF:  - MATEAN COST	1000				11.0	11.0	0-11	4 5) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.3	15.6	16.1	6°61	20.7	21.1	21.5	22.2	50°57	29.4	30.1	31.0	31.5		33.0	33.0	23 <b>•</b> 0	33.0	53 <b>°C</b>	0.55 0.42		33.0	CUMULATIVE PRESENT	350.5	2.12 <b>. 4</b> 196 <b>.</b> 2
EARCES (5-		3 <b>-</b> 65	169=2	230.7	C-0	i1.7	13.5	34.0	J.U	14.2	L 56	1.4 ° V	i.é	1.2	15•2	35.2		0.0	21.0	1.65	io a in c		0 1 1 1	0°0	0-0	0.0	0.0			0.0	CC	914.8	5*606
Pri I vi	1 VI P	177 177	- 16-	1979	15bC	1961	1752	5863	1 -34	1.00	1556 1557	1961	5643	1590	1651	1992	2665	1595	735E	1951 7951	155E	2000	Toos	2002	2005	400 ²	2005 2005	2002	503	2003		5.02	1.0°0

T,

- <del>1</del>

State P.

Şt.

ALTLORATIVE NO. 530 Proceptet, IX., Sorving by LF CLAST, FIXed BERTHS, SHOFE STGRAGE, 70 FT. ORAFT, 400, 000 DMT, 100-450 MTA, TR. PI PCLECCRECESES (SHOP CONC. COST MAINTENANCE CUST VCLUME SHIPPING CUST V. AR FIRST CUST GPERATING COST MAINTENANCE CUST VCLUME SHIPPING CUST

4

Ŋ

,I		н - н - н	•			
	298 • 5 350 • 7 403 • 0 455 • 2 507 • 5	559•7 611•9 661•2 766•4 826•7 826•7 673•1	977.6 977.6 1029.9 1124.3 1124.3 1238.6	1291.0 1291.1 1343.3 1343.3 1343.3 1343.3	1343.3 1343.3 1343.3 1343.3 1343.3	T RATE
	100-00 117-5 135-0 152-5 170-0	187.5 205.0 2240.0 257.5 257.5 272.5 272.5 272.5 272.5 272.5 272.5 272.5 272.5 5 272.5 5 272.5 5 272.5 5 272.5 5 272.5 5 272.5 5 5 272.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	327.5 362.5 382.5 380.0 397.5	450.0 450.0 450.0 450.0	450°0 450°0 450°0 450°0 450°0	ED INTEREST
		Υ	> ~ 10 6 ↔ 5 ° • • • • • • • • • • ⊢ ► ► ► ► ×	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 3 80 41 30 4 4 4 4 4 4	KT VALUE AT INDICATED
	2000 0000 0000 0000 0000 0000 0000 000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	19. 19. 29. 29. 29. 29. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	27.0 27.0 27.0 27.0 27.0 27.0	27.0 27.0 27.0 27.0 27.0	CUMULATIVE PRESENT
1000 440 5 440 5 400 5 1060 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 4 5 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8900000 Noooooo		
	でき むまう くっかし ひかう ひょう ひょう ちょう ちょう ちょうちょう	910129999999999999999999999999999999999	110100 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 1000000	1000 1000 2000 2000 2000 2000 2000 2000	2000 2000 2000 2000 2000 2000 2000 200	

363.

4

14

4

13413•2 10325•0 7329•0

1231.5 1151.1 1084.9

TOTAL TOTAL TOTAL

115.4 91.4 63.5

228.4 224.0 161.2

830**.0** 835.6 854.2

2.0% 7.0% 10.0%

Í

1

h,

	0k1,150-600												
•	ALT-FEATIVE NG. 540 FALEPLET.T.*.SERVING GULF CUAST.FIXED BERTHS.SHORE STORAGE.70 FT.DRAFT.400,000 DWT.150-600 Berlin States ferende	SHIPPING COST					447_B	515-0	582.1	649-3	716-4	783-6	850.8
	STORAGE, 7	VOLUME					150-0	172.5	195.0	217.5	240-0	262.5	285.0
	FIXED BERTHS, SHORE	MAINTENANCE COST					6•1	6•1	6.1	6 • 2	6 <b>.</b> 6	<b>6</b> 11	30.00
	540 VING GULF CUAST, 	GPERATING CUST					0.11	i1.0	11-0	11.1	15. č	B. 15.	16.0
	HATIVE NU. LETPIXSER	FLAST CUST	46.5	120.2	193.5	245.5	0-0	0 •0	0 • +	40.0	:7.1	۰ <b>۰</b>	2*55
	ALT-F FALEP BALTA	Y:A: 1975	3791	1977	1:7-	51 5 T	1930	l9cl	706T	);;;;	1934	Loca	1956

850.8 917.9 917.9 985.1 11052.2 11105.2 11052.6 11320.9 1388.0 1388.0 1555.7 1555.7 1555.7 1555.7 1791.0 1791.0 1791.0 1791.0 1791.0 1791.0 1791.0 1791.0 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 113-5 11 

## CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE

18277 <b>.</b> 9 14124 <b>.</b> 3 10086 <b>.</b> 3
1441 <i>•</i> 6 1336•3 1244•7
TOTAL TOTAL TOTAL
124•3 99•8 75•5
346°4 269°3 194°2
910-9 1-196 975-0
5-01 7-62 10-62

ين. نو

ticke is a second matter

and the second

364.

الا المراجع والمراجع والمتعلم والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع المراجع المراجع والمراجع والمر والمراجع وال

MTA,TR.PI

ALTERNATIVE NU. 550 FruePOPT,IX.,SERVING GULF CCAST,FIXEE GERTHS,SHGRE STURAGE,95 FT.DRAFT,500,000 DMT,100-450 MTA,TR.PT Peline,Earges,15-6-A). Lab. FIRST CCST GPERATING COST MAINTEMANCE COST VGLUME SHIPPING COST

																																		•	
CHIRDING COST						272.5	320.2	367.9	415.6	463.3	510.9	558.6	606.3	654°0	701-7	749.4	I-161	844.8	852•5	940 <b>.</b> 2	987.9	1035.5	1083-2	1130.9	1178-6	1226.3	1226•3	1226-3	1226°3	1226-3	1226.3	1226.3	1226.3	1226.3	1226•3
VCUINE						100.0	117.5	135.0	152.5	170-0	187.5	205.0	222.5	240-0	257.5	275-0	292.5	310-0	327.5	345.0	362.5	330-0	397.5	415.0	432.5	450.0	450°0	450-0	450.0	450 <b>.</b> 0	450 <b>-</b> 0	450.0	450 <b>-</b> 0	450.0	450.0
MAGNTEMANCE COST						1-1-1	11-1	1-11	11-2	11-5	11.7	11.7	11-5	11.9	11-5	12.4	12.5	12.6	12.7	13.4	13.4	13.4	13.5	13-6	14-0	14.0	14.0	14-0	14.0	14.0	14.0	14.0	14.0	14.0	14-0
CORPATING FOLT						5-8	5°F	6 <b>.</b> .5	10-0	12.4	12.4	12.8	14.9	15-3	15.3	L7• ô	6. ei	13.5	19.8	24.2	4.42	54-42	25+2	26.3	27.0	27•C	27-0	27.C	27.0	27.0	27-0	27.0	27.0	27.0	27.0
FINCE CONT	E-01-3	LUL.5	Icl.4	222.44	24245	0.0	0.0	5.56	20.7	14.0	1. 4	44.0	1.2	0-0	30° Q	54.0	2.6	19.3	59-5	0.7	0.0	2.e6	טי ייי	27.3	0•0	0°0	0.0	0.0	0.0	ວ ວ	0 • 0	0-0	0.0	0° Û	0.0
	1575	1376	1577	:17:	- L : T	035T	1361	1991	1,53	4-10-1	1955	1500	1:41	19is	144.	1970	1051	256 <b>1</b>	1.193	1354	1945 I	255.7	1 357	1535	1 + 5 -	2000	1005	2002	2002	2004	2005	2006	2002	SUCH	<002

CURULATIVE PRESENT VALUE AT INDICATED INTEREST RATE

12244.9	5425 <b>•</b> 7	6690.6
1672	15:7.5	1543.2
TOTAL	TOTAL	TUTAL
200-8	163 <b>-</b> 1	125-2
283 <b>° C</b>	223.6	16C. E
1139.4	1211.2	1.57.3
5.05	7-0%	10.0%

365.

1

ALTENATIV. KŪ. 560 Pr.Jpustavserving culf ccastatikuu aukthsyshüre sterasë,95 ft.Craft,500,000 DMT.150-600 MTA,TR.PT	PLLINGELARGES, (5-6-3). Veri - Erst Cist Belreting CGST Haintenance Cust VgLume Shipping Cost 172 - 104.e
STGRAGE	VGLUME
, shúƙe	CUST
HX±U 3ckTHS	HAINT ÊNÂNCE
CCAST.	: CCST
560 Viàu Culf	-6-3). Eflartim
ALTERATIVE RU. 560 Prestructory.Secvie	PLLINGELARCESS (5-6-3). 1221 - Inst CIST Effert 1733 - 2040 6
ALT:	2.Li Year 1.75

		408-8	470.1	551.4	592 <b>.</b> 7	654•U	715.3	776.7	338.0	859.3	960-6	1021-9	1083.2	1144.5	1205-8	1267.1	1325.4	1389-3	1451.1	1512-4	1573.7	1635.0	1625.0	1635.0	1635 <b>.</b> 0	1635.0	1635.0	1635.0	1635.0	1635 <b>•0</b>	1655 <b>•</b> 0	
		150.0	172.5	195.0	217.5	240•0	262.5	265.0	307.5	330.0	552.5	375.0	397.5	420°0	442.5	465.0	4-57.5	510.0	532 <b>.</b> 5	555 <b>.</b> Ú	571.5	600.0	6 <b>0.0_0</b>	630.0	600-0	600 <b>.</b> 0	600.0	600.0	630-0	600.0	0 <b>-0</b> 0	
		1.1.7	il.7	11.7	11.7	12.1	12.4	12.4	12.7	12.3	13.1	15.1	15.1	13.3	13.8	14•0	14.1	14°4	14.5	14.6	15.0	0.01	15.0	1j.0	15.0	15.0	15 <b>.</b> 0	15.0	15.0	15.0	15.0	
		1	1: • Č	11.0	11.1	c • C t	15 <b>.</b> ĕ	16.0	13.5	14.7	20° 5	21.0	<1.5	22.2	23.0	25.5	26.45	27.5	23.4	0.63	32.5	9•2°	32.9	32.4	32.9	5.01	32.5	5 - 25	32.9	32.09	32.5	
104.5 176.3	0.10		(;• ()	- <del>-</del>	52.60	- J • •	<b>C.</b> 3	54. T	2.	4:.7		I2	-25•1	¥		27-0	0.6 j	7	L.c	2°57	0.0	0°0	C• C	0.0	Ù.0	Ū, Ū	G.U	0-0	0.0	0.0	:)°)	
1.70	1975		107	1962			· · · · · · · · · · · · · · · · · · ·					1693	1.51			÷. •		1 335	71	1	454	- 900		- CU-	.00.	2004	- 365	: 0C 5	2001	10 C	- ÚŨS	

1.44.24

ł

16685.9 12894.1 9207.8

1902.3 1901.4 1726.9

TGTAL TOTAL TGTAL

213.7 177.5 152.9

343.5 262.5 252.5

1240-4 1255-5 1400-5

5.0% 7.0% 4.0%

CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE

366.

オロシューテカー たいしんたい 動い いたいし

, i . . . . .

÷,

Ŀ

Series 2

Ì

ģ

ALL-NATIV, N.º 121 "XISTIMS SITUATIUN, SEPVING GULF CCASI, 100-450 MIA, NG LIGHTEKING.

SHIPPING COST	539 <b>.</b> 0 623 <b>.</b> 3 727.6 822.0 916.3	1010.6 1104.9 1199.3 1299.3 1297.6 1482.2 1576.6 1576.6	11465 1959 1959 1959 1959 1959 1959 1959 19	
VOLUMĖ St	100.0 117.5 135.0 152.5 170.0	281.5 2205.0 222.5 240.5 2575.0 292.5 310.0 310.0	227 245 245 245 245 245 245 245 25 25 25 25 25 25 25 25 25 25 25 25 25	
MATNTËNARGË CUST		27223248 27223248	000000000000000000000000000000000000000	
OFFRATING COST			00000000000000000000000000000000000000	
FLAST CLST 0.0 0.0 0.0 0.0 0.0	900000 100110	3 0 0 9 9 9 0 7 3 0 0 9 9 9 0 7 9 0 9 9 9 9 0 7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
「 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			11111111111111111111111111111111111111	

367.

24219•4 18643•4 13233•5

0000

TOTAL TOTAL TOTAL

2000

0.0

٥•.16 7•6ة 13•6≵

and a strate of the state of the providence of the strategy of the state of the sta

.

- - 日本市の日の日間の時間の時間の日本市である。日本市の - -

ING COST		3 700	929-8	1051_0	1172.3	1293.6	1414.9	1536.1	1657.4	1778.7	1900-0	2142.5	2263_8	2385 <b>.</b> 1	2506.3	2627-6	2748.9	20102	2112-7	3234 0	3234.0	3234.0	3234.0	3234.0	3234.0	3234.0	0.4626	3234.0		33003 <b>.</b> 6 25503 <b>.</b> 6
SHIPP ING																													ST RATE	C 0
VOLUME		150.0	172.5	195-0	217.5	240°0	262.5	285+0	307.5	330 <b>.</b> 0		397.5	420.0	442.5	465.0	447.5	510-0		5775	600 <b>.</b> 0	600-0	600.0	600-0	600.0	600 <b>.</b> 0	600°0		600.0	INDICATED INTEREST RATE	TOTAL TOTAL
MAINTENANCE CCST		U U	0.0	0-0	0.0	0.0	0-0	0•0	0-0	0.0		0-0	0-0	0-0	0-0	0-0	0.0			0-0	0.0	0.0	0-0	0.0				0.0	PRESENT VALUE AT INDICAL	0-0
UPTRATING COST			0.0	0-0	() • ()	0.0	0.0	Ú.J	0.0				0.0	0.0	0•0	0-0	0.0		0.0	0-0	0•0	0.0	0-0	0.0				0.0	CUMULATIVE PRESEN	0"0
f1551 COST 0=0 0=0	0000 0000	ن د د د	0.0	0.0	<b>6.</b> d	0.0	Ū•J	0	0°0	0.0	2 c 2 c	0.0	0.0	0-0	0.0	0.0	0 0 0	3		0-0	0.0	0•0	0•0	0.0	2			0•0	J	0.0
YUA 1975 1976	111	1301 1301	1261	1 404		1,54	L Joc	1966	1357		1 - 1 - 1		7557	6.29 I	450T	1.96.1	5 0 0 1 0 1 0		1997 1997 1997	2000	EUCE	2062	2003	2004	2002	2002		2003		5•64 7•4 <b>2</b>

TENESSE PORTAL

「「「なんない」

T.

「小田」「「日日」

ALTEPARTIVE AG. 131

368.

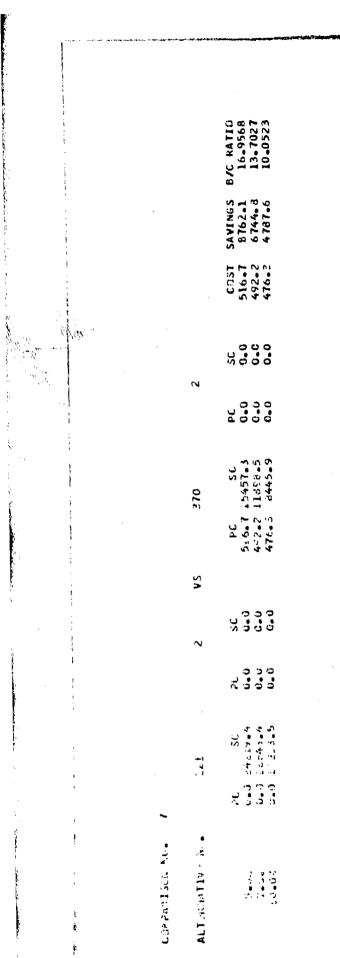
ţ

Series 3

COMPANISCA NO.												
ALTERNALIVE NO.	i.		(7)	57	Ûsî	o	5					
€. 82 7.03 1.3.05	ง( ป. 6 2 4 5 3 ( ป. 1 4 6 4 5 4 ป. 1 4 6 4 5 4 ป. 1 5 6 5 5 4	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 • 0 6 • 0 6 • 0		PC 494°3 17 465°6 13 445°6 3	SC 17142.07 12155.9 9306.08	0.00	0°0 0°0 0°0	COST 494° 9 465° 6 443° 9	SAV1NGS 7076.7 5447.5 3866.7	b/C RATIO 14.2986 11.7003 8.7114	
COMPANISON NO.	•											۱.
ALTENNATIVE NC.	777		. 4	۷s	410	Ċ,	.~					
کے 2014 Lu=04	PC 50 0.0 24194 0.0 12234 0.0 13233.5	000 000 000	0 0 0 0 0 0 0 0 0 0		PC 955.8 15 849.3 11 747.3 8	SC 15187.4 11690.6 8298.1	0 0 0 0 0 0 0 0 0	0°0 0°0 28	COST 955.8 849.3 747.3	SAVI NGS 9032.0 6952.8 4935.4	B/C RATIO 9.45 8.19 6.60	
CURPARISUL IVU.	-1											
ALTERNATIVE NC.	121		2	٧S	490	0	2					
30°5 30°5 10°03	PC SC 0.0 24219.4 0.0 16643.9 0.0 13233.5	50 0.0 0.0 0.0	0 0 0 0 0 0 0 0		PC 1004-8 17 914-4 13 831-8 5	SC 17434.4 13420.4 5526.2	0°0 0°0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COST 1004.8 914.4 831.8	SAVINGS 6785°I 5222°9 3707¢\$	B/C RATIO & 6.7525 99 5.7120 6	200

370.	•	11 C 819 880			rr 0 385 00 <b>4</b>		TI 0 205 389 956
		B/C RATIC 17.8319 14.4514 10.6380			B/C RATIO 11.0106 9.5385 7.7004		B/C RATIU 9.2205 7.6389 5.7956
		SAVINGS 			SA VI NG S 10806.2 9318.3 5904.6		SAVINGS 10806.2 8318.3 5904.6
		CQST 491.54 466.7 466.7			COST 981.4 872.1 766.8		CCST 1/72.0 1/72.0 1/72.0
	2			2	0 0 0 0 0 0 0 0 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0°0 0°0
		0000			0 0 0 0 0 0 0 0 0 0 0 0		0°0 0°0
	350	SC 15457.3 11294-5 0445.9		430	5C + 13413-2 1 10-25-0 3 7329-0	510	
		PC 40104 46007 45031			PC 561-6 872-1-6 766-3		FC 1172.6 1088.9 1018.8
ŗ	٧S			٧S		5 A	
	ار. ا	50 0.0 0.0 0.0		Ŀ,	010 010 010 010 010	i N	0.0 0.0 0.0 0
		0 0 0 0 0 0 0 0			0 C C C D 0 C C C D 0 C C C D		7.300 0.00 0.00
	1 - 1	60 2421944 1224344 1223244			56 24215-4 17645-4 13232-4		SC .4.1.55€ 1.56€3€ 1.3233€5
4	-	0.00 0.00 0.00 0.00	Ū,	. 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• •	00000000000000000000000000000000000000
יטין אטגעאראטט	ALT MHATIVE NG.	5. ct 7. dt 1. u - u -	CEMPARISH: NO.	ALT WATER AC.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 14 میر ( کا ۲۹۹۵) ماطق میں 1443 ( C	20°5 20°5

A STATE OF A


-

and the second second

i.

一次と見たい

1 N N N



	B/C RATID 11_0758 9_5691 7_6956			B/C RATIO 8.7720 7.2267 5.4427
	SAVINGS 10806.2 8318.3 5904.6			SAVINGS 10806.2 8316.3 5904.6
	5.00 5.699 5.699 7.67		10 10 10	COST 1231-5 11511-1 1084-9
	0°0 6°0 6°0			5C 0.0 0.0
N	0°0 0°0 0°0		N	500 000 000 000
Uc4	5C 13413•2 10325•0 7325•0		530	SC 13413-2 10325-0 7329-0
	PC 973-7 ] 864-3 ] 767-3			PC 1231-5 1151-1 1084-5
N) N			٧S	
V	0 0 0 0 0 • 0 0 0 • 0 0		1	50°0 0°0
	000 000 000 000 000			0000 0000 0000
121	PL 55 50 50 24249 400 136446 100 1365426 100 1365426 100 136520 100 136520 100 136520 100 136520 100 100 100 100 1000		14	PC SC U.O. (1975) V.O. 1976) V.O. 1976) V.O. 1923
	1 3 1 5 1 3 1 5	~		PC 0.0 0.1
ALT_FATIVE (C.	1: • 0 • 6 7 • 0 ⁻ 5 • 1 • 1 6	იმჯმგი ქვივ. ჩნ <b>.</b>	ALTERNATIVE NÚ.	د مالا 1 مالا 1 نامی 1

-

A face of relation of the second s

道がしまい

ŗ

í

ł

9

**.** 

ń

CUPPANIS 1. 1.1.

**15** 

•	B/C RATIO 18.5893 15.1334 11.2107			8/C RATIU 11.3398 9.8768 7.9737			6/C &AT10 7.1352 5.7687 4.2397
	SAVINCS B/C 9855.5 ] 7609.6 ] 5401.4 ]			SAVINGS B/C 11974.5 1 9217.6 6542.9			SAVINGS B/C 11974-5 9217-6 6542-9
	CCST 5 531-8 502-8 481-6			COST 5 1050-5 933-3 820-6			COST 5 1678-2 1597-9 1543-2
2	0°0 0°0 0°0		2	0°°0 0°°0		8	0°0 0°0
	000 000 000			0°0 0°0			0°0 •0
390	sc 14333-9 11033-8 7832-1		470	SC 12244.9 9425.7 6690.6		550	SC 12244• 5 9425•7 669 <b>0•</b> 6
	PC 531-5 502-6 481-3			- PC 1056-5 933.3 820.6	, 'l'		PC 1678. 2 1543. 2 1543. 2
ŚŅ			< N N N N N N N N N N N N N			۸S	
-1	N 6 9 9 0 0 0 0 0 0		~	000 000 000 000		2	0 ° 0 0 • 0 0 • 0 0 • 0
	000 000 000			0000 000 000 000			0-0 0-0 0-0 0-0
121	SC 24719 + 19643 + 13234 5		121	2402 SC 2402 SC 12042 3044 1000 3044 1000 3045 2000 3045 2000 3045 2000 3045 2000 3055 2000 3055 20000000000000000000000000000000000		421	\$C 1.4219=4 1.32643=6 1.3235=5
		11		PC 0.0 0.0	2	ı	9-00-0 9-00-0 9-00-0
ALT-NIGTIVE PL.		CUPPAR ISCR AC.	ALT GRATIV. NO.	で 1000 1000 1000 1000 1000 1000	CrypAstson Nr . 12	ALTERNATIVE NO.	5=0 <b>:</b> 7=0 <b>:</b> [0=0]

Í

and the second secon

「「「「「「「」」」」

ł

L

372.

193
CUPPAK I SUR

	B/C RATIO 16.5569 13.6891 10.3525			6/C RATIO 10.20 8.87 7.21			B/C RATIO 7.5975 C 6.4573 2 5.0843 C
	SAVINGS 9643.5 7452.0 5321.4			SAVINGS 12308.0 9511.0 6792.0	o		SAVINGS 9245° 9 7144°8 5102 <b>° 1</b>
	CDST 582.4 544.4 514.0			CDST 1206.6 1072.6 941.6			CDST 1217.0 1106.5 1003.5
N	0°0 0°0 0°0		5	0 0 0 0 0 0 0 0 0 0		2	SC 0.0 0.0
	0°0 0°0 0°0			000 000 000			0000 0000 0000
340	PC SC 582.4 23360.1 544.4 18051.e 514.0 12850.8		420	PC SC 1206.6 20695.6 1072.6 15992.6 941.6 11420.2		500	PC SC 1217.0 23757.07 1106.5 18358.8 1663.5 13110.1
N S			SN			S >	
2	0 0 0 0 0 0 0 0 0 0 0 0		N	0 0 0 0 0 0 0 0 0 0 0		N	0.00 0.00 0.00 0.00
	90 0 0 0 0 0 0 0 0			0000 0000			0000 4000 6000
) را ۱	PC SC U.C 3:005.6 U.D 25:005.6 0.0 16:116.2	4	151	PC SC 0.0 33003 U.0 25503.e U.U 18212.2	C	157	PC SCC3 U=C 33CC3=6 0=3 25504=6 U=0 13212=2
ALTERNATIV. AC.	5_0% 7_6% 10_02	COMPARISUN NG. 14	ALTERNATIVE NO.	5•05 7•95 10•05	CUMPARISCA NC. 12	ALTERNATIVE NC.	5.05 7.05 EC.05

Alteration

Ċ.

37

2

GUMENTISCE AL.

ALT-F621 IVE N.	₹÷T		tra	51 >	360		2				74.
5 - 016 7 - 016 1 - 016	PC 540000 0.0 340000 0.0 4550200 0.0 1541202	070 040 040 040	0.00 0.00 0.00		PC Sote SC 5ote 0 #10t2+5 5ote 5 10270+9 504+4 #1023+6	р. 0.0 0.0 0.0	0 0 0 0 0 0 0 0 0 0 0 0	CuST 563.0 532.3 504.4	SAVINGS 11940.1 9226.8 6585.9	B/C RATIO 21.0213 17.3339 13.0639	
CEPPARISEA M.											
ALTERATIVE AC.	132		54	۸S	440		2			•.	
5°C% 7.0% .6°0	PC SC ual ssüdseo ved z520000 ved z6260000	70 000 000 00	0.00 0.00 0.00		PC SC 1224-1 16277-9 1084-5 14124-3 957-9 10086-2		000 000 000 00	COST 1224•7 1089•5 957•9	SAVINGS 14725° 7 11379°3 8125°9	B/C RATIO 12.0238 10.4442 8.4832	
LU-TARISCI. No.	دی • ۳										
ALTERNATIVE NO.			64	٧S	520		N				
≂0.c 30.c 30.a	PL SC 0.0 33003.5 0.0 25503.0 0.0 18212.2	PC 0.0 0.0	5C 0.0		PC 5C 1379-6 18277-5 1273-3 14124-3 1179-2 10086-3	2000 2000	0000 0000 000	CGST L379.6 1273.3 1179.2	5AVI NGS 14725.7 11379.3 8125.9	6/C RATIO 10.6741 8.9369 6.8908	

							375.
	8/C RATIO 19.9949 16.4674 12.3920			B/C RATIO 12.0806 10.4794 8.4929			8/C RATIC 10.2150 8.5158 6.5285
	SAVI NGS 11940. 1 9226.8 6588.9			SAVINGS 14725。7 11379。3 8125。9			SAVI NGS 14725-7 11379.3 8125.9
	COST. 2 560.3 531.7 7 531.7			CCST 1219•0 1085•9 956•8			COST 1441.6 1336.3 1244.7
7	0°0 0°0 0°0		S.	0°0 0°0 0°0		8	Sc. 0
	PC 0.0 0.0			0.00.0	н. Н		0°0 0°0 0°0
380	PC SC 597.2 21063.5 560.3 16276.5 531.7 11623.4		460	PC SC 1219.0 18277.9 1085.9 14124.3 956.8 10086.3		540	PC SC 1441.6 18277.9 1336.3 14124.3 1244.7 10086.3
vs			VS			٨S	,
2	0°0 0°0 0°0		· <b>N</b>	0000 0000		2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	000 000 000 000	. •		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			6.00 6.00 6.00
181	PC SC U.U 33003.6 U.U 25503.6 U.O 18212.2	č O	ŢŝŢ	PC SC 0.0 33003.c 0.0 25503.c 0.0 13212.2	21	151	PC SC 0.0 33003.6 0.0 25503.6 0.0 16212.2
ALTERNATIVÉ NC.	20°5 20°5 20°5	CUMPARISCN NC.	ALTERNATIVE NC.	5•0% 7•6% 10•0%	.COMPARISCN NO. 2	ALTERNATIVE NG.	5.05 7.02 10.04

COMPARISON NG. 19

調査を

alasta di secondaria

ł

-----

ų

376.	B/C RATIO 21.9173 18.0658 13.6038			B/C_RAFID 12.4311 10.8079 8.7820			8/C RATIO 8.5777 6.9998 5.2141
	8/C R 21- 18- 13- 13-			B/C 6 12, 10, 8, 8,			ີ ຜູ້ຊູ້ ເ
	SAVINGS SAVINGS 13470.9 10409.7 7433.6			SAVINGS 16317•7 12609•5 9004•5			SAVI NGS 16317°7 12609°5 9004°5
	COST 614.6 576.2 546.4			COST 1312.7 1166.7 1025.3			COST 1902•3 1801•4 1726•9
	0°0 0°0			0.0			0.000
N	PC 0.0		2	0°0 0°0		2	PC 0.0 0.0
400	SC 19532.07 15094.0 10776.7		480	SC 16685.5 12894.1 9207.8		560	SC 16685 <b>.</b> 9 12894 <b>.</b> 1 9207 <b>.</b> 8
	PC 614•6 576•2 546•4			PC 1312.7 1166.7 1025.3			РС 1902•3 1301•4 1726•9
	<u>en en e</u>		s v			٨S	
			14	0°0 0°0 0°0		2	0°00 0°00
	000 000 000 000			9 0 0 0 0			0-0 0-0 0-0
131 231	PC SC 0.0 33003.6 0.0 25503.6 0.0 16712.2		121	PC SC 0.0 33003.6 0.0 25503.6 0.0 18212.2		131	PC SC u.0 3303.6 0.0 25503.6 0.0 15212.2
2		23	•		54	•	7200
COMPANESON NC.	5. 05 7.0.07 10.07	COPPARISCN NC.	ALTÊRNATIVÊ NC.	5.02 7.05 10.05	COMPARISCER NO.	ALTERNATIVE NC.	5.05 7.05 10.05

<u>tati ya</u>n amari

الشمارين وزرار

## PART III. WEST COAST OIL

· .:

 $\mathcal{P}$ 

ware the tree

तः जन्म स्थलम् जन्म सम्बद्धाः

...

 377.

. CONTRACTOR AND ADDRESS OF THE OWNER OWNE

¹¹ Strong of a specific to a second state of a second state o

MIAMMER

-----

ALTER ATTAL FALST. SA, PARTS AAYILA, SERVING L.A.-L...,FIYED ALKTRS,JHARE STARGE,70 FT.GKAFT,307,007 GWT,28-LLL MTA,T 4.Pitelies(6-L-A). SA& FIOST COST UPERATING CUST MATTERARCE CLST VOLURE SHIPPING COST 264.3.9 2003.1 1388.9 36.5 48.9 61.4 73.8 85.3 98.8 111.3 123.8 130.2 146.7 161.2 173.7 166.2 198.6 221.6 223.6 224.6 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 226.5 200.5 226.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 286.0 286.0 286.0 286.0 286.J 286.J Reproduced from best available copy. CURIJLATIVE PRESLAT VALUE AT INFICATED INTEREST RATE 97.0 89.3 82.3 73.6 90. 2 94 44 98 5 115.03 1111.00 1111.00 1111.00 1111.00 1111.00 1111.00 81. c..1 1:0.7 ل الله الماليا 111.0 ù.iii TGTAL TGTAL TSTAL й. • • • • • • **ب**ړ و. • • • ហុហុភាសាសាសាសា រដ្ឋាភិបាល រដ្ឋាភិបាល ÷. **•**•• Series 1 32.7 11.9 24.9 •. 2.1.2 • 50.2 51.3 52.1 . • . . ¢., 6. • • 5 1 5. 5 7. 13 1. 13 47A2 400 140 140 140 140 140 140 e1 e

Preceding page blank

379.

1000

	•
	•
580	•
AL.	
I Vř.	
4 1 T T Y Y	

ALLERATIVE NG. 580 SAM PARID RAVIEL.SEAVING L.A.-L.E.FIXER FRIFS, CHURE STURAGF, FO FT.URAFT, 490, 900. UNT.26-111 MIA.T R.PELTAF, (5-1-4). V.C.K. FIRST (651: OPERATIVE LUST KLINTERANCE CEST VELEVE SHIPPING CUST 1370 9.5 1970 0.5 1970 0.5 1970 7.4

	36.4		10°1	61.4	73.8	86.3	93.8	111.3	123.8	136.2	148.7	lol.2	1/3.7	186.2	198.6	211.1	223.6	236.1	243.6	251.0	273.5	286.5	286.0	286.7	280.0	286.3	296 <b>.</b> 0	286.0	286.0	280.5	286.0	
	26-0		32 e L	35.3	4 · 4	44.0	44.47	54.6	57.0	2.10	6.5.3	59.5	75.6	77.8	6.15	86.1	J2	J4 . 4	33 <b>.5</b>	1.26.1	- 1 Jo. 8	411.2	[11i.)	111.5	LL . 5	111.0	<u>(,111</u>	111.5	111.	111.Ú	0-111	
	<b>S</b>	•	ຍ •	<b>.</b> د	3°.	¢.	0.	0	,ç	υ. •	, <b>9</b> .	0 •	0 •	. 6	5 • j	<b>9</b> •.	\$°.			1		۲.		۲.	1			1	7.	۲.	<b>,</b> • ·	
	0.0	-	<b>7</b> • <del>1</del>	ر. م	C•7	1. N	L•7	5•7	2 • N	0 • J	2.40	5.5	(7) • •	2 • 4	2.1	ر• ی	<b>۲.</b> •۶	c*2	5 * 7	5 * 7	2.0	C * 7	6 <b>.</b> 7	6.3	2 . 3	5 * Z	2.0	5.9		5•7	5.0	
7.4	τ. 	-	1 <b>.</b>	00	.,			Ú.,	· • • •	ц.,	, • T	۱ ۲۵	•	J. ,		C	д.,		•	•••	:) <b>•</b> .'		. • C	J	• <u>•</u> •	•	J. )	47. • 1		•. •	•,•	
1976	1977 1985		1 3 t I	1982	1 18 5	1984	1983	1786	1361	1 164 I	(	194	10:1	7651	1 543	4621		1945	16.61	1943	1 399	220.	1.12	2616	2003	40 LZ	2125	2.10	2337		1112	

## CUMULATIVE PRESCAT VALUE AT INVICATED INTEREST RATE

264.3.9	2363.1	1388.9
115.3	175.6	94.6
TUTAL	TOTAL	TUTAL
1 2	с <b>•3</b>	t . 4
46.3	jj.5	1.1
ر. د.	58.1	62.2
ני י י	7.5	1.0.1

.ពវិ :-----

-<del>1</del>3

.

, 12413-

380.

1.11

:

ŧ

ALLENATIVE NE. 593 SAM PIALO VAYILA..SERVING CALLF.,FIAEJ UF7THS.SFUME STURAJE,70 FT.034FT.3J3.01. D.F.43-171 MTA.TR.0 TPELTAL.(5-2-41 TPELTAL.(5-2-41 VEAR FT8ST COST OPLRATING COST M.TT.TANCE CLOT UPLUME SHEPTAG COST 720 0.0 1776 0.0 1376 0.0

a de la companya de l

÷

í,

:

è

		55.3	73.4	5-16	117.6	127.7	145.P	164 • C	182.1	200.2	218.3	236.4	254.5	272.6	290.7	308.8	326.9	345.1	363.2	361.3	399.4	417.5	417.5	417.5	417.5	417.5	417.5	417.5	417.5	417.5	417.5
		43.0	43.4	52.8	02.2	C.5. K	75.0	81.44	67.8	2**5	13. •6	1.57.3	113.4	114.8	120.2	L32.6	134.0	145.4	151.8	158.2	164.6	C.171	171.0	0.171	1/1.2	C.1/1	171.0	[71.)	C.1/1	17i.0	1/1.0
		<>-1	(•i	<b>[.</b> ]		I	•	1.3	1.3	1.3	1.3	ī.•5	<u>.</u>	L-5	: :	<b>1.</b> 8	E•1	۲.1	2.02	<b>.</b>	2•)	() · · · ·	ڊ <b>.</b> ٢	. ŋ • ᢏ	(،>		C.5	2.5	č. :	(	č • 1
		5*7	t . 4	4.7	0°7	7.4	4 °C	6.2	0.5	6 • 2	c • 2	0.1	6.1	6 . I	5.I	12.5	12.	12.	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	1.1	12.1
0.0 65.5	126.4	J	0.0	۲. ۲.			L2.5		0°C	0	7.5	<b>).</b> (	)•: -	; .1	15.0	0.0	ί.Ι	12.4	с • С				J.	ر. د		C. C		¢3		1.1	с• -
	6161	. 961	18t1	でドレレ	i se i	1984	1485	1330	1927	1985	1989	L 9-5 L	1961	くやらし	5951	+061	1945	9661	1947	1795	5661	200.	2001	2065	2213	2734	20.05	2336	2:37	2008	5002

381.

ių L

3872.3 2939.7 2341.1

374.2 34.28 310.4

TUTAL TGTAL TCTAL

23.6 18.5 13.8

131.3 122.2 73.9

222.7

「大学の大学をとう

Alt     Stiffprive     Stiffprive     Stiffprive     Stiffprive     Stiffprive       1     5     5     1     5     5       1     5     5     1     5     5       1     5     5     1     5     5       2     5     1     5     5     5       3     5     1     2     5     5       5     5     1     2     5     1       5     5     1     2     5     1       5     5     1     2     5     1       5     5     1     2     5     1       5     5     1     1     2     1       5     1     1     1     1     1       5     1     1     1     1     1       5     1     1     1     2     1       5     1     1     1     1     1       5     1     1     1     1     1       5     1     1     1     2     1       5     1     1     1     1     1       5     1     1     1     1     1	CCST MATURANCH CAT VOLUME SHIPPING 5.6 5.6 1.2 43.0 5.6 5.6 1.2 43.0 5.6 5.6 1.2 43.0 5.6 5.6 1.2 43.0 5.6 1.2 62.2 55.8 5.6 1.2 62.2 55.8 5.6 1.2 62.2 55.8 5.6 1.2 62.2 55.8 5.6 1.2 75.5 55.8 6.9 61.6 1.2 75.5 55.8 6.9 61.6 1.3 81.4 4 6.9 1.5 1.2 75.5 55.8 1.1 71.0 113.4 4 1.2 7 1.2 75.5 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 11																				-				-				••										
	b).     b).       csi     csi       csi     b.6       csi     b.6       b.6     b.6	TATEDING CAST			C L		1 · · · ·	J [ • 5	1-j9-6	127.7	145.8	104.0	162.1	200.2	219.3	236.4	254.5			3.)6.6	326.9	345.1	363.2	361.3	399 <b>.</b> 4	411°5	6 • 7 <del>•</del> 7	5°,7 %	6°/15	61/•5	<b>C•</b> 114	417.5	4.1.4	417.5	417.5		در ^د		
	b).     b).       csi     csi       csi     b.6       csi     b.6       b.6     b.6	VCI 1. MC				4 3 4 3	<b>5°</b> 5' 5	55.8	62.2	00.6	75.0	81.4	8.78	94 • Z	1.01-6	1.1	113.4	LI9.9	Le6.2	132.6	139.6	145.4	151.8	158.2	164.6	171.0	5.171	171-0	171.	1/1.0	111.5	C.171	171.0	1.1.1	171.0	TED INTERF		TCTA	
CP+FAIIAu CCST 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.						2 - 1		[*: [	1.č	2*3	č•1	1.3	Γ.,	1.	1.5	1.7	1.1	1.7	1.7		() • • •	•	() 4		• • • • •	רי • •	• • •	ž + 12	• 7	ر میں 1 میں						АŢ		1.35	
		Checatta, ffct				5.6	10 10 10	je ∎v	5 • 5	5 <b>.</b> E	۲ •	в. • Э	9) • 0	6°1		т) Г	t: • ۲ د	a • D	6.8	12.7	12.7	12.7	1.21	12.1	12.7	12.7	12.1	12.7	1.21	12.7	12.7	12-7	12.7	12.7	12.7			142.0	

382.

TR.P

「「「「「「「「「」」」」

Ę

ь Э

ĺ

.

Construction and a second s

ALFLRAAFIVE OD. 612 L....PCOMEVE.SEPVENE S.FRAV..+EXED BEATAS.SHERE STURAES FT.DRAFT.157.600 DWT.15-60 MTA.FR.PIPELE VF.(T-L). VFAR FLAST SEST EPERATING SEST MAINTELANCE GEST VOLUME SHIPPING CUST 1970 C.0 1970 J.C

ţ

	_											_		_																			\$	ۍ د د	t
	20.0	26.4	32.7	34.1	45.4	5 <b>1.8</b>	58.1	64.5	7.9.8	77.2	6.68	89.9	96.3	1.2.6	169.6	L15.3	121.7	128.0	134.4	140.7	147.1	147.1	147.1	147.1	147.1	147.1	147.1	147.1	147.1	147.1			1368.4	1039.5	
		``																													ABLATEN INFERENCE		131.7	121.6	112.04
	Lo. J	17.3	5	21.12	C 4 • -	20.3	28.5	д• <del>с</del>	35.5	<b>.</b> و	31.5	3.4.8	42.5	44.3	40.5	40.4	91°	5.5.3	54.5	57.8	00	ė. •	6.•19	6	0°•0	6,,)	6-12 )	0.14	6	6 ، • آ	LED INCE.	) 	101.AL	TOTAL	10145
	1.3	7 • -	7 7		.7	L • .	2.	17	н. •			•••	1.1	1	- · T	1	7	۰ ۲	· · · 7	1.1	7	7.02		1 - 1	1.0	77	7		.7	. 1			11.3	50 P	
																															DAR SALAN TARABAS				
	ย คง	5 • 7	6•3	2.1	2 ° 2	5.42	3.1	 •	з• ; З	۰ ۲	•	3•È	3.6	ي. د	5°0	ر. ۳.	3.5	มา สา	j. 5	ມ. ຕ	9 ° 2	3.42	3. °C	J. J.		5.5	3.5	5°C	5.0	יים די			1.10	41.6	36.55
													_										_								57.1 [Y 1:14:15				
		•	"4 "1	-		<b>č</b> •Ć	-	Ĵ	•3	5	C • 7	- <b>1</b> 1.3		L.4		e e	0	J	6			່.		ر. •	:•• J	,. U		. · ·	יי רי	:			;5°,	10 a	2.67
1451 1761	1-78.	1961	138.	ا بز ا	1984	Cdel	1766	1 ac 1	193	1364	105	1651	7651	F 6 6 T	*r.5 <b>I</b>	cęt 1	1790	1651	1993	6661	ر ر: ۲.2	Tube	2252	2003	40J2	2 145	27Cc	2007	2005	2004			- 40 - 40 - 40	100 L	9 D • C 1

•

383.

4

ALTERVATIVE 40. 625 Richmendingserving S.Fran.,Fiker Rendersennal Storage,50 FT.Okaft,157,070 DM1,15-69 M1A,TR.PIPELI Ne.(1-2).

SHIPPING COST ショイリン ж С DPERAILING COST MAINTERANCE COST 5 • Z 6.7 ۍ ۲ COST --0 15 -51 15 -8 15 -8 . Ч. 0.7 Ś FIRST

147.1 147.1 147.1 147.1 147.1 1+7-1 147-1 147-1 47.1 26.5 48.8 51.3 53.3 53.5 57.8 64.0 0 • • • • • • • • • • • • • 60.0 63.0 62.0 6. • J 6...J မာ နာ က အ • • • • • • 0.0000 • n u n ю • 700 6 6 C S <u>ج</u> م 22222 C' • 7 0 5 • 7 č. 5 5 0 C ÷.-2 6.2 2.9 5.0 5.5 () • • • **۲.** ۶ • 00. 0000 - - -- - - с. • Ф.С. 1.00 G : • 11 10 0.0 0 *) - ) © C) • ្រុក ។ សំពីតំពុំ Contraction (1)

CUMILATIVE PRESENT VALUE AT INUICATED INTEREST RATE

1368.4 1039.5 722.4 147.6 140.0 133.7 TCTAL TCTAL TOTAL 12.4 13.6 5.3 40.8 30.5 31.1 97.9 90.8 95.4

5..2 7.12

ŗ

ł

1

4

CODE SAME

ALTERVATIVL NG. 63( L.a.,VICHMCAC,SERVING S.FRAN.,FIREL RE(THS,SHPR) STORAGE,SK.5 FT.DRGFT,250,000 DWT,15-6; MTA,TR.PIPE Utit.(7-3). VEAK FIRST COST UPERATING SOST MAINTLANGE CUST VOLME SHIPPING COST

-

5. 20 L O O VEAR

134.9 134.9 134.9 134.9 134.9 134.9 ាំពុលស្រាំ។ ស្រុកស្រុក។ ្រ កាក ខេត្តធ្វា ខេត្តធ្វា å 

CUMULATIVE PRESENT VALUE AT INFICATED INTERLST RATE

¢..∂

1256.2	954.4	663.5
176.3	165.4	156.6
TOTAL	TUTAL	TGTAL
[÷.5	L5.5	12.3
8 • - C	+1.3	51.7
116.2	108.3	1.511
• 1 -'' • 10	7.05	۲J. J.

385.

NG COST				2 1	C•01	24•3	10°1	56•U	41.8	41.6	53.4	2*6	07. 0				C • 00	2 · · · · ·	115.8	111.6	117.4	123.3	129.1	134.9	134.9	134.9	134.9	134.9	134.9	134.9	134.9	134.9	134.9			1256.2	954.4	663.5
5N I dd I HS									v																									1	EST RATÚ	266.9	762.7	264.9
VOLUME				ų		· · · ·	14.5	N	0.42	20.3	n c n N	ນ. ເ		• • • •			0 • 7 • 7 • 7					55.5	57.8	60.0	62.5	6 ð	C•C9	6,.0	60.0	62.0	0 • C •	64.0	0 . 0		INUICATED INTEREST	TUTAL	TGTAF	TOTAL
PAINTE TANGE CUST				-	5 • T	<b>7 • -</b>	· ·		() * · · ·	ۍ. •		ب ا ب	6 • 1		F ♥				• () • 1			[•9	[. ]	1.5	i.9	6*1	F • 4	بې . 1. م	1.9						VALUE AT			16.7
OPERATING CUST				~				ณ์ • <b>เ</b>	5 ° J	2.3	5.2	7.47		÷ • • •		, c			6 - C	. (* 1		5.2	ć•2	<b>2.</b> 9	£•2	2.9	5°7	6.2	2.3	e* • √	6•7	2.1	6 • 7		CUFULATIVE PRESENT	45 <b>.</b> 8	2.9.5	1.02 1.02
	24.1	24•1 24	 1.07			-	•			Ç			0.0		3	· , • c	- 5 c		- 				رد ب ب	J.	r•c	 .1	ċ	<b>0.</b> J	C•0	: : :	 	ن. ت	<b>.</b> .		5	133.4	1 63.7	214.2
L I X Č + () 1 X Ž + ()	365	1976	1 - 1 - 1	5-5-1 	144C	1 Hol	7361	[ se ]	1,794	1985	1986	1361	L 780	1989	1961	1 7 7 2	7661	1905	1005	1996	1651	1998	6.661	2200	2201	2002	2003	2004	2605	2000	22.27	2205	600L			ېد ا س	7.52	10.01

386.

1

The second s

AN TRANSMISSION OF THE REAL PROPERTY OF THE PROPERTY OF	<b>The Contract of the Contract of Contract </b>		na a ser a ser an
MIA,TR.PI?ELI			387.
FT.®R&FT.490.00 0ыТ,15-60 ЧТА,ТR Shipping Cost	L 5 2 0 2 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	55.2 50.2 75.0 75.0 75.0 75.0 884.9 884.9 884.9 884.9 114.6 5.4 114.6 5.4 114.6 5.4 114.6 5.4 114.6 5.4 114.6 5.4 114.6 5.4 114.6 5.4 114.6 5.4 11.5 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5	114.6 114.6 114.6 114.6 114.6 114.5 869.2 562.3
STORAGE,R3 FT.FRAE	15.J 14.3 21.3 24.3 24.3 24.3	がままえるよみ みみらうちょう かんしょう じょう 1 そう 2 くみつう 1 うう 1 つう ちゃ 0 ま 5 の 2 ち 8 0 つう 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 FD INTEREST RATE TOTAL 210.5 TOTAL 179.3
RUNYS, SHIFRE		。 	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.2 2.2 2.2
GD ^{D)} Serving S.Faat Cperatiau CCST	6 101 10 10 10 10 • • • • • • • N N N N N N N	୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦ ୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦	6.04 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.6 33.6
RAY.	60 <u>-</u> 000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1979 1961 1961 1981 1981 1981 1981	1986 1988 1988 1988 1999 1999 1999 1999	2005 2005 2005 2005 2005 2005 10 2005 10 2005 10 2005 10 2005 10 2005 10 2005 10 2005 10 2005 10 2005 10 2005 10 2005 10 2005 10 2005 10 2005 10 2005 2005

ļ

ł

Ϊ, ¦

ł. V

į

.

* : ;

A

ų

1

đ.

State of the second sec

Ì

1

Ì

「「「「「「「」」」」」

	5	88.																												
CWT.15-60 MTA.TR.PIPE																							÷÷		¥ -1	( <del>[</del>	ifting circumter		a sata an-di	aistesinsindikkastas
ST34466.83 FI.DRAFT,400,300 DW	SHIPPING CUST		12	L4.9	19-5	23•8 23•8	33+5		4°1°	52.1	56.7 -1 -2	1 • 1 9 9 9 • 1	70.7	75.4	80°0	69.3	94.0	98 <b>.</b> 6			1.13.3	103.3	1.13.3		1 . J. J	lu3.3	RATE		646.6 732.3 631.7 483.0	
	VOLUPE		C.41	17.3	1.4.1 1.8.1 1.8	0.44	20.3	23.55 3.58	53.0	35.3	31.5 34_8	44.0	44.3	46.5		55.3	25.5	57.8		6	C	66.0	0.09 0.09		6 · • J	1	IEU INTEREST		TÜTAL 64 TÜTAL 63.	
FIXED CERTHS SHORE	SAINTERANCE CUST		6.1	5.6	6•1	6 • 1	1.5	2•1 2•1	Z•1		9 * 7 4 * 7	9.9	2.6	3.5	ייי ה הייי היי		ור י י ז י	יי יי היי		£•2	5 *	5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ריים איין איין איין איין איין		3.5	3-5	E VALUE AT INDICATED	£°24	33.3 24.7	
14************************************	OPERATING COST		1.0	~ ~ ~	· · · · · · · · · · · · · · · · · · ·	2.5	~ ~	6 - 7 6 - 7	N. 7	8° 1		13.5	13.5	1.52	23.1	23.I	23.1	23.1	23.1	1.5.	23.1	23.1	23.1	23.L	23.1	23.1	CUMULATIVE PRESENT	213.2	165°2	
21.00 00.0000000. LIJE.(8-1).	- INST COST 0.0 0.0	91.4 14.7 151.3	, 	1 ( • •	0.0	-, - • 3 c							37.1			с С	 		ن. د					<b>.</b>			ŭ	440.4	441.00	
- L.		1761 5771 1972	196	786	584	334 1 5 1	19 19 19	181	995 6 2		16	76	56	1 .n	96	57	, , , ,	5	CI	202	20	t é	06	70	ΩĘ	5		<b>1</b> 0	2	

. . .

16.

ويطلب

THE REAL PROPERTY AND A DESCRIPTION OF THE REAL PROPERTY

ŀ

ことというないであるとうと

AT A REAL PROPERTY

Ŧ.

ţ

.

110 701 P

					u <u>te u</u> te s	389. 
				9 - 19 - 19 	ing the second sec	an a
MIA, IR. PIP:			)			
Ti HTA,						
[-£÷∎]₩0						
°.ТОRА66,63 FT.DRAFT,400,000 DMT,43-171	COST	3)•6 45•8 6;•9 76•1 9]_3	1.6.5 121.6 136.8 152.0 167.2	197.5 212.5 227.9 263.0 258.2 258.6 258.6 213.4 313.7 314.9	334.1 334.1 334.1 334.1 334.1 334.1 334.1 334.1	2993.7 2254.5 1547.1
.DRAF I.	SHI PP I NG		~~~~	™ M M M M M M M M M M M M M M M M M M M		
,63 FI	•	© 4 ∞ N ¢		・ す な の ら ら ち ち ち の ら い ら ・ で ・ い ら ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		EREST RA1 1599.8 1451.3 1306.4
o TORAGE	VCLUME	4 4 6 5 6 6 7 6 4 6 6 7 6 4 6 7 7 6 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 7 7 7	81.8 81.4 87.8 94.2	1113-6 1113-8 1113-8 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 1133-6 111110-6 111110-6 111110-6 111110-6 111110-6 111110-6 111110-6 11		INDIČATED INTERËST RATE 75.3 FCTAL 1599.8 61.8 TCTAL 1451.5 45.4 TCTAL 1306.4
	E CuST	0 1 1 1 1 7 7 9 9 9 9 9 1	~ H 8 H 4 5 5 1	မက္ကေတာ့ ကို ဘီလီးလီးကို ကို ကို ကို ကို ကို ကို ကို ကို ကို	2 11 46 46 46 49 49 49 49 49 19 2 4 4 49 49 49 49 49 49 49 49 49 49 49 49	The Cal
∃*+48•SHIXDI QEXI4•	PALNT _E CANCE					LCS AT
Q≞X] <del>j</del>						ENT VALUE
•	G CCST	7 - 11 7 - 11 7 - 11 7 - 11 7 - 11 7 - 11	10.25 m 10.25	,	A 4 4 4 4 4 4 4     A 4 4 4 4     A 4 4 4 4	E JRES 442.2 371.8 264.4
J Rving Calif	OPE2ATI'4G					CUMULATIV
NG. 67						
CRANTIVE N DF UR. MAS	1857 CC 1857 CC 149 149		でき ひらう ううく		רי יי י	L.39.3 Lu17.4 556.5
SLTERV ST.CF	revent for the second s	200 280 1961 1963 1963	2861 2861 2861 2861 2861 2861	1441 1441 1441 1441 1441 1441 1441 144	200 200 200 200 200 200 200 200 200 200	

 $\{ i\}_{i}$ 

ł

.....

ないという

		390.	
	R [ 46 •	SHIPPLNG CUST 45.3 45.3 45.3 76.1 76.1 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.	⊎.0 3265.° 0.0 2476.9 0.0 1717.8
	.41.t., 28-111 (fa, 30 ) [Ch1ER136.		
Series 2	فب	OPERATING COST ALINIEA CONTRACTING COST ALINIEA CONTRACTING COST ALINIEA CONTRACTING PRESENT VALUE CONTLATIVE PRESENT VALUE	· 3 / · 7
	ALTERNATIVE NG. 141 EXISTING SITUATION, SERVING		
	ALTER	$ \begin{array}{c} w_{v} v_{v} v} v_{v} v_{v} v} v_{v} v_{v} v} v_{v} v_{v} v_{v} v} v_{v} v_{v} v_{v} v} v v} v v} v v$	5. 

No. of the other states of

ť

í

تعتقد ووراجا والمراجع المعجور

ALTERNATIVI NG. 151	YEAR FIRST COST OPERATING COST MAINTLANCE COST
Existing strution, serviti san fragsingp, 15+0,	1975 - C.J
lji Idn, Sekving Say	GPERATING COST
ALTERNATIVE NG. 151 Existing situation	HINST CCST
ALT:	4765
Ext	1975

ZTA, AC LIGHTERAS.

....¥

ţ

۱ ک 1.02.1

.

ć í i

į

. . . .

ł

SHIPPLAG CUST	33.3	43 <b>.</b> 3	53.3	£3.3		83.2	93.2	1.5•£C	113.2	123.2	L 13.2	143.2	153.2	163.2	1/3.2	1#3•1	193.1	2-13.1	213.1	223.1	233.1	253.1	233.1	233.1	233.1	2.5.1	233.1	233.1	233.1	233.1
VJLUKE	L5.0	17.3	19.5	21.4	64+5	6-22	22,52	J. • ð	33.0	ۍ. ت	37.5	3°•₿	42.0	44.3	45.5	43.8	0.1c	5 <b>.</b> 3	52.5	57.8	с. • •			6.1.3	0 • 7 <b>9</b>	63	ل.زع	6) <b>.</b> ū	÷. ÷	55
1500	0	() _•	• •		• •	- 10 10	es et	•., .*		•	•	( ) . •	<u>.</u>	<u>ب</u> ه ۱	., ,	).	• •		•	• •	•••	•••	ŗ.,	• •	••• ■	() 	r) •	•	(") •	:
4.5 INT CRANCE																														
COST	.,	• 7	<u>،</u> د	, • <b>5</b>	•	.,	5	<u>ن</u>	;;	.;	r <b>3</b>	•	ċ.	:			 ن			, ,	•	م		•		•••	ر: د		U	-
GP _E RATING																														
000000	4 4 4 73	, • ,	່. ບ		. • (	.•	י ק		ر ، ، ر	۰۳, ۲۱			، د	5	•	.:		:• :•	J	ب		- - - -	•		ر. ن	. •	دی • در		н г.	.;
f IRST																														
YEAR 1975 1976 1976 1976 1976 1976	191	1961	135 I	1985	799 I	178,	ſġċŢ	734 I	23cl	6841	1 bf 1	₹6¢ì	7661	£6£ 1	i 394	2461	1,94	[++]	195 J	<b>5661</b>	500 F	100	2007	1.13	2 204	2755	2005	1003	2.20-5	20)4

391.

THE PARTY

į

2161.2 1658.7 1154.9

500 000 000

TCTAL TCTAL TCTAL

100

7

1 1

ALTERNATIVE NO. 161 Existing situation, serving california, 43—171 mta, no lightering.

SHIPPING COST YEAR FIRST COST OPERATING COST MAINTENANCE COST VOLUME 1975 - 0.2

586.4	17.0		, ,	• • • c
585.4	171.5	• •	• •	• •
4-486	1/1.)	ن ن د د	:	<b>.</b> .
586.4	(111.)		• •	
586.4	171.0	•	0.0	Ū.
586.4	17		ر د	
580.4	171.0	С <b>•</b> .:		ن. د
585.4	171.0	t.	 	
586.4	171.0	ц •		• 1
561.0	164.6	· 7		- • C
535.6	155.2		Ū`	
510+2	1-1.9	<b>C</b> ••	• •	
494 - 8	145.4	•		•
459.4	[·•45]	-	: • •	•
434.1	132.6	<b>·</b> ·	د، د.	- • 7
408.7	126.2	ر، د	, r • J	
383.3	119.8	<b>C</b> ••	ر د ر	.0
357.9	113.4	• •	, • J	
332.5	1.7.0		ر. د•	
3.7.1	16	<b>.</b>		
281.7	94.2	0.0		C• .
256.3	a7.8	<b>.</b>	0. 1	
230.9	R1.4		0.	<b>0</b> • ¢
205.5	0-41	<b>.</b>		ن. • •
100-2	68.6		(• >	۲. د
154.6	62.2	دم •	. • 3	0
129.4	52.8		0.10	
1.4•0	40.4	Ú.		0 <b>•</b> 0
18.0	C•E+	13 -	•••	- • •
				, • •
				: - -
				:•:
				0.1

-

4

5446.1 4135.6 2872.7

0 2 0 0 0 0

TGTAL TOTAL TGTAL

ы на на • • • • • • • • and the second second second second

392.

. . . . . . . .

i

÷

ALTERVATIVE NG. 171 Existing studtion, seaving say fragisto, 15-60 MIA, Lighterigg.

à

aa i isi

SHIPPING COST		23.3	30.0	36.8	43.5	50.2	96.9 2	63.7	75.4	1.11	83.9 21.5		5.15 104-1	11.0.8	117.5	124.2	131.0	137.7	144.4	2.121	0.101 0.701	157.9	157.9	157.9	157.9	157.9	157.9	157.9	157.9	41 4	4		c 1128.9					
		<b>.</b>	1.3	•2	в.	0.	<b>ب</b> ،	'n		•		<b>,</b> ,	D ()		5	æ.	ۍ •	• 3	ŝ	τ.	() -T	) (		c.	c.	ڻ. •	Ċ,	••	<b>.</b>	RATERCE A		⁽ '			, ^{, , , ,}	 • • •	•	
3MULUME		-																														TCTA						
MAINTENANCE CUST	·	•2		() • J	•		- (	() • -	<b>•</b>	10	•	•	•	• •		· · · ·	, •	Ċ.						(***) (***)	•		сэ. е			AL THE ATT AT THE VER								
OPERATING COST			0.	3		•••••••••••••••••••••••••••••••••••••••	.5					د					., ځ		• •	1. •		۰. ۲۰ و ۳		<b></b> 0		· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••	<b>د</b> .	د.	5550 90114 NA 13		L(	() ( -) (	1.0				
Fl9ST CCST 5.:	0000 0000 0000			ີ. ພ	<b>••</b> ••	10 A				.*. •••	-, () ()		- - -			0.,	• , • •	•	÷ ch	• •	с. т.	, ,	, ,	0.10	с. С	e. •		د	<b>،</b> (									
72A: 1975	1976 1976 1076	138.	1981	1484	1961	1984	1961	1986	1441	1360	1934		1661	101	-111	1945	1996	764 I	CC51	1949	2002		2.13	2004	CU02	מנוצ	2002	2330	5014			۸.۵ ۳) (۳	77	1		•	•	

adam a fi fan i fe ste en state a state a stera fille state af stera stera stera stera stera stera stera stera

ANT SHELL

393.

All Property in

4

1 Pallsone

SHIPPING COST				68.5	9.06	112.8	134.9	157 <b>.</b> û	179.2	2,11.3	223.4	245.6	267.7	289.8	312.0	334.1	356.3	378.4	4.0.5	422°T	444.8	466.9	489 <b>.</b> 1	511.2	511.2	511.2	511.2	511.2	511.2	511.2	511.2	511.2	511.2
ICLUPE				43.0	7.64	55.6	62.2	r3.5	15.0	61.4	67.6	94.2	1-1-6	1:1-0	4.ċ11	11,.8	120.7	132.6	139.0	145.4	151.8	153.2	164.6	171.0	171.J	171.0	171.0		17i.u	٠	1/	L71.J	1/1.0
MAINTENANCE CUST				U • 0		<b>.</b>			<b>•</b>	6•c	ί.ť	n •••	•		•	0.10	<b>0.</b>	<b>••</b> •		0.0	•	<b>C * </b> <u>r</u>	<b>0</b>	ي: ا		C • ; ·		0.5	0	<b>···</b>	C•,	•	0 • C
OPERALING COST MAI				<b>~~</b> ~	(. • O			"••• •			<b>د ،</b>			0.1	.•.)	0.0	c.•0	() • • •	ت	•	, ,	د	·.•0	م. د	- - -	•	· • ·		··· 0	(* • 5		·•• • • • •	;
AL FIRST CCS1 OPER		0.0	5.	( • e	 •	- 0	1 • J	- .•	к. • С	0°0	··••	С С	1 • D	÷ C		; ;	<b>)</b> •(	<b>9.</b> -		J	، و.	G	. • Ū	• •	.,	· • C		5. C	(°)	· • ·	••••		· · · · ·
YEA4 1974	2151	197 J	÷21.	1-861	1961	1 35z	54t I	1 )64	cael	1 140	1941	1963	(.ac.]	: 60l	1941	7061	1 J93	4661	1945	Jar	191	1995	666I	235.	2.01	2015	ecte	2504	2005	2.135	2002	201c	Ercz

ALTLPHATIVE NU. 181 Existive situation, Septime Califnerie, 43-171 Min, LIGHT-Kive.

4147.5 3605.1 2504.2 0.0 0.0 TCTAL TUTAL TCTAL 5.0 C 1 D O . 5. . 7 7. . 7 7. . 5 1. . 5 1. . 5

٦

Same same

ă

1 •.,

## CUVULATIVE PRESENT VALUE AT INPICATED INTEREST RATE

.

394.

The second second second second

F

「「「「「「「」」」

į

San and the second second

.

•7] 8- 1	a 1977 - Maria Santa Maria Indonesia 1977 - Maria Santa Sa	αντατές,ε α το το τοπολασικό το <b>ς</b> ο τα το τις α(ας, το α _τ ας)			n na se	
				C + 0 41	205	
r T				2, KATI0 5, 4110 5, 4134 5, 4134 5, 4134 5, 4134 4, 41344 4, 413444 4, 413444 4, 413444 4, 413444 4, 413444 4, 4134444 4, 4134444 4, 4134444444444444444444444444444444444	395.	
				7 7 C 5 6 6 7		
				S → S → S		
				5-VIV55 624-1 473-9 328-9		
	·			605F 97. J 83. 3 82. J		
,				010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
				5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
·			Ń			
				(h		
			~	5040.9 21238.1 1338.4		
15. 1	Series 3		15	1 N C 2 N C 0 N C		
:	Seri					
ţ.	ang taona ang taong ta	п. Каланатан тарабала тарабала (п. 1997). При при при при при при при при при при п	۲ <b>۸</b>			
<b>.</b> .				0 • • • •		
9 -			2	0.000		
, ,						
						i.
•				3265e : 3265e : 2476 • 4 1717 • E		
			141			1
		H		ь. С. С. С		
			•			
*		<u>ç</u> 2	VÈ 1.	10 10 10 10 10 10		
\$		US 1 21	i i The	5.0% 7.0% 1.0%		
۲		رن⊾عفدا Sna "دد.	ALTERALTVE			
<b>V</b> 1		5	-•			

and the second is stated in the second state

New .

44.4

STATISTICS IN CONTRACT

¢

т Л

,

1999 - S

i

ţ

í.

٩

1

ŧ

Contraction of the local distance of the loc

and the second

					1	}	:		1 1 1		1	2014年の人気を行わった時代です。 1	<b>\$</b>
								1		اد.			
Corodolsov RC. Alferative Vie	7	171		~	:							396.	""""" ["] """"""""""""""""""""""
) 			000 0000 0000	N S S S S S S S S S S S S S S S S S S S	A >	ρς 115.3 1.5.5 35.6	561 2641-9 2-13-1 1363-9		2.000 0.000 0.000	COST 115-3 1.5-6 96-6	SAV 1465 624.1 473.8 328.9	6/C katid 5.4139 4.4846 3.4037	Ren ja v en <b>ek</b> erenden ver so
CCM2421SOW NO. Alternative % .	<b>M</b>	151		V			0		~		" <u>.</u>	,	
5.05 7.05 10.15		2181.2 1652.7 1124.9		0 0 0 0 0 0 0 0 0 0 0 0		PC 131.7 121.5 112.4	50. 1365.4 1.433.5 722.4		0 0 0 0 • • • • 0	COST 131.7 121.6 112.4	SAV INGS 812.7 619.3 432.5	6.1727 6.1727 5. 1959 3.8467	
"UN NOSJATAN")	4								, s ,	<b>)</b> 1			
ALLERVATIVE VL.	. ~	151		R.	\$2	Q		<b>ل</b> ا:		•			
13 C C * C		50 2141.2 1059.7 1154.5				рс 147.6 143.1 133.7	5C 1368.4 1.368.5 122.4	6 4 9 9 9 6 <b>9 9</b> 9	0000 0000	CCST 147.6 147.6 143.7	SAVIV55 812.7 619.3 432.5	h/C RATIO 5.5-62 4.4248 3.2343	

		aanseder Afrikaanse oor d	αη,εδομαι -μετη διακετή Φριλ Νητάριμ™ΗΥ	genaaroosoo galaa ta'a dha	t⊯y >eve nteg	447 (2* 6 1647) - ***********************************	Γ' **############## 1	and the second	
									397.
: *1			B/C RATIU 5.2461 4.2574 3.1497			6/C &ATIU 3.4662 2.5811 1.8615 1.8615			R/C RATIO 5.3309 4.3743 3.3045
	र स्थ्री जीवा ^{क्रि} र स्थर र र स्थ्रा स्थ्र		SAVINGS 925.0 704.3 491.4			SAVINGS 925.J 704.3 491.4			SAV1NGS 1115-7 849-5 592-6
ì	. आयुरुक संजित उर	•	CCST 176-3 165-4 156-5			CCST 266.9 262.1 264.J			COST 213.5 194.2 179.3
1		Ň	9.9.9.8 9.9.9 9.9		2	्र प्रच श च व क		· *J	0000 ••••
						0 0 0 0 0 0 0 0 0 0 0 0 0 0			000 000 000 000 000 000
, 1		65 -	50 1255.2 354.4 603.5		54	SC 1256.2 1256.2 1256.2 053.5		650	SC 1:655.4 5:09.2 5:62.3
		U.	рС 176.3 125.4 136.4		4	PC 265.4 262.1 264. J			РС 213.5 194.2 179.3
ă ŝ		s,			v S			SA	
č. V		Ň	SC		2	0 0 0 0 0 0		¢.	0.0 0.0 0.0 0.0 0.0 0.0
						2000			
		151	5C 2181.2 1658.7 1154.9	н 1 1	151	5C 2151.4 1659.7 1154.9		151	SC 2181-2 1658-7 1154-9
				و			٢		0.00 0.00 0.00
n (na status) - Constant a status	<b>5</b>	ALTERVATIVE VG.		9 -01 105 18Ve~D	ALTERAATIVE NO.	5.05 2.05 2.05 2.04 2.04	COMPARESON NO.	ALTERNATIVE NO.	5.05 7.23 7.0.0

,

ie and a second second

AL CHARGE

4-1-1

ł

. . .

1.7.

Markey Car

のないです

154 2481-2 1058-7 1058-7 1058-7 154-3 154-3 121 128-5 171-5 171-5 171-5 171-5 171-5 171-5 171-5 171-5 171-5 171-5 171-5 171-5 171-5 171-5 171-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 172-5 17	CI ROARTSON NU.	80											
PC         SC         PC         PC         PC         PD         PD<	· · · ·		151		F <b>u</b>	5 A	-	665	•	~	ı		
9 171 7 7 61 2 61 2 7 171 7 7 75 61 2 7 171 7 155, 9, 9, 9, 131, 7 1368, 4 6, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,		9 0 0 0 9 0 0 9 0 0 1 0 1 0 1 0 1 0	2181.2 2181.2 1058.7 1154.9		0 C 2 0 0 C 2 0 0 C 2 0		PC 7,7.4.5 846.6.7 0,11.4			0 0 0 0 0 0 0 0 0 0 0 0	CCST 100-6 646-6 601-7	SAV 1N55 1250.6 356.4 671.9	61110 1.785 1.791 1.4791 1.4791 1.1167
ITI     7     7     51     51     2       11     5     5     5     5     5     5       50.1     1433.4     7.5     3.6     131.7     135.5     5       50.1     1128.5     5.0     0.0     131.7     135.5     5       50.1     1128.5     5.0     0.0     1121.6     133.5     5.0     131.7     115.1       0.1     1128.5     5.0     0.0     1121.6     133.5     5.0     6.0     131.7     115.4       0.1     1128.5     5.0     0.0     112.6     122.4     0.0     121.6     131.7     115.4       0.1     1128.5     5.0     0.0     112.6     122.4     5.0     6.0     6.0       10     11     2     VS     6.0     0.0     112.4     5.0     6.0       11     2     VS     6.0     0.0     112.4     722.4     0.0     0.0       11     2     VS     6.0     0.0     0.0     112.4     5.0     6.0       11     2     VS     6.0     0.0     0.0     0.0     0.0     0.0       11     2     VS     6.0     0.0     0.0     0.0 <td>•0</td> <td>n</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>. `</td> <td></td> <td></td>	•0	n									. `		
PC         SC         PC         SC         PC         SC         COST         SAVINGS           0         1128.5         0.0         0.0         131.7         1368.4         0.0         131.7         115.5           0         1127.5         0.0         0.1         112.4         722.4         0.0         121.6         89.5           0         112.4         722.4         0.0         0.0         112.4         722.4         0.0         121.6         80.5           0         112.4         722.4         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0	NG.		171				-4.7	\$1.	-	·			
10 11 2 VS 624 2 171 2 VS 624 2 171 2 VS 624 2 171 2 8 171 2 VS 824 2 147.6 1368.4 2 147.6 1368.4 2 147.6 1368.4 2 147.6 1368.4 2 147.6 1368.4 2 133.7 122.4 0 133.7 64.6 64.6			5C 1493.4 1128.9 737.00	0000 0000 0000			РС 131.7 121.6 112.4	SC 1368.4 1 39.5 722.4	0000 0000 0000	0 0 0 0 0 0 0 0 0 0 0 0	C05T 131.7 121.6 112.4	SAVINGS 115. J 89. 5 64. 6	6/C RATIO 9.8731 5.7356 5.747
PC SC PC SC PC SC PC SC PC SC COST SAVINGS 0.0 1483.4 0.0 0.0 147.6 1368.4 0.0 0.0 147.6 115.0 0.0 1128.9 0.0 0.0 140.0 1 39.5 0.0 0.0 140.0 89.5 0.0 1128.9 0.0 0.0 133.7 722.4 0.0 0.1 133.7 64.6		10	i		c	22							
.1	د. ح			0000 00000 0000		A		50 50 1368.4 139.5 722.4				SAVING5 115.J 89.5 64.6	6/C RATIO 0.7789 0.6394 0.4832

		F/C RATIO 1.2886 1.7551 0.7917		b/C RATIO 0.8514 0.6644 0.4679
		SAVINUS FI 227.2 174.6 123.5		SAVINGS b/ 227.62 174.6 123.5
		COST 176.3 165.4 165.6		COST 266.9 262.7 264.0
	2	20 d d d d d d d d d d d d d d d d d d d	~	S 0 0 5 5 • • • •
		ୁ କଳ କ ପୁରୁ କଳ କ କୁରୁ କଳ	· .	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	ردع	50 1226.2 924.4 663.5	• •	50 1256.2 754.4 663.5
	v	PC 176.3 165.4 156.0		PC 266.9 262.7 262.7
	ŝ		.^	а а
	~	0000 0000 000	N	8000 0.000 0.000
		00000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	171	5C 14+3.4 1128.7 757.0		SC 1483.4 1128.9 787.⊍
11		0	21	
CCPP44IS01 ND.	ALTERNATIVE VC.	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	COMPARISON NO.	5.05 7.07 10.04

۱x -

		E/C RATIG 1.9857 1.6463 1.2531	
		5AVÍN55 E 417.9 319.7 224.7	
		COST 210•5 194•2 179•3	
	2	S 0 0 0 0 0 0 0 0 0 0 0 0	
		000 000 000 000	
	(5)	\$C 1∋6≶•4 809•2 562•3	
	·	PĽ 219.5 194.2 179.3	
	< N		
	~	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	171	SC 1483.4 1128.9 787.0	
ET		0 • • • • • • •	
COMPARISON NO.	ALTERNATIVE NC.	500 500 500 500 500 500 500 500 500 500	

399.

a new maximum and the second of the second

Ċ,

-------

4

J

i

10. No. 1

 0.0000000000000000000000000000000000000	The second se	
<b>-</b>	and the state of t	

「ないない」であってい

ראסאאנצרע איי.	14											400	400
ALTERNATIVE NO.		171.		~	15	-	<b>6</b> ć ;		۲ ۲			•	).
5.6% 7.0% 1.0%		SC 1483.4 1.28.9 787.5				PC 702.6 545.6 001.7	50 934.5 742.5	ູ (* ຕະວ ຊຸງ: • • • ຊຸງ: ຊຸງ: ຊຸງ: ຊຸງ:		COST 7.07.6 646.6 641.1	SAVINGS 552.9 425.6 304.0	8/C R4T10 0.7891 0.6598 0.5652	
<b>Ссм</b> ълвізат. ис. <b>I</b>	<b>15</b>												
ALTE ATTVE Nu.		141		[5]	د ی		1.5	61,					
5.12 7.05 1.09		SC 3665. 2476.7	5	SC 2181.2 1659.7 1154.9		PC 97.7 63.5	SC 2641-9 2-13-1 2564-9	РС 131.7 121.6 112.4	5C 1368°4 1.33°5 722.4	COST 228.7 210.9 174.5	SAVINGS 1436.8 1093.6 761.4	8/C RATIO 6.2833 5.1822 3.9155	
רביא⊳יאוצטיז אני <b>1</b>	16												
ALTERCATIVe TAL.		141	Ļ	151	٧S	••	57:	<b>6</b> 2	Ì				
5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0	SC 3265.: 2476.3 1717.8	9.9 C	5C 2151.2 1658.7 1154.9		PC 97. 63.3 62.	50 2640-9 2013-1 1088-9	РС 147.6 141.0 133.7	- SC 1368.4 1.39.5 722.4	CGST 244.6 223.2 215.8	SAVINGS 1436.8 1293.0 761.4	6/C RAFIC 5-8739 4-7682 3-5291	

ų,

CUMPATISON NC. 1	17												
ALTER'ATIVE NO.		141		151	٧S		5 d.	61	c 1 d			.,	
ର କରୁ ଅନ୍ତି ସ କରୁ ଅନ୍ତି କରୁ କ	0 · · · ·	SC 3∠65+ J 2476+ J 1/17+8		50 2181.2 1658.7 1154.9		۹۵. 115.3 155.3 96.6	50 2640-9 2003-1	PC 131.7 121.6 112.4	: SC 1358.4 1539.5 722.4	COST 246.9 227.5 29.1	SAV 1465 1436.8 1093. 5 761.4	6/C RATIU 5.8184 4.8691 3.6419	,
CUMPLAISON N.C. II	18								е				
ALTER ATTVE AU.		141		151	×S.		5	. 62					
の 1 1 1 1 1 1 1 1 1 1 1 1 1	0	5C 3265.1 2476.9 1717.8	0 • • •	5C 2181-2 1058-7 1154-9		рС 115-3 105-5 36-6	56 2443-9 2463-1 2382-9	РС 147-6 140-9 - 33-7	SC 1368.4 1/39.5 722.4	COST 262-9 245-6 233-4	SAVINGS 1436.8 1093 761.4	6 8710 5.4657 4.4535 3.3353	
Currentson ru. I	61												
ALTERMATIVE VO.		141		151	57		57.	6	63.				
		SC 3265• : 2476• 1 1717• 3		50 2131.2 1658.7 1154.9		РС 97 59.3 52?	56 2540-3 2-13-1 1369-4	рс 176.3 162.4 156.3	5Č 1256•2 554•4 663•5	COST 273.3 234.1 238.1	SAV FHGS 15:1 117: 1 820-3	3/6 RATIO 5.6674 4.6252 3.4461 3.4461	

i cia

Ĵ

ł

-

. .. ...

44.51 A	. N7N	<u>ң</u> . н	s e.	1. <b>730</b>	

ļ

4(	02.							
		e/C RATIO 4.2572 3.3475 2.3708			B/C RATIU 5.3124 4.3460 3.2469			B/C RATIO 4-J537 3.1984 2.2748
		S.v ING> 1549.1 1178.1 420.3			SAVINGS 1549.1 1.178.1 1.78			SAVINGS 1549.1 1178.1 1270.3
		COST 363-9 352-1 346-1			CCST 291.0 271.1 252.7			COST 332.1 368.3 368.3
	64 .	SC 5256.2 454.4 663.5		<b>c</b> 3 ]	50 1256.2 954.4 663.5		64.5	SC 1256.2 924.4 663.5
	¢	1 262.7 262.7 264. J		Ű	PC 176-3 165-4 155-4		52	РС 266.9 262.7 264.5
	51:5	50 2 - 23 - 1 1 - 53 - 1 1 - 53 - 1 1 - 53 - 1	11	201	Su 661:09 2 :03.1 1 :88.0		55.	50 2645-9 2033-1 1368-9
		PC 17.) 89.5			115.3 115.3 1.15.6 1.5.6			PC 115.3 155.6 96.5
	5			ی د:			SN	
	151	2151.2 2151.2 1658.7 1154.9		151	SC 2151.2 1659.7 1154.9		151	SC 2181.2 1058.7 1154.9
	14.	SC 3265. 2470.9 1717.3		141	5C 3,65° - 2476• 5 1717•8		141	sc 3265. 2476. 5 1717. 9
20			-4			8		
CUVAASTSAV AN. 2	ALTERNATIVE NU.	20.00 20.00 20.00 20.00	CUMPARISON NO. 21	ALTERNATIVE NO.	5.03 7.00 1.00 1.00	CA¥₽4⊰ISON NO. 22	ALTERNATIVE NO.	5.05 7.02 1.1.1

23
. Jr.
NUSI
CUPPAP
U.

							403.
	L/C RATIO 5.6582 4.6679 3.5259			E/C RATEÚ 2.35u4 1.9434 1.4638			E/C_RATIO 5.3409 4.4132 3.3392
	SAV I NuS 1739 - 8 1323 - 3 921 - 6			SAV I NGS 1874. 7 1435. 2 1435. 2 190. 8			SAVINGS 1739-5 1323-3 921-5
	COST 3.7.5 2.83.5 2.61.4			COST 797.6 735.9 683.7			COST 325.6 293.8 276.0
63.	56 1.65.4 6.9.2 5.62.3		667	SC 93,5 7,2,5 4,83, )		650	50 1465.4 869.2 562.3
Ĵ	рС 21.55 194.2 179.3		66	РС 700-6 546-6 631-7		3	PC 213.5 194.2 179.3
510	Sc 2540.5 2523.1 1388.9		1.15	SC 2647.9 2447.9 1388.9		583	SC 264)•9 ∠⊍∂3•1 1388•3
	РС 17. 189. 82.13			рС 97.5 83.8 82. J			РС 115.3 1.5.6 96.6
٧S			5 2			5	
151	5C 2181.2 1659.7 1152.9		151	50 2181.2 1653.7 1154.9		151	SC 2181.2 1658.7 1154.9
	0 0 0 0 0			0 + + + 4 0 m m			0.00 0.00 0.00
141	55 3255.7 2416.1 1717.3		141	3265°9 2476.9 1717.8		141	55 3265.J 2476.9 1717.8
	0 + + + 4 0 0 7	4			25		000 P + 0 0 + 0 0 + 1
ALTERNATIVE 'W.	:0.4 .7.5 .0.1	CGPPARISON NU. 24	Ai, Téx 4ATIVE "II].	5. ئ 7. ئ 1. ئ	CUMPARESON NO. 2	ALTEREATIVE NU.	5.0% 7.0% 1.0%

غر بر

:

1 - - - Walter

ちょうち い

御御をます

ł ÷,

11

ł

i

÷

1

4	O	4	_

5

: !

¢

04.							
	6/C RATIO 2.2978 1.9011 1.4332			E/C RATIO 4.2359 3.5393 2.6792			8/C RATIO 3.9946 3.3238 2.5300
	Savings 1874.7 1433.2 1030.6			54VINGS 1573-9 1195-9 831-6			SAVINGS 1573.9 1195.9 831.6
	COST 815.9 752.3 698.3			COST 374.2 340.8 313.4			COST 394.0 359.8 378.7
	SC 930 • 5 702 • 3 483 • 5		~~	0 0 0 0 0 0 0 0 0 0 0 0		~	00000 00000 0000
661	PC 734.6 646.6 631.7			9000 9000		-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56.	50 2640-9 2033-1 1388-9		169	50 5272.3 2539.7 2541.1		64 J	5C 3472.3 2539.7 241.1
	115.3 115.3 115.5			PC 374°2 343°8 31.•4			PC 394. j 359. 8 328. 7
٧S			٧S			5>	
151	5C 2161.2 1658.7 1154.9		~	S 2 4 6 0 5 4 6 6		~	0000 0000 0000
				9000 ••••			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
141	sc 3265.1 2476.9 1717.8		191	50 5446 • 1 41 55 • 6 2872 • 7		161	SC 5446.1 4135.0 2372.1
				0 0 0 0 0			
ALTERNATIVE NO.	5.0.5 7.0.5 XC.1	CPMPARISON NR. 27	ALTESHALIVE NO.	د. 70.خ ۲0.1	CT*PA4 [SA14 MC. 28	ALIEKNALIVE VU-	10-10 10-10 10-10-11 10-10-11

CUMPARISON NO. 26

...

	, RATIU 1.5349 1.2366 1.3147			. RATID 3.23.9 2.6134 2.237 2.237			405. 1251-2 01148 01148
	3/6 RATTO 1-5349 1-2966 1-9147			8/6 RATIO 3.2319 2.6734 2237			6/C 24110 3.J213 2.4571 1.824J
	SAV 1455 2455.4 1 E B I - 3 1 3 2 5 • 6			SAV I VGS 739.0 563.2 393.5			54VINGS 739.0 563.2 393.5
	1502 1579-6 1421-0 1451-6-4			COST 228.7 21.9 21.9 1.94.5			COST 244.6 229.2 215.4
۷	SC 9995 999		<b>61</b> J	50 1368.4 1.39.5 122.4		62.	5C 1 363.4 1 323.4 1 22.4
	မ်း ရက်အဆုံ		<b>x</b> ¹	PC 131.7 121.6 112.4		£	PC 147.6 141.0 133.7
67.5	1-7401 8-4855 7-2854 1-2424		. ۲ د	≤ 50 ≤ 64 0 0 ≤ 1 0 3 0 1 3 0 0 0 0 3 0 0 0		10	-640-9 -640-9 -2-03-1 1388-9
	рс 1553.н 1451. / 1366.4			97. J 97. J 83. S			PC 97.5 69.3 62.5
\$5			<b>\$</b>			¢ Ś	
v	2		171	SC 1443.4 1128.4 787.1		171	5C 1483.4 1128.4 1128.9
161	50 5446.1 4135.5 2072.1		141	SC 32655-5 2475.3 111.5		141	SC 3.05. 2416.J
a		0		0 • • • 4 0 0 0	_		
GUPPANTSON NO. 29 ALTER ATTVE FU.		06 °01 NOSTAVAMPO	ALTER ATTYR 201.		COMPARIAN NO. 31	ALTSOMATIVE NU.	80°. 80°. 80°.

ł

r

٢

e t

ą , 1

. .,

i

- **M** 

a and a second second

and a second second

1

аţ

406.							
·	F/C RATIU 2.5926 2.4782 1.3823 1.3823			/C RATIO 2.8113 2.2934 1.7083			а/с катіо 3.1145 2.5453 1.9007
	547 IN:5 739.2 563.2 993.5			51% I V65 739. 5 563. 5 393. 5			5 14 14.5 851 • 3 648 • 3 452 • 5
	6051 246+3 227+3 234+3			CCSF 2.62.9 2.45.5 2.45.4 2.30.44			COST 273.5 254.7 238.1
	56 Lsoðor 12204			SC 1368.4 1039.5 722.4		<u>ع</u> ر	5C 1256•2 454•4 663•5
5	μί 131.7 121.6 112.4		55	PL 147.6 14.0 133.7		2	РС 1 10-3 152-4 156-1
	50 640.7 7.33.1 1.583.9		562	с с с с с с с с с с с с с с с с с с с		- 10	9 4 5 9 4 5 9 1 9 1 9 1 9 1
	P( 115.3 155.3 96.5			115.3 115.3 16.6			РС 97 1 62 3 62 3
۷S			\$ *		,	ŝ	
171	5C 1443.44 1128.44 797.0		17.	5C 1483.4 1128.0 797.0		171	50 1493.4 1128.1 787.1
							ပ • • • ရ ပ ၃ ၁
141	SC 3.55.) 2474.3 1717.3		ויו	56 3.65 - 3 2.476 - 3 1.117 - 6		14 [	5C 3265. ) 2476. 4 1117. H
GLMPATESDA NG - 32 ALTERTATENG.	ς τ. 	10 "AUSISVEN"	ייז: ארוגה איי		Çı YPASTSOV NG. 34	ALTER ATTVE SU	10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.000

: 1

3

ł

1

Car Street all the state of the

A REAL PROPERTY AND A REAL

5.

CGST 363.9 352.0 345.1 50 1255.2 124.4 6. J PL 250-9 266-7 266-7 SC ∠C4>+9 2 J3+1 ⊥3d6+1+ 51. 97.5 83.5 52.5 ŝ 5C 1453.4 1126.9 171 2.00 56 3765.2 2475.2 141 או דברייאדועב אין. 5.05 7.05

6/C KATJU 2.3396 1.4419 1.5476

54V INGS 851 • 3 649 • 3 452 • 5

COMPARES 10. 36

	SAVINGS 651-3 649-3 452-5
	6CST 291.6 211.1 271.1
t. <b>3</b> J	5C 1256.2 954.4 603.5
ť	РС Н76.3 101.4
5	SC ∠ 643. ) ≷ - 33. 1 1 • 68. 3
•	PC 115.3 105.5 96.5
s >	
171	5C 1483.4 1128.7 727.7
14;	SC عدادی 24/14 - ۲
ALTCP .ATTVC AU.	10 - 10 10 - 10 10 - 10 10 10 10 10 10 10 10 10 10 10 10 10 1

L/C КАТГО 2.3194 2.3916 1.7908

		B/C RATIO 2.2277 1.7601 1.2546
		SAVINGS 551.3 648.3 452.5
		LCST 342.1 368.3 369.5
	64 ,	sc sc 1256.2 954.4 603.5
	Ŷ Ŷ	PC 265.9 262.1 264.5
٠.	2.	56 ¢64°°9 ≧∪33•1 1388•3
		۵ر 115.3 165.5
	\$	
	111	5C 1423.4 1122.5 787.5
	141	\$C 37\$5• : 2416• 4 1717• 3
1		ပ္ · · · · စစ်စစ်
COMPENISAL NO. 37	ALTEPAATIVE 4.	50 AS M 0 - 4 A 1 - 7 - 4 1 - 7 - 14 1 - 7 - 14

407.

and a second by the

į,

• ;

4

CURPERTSON 101 35

ł

ì

3

ł

ł

i

ł

* * *

ŗ

A THE REAL PROPERTY OF	
<ul> <li>A set of a set of</li></ul>	1.00

408.

+/C RATIO 3.3689 2.7991 2.1163

SAVINUS 1042.0 793.5 553.7

COSF 31.7.5 2.83.5 261.4

50 L.65.4 562.3 562.3

5.015 5.421 5.421 Å

50 7.40.9 2.23+1 1385-9

РС 91.: 62.3

5C 1463.4 1122.9 787.5

بة من من من من عرف من م

SC 3765. 2476.4 1717.5

20.2 20.7

vą

ردى

:15

ŝ

171

141

ALTEPHALINE NO.

38

CUMPASISON NP.

こう ちょうしょう うちょう うちょう

à

÷

÷

 $\hat{\boldsymbol{\zeta}}$ 

39
NC.
COMPLEI SO 4

	6/C RATIO 1.4756 1.2355 0.4257
	SAVINGS 1176.9 900.4 632.9
	797.50 7.55.7 7.583
2	5C 936.55 762.3 483.0
664	. PC 700.6 546.6 651.1
. 1 2	56 2640.9 2.13.1 1328.5
-	РС 97.0
۲ ۲	
171	SC 1463.4 1128.9 787.0
	4 9 9 6 2 • • •
141	32.05C 32.05- 5 2.476- 7 1.1.1.8
ALTEPVATIJE NG.	5. 5 7. 3 7. 3 7. 3 7. 3

	JC RATIO 3.1988 2.6463 2.0062
	SAVINus 1042- J 793- 5 553- 1
	CCST 325-8 299-8 276-3
2	50 1.65.4 2.9.2 562.3
650	ີ FC 211.5 134.2 179.3
5.4	t, SC ∠640•9 ∠33•1 ⊥388•9
	, PC 115.3 15.5 96.6
ເກ ັ>	
171	SC 1483.4 1128.3 787.v
	4 9 9 9 9 4 4 4 9 0 9 4 4 4 0 9 7 9 9
141	SC 3265.J 2476.9 1717.P
ALTEPNATIVE NU.	5.05 1.4.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.05 1.5.

650

53.

ເກ ັ>

171

2

ļ

							409.
	e/c kattú 1.4425 1.1969 0.9063			e/c kattu 2.3391 1.9526 1.4919	·		8/C RATIO 2.2216 1.8494 1.4088
	SAVINUS 1176.9 900.4 632.9			SAV INGS 875.3 665.4 463.1			SAVINGS 875.3 665.4 463.1
	COST 815.9 752.5 698.5			CAST 374.2 247.8 312.4			C/JSF 394.°5 359.8 328.7
ŗ	5C 53.55 7.25.3 483. J		~			2	N 0 0 0 0 0 0 0
r.çn	PC 109-55 646-5 651-7						
<b>5</b> È ·	50 50 20 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10		513	50 3072.3 2933.7 2941.1		6 . Ĵ	5C 3672.3 439.7 2.41.1
	26 115-3 145-0 36.6		-	20 374-2 340-2 310-4			2€ 394•J 359•8 3≤8•7
S ,			۲۶			25	
111	5C 1463.4 1129.9 767.0		~	0000 0000 0000		2	0000 0000 0000
-				20-00 20-00			
141	SC 3265- 2476-9 1/17-8		181	SC 4747.5 3005.1 25.14.2		181	SC 4747.5 30)5.1 2534.2
1	0	42	-	ປີ • • • ປີ ຍັ ຍັ ຕິ	43	-	၂၁၅ / ၂ <b>၂၉ - ၂</b> ၉ ရက္ကရမ္
•Ct. JAIIANdelTA	) - 0 7 - 0 7 - 1 6 - 1	C.P.P.T. S.L. NO.	ALTERXATIVE NU.	5.0 • 5.0 • 10 • 10 • 10 • 10 • 10 • 10 • 10 • 1	۰۵۸ ۴ OSL ۵۲۵۸ ۵	ALTEPYATIVE NU-	5.03 7.03 13.03

4

ر المر الأر

「「「「」」の「「」」」

ŧ à

着いかいたいない ちょうちゅう

111

;

Ş 

*

44
• • •
25 6
1::-
COUP

410.	
	E/C AATIO 1+3982 0+3313 0+7326
	SAVINSS 1756.9 1350.8 957.1
	COST COST C.129.5 L451.7 L451.7
v	0 0 0 0 0
	a 3 ⊂ 9 0 • • • •
61.	5C 2737 • 7 2754 • 5 474 • 1
	рі 1994 р 1451 1306.4
2 V S	и е е о 0 • • • • 0 с о о
[8]	50 4747 30.25. 1 2534. c
	0
ALTERNATIVE MI	··· 30 80 C P C ·· • • · · ·

í

411, PART IV. TEXAS-EAST COAST PRODUCTS PIPELINE

411_51_11V+ NC+ 96_ TEKAS=_AST 67AST PRODUCTS PIPEUT95

<u>ֈՠ֎֎֎֎ՠֈֈ֍ՠՠֈ֎ՠ֎֎֎֎</u> ՟֎֎ֈֈ֎ֈֈՠ֎֎֎֎֎ՠ֎֎֎֎֎ SHIPPING CCST 0.0 リントゥメラ VELVENANCE C ST 0051 CP=rAIING F [PST ・ 3 くりつか かどー・ 40 くつつ かじう 4 、 しうくつつ 4 とうく 1 くうく 2 くちょう ちゅうしゅう ちゅう 4 くちょう 4 くちょう 4 から 4 かい 4 くちょう 4 くうう 4 くちょう 4 くちょうか 4

## Pr**ece**ding page blank

413.

The second second

「ない」、「ない」、「「「ない」」」、

n T

「「「「「「「「」」」」

1612.8 1495.7 1381.4

52 • 4 4 • 4 3 4 • 6

424.2 332.5 241.5

1124.5 1116.5 11.4.9

GUNULATIVE PRESENT VALUE AT 140 LOAFFD INTEREST RATE

415.

## Preceding page blank

## PART V. EAST AND GULF COAST DRY BULK

																						F	Pr	ec	6	diı	lg		a	ge		la		K				
	45.4-43.7 PTA.TK.B44GES.						-															1		r.														
Reproduced from best available copy.		TSOD OF LOOTHS						0.0		0. -	0.0	ن. د	0.0	0	6 <b>•</b> 0	د. و	0•:	j•-;	Ŭ,	0°0	0.0	0 4	Ú.	0	ت ت	0.0	J.J	ບ.		<b>.</b>				0.0	0.0	RATE	4.	· · 1 0 · ·
-	152+Clu DwT+6	IS JATION				•	45.4	6.04	45.2	45.1	45.1	4.0.5	6.44	44.8	44.7	44.6	10. • ± ±	14.0	4.44	44.3	44.2	44.L	() • <b>4 1</b>		\$°*4	43.8	43.7	43.7	43.1	4.5.1	1.54	1004 7 4 4		4 5 . 7	4 5 • 7	INPLOATED INTEREST		TUTAL 465.7
Shipping Cost Column Signifies Dummy	AUS,PALTISLAND STCRADE,253.COU DAT.45 FL DRAFT.	N. INT. CANCE COL					• • •	1 <b>.</b>	· · · ·	10 • t	ų • 4	τ. τ	C • ₩	4•J	10 • 1 • •	n • r	6 • 5	1. • •	4°2	4 • U	4.5	2 • 4	4 <b>*</b> J	4.5	τ. • τ	4 • S	\$ 10	4		с I 4 -	0 V • *	n 4 4	1 12 1 1 1 2	. 1 . 1	1 1 1	PRESENT VALUE AT INSTOAT	72.6	50.7
(Note: S S	. н. 20/	TTNI: LEST					11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.44		LL.4	11.4	11.3	11.3	<b>Li.</b> 3	<b>i.1</b>	11.	14.5	11.	11.3	11.3	11.3	13	11.5	14.3	11.5			11-5	í • 11	CUMULATIVĖ PREŠEMI	le3.3	15 - 65
	LIENATIVE AC. 681 Jál. 35+. Ac. 5-RV.	127.		u 14	• 10	 • •	-			.•	J. J.	Ċ	C • .	 	~		·	. • (	•••	ر•	••		•	, •	<b>).</b> .	<b>ئ</b>	r.		•	• • •	•	р • • к	•	• `• • \~	•	n5	241.45	≤55 <b>.</b> 1
	ALIEKVA COAL, 35	(2-0-4) VEAK 21	1975	1 2 7 7		1.1.1	1.98.1	1861	2421	c 8-1	1964	Lifes	1.9 °.	1 ac I	1300 L	f∙a€]	~061	1961	1992	666 J	1994	(65)	1995.	1 5t I	-661	0.551	200-	1012	21.0	2					( víc		€. • ¢	7.75

417.

					÷																							T			
																														·	
SHIPPLAS CUST		c c		0.0	6•0	0.0	ດ. •			0.0	ù•ù	0.0	0.0	<b>ن</b> د ب				0.0	Ú., Ú	C•0	0.0	0.0	0°1		0-0	0.0	0.0	0°C		•	
144145																													LVEFREST RAFE	380.4	1.706
VULUME		u	40.4 45.3	45.2	45.1	4 5 • 1	(°¢÷	6 * * *	7.44	44.6	44.5	44•5	44.44	44.3	2 * 4 * *	44°1	C 77	4.5.4	43.8	7.04	43.7	43.7	4 3 • 7	43.1	7 . 6 . 2	1.04	43.7	43.7		TOTAL TOTAL	TCTAL
MALWE INAGE COST			••• •••		4.1	4 • 7	1 • •		1 • 4 7 • 7	1.5	4.1	4.1	4 • 1			4•1 4.1	- <del>1</del>		4 <b>.</b> 1	4 • 1	4 <b>.</b> 1	4•1	4 • 5	1 • v			4• <b>1</b>	4 <b>.</b> l	icat vali é at înficatês	62 54.6	42.5
ERALINU CUST			7°11	11.4	11.4	11.4	11.4	11.4	5•11 - 57 1 -	11.4	11.4	11.3	11.3	11.2	1			11.3	11.3	11.3	11.5	[ <b>1.</b> 3	11.3	11.3		11.3	14.3	11.5	CUMULATIVE PRESC	1:3.3 1: D	117.9
(2-6-42). 544 - FIRST COST - CF2	12.5 12.5 13.3	ີ <b>.</b> ແມ່ ຫ້າ	-		1 • •	، <b>،</b> ر	.;			, . , , . 1	•	ŗ	9.1	(*) • •(2)	•	- - -	•	ر: • • ري د	•	· ·	•	·.	, ci	5 • •		• •	•	•	400 0	151. [°]	140.7
5-25). F145T	1575 1976 1777																1997	195							.*	2002					

A CALLER AND A CAL

CUPULATI

1		000 000
	IVE PRESENT VALUE AT INDICATED INTEREST RATE	273.3 255.7 245.8
	TED INTE	LUTAL Total Total
	ADIGNI	32.5 2.5 23.9
	١٢	
	ννιυε	
I	PRESENT	63.9 17.6 63.9
	IVE	v <del>~</del> v

139-3 147-6 161-3

5. ck 7. c3 1. c3

419.

ALL STATISTICS

「「「「「「「」」」

	-
	2.2.2.0
	-
NJ. 71-	
	2
CINATIV.	
.0	ł

ALIENATIVA NA. TA: ALIENATIVA NA. TA: Teaching cost recontrict cost for any endering cost recontrict cost re

CUPULATIVE PRESENT VALUE AT INPICATED INTERIST RATE

202.3 193.9 167.3 TCTAL TCTAL TOTAL 35.4 43.9 71.6 51.7 74.5 73.4 54.0 

420.

12. 5-17.1 MIA. IX. BARCES. AI E-RAATIVE NU. 72) Carliarn Caeirsfirfisfiku. NG-Th iastifsland,750,000/05 ft.45.4-43.7 And 12-7-All.

SHIPPING COST IRON 12.5 12.7 13.0 13.2 VOLUME COAL PALNT_AANCE COST • CPLPATING CUST 0•C CCST 32.5 32.5 72.3 79.2 ÷. 2 FloST YEAR

2000 0000 0.0 0000 0.0 0.0 44.0 4 5 • R 4444444 444444 444444 4 5 • 7 4 5 • 7 4 5 • 7 4 5 • 7 40 • 7 43 • 7 43 • 7 43.7 43.7 43.7 المراجعة ال المراجعة الم **. . .** - **-**2-. . 2 . 14 C 2 2 2 6.5 Ú. . ... .... 000 100 000 000 •; . 2005 2000

CUPULATIVE PRESENT VALUE AT IMFICATED INTEREST RATE

736.9 684.7 641.4 TLTAL TGTAL TCTAL 13..7 137.5 84.2 22%.7 213.5 Leb.6 346.4 363.6 392.5

*** 実

421.

1977 233.4	CFEMALING COST - FALSE			VOLUME	SHIPFING COST	ft
- C3 - 4			COAL	ORE		, <b>i</b> t.
• •	10.	7.3	45.4	12.5	<b>.</b>	
<b>-</b>	16.	4 e 6	45.3	12.7	0.0	
•	16.	7.8 ·	45.2	13.0	0.0	
	ic.	1°a	45.1	13.2	0.0	
-	l c	1.5	47.1	13.4	0.0	•
·•.	16.	5-1	45.0	13.7	<b>D</b> • <b>D</b>	
	it.	1.3	44.4	13.9		
	lto.:	7. F	44.0	14.1	<b>(,)</b>	
	le.	7.5	44.7	14.3	0.0	
	16.	1.5	44.6	14.6	( • (	
	lc.	C • 2	44.5	14.8	C••0	
	16.7	7.5	44.5	15.0	0.0	
-,	10.2	7. <del>8</del>	4.44	15.3	0.0	
	le.2	7.8	44.3	15.5	<b></b>	
	1c+2	4 • J	44.2	15.7	0.0	
,	10.7	7. o	44 <b>.</b> l	16.0	5 ° ° ° °	
	lc.z	1.3	<b>∩</b> •54	16.2	G-0	
	16.7	£•!	6.• 44	16.4	<b>(</b>	
• •	16.2	1.0		16.6	Ū.Ū	
•.	10.2	7.4	4 3 <b>.</b> 9	16.9	0°0	
-	16.2	7.0	43.7	17.1	J.U	
	16.2	۲. ۴	43.7	17.1	ن ، ر	
	10.2	7.8	4 . 7	17.1	0°2	
•	L6.7	a' •	4 3.7	17.1	<b>0.</b> 0	
	16.2	1.8	4 3.7	17.1	0.0	
-	16.2	7.9	4.5.7	17.1	ن و ت	
•	16.2	<b>≁</b> •≁	4 5 <b>•</b> 7	17.1	0.0	
•	16 . L	1.5	4 5.7	17.1	<b>.</b> .,	
	16.2	1.5	43.7	17.1	ن • ر: ۱	
	1	ť~1	45.7	17.1	·•• •	

. . . 621.0 062.0 507.5 TJTAL FCTAL TCTAL 125.9 145.6 8 . J 253.7 213.5 165.6 2.45.5 22.24 2. - N 1. - N

デメ 海外の湯

422.

And the second second

「「「「「「「」」」」

ALICAATIV. VG. 74) GG.L.ICTIAC,PSHACGL,SLRV. NGRTH LAST,ISLAAD,452, D7/56,5 FT.II.5-6.4 AND 12.5-17.1 FTAFT2.BARGES. 12-7-11.

	•																					, ,														
SHIPPING COST					Ţ	•	• 0			•0	•••	0°0		• Ú			> •	• Ū		ۍ •			٠. •	<b>.</b>	°.			(•)	· · ·	<u> </u>	·.	••	•	j.j	ç.	
IHS			CN	ORE				13.0 C															D.					-	-					ن <b>1.1.</b>		
VOLUME			IR		)	1	7	Ħ	ET	E	E	2	14	14	14	14	5	1.5	5	15	16	16	<b>T</b> 6	16	16	17	1	17	17	1	1	1	17	E .	17	
ION _			COAL			11.5	11.2	0•11	1 7	15	1.2		4.1	۲ <b>۰</b> 5	7.5	C. • T	6.7	<b>4</b> • <i>L</i>	5.2	1.9	7.7	7.4	1.2	<b>( · · )</b>	0.7	4.0	4° )	t. t		C.44	÷••	2.0	4.0	c.4	10.4	
VALVELAANCE COST						5.2	6 · 0	£ • 2	· · · 2	¢•3	t.2	t • 2	2.4	د.2	3•1	2 • 9 ·	2 • 1	5	04 * 2		<b>7 •</b> 1	5. c	u•2	5.2 ·	6.Ż	5.0	5.4	2.1	2.4	c•2	r • 2	c.2	C+2	c • 2	2 • • 5	
CPERATING CLST						3.6	1. S	ن. ح ر	4. <b>5</b>	3.5	9.6	5° t	¥*6	<b>4</b> •0	, • C	1. 1. 1.	ئ <b>ہ</b> ک	۲.۳	9.6	H.	4°5	2 • A	ч.	τ.	3•6	د، ۵	··· • •	5.6	5° ft.	J*5	ي. غ•لئ	2*6	0.6	3-5- 	• 5	
FIRST CUST		22.5	44.	1.40	rJ.*								e.		U. I	, <b>.</b> (	, n			•		Ĵ.•	-	۰ ن	៉	. • C	•	<b>.</b>		с, С	:	•	•	•	ره	
1 7 7 7 X	1975	176	11:1	1770	1974	1941	1.731	1:3,	1723	1 194	149,	1930	1437	5251	'iti	76t T	1991	2661	1995	7944 1	1495	らやもし	1 ut 1	Unt I	(61 <b>]</b>	2702	1. 20	2712	1010	2104	230.	27.00	2334	· ·	יני2	

CUTULATIVE PRESENT VALUE AT INCICATED INTERCET RATE

، ف ق ف 498.2 454.8 431.7 10 .1 10124 82.5 10174 84.3 10174 

۸۸ ده. د ۲۰ ۱۹۹ م ۱۹۹ ۱۹۹ م

の生きを見たい

a T Ra T

「「「「「「」」」

の時代の時代

,i

423.

SHIPPING COST				0.0	<b>د.</b> 0	Ú.J	0•,	Ú. Ú	0 °	2 .			•			0.0	0.0	0.0	1. • N	0.0	C•0	0.0	0°0			2 ( • •	0	0.0	с «	0.	0.0	ر• ی			¢
VOLUME		IRON	ORE	12.5	12.7	13.0	13.2	13.4	13.7	L3.4	14-1		14.0			 	15.7	16.0	16.2	16.4	16.6	16.9	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.1			
TOA		COAL		11.5	11.2	C1	1 • 7	<b>C</b> •1	12		<b>.</b>	, í			- 4	<b>1</b>	7.9	T.7	1.4	1.2	6.9	6.7	ú • 4	0 • 4	4.0	ر • 4 د	¢.	t.t	<b>4</b> •0	C • 4	C • 4	<b>7</b> •0			
WATHE PARCE CEST VOLUME SHIPP				ۍ . ت	4 4	f. • J	(•)	(°-)		( • ) • •	<b>6.</b> 3		- · ·	•				4 • 9	<b>c</b> • J	( •··)	Ǖ3	(.)	ć.j	() · · · ·		<b>6.</b> .	6•1)	(·•)	<b>f</b> •J	t.J	( <b>.</b> )	• •	•	L = AL INDICALE	
	ti 		• •	ی • ت		4 • f	9.6	5 e fi	<b>5</b> •0	5•5	9•¢	5 · 7	5 ° 5	د . • •					بر <del>ب</del> ر ۲ • د	5 <b>.</b> k	5 • F	4.Ú	9.6	ۍ• ټ ک	0 <b>.</b> f	1°C	9•6	9 <b>°</b> 6	\$°\$	ر. بر در	۲ <b>۰</b> ۲	3•6		VE PRESENT VALL	
0	•	р	,		Ţ	1	ę :		,																									CUPULATIVE	
CrST	11.5		ŝ	2	10	, U	()	()	0. •••	1-1	•		•	: : :	•	5 / • •	• • • •				0.0		 •	0. 0		 3		•		· • • •		c.			
12-7-5 543° F		114	17.5	100	100	ž.	5.30	+ 36	, of	<b>7</b> P.65	1 20	136°	1.8.1	. 65	1991 20	1946	206	- 66	965	1661	996	6661	200	Tuci	302	503	よついか	5012	2000	15.0	2535	1.002			

424.

1.403

1885

, cr

64.h

a sheer af a sheer of a state of a state of a state of a state

ALTERV&TIVE NG. 76J CTAL++-RAACS.SERV. H. RPADS.64LT.+CVSHURE.128.132/52 FT.46.1-46.6 MTA.DIRECT LOAD.[3-1-A].

ł

ġ

SHIPPING CUST VOLUPE FIRST COST OPERATING CUST MALATEMANCE CUST YLAK

	,					<b>0</b> •0	0.0	C•:	<b>C</b> •0	Ú.Ú	0.0	<b>C</b> •0	0.0	0-0	0.0	0.0	0.0	0-0	0.0	0.0	0°0	0.0	0-0	0-0	0*0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	G•0
						40.I	46.1	46 <b>.</b> 1	40.2	46.2	46.2	40.2	46.3	46.3	40.3	46.3	40.4	40.4	40.4	46.4	46.5	40.5	40.5	46.5	46 = 6	46.6	46.6	٠	46.6	46.6	46.6	46.6	46.6	40.6	٠
FELMI FRANCE CUSI						J. 7	7	<b>1</b> • .	1.0		<b>L</b> •-3	<b>/</b> • ·	L •	5.7	7.0	τ • 7	5.7	( * J	-0°-7	J.•7	5.7	7	<b>7. . .</b>	9.7	0 • I	C.T.	7.1	2 • J	.7	2.0	5. T	L • - 2	7.47	1.1	1.00
CPERALING CUST						()	() • • •	U • D			ر• <b>١</b>	6. 1	1° - 0	ں: ت		( * ) C	Ú.)	0.1	ن• ت	0.0	<b>*</b> 7	Ú.	0.0	6.1	0.0	0 • 0 0	<b>C</b> •J	() ()	, ,	, <b>•</b> 0	Ú.	Ū.		5°0	د. د
^	•	0	12.4	2	2	0 <b>.</b> J	0.0	:				0.0	0.0	0°°C		( <b>)</b>	0.0	0.0		0.0	( • li	0°0	*** •	0°0	0.0	С•	0.0	0.	.0	Ú.O	0.0	0°0	0°0	.)•0	0.0
Y - 4.	C/ 51	1976	1977	1378	r-141	( 361	1981	1932	1961	1 184	1985	1980	1987	1985	1939	1393	1961	1992	1993	1934	566T	1970	1691	1995	6661	2000	2001	2002	2303	2004	2005	23.76	2007	20.03	20.09

425.

0.00 000

52.3 51.9 52.4

TOTAL TOTAL TGTAL

11.3 9.3 7.3

000 100

41.0 42.7 45.1

я. - с 10-01 ì

100

State State

	į
	1
	•
	1
	1
	1
77.	
~	
~	
	1
•	,
с	1
ų,	
	1
2.	
- 2	
-	
+	ŝ
51	
- 2	
~	
- 114	
TERNAT	
<u> </u>	
Ŧ	i
	ľ

•

CumL++-RuauS+SE3V. +. 30405+5ALT++10454082+179+000152 FT+46.1-46.6 RTA+01REUT LUAD+(3-1-01-

SHIPPLAG COST VOLUPE YEAP FLAST COST CREATING COST WAINTENANCE COST

	0°.0		0.0	0.0	0.0	0 · 0	C. 0	د د	Ú.)	C• 2	0°C	<b>C</b> •C :	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	<b>°</b> •°	0.0	0.0	0.0	0•0	0.0	0.0	J.D
	46.l	40•1 46•1	40.2	46.2	45.2	46.2	46.3	+6.3	46.3	46.3	46.4	46.4	40.4	40.4	46.5	46.5	40.5	46 • 5	46.6	40.6	40.6	46.6	46.6	46.6	46.5	40.6	40.6	46.6	45.6
	ې د. • د،	י ס י	6	5 • C	6 • (	5.1	α. •	G. G	5*1	<b>6</b> .	6 • .	5 • 0	<b>C</b> •0	۰: • با	<b>6</b>	9°1	<b>6</b> • • •	÷	5 •:	6•.	6•r	5.5	6•1	9 • (·	(° °)	6•1	5 •1	ن• 5	6.0
	6113 10 23	-, , ;	ני ב כ			· · · · · · · · · · · · · · · · · · ·	(**) )		• د	<b>(</b> • ⁻	ः •	ر. ۱۰۰	<b></b>	<b>C</b> • 1	•••	<b></b>		C. J	0.7		ر. ر				0.0	<b>0</b>	0.0		
್	· · · · · · · · · · · · · · · · · · ·	- - -	• •	J.		۲ <b>۰</b> ۵		υ.,	, • •	···	- - -	C• .		0 1 1	.,	<b>(</b> •)	0 • 0	וי ני	0 · 1	ر • ر د	(° )	•		0.0	ပ္. ပ	0°¢	ن <b>• ر</b>	J.¢Ŭ	
9251 9761 7761	1,74 1945	1981 1987	1985	1934	135	1 7 X 6	1.187	1946	1463	6661	161]	766T	[99]	1994	CP[1	999 0	2161	1995	6661	200.2	1002	2002	2003	2004	2005	2006	2007	2368	2009

¢

65.2 64.6 65.0

TOTAL Total Total

14.5 11.9 9.3

0.0 0 0 0

50.6 52.6 55.7

5. 35 7. 35 12. 95

426.

A REAL PROPERTY AND A REAL

したがくまたいとおけたいがいというかですが

たいであっていた

· inell' A

۰,

and the second sec

		427.
- a).	, , , , , , , , , , , , , , , , , , ,	
BARRES, (4-4-A) SHIPPI'IG CUST		Р 11 1 11 6 2 1
rIs,TR. Voluke	ww。ㅋㅋㅋ+++++++++++++++++++++++++++++++++	ANTICALEC THEESEST 60.4 TOTAL 540 541 TOTAL 540 541 TOTAL
78. Sulf. (Sland, 253, 023/65 FT, 32, A-54, 9 Qperaitsu Cust Print-1ance Cest	44444444444444444444444444444444444444	1171Caf 61.4 61.4
2./65 FT.,32.A-53 Psintsiance cest		14
1812 A		JRFSFNT V241 3.3 7.4
CuST	——————————————————————————————————————	~ ~
8. ULF , Í SLAN. BPEKAI I 'N		L CL×LLATIVE
	en e	
ALTERVITUN 40. SRAIMESTS.SERV. SRAIMESTS.SERV. A.A. FIRST CCST 2.2. 2.2. 2.2. 2.2. 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.		1.95°. 1.95°.
2012 2012 2012		in and the second s
527 527 527 527 127 127 137 1070 1070		

	428.		.,			
.3A ⁰ GE5,[4-4-B].	TSOC CPIA			2	ر.•ر 0.•0 2.•0 ATc	ా ఉ త
6 *T4,I2,34°C	VOLLAN SHIPPI		592222235 Fox 2 0 9 9 4 9 6 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	te ST - S	16124 363.7 16146 347.9 16124 322.7
0 ./50.5 FI,1823.6 *T4,13	*4INFENANCE CUST				2.7 2.7 2.7 Value at Ingleat	S. Sates
79. GULF, ISLAND, 25 1, 10	OPERALING CUST	τς,	እር በ እር በ እር በ እር በ እር በ እር በ እር በ እር በ	ማ የ የ ተ መ እ. የ የ ህ 0 ዓ ህ ባ ነ ሳ ላ ላ ላ ላ ላ ላ ላ ላ ላ ላ	с с с с с С	1 - 2 - 1 
1504, -11,-11,-12,-34,-34,-34,-34,-34,-34,-34,-34,-34,-34		7 				188.1 136.1 211.0
vi raj Vi tës	2757 1761 2761 2761	1891 1891 1891 1891 1891	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	139- 1991 1992 1992 1995 1995 1995 1995 1995	2002	

N ....

. **.** . .

Å

1.16

1

1

1

1	er Kape				• • • • •	ľ	N	•		τ.				-,				-	•	-	,					429.	
																										· · · · · · · · · · · · · · · · · · ·	
COST		00 • •	ر. ر.	0 °.					0.0	[]	ດ ວ່າ				Ú.Ů	<b>C</b>	0 0 0 7			С. • ?	Û.Û	0. •	: ر : ۱		ر. در ا		003
SHIPPING																						I				EST RATE	323.6 335.7 286 8
VOLUPC		18.1	L×-6	1.5.5 1.5	1.9.1	19.7	2 . • J	2 - 2		i.l.	21.4	6 <b>1.</b> 6	P.12	2 · · 2	22 - H	23.0	59.9 2		23.5	23.6	L 3.6	23.6	0 * 0 * 0 * * * 0	9.62	0.67 1	30 INTER	TCTAL TUTAL TUTAL
0 /50 HITERCONS.C		2 ° 2 2 ° 2	2.3	2. • 2 • 1	., ., 	5°7	٤3			2.3	£*2	ر ا •	2 . 2 . 2 .		ر • ت ا	2.3	2.3	0 0		۲.•3 ۲.	2.3	<b>*</b> • 7	~ ~ ~		ن . ت ف	T VALLE AF INSIGATED	37. L 30. 5
GULF.ISLAND.IZ		ະ ເ ເກີດ ເ	۔ , د. د	۲. ۳	ن م ب	. , • •	8	: 	• •	<del>ر</del> ت :	£.4	2°C		t († • • • •	4 ° A	ن. • <del>د</del> ن	₽•4	ສ	+ + + 	Р. С.	ü.4	£ • 4	.†• د	4 4 7 7	د. د.	CL/ALIVE PKESENT	1,2,2,1 1,4,3
• -	14•1 14•1 20•1 20•1		ין י פי ג		, n r		•	ເ ອີ1	د د		0	3			.,	، • • • •	e i							י רי <i>ר</i>	۰. بر ز		154.3 156.3
SRATH-SIF, SCAV	375 976 775 175 270	- 661	115	161	1984		186	(33a) 010	100	166	766	593	466	140		990 9	665					10.5	20		1012		5 . J.: 7 . J.:

CONTRACTOR OF STREET, S

, H

ş

4

	1.1.51
	-
	-
	10
	-
	0
ت	
<u> </u>	
518	~
-	1
. •	÷.,
Ū,	v
ن ۷	1
	٠٦
TATIVE AC. 91	
-	
-	11
•	~
1	1
ш Н	2
	7
1	~
۲	2
-	

~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		NNN DN D D					0 F W F L D F W F W F W F W F W F W F W F W F W F	0~0~0~0~0~0~0~0~0	<i>ᠳ</i> ┍┍ <i>ज़ॶ</i> ल <b>ढ़</b> ढ़ॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖॖ		ﻩ <b>ﻙﻩﻩﻩﻩ</b> ﻩﻩ <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	٥٣٥٩ ٥٣٥ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩	ﻩ᠆ﻩﻩ%᠉ <b>؇</b> ڡ؆٥	<u>ﻩﺩﻩﻩﻩﻩ</u> ਫ਼ਫ਼ੑੑੑੑਫ਼ੑਫ਼ੑੑਫ਼ੑਫ਼ੑਫ਼ੑਫ਼ੑੑਫ਼ੑਫ਼ੑੑਫ਼ੑਫ਼ੑੑਫ਼ੑਫ਼		ﻩﺩﻩﻩﻩﻩ ਫ਼ਫ਼ੑੑੑੑਫ਼ਗ਼ੑਗ਼ਗ਼ੑਗ਼ੑਫ਼ੑਗ਼ੑੑੑਫ਼ੑਫ਼ੑਫ਼ੑਫ਼ੑਫ਼ੑਫ਼ੑੑਫ਼ੑਫ਼ੑ	ݥݭݥݑݽݵݥݭݥݔݭݭݞݹݭݥݑݥݭݽݵݵݵݞݵݞݞ ݕ
ው ው ው ው ው ው ው ው 10 ሀ ዓ ዓ ዓ 10 ሀ ዓ ዓ ዓ ዓ 10 ሀ ዓ ዓ ዓ 10 ሀ ዓ ዓ 10 ሀ ዓ ዓ 10 ሀ ዓ ዓ 10 ሀ ዓ 10 ሀ ዓ 10 ሀ ዓ 10 ሀ ዓ 10 ሀ ዓ 10 ሀ ዓ 10 ሀ 10 ሀ 10 ሀ 10 ሀ 10 ሀ 10 ሀ 10 ሀ 10 ሀ	444544444 884644 914744 914744 9147777777777								-								
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2 2 C 2 2 2 2 0 V V V V V V V V V V V V V V V V V V V	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	V N N N N N N N N N N N N N N N N N N N	2 2 C 7 7 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 3 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 3 C 9 C 9 G 9 G 9 G 9 G 9 G 9 G 9 G 9 G 9	2 2 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	2 3 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 3 C 9 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	> > C 9 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	> > C 9 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
								2 2 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	, , , , , , , , , , , , , , , , , , ,	2 2 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9						
								× × × × × × × × × × × × × × × × × × ×	 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	 C D D D D D D D D D D D D D D D D D D D	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 x x y y	x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control of the second	Control of the second	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
						C M M M M M M M M M M M M M M M M M M M											
	0 • 0 - 0	6 ° ° ° °	0000		う 、 、 、 、 、 、 、 、 、 、 、 、 、	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											

į

CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE

0.00 0.00 0.00

247.4 227.9 211.3

TCTAL TCTAL TOTAL

36.7 31.9 24.9

1.1.6 83.4 64.9

L.7.L 112.7 121.4

5...5 7...5 10..15

間とない

ł

þ

430.

a second a supervision de la contra de la c

					431.
•					н н н н н н
(4-5-8)					
A3GèS,	SHTPP1:NG COST	ရစ်ဖွ ်နှ - ဂီစီဖွံန		0 2 0 0 0 0 0 0 0 0 0 0 9 1 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4E 6 0 0 6 1 - 1
.TR. C	41HS				ČST RATE 241.3 227.5 219.8
FT.7.6-1).4 MTA,IR. BA3GES.	VGLUNE	9 C C C C C C C C C C C C C C C C C C C		99999999999999999999999999999999999999	INDICATED INFERENT 35.7 TCTAL 24 31.9 TOTAL 22 24.9 TCTAL 215
2.35/utr	MALNT-TANGE COST	1 1	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	99999999999999999999999999999999999999	VALLE AT
2: • CULF•1SLAND•253	OPERATING CUST M	13 14 (C (C) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000 	СUHLLATIVÊ РКЁSENf 631-6 64-9 04-9
ALTERNATIVE NO. 820 IRUN ERFGERSERV.		· ແບກ ∿ · ·			CL 1.36.7 112.2 121.4
AL TERN	545 976 170 171	1971 1981 1981 1983	, 4 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2000 2000 2000 2000 2000 2000 2000 200	5。)?? 728 10.03

j.

4

The second s

	65 FT,32.8-58.9 AND 7.6-13.4 MTA,TR.BARGES, (4-6-A).
ALTERNATIVE NO. 830	3Kalli, RTN 02E, 516, SERV-SULF, ISLAND-20, 320. 6

SHIPPING COST			0.1	0.0	0.0	0.0	0.0	۵. ۲	۰ .	0.0	0.0	.	0	0.0	6 • Q	j.ŭ	0	(•·)		U+1-	֥0	0°.	0.0	C.0	0.0	0.0	6 . 0	• •	0.0	0 • 0	C.0	CC
EW	I RON ORE		7.6	7.7	7,9	8.0	8.2	8.3	8.4	8.6	8.7	6 8	0.6	9.1	9.3	9.4	9.6	9.7	9.8	10.0	10.1	10.3	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4
NOTOME	GRAIN		32.8	34.1	35.4	35.7	54.3	5.95	4.5	41.9	43.2	44.5	4.5 . 5	41.2	4・24	43°84	51.1č	52 . 4	52.7	, • : :	55.3	57.6	od.9	.s. J	9.54	59.9	54.9	9.50	58.9	26.9c	93.9	54.3
MILINTERANCE CEST			5°.	4 · .)	4°4	ð • 4	4 •3	1 • 1	4.1	C • 4	5 - 5	t •2	2 · 2	т. Ф.	4 * 0	£ • 5	د • ب	C.4	4 • ·	tt	5.5	f 4	7 ° 7	4.3	\$ • \$	÷.,	C.4	č • 4	t . 4	£ 4	֥)	۲.• ÷
CPERATING CUST			14.7	14.7	14.7	14.1	14.7	14	14.7	14.7	14.7	14.7	Lá. r	1c•3	Io. 4	10.		lc.9	İń. 5	Ic. J	lc.9	16.9	16.3	Ic.'	4 C . 3	16.9	16.9	ic.o	16.9	lo.?	le.	16.5
FIRST CCST 25.7	23.7	114.5		C			.;	•	ċ	1. • ·	, .	, •		• • r.		0.				•	0.1				س						، د ،	ن
754x	1261	6251 1473	1983	lati	2421	1383	tot.I	[28]	999 0	1961	1986	LGR J	149.	197 I	7561	1943	1394	1991	1995	1021	24451	1991	2032	1002	2002	21.15	2014	2002	2706	2705	2005	2004

••••

/15.1 665.4 623.9

10131 10131 10131

103.3 65.2 66.4

223.6 226.7 129.5

358.2 373.7 393.7

1111

Contraction of the

ł

432.

YE VOLUMENTAL AND SOME

 γ, ψ .

,

A TANK AND A TANK

in the s

۰.																									ر. ا	*	• :•				
ING COST																1															
SHIPPING	IRON	ORE	7.6 0	C		8.0 5.0	8.2						0°0 0°0									0.3 0.0		10.4 10.4							0.4 0.0
VOLUME	П	GRAIN (~						21.4							23.3 II									1 3.65
MALVELANCE COSE			6 ° 7	t in t		(° + 4	4.4	4.4	() * *	÷••	4°5	F • J	1 • J	5 • C	(m * 1	ট * ব	~ • <i>r</i>	C • 7	ጥ • . የ	C •1	5 • 7	0 • • •	• ••	5. * 5	7. • t	т () • т •		r 7		• • •	
UPERALLYS CCST						(, I	1.1	2.01	10	. It			1001		(.1 1		· • 1 • ·	٠		11.3	11.4	īī	11 · 5	11.3	1 - 5 5			2 11	• •		14.3
ISD IST	20.2	79°4 1°52			1		•	å		· 3	 	• • • •		ر.	1) • 1	5	ċ	J.,		، ،	ب	. • • • •	•			. .	ب	•		• .	• •
	1976 23 1976 23	1477	17, 12,		18.	1983	1984	4,94	1365	561	- du	1.25	1 c3 :	165	766	(69)	1494	1935	1976	1651	7551	(6t.]	٦, ر	157		;;;	1 - 1 				1.0.00

515.7 481.3 452.9 TCTAL TGTAL TGTAL 7 .. l 65. l 5. .8 1 (c. 3 1-4.4 112.2 263. 5 271. 6 289. 9

10 - CI

୍ . ୧୦.୦୦ ୧୦.୦୦

※「「「「「「」」」」」

ł

VOLUME SHIPPING COST		Η	IN ORE		4 F	• •		6.7	8.0	8.2		8.4	8.6	8.7	6.8	0.6	9.1	9.3	9. 6	9.6	9.7 J.0	6	10.0	10.1	.3 IO.3 D.C	10.4	10-4	10.4	10.1	10.4	10.4	10.4	10.4	10.4	10.4		INTEREST RATE	
2			GRAIN			* X	Lc.	19.	14.	بر	19.4	61	51.0	2.1	•		21.	21.	21.	21.	22.	22.	2 Z	23.	23.	-53	č3.	23.	۷.	25.	23.	£3+	23.	£3 .	23.5			
TAINTUTANCE CUST						4 • 5	u. •	4 • J	10 • 7	£•5	6.54	t	4.5	4 • 51	÷.5	••5	4.5	4.5	4.5	4.5	4 - 5	C • 4	4 • 5	4.5	4 ° 0	÷.5	4.5	U . 4	4. • U	4.5	4 • J	4 • J	4.5	4.5	4 • J		NT VALUE AT INDICATED	
UPERATING CUST						I7	Lord	Lut		L 7	L	17	IC. 7	I	10.1	L /	11.3	11.3	11.5	5 • 4 4	11.3	11.3	LL.3	LL.3	11.3	li. }	11.3	11.3	Li. 3	11.3	LL.5	11.3	11.3	11.3	11.3		CUMULATIVE PRESENT	
FIPST CCST	16.5		1.02		14.0		Ü. :	2.0	C				3	J.C	:		C C		0°°0			1. . .	• •	J.C	Υ. • •	'••0		•0•	درج	- -		с•°	۔ ئ		0.1		-	
	1975	4761	1761	5/61	5/6 1	1994	1961	138.	1033	1984	1985	1966	1961	1 J8.	1964	- 66 T	1991	7661	F6t1	1994	2961	1346	1997	199a	1994	200~2	1002	2.70.2	2303	21:04	2005	2006	2007	2.108	60(2			

434.

5

ţ

ž

ALTERATIVE AC. Boy Srain (PC) GREDIBSERV.Gulf.ICLAUD.L. Sty DO FI.250.JU 54.5 FI.18.G-23.0 ANG 7.G-10.4 MIA.TR.BARG Scilatori

10.00

i

ţ

1.04

~

SHIPPING COST															_		_						-	-		_				_	-		-		•
SHIPP						0.1	0 •2	ບ ບ		0 •0	0.0	0-0	0.0	ت• ت	() • ·	3 •0	U •0	0.0	0 0	0.0	0,0	<u>0</u> .0	С. С	0-0	ن• ت ر	0.0	C •0	() - ()	0°0	0 • •	0.0	0.0	0.0	0.0	6°0
IME		LRON	ORE			9-7	1.1	7.9	8.0	8.2	8.3	8.4	8,6	8.7	6*8	0.6	9.1	9.3	9.4	9.6	9.7	9.8	10.0	10.1	10.3	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4
AOL UME			GRAIN			14.0	Ic.3	15.6	13.5	1.9.1	4.61	19.7	C .: 3	20.2	2~•5	2 - 8	21.1	¿l.4	21.6	21.9	źż•2	21.5	22.8	23.0	23.3	23.6	23.6	23.6	23.6	23.6	23.6	23.6	23.6	23.6	خ 3.6
VILUL ANCE CUST						4.5	1 1 1 1	4 • 5	6 • 4	4.5	4.5	4 • U	4°.	đ. 4	5°4.	5.4	C • 4	4.5	4.5	۴.5 ت	£ • J	4.5	4 • 51	C • 4	4 - 2	4.5	4.5	C • 4	4 • 5	51 * 4 4	4.5	4.5	V. 1	5.4	4 • 5
CPERALING GLST						Lue 7	17	10.7	17	17	L7	11	IL.7	10.1	10.1	10.7	11.3	11.3	44.5	. LL.3	11.3	11.5	1.1	11.3	11.3	11.3	11.23	-11-3	11.3	11.3	11.3	11.4	11.3	LL . 3	11.3
4-5-9). FIRST CCST		13.3	26.È	13	74.44		ر . ر	•	- -		c.	12	۱ ۲	C 5		•	(• •	•	. • C	0	•	• ر،			•					•	e.
ES.(4-5	-	147.	1261	1475	107.1	[96]	liel	1961	1983	4ac1	(ipl	1980	1931	1985	689	1991	1661	1992	1995	1441	5651	1996	1661	P6t 1	6661	200	10.02	2002	2003	2004	2005	9002	1002	2.423	2009

TAX YOU DAY

CUMULATIVE PRESENT VALUE AT INCICATED INTEREST RATE

481.2 446.7 417.5 TCTAL TOTAL TOTAL 72.6 177.2 145.2 112.9 231.4 241.7 257.0 5.)5 7.65 19. JS

435.

1.5

N.

.

ŝ,

連行員

and the second
D

. . .

1 . H

,

المستعدية وتيريد والمراس

ą

「「「「「「「「」」」」」」

And a second second second			94:75719 1964	17 76:799	****** * ****	, , , ,		·	*										viengia, ai anti belinir		ang si kana kana kana kana kana kana kana kan	98.8. a.e.,	
	٨	36.								•													
	4	50.																					
															1	т. Т	.را ا	"D"		. '		- t. -	
	1			•						1.4				ν.	· · ·	n Lin	T.	н _а Со	, ", , , , , , , , , , , , , , , , , ,			a *	,
				•						,		•	ن . حل م بر	<i>.</i> `		14 ^{. 10}	. n-	10) (Å) 1	ner - Maria	alinena of t		5-19 - 202 22 7*1 - 1 86 [] 8	n:
										n) ^e	់ ព្រ រំ	Ран — * 6 5	a/e	! }	ф9	м <u>т</u> р ()е	 .19	Qiet.				Х. 172	un gun h
11-2										ай 291		-	Ċ,	ŕ		, ⁻ ,	(II	<u>л</u> ,			1. n 1	y Hu	· · ·
			· ,						Ę.,	÷.	. *			()		. 9 (, . ,	ъf П					
23364: 23364: 23	cnsT	1. T. 1. A.	30		ن ن • • • •	0 : 0 2 m					0 • •			۰. • • •		ר. היי ר		е. Э. Э. Э.			•		;
0 	SHIPPING I	Бу Na				•	19 19	•.	r	ч. Т	2 13		ch i			ý S	, 3, Ci	· ·		L L		.0	
بر چ	2H i bl		йу С	. *						1		Ì,	- 5 6 (* 9. – * 1.	л , 1 	ι I)	î.				ST ¢A	259.1	8 - 60 0 - 60 0 - 60	
			• • •	ະ • ຍ • ຍ	4•1	~ • • • • • • • • • • • • • • • • • • •	24	ď		0 0 1	- - 1 - 1 -	(C) (т м • • •	9•9		0.0 • 0	3.6 6		3•5 3•5	I ateass			ı
- 	2016 ME			<u> </u>		c.					30	~	1-1	•	1-1-	2	<u>, 1</u> ,	1 °4		15	ICTAL TOTAL	IVICI	
	5	I	••• •••	м •••	1 • •	. m m • •		n ∸n i • • • Ji	י די די - י די - י די ו		~ · ·			~ ~	 			•••	ć. j č. j	1.1CA	7.L	n ch • •	
1997 - 1997 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997				:																AT 15			
																				Value			
۱ -																							
	CuST	1	1 U 4 K	10 A	υ.υ • •	4 4 • • •	1 1 1	0.0	ាង ភូណៈ	ა ი ა თ		1	ເສ ຄ.ທ		, , , , , , , , , , , , , , , , , , ,	, n u u u	د ۲ د ۲	ۍ ر •		₽keSaùT			
	EXATING		••																	TIVE		- •	
	i≓ dÜ	11								·										CU*-LLATIV			
ر. 15. م مالي 15. م مالي 1	EST SST	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	 • • • • • •					5 . • •	• •								••••		ار با با در	U	1•3 -	45.1	4
	RST		•																			n 4 1 1	
				• ر	J (1	.					10.1	, 		. •	4.71	~ .+	c	- -			ہ مد	(D) (p) ≠ 	
AL T.		1970 1970 1975 1975	146	178,	Сне Т 1 с.с.	1361		.661	136	.2691	561	1.5	,	2002	212	ر بر مار م	202		222		د ۱		

ក្រភាព

:(5-7-6) 1E TESNATI VEI KUEI 1434 38 NIV+ FREEFSKI 598V (TEXAS+145F12+124+

م 1100 م من من SHIPPING (150) و 201 ". I'YE LANDE CEST YEAR FLOST COST DPEPALING CUST 1973 C. C.

л [.] ,	, ,2	21		ч.	7 1				20						 1	در برج راجع		* 11		i Lo,	p.		19 19	-tite	ЧŞ Цэ	а араңу(₁ ()		u La	RATE	ير دي 1	. '
		с. с. (n vç		F		~ (- 		د م	-	4	9	о г	- - -	n a	: ري		ę	.		ас Ф.			\$		5		EKEST		,
х 1 с. 1		• .	0 T	, 77		•5. 1						21.		- N				53		m.		د د د			~ - 6 Je	• 6 2 .		- 1 	1-1 3-1		
· · ·	ی د د ا	ά 		• • •	1.0	÷ L	ar -	די ס) U. • •	10. • • • • • •		1.6	1.3	1: •	T ()	• • • •	ία) 	121 6 1999	2. •	199 199 199			r 1 .• ·		۔ 10-10 موجد ا		3°.		INSICA	*. . *	
411 411	л . (1		1	•	··· i	n L ¹ er, A		1		° ¥			· ····					лі 184			· · ·				1 VALLE - 41	i Alt A	
u l		5.7	5 • 7		5.7	1.6.	~ • • • •			-	1.9	-e.1	c.	ڊ. ا	5		0.1	.	 	· b • I		6.]			ار بر ا	[•]	 2	si, jan i Nj	E PKESEVI		
				•										•	۰ ار ار ا	;	,		יי יי			1.J			,	·		<u>к</u> 	CUPLICATIV		
L3.)	4	۔ د	c -	•	. • 1	. • (کې	 	• '	a da					- - -	• • •	,-, ,-,		•		Ĵ	• •	- - -			•	•		ū		
1761	107	193,	10001	1961	115.4	56(1	1785	1941	r 1 7 4	1.90	1961	7661	85il	*うた [-			-641	1994		10:2	~~~~	5172			11	1	4122				

0.1

0 • •

ې ب

0.0

0.0

0.0 Ú.

ດ • •

0.0

0.300000000000 1.200000000000

0.0

0.0%

0.4

1

195. 115.

たたの

Tatal Tõtal Tõtal

, arge									. ,		.,		•.		·									ī							1.					
•••••		438.	. •	 		. 11	• .			14. 14.			рт 150 15	•	1 1 1	1 1 1 1	- 44 + 5 - 44 - 5		• •	۰. ۱۰۱		ء بر اير بر اير	45 21				Dia	• • • •	n Alta Agai		- - - -	- - 	•	1 19 1		-
	ni Angelander Angelander Angelander Angelander Angelander Angelander Angelander	a a conserva en la conserva a conserva en la conserva an la conserva	, i 					1. 1 1. 1 1. 1 1. 1 1. 1 1. 1	4 	h yy Hayyy H	х, т Ч _{юд} т	; 		ייי קליריד			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		i Ne. Gigi Re Stati Stati Stati Stati			1999 	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	land Gar Gar	21-3 2-43 2-43 2-43 2-43 2-44 2-44 2-44 2-	initation initiation initiation initiation initiation	ن بر ا ۱ ۱ ۱ ۱ ۱	.1 tratic SV24 	ngiarina Arguyari Ina Ji Ina J	inne TRY Tasili Tasili Tasili Tasili	n National N	Hrnad (F) (F) (F) (F) (F) (F) (F) (F)	nin in So Ny Solon	 11	
7 - 14 - 5 - 1 - 1 - 1) *		· · // 	-,	·	, `` ;; `	' , 1'	 	11 11 142 121 14 1			bj - Di	·		. ¹ .	``. `?	κ. 		90 10 11	ралан 1963 - 19 1971 - 1972 -		9 17 17 17 17 17 17 17 17 17 17 17 17 17	nin)k N	n n Nic Li Li Li Li Li Li Li Li Li Li Li Li Li	ngan in Pilipin Toray Pilipin	.0' ,1, ,10	999 979 Nor 1		in Shi Shi		n Nilay Nilay Nilay		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
· .		، بر در در در	SAVINGS		1) 1) 1		- - 	E •1.			6°.		<u>6</u>	2 · . 1				9.8 . E	6. J	0.	4.6	.	0.2		2 · 7	2.6	9.2 4.7	100 100 100	9.2			einn P	165.1	137.3 1.8.7	41 54 94 - 94 - 94	1.000
	Reproduced from best available co	42).	SAV		i da	, , ,			•						e Ale Ale		بر بر			in in	9) 20 - 10 - 1	, i i Alte Vite	ζη ¹ ∼ulig 			n Alth tead	र रम्ब	4 	h. Neter	alujen Alujen	ST PATE	··· .	10 4 • U		1 - Airt - 19 	
1	Repr	-0-41,2-6-42	VOLURE				×	†	4 1 - 4 2 br>- 4 2 - 4 2 - br>1 - - - - - - - - - - - - - - - - -	45.1		· • • • •	X • 5 5	44.7	10.44 10.44	44.5	44 • 4	544 S	44.1	44. 44.	(• ; •		1.02	41.7	7 • • • • ·	1.14	4.5.7	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	41.7	 	FEC INTER		Tri IAi	TETAL	1 1 	
	Lumns Sig-	4-55, L+12-	C_ C-IST	I				•	•	•	•	1 -	- 15 • • • 1	• • • •	• •	 	•	· -		. (4)) 	• • •	•	े । सं		(1)			•) /C	AT INFICAL	•		 • . • 2 . •		
• • •	Series 2 3 Cost Columns nify Dummy)	al health	ΥΥ.ΙνΙ. Υ.													,4.		. N '			÷	. '	4). 			•					11111					
	(Note:	••CONVENTICATL	RALING LCST					• •		ه ه د. د		• • •	2. 13	•	• • •	• •			د د ا		• •	1. 	•		•2 1	.	- - -		• • • •		1172289 4VIT			1 1 1 67 1 6 6 1 1 7 1 1		
		. 191 Sheilet	1 da			-											• •				1						ς			,	CI ELLATIVÈ					
		ALTERNATIVE NO Sevitas.coal.6	HIAST CCS		· • •	r r		, ro		• •, (ι ⁻ ι (. ي						ι, ς		Ū.		ι Ω	-, (ιų́	c '	÷	,			r	× 4 3 ₹	•	
		21712 21717	Y _ 42	c1 t 1	1.470	1261	-201	- 201	18c1	787 197		l st l	, al 1		1461			:(c]		1 195	1661	661	. ((2		2002 2002	1012	2,00	22		•			۰. س			

ALTERAATIVE NG. 201 Savingsyccal,bSr,Dele,bustrikter panft pusijn,taaaji,2-6-62).

ļ

i, r

ų.

v i

the second s

ļ

j. V

Į

-

SAVINGS	ちららうよう!ひのてもらう????????????????????????????????????)
	ST PATE S. C.)
VOLUME		
46154-1446F 615T	Al McGACO 1000 2000 2000 2000 2000 2000 2000 200	•
	41 VAL 61	
OPERATING CLST		•
		•
Elest 1997 1997 1997 1997 1997 1997 1997 199		•
+761 •7501 •7501 •7501	00000000000000000000000000000000000000	5 · · · ·

...

A STATUTE DE LA COMPANY DE LA

439.

1211122002010410101010101010

للكر والمقترعات

خدف تديك

1.4

1

سقارا المقار

A STATE AND A STATE OF
S																																		
SAVINGS				17.5	17.5	17.5	17.5	17-6	11.6	17.6	17.6	17.6	i7.6	17.6	11.7	17.7	17.7	17.7	17.1	1.7.8	17.8	17.8	17.8	17.8	17.8	17.8	17.8	17.6	17.8	17.8	17.6	17.8		
VOLUME		IRON	ORE	12.5	12.7	13.0	13.2	13.4	13.7	13.9	14.1	14.3	14.6	14.8	15.0	15.3	15.5	15.7	16.0	7-01	16.6	16.9	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.1	IT RATE	
TOA		COAL		4.0.4	45.3	45.2	40.1	45.1		44.0	44.8	44.7	44.6	44.5	44.5	40.4	4++3	44.2	(m) (* 1) (* 1) (* 1)		÷	4 5 . 8	43.7	4.5.7	43 .7	43.7	43.7	43.7	43.7	43.7	43.7	÷3.7	ED INTEREST	
MALVELVANCE CEST					3) • •			i - N i ∎	• •		•	(••		•	0 • •	•			• •		4.°C		() • •		¢ 1	•	0.0		•		C •:	VALUE AF INUICATED	
GPERATING CCST N				• • •	Ċ•)	' •	•	، ٹ	•	. • .		(•) •)	· • • •	, •		•••			• •			Ú.U		2 • 2	् • •		(··)	C •)	· • `	n•a	ر. •	, • • • • •	CUMULATIVE PRESENT	
FIPST CCST	ຸ , . ເວັ <i>ເ</i>	• • •		J		•••	.,		,	:	· •	J. C	• • 1	· · ·	J		r 12 e	-, , ,					ر• ر ن• ر	í.(, , ,	0	- 		- • •	. . ن	0	с. С	ũ	·
5257 175	1976 1977	1 175	6261	(en]	1901	1261	[99]	1ag4	らないし	1935	1337	1986	1961	(66 1	1991	766 1	1995		1996	1997	19-3J	1994	200 c	1015	22.02	2023	2704	2365	2006	2007	2005	2009		1

440.

SAVINGS 4LI÷RHATIV- AC. 221 Savings.ccal And Irum Grefusdertl..testpicted braft design.iz-7-b1,z-7-b2). 9.4 9.3 9.2 9.1 0.9 8.9 8.6 8.7 8.7 4 A Q Q 4 6 8 9 4 6 8 9 7 6 9 9.3 8.9 8.1 8.1 8.1 8.1 9.L 8.1 6.1 6.1 8.1 8.1 IRON ORE 12.5 12.7 13.0 13.0 13.7 13.9 13.9 14.3 14.8 15.3 15.5 15.7 16.0 16.2 16.4 14.6 15.0 16.6 16.9 17.1 17.1 17.1 1.71 VOLUME COAL nn00000 GPERATING COST MAINTENANCE COST స్లారం సాధార్ సార్ అల్లార్ రాగ్రార్ సాధార్ సిల్ సిర్మాత ప్రవర్శ విషయిల్ వివర్శ ప్రతిసిద్ద సిల్లి పిల్లి పిల్లి పిల్లి పిల్లి పిల్లి పిల్లి పిల్లి పిల్లి పిల్లి • COST -5.0 . -• • • • ``• F LP.ST

CUMULATIVE PRÉSENT VALUE AT INCICATEU INTEREST PATE

500 000 FRFAL Tutal Total 001 120 000 000 4 n 0 2 a n

5.55 7.35 13.07

and the second
141.J 116.J 92.2

CHURCH ST 177 X 11 090

441.

1

.. .1

							x				;	1		,11	÷ .	ar ar				x ., x		1; 1 		1 1' *.		
5 6 [1		میلان میلان انجین														2.2462	وبكا	CTALU:		. (122			an 1913.			2494 - 24
SAVINGS	1.9	9.3 9.6	9.8	10.1 10.3	10.5	1-1-8	11.3	11.5	11.7	12.2	12.5	12.7	13-2	13.4	13.7	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13-9		196.4 153.1 113.8	
VCLUPE	46.1	40.1 40.1	2.04	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	40.2	41: • 3 6 6 - 1	46.3	40.3	45.4 · ·	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	40.4	46.5	τ. 	4-5-5	46.6	46.6 46.6	40.6	40.0	40.6	40.C	40.0 40.0	40.5	40.5	IAUTCATED INTEREST RAFE	ТСТАЦ 6.5 ТСТАЦ 0.0 ТСТАН 0.0	ı ļ
VALNTANNE CUST		• •) () 1 ()) ())				1.2 • •	•	• • •	•		• ·	3			•	• • • •	•	•		• • •	· •	-, •	LAT VALLE AT INCICATE	•••	
UPERATING COST		 		• •) ")		۔ • ر			(•			•	، : د			: : بال			C	<u>ئ</u> .	، ي د	، ، د.	ς•··	CUPULATIVE "KESS		
FIRST COST C C			 	: -	•••				ti e ru		5 1 0 1 0			ر. د د	ن	، ب ب	د ر		•••				-)) •) •)		* _ \ * * * * * * * *	•

CONTRACTOR OF THE OWNER

													443.		
.91.	SAVINGS	9.0 1.4 1.8	4°0 4°0 4°0	9.8 10.0 10.1	10.3 10.4 10.4	5.01 7.01 8.1	L1.6 L1.1 L1.2	11.5	11.7 11.8 11.6	11.8 11.8 11.6		11.8 11.8 11.8	AAT L		
•CrivEttErist dEstan, (3-19)	VGLURE	46.1 46.1 40.1	4 4 6 • N 4 6 • N 4 6 • N	4 6 • 3 4 9 • 3 6 • 3 8 • 3	د دن د د م د د م	4 4 4 2 4 4 2 4 4 7 4 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7	4 4 5 5 4 6 4 7	10 10 1 • • • • •	1 4 4 5 5 5 6 5 5 7 4 7	4 - 2 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 7 7 7 9 9 9 9 9 9	CU INTEREST	TOTAL 0.0 TOTAL 0.1 TOTAL 0.1	$\frac{p}{p}$
- 37405	al futurance cust		• • • •		, * • •	(* * * * ● ● ● ● * 3	200 - 201 - 20 0 - 0 - 0 No - 1 No - 1	• * • * • * • • • • •	3 (° + 3) ● ● ● ● > 5 - 5	• • • • •	• ,		יור עמריה אך ואיוראו	• • • • • •	. (A)
- NG. 241 24. Hackberetal Ivency.	CPERATING CUST		<u>.</u> د د د	• • • • 3 3	J 2	د د ر	3 3 3			 - د د	• • • • • • • • •		CLPULATIVE PRESE	0.00 0.00 0.00 0.00	
EKAATIVE A0. 1965,6636,140	Flast CCST		- 3 → • • •		****	11 - 7 8 49 0 1							-		1

	,	•
	SAVINCS, 64-IN, 616, MISS., CONVENTIONE DESIGN (4-4-A).	
	1	
	ì	
	6	
	0.10	
	1	
	E	
	3	
	ź	
	ISS	
16	2	
•	61 F	
20	ż	
۲ ۲	4	
AT I	510	
2	1	
ALIERAATIVE NO. 251	١٧٩	
7	ū	

SAVINGS		279.2
		0.0
ACLURE	INULATED INERSEST 241E 200	TCTAL
N4INFL'IAVCE CAST		r 3 • •
OFFRATING COST		
FIRST CCSF 6.5 0.1 0.1 0.2 0.2		
YEAA 1975 1976 1978 1978	144 14 14 14 14 14 14 14 14 14 14 14 14	10.15

444.

ł

THE ARE SHOWN

鞩

																											445.		
SAVINGS		12.5	12.7	2.49	∑•12 2 - 2	13.5	3.7	3.9	4• I	4 × 3		5.0	5.2	15.4	5.6	15.8	16.2	16.4	16.6		16.0	10.0	16.6	6.6	16.6	16.6		235•5 100.0	46 • č
SAV	' A	T	1	- i •	- -	-	4 <i></i> 4	-	nii (<u> </u>		<u>ب</u> ہ	-	-					.	<u> </u>				<u> </u>	-		ATC .	0°0 2°0	
· ·															n, T	('	· · -			':			,		EST R		ò
VCLUME		le.0	18.3	16.6	2	19.41	14°7	2 c - J	22	2 ° 2		21.4	21.6	21.9	2.22	5.	23.0	23.3	23.6	23.6	0 4 9 4 1 0	0.02 73.6	23.6	23.6	23.6	23.6 23.6	ED INTER	TOTAL	1014L
MAINTLANCE COST				•			, , ,	(•;	•		n,		0		•		• • •	0.0	7 •	¢3 /	n .	•	9 ° C	ر • ي ر	3. •		IT VALUE AT INDICATED INTEREST RATE	.* C • •	
OPERAFING COST		10 • • •	د	(• • •		 	,	(••)		•			0. 0	د د	€ • ₹_३	· · ·	• • 3 (3		,		2 ° 3	 •	C	¢.•⊅	· · ·	 • • • •	CUMULATIVE PRESEN	دۍ و ۱ -	2 C2
C.0 C.0 C.0	1. 12 15 C		.,		 		.	ن. د	,	-		-		•••	- - -	•			C. v	יי גי					ູ່. ບໍ	ດີ. ເດີດ ເດີດ		., -	, ", ● ● 3 € 1
ΥΕΛ ₃₅ F 1975 1976	1791 1973 1973	.96	141	184	[483]	1925	1386	1361	[98c	- 8- 1 	1001	7661	\$ 66.1	76£1	195	196	1651 1651	(66)	(502	170	201	401	500		1000	2-103 2-104		ر بر 1	1

44	6.																									
SAVINGS			14-9	15.1	15.4		12•7	16.3	16.6	16.8	17.3	11.5			16.5	2 18.7	14.0	19.5	1.9.7	[6°]	1°51 1°51	19.7	2.61	- 10.7	2.61	[4•/
VCLUME			l n.ú	16.3	р.	ж. :	L 7. L 4.4	7.61	20.0	2,.2	2. B	21.1	21.4	21.6	22.2	źe•5	22•B	23.5	6.5.6	23.6	0°7'	23.6	23 -6	0°C) 7 * 6	23.6	د ئ•6
MALNTENARCE CCST VC) *3	دی۔ ۱۹۰۱ - ۲۰		7 0															\$ F} ● ●		5 P		•
DFERATING CUST M					0 °			• •				1		- 4 7 4	• • •	•			، د ا	• •		• •			• • • •	., •
	, (• • • •				i u		*, i	• •		یں ۔ ا	, 1 C		۔ ر	- - -	• •	•	-	,- 	·			ा • •	• • •	•		•
72A-	11975	sitt I		laol	1482	6961	1 305 L	1320	1961	286 T	1991 1991	1441	7651	(661 (661	1.995 1.995	195	1001	1995 1345	23.9.5	2001		2004	2005	2020	20.05	51.9

Ļ

'n

149.7 121.3 92.3 SAVINGS 7.9 10.6 10.6 8.2 PRESENT VALUE AT INDICATED INTEREST RATE 23.6 23.6 VOLUPE TUTAL TOTAL TOTAL 222 MAINTENANCE CUST ALTFRVATIVE NN. 281 Savings,grain,gib,#iss.,këstrictën draft,(4-4-č). יייי יייר יייר יייר ייר ייר ריכ ב د د د 1909 1999 1999 1999 1999 1999 CCST ئ 200 OFERATING **CUPLLATIVE** CUSE ي. دي 10000 60000 3 ð FlqST

F.

447.

A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A

「日日」「日日」「日日」」

「「「「「「「」」」」」

1

ł

	448.				
	SAVINGS	44400 6000 6000	, , , , , , , , , , , , , , , , , , ,		93.1 75.2 57.2
				st rate	000
(V-	VOLUME	7°5 7°7 8°0 8°2 8°2	,	10.1 10.4 10.4 10.4 10.4 10.4 10.4 10.4	TOTAL TOTAL TOTAL ,
CESIGN, (4-5-A)	ENANCE CUST			C.0.0 C.0 C	6 6 6 6
لہ ج	MAINTENANG			T VALUE AT	
. CONVENTION	COST			i a	000
91 612,¥155.	OP ER AT I NG			CUMULATIVE	
ALTËRNATIVE ND. 291 Savings,ircn Gre,gir,miss			, ၁ ၁ ၇ ၂ ၆ ၅ ၉ ၉ ၉ ၉ ၉ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		000 000
LTERAS		979 981 982 982 984	988 988 988 999 999 999 999 999 999 999	1998 1999 2005 2005 2005 2005 2005 2008 2009 2009 2009 2009	5°.02 70°95

THE REAL PROPERTY AND

ļ Y. i k

> Ş ١ Ş

> > ļ ş

> > > t

Service and the service of the servi

ß

ţ k.

والمرب فالتلقة منتشمينا بتعيديكم ومرار

í, 1

Ř

	* 		· .	5. 	· · · · · · ·
	• •		м. м ^{р.} т.,	1	449.
, , , , , , , , , , , , , , , , , , ,		n series B	- Alleria - Alle	and and a second	
· ·		an an an an Ar An An A		ំងូល, ក្រុ - ព្រំ បាន ស - អ _{ាត} ក្រុស	n
	ана с 1 19 ст. с.	H _{and} _A and ^A the second	$\frac{1}{10} \frac{1}{10} \frac$	n an	
1	8	ゆりつょうごうみょう	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 N N N N N N N N N N	
	SAVINGS		ที่ ที่ ที่ ที่ ที่ ที่ ที่ ที่ ที่ ที่ ที่ 		33 8 1 1
	. s 				INTEREST RAT AL 0.0 AL 0.0 AL 0.0
	VOLUMI				
T • (4-2-1	ICE COST				TINDICATED
TED URAF	Na I NT ENANG	e se se se e Se se se se se se Se se			VALUE A
, RESTRIC					PRESENT
)] 11. ~155.	OPERATING COST			$0 = \frac{1}{2} \sum_{i=1}^{n} $	CUMULATIVE
ALTERNATIVE AC. 301 Savings, Irun Ore, Gir, Miss., Restrict	CCS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ម្មត់ ចំពុំចំពុំចំពុំចំពុំចំពុំចំពុំចំពុំចំពុ			
NATIV 1650 IR	FIRST		n an the second seco Second second		0 ••• ••• •••

CALL STREET

450. 450.	NG. 311 N AND IRON DRE, 18, MI CST CPERATING COST C. C C. C C. C C. C C. C C. C C. C C.	CVVE 21 10"AL BE	VOLUN 11N	an t a M _{anan} a	n A A A A A A A A A A A A A A A A A A A	
4220. 4200. 42	II IRON ORE, JIA, MI COERATING COST C.0 C.0 C.0 C.0 C.0 C.0 C.0 C.0 C.0 C.0	CVVE 11 OTAL BE CVVE 211 OTAL BE CVANCE COST C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.	, [4-6 VOLUV	1997 - 1997 1997 - 1997 1997 - 1997 - 1997		
4220 Main Set Interaction (Construction (Const	LIRON DRE, LIR, MI CPERATING COST C. C. C	CVVE 11 01101 BE	VOLUN IN			, ,
450. 450.	Cost a co		ru.	ı		
450. 450. 5.110, 10, 10, 10, 10, 10, 10, 10, 10, 10,				SAVINGS	•	
Control of the second s				• .	· · · · · · · · · · · · · · · · · · ·	45
Cutourine Parscent while A molecular interval and a set of the set					ų.,	0.
C. C			2.8 7.			н 19 11
CULATIVE PRESENT VALUE AT MOLECULAR CONTAINED TO			1 J.	27.5	* . • .	1 P I
C.C. 5.4 C.C. 5				26.1		
CULUATIVE PRESENT VALUE AT INDICATED INTEREST BATE CULUATIVE PRESENT VALUE AT INDICATED INTEREST BATE			5.4 7.	23.8		
Cubulative Reserved Value At INDICATED INTEREST RATE Cubulative Reserved Value At INDICATED INTEREST RATE RATE Cubulative Reserved Value At INDICATED INTEREST RATE RATE RATE RATE RATE RATE RATE RAT			0. v v v	24.4		
C. C			5 M	1.10	· · ·	
C.2 C.2 C.2 C.2 C.2 C.2 C.2 C.2			8	4.15		
C.J. C.			6			
CUMULATIVE PRESENT VALUE AT INDICATED INTEREST Prov. 2513 C.C. 2000 C.C. 20		5 /		32.7	3 	
CUPULATIVE RESENT VALUE AT INSIGNATION CONTACT AND CON						· · ·
Curlentive Resent value AT INDICATED INTEREST AATE C.C. 555.9 10. 337.8 10. 337.8 10. 337.8 10. 337.8 10. 337.8 10. 337.8 10. 337.8 10. 337.8 10. 337.8 10. 337.8 10. 337.8 10. 337.8 10. 337.8 10. 337.8 10. 337.8 10. 4 10.			6		-	· · · ·
0.0 0.0 0.0 0.0 0.1			5	35.2		
CUMULATIVE PRESENT VALUE AT INDICATED INTEREST BALL CUMULATIVE PRESENT VALUE AT INDICATED INTEREST BALL CUMULATIVE PRESENT VALUE AT INDICATED INTEREST BALL CUMULATIVE PRESENT VALUE AT INDICATED INTEREST BALL COMULATIVE PRESENT VALUE AT INDICATED INTEREST BALL			8°			н
CUPULATIVE PRESENT VALUE AT INVICATED INTERES 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						
CUCULATIVE PRESENT VALUE AT INDICATED INTEREST RATE CUCULATIVE PRESENT VALUE AT INDICATED INTEREST RATE			• • •	31.4 27 B	и () (,	
CUPLIAIIVE PRESENT VALUE AT INVICATED INTEREST RATE C.U. 0.0 59.9 10.4 59.9 10.4 59.9 10.4 40.4 40.4 40.4 59.9 10.4 40.4 40.4 55.9 10.4 40				0 10 10 10 10 10		đ
51.6 55.9 10.4 40.4 55.9 10.4 40.4 40.4 40.4 40.4 40.4 40.4 40.4 55.9 10.4 40.4 40.4 55.9 10.4 40.4 40.4 55.9 10.4 40.4 40.4 55.9 10.4 40.4 55.9 10.4 40.4 55.9 10.4 40.4 55.9 10.4 40.4 55.9 10.4 40.4 55.4 10.4 40.4 55.4 10.4 40.4 55.4 10.4 40.4 55.4 10.4 40.4 55.4 10.4 40.4 55.4 10.4 40.4 55.4 10.4 40.4 55.4 10.4 10.4 55.4 10.4	•		.3 10.	39.1		· · · · · · · · · · · · · · · · · · ·
CUPULIAILYE PRESENT VALUE AT INVICATED INTEREST RATE C.O. 000 58.9 1004 40.	-0-V		6 10.	39.8	· · · · · · · · · · · · · · · · · · ·	
CUPULATIVE PRESENT VALUE 34.9 25.0				4.04		
000 000 000 000 000 000 000 000	2	•	10	4.04		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			5	4 - うや	יי לאי ייייייייייייייייייייייייייייייייי	· ·
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0	9 10	40.4	۰. نو.	
0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1			0 10	40.4		
0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1		- 19 -	6	4.04	1.44	
CUULULATIVE PRESENT VALUE AT INDICATED INTEREST RATE 0.0 10741 0.0 550.0 10.4 443.1 0.0 317.4 443.1 0.0 317.4 443.1 0.0 317.4 443.1 0.0 0 0 317.4 443.1 0.0 0 0 0 317.4 443.1 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3.4		40.4		
CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE 0.0 1.0 0.0 443.1 0.0 10 443.1 0.0 10 443.1 0.0 10 443.1 0.0 10 10 10 10 10 10 10 10 10 10 10 10 10					 Y	
CUPULATIVE PRESSNT VALUE AT INDICATED INTEREST RATE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		1991 				
CUPULATIVE PRESSAIT VALUE AT INDICATED ENTERED AT EVENT VALUE A		، سیرید. سیرید سیرید سیرید		· ·		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	CUPULATIVE	VALUE AT I	LATEREST	•	ч м. м) н	ь 14 14
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					• • •	
0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			· ·	0		
	0.0	1	1	AD P	1. 1. 1.	
		- 1				
	.•					
	1			,		
	11		•			
		, ч				
	1	, I		• .		

		•				•	1	n de la c				'ı													۰.		4		
									•	۰,			•												ŀ				
SAVINGS		15.4	15.9	10.2 16.5	16.7	17.0	17.6	17.8	18.1		18.9	19.2	19.4	1947	20.3	20.5	20.8	20.8	5°07	2	20.02	20.8	8-07	20.8	2.) . 8			293.	181.5
E	IRON	7.6	6.7	8.2 8	8.3	8°.4	8.7	8 •9	0.6	2 0 1 7	14	9.6	9.7	8,0	10.1	10.3	10.4	10.4			10.4	10.4	10.4	10.4	10.4			0.0 0	0.0
VOLUME	GRAIN	18.0	9	2	4.41	2 ^{1°} U		دي.5	23.8	1.12	21-6	21.9	22.2	2 • 2 3 8 - 0 0	23.0	23.3	23.6	23.6	23.5	0.63 6	23.50 24.50	23.6	23.6	23.6	z3.6		INCICATED LATEREN	TCTAL TCTAL	TOTAL
ING CLST MAINTENANCE COST VOLUM	·	0.0	•••		7			5.0	۰۳ ۱ •			C		., .	•		0°-0	., ,							C•:		Ā		
- 4AT	line l'ann	n a geo geo N				् र २ व		ق		2	ייי יייי יייי		د	, , , ,	5 3	م	~· >	•	• ••	, , .) (• •		0.	(1+)	0.0		LUMULATIVE PRESENT VALUE	00	
T COST OP			<u>د</u>					-	• •	າງ ເ ເມື່ອ			Ĉ.	ເງ. ອີຊ	 • • • •	(• J	C•0		 	- 5 4	ין ר גיי גיי			ر •	0	i			
FLR		5 5 5 5 5				ing Ng	· ·	к ^а К. 1	i.	165																		50	

: **ң**, _,

...

a i

.

53

.

and the second state of the second
451.

Antonio Interno de No Interno de Norma de Logo de Norma de Compositorio de

N

This Contrast of a second	Market Control Control <thcontrol< th=""> <thcontrol< th=""> <thco< th=""><th></th><th>(</th><th></th><th></th><th></th><th></th><th></th><th>CANTUCC</th><th></th><th></th><th></th><th></th></thco<></thcontrol<></thcontrol<>		(CANTUCC				
Call Call <th< th=""><th>Control Control <t< th=""><th>7</th><th>ງ ເງເງເ</th><th></th><th></th><th></th><th>AULI</th><th></th><th>DATA NG</th><th></th><th></th><th></th><th>452</th></t<></th></th<>	Control Control <t< th=""><th>7</th><th>ງ ເງເງເ</th><th></th><th></th><th></th><th>AULI</th><th></th><th>DATA NG</th><th></th><th></th><th></th><th>452</th></t<>	7	ງ ເງເງເ				AULI		DATA NG				452
0.2 0.3 15.0 7.6 0.2 0.3 15.0 7.3 0.2 0.3 15.0 7.3 0.2 0.3 15.0 7.3 0.2 0.3 15.0 7.3 0.3 0.3 15.0 7.3 0.3 0.3 15.0 7.3 0.3 0.3 15.1 15.3 0.3 0.3 15.4 15.3 0.3 0.3 15.4 15.3 0.3 0.3 15.4 15.3 0.3 0.3 15.4 15.3 0.3 0.3 15.4 15.3 0.3 0.3 15.4 15.3 0.3 0.3 15.4 15.3 0.3 0.3 15.4 15.3 0.3 0.3 15.4 15.3 0.3 0.3 10.4 25.5 0.3 0.3 10.4 25.5 0.3 0.3 10.4 25.5 0.3 0.3 10.4 25.5 0.3 0.3 10.4 25.5 0.3 0.3 10.4 25.5 0.3 0.3 10.4 25.5	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 <th>176</th> <th></th> <th></th> <th></th> <th></th> <th>GRAIN</th> <th>ORE</th> <th></th> <th></th> <th></th> <th></th> <th>2.</th>	176					GRAIN	ORE					2.
0.00 0.00	0.00 0.00	£ 2.0	າ ເ ເ	Ċ			18.0	7.6	19.6				
5.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 10.4 8.2 21.4 6.0 6.0 6.0 10.4 8.2 21.4 6.0 6.0 6.0 5.0 20.4 20.4 6.0 6.0 6.0 5.0 20.4 20.4 7.0 7.0 7.0 7.0 7.0 20.4 7.0 7.0 7.0 7.0 7.0 20.4 7.0 7.0 7.0 7.0 7.0 20.4 7.0 7.0 7.0 7.0 7.0 20.4 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <td></td> <td></td> <td>ت د</td> <td></td> <td>n q</td> <td>Ld.3</td> <td>7.7</td> <td>19.9</td> <td></td> <td></td> <td></td> <td></td>			ت د		n q	Ld.3	7.7	19.9				
C.:	C.2 U.1 C.2 U.1 E.2 E.1 D.1 U.1 U.1 E.2 E.1 E.1 E.1 D.1 U.1 U.1 E.2 E.1 E.1 E.1 E.1 D.1 U.1 U.1 E.2 E.1 E.1 E.1 E.1 E.1 D.1 U.1 U.1 E.2 E.1 <	28		<u>ن</u> ا			15.6	7.9	2:3.3				
6.: 6.: 6.: 6.: 1.: 7.: 1.: 2.: 0.0 0.0 0.0 0.0 0.0 2.: 2.: 2.: 0.0 0.0 0.0 0.0 0.0 2.: 8. 2.: 0.0 0.0 0.0 0.0 0.0 2.: 8. 2.: 0.0 0.0 0.0 0.0 0.0 2.: 8. 2.: 0.0 0.0 0.0 0.0 1.: 8. 2.: 0.0 0.0 0.0 1.: 8. 2.: 2.: 0.0 0.0 0.0 1.: 8. 2.: 2.: 0.0 0.0 0.0 1.: 8. 2.: 2.: 0.0 0.0 0.0 1.: 8. 2.: 2.: 0.0 0.0 0.0 2.: 2.: 8. 2.: 0.0 0.0 0.0 2.: 10.: 2.: 2.: 0.0 0.0 2.: 0.0 2.: 2.: 2.: 0.0 0.0 0.0 2.: 10.: 2.: 2.: 0.0 0.0 2.: 10.: 2.: <td>6 6 6 6 6 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0</td> <td>83</td> <td>: • •</td> <td>J</td> <td></td> <td>C••</td> <td>3.8.8</td> <td>8.0</td> <td>20.6</td> <td></td> <td></td> <td></td> <td></td>	6 6 6 6 6 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	83	: • •	J		C ••	3.8.8	8.0	20.6				
0.0 0.0 <td>0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</td> <td>84</td> <td>0</td> <td>J</td> <td></td> <td>C•3</td> <td>19.1</td> <td>8.2</td> <td>21.0</td> <td></td> <td></td> <td></td> <td></td>	0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	84	0	J		C•3	19.1	8.2	21.0				
Current of the second of the s	CUMUATIVE RESENT VALUE AT INDICATED INTERS 10.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	ניש	01	ت		() •	15.4	8 .3	21.3				
COMPARENT AND CONTRACT AND CONT	CUMULATIVE PRESENT VALUE AT INDICATED INTERST PAGE 22:0 12:1 2:1 2:1 2:1 2:1 2:1 2:1 2:1 2:1 2:	96	0.0	2			19.7	*	21.7				
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<td>87</td><td>0.0</td><td>)</td><td>ار. •</td><td>ີ ເ</td><td></td><td>9.9 8</td><td>22-0</td><td></td><td></td><td></td><td></td></td>	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <td>87</td> <td>0.0</td> <td>)</td> <td>ار. •</td> <td>ີ ເ</td> <td></td> <td>9.9 8</td> <td>22-0</td> <td></td> <td></td> <td></td> <td></td>	87	0.0)	ار. •	ີ ເ		9.9 8	22-0				
Current of the second of the s	CUPULATIVE PRESENT VALUE AT INJICATED INTEREST AAT CUPULATIVE PRESENT VALUE AT INJICATED INTEREST AAT CUPULATIVE PRESENT VALUE AT INJICATED INTEREST AAT CUPULATIVE PRESENT VALUE AT INJICATED INTEREST AAT	82	ن ب	о,		•• ••	20.2		4.22				
CUMULTIVE PRESENT VALUE AT INVITION 22:5 9:1 2:1 1 2:1	CUP 100 210 000 211 91 211 910 010 010 010 010 010 010 010 010 0	, r. (2.					1.22				
CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE CUMULATIVE PRESENT PATE PATE PATE PATE PATE PATE PATE PAT	CUMULATIVE PRESENT VALUE AT INVICATED INTEREST PATE CUMULATIVE PRESENT VALUE AT INVICATED INTEREST PATE	90		` ر		•	2 · · 2						
CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PARE CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PARE	CUP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	16	- - -	2,		- -	1.12	10	1 • · · ·				
CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE	CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE	9c	ວ ວີ ເ	. C			**12) - n c					
CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE	CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PARE CUMULATIVE PRESENT PARE PRESENT PARE CUMULATIVE PRESENT PARE PRESENT PARE PRESENT PARE PRESENT PRESENT PARE PRESENT PARE PRESENT PR	9.5 2.0		, c			0.12	r u n d	24 4				
Control of the second of the s	CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE	94		י כ		5 ·	C 1.5						
CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE	CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE CONTATIVE PRESENT PATE) 3			3 4 7 7	- 0	25.1				
CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE	CUPULATIVE PRESENT VALUE AT INDICATED INTEREST PARE CUPULATIVE PRESENT VALUE PRESENT VALUE PRESENT PARE CUPULATIVE PRESENT VALUE PRESENT VALUE PRESENT PRES	90 70					20. B	0.01	25.5				
0.0 0.0 0.0 23.3 10.3 20.2 0.0 0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.1 23.6 10.4 26.5 0.0 0.1 23.6 10.4 26.5 0.0 0.1 23.6 10.4 26.5 0.1 0.1 23.6 10.4 26.5 0.1 0.1 23.6 10.4 26.5 0.1 0.1 23.6 10.4 26.5 0.1 0.1 23.6 10.4 26.5 0.1 0.1 23.6 10.4 26.5 0.1 0.1 23.6 10.4 26.5 0.1 0.1 23.6 10.4 26.5 0.1 0.1 23.6 10.4 26.5 0.2 0.1 0.1 10.1 26.5 0.0 0.0 0.1 0.0 302.3 0.0 0.0 0.0 0.0 302.3 0.0 0.0 0.0 0.0 302.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.6 10.4 0.0 0.0 24.6 10.4 26.5 0.0 0.0 24.6 10.4 26.5 0.0 0.0 24.6 10.4 26.5 0.0 0.0 24.6 10.4 26.5 0.0 0.0 24.6 10.4 26.5 0.0 0.0 24.6 10.4 26.5 0.0 0.0 24.6 10.4 26.5 0.0 0.0 24.6 10.4 26.5 0.0 0.0 24.6 10.4 26.5 0.0 0.0 24.6 10.4 26.5 0.0 0.0 24.6 10.4 26.5 0.0 0.0 24.6 10.4 26.5 0.0 0.0 0.0 24.6 24.5 0.0 0.0 0.0 24.6 24.5 0.0 0.0 0.0 24.6 24.5 0.0 0.0 0.0 24.6 24.5 0.0 0.0 0.0 24.6 24.5 0.0 0.0 0.0 0.0 24.5 <	20				0 • • •	23.0	10.1	25.8				
0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.1 26.5 10.4 26.5 0.0 0.1 26.5 10.4 26.5 0.0 0.1 26.5 10.4 26.5 0.0 0.1 26.5 10.4 26.5 0.0 0.1 26.5 10.4 26.5 0.1 0.1 26.5 10.4 26.5 0.1 0.1 26.5 10.4 26.5 0.1 0.1 20.4 26.5 10.4 0.1 0.1 20.4 26.5 23.6 0.1 0.1 10.4 26.5 23.6 0.1 0.1 20.4 20.5 23.5 0.1 0.1 0.1 20.4 26.5 0.1 0.1 0.1 23.1 23.1 0.1 0.1	0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.0 0.0 3.3.1 26.5 0.0 0.0 0.0 3.3.1 26.5 0.0 0.0 0.0 3.3.1 26.5 0.0 0.0 0.0 3.3.2 23.4 0.0 0.0 0.0 3.3.2 3.3.2 0.0 0.0 <td>66</td> <td>0.0</td> <td>5</td> <td></td> <td></td> <td>23.3</td> <td>10.3</td> <td>26.2</td> <td></td> <td></td> <td></td> <td></td>	66	0.0	5			23.3	10.3	26.2				
0.1 0.1 0.1 26.5 0.1 0.1 24.6 10.4 26.5 0.1 0.1 24.6 10.4 26.5 0.1 0.1 24.6 10.4 26.5 0.1 0.1 24.6 10.4 26.5 0.1 0.1 24.6 10.4 26.5 0.1 0.1 24.6 24.6 24.5 0.1 0.1 24.6 24.6 26.5 0.1 0.1 24.6 24.6 26.5 0.1 0.1 24.6 24.6 26.5 0.1 0.1 24.6 24.6 26.5 0.1 24.7 24.7 24.6 26.5 0.1 24.7 24.7 24.7 26.5 0.1 24.7 24.7 24.7 26.5 0.1 24.7 24.7 24.7 26.5 0.1 24.7 24.7 24.7 24.7 0.1 24.7 24.7 24.7 24.7 0.1 24.7 24	0.0 0.0 23.6 10.4 26.5 0.0 0.1 26.5 10.4 26.5 0.0 0.1 26.5 10.4 26.5 0.0 0.1 2.6.5 10.4 26.5 0.0 0.1 2.6.5 10.4 26.5 0.0 0.1 2.6.5 10.4 26.5 0.1 0.5 0.2 23.6 10.4 26.5 0.1 0.5 0.2 23.6 10.4 26.5 0.1 0.5 0.1 23.6 10.4 26.5 0.1 0.5 0.1 23.6 10.4 26.5 0.1 0.1 23.6 10.4 26.5 0.1 0.1 23.6 10.4 26.5 0.1 0.1 10.1 26.5 23.6 0.1 0.1 0.1 26.5 23.5 0.1 0.1 0.1 0.1 26.5 0.0 0.0 0.0 0.0 302.3 0.0 0.0 0.0 0.0 231.2 0.0 0.0 0.0 0.0 231.2	00	0+0	0			23-6	10.4	26.5				
0.0 2.0 2.4 0.0 2.5 0.0 0.0 2.5 0.0 2.5 0.0 0.0 2.3 0.0 2.5 0.0 0.0 2.3 0.0 2.5 0.0 0.0 2.3 0.0 2.5 0.0 0.0 2.3 0.0 2.5 0.0 0.0 2.3 0.0 2.5 0.0 0.0 2.3 0.0 2.5 0.0 0.0 2.3 0.0 2.5 0.0 0.0 2.3 0.0 2.5 0.0 0.0 2.3 0.0 2.5 0.0 0.0 0.0 2.3 0.0 0.0 0.0 0.0 2.3 0.0 0.0 0.0 0.0 2.3 0.0 0.0 0.0 0.0 2.3 0.0 0.0 0.0 0.0 2.3 0.0 0.0 0.0 0.0 2.3 0.0 0.0 0.0 0.0 2.3 0	0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.0 0.0 23.6 10.4 26.5 0.0 0.0 0.0 23.6 10.4 26.5 0.0 0.0 0.0 23.6 10.4 26.5 0.0 0.0 0.0 23.6 10.4 26.5 0.0 0.0 0.0 23.6 10.4 26.5 0.0 0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 23.6 0.0 0.0 23.6 10.4 26.5 23.6 0.0 0.0 23.6 10.4 26.5 23.6 0.0 0.0 0.0 0.0 23.1.2 23.6 23.6 0.0 0.0 0.0 0.0 0.0 23.1.2 23.6 23.6 0.0 0.0 0.0 0.0 0.0 23.1.2 23.6 0.0 0.0 0.0 0.0	01	 C	C			23.6	10.4	26.5				
CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE	Cumulative Present value at Involtate Interest Pate Cumulative Present Value Interest Pate Present Pate Present Value Interest Pate Cumulative Present Value Interest Pate Present Pate Present Pate Present Present Pate Present Pate Present Present Pate Present Pate Present Present Pate Present Pate Present Pate Present Pate Present Pr	02	ب	. 7		0.0	23.6	10.4	26.5				
0.0 0.0 0.0 23.6 10.4 26.5 0.0 0.0 0.0 23.6 10.4 26.5 0.0 0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.0 23.6 10.4 26.5 0.0 0.0 0.0 23.6 10.4 26.5 0.0 0.0 0.0 10.4 26.5 313.1 0.0 0.0 0.0 0.0 302.3 31.2 0.0 0.0 0.0 0.0 231.2 231.2	CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE 0.0 0.0 23.6 10.4 26.5 23.6 10.4 26.5 23.7 10.4 26.5 23.6 10.4 26.5 23.6 10.4 26.5 23.6 10.4 26.5 23.6 10.4 26.5 23.7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	<u>[]</u>		0		ိုင်	29-62		2002			ı	
CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE	CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5	ດ : ບໍ່ເ		- (0°C7		26.5				
CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE	CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE) ·	5 4			0 ° C C		26.5				
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0. 10					23.6	10.4	26.5				
0.0 CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE 0.0 0.0 0.0 0.0 0.0 0.0 23.5 10.4 26.5 23.6 10.4 26.5 26.5 23.6 10.4 26.5 26.5 23.6 10.4 26.5 26.5 23.6 10.4 26.5 26.5 23.6 10.4 26.5 26.5 27.0 27.	0.0 0.0 23.6 10.4 26.5 0.0 0.0 31.1 23.6 10.4 26.5 0.0 0.0 0.0 101CATED INTEREST PATE 26.5 23.6 20.4 26.5 0.0 0.0 0.0 107AL 0.0 3/3.1 26.5 0.0 0.0 0.0 0.0 3/2.3 3/3.1 0.0 0.0 0.0 0.0 3/2.3	20) <u>-</u>			23.6	10.4	26.5				
CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE 0.0	CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE 0.0 TOTAL 0.0 373.1 0.0 TOTAL 0.0 302.3 0.0 TOTAL 0.0 231.2	90 90	0 0	ŗ		0	23.6	10.4	26.5				
CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE CUMULATIVE PRESENT VALUE AT INDICATED INTEREST RATE CO CO CO CO CO CO CO CO CO CO	CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE CUMULATIVE PRESENT VALUE AT INDICATED INTEREST PATE 0.0 2.0 302.3 0.0 0.0 302.3 0.0 231.2 231.2 0.0 231.2												
-5. 0.0 373.1 -5. 0.0 373.1 -0.0 302.3 -0.0 302.3 -0.0 302.3 -0.0 231.2 -0.0 231.2 -0.0 231.2 -0.0 231.2 -0.0 231.2				ш	VALUE	[ND ICA							
0.0 101AL 0.0 302.0 0.0 0.0 231.2 0.0 701AL 0.0 302.0		نه د :	•••				TCTAL	0°0	373.1				
		20	0.0		00	0 0 0	TUTAL	0.0	231.2				
		₽ •	•			•		/ 1 2					
												i.	
										;	1		
							·						
												' <u>La (14)</u>	

ţ

A CONTRACTOR

Ņ

ģ

1 Č

COST MAINTENANCE COST
c
5°5
۶
~
0.1
~
Ũ
ر م .
، ن
PRESENT VALUE AT
0.
-

ALTERNATIVE AC. 341

1.1.1

; k

453.

-

ģ

		454.																							, t
																									:
ī																									:
																									4 }
	i.																								
	30 M LINE 3	SAVINGS	6*6		t 40 1 • •	6°5	t: •0 1∶•2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 ۱	1.08 1.09	11.1	11.44	11.5 Li.7	11.8	12.0 12.0	5.21	12.0	12.0	12.0	12.0 12.0	12.0		170.1	L .5.5	
																				1		.ST 24Te		с. С	
	1		15.0		1	1 3 • 4 1 3 • 7		10 Y	21.12	21.6	¢1.9	2 C	2 3. 0	.	23.6 23.6	9.rz	23.6 23.5	23.6	2 3. 6	r 5.5 r 5.5	د ۱ ۰6	eș 121	17171 17171	UIAL	
	0- <i>1</i> -1).	C1:51	• •	• •	•	· •. •	•	• •	• •	•	•	1 °) • •	ر و را ر	•	ي، ر •	3	, . , •	∎ 9 • •	•	• •	•	I'ni iCateS	• •	. 11	
	DE ST 54. C	1715-14405																				16 ANTEA			
	1711 1111 171	ING CUST MAI	• • •	 	3 5	ີ່. ບໍລ	2		 	، ، ، و. ب	•	. , 		; ;	ن ت • •	• • 1	•	• •	•0	• • • •	•	PRESENT		• • •	
~	ייים איים גיים איים	ST CPLATING		,, , , • •		•	- - -	, <i>,</i>	· ·		-		•			• •		-, -		••	•	CUALL ATTVE	 • (
2			ก้ก้	rītā	เง้ากั	() (j	าย์ ก	5 6.3 4	30	ŭ d	່ດ້າ	5 43 -	<u>,</u>	ŭ	· 5 -	ڏ، ڏ	0	τ. Γ	Ċ,	es es	* *		r i	275	
- - -	2	7 27 2 27 2 27 2 27 2 27 2 27 2 2 2 2 2	522	ä 7	<u>. 7</u>	.) <u>e</u>			2.4	27	1.2	ç ç	20	12			n :	t 2	.o	23	2		• •	n 12-	

بالريد يتساله

ł

																									ч.											
SAVINGS						č.1	2.1	2.2	2.2	K 3	2.3	4.4	4•7	* u • v	.	• •	•		2.7	2.1	2 - 1	2.65	2.3	ح • 9 2	6 ° C	ר ט י י		6	6•2	2.4	2.9	2.9	2.9			32.5
																																		EST VATE		
VOLUME						0•21 :	Le.3	13.6	य,•a न	1 1	4.4	14.7	5 I • • • •	7 • • 7	с а • • • •		1.12		51.9	22.2	2 5	25.4	. 4. ۵ .	د. ۲. ۲.	23•6	0.5 v			23.6	23.6	23.6	23.6	6.82	INCICATED INTERCEN	<u>-</u>	LETAL
F-LATE ANCE COST						\ 3) •	•	••	•	•	•	•		, , ,			• • •	3 • •	• •		•	<i>€</i> ,		•	•	•	•	• •	• · · ·		• 1	•	VILLE AT		•
CPERATING CCST								*** * * `1		۰. ت	• ;	- -		•	•		, , ,	· · ·		3 .1			۔ د		, , , , ,		י ה		· · ·			• ·)	•	UPPULATIVE ARESUNT		• •
1351 C		• •						, • •		•	•	•.•							• • •	• •	 	- - -	• س	• •	· • ·	r.,	•	- • c					•			• -
VEAN F	141 141	175	1111	1.37.5	1174	198.2	1991	1982	130	1984	84]	199C	1961	1.)84	(Pt]	(61)	[bb]	194. 1		1995	1 2 2 6	1661	14 C C 1	r661	. 002			5000	# 7 5 / / / /		1000	5.10	2 1.15		4	• •

455.

はから見渡く

	456.																													. (41			
																																k	57 - 14	
																										tal								
																										romon log								
				•																							Perl 91.3							
	SAVINGS	2.	1 4 • •	4	ر م م	0	1	8.	ۍ د	,		~	2	· • •	4 .	ις 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.				7	~ 1						Le -	1.01	64•3 49•6		,			
	SAV	4	रज	. 1	4	r vr		4	3 1	<i></i>	ነው			ιr.	а 1	יחע	n v	רשיר		¢.	ה י	5	.	ציר		ι. Γ	ų,	Ţ	64		l			
																											EST RAT	ۥ0	0.0 0					
	VOLUME	0.41	17.5 14.6	1ć.6		1.4.7	•	22	د. د. د	x -		21.6	21.9	2 2	22.5	22.8	2.0	23.65	13.6	6.52	23.6	23.6	23•5		5.00 22	23.6	lateac	٨Ĺ	ål Al					
_																											r D		TUTAL					
a−1-c]	cust	· • ·	99	•	•	•	•	•	•	•	•				• •			• •	•		•	•		*) ● ** ,	•	• •	INDICAL	- •	5 • •					77 - 1
5 to 4. (ENANCE																										Lı. AT							.5
VAL CE	11.15.4																										ENT VALI							1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
•CONV INT LUNN.	COST		 		، ، • د	•		ر. د	• 2	•	•				• >	د				יי יי ל' ו	.	3		, . כי	; 5 -	2 D	PKESEI	. 1	00					
r.couv	OPERATING																										ATIVE							
371 TEPORT	UP CR																										ΩU⊮ULATIVE							C. State
с МС. 3 210, 73	1200	с (з)		, , ,				0.0					د					5 C			3• C) • • •) - -	0.0					
RNATIVE NGYJGRE	F I R S T																																	
ALTER SAVEN	675 975 975 975 975	974 184	18 E		4 ci c	1 1 1 1 1 1 1 1	78	380	6.96	. 6E	100	201	+66	568	96¢	150				705	÷u ؛	400	500	901				•	7. U					

Referentive Stipping Costs Igh z vs 69 Igh z vs 69 c c Igh z vs 69 c c c c Igh z vs 69 c <thc< th=""> c <thc< th=""> c</thc<></thc<>
Produced Produced 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555 1.5555

Ś

58.			0 6 h c
	r/C RATIO 3.3651 3.340J 3.340J 3.3426	e/C_RATIO 0. 5867 0. 3420 0. 2848	8/C RATIO 0.4589 0.4167 0.467 0.3603
	SAVENJS 73.8 62.5 50.6	514 [NJ5 284.0 234.2 182.7	SAVENUS 284-9 234-2 182-7
	COST 2,22.3 1,83.9 1,67.3	COST 736.9 64.1.4	C 0051 621-J 562-J
5	0000 0000 0000		م م م م م م
11.		2 • • •	
~	рс 2,22.3 133.9 167.3	PG (35.9 564.7 541.4	بار 221 - ت 562 - ۲
VS .		n >	5
N		S C C C C	9000 900 9
,	5C 73.F 62.5 51. • 5	211 56 234•3 234•2 152•7	211 56 274.9 234-2 132.7
4 1			
GUERALISHA NG.	ALLE (197	Crippen 1504 46. Al Theraf I Velovie 5.05 T.A.S LJ.A.S	GUAPATIVE NU. Alternative Nu. 5.1: 11.35

「大学の大学

.

CCNDARISPY Nr.

b/C RATIO 3.5605 2.8885 2.1717 6/C RATIO J.2631 J.2515 D.2515 B/C RATIO 0.3284 0.2985 0.2985 SAV1NGS 141.5 116.9 92.2 SAVINGS 186.4 150.1 113.6 SAVINGS 141.J 146.9 92.2 COST 498.2 464.8 437.7 COST 52.3 51.3 52.4 COST 429-5 342-2 358-5 0.00 0.00 0.00 0.00 50°0 6°0 5.0 5.0 5.0 N ŝ 0.00 0.00 0.00 0.00 9.00 1.00 1.00 4499 0000 5.00 5.00 5.00 5.00 SC SC SC 10. 74% рС 433.2 454.8 431.7 52.5 52.5 52.5 \$ -? Ś 2000 2000 2000 \sim 3 0 · · · · 0 · · · · · 0.000 56 141.7 115.9 115.9 SC 196.4 150.1 150.1 5C 141. 116.9 92.2 221 221 162 0.00 9006 ••• - 14 ر ټ ALTEVALTIVE TIL ALTER JATIVE NC. ALTERGALIVE NUM C.C.-איז לנוגד אוטיי CENDALISON NO. 5.0° 2.0° 10° 2. 5.05 7.05 10.73 5.11

1999年に 湯 1991

459.

 460.

Current Sov vo. 1.

See Arrest

0.					C 4 N 2			ር ታ ግ ሥ
	6/C RATIO 2.5825 2.1144 1.6594				3/C RATU3 7.8304 3.7162 3.5769			A/C RATIO 0.6474 0.5603 1.4531
	S4V [N]S 168.5 136.5 136.5				SAVINGS 455.3 367.2 279.2 279.2			SAV INGS 235.5 190.9
	C/JST 65.2 64.6 65.J				COST 548.2 512.6 433.9			CGST 363.7 346.9
~	0.00 N 1.1.1 N 1.1.1 N			ć	5 1 1 1 1 5 1 1 1 5 1 1 1 5 1 1 5 1 1 5 1 5		Ň	0 • • • • • • •
								рс. • • • • • • • • • •
212	5 N C C .			10.1	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-62	000 000 000 000
r.	рС 65.2 64.6 65.4				PC 548.2 212.6 483.3			96 363.7 340.9
Ś				< S >			15	
N	S			Ň	0000 0000		Ň	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	6 0 0 9 0 • • • •	• I •						
241	SC L58.5 L36.5 L√4.7			251	55 455.3 267.2 279.2		261	SC 235.5
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 t			71		
ALTERNATIVE 46.	5.27 75.36 19.36		CEMPASISON NG.	ALTCONATIVE NU.	5.0.5 20.0 20.0	ראייין נמא אני	ALTEMATIVE NO.	5.05 4.05

の言いと見

°d∿ NUSTevea∋O	- 1												
AEFE®ייגרועב אני.		112		N.	\$. C.8		7					
500 m 500	0 • • • • 0 • • • •	SC 660.7 27.1 174.1		S (1.5)		۵۲ ۱۹۶۶ - ۵ ۱۹۵۰ - ۲ ۲۹۵۰ - ۲	S C 3 C 1 C	96 1.1 0.1 0.1	SC SC SC SC SC SC SC SC SC SC SC SC SC S	COSF 328.6 3.5.7 286.6	SAVINGS 290.5 227.1 174.5	8/C KATTO 2. 5522 3. 7428 1. 6966	
CCEPAEISON NO.	14												
ALT-P:ATTVE NU.		142		.Nu	5.4	e e		Ń					
5.05 7.05 1.00 1.00		SC 149.7 121.3 ³ 2.1	0000 0000 0000	0000 0000		РС 368.6 305.7 286.3	N N N N N N N N N N		S	CGST 328.0 3.5.7 286.8	S4V [V35 149.7 121.3 92.9	6/C RATIO 5.4557 5.5969 5.3238 5.3238	
Currence of Ma	2												
ALTEPNATIVE NG.	•	162		(~	(1 > .	8 i		ب ه					
10 °C 10 °C 10 °C		5C 93.1 75.2 57.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 000 000 000		РС 247. 6 221.9 211.3	SC	4 か 3 の C • • • • C · • • •	2.0 2.0 2.0 2.0	ČCST 247.4 227.9 211.3	SAVINGS 93.1 75.2 57.2	6/C RATIC 3.3764 5.3299 3.2713	461.
												o,	

ų.

1

2. S. 10.2

			<u></u> ,			ur ann-nugagas ca o di permiti roan dinan	ung tau ar 14 vé detet á jug	(pili ily, pidin Nakata) antor - ray wer
	462.							
	1	u/C %a110 0.2325 7.241 0.1676		·	4/C KATIO 0.7591 0.6668 0.6668 0.5409			6/C AATIO 3.5682 3.4932 3.4039 3.4039
		SAVIN,5 57.5 46.4 35.3			54VINGS 550. J 443.7 337.4			54V146S 293+1 237+4 181-6
		COSF 247.5 227.5 210.8		••	COST 715.1 665.4			cOST 515.7 451.3 451.3
•				~	ςς - τ. - τ.		2	ີ່ • • • ທີ່ • • • ທີ່ • ຍີ ຜູ້
	n an							3 • • • 4 ± ± ⊕ Φ
	د. ۲۰. ۵۵			, fg	S C D C		1 1 5	N (0 (0 (0)) (0 (0 (0)) (1 (0 (0)))
a an		0 247.5 227.5 219.8			РС 115.1 \$65.4 \$23.3			pt 515.7 481.3 452.4
	رد ح			57			51	
	ſN	SC		Ċ4	0		~	50
	301	50 57 - 5 46 - 4 35 - 5		311	50 50-5-5 44-5-5 5-5-7 5-5-7		32 T	56 73.3
	۲. ۱		17			1	•	
	GLEPSTISCS RU-	÷	Cikpasijan (1)	ALTER ATT JF 10.4	5.75 7.57 1.67 1.0	-34 865128480 Creating	ALTERVE VI.	

State of the state

ŧ,

ţ

动力的关系的的复数形式

	• ••••••••••••••••••••••••••••••••••••	nini pergajara promoni nanetinan Ar			20.6 61 X2717 42 (12) 			463.	
		u/C_RATIC_ C=7747 0=0767 0=5532			L/C-RATIO 5.4566 0.5755		n Porto P	L/C RATIG 0.6560 1 0.5737 0.4714	$\mathbf{u} = \mathbf{u} + \mathbf{u} + \mathbf{u}$
		5-VINU5 373-1 372-3 251-2	и , ,	 	SAVINUS 257.2 167.8 128.2			54VIN55 172.5 137.8 197.5	
	- - - -	COSI 481.7 447.1 417.9	н Сл А. А. А.		COST 481.2	ν. 	-1.11(12+1)(21+1)	259-1 259-1 254,244	$\sum_{\substack{i=1,\dots,n\\k\in M}}^{i+1} \sum_{\substack{i=1,\dots,n\\k\in M}} \sum_{\substack{i=1,\dots,n\\k\in M}$
	Ż	у		~	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		da Series de Marcelo Felos	S	
	ı. 1		. *				i da edao Esta International International International International		
	ίς H				5C			2 € 2 ° - 1	×
	Ŧ	рС 481.1 447.1 417.3			РС 461.7 445.1 417.5	evaluaΩVisaat dijlaktivaat isa I		249. H	
	5		·	5	· · ·		arte 2		
10 1	6 14	S C Q Q		~	о и с и с				
							an Marina Marina		
	33 L	SC 373-1 352-3 231-2		141	50 2.7.2 107.2		151	55 170-5 137-8 155-5	11
		0 • • •		~	0 • • • •		-	0.00	
61 - DA FUSIERANO	ALTER'ATIVE "I.		CUMPAGISU'S NO.	ALTLANATIVE "M.	0.00 2.00 2.00 2.00	C./PPARISON NF. 21	ALTERNATIVE N.	5 - J 3 7 - J 3 1 J - J -	

Â

;}

۱<u>.</u>, ۱

。 (声) (声)

間で

a (... ↓¥*

2 Ng (

ę.

B^{CA} (c 1. c) 4

 $p_{i} \in \mathcal{F}_{i} \to \mathcal{F}_{i}$

ł

) 1 ۱

	100 yr.	$\{ \begin{matrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\$	Ë,		$= \int_{0}^{\infty} \int_{0}^{\infty} \frac{d^{2}}{dt} = \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{d^{2}}{dt} = \int_{0}^{\infty} \int_{0}^{\infty} \frac{d^{2}}{dt} = \int_$		ат 14 ст. в — Ул		ling of Arris		語調査
		· F.	99 10 10 10 10 10 10 10 10 10 10 10 10 10	ана.		an	, i (jožna), i s s s (jožna), i s s s s s s s s s s s s s s s s s s	10		こう 豊晴 ほうど	
464.	^τ ο ο ο σ			0.4-			ya n	ran an Tain An Tain An Tain An	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
	76 44TIG 76 44TIG 0.1562 0.1362 0.1118		، بوره رويه	/C_RATH 0.346 0.346 0.505				10. : 		and the second s	
	• • • • • • • • • • • • • • • • • • •		ن بر بر	NVIN55 6 80.1 64.0 49.0	el a construir de la construir de la construir la construir de la construir de						t Maria Maria Maria
	C051 S C051 S 23.84.1			CUST S 231.3 212.5 195.3	е страни 1 1 1 10 страни 10 страни		- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11			tt Alf Marson	11-01
						in the second seco					
		n na serie (* 1 19 – 19 – 19 19 – 19 – 19 – 19 – 19 –				1977 - 1979 1977 - 1979 1977 - 1979					
	<u>ي</u> ي	n an			internet La constante La constante La constante		۱ ۰	, 4 , 5 , 1 , 1			
	5 233.00 223.00 223.00 223.00 223.00 223.00 223.00 223.00 20 223.00 20 20 20 20 20 20 20 20 20 20 20 20 2		ຸ ແ ນ 	ρς 231.5 212.5 195.3		from ble copr.	н. 	Р. 1. 1 Х. 1 1. 1 1. 1 1. - 1 1.	ν φ		
	N		с. Сон на 19	ບ ເມີນ ເມີນ ເມີນ ເມີນ ເມີນ		Reproduced best availar		. *			
			· ·								en l
	361 5C 42.2 32.1		371	8 2 0 8 2 0 7 4 • 4 7 5 • 4							
		ç3 1	ŕ		•						¥* اعد ارت ا
"บ\เ ธีบริโะชุณฑาวิ	ALT-2 IATIV- NL . 	C.⊳n4*[262, 4∪• 5	AIT-PIATIVE VIL	55 55 5 6 6 6 6 6 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7	•						

ANNEX G. OCEAN TRANSPORT OF MAJOR BULK COMMODITIES AND U.S. FOREIGN TRADE, 1968 AND 1969: PATTERNS OF GEOGRAPHIC LINKAGE AND FLOWS THROUGH U.S. AND FOREIGN PORTS

465.

213) 44

ľ

(1)

<u>н</u>.,

 $^A_{\frac{1}{2}}$

Preceding page blank

467.

日満福市

1

CONTENTS

I.	APPROACH AND METHODOLOGY	469
II.	THE SPECIAL PROBLEM OF ALUMINA	471
III.	SUMMARY OF INTERZONAL FLOWS	473
IV.	SUMMARY OF INTRAZONAL DISTRIBUTIONS BY PORTS	477

ş

Preceding page blank 469.

APPROACH AND METHODOLOGY I.

An example in the second second second

For purposes of transport analysis, it is useful to understand:

1. The flows of each commodity between U.S. and overseas areas by particular trade routes or links

2. The relative significance of various ports of origin or destination in those commodity flows.

Published data are not adequate to illuminate these matters. Through the Federal Clearinghouse, the Bureau of the Census makes available very detailed computer runs of its annual series SA-305 and SA-705 for all U.S. imports and exports. These documents list, by U.S. ports of destination or origin and by foreign port, the volume of each 4-digit commodity separately for liner, tanker and tramp vessels. However, the data contained in these publications on the few particular commodities of interest are exceedingly hard to extract and reclassify. We accordingly undertook a series of special tabulations from the same magnetic tapes used in the above published series for 1968 and 1969, the two most recent years available at the time of tabulation.

Initially two sets of tabulations were made for each commodity classification specified in table 1. One set listed each U.S. port of origin or destination, showing the quantities of the commodity shipped from or to every foreign port. The other set provided the same information, but started with each foreign port of origin or destination. One commodity, alumina, was excluded from these initial tabulations, for reasons explained subsequently. The tabulations served their intended

470.

「「「「「「「「」」」」」

purpose of quickly identifying all important U.S. and foreign ports for each commodity.

Additional tabulations were then made for 1968 and 1969 on the basis of a somewhat more aggregated set of commodity classifications (table 2). Precise statistical definitions of these classifications are given in table 3. Because the number of port-to-port links (one U.S. port and one foreign port in each case) in the movement of the commodities was unmanageably large, ports both in the United States and abroad were grouped by nine U.S. and 15 foreign zones. The general geographic scope of each U.S. zone is indicated in table 4, and of each foreign zone, in table 5. Detailed specification of individual ports included in each U.S. zone, and of countries and portions of countries included in each foreign zone, are given in tables 6 and 7 respectively.

For each specified commodity group, the annual quantity (in short tons) transported on each zone-tozone link was tabulated in matrix form separately for 1968 and 1969. Detailed results are given in tables 8 through 23. In addition, separate tabulations were made of the intrazonal distributions of each commodity by port, separately for U.S. and foreign zones (tables 24 through 45). Highlights are summarized in the following chapters.

II. THE SPECIAL PROBLEM OF ALUMINA

Appraisal of zone-to-zone and port movements for U.S. imports of alumina presents a special statistical problem. All Census Series SA-305 data, including those contained on the computer tapes used to evaluate other import commodity flows, do not distinguish alumina, a seven-digit commodity classification (5136 530). SA-305 aggregates it in the four-digit commodity classification 5136, which includes the following nine groups:

1.	5136	100:	ammonia anhydrous, liquid anhydrous, and aqua
2.	5136	200:	sodium hydroxide
з.	5136	300:	potassium hydroxide
4.	5136	420:	barium dioxide, hydroxide and oxide
5.	5136	460:	magnesium oxide
6.	5136	520:	aluminum oxide abrasives, crude
7.	5136	530:	aluminum oxide, alumina, for use in producing aluminum
8.	5136	550:	aluminum hydroxide, and oxide n.e.s.
9.	5136	600:	aluminum oxide abrasives in grains, ground, pul- verized, or refined.

In another Census tabulation of U.S. import data, FT-135, the seven-digit alumina classification, 5136 530, is separately treated. Although import data there pertain to all modes of transport, and are not reported separately for waterborne movements, virtually all U.S. imports of alumina -- at least from the major sources indicated -- are believed to arrive by ship. However,

471.

472.

FT-135 shows alumina imports only by country of origin and does not indicate relevant U.S. and foreign ports. This source is therefore too general for present purposes. On the other hand, since SA-305 tabulations include several unwanted commodity groups together with alumina, their use might result in exaggerated volumes of alumina imports.

To aid in resolution of this issue, we extracted the appropriate data from each published source and tabulated them by country of origin for the years 1968 and 1969 (table 46). Only major countries from which alumina was shipped are included in the tabulation. Total import volumes indicated by the two sources differed by less than 7 percent in 1968 and by less than 3 percent in 1969. The differences were not accounted for by nonalumina components, which proved to be negligible. Contrary to logic or expectation, SA-305 totals were lower than the corresponding FT-135 totals, and differences by individual country were sometimes moderately substantial.

We have not been able to determine the reasons for these discrepancies. They might reflect minor errors either in Census tabulations or in our own. However, for purposes of this study they are relatively unimportant. We have therefore used the data reported in SA-305 to represent zone-to-zone movements of alumina and their distribution by U.S. and foreign ports in 1968 and 1969. III. SUMMARY OF INTERZONAL FLOWS

U.S. imports of crude oil in 1968 and 1969 originated predominantly in the Caribbean area for destinations along the U.S. north Atlantic coast and in Puerto Rico. There were also small movements from the Caribbean to the U.S. gulf and California coasts. Substantial volumes of crude oil were shipped from Mediterranean and Red Sea areas to the U.S. north Atlantic coast, with smaller volumes from the Red Sea finding their way to the California coast and Hawaii. Important quantities of California crude imports also arrived from Southeast Asia.

Ocean transport patterns for U.S. imports of petroleum products (predominantly residual fuel oil) were somewhat similar to those indicated for crude in that the largest part of the movement originated in the Caribbean. However, they were supplemented by secondary quantities from Western Europe. And while some petroleum products were shipped into all but two or three of the nine U.S. zones, the dominant import area was the north Atlantic coast, followed at a considerable distance by the south Atlantic and gulf coasts.

U.S. iron ore imports in 1968 and 1969 by ocean vessel originated mostly in Canada for movement to or through ports on the Great Lakes and on the north Atlantic coast. The Caribbean was an important secondary source of ore imports for both north Atlantic and gulf zones. Small quantities of imported ore were also destined for north Atlantic and gulf areas from both the east and west coasts of South America, while West African and even some Western European ores found their way to north Atlantic coast ports.

473.

Bauxite reveals the most geographically concentrated movement in U.S. bulk commodity trade among the commodities covered by this study. All but insignificant quantities of U.S. imports originated in the Caribbean and were destined for the gulf coast. The flow of alumina imports from Australia to the Pacific Northwest was recently dominant, with important secondary movements from the Caribbean to the Pacific Northwest and to a minor extent also to the gulf coast.

Tabulations of 1968 and 1969 U.S. coal export movements are somewhat misleading for purposes of this study, which projects exports of metallurgical coal only. Because the commodity classification includes varying qualities of steam and metallurgical grades, which cannot be distinguished statistically, significant quantities of the former are contained in the flows given in tables 18 and 19. Most of this distortion can be eliminated by excluding indicated movements from the Great Lakes to Canada. The balance, primarily coking coals, was all evacuated from the north Atlantic coast area (principally from Hampton Roads), with destinations largely in Japan and Western Europe. Modest quantities were destined for the east coast of South America.

U.S. cereal exports reveal the most complex geographic structure of transport flow among all bulk commodities covered by the study. They originated in five of the six continental U.S. zones, and were destined for all but three of the 15 foreign zones. This geographic complexity reflects the wide-ranging locational characteristics both of grain production and of its worldwide markets. Nevertheless, certain patterns emerge. In 1968 and 1969 the gulf coast dominated in the origination of U.S. cereal exports to most overseas markets, of which Western Europe and Japan were the most important. North Atlantic and Great Lakes ports were also significant conduits for the evacuation of grain to Western European markets, and all cereals for Canada understandably flowed across the Great Lakes. 1/ Pacific

1/ Undetermined quantities of statistically classified \overline{U} .S. cereal exports to Canada are in reality transshipments through Canadian ports. These movements reflect coast ports, particularly in the Northwest, participated significantly in grain movements destined for Japan and South Asia.

1;

Phosphate rock exports were destined predominantly for Western Europe and Japan from the gulf coast. In addition, small volumes moved from the same origin area to Asia, Canada, and the Caribbean, and from the south Atlantic coast to Europe.

limitations of seaway transit for large ocean vessels and superior physical conditions in several Canadian river ports close to the Atlantic Ocean. 112.1 (1883-188)

Preceding page blank

IV. SUMMARY OF INTRAZONAL DISTRIBUTIONS BY PORTS

The number of U.S. and foreign ports engaged in the movement of major bulk commodities in U.S. foreign trade is extremely large. In 1969, 125 U.S. ports and 549 foreign ports shipped or received one or more of the commodities covered by this study. Corresponding figures for 1968 were slightly higher.

The number of relevant ports for any specific commodity varies considerably. At one extreme is alumina, for which only 13 U.S. and 11 foreign ports handled all U.S. imports in 1969. At the other extreme are the cereals, for which no less than 74 U.S. and 381 foreign ports were required to ship and receive U.S. exports in 1969. U.S. exports of coal and of phosphate rock are each distributed to a great many foreign ports as compared with the limited number of U.S. ports evacuating them. Among U.S. bulk imports, petroleum products revealed the most diversified port origin and distribution pattern in 1968 and 1969 (table 47).

As might be expected, the quantitative significance of the numerous ports involved in U.S. bulk commodity trade ranges widely. Full details on this matter are presented in tables 24 through 45. However, it may be useful to summarize their significance for study purposes. Of critical importance is the question of reasonably large annual volumes of movement, for this may often constitute a necessary condition for effective employment of very large vessels. We have accordingly aggregated the detailed port data contained in tables 24 through 45 to reveal the extent to which individual U.S. and foreign ports handled substantial volumes of each major commodity in 1968 and 1969.

477

As indicated in table 48, a limited number of either U.S. or foreign ports handled as much as 1 million short tons of any particular commodity in U.S. foreign trade during 1968 or 1969. The range was from 16 U.S. ports (for petroleum products in 1969 and for total grains in 1968) and 18 foreign ports (for crude oil in 1969) to none (for alumina in both 1968 and 1969). Very few ports were found to handle in excess of 10 million short tons per year. No foreign ports received any single bulk U.S. export commodity in such quantity, and only one U.S. port evacuated that much per year (for coal). Several U.S. and foreign ports handled over 10 million short tons of U.S. imports of crude oil, petroleum products, or iron ore in both 1968 and 1969.

The question of large annual commodity throughputs at individual ports can be further illuminated by considering quantities handled at the large-volume ports in relation to total trade. In table 49 the 1968 and 1969 tonnages of each major bulk export and import commodity are distributed by several classes of annual port volumes in the United States. Table 50 presents comparable data for the foreign ports. Tables 51 and 52 express in percentages the size distributions and relationships indicated in the earlier tables.

Among U.S. export commodities, coal reveals the greatest degree of concentration at large-volume ports, both in its evacuation from the United States and in its distribution among foreign ports. Thus in 1968 and 1969 all U.S. coal exports (excluding movements across the Great Lakes) left ports which evacuated over a million short tons, while 46 percent (in 1968) and 62 percent (in 1969) of those exports were delivered to foreign ports in large annual volumes. Well over threefourths of U.S. total grain exports were loaded at ports handling over a million short tons both in 1968 and 1969. However, only around 40 percent was delivered to foreign ports receiving over a million short tons annually. Although all phosphate rock exports were evacuated through high-volume U.S. ports, they were distributed entirely in 1968 and predominantly in 1969 to foreign ports accepting only small annual volumes of U.S. exports.

478.

のないであるというないであったとうという

U.S. bulk commodity imports are characterized by a fairly high degree of concentration at large-volume ports, both in the United States and abroad. The exception is alumina, whose annual volume is relatively insignificant. At least 79 percent of U.S. imports of crude oil, petroleum products, iron ore and bauxite originated at foreign ports and arrived at U.S. ports which handled a million short tons or more of U.S. imports in 1968 and 1969. And, bauxite excepted, substantial proportions of those bulk imports involved ports at each end which handled at least 5 million short tons in both years.

479.

480.

Table 1. Commodity Classifications for Initial RRNA Tabulations of 1968 and 1969 Port Movements

Port movements	Commodity classifications
Exports	
Total grains: Food grains Flour Feed grains Soybeans and mill products	041, 042, 045.1 046 043, 044, 045.2, 045.9 081.2, 081.3, 221.4
Phosphate rock	271.3
Coal	321.4
Imports	
Iron ore	281
Bauxite	283.3
Total petroleum and products: Crude Gasoline Jet fuel and kerosene Distillate fuel oils Residual fuel oils	331 332.1 332.2 332.3 332.4

Note: For precise statistical definitions of indicated codes, see table 3.

Table 2. Commodity Classifications for Final RRNA Tabulations of 1968 and 1969 Zone-to-Zone Movements and Port Distributions

f

新林市市新行政委托任何的新开任任任任任任任任任任

Port movements	Commodity classifications
Exports	
Total grains: Food grains Feed grains Soybeans and mill	041, 042, 045.1, 046 043, 044, 045.2, 045.9
products	081.2, 081.3, 221.4
Phosphate rock	271.3
Coal	321.4
Imports	
Iron ore	281
Bauxite	283.3
Alumina	5136 530
Crude oil	331
Petroleum products	332.1, 332.2, 332.3, 332.4

Note: For precise statistical definitions of indicated codes, see table 3.

481.

÷ąą.∺

nt a

The and the second s

482.

日本になると

Table 3. U.S. Bureau of the Census Definitions of Commodity Classifications

10.11

1

Ŷ

관문구

Code	Description
***** ************************ ********	Exports
041 042 045.1 046 043 044 045.2 045.9 081.3 221.4	Wheat, including spelt or meslin, un- milled Rice, rough, brown, milled, glazed, or polished Rye, unmilled Wheat flour, meal and groats Barley, unmilled Corn or maize, unmilled Oats, unmilled Cereals, n.e.c., unmilled (sorghums) Byproducts of cereal grains and legum- inous vegetables Oilseed cake, meal or residues Soybeans, except roasted as coffee sub- stitute
271.3 321.4	Natural phosphates Coal, anthracite and bituminous
	Imports
281 283.3 331 332.1. 332.2. 332.3. 332.4.	Iron ores and concentrates, including roasted iron pyrites Bauxite, including calcined Petroleum, crude and partly refined for further refining Gasoline and motor fuels Jet fuel and kerosene Distillate fuel oils Residual fuel oils

Source: Department of Commerce, Bureau of the Census, Foreign Trade Commodity Classifications for Schedules A and B. Table 4. General Geographical Classification of U.S. Port Zones

化内土化学的现在分词不可能不同的

Port zone number	Geographical classification
1	Northeast (Maine through Vir- ginia inclusive)
2	Southeast (Ncrth Carolina to but not including Key West, Florida)
3	Gulf (Key West through Texas, inclusive)
4	Southern Pacific coast (Cali- fornia)
5	Northern Pacific coast (Oregon and Washington)
6	Great Lakes
7	Alaska
8	Hawaii
9	Puerto Rico

483.

477 1.1.1

ŝ

4.

ľ

40

Table 5. General Geographic Classification of Foreign Port Zones

Foreign port zone number	Geographical classification
12	Canada Caribbean: Atlantic coast of Mexi- co, Central America, and Colombia; Caribbean Islands, Venezuela, the
3	Guianas Pacific coast of South America, Central America, and Mexico Non-Caribbean Atlantic coast of South America (e.g., Brazil,
5	Uruguay, Argentina, and Paraguay) Northwest Europe: Atlantic and Baltic coasts of Spain, Portugal, France, U.K., Belgium, Holland, Denmark, Norway, Iceland, Sweden
6	and Finland Southwest Europe: Mediterranean coast of Spain, France and Italy Other Mediterranean: Mediterranean coast of Greece, Yugoslavia, Tur- key, Syria, Lebanon, Egypt, Israel Malta Currug Libus
89	Israel, Malta, Cyprus, Libya, Algeria Eastern Europe: Baltic and Black Sea coasts of U.S.S.R. Non-Mediterranean Africa: Coast of Africa from Atlantic coast of Morocco through Somaliland, in-
10	cluding Madagascar and adjacent islands Mideast: Djibouti, Ethiopia, Sudan, Egypt (Red Sea coast), Israel (Red Sea coast), Jordan, Saudi Arabia, Yemen, Aden, Trucial
11 12	States, Kuwait, Iraq and Iran South Asia: Pakistan, India, Ceylon Southeast Asia: Burma, Thailand, Malaysia, Singapore, Indonesia, Philippines, South Korea, Taiwan, South Vietnam, Hong Kong

continued--

Table 5.	General	Geographic	Classification	of	Foreign
	Port	Zones	continued		

Foreign port zone number	Geographical classification
13	Australia, New Zealand and their Pacific Islands
14	
15	

大主

ž,

TARK AND THE TRANSPORT OF THE ADDRESS OF THE ADDRES

486.

「「「「「「「」」」」

Į.

÷.

Table 6. U.S. Ports by Port Zone

U.S. port zone	Port
1 - Northeast (Maine through Virginia inclusive) 2 - Southeast (North Carolina to Key	Boston, Mass. Melville, R.I. New York, N.Y. Albany, N.Y. Philadelphia, Pa. Paulsboro, N.J. Camden, N.J. Baltimore, Md. Norfolk, Va. Newport News, Va. Richmond, Va. Alexandria, Va. Cape Charles, Va. Portland, Maine Bangor, Maine Bath, Maine Portsmouth, N.H. Belfast, Maine Seasport, Maine New Bedford, Mass. Plymouth, Mass. Fall River, Mass. Salem, Mass. Newport, R.I. Providence, R.I. Bridgeport, Conn. New Haven, Conn. New Haven, Conn. New London, Conn. Wilmington, Del. Marcus Hook, Pa. Gloucester, Mass.
West, Florida)	Beaufort/Morehead City, N.C. Charleston, S.C. Savannah, Ga. Jacksonville, Fla.
	continued

a manazari ya malina malina wa kazari na malina na malina na malina za dala malina wa malina malina malina mali

487.

at the second
n - 2**(8**,™-1)

Table 6. U.S. Ports by Port Zone continued--

U.S. port zone	Port
3 - Gulf (Key West, Fla. through Texas)	Miami, Fla. Georgetown, S.C. Brunswick, Ga. Port Canaveral, Fla. Port Pierce, Fla. Wilmington, N.C. West Palm Beach, Fla. Ft. Pierce, Fla. Port Everglades, Fla. Tampa, Fla. Boca Grande, Fla. Mobile, Ala. Gulfport, Miss. Pascagoula, Miss. Pascagoula, Miss. Panama City, Fla. Pensacola, Fla. Port St. Joe, Fla. Morgan City, La. New Orleans, La. Baton Rouge, La. Port Sulphur, La. Destrehan, La. Avondale, La. St. Rose, La. Port Arthur, Tex. Orange, Tex. Beaumont, Tex. Lake Charles, La. Galveston, Tex. Freeport, Tex. Corpus Christi, Tex. Brownsville, Tex. Key West, Fla. Houston, Tex. St. Petersburg, Fla. Good Hope, La. Port Lavaca, Tex.
	continued

ł

ì

Table 6. U.S. Ports by Port Zone continued--

J.S. port zone	Port
4 - South Pacific coast	
(California)	San Diego, Cal.
	Los Angeles, Cal.
	Long Beach, Cal.
	Monterey, Cal.
	San Francisco, Cal.
	Stockton, Cal.
	Oakland, Cal.
	Richmond, Cal.
	Alameda, Cal.
	Sacramento, Cal.
	Eureka, Cal.
	El Segundo, Cal.
	Crockett, Cal.
	Martiner, Cal.
	Redwood City, Cal.
	San Pablo Bay, Cal.
	Carguiner Strait, Cal.
	Selby, Cal.
	Suisun Bay, Cal.
5 - North Pacific coast	
(Oregon and Wash.).	Astoria, Ore.
	Portland, Ore.
11	Longview, Wash.
	Vancouver, Wash.
	Kalama, Wash.
	Seattle, Wash.
	Tacoma, Wash.
	Everett, Wash.
	Port Angeles, Wash.
6 - Great Lakes	Duluth, Minn.
	Superior, Wisc.
	Milwaukee, Wisc.
	Racine, Wisc.
	Detroit, Mich.
	Saginaw/Bay City, Mich.
	Chicago, Ill.
	Cleveland, Ohio
	Toledo, Ohio
	Erie, Pa.
	DITC' LU'

Table	6.	U.S.	Ports	by	Port	Zone	continued
-------	----	------	-------	----	------	------	-----------

U.S. port zones	Port
7 - Alaska 3 - Hawaii 9 - Puerto Rico	Sandusky, Ohio Ashtabula, Ohio Connecut, Ohio Lorain, Ohio Port Huron, Mich. Gary, Ind. Huron East Chicago, Ind. Ogdensburg, N.Y. Rochester, N.Y. Buffalo, N.Y. Massena, N.Y. Oswego, N.Y. Wrangel, Alaska Ketchikan, Alaska Ketchikan, Alaska Sand Point, Alaska Sand Point, Alaska Anchorage, Alaska Juneau, Alaska Honolulu, Hawaii Kahului, Hawaii Ponce, P.R. San Juan, P.R. Fajardo, P.R. Guanica, P.R. Guayanilla, P.R. Mayaguez, P.R.

「「ない」のである

Ŕ.

Á

Table 7. Foreign Port Zones by Countries and Subareas

Foreign port zone	Country or subarea
1 2 2 3	All Canadian ports Miquelon and St. Pierre Islands Mexico (Gulf or east coast region) Guatemala (Caribbean region) British Honduras (Caribbean region) Honduras (Caribbean region) Nicaragua (Caribbean region) Costa Rica (Caribbean region) Panama (Caribbean region) Canal Zone (Caribbean region) Bermuda Bahamas Cuba Jamaica Haiti Dominican Republic Leeward and Windward Islands Barbados Trinidad and Tobago Netherlands Antilles French West Indies Colombia (Caribbean coast region) Venezuela Guyana Surinam French Guiana Mexico (Pacific coast region) El Salvador (Pacific coast region) Honduras (Pacific coast region) Costa Rica (Pacific coast region) Costa Rica (Pacific coast region) Canal Zone (Pacific coast region) Costa Rica (Pacific coast region) Costa Rica (Pacific coast region) El Salvador (Pacific coast region) Costa Rica (Pacific coast region) Ecuador Peru Chile Colombia (Pacific coast region) Bolivia

continued--

Table 7. Foreign Port Zones by Countries and Subareas continued--

Foreign port zone	Country or subarea
4	Brazil Paraguay Uruguay
5	Argentina Falkland Islands Iceland Sweden Norway Finland
	Denmark U.K. Ireland
	Netherlands Belgium
	France (Atlantic region)
	West Germany (Baltic and Atlantic coast regions) Azores
	Spain (Atlantic coast region) Portugal
6	France (Mediterranean coast region) Corsica Monaco
	Spain (Mediterranean coast region) Gibraltar
7	Italy (West and east coasts) Yugoslavia Greece
	Turkey
	Cyprus
	Syria Lebanon
	Israel (Mediterranean coast region)
	Spanish Africa (Mediterranean coast region)
	Morocco (Mediterranean coast region) Algeria Tunisia

continued--

491.

antipation for all and a second s

¥7:1)*

A CONTRACTOR OF THE STREET

Ψ.

. Martinette of allowing to

Table 7. Foreign Port Zones by Countries and Subareas continued--

Foreign port zone	Country or subarea
8	Libya U.A.R. (Mediterranean coast region) Malta Estonia
	Latvia
	Lithuania
	Poland and Danzig
	U.S.S.R. (Arctic, Baltic, and Black
	Sea coast regions)
	East Germany
	Rumania
1	Bulgaria Morocco (Atlantic coast region)
* * * * * * * * * * * * * *	Canary Islands
	Spanish Africa (Atlantic coast region)
	Mauritania
	Cameroon
	Senegal
	Guinea
	Sierra Leone
	Ivory Coast
	Ghana
	Gambia
	Тодо
	Nigeria
	Gabon
	Western Africa
	Tanzania
,	Dahomey
	Congo (Brazzaville)
	British West Africa
	Western Portuguese Africa
	Angola Dorthuguese Chines
	Portuguese Guinea
	Sao Tome
	Liberia Congo (Kinghaga)
	Congo (Kinshasa) Somali Republic
	Dowart Vebabtic

continued--

1

9213.3C4125

Table 7.	Foreign	Port				and	Subareas
			conti	nue	1		

Foreign port zone	Country or subarea
10	Kenya Mauritius and Dgindencias Mozambique Malagasy Republic Reunion Comoro Islands Republic of South Africa Southwest Africa Israel (Port of Elath) Jordan Iraq Iran Kuwait Saudi Arabia Arabia Peninsula States Aden Bahrain Ethiopia
11 12	U.A.R. (Red Sea ports) French Somaliland (Djibouti) India Pakistan Ceylon Burma Thailand Malaysia Singapore Indonesia South Korea Taiwan
13	South Vietnam Hong Kong Philippines Cambodia Macao Southern and Southeastern Asia Australia New Zealand and Western Samoa continued

493.

۰,

Foreign po zone	Country or subarea
	Tasmania New Guinea Cook Islands Manakiki Islands Niue Islands British Western Pacific Islands Christmas Island Fanning Island French Pacific Islands
14	Trust Territory of the Pacific Islands China North Vietnam North Korea
15	U.S.S.R. (Pacific coast) Nansei and Nanpo Islands Japan

Table 7. Foreign Port Zones by Countries and Subareas continued--

2

4

U.S. Crude Oil Imports, Zone-to-Zone Waterborne Movements, 1968 (In millions of short tons)

Table 8.

0.5 35.5 1.2 0.2 0.1 а. 8 61.4 from the above figures; all other data are rounded to nearest 100,000 short Total ł 1 ł ł -Annual zone-to-zone movements of less than 50,000 short tons are excluded Puerto Rico 9.9 9.9 ł 1 ł σ Hawaii ł 0.5 2.0 L.5 1 1 1 1 ł --1 ł 8 Thus columns and rows may not add to totals shown. Alaska ł Great Lakes zone ł ! ဖ port North Pac. 0.4 0.1 0.2 ł S U.S. South Pac. 1.5 6.9 2.9 1 1 .4 -1 1 4 Gulf 2.2 2.1 m Atl. South 0.1 0.1 ł 2 North 21.8 7.6 Atl. 0.2 0.5 9.5 0.2 40.0 1 0.1 1 ł 1 1 Canada.... S. Am.-Pac. Caribbean.. Am.-Atl. SW Eur.... Other Med .. SE Asia... Comm. Asia. - Jāpan.... Eur... Eur... Other Afr. Mid-East.. S. Asia... Australia. Foreign port tons. MN zone Total. Ncte: I 13 15 10 12 14 م æ σ H

495.

RRNA tabulations of unpublished U.S. Bureau of the Census data on compu-

ter tape, Series SA-305.

Source:

. . .

ŗ

and the second of the second se

U.S. Crude Oil Imports, Zone-to-Zone Waterborne Movements, 1969 Table 9.

(In millions of short tons)

Foreign port				U.S.	U.S. port zone	zone				
zone	l North Atl.	2 South At1.	3 Gulf	3 4 Gulf South Pac.	5 6 North Great Pac, Lakes	6 Great Lakes	7 Alaska	8 Hawaii	9 Puerto Rico	Total
1 - Canada			1] ¦					
2 - Caribbean.	19.3	0.1	2.2	1.4	0.1	1	!	1	10.4	33.6
3 - S. AmPac.	0.7	1	 	1.3	!	;	!	1	1	2.0
4 - S. AmAtl.		1	ł	ł	1	ł			1	1
5 - NW Eur	0.2	Ĩ	1	1	1	ł	ł	!	0.1	0.4
6 - SW Eur		;	ţ	1	1	1	1	l	0.1	0.1
7 - Other Med	7.9	1	1		ł	1	!	;	1	8.0
8 - E. Eur	1		.1	ł		1	ł	1	1	!
9 - Other Afr	2.9		1	ł	:	ł	1		0.1	3.0
10 - Mid-East	0.0		ļ	1. 6		ł	1	1.5	1	12.2
ll - S. Asia	!	1]		1		ł		1	
12 - SE Asia	:	1	1	4.0	0.2	1	1	0.4	1	4.7
13 - Australia	;	1	1	1	ł	!	1		1	!
14 - Comm. Asia.				1	1	!			1	1
15 - Japan	!	1	!	1	1	ł	!	ł	!	!
Total	40.0	0.1	2.3	8.5	0.4	1	!	2.0	10.7	63.9
Note: Annual zone-to-zone movements of less than 50,000 short tons are excluded	-to-zon	le move	ments	of le	sss the	an 50,(100 shor	t tons	are excl	luded

from the above figures; all other data are rounded to nearest 100,000 short

tons. Thus columns and rows may not add to totals shown. RRNA tabulations of unpublished U.S. Bureau of the Census data on compu-ter tape, Series SA-305. Source:

Ŷ

2.2

496.

「日本町」を見ていたいないです。 あっていく 一般なななない

いい語い

ŝ

Ļ

ì

į

وأنكام فلاقا للاقا فلأخذذ فأقلع سأنكر ومعلما القلكهم ملاماتها والاردار والمسارعين

L'ATURA

U.S. Petroleum Product Imports, Zone-to-Zone Waterborne Movements, 1968 Table 10.

١

动

ومعناهم المنافعة والمنافعة والمستركب والمستركب والمستركب والمستركب والمستركب والمستركب والمسترك والمسترك والمسترك

THE LOCAL PROPERTY.

(In millions of short tons)

Foreian port				U.S.	. port	zone				
zone	1 North Atl.	2 South Atl.	3 Gulf	4 South Pac.	5 North Pac.	6 Great Lakes	7 Alaska	8 Hawaii	9 Puerto Rico	Total
- Corredo										
2 - Caribbean	53.3	7.7	з•2	1.5	0.2	0	0,3	1.1	 0 • 0	0.2 67.9
3 - S. AmPac.	!	1	ł	ł	ł				1	
4 - S. AmAtl.	0.7	0.1	ł	ł	ł	1	ł	ł	1	0°8
5 - NW Eur	3.2	0.1	1	1		ł	1	!		3.3
6 - SW Eur	4.6	1	ł	ł	1	ł	 	1	1	4.0
7 - Other Med	}	1	!	ł		ł	1	!	ł	
8 - E. Eur	0.1	ł	1	ł	ł	I I	1	ł		0.1
9 - Other Afr	0.3	1			!	ł		1	1	0.3
l0 - Mid-East	0.1	ł	ł	0.1	i	ł	1	0.5	1	0.7
ll - S. Asia	0.1	1	ł		1	1	1	t I	!	0.1
12 - SE Asia	1	•	ł			ł		1	ł	1
13 - Australia	1		 	ł	1	ł	1			ł
14 - Comm. Asia.	İ	•	ł	ł	1	ł	1	1	1	1
15 - Japan	1		1	1	1	1	1	l	8	!
Total	61.8	7.9	3.2	1. 6	0.2	0.1	0.4	1.7	0.6	77.4
Note: Annual zone-to-zone move from the above figures;	-to-zon ove fig	to-zone movements of ve fiqures; all other	ments all o	of le ther d	less than data are	un 50,0 te roun	50,000 short tons rounded to nearest	t tons nearest	ments of less than 50,000 short tons are excluded all other data are rounded to nearest 100.000 show	uded short
tons. Thus Source: RRNA tabul	column:	columns and ations of un	rows Tows	may no	t add	to tot	rows may not add to totals shown.	Wn.	s and rows may not add to totals shown.	
ter tape,	Series	SA-305	5.			ודבמת כ		elisus d		-nduro:

497.

ノノイリション

のないないのである。

ų.

1

in the second

2

U.S. Petroleum Product Imports, Zone-to-Zone Waterborne Movements, 1969 Table 11.

(In millions of short tons)

				U S	U.S. port	zone				
Foreign port zone		2	6	4	۔ ۲	9	2	æ	6	Tota]
	North Atl.	South At1.	Gulf	South Pac.	NO	Great Lakes	Alaska	Hawaii	Puerto Rico	
l - Canada	0.1	!		1	1	0.2	0.1		!	0.4
2 - Caribbean.	57.0	9.3	4.4	1.6	0.2		0.4	0.9	0.6	74.3
3 - S. AmPac.	0.1	;	ł	ł	1	ł		1	1	0.1
4 - S. AmAtl.	0.1	1	ł	1	1		1	;	1	0.1
5 - NW Eur	4.6	0.1		ł	ł	ļ	ł	1	!	4.7
6 - SW Eur	5.0	1	ł	!	ł	1	ł		1	5.0
7 - Other Med.	0.2	ł		ł	ļ			1	!	0.2
8 - E. Eur	0.3		1	1	ł	1	1	1	1	0.3
9 - Other Afr.	0.2	!	ł	!	1	1		l	1	0.2
ł	0.1	1	ł	0.1	1	ł	0.1	0.7	8	1 . 0
ll - S. Asia		ł	1	!	1		1	1	ł	1
12 - SE Asia	1		!		j I ,	ł	;	1	:	
ł	1	1	ł	1	ł	1	!	!	1	!
1		ł	ł	ł	ł	ł	!	1	1	1 t
ł	!	:	ł	0.1	1	1	1	0.1	1	0.2
Total	67.6	9.4	4.4	1. 8	0.2	0.2	0.5	1. 8	0.6	86.5
Note: Annual zone-to-zone movements of less than 50,000	-to-zor	le move	ments	s of l€	ess the	an 50,0	Ŋ	short tons are		excluded
from the above figures; tone while columne and	ove figures;		all o	other data	lata a) + שלל	all other data are rounded		to nearest	to nearest 100,000	short
	lations	of un	i dudi	of unpublished U.S.	J.S. Bu	Bureau of	if the C	the Census data		on compu-

日日の日日日

「「「「「「」」」」

1 × 1

ter tape, Series SA-305.

498.

「日本のない」

12. 14. 1

; ;

ť

7

): h

, **,**

ţ

:

U.S. Iron Ore Imports, Zone-to-Zone Waterborne Movements, 1968

Table 12.

いい たいなんでん うちゅうばい 手術 御御御御

いた時間にたい

Ŀ.

0.11.10

1

ň

10.00 - 11

٩,

(In millions of short tons)

•		Total	27.9	11.6	2.6	1.4	0.7	:	1	1	3.1	1	1	!	0.1	1		47.4	luded) short	-ndwo:
		9 Puerto Rico		1	1		1	1	1	1	1	1		ł	l	1	!	!	short tons are excluded to nearest 100,000 sho	s and rows may not add to totals shown. of unpublished U.S. Bureau of the Census data on compu- SA-305.
		8 Hawaii		1	ł	ļ			ł	1	1	1	!	1	ł	1	1	1	t tons nearest	wn. ensus d
		7 Alaska	1		ł		1		!	I	1		1	1		1		;	00 shor ded to	and rows may not add to totals shown. of unpublished U.S. Bureau of the Cens M-305.
	zone	6 Great Lakes	20.0	ł	ł	ł			ł	ł	ļ	ł	ł	ł	ł	ł	ł	20.0	than 50,000 s are rounded	to tot Ireau c
	U.S. port	5 North Pac.	1	1	1		-	ł	1	1	!	Į	1	ł	!	;	1	ł	ments of less than all other data are	ot add I.S. Bu
	U.S.	4 South Pac.	ł	ł		;	1	1	!	1	1	ł	ł			!	1	ł	movements of less es; all other data	may no shed u
		3 Gulf	1.4	2.9	0.7	0.5	ł	ł	ł	ł	0.3	}	!	ł	0.1	ł	1	6.0	ements all c	rows npubli 05.
		2 South Atl.					;		ł	ł	l	ł	!	1		ł	1	ł	te move	s and r of unp SA-305
		L Nocta Ati.	6.5	8.7	1.9	6.0	0.7	!		ł	2.7		1	!	:	!	1	21.3	-to-zone ove figur	rnus columns tabulations (ape, Series 2
	Foreian port	zone	l - Canada	2 - Caribbean	.3 - S. AmPac.	4 - S. AmAtl.	5 - NW EUC	: 6 - SW EUL	7 - Other Med	8 - E. Eur	9 - Other Afr.	10 - Mid-East	11 - S. Asia	12 - SE Asia	13 - Australia	14 - Comm. Asia.	15 - Japan	Total	12	Source: RRNA tabula ter tape, S

499.

通行の

U.S. Iron Ore Imports, Zone-to-Zone Waterborne Movements, 1969 Table 13.

(In millions of short tons)

•

۲.

I - Canada 4.4 2 - Caribbean 12.1				DUL L	port zone	1			
Canada 1 Caribbean 1	h South Atl.	3 Gulf	4 South Pac.	5 6 North Great Pac. Lakes	6 Great Lakes	7 Alaska	8 Hawaii	9 Puerto Rico	Total
2 - Caribbean. 12.1	4	0.5			13.3				18.5
	i.	3.2	1	1	1	;	!	ł	15.4
3 - S. AmPac. 2.0		1.0	ļ	0.1	;	;	!	!	3.1
4 - S. Am At1. 0.9	6	0.5	ł	1	1	ł	l l	1	1.4
5 - NW EUK 0.5	5	ł	1	ł	1	1	!	1 	0.5
6 - SW Eur	ł	ł	1	ł	;	!	1	I I	1
7 - Other Med.	1		ł	!	ł	1	1	1	
8 - F. Fur	1	1	1		1	!	1	ł	
9 - Other Afr. 3.0	0	0.2	ł	ļ	0.1	1	ł	-1	3.3
10 - Mid-East	1	 	1	1		1	1	1	
11 - S. Asia			1	1	1	!	1	!	1
12 - SE Asia		ł	1		1	!		1	;
13 - Australia. 0.2	2	0.2	1	1	1	ĺ	1	1	0.4
14 - Comm. Asia.	1	ł	ł	ł	ł	!	ł		ł
15 - Japan		1	1	1	ł	i i			ł
Total 23.1	.1	5.8	ł	0.1	13.4		1	ł	42.5
Note: Annual zone-to-zone movements of less than 50,000 from the above figures; all other data are rounded tons whice columns and rows may not add to totals	to-zone move ve figures; columns and	ements of áll other rous mav	s of le ther d may no	ess thé lata al bt add	less than 50,000 s c data are rounded not add to totals)00 shoi Nded to -als sho	hort tons to nearest shown -	ments of less than 50,000 short tons are excluded all other data are rounded to nearest 100,000 short rous may not add to totals shown.	luded) short

RRNA tabulations of unpublished U.S. Bureau of the Census data on compu-ter tape, Series SA-305.

Source:

加加になるのである

500.

1

we have a set and the state of a set

Constant of the second of the

1.2.1

v .

í

525

ţ

ķ

ł

· Service Andrew Street and Street and Street and Street and Street and Street and Street and Street and Street

Table 14. U.S. Bauxite Imports, Zone-to-Zone Waterborne Movements, 1968

* ;

د من المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد ا محمد المحمد ا

١

Ï.

(In millions of short tons)

Foreian port				U.S.	. port	zone				
zone	l North Atl.	2 South Atl.	3 Gulf	4 South Pac.	5 North Pac.	6 Great Lakes	7 Alaska	8 Hawaii	9 Puerto Rico	Total
1 ~ Canada]]			
2 - Caribbean.	0.2	ł	13.9	ł	ł	!	•	1	1	14.2
3 - S. AmPac.		ł	1	1	ł	1	ł	!	1	
4 - S. AmAtl.		1	ł		!	1	1	1	!	!
5 - NW Eur	:]	1	1	ł		1	1	1	1
6 - SW Eur		ł	ł	;	!	1	1	1		1
7 - Other Med	!		0.1]	;	1	!	ł	!	0.1
8 - E. Eur	ł	ł	1	1	ł	;	1	!	ł	;
9 - Other Afr	1	1	ł	;		ł		1	!	
10 - Mid-East	!	ł]]	1	1	1			!
11 - S. Asia	;	ļ	!	1	1	;	ł	1	!	ļ
12 - SE Asia	1	1		1	1	1	1	1	}	1
13 - Australia.,	1	1	ł	;	1	ł	1	ł	!	
14 - Comm. Asia.	1	1	l I	1	1	;	1	!	ł	ł
15 - Japan			1	ł	1	;	1		!	ł
Total	0.2	ł	14.0	1	ł	ł	1	1	1	14.4
Note: Annual zone-to-zone movements of less than from the above figures; all other data are tons. Thus columns and rows may not add to Source: RKNA tabulations of unpublished U.S. Bure ter tape, Series SA-305.	e-to-zon ove fig column lations Series	O-ZONE MOVER C figures; a Olumns and r tions of unp eries SA-305	ments all o rows publi	of le ther d may nc shed U	ments of less than all other data are rows may not add to published U.S. Bure	O A	00 shor ded to als shc f the C	short tons I to nearest s shown.	O-ZONE movements of less than 50,000 short tons are excluded e figures; all other data are rounded to nearest 100,000 short olumns and rows may not add to totals shown. tions of unpublished U.S. Bureau of the Census data on compu- ories SA-305	luded) short compu-

501.

*

م المتحقين بمحاطيتها بالقصارين

in the official statements

ł

:. 6

ķ

U.S. Bauxite Imports, Zone-to-Zone Waterborne Movements, 1969 Table 15.

(In millions of short tons)

				U.S.	U.S. port zone	zone				
ruteign port zone	1 ⁻ orth Atl.	2 South At1.	3 Gulf	4 South Pac.	5 North Pac.	4 5 6 South North Great Pac. Pac. Lakes	7 Alaska	8 Hawaii	9 Puerto Rico	Total
L - Canada		ł	ł	!]	:	1	1	l	1
2 - Caribbean.	0.2	ł	15.9			ł	1		5	16.2
3 - S. AmPac.			!	!	1				;	
4 - S. AmAtl.	1	ł	ł		1	1	1			}
5 - NW Eur		ł	ł	ł	ł	ł		1		ł
6 - SW Eur	1	1	ł		ł	ł		ł	1	1
7 - Other Med	;	ł	1		1	1	!	1	1	ł
8 - E. Eur	1	ł	ł	1	ł		;		ł	ł
9 - Other Afr	1	1		1	ł	1		ļ	ļ	1
10 - Mid-East		ł			1	1	1	ł	ł	1
ll - S. Asia	1	1	ł		ł	1				1
12 - SE Asia		ł	ł	ł	!	ł	!			
13 - Australia	í	ł		ł	;	;	•	1	1	1
14 - Comm. Asia.	1	ł	ł		ł	ł			1	!
15 - Japan	1	1	ł	!			1	1	ł	ł
Total	0.2	0.1	15.9	ł	ł	1	ł	ł	1	16.3
Note: Annual zone-to-zone move from the above figures; tons Thus columns and	-to-zone move ove figures;	e movel lres; 6	ments all o†	of le ther di	ss tha ata ar	ments of less than 50,000 all other data are rounded	00 shor ded to	t tons nearest	to-zone movements of less than 50,000 short tons are excluded We figures; all other data are rounded to nearest 100,000 short	uded short

tons. Thus columns and rows may not add to totals shown. RRNA tabulations of unpublished U.S. Bureau of the Census data on compu-ter tape, Series SA-305. Source:

502.

新学校的 化化学 法国际部门公共和学校学

ないたい たいてんしょう

1. N. 19 N. 1

10.0

1

1

というたい アンジャンドラド というにがい ステ

うたいぞうしい たたたい そうせい ドロー ちんのおい かぞうさ ほど

U.S. Alumina Imports, Zone-to-Zone Waterborne Movements, 1968 Table 16.

i

1

ļ

(In millions of short tons)

Foreian port				U.S	U.S. port	zone				
zone	1 North Atl.	2 South Atl.	3 Gulf	4 South Pac.	5 North Pac.	6 Great Lakes	7 Alaska	8 Hawaii	9 Puerto Rico	Total
1 - Canada	}			:]]		
2 - Caribbean.	 	ł	0.2	ł	0.4	ł	ł	ł	1	0.6
3 - S. AmPac.		1	!	¦	!	ł	!	1	!	1
4 - S. AmAtl.	1	ł	1	ł		1	1	!	ļ	
5 - NW Eur		ł	ł	1	ł	1	1	ł		
6 - SW Eur		ł	ł	ł	ł	1	ł	1	1]
7 - Other Med	1	1	ł	!	ł	!]	!		
8 - E. Eur	1	!	ł	1	ł	ł	ł	ł	ŀ	!
9 - Other Afr	1	1	ł	1	1	1]	1	1	
LO - Mid-East	1	I	1	!	ł	1]	ł	1	
11 - S. Asia		ł	i	1		ł	1	ł	ł	!
L2 - SE Asia		ł	ł	ł	1	1		1	1 1	1
13 - Australia	!	1	ł	1	0.7	1	ł	1	}	0.7
l4 - Comm. Asia.	!		!		•	ł	1		1	1
l5 – Japan	!	1	1		1	ł	ł	ł	;	1
Total	1	ł	0.2	ł	1.1	1		1		1.3
Note: Annual zone-to- from the above tons. Thus col Source: RRNA tabulati ter tape, Ser	-to-zone move ove figures; columns and lations of un Series SA-30	e move ures; s and of un SA-30	ments all o rows publi 5.	of le ther d may no shed U	ess than lata are it add to .S. Bure	un 50,0 te roun to tot ireau o	ements of less than 50,000 short all other data are rounded to ne rows may not add to totals shown published U.S. Bureau of the Cen)5.	t tons nearest wn. ensus d	e movements of less than 50,000 short tons are ε ;luded ires; all other data are rounded to nearest 100,600 short s and rows may not add to totals shown. of unpublished U.S. Bureau of the Census data on compu- SA-305.	Luded) short compu-

24

WERE DESCRIPTION OF THE PARTY OF THE

503.

5

•

And and

U.S. Alumina Imports, Zone-to-Zone Waterborne Movements, 1969 Table 17.

(In millions of short tons)

Foreign port				U.S.	U.S. port zone	zone				
zone	1	2	З	4	5	9	7	æ	5	Total
	North Atl.	South Atl.	Gulf	South Pac.	North Great Pac. Lakes	Great Lakes	Alaska	Hawaii	Puerto Rico	
1 - Canada			1	ł	. 1	1			1	
2 - Caribbean.		Ì	0.1	1	0.4	1	ł	1	ł	0.5
3 - S. AmPac.	!	!		ł	ł		ł	ł	1	ł
4 - S. AmAtl.	1	ł	ł		ł		ł	ł	1	1
5 - NW Eur	!	!	ł	ł	!	!	1	1		
6 - SW Eur		!	ł	!	1	ł	!	1	1	}
7 - Other Med	!	1		1	1	!	ł	1		1
8 - E. Eur	!	1	ł				1	ł	1	1
1	!	!	ł	ł	ł	ł	1	ł	!	
I		1	ł		!	ł	!	!	1	1
1	!	ł	1	ł	1		1	ļ		1
1		1	ļ	ł	1	1	1	1		ľ
13 - Australia	ł		1	1	1.3	1	;		;	1.3
1		1	ł	ł	ł		!	1	1	ł
1	!	ł	 	ł	0.1			1	1	0.1
Total	!	ł	0.1	!	1.8	ł	1		1	1.9
Note: Annual zone-to-zone movements of less than 50,000 short tons are excluded from the above figures; all other data are rounded to nearest 100,000 sho	-to-zon ove fig	zone move figures;	ments all o	of le ther d	ments of less than all other data are	n 50,0 e roun	00 shor đeđ to	it tons nearest	50,000 short tons are excluded rounded to nearest 100,000 short	luded) short

tons. Thus columns and rows may not add to totals shown. RRNA tabulations of unpublished U.S. Bureau of the Census data on compu-ter tape, Series SA-305. Source:

A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF

504.

30° W.

うちまたのう 部 後の前にし

2458 **4**-1

U.S. Coal Exports, Zone-to-Zone Waterborne Movements, 1968 Table 18.

ふいいれ見

(In millions of short tons)

1	Total	16.8	•		• • • •	2 • 7	י ני •			7.7		!			1	6.0	7.0	a ort 1-
	й Т		4			2 O F				-						15.0	50.	excluded),000 short on compu-
	9 Puerto Rico						!	ļ						l				are exc 100,00 ata on
	8 Hawaii		1	1	ļ	1	1		1					ł	ł	1		t tons nearest wn. ensus d
	7 Alaska		ł	1		!	;	!	1	!				ł	1		ł	to-zone movements of less than 50,000 short tons are excluded ve figures; all other data are rounded to nearest 100,000 shor columns and rows may not add to totals shown. ations of unpublished U.S. Bureau of the Census data on compu- Series SA-705
zone	6 Great Lakes	16.0		ł	1	1	ł			;	1	1	ł	ł	ł	1	16.0	un 50,0 ce roun to tot ireau o
U.S. port	5 North Pac.	1	ł	!	!	l		1		ł	ł	1	ł	!	ł	ł	ł	ess the lata ar ot add J.S. Bu
U.\$	4 South Pac.		1	!	1	!	1	ł	ł	ļ	1	ł		i	1	1	ł	s of le other d may no ished u
	3 Gulf	ļ	1	ł		ł		1	ł	!	ł	1		ł	ł	1	ł	ment: all c rows publi
	2 South Atl.	ł	1	ł	ł	1		1	- 1 - 1	1	1	1	1	ł	ł	ł	ł	e movem ures; a s and r of unp SA-705
	1 North Atl.	0.8	1	0.3	2.3	10.4	4.5	0.4	0.2	!		1	ł		1	15.8	34.7	- -to-zon ove fig column lations Series
Foreign port	zone	1 - Canada	2 - Caribbean	3 - S. AmPac.	4 - S. AmAtl.	5 - NW Eur	6 - SW Eur	7 - Other Med	8 - E. Eur	9 - Other Afr	10 - Mid-East	ll - S. Asia	12 - SE Asia	13 - Australia	14 - Comm. Asia.	15 - Japan	Total	Note: Annual zone-to-zone movements of less than 50,000 short t from the above figures; all other data are rounded to nea tons. Thus columns and rows may not add to totals shown. Source: RRNA tabulations of unpublished U.S. Bureau of the Cens ter tape. Series SA-705

505.

.

¥.

「「「「「「」」」」」

「「「「「「」」」

ġ

4-1-1-4

U.S. Coal Exports, Zone-to-Zone Waterborne Movements, 1969 Table 19.

(In millions of short tons)

Foreian port				U.S.	. port	zone				
zone	1 North Atl.	2 South Atl.	3 Gulf	4 South Pac.	5 North Pac.	5 6 North Great Pac. Lakes	7 Alaska	8 Hawaii	9 Puerto Rico	Total
1 - Canada	0.8				ł	16.0				16.7
2 - Caribbean		1	ł	1	1	:	ł	1	ł	0.1
3 - S. AmPac.	0.5		1	ł	ł	ł	ł	l	1	0.5
4 - S. AmAtl.	2.3	ł	ł	ł	1		ì		ł	2.3
5 - NW Eur	11.1	ł	1	ł	ł	ł	1	1	1	11.1
6 - SW Eur	3.9	1	ł	1	ł	ł		8	1	з • 6
7 - Other Med	0.2	1		1	ł	ł	1	1	1	0.2
8 - E. EUK	0.1	1	l	ł		1		1	1	0.1
9 - Other Afr.	1	1	ł	1	ľ	1	1	1	1	
10 - Mid-East	1	ł	ł	ł	!	ł	1	1	1	
11 - S. Asia	1	ł	ł	ł	1	ł	1	1	1	
12 - SE Asia	l i	ł		ł	ł	1		1	ł	!
13 - Australia		ł	1	ł	l	1			1	!
14 - Comm. Asia.	1	ł	1	1	1	ł	1		1	1
15 - Japan	21.2	1	0.1	0.1	!	1	ł	1	1	21.4
Total	40.1	!	0.1	0.1	ł	16.0	ł	t I	k I	50.3
Note: Annual zone-to-zone move from the above figures; tons. Thus columns and Source: RRNA tabulations of un ter tape, Series SA-70	-to-zone ove figun columns lations d Series (e mover ures; a s and r of unp SA-705	ments all c rows publi 5.	t of le ther d may no shed U	sss tha lata ar ot add J.S. Bu	movements of less than 50,000 s res; all other data are rounded and rows may not add to totals of unpublished U.S. Bureau of th 3A-705.	00 shor ded to als shc f the C	short tons to nearest shown. he Census d	movements of less than 50,000 short tons are excluded ires; all other data are rounded to nearest 100,000 short and rows may not add to totals shown. of unpublished U.S. Bureau of the Census data on compu- SA-705.	excluded ,000 short on compu-

506.

STATISTICS STATISTICS STATISTICS

でしたのないの変更してき、

U.S. Total Grain Exports, Zone-to-Zone Waterborne Movements, 1968 Table 20.

1

(In millions of short tons)

Foreign nort				U.S.	. port	zone				
zone	1 North Atl.	2 South Atl.	3 Gulf	4 South Pac.	5 North Pac.	6 Great Lakes	7 Alaska	8 Hawaii	9 Puerto Rico	Total
1 - Canada	!	1		·	1	3.4		1	1	3.4
2 - Caribbean.	0.1	1	1.2	1	0.1	0.1	1	:	1	1.5
3 - S. AmPac.		1	0.7	ł	0.1	ł	1		8	0.8
4 - S. AmAtl.			1.4	1	1	!	1	1		1.5
5 - NW Eur	2.7	0.3	10.2	1	1	3.1		!	1	16.3
6 - SW Eur	0.5		3.5	!	;	0.2		1	1	4.3
7 - Other Med	0.4	1	1.8	ł	1	0.2	!	1	1	2.3
8 - E. EUL	1.0	1	0.7	!	;	1		ł	1	0.8
9 - Other Afr.	0.1	ł	0.8	ł	1	1	1	1	1	0.9
I		ł	0.2	ł	ł	:	1	1		0.2
ł	0.4	1	4.1	0.1	1.6	1	1	1		6.2
12 - SE Asia	0.1	ł	1.8	0.4	2.0		ł	1	:	4.4
13 - Australia	!	1	1	ł			1	1	;	
14 - Comm. Asia.		1	ł	ł	1			!	1	1
15 - Japan	0.1	ł	7.3	0.3	2.2	0.3		1	1	10.1
Total	4.5	0.3	33.8	0.8	6.0	7.3	1	1	1	52.8
Note: Annual zone-to- from the above	-to-zor ove fig	to-zone movements of less than 50,000 s ve figures; all other data are rounded	all c	s of le other d	ess the lata al	in 50,(te rour	00 shoi ided to	short tons are l to nearest 100		excluded 1,000 short
Source: RRNA tabulations ter tape, Series	column lations Series		rows upubli 15.	may nc shed U	J.S. Bu	ro roi Ireau c	cars sno of the (snown. 1e Census à	s and rows may not add to totals snown. of unpublished U.S. Bureau of the Census data on compu- SA-705.	-ndwo:

507.

ā.

U.S. Total Grain Exports, Zone-to-Zone Waterborne Movements, 1969

Table 21.

(In millions of short tons)

Eoreian nort				U.S.	. port	port zone				
zone	1 North Atl.	2 South Atl.	3 Gulf	4 South Pac.	5 North Pac.	6 Great Lakes	7 Alaska	8 Hawaii	9 Puerto Rico	Total
1 - Canada	-			ł	ł	4.3		1	i	4.4
2 - Caribbean.	0.1	 }	1.1	ł	0.1	0.1	ł	!	ł	1.4
3 - S. AmPac.	!	ļ	0.5	ł	0.2	!	ł	ļ	!	0.7
4 - S. AmAtl.	!	1	1.2	1	ł	ł	!	ł	ł	1.2
5 - NW EUL	1.8	0.2	8.4	1	ł	2.7			1	13.1
6 - SW Eur	0.5	1	3.2	ł		0.1	ł		i	3.8
7 - Other Med	0.5	ł	2.4	ł	ł	0.1	ł	;	1	3.0
8 - E. Eur	!	ł	0.4	ł	ł		1	ł	1	0.4
9 - Other Afr	!	1	0.7	ł	!	1			1	0.7
10 - Mid-East			0.1	ł	1		1	1	1	0.1
ll - S. Asia,	!	1	1.9		1.1	1		ł	1	3.0
12 - SE Asia	C.1		1.9	0.4	2.1	ł	1	1	1	4.4
13 - Australia	1	1	ł	1	ł	ł	:	ł	1	
14 - Comm. Asia.	!	1	ł			ł		!	1	i
15 - Japan	ł	1	7.7	0.6	2.3	0.2	1			10.7
Total	3.0	0.2	29.4	1.0	5.8	7.6	ŀ	1	8	47.0
Note: Annual zone-to-zone movements of less than 50,000 short tons from the above figures; all other data are rounded to nearest	-to-zon ove_fig	zone move figures;	ments of all other	ther d	ess the data ai	chan 50,0 are rour	00 shoi ded to	rt tons nearest	are : 10(excluded),000 short

Thus columns and rows may not add to totals shown. tons.

RRNA tabulations of unpublished U.S. Bureau of the Census data on compu-ter tape, Series SA-705. source:

A A BAR IN A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A

and a second second second second second second second second second second second second second second second

- 21-21-

) (ing

508.

A LEY DE MARKAN AND

「「「「「「「「「」」」」」

÷ ê

ALL STATES

Ş

ţ

Ş

U.S. Natural Phosphate Exports, Zone-to-Zone Waterborne Movements, 1958 Table 22.

AND A DECK

「「「「「「」」」

9 1.

ļ

(In millions of short tons)

Foreian port				U.S.	port	zone				
zone	1 North Atl.	2 South Atl.	3 Gulf	4 South Pac.	5 North Pac.	6 Great Lakes	7 Alaska	8 Hawaii	9 Puerto Rico	Total
1 - Canada		0.2	0.7			!	4			6.0
2 - Caribbean	!	!	0.3		1	ł		1	!	0.3
3 - S. AmPac.	1	ł	0.1	ł	1	1	:	1	1	0.1
4 - S. AmAtl.	!	ł	0.3	!	1	1	1	1	1	0.3
5 - NW Eur	0.1	0.2	2.7	ł	ł	1	1		1	0.6
6 - SW Eur		0.5	1.0	!	ł			1		1.5
7 - Other Med	1	ł	ł	ł	ł	1		1		
8 - E. Eur	!	!	1	1	1	1		!	i	;
9 - Other Afr		ł	!			1	1	1	ł	
0 - Mid-East		ł	ł	ł	1	1			1	!
l - S. Asia	;	0.1	0.2	ł	1	ł	1	1		0.3
12 - SE Asia	1	ł	0.7	1	1	ł		ł		0.7
3 - Australia	1	!	0.7	!		1	1	!	ł	0.7
4 - Comm. Asia.		;		ł	1	ł	1	!	1	
5 - Japan	!		2.8	ł	1	1	1	ł	1	2.8
Total	0.1	1.0	9 . 5	ł	1	;		1	L T	10.6
Note: Annual zone-to-zone movies from the above figures; tons. Thus columns and	e-to-zone bove figur columns	Ω	ments of all other rows may a	movements of less than res; all other data are and rows may not add to		ments of less than 50,000 sall other data are rounded rows may not add to totals	00 short t ded to nea als shown.	short tons are to nearest 10(shown.	hort tons are exclu to nearest 100,000 shown.	excluded ,000 short
source: kkNA tabu ter tape,	lations Series	ot unp SA-705	publı 5.	ot unpublished U.S. SA-705.		ireau c	of the C	census d	Bureau of the Census data on compu-	-ndwo:

509.

120 **4**

٠,

÷

.

ż

1969
Movements,
Waterborne
Zone-to-Zone Waterborne Mo
te Exports, 2
L Phosphate
Natural
U.S.
Table 23.

(In millions of short tons)

Porei a vort				U.S.	U.S. port zone	zone				
zone zone	1 North Atl.	2 South Atl.	3 Gulf	4 5 6 South North Great Pac. Pac. Lakes	5 North (Pac.]	6 Great Lakes	7 Alaska	8 Hawaii	9 Puerto Rico	Total
1 - Canada		0.2	6.0							1.1
2 - Caribbean.	1	1	0.7	ì	ļ	ł	ł	ł		0.7
3 - S. Am Pac.		ł	0.1	ł	ł	ł	1	1		0.1
4 - S. AmAtl.	1	l	0.3	ł	ł	1	1	i	!	0.3
5 - NW EUC	!	0.5	2.4	ł	ł	1	1	ł	1	2.9
6 - SW Eur	1	0.4	1.1	1	ł	t 1	!	!	1	1.5
7 - Other Med.		1	;	!	!	ł	1		!	1
8 - E. Eur		ł	ł	1	1	ł	1	1	1	1
9 - Other Afr.	1	ł	1	ł	!	ļ	1	1	1	
10 - Mid-East	!	1	ļ	!	ł	1	!	1	1	1
11 - 3. Asia	!	1	0.3	1	!	ł	ł	1	8	0.3
12 - 3E Asia		ł	6.0	1	ł	1	!	1	1	0.9
13 - Australia.	1		0.1	l t	1	1	ł	1	1	0.1
14 - Comm. Asia.	!	!	2.1	ł	!	!	1	1	ł	2.1
15 - Japan	!	1	1	ł	1	!	!		ł	;
Total	1	1.1	8.9	1	ł	1	1	!	1	10.0
Note: Annual zone-to-zone movements of less than 50,000 short tons are excluded from the above figures; all other data are rounded to nearest 100,000 sho	-to-zon ove fiq	zone move figures;	ments all o	ments of less than all other data are	ss thai ita are	n 50,0 e roun	00 shoi ded to	rt tons nearest	50,000 short tons are excluded rounded to nearest 100,000 short	luded 0 short

SILULE town Lie above rigures; all other data are rounded to nearest 100,000 shor tons. Thus columns and rows may not add to totals shown. RRNA tabulations of unpublished U.S. Bureau of the Census data on compu-ter tape, Series SA-705.

Source:

P

「「「「「「「「「」」」」」

Sec. Sec.

781,7797 **8,087**,787,77 1,56

No. State St

うちちち あたいたい

あいい事をない

· 100

ŧ

í

Table 24.	U.S.	Waterborne Imports of Crude Oil by U.S.	
		Port Destination, 1968 and 1969	

(In thousands of short tons)

J.S. port zone	1968	1969
l - Northeast		
New York, New York	10,502	8,747
Philadelphia, Pa	9,345	9,052
Paulsboro, N.J	8,117	7,446
Marcus Hook, Pa	5,797	7,405
Wilmington, Del	3,334	4,313
Newport News, Va	2,201	2,341
Baltimore, Md	537	488
Tota1	39,833	39,791
3 - Gulf		
Brownsville, Tex	1,713	1,847
	±,, , ±,	71041
4 - South Pacific coast		
Los Angeles, Cal	2,096	2,431
San Pablo Bay, Cal	1,261	833
Richmond, Cal	984	1,227
Long Beach, Cal	981	1,774
Martinez, Cal	836	560
El Segundo, Cal	699	617
San Francisco, Cal	0	667
Total	6,856	8,109
8 - Hawaii		
Honolulu	1,963	1,984
	_,	•
9 - Puerto Rico	6 626	C C10
Guayanilla	6,636	6,610
San Juan	2,013	2,715
Jobos	1,204	1,395
Total	9,853	10,720
Potal, above-listed ports.	60,218	62,450
Total, all reported ports.	61,357	63,948
iolar, all reported ports.	011331	03, 540

Note: Individual items may not add to totals due to rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 98 percent in 1968 and 1969 of all reported ports.

Source: RRNA tabulations of unpublished Bureau of the Census data on computer tape, Series SA-305 and SA-705.

Table 25. U.S. Waterborne Imports of Petroleum Products by U.S. Port Destination, 1968 and 1969

(In thousands of short tons)

U.S. port zone	1968	1969
l - Northeast		
New York, N.Y.	31,538	31,066
Boston, Mass	6,803	7,780
Baltimore, Md	3,981	4,522
Paulsboro, N.J	3,825	3,617
New Haven, Conn	2,331	1,988
Norfolk, Va	2,087	3,347
Providence, R.I	1,616	1,973
Camden, N.J	1,394	2,170
Philadelphia, Pa	1,123	1,540
Portland, Me	1,093	1,117
Bridgeport, Conn	774	1,354
New Bedford, Mass	693	429
Portsmouth, N.H	626	644
Searsport, Me	593	701
New London, Conn	550	962
Marcus Hook, Pa	529	870
Salem, Mass	524	660
Albany, N.Y	476	879
Fall River, Mass	254	543
Total	60,809	66,161
2 - Southeast		
Jacksonville, Fla	1,789	2,687
Charleston, S.C	947	1,087
Miami, Fla	942	794
Savannah, Ga	644	797
West Palm Beach, Fla	608	474
Wilmington, N.C	502	662
Port Canaveral, Fla	367	654
Total	5,800	7,155
<u>3 - Gulf</u>	1,696	1,742
Port Everglades, Fla	842	852
Houston, Tex	687	1,221
Tampa, Fla New Orleans, La	439	812
	3,664	4,626
Total	5,004	41020
4 - South Pacific coast	707	882
Los Angeles, Cal	1 /0/	

continued--

512.

and a star the set the provest strategy with the strategy and star a strategy with the star and strategy and st

513.

Table 25. U.S. Waterborne Imports of Petroleum Products by U.S. Port Destination, 1968 and 1969 continued--

U.S. port zone	1968	1969
<u>8 - Hawaii</u> Honolulu	1,652	1,754
<u>9 - Puerto Rico</u> San Juan	594	633
Total, above-listed ports.	73,225	81,211
Total, all reported ports.	77,407	86,498

- Note: Individual items may not add to totals due to rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 95 percent in 1968 and 94 percent in 1969 of all reported ports.
- Source: RRNA tabulations of unpublished Bureau of the Census data on computer tape, Series SA-305 and SA-705.

A CONTRACTOR OF A CONTRACTOR O

514.

Table 26. U.S. Waterborne Imports of Iron Ore by U.S. Port Destination, 1968 and 1969

U.S. port zone	1968	1969
1 - Northeast		
Philadelphia, Pa	10,561	12,295
Baltimore, Md.	10,374	10,542
Total	20,936	22,837
10001		
3 - Gulf		
Mobile, Ala	4,413	4,576
Houston, Tex	889	753
Baton Rouge, La	707	407
Total	6,010	5,736
		•
6 - Great Lakes		
Cleveland, Ohio	4,058	3,215
Conneaut, Ohio	3,791	2,270
East Chicago, Ind	3,730	1,922
Gary, Ind	3,393	1,703
Detroit, Mich	1,491	1,057
Ashtabula, Ohio	1,228	840
Buffalo, N.Y	1,085	697
Chicago, Ill	462	949
Total	19,238	12,653
		- • · •
Total, above-listed ports	46,183	41,226
		-
Total, all reported ports	47,365	42,503
		·
	4	

- Note: Individual items may not add to totals due to rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 97 percent in 1968 and 1969 of all reported ports.
- Source: RRNA tabulations of unpublished Bureau of the Census data on computer tape, Series SA-305 and SA-705.

Table 27. U.S. Waterborne Imports of Bauxite by U.S. Port Destination, 1968 and 1969

1968	1969
3,900	4,342
2,748	2,314
2,623	3,090
2,391	3,416
2,282	2,206
28	554
13,973	15,922
13,973	15,922
14,356	16,281
	3,900 2,748 2,623 2,391 2,282 28 13,973 13,973

- Note: Individual items may not add to totals due to rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 97 percent in 1968 and 98 percent in 1969 of all reported ports.
- Source: RRNA tabulations of unpublished Bureau of the Census data on computer tape, Series SA-305 and SA-705.

THE REAL PROPERTY OF COMPANY AND INCOME.

Table 28. U.S. Waterborne Imports of Alumina by U.S. Port Destination, 1968 and 1969

(In thousands of short tons)

U.S. port zone	1968	1969
3 - Gulf		
New Orleans, La	156	73
5 - North Pacific coast		
Portland, Ore	71	115
Longview, Wash	43	46
Vancouver, Wash	292	479
Bellingham, Wash	288	564
Tacoma, Wash	385	533
Everett, Wash		24
Total	1,079	1,761
Total, above-listed ports.	1,235	1,834
Total, all reported ports.	1,316	1,884
	1	

Source: U.S. Bureau of the Census, SA-305.

Table 29. U.S. Waterborne Exports of Coal by U.S. Port Origin, 1968 and 1969

U.S. port zone	1968	1969
l - Northeast		
Norfolk, Va Newport News, Va Baltimore, Md	24,410 7,523 2,442	27,669 9,375 2,659
Total	34,374	39,703
6 - Great Lakes		
Conneaut, Ohio Toledo, Ohio Sandusky, Ohio Ashtabula, Ohio	5,712 4,360 4,052 1,146 15,270	5,434 3,347 3,799 2,900 15,480
Total Total, above-listed ports.	49,645	55,183
Total, all reported ports.	50,711	56,268

- Note: Individual items may not add to totals due to rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 98 percent in 1968 and 1969 of all reported ports.
- Source: RRNA tabulations of unpublished Bureau of the Census data on computer tape, Series SA-305 and SA-705.

517.

518.

Table 30. U.S. Waterborne Exports of Total Grains by U.S. Port Origin, 1968 and 1969

(In thousands of short tons)

	1968	1969
U.S. port zone	1900	T 203
<u>l - Northeast</u> Norfolk, Va	2,240	1,548
Baltimore, Md	1,090	874
Dailinde, Mu	853	363
Philadelphia, Pa	164	66
Albany, N.Y Total	4,349	2,852
	47545	2,
<u>2 - Southeast</u> Charleston, S.C	242	142
<u>3 - Gulf</u>		a (20)
New Orleans, La	8,771	7,630
Houston, Tex	6,777	3,902
Destrehan, La	6,563	6,798
Baton Rouge, La	3,663	3,202
Pascagoula, Miss	1,942	1,200 1,318
Corpus Christi, Tex	1,284	717
Beaumont, Tex	1,224	950
Mobile, Ala	1,157	625
Galveston, Tex	574	595
Lake Charles, La	358	381
St. Rose, La	227	86
Port Arthur, Tex	183	307
Brownsville, Tex	105	1,334
Gramercy, La	33,462	29,042
Total	55,402	20,012
4 - South Pacific coast	538	437
Sacramento, Cal	538	368
Long Beach, Cal	598	805
Total	590	000
5 - North Pacific coast		0 010
Portland, Ore	2,596	2,310
Longview, Wash	1,142	1,063
Seattle, Wash	579	801
Kalama, Wash	505	507 694
Vancouver, Wash	283	303
Tacoma, Wash		5,678
Total	5,850	5,070
	1	continued

continued--

Table 30.U.S. Waterborne Exports of Total Grains byU.S. Port Origin, 1968 and 1969continued--

ě

(In thousands of short tons)

U.S. port zone	1968	1969
6 - Great Lakes		
Toledo, Ohio	2,434	2,184
Chicago, Ill	2,316	2,762
Superior, Wis	1,231	1,247
Duluth, Minn	1,013	943
Milwaukee, Wis	158	299
Carinate Bay City Mich	113	38
Saginaw-Bay City, Mich		7,473
Total	7,264	/ 4 / 3
Total, above-listed ports.	51,764	45,992
Total, all reported ports.	52,772	46,981

Note: Individual items may not add to totals due to rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 98 percent in 1968 and 1969 of all reported ports.

Source: RRNA tabulations of unpublished Bureau of the Census data on computer tape, Series SA-305 and SA-705. Ĩ

Table 31. U.S. Waterborne Exports of Food Grain by U.S. Port Origin, 1968 and 1969

(In thousands of short tons)

U.S. port zone	1968	1969
<u>l - Northeast</u>	540	
Norfolk, Va.	549 240	501
Baltimore, Md	164	66
Albany, N.Y Philadelphia, Pa	157	51
Total	1,111	746
3 - Gulf		
Houston, Tex	4,984	3,168
New Orleans, La	1,426	983
Beaumont, Tex	1,108 722	627 323
Destrehan, La	589	533
Galveston, Tex	574	595
Lake Charles, La Baton Rouge, La	483	391
Mobile, Ala	229	97
Corpus Christi, Tex	170	152
Pascagoula, Miss	143	108
Port Arthur, Tex	106	75
Total	10,533	7,052
4 - South Pacific coast	437	394
Sacramento, Cal		574
5 - North Pacific coast Portland, Ore	2,473	2,235
Longview, Wash	1,142	1,063
Seattle, Wash	745	801
Kalama, Wash	579	507
Vancouver, Wash	505	694
Tacoma, Wash	283	303
Total	5,727	5,603
6 - Great Lakes	0.2.2	703
Superior, Wis	832 560	702 526
Duluth, Minn Toledo, Ohio	214	69
Saginaw-Bay City, Mich		38
Total	1,719	1,335
Total, above-listed ports.	19,526	15,130
Total, all reported ports.	19,795	15,408

With the second

Table 31.U.S. Waterborne Exports of Food Grain by U.S.Port Origin, 1968 and 1969continued--

- Note: Individual items may not add to totals due to rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 99 percent in 1968 and 98 percent in 1969 of all reported ports.
- Source: RRNA tabulations of unpublished Bureau of the Census data on computer tape, Series SA-305 and SA-705.

521.

ALL STREET

ALL DESCRIPTION OF A COMPANY

Participation of the second second second second second second second second second second second second second

522.

Table 32. U.S. Waterborne Exports of Feed Grains by U.S. Port Origin, 1968 and 1969

(In thousands of short tons)

U.S. port zone	1968	1969
l - Northeast		
Norfolk, Va	1,170	615
Philadelphia, Pa	635	207
Baltimore, Md	488	157
Total	2,294	979
3 - Gulf		
New Orleans, La	4,643	3,526
Destrehan, La	3,363	3,898
Houston, Tex	1,793	734
Baton Rouge, La	1,625	1,595
Corpus Christi, Tex	1,114	1,166
Pascagoula, Miss	974	405
St. Rose, La	290	194
Brownsville, Tex	183	307
Galveston, Tex	151	92 1,068
Gramercy, La	14,136	12,984
Total	14,130	12,904
4 - South Pacific coast		
Sacramento, Cal	101	43
Long Beach, Cal	59	368
Total	161	411
5 - North Pacific coast		
Portland, Ore	123	75
6 - Great Lakes		
Chicago, Ill	1,448	1,672
Toledo, Ohio	1,243	905
Superior, Wis	342	423
Duluth, Minn	296	267
Milwaukee, Wis	158	299
Total	3,486	3,567
Total, above-listed ports.	20,200	18,016
Total, all reported ports.	20,656	18,373
total, all reported borest		

Note: Individual items may not add to totals due to rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 98 percent in 1968 and 1969 of all reported ports.

Source: RRNA tabulations of unpublished Bureau of the Census data on computer tape, Series SA-305 and SA-705.

Table 33.	U.S.	, Wate	erborr	le Expor	ts of	Soyl	bean and	Mill
Product	s by	U.S.	Port	Origin,	1968	and	1969	. 11

(In thousands of short tons)

U.S. port zone	1968	1969
1 - Northeast		
Norfolk, Va	521	432
Baltimore, Md	362	590
Philadelphia, Pa	61	105
Total	944	1,127
2 - Southeast		
Charleston, S.C	242	142
<u>3 - Gulf</u>		an an an an an an an an an an an an an a
New Orleans, La	2,702	3,121
Destrehan, La	2,478	2,577
Baton Rouge, La	1,555	1,216
Mobile, Ala	928	853
Pascagoula, Miss	825	687
Port Arthur, Tex	121	11
Beaumont, Tex	116	90
Gramercy, La		266
St. Rose, La	68	187
Total	8,793	9,006
6 - Great Lakes	0.7.7	1 010
Toledo, Ohio.	977	1,210
Chicago, Ill.	868	1,090
Duluth, Minn	157	150
Superior, Wisc	57	122
Total	2,059	2,571
Total, above-listed ports.	12,038	12,846
Total, all reported ports.	12,321	13,200

Note: Individual items may not add to totals due to rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 98 percent in 1968 and 97 percent in 1969 of all reported ports.

Source: RRNA tabulations of unpublished Bureau of the Census data on computer tape, Series SA-305 and SA-705. est.

524.

Table 34. U.S. Waterborne Exports of Natural Phosphates by U.S. Port Origin, 1968 and 1969

1968 1969 U.S. port zone 1.15 2 - Southeast 907 811 Jacksonville, Fla..... 3 - Gulf 8,804 8,198 Tampa, Fla..... Boca Grande, Fla..... 712 712 9,516 8,910 Total..... Total, above-listed ports. 10,423 9,720 Total, all reported ports. 10,612 9,993

(In thousands of short tons)

- Note: Individual items may not add to totals due to rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 98 percent in 1968 and 97 percent in 1969 of all reported ports.
- Source: RRNA tabulations of unpublished Bureau of the Census data on computer tape, Series SA-305 and SA-705.

Table 35. U.S. Waterborne Imports of Crude Oil by Foreign Port Origin, 1968 and 1969

(In thousands of short tons)

Foreign port zone	1968	1969
- Caribbean		
Puerto La Cruz, Ven	13,612	12,446
La Salina, Ven	5,723	4,943
Maracaibo, Ven	4,150	4,471
Puerto Miranda, Ven	2,215	2,523
Tampico, Mex	1,589	1,847
Santa Marta, Col	1,223	559
Aruba, Neth. Ant	961	1,512
Amuay, Las Piedras, Ven	892	620
Pt. a Pierre, Trinidad	862	972
Covenas, Col	856	452
Punta Cardon, Ven	809	784
Punta Cardon, Ven Curacao Isl., Neth. Ant	616	869
Other Colombia Carib. Pts.	14	521
Total	33,520	32,520
		•=,•=•
- South America-Pacific	1 1 20	1,119
Arica, Chile	1,130	893
Tumaco, Col	1,130	2,011
Total	1,130	2,011
- Other Mediterranean		
Other Libya Ports	6,464	7,730
- Other Africa		
Other Nigeria Ports	480	2,753
	400	2,755
0 - Mid-East		
Kharg. Isl., Iran	2,959	1,026
Ras At Tannurah, Saud. Ar.	2,821	2,057
Al Ahmadi, Kuwait	2,248	2,440
Mena Saud, Neutral Zone	1,618	1,781
Other Ar. Pen. Sts. Nes.		
Ports	796	1,141
Other U.A.R. Egypt Red		
Sea Ports	720	2,088
All other Iran Ports	159	1,376
Total	11,321	11,909

continued--

525.

唐 三倍 林学

t

Table 35. U.S. Waterborne Imports of Crude Oil by ForeignPort Origin, 1968 and 1969continued--

(In thousands of short tons)

Foreign port zone	1968	1969
12 - Southeast Asia Dumai, Sumatra Other Sumatra Ports Total	2,836 868 3,704	3,559 1,008 4,567
Total, above-listed ports	56,620	61,491
Total, all reported ports	61,357	63,984

Note: Individual items may not add to totals due to rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 92 percent in 1968 and 96 percent in 1969 of all reported ports.

Source: RRNA tabulations of unpublished Bureau of the Census data on computer tape, Series SA-305 and SA-705.

町に時代にいたいとうという

Table 36. U.S. Waterborne Imports of Petroleum Products by Foreign Port Origin, 1968 and 1969

(In thousands of short tons)

Foreign port zone	1968	1969
2 - Caribbean Aruba, Neth. Ant Amuay, Las Piedras, Ven. Punta Cardon, Ven Port a Pierre, Trinidad. Curacao Isl., Neth. Ant Puerto La Cruz, Ven Caripito, Ven El Palito, Ven Port of Spain, Trinidad. Other Trinidad Ports Maracaibo, Ven Cartagena, Col Tampico, Mex San Lorenzo, Ven Total	15,338 9,545 7,846 7,798 7,204 5,429 2,553 2,338 1,946 1,536 1,494 1,124 895 733 392 66,171	17,748 10,616 7,960 9,629 8,053 4,428 2,892 2,786 1,127 1,600 2,454 1,472 908 257 716 72,646
<u>4 - South America-Atlantic</u> La Plata, Arg	718	40
5 - Northwest Europe Isle of Grain, Eng Rotterdam, Neth Total	858 665 1,523	449 1,839 2,287
6 - Southwest Europe Other Sicily Ports Other Sardinia Ports Other Sp. Med. Ports Augusta, Sicily Napoli, Naples, Italy Total	1,683 752 693 326 405 3,858	916 1,635 138 1,080 648 4,417
Total, above-listed ports.	72,270	79,389
Total, all reported ports.	77,407	86,498

Note: Individual items may not add to totals due to rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 93 percent in 1968 and 92 percent in 1969 of all reported ports. Source: RRNA tabulations of unpublished Bureau of the

Source: RRNA tabulations of unpublished Bureau of the Census data on computer tape, Series SA-305 and SA-705.

前的海南

527.

.5

Table 37. U.S. Waterborne Imports of Iron Ore by Foreign Port Origin, 1968 and 1969

. . . .

31252627

a i s chânean

T.

(In thousands of short tons)

Foreign port zone	1968	1969	
<u>l - Canada</u> Seven Islands, Que Port Cartier, Que Clarke City, Que Port Arthur, Ont Fort William, Ont Depot Harbor, Ont Little Current, Ont Picton, Ont Total.	11,520 8,237 2,729 1,714 901 829 554 554 504 26,988	7,576 5,079 1,469 1,651 673 553 444 585 18,031	
2 - Caribbean Puerto Ordaz, Ven Other Venezuela Ports Total	8,737 2,828 11,564	11,484 3,721 15,205	
3 - South America-Pacific All other Peru Ports Cruz Grande, Chile Huasco, Chile Total	952 416 285 1,653	1,022 692 506 2,221	
4 - South America-Atlantic Rio de Janeiro-Niteroi, Brz	841	647	
9 - Other Africa Buchanan, Liberia	2,725	2,716	
Total, above-listed ports. Total, all reported ports.	43,771 47,365	38,820 42,503	

- Individual items may not add to totals due to Note: rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 92 percent in 1968 and 91 percent in 1969 of all reported ports.
- RRNA tabulations of unpublished Bureau of the Source: Census data on computer tape, Series SA-305 and SA-705.

528.

THE REAL PROPERTY

ないたいものます

10.22

2 ř 5.52

Table 38. U.S. Waterborne Imports of Bauxite by Foreign Port Origin, 1968 and 1969

(In thousands of short tons)

1968	1969
4,911 2,073 1,848 1,409 1,253 1,215 493 419 134 132 118 14,004	5,410 3,046 1,517 1,633 1,500 1,534 799 347 86 168 16,040
128 14,132 14,356	25 16,064 16,281
	2,073 1,848 1,409 1,253 1,215 493 419 134 132 118 14,004 128 14,132

- Note: Individual items may not add to totals due to rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 98 percent in 1968 and 99 percent in 1969 of all reported ports.
- Source: RRNA tabulations of unpublished Bureau of the Census data on computer tape, Series SA-305 and SA-705.

「「「「「「「「」」」

「「「「「「「」」

Table 39. U.S. Waterborne Imports of Alumina by Foreign Port Origin, 1968 and 1969

(In thousands of short tons)

Foreign port zone	. 1968	1969
2 - Caribbean		
Longs Wharf, Jamaica Port Kaiser, Jamaica Paramaribo, Surinam Paranam, Surinam McKenzie, Guyana Total	133 47 329 17 526	38 66 14 341 459
13 - Australia		
Gladstone Fremantle Geelong	485 32 	840
All other Aust. ports Total	180 697	429 1,308
<u>15 - Japan</u> Yokohama Shimizo Miihama Total	11 11	11 32 25 68
Total, above-listed ports. Total, all reported ports.	1,234	1,835 1,884

Source: U.S. Bureau of the Census, SA-305.

530.

Table 40. U.S. Waterborne Exports of Coal by Foreign Port Destination, 1968 and 1969

(In thousands of short tons)

Foreign port zone	1968	1969
1 - Canada		
Hamilton, Ont	4,119	4,110
Port Credit, Ont	3,245	3,597
Sault St. Mar., Soo., Ont	2,434	1,940
Toronto, Ont	1,733	2,276
Windsor, Ont	928	761
Sarnia, Ont	580	170
Little Current, Ont	477	150
Sydney, CBI	447 373	469 361
Montreal, Que Courtright, Ont	373	938
Oshawa, Ont	200	168
Sorel, Que	199	247
Amherstburg, Ont	194	175
Thorold, Ont	194	140
Port Burwell, Ont	179	57
Fort William, Ont Colborne-Cayuga, Ont	158 106	107 135
Total	15,901	15,801
<u>3 - South America-Pacific</u> Talcahuano, Chile	277	359
Valparaiso, Chile	16	107
Total	293	466
4 - South America-Atlantic		
Rio de Janiero-Niterol,		
Brazil	919	913
Santos, Brazil	430	388
Vitoria, Brazil	404	508
San Nicolas, Arg	277 2,029	386
Total	2,029	2,196
5 - Northwest Europe	2 620	9 696
Hamburg, W. Ger	2,630 927	2,636 551
Le Havre, Fr Rotterdam, Neth	843	1,106
Anvers, Antwerp, Belg	796	791
Bilbao, Sp	766	803
Ijmuiden, Yumeden, Neth	707	1,126
	ł	continued

Table 40. U.S. Waterborne Exports of Coal by Foreign Port Destination, 1968 and 1969 continued--

(In thousands of short tons)

10000

Foreign port zone	1968	1969
Bremen, W. Ger. Oxelosund, Swed. Aviles, Sp. Terneuzen, Neth. Brest, Fr. Mo. I. Rana, Nor. Stockholm, Swed. Zeebrugge, Belg. Dublin, Ire. Emden, W. Ger. Lubeck, W. Ger. Dunkerque, Fr. Other Sp. Atl. Pts. N. of Por.	707 529 475 335 303 275 221 194 168 127 101 	615 357 395 252 333 237 264 204 85 60 91 550 438
Total	10,187	10,897
6 - Southwest Europe Savona, Italy Taranto, Italy Genoa, Italy Piombrino, Italy La Spezia, Italy Trieste, Trieste Sagunto, Sp Vado, Italy Total	2,072 795 516 283 205 161 160 141 4,333	2,203 855 123 206 124 156 34 3,700
7 - Other Mediterranean Rijeka, Fiume, Yug	416	142
8 - East Europe Other East German ports	102	54
<u>15 - Japan</u> Tobata Muroran Chiba Wakayama Kawasaki Osaka	5,267 2,713 2,172 1,093 980 825	9,881 2,154 2,191 1,445 444 1,377
	l	continued

532.

. .

Ą

ķ

1

4

Table 40.	U.S. Water	borne Ex	ports of	E Coal by Foreign
Port Des	tination, 1	.968 and	1969	continued
		_		

(In thousands of short tons)

Foreign port zone	1968	1969
Hirohata	443	216
Moji	406	1,007
Amagasaki	372	510
Wakamatsu	345	313
Yawata	239	121
Nagoya	189	173
Mizushima	175	137
Tokyo	174	390
Other Japan ports	76	465
Kobe	52	162
Kamaishi	78	103
Total	15,596	21,088
Total, above-listed ports.	48,857	54,343
Total, all reported ports.	50,711	56,268

Note: Individual items may not add to totals due to rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 96 percent in 1968 and 97 percent in 1969 of all reported ports.

Source: RRNA tabulations of unpublished Bureau of the Census data on computer tape, Series SA-305 and SA-705. ц.

Table 41. U.S. Waterborne Exports of Total Grains by Foreign Port Destination, 1968 and 1969

(In thousands of short tons)

Foreign port zone	1968	1969
1 - Canada	· · · · · · · · · · · · · · · · · · ·	
Comeau Bay, Que	892	1,153
Port Cartier, Que	552	684
Montreal, Que	485	633
Quebec, Que	468	607
Three Rivers, Que	370	440
Toronto, Ont	217	330
Hamilton, Ont	93	137
Cardinal, Ont	71	70
Prescott-Johnstown, Ont	61	28
Total	3,208	4,082
2 - Caribbean		
Puerto Cabello, Ven	375	364
La Guaira, Caracas, Ven	· 152	170
Maracaibo, Ven	136	130
Santo Domingo, Dom. Rep	121	77
Santa Marta, Col	91	105
Port of Spain, Trinidad	78	67
Kingston, Jam	76	102
Puerto Barrios, Guatemala.	54	40
Puerto Sucre, Cumana, Ven.	41	33
Puerto Cortes, Hond	38	25
Guanta, Ven	24	45
Barranquilla, Col	22	li 🕳
Cartagena, Col	18	-
Georgetown, Guyana	0	29
Total	1,227	1,185
3 - South America-Pacific		
San Antonio, Chile	133	11
Callao, Peru	118	59
Buenaventura, Col	89	92
Puntarenas, Costa Rica	81	58
Acajutla, El Salv	71	82
Guayaquil, Inc. Duran,		
Ecu,	70	58
Valparaiso, Chile	70	183
All other Chile ports	48	-
		continued-

continued--

534.

Table 41. U.S. Waterborne Exports of Total Grains by Foreign Port Destination, 1968 and 1969 continued--

(In thousands of short tons)

y'		• · · · · · · · · · · · · · · · · · · ·
Foreign port zone	1.968	1969
Balboa, C.Z	37	45
Antofagasta, Chile	36	17
Corinto, Nicar	34	39
Salaverry, Peru	19	6
Total	804	649
	004	045
4 - South America-Atlantic		
Santos, Brazil	548	595
Montevideo, Uruguay	342	0
Rio de Janiero-Niteroi,		
Brazil	321	282
Recife, Pernambuco, Braz	65	42
Sao Salvador, Bahia, Braz.	55	23
Fortaleza, Ceara, Brazil	44	45
Buenos Aires, Arg	41	178
Maceio, Braz	12	-
Rio Grande Do Sul, Braz	11	0
Total	1,439	1,164
5 - Northwest Europe		
Rotterdam, Neth	6,461	4,927
Hamburg, W. Ger	2,244	1,762
Amsterdam, Neth	1,213	912
Anvers, Antwerp, Belg	1,151	449
Bremen, W. Ger	728	686
Belfast, Ire	450	152
Avonmouth, Eng	375	
Hull, Eng	299	87
	288	112
Liverpool, Eng	270	203
Kobenhavn, Den	253	205
Manchester, Eng	233	241
Bilboa, Sp	144	1 · · · · · · · · · · · · · · · · · · ·
Glasgow, Scot		, 198
Bordeaux, Fr	137	118
Optional Denmark ports	128	58 42
London, Eng	127	
Santander, Sp	105	112
Lisboa, Portugal	104	117
Nantes, Fr	96	105
P_{i} , P_{i		continued

continued--

hannege in menengen i

anna dhar fann anna ganai

Table 41. U.S. Waterborne Exports of Total Grains by Foreign Port Destination, 1968 and 1969 continued-

(In thousands of short tons)

oreign port zone	1968	1969
Oslo, Norway	94	34
Aarhus, Den	93	124
Seville, Sevilla, Sp	93	69
Fredrikstad, Nor	77	35
Birkenhead, Eng	74	
Other France Atl. ports	74	- 94
Stavanger, Nor	68	94
Bremerhaven, W. Ger	66	46
Larvik, Nor	60	77
	58	77
Optional England ports		
La Coruna, Sp	57	
Saint Nazaire, Fr	56	35
Gand, Ghent, Belg	47	631
Le Havre, Fr	22	39
Emden, W. Ger	13	
Rochefort, Fr	11	, · ·
Other Eng. S. and E. coast		
ports	3 .*	466
All other Azores ports	-	14
Leith, Scot		55
Total	15,755	12,520
- Southwest Europe		
Ravenna, Italy	1,680	1,316
Genoa, Italy	542	422
Barcelona, Sp	443	482
Tarragona, Sp	372	311
Venice, Italy	340	409
Valencia, Sp	168	232
Marseille, Fr	159	182
Koper (Kopar), Trieste	122	135
Livorno, Leghorn, Italy	72	.50
Savona, Italy	65	61
Civitavecchia, Italy	37	··· 6
Trieste, Trieste	32	14
Other Italy W. coast		
ports	22	7
La Spezia, Italy	20	-
		continued-

3

. 14 . 15

Table 41. U.S. Waterborne Exports of Total Grains by Foreign Port Destination, 1968 and 1969 continued--(In thousands of short tons) . 1

 $\mathcal{L}_{i}(\lambda)$

 $Q = \mathbb{V}$

1971. .

Him

Foreign port zone	1968	1969
Bari, Italy	17	12
Napoli, Naples, Italy	4	60
Total	4,094	3,696
7 - Other Mediterranean		
Haifa, Isr	1,246	1,176
Piraieus (Piraeus), Gr	235	386
Tunis, Tunisia	211	157
Algiers, Algeria	136	246
Optional Algeria ports	95	24
Beirut, Beyrouth, Leb	73	69
La Goulette, Tunisia	28	28
Other Cyprus ports	14	14
Rijeka, Fiume, Yug	13	-
Istanbul, Turkey	9	439
Alexandria, UAR Egypt	-	58
Izmir, Turkey	-	40
Sfax, Tunisia	-	24
Oran, Algeria	-	1.9
Tota1	2,058	2,679
Gdynia, Pol		
Gdynia, Pol	724	365
9 - Other Africa		
Casablanca, Morocco	397	83
Apapa, Nigeria	107	143
Durban, Rep. of So. Afr.	63	61
Saffi, Safi, Morocco	58	-
Santa Cruz de Tenerife	52	42
Monrovia, Liberia	45	38
Las Palmas, Canary Isl	29	52
Tema (Temo), Ghana	27	30
Freetown, Sierra Leone	19	21
Cape Town, Rep. of So.	. .	·
Afr.	19	19
Takoradi, Ghana	16	5
Matadi, Congo (Leoplov)	14	3
Tangier, Morocco	12	-
		continued

537.

1

Table 41. U.S. Waterborne Exports of Total Grains by Foreign Port Destination, 1968 and 1969 continued--(In thousands of short tons)

Foreign port zone	1968	.1969
Optional Nigeria ports	10	17
Luanda, Angola	10	3
Lagos, Nigeria	5	44
Conakry (Konakri), Guinea.	0	17
Agadir, Morocco	-	26
Total	881	602
<u> 10 - Mid-East</u>		
Jidda, Saudi Ar	55	60
Aqaba, Jordan	35	17
Bandar-E-Shahpur, Iran	21	
Kuwait, Al Kuwait	18	3
Ad Damman, Saudi Ar	18	17
Aden, Southern Yemen	14	12
Total	161	110
<u>ll - South Asia</u>		
Bombay, India	2,465,	1,381
Calcutta, India	1,40 <	662
Karachi, Pakistan	479	83
Optional Pakistan ports	421	20
Chittagong, Pakistan	402	134 321
Madras, India	383 237	145
Port Kandla, Kandla, India	97	68
Vishakhapatnam, India	57	11
Cochin, India Other India W. coasts	57	±.±
ports	49	36
Navalakhi, India	48	58
Bhavnagar, India	28	10
Tuticorin, India	16	-
Chalna, Pakistan	11	34
Total	6,095	2,961
12 - Southeast Asia		
Pusan, Rep. of Korea	931	900
Kaohsuing, China (Taiwan).	515	650
Inchon, Rep. of Korea	474	586
Other South Vietnam ports.	349	26
Manila, Philippines	337	371
	1	continued

continued--

「「「「「「「「」」」

538.

Table 41. U.S. Waterborne Exports of Total Grains by Foreign Port Destination, 1968 and 1969 continued--

(In thousands of short tons)

		مستوجيها المراجع والمراجع التربية المراجع
Foreign port zone	1968	1969
Keelung, China (Taiwan) Rep. of Korea Opt. ports Saigon, South Vietnam Djakarta (Batavia), Java All other Philippine	309 276 264 182	234 454 446 184
ports Hondagua, Philippines Cebu, Philippines Hong Kong Belawan Deli, Sumatra Other China (Taiwan)	130 94 72 65 64	91 33 15 53 46
ports Surabaja, Java Palembang, Sumatra Other Rep. of Korea ports. Singapore Other Sulawesi ports Muntok, Bangka Total.	38 25 23 20 20 6 6 4,198	24 46 27 38 23 36 13 4,297
15 - Japan Kobe Yokohama. Optional Japan ports Tokyo. Kawasaki Nagoya. Moji. Shimizu. Mizushima. Okinawa-Buckner Bay, Naha. Yokkaichi Chiba. Other Japan ports. Otaru. Total	1,960 1,924 1,902 1,175 912 758 665 224 201 115 100 46 22 17 10,021	1,424 1,500 1,893 2,103 1,521 473 369 209 529 94 159 302 52 16 10,643
Total, above-listed ports Total, all reported ports	50,662 52,772	44,952 46,981 continued
	-	

539.

12

ć

ł

\$

540.

Table 41. U.S. Waterborne Exports of Total Grains by Foreign Port Destination, 1968 and 1969 continued--

Note: Individual items may not add to totals due to rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 96 percent in 1968 and 1969 of all reported ports.

a/ Mostly distributed among listed ports in unknown proportions.

Source: RRNA tabulations of unpublished Bureau of the Census data on computer tape, Series SA-305 and SA-705.

Table 42. U.S. Waterborne Exports of Food Grain by Foreign Port Destination, 1968 and 1969

(In thousands of short tons)

Foreign port zone	1968	1969
! - Canada		
Port Cartier, Que	377	313
Comeau Bay, Que	377 297	290
Three Rivers, Que	143	111
Quebec, Que	137	130
Montreal, Que	51	30
Total	1,004	874
2 - Caribbean		
Puerto Cabello, Ven	325	322
La Guaira, Caracas, Ven	152	170
Maracaibo, Ven	136	130
Santo Domingo, Dom. Rep	121	77
Santa Marta, Col	91	105
Port of Spain, Trinidad	78	67
Puerto Sucre, Cumana, Ven.	41	33
Puerto Cortes, Hond	38	25
Kingston, Jam	29	44
Guanta, Ven	24 22	45
Barranquilla, Col Cartagena, Col	18	-
Puerto Barrios, Guatemala.	54	-40
Georgetown, Guyana	0	29
Total	1,130	1,085
	1,130	1,000
3 - South America-Pacific		
Callao, Peru	118	59
Buenaventura, Col Puntarenas, Costa Rica	89	92
	81	58
Acajutla, El Salv	71	82
Guayaquil, inc. Duran, Ecu	70	58
San Antonio, Chile	69	- 50
All other Chile ports	48	-
Antofagasta, Chile	36	17
Curinto, Nicar	34	39
Valparaiso, Chile	28	3
Salaverry, Peru	19	6
Balboa, C.Z	37	45
Total	698	458
	l	continued

541.

A. 1. 2. 2.

. . . Table 42. U.S. Waterborne Exports of Food Grain by Foreign Port Destination, 1968 and 1969 continued--

(In thousands of short tons)

Foreign port zone	1968	1969
4 - South America-Atlantic		
Santos, Brazil	548	595
Brazil Montevideo, Uruguay	321 225	282 0
Recife, Pernambuco, Braz	65	42
Sao Salvador, Bahia, Braz. Fortaleza, Ceara, Brazil	55 44	23 45
Buenos Aires, Arg Maceio, Braz	41 12	178
Rio Grande Do Sul, Brazil.	11	0 1,164
Total 5 - Northwest Europe	1,322	1,104
Rotterdam, Neth	764 190	362 102
Anvers, Antwerp, Belg Amsterdam, Neth	188	89
Hamburg, W. Ger Bremen, W. Ger	79 63	38 29
Liverpool, Eng Le Havre, Fr	49 22	45 39
Lisboa, Portugal Avonmouth, Eng	21 18	_41
Manchester, Eng	18	10
Stavanger, Nor London, Eng	17 15	- 8
Emden, W. Ger Rochefort, Fr	13 11	-
Oslo, Nor Gand, Ghent, Belg	10 10	22 34
All other Azores ports Total	 1,488	14 832
6 - Southwest Europe	1,400	052
Marseille, Fr Civitavecchia, Italy	159 37	182 6
Trieste, Trieste	32	14 19
Genoa, Italy Venice, Italy	28 27	
	1	

L

continued--

 $f_{i'j'}^{\mu}$

10

 $_{\rm e}h^{\rm c}$

Ţ

542.

Table 42. U.S. Waterborne Exports of Food Grain by Foreign Port Destination, 1968 and 1969 continued--

(In thousands of short tons)

Foreign port zone	1968	1969
Other Italy W. coast ports Bari, Italy Ravenna, Italy Napoli, Naples, Italy Livorno, Leghorn, Italy Savona, Italy Total	22 20 17 12 4 0 0 357	7 27 60 23 13 363
7 - Other Mediterranean Haifa, Isr Tunis, Tunisia Algiers, Algeria Optional Algeria ports Beirut, Beyrouth, Leb La Goulette, Tunisia Piraieus (Piraeus), Gr Other Cyprus ports Rijeka, Fiume, Yug Istanbul, Turkey Istanbul, Turkey Sfax, Tunisia Oran, Algeria	429 211 136 95 73 28 16 14 13 9 - - - 1,022	328 157 246 24 69 28 3 14 439 40 24 19 1,390
<u>8 - East Europe</u> Gdynia, Pol	26	_
9 - Other Africa Casablanca, Morocco Apapa, Nigeria Durban, Rep. of S. Afr Saffi, Safi, Morocco Monrovia, Liberia Tema (Temo), Ghana Freetown, Sierra Leone Cape Town, Rep. of S. Afr. Takoradi, Ghana	397 107 63 58 45 27 19 19 19	83 143 61 - 38 30 21 19 5

Table 42. U.S. Waterborne Exports of Food Grain by Foreign Port Destination, 1968 and 1969 continued--(In thousands of short tons)

Foreign port zone 1968 1969 Matadi, Congo (Leoplov) ... 14 3 Tangier, Morocco..... 12 Optional Nigeria ports.... 10 17 Luanda, Angola..... 10 3 Lagos, Nigeria..... 5 44 Agadir, Morocco..... 26 Conakry (Konakri), Guinea. 17 0 Total..... 801 508 10 - Mid-East Jidda, Saudi Ar..... 60 55 Aqaba, Jordan..... 35 17 Bandar-E-Shahpur, Iran.... 21 Kuwait, Al Kuwait..... 18 3 Ad Damman, Saudi Ar..... 17 18 Aden, Southern Yemen..... 14 12 Total..... 161 110 11 - South Asia 2,132 1,078 Bombay, India..... 1,404 662 Calcutta, India..... Karachi, Pakistan..... 479 83 20 421 Optional Pakistan ports... 134 Chittagong, Pakistan..... 402 Madras, India..... 317 304 237 145 Port Kandla, Kandla, India Vishakhapatnam, India..... 97 68 57 11 Cochin, India..... Other India W. coast 49 36 ports..... 48 58 Navalakhi, India..... Bhavnagar, India..... 28 10 16 Tuticorin, India..... Chalna, Pakistan..... 11 34 Total..... 5,683 2,654 12 - Southeast Asia 779 795 Pusan, Rep. of Korea..... 418 Inchon, Rep. of Korea.... 408

يرية التلاب بمعطر مريي

continued--

544.

1 P 10 3 2 W 1 P 1

Table 42.	U.S.	Waterborne	Expor	ts c	of Food	l Grain by
Foreign	Port D	estination,	1968	and	1969	continued

(In thousands of short tons)

Foreign port zone	1968	1969
Other South Vietnam ports.	. 349	26
Manila, Philippines	337	371
Keelung, China (Taiwan)	309	234
Saigon, South Vietnam Rep. of Korea optional	226	374
ports	211	449
Djakarta (Batavia), Java	182	184
Kaohsuing, China (Taiwan). All other Philippine	144	135
ports	130	91
Hondagua, Philippines	94	33
Cebu, Philippines	72	15
Hong Kong	65	53
Belawan Deli, Sumatra Other China (Taiwan)	64	46
ports	38	24
Surabaja, Java	25	46
Palembang, Sumatra	23	27
Other Rep. of Korea ports.	20	38
Singapore	20	23
Other Sulawesi ports	6	36
Muntok, Bangka	6	13
Total	3,506	3,432
<u>.5 - Japan</u> Optional Japan ports	1,207	1,229
Tokyo	725	656
Yokohama	158	216
Okinawa-Buckner Bay, Naha.	115	94
Kobe	45	13
Nagoya	37	13
Other Japan ports	22	52
Otar u	17	16
Kawasaki	-	21
Chiba	-	18
Total	2,326	2,327
otal, above-listed ports	19,523	15,196
Total, all reported ports	19,795	15,408
	l	aan tinuad

continued--

のないのである

546.

Table 42. U.S. Waterborne Exports of Food Grain by Foreign Port Destination, 1968 and 1969 continued--

- Note: Individual items may not add to totals due to rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 99 percent in 1968 and 1969 of all reported ports.
- Source: RRNA tabulations of unpublished Bureau of the Census data on computer tape, Series SA-305 and SA-705.

Table	43.	U.S. Waterborne Exports of Feed Grain by	
		Foreign Port Destination, 1968 and 1969	
		(In thousands of short tons)	

Foreign port zone196819691 - Canada
Comeau Bay, Que.....422601Montreal, Que.....398461

<pre>1 - Canada Comeau Bay, Que Montreal, Que Quebec, Que Port Cartier, Que Cardinal, Ont Prescott-Johnstown, Ont Three Rivers, Que Total <u>2 - Caribbean</u> Kingston, Jam</pre>	422 398 272 82 71 61 46 1,352 47	601 461 321 201 70 28 108 1,791 58
3 - South America-Pacific San Antonio, Chile Valparaiso, Chile Total <u>4 - South America-Atlantic</u> Montevideo, Uruguay	64. 42. 106 117	11 180 191 0
5 - Northwest Europe Rotterdam, Neth. Hamburg, W. Ger. Amsterdam, Neth. Anvers, Antwerp, Belg. Belfast, Ire. Avonmouth, Eng. Hull, Eng. Bremen, W. Ger. Liverpool, Eng. Manchester, Eng. Glasgow, Scot. London, Eng. Oslo, Nor. Lisboa, Portugal. Birkenhead, Eng. Bremerhaven, W. Ger. Optional England ports.	2,778 1,478 713 695 450 357 299 266 239 235 144 112 84 83 74 66 58	1,686 851 456 241 152 138 87 114 67 225 198 34 12 76 - 46 77
	l cont	-inued

and the second second second second second second second second second second second second second second second

د. <u>مانده در دا</u>غانین ا

100

continued--

547.

Table 43. U.S. Waterborne Exports of Feed Grain by Foreign Port Destination, 1968 and 1969 continued--

1, 1

(In thousands of short tons)

Foreign port zone	1968	1969
Bilbao, Sp	52	94
Stavanger, Nor	51	0
Gand, Ghent, Belg	37	442
Other Eng. S. and E.		
coast ports	0	403
Leith, Scot	-	55
Santander, Sp	1 1	50
Total	8,270	5,503
		•
<u>6 - Southwest Europe</u>	1 201	866
Ravenna, Italy	1,381 391	468
Barcelona, Sp	276	400
Genoa, Italy	218	320
Venice, Italy	65	48
Savona, Italy	0	76
Valencia, Sp	2,330	1,946
Total	2,330	1,940
7 - Other Mediterranean		
Haifa, Isr	528	571
Piraieus (Piraeus), Gr	219	383
Alexandria, UAR, Egypt	-	58
Total	747	1,012
8 - East Europe		
Gdynia, Pol	498	169
9 - Other Africa Santa Cruz De Tenerife	52	42
Las Palmas, Canary Isl	29	52
Total	80	94
	00	23
<u> 11 - South Asia</u>		
Bombay, India	333	303
Madras, India	79	4
Total	412	307
12 - Southeast Asia		
Pusan, Rep. of Korea	152	105
Inchon, Rep. of Korea	66	168

continued --

and Antonia in the second state of the second

548.

Table 43. U.S. Waterborne Exports of Feed Grain by Foreign Port Destination, 1968 and 1969 continued--

(In thousands of short tons)

		• • •
Foreign port zone	1968	1969
Rep. of Korea optional		
ports	65	5
Saigon, South Vietnam	38	72
Total	321	350
15 - Japan		
Kobe		
Nobelline Notelline Nobelline	1,342	873
Yokohama	978	767
Kawasaki	659	1,047
Optional Japan ports	639	631
Nagoya	582	274
Moji	523	307
Tokyo	397	1,269
Shimizu	102	128
Mizushima	16	401
Chiba	46	185
Yokkaichi	1	92
Total	5,285	5,973
	57205	5,975
Total, above-listed ports	19,563	17,394
Total, all reported ports	20,656	18,373

- Note: Individual items may not add to totals due to rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 95 percent in 1968 and 1969 of all reported ports.
- Source: RRNA tabulations of unpublished Bureau of the Census data on computer tape, Series SA-305 and SA-705.

Table 44. U.S. Waterborne Exports of Soybean and Mill Products by Foreign Port Destination, 1968 and 1969

(In thousands of short tons)

Foreign port zone	1968		1969
		· 10 00	·
<u>1 - Canada</u>			·
Toronto, Ont	217		330
Three Rivers, Que	181	· .	221
Comeau Bay, Que	173	· · · ·	262
Port Cartier, Que	93		170
Hamilton, Ont	. 93	. 1	137
Quebec, Que	59	'	156
Montreal, Que	36		142
Total	852		1,417
2 - Caribbean			
Puerto Cabello, Ven	50		42
, •			
5 - Northwest Europe	2 0 10		0 0 0 0 0
Rotterdam, Neth	2,919		2,879
Hambur, W. Ger	687		873
Bremen, W. Ger	399		543
Amsterdam, Neth	312		367
Kobenhavn, Den	270		203
Anvers, Antwerp, Belg	266		106
Bilboa, Sp	167		147
Bordeaux, Fr	137		118
Optional Denmark ports	128		58
Santander, Sp	104		62
Nantes, Fr	96		105
Aarhus, Den	93		124
Seville, Sevilla, Sp	93		69
Fredrikstad, Nor	77		35
Other France Atl. ports	74		94
Larvik, Nor	60		77
La Coruna, Sp	57		72
St. Nazaire, Fr	56		35
Gand, Ghent, Belg			155
Other Eng. S. and E. coast ports			C D
Total.	3 5,997	11	63
	5,99/		6,185
6 - Southwest Europe			
Tarragona, Sp	372		311
Ravenna, Italy	287		423

continued--

4-2

The second second

Table 44. U.S. Waterborne Exports of Soybean and Mill Products by Foreign Port Destination, 1968 and 1969 continued--

(In thousands of short tons)

Foreign port zone	1968	1969
Genoa, Italy Valencia, Sp Kuper (Kopar), Trieste Venice, Italy Livorno, Leghorn, Italy Barcelona, Sp Total	238 168 122 95 72 52 1,407	234 156 135 89 27 14 1,387
<u>7 - Other Mediterranean</u> Haifa, Isr	289	277
8 - East Europe Gdynia, Pol	200	196
12 - Southeast Asia Kaohsuing, China (Taiwan).	371	515
15 - Japan Yokohama. Kobe. Kawasaki. Mizushima. Moji. Nagoya. Shimizu. Yokkaichi. Optional Japan ports. Tokyo. Chiba. Total.	788 573 253 185 142 139 122 99 56 53 2,410	517 538 453 128 62 186 81 67 33 178 99 2,343
Total, above-listed ports	11,576	12,362
Total, all reported ports	12,321	13,200

Note: Individual items may not add to totals due to rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 94 percent in 1968 and 1969 of all reported ports.

Source: RRNA tabulations of unpublished Bureau of the Census data on computer tape, Series SA-305 and SA-705.

المتنف ويستر يسترونا والمناف المنافعة والمتعاد والمتناف والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتح

Table	45.	U.S.	Waterl	orne	Exports	of	Natura	1 Phosphates
1	by	Foreign	Port	Dest:	ination,	196	8 and	1969

- 14

(In thousands of short tons)

Foreign port zone	1968	, it	1969	
<u>1 - Canada</u> Vancouver, B.C Contrecoeur, Que All other NFLD ports	343 189 111		476 159 189	
All other Canada Atl. ports Sorel, Que Victoria, B.C Grand Manan Isl, NB Quebec, Que Port Moody, B.C Montreal, Que	102 55 40 33 28 - - 900		193 64 - - 29 18 1,127	
Total 2 - Caribbean Tampico, Mex. Puerto Mexico, Mex. Minatitlan, Mex. Vera Cruz, Mex. Cartagena, Col Other Mex. Gulf-E. coast ports. Total.	900 83 83 74 42 24 - 305		68 422 120 60 19 21 710	
3 - South America-Pacific All other Chile ports Acajutla, El Salv Callao, Peru Manzanillo, Mex Talcahuano, Chile Total	69 14 13 6 - 101		- 13 9 62 15 98	,
4 - South America-Atlantic Santos, Brazil Rio Grande Do Sul, Brazil. Montevideo, Uruguay Recife, Pernambuco, Braz Total	256 36 23 3 319		227 18 11 14 269	

1

7 H

 λ_{i}^{λ}

с£.,

continued

49

S.,

 $\frac{1}{2}$

it'

 \mathcal{A}_{i}

Table 45. U.S. Waterborne Exports of Natural Phosphates by Foreign Port Destination, 1968 and 1969 continued--(In thousands of short tons)

1968 1969 Foreign port zone 5 - Northwest Europe 1,013 956 Rotterdam, Neth..... 795 896 Anvers, Antwerp, Belg.... 242 249 Nordenham, W. Ger..... 202 80 Portishead, Eng..... 77 116 Brake, W. Ger.... 98 80 Rouen, Fr..... 45 68 La Coruna, Sp..... 35 67 Pasaje, Sp..... 185 65 Other France Atl. ports... 48 35 La Pallice, Fr..... 35 Avonmouth, Eng..... 33 23 Heroya, Nor..... 79 22 Bilbao, Sp..... 37 Oslo, Nor.... 20 .16 Cadiz, Sp..... 16 6 Immingham, Eng..... Other Eng. W. coast ports. 11 9 Rendsburg, W. Ger..... 11 11 8 Barry, Wales..... 7 27 Santander, Sp..... 6 19 Manchester, Eng..... 13 Hamburg, W. Ger..... 16 All other Norway ports.... 15 Rochefort, Fr..... 2,943 2,854 Total..... 6 - Southwest Europe 400 347 Other Sicily ports..... 114 174 Porto Empedocle, Sicily ... 74 148 Ancona, Italy..... 145 148 La Spezia, Italy..... 123 269 Venice, Italy..... 88 59 Savona, Italy..... 86 143 Crotone, Italy..... 77 Catina, Sicily..... 40 47 Other Italy W. coast ports Barcelona, Sp..... 34 11 Brindisi, Italy..... 32

continued--

Table 45.	U.S.	Waterborne	Exports	of Natural	Phosphates
by Foreig	n Por	t Destinatio	on, 1968	and 1969	continued

(In thousands of short tons)

oreign port zone	1968	1969
Barletta, Italy	31	45
Palermo, Sicily	24	-
Valencia, Sp Gaeta, Italy	24 23	_45
Cartagena, Sp	18	74
Napoli, Naples, Italy	13	-
Alicante, Sp	11	9
Genoa, Italy	11	0 29
Pirano (Piran), Trieste Augusta, Sicily	-	29
Total	1,447	1,496
- Other Mediterranean		
Rijeka, Fiume, Yug	20	0 17
Kavala, Greece	20	17
	20	
) - Other Africa Santa Cruz de Tenerife	-	12
0 - Mid-East		2
Khorramshahr, Iran	11	3
1 - South Asia	216	159
Vishakhapatnam, India Bombay, India	71	66
Calcutta, India	12	
Bhavnagar, India	-	82
Tota1	299	307
2 - Southeast Asia		
Other Rep. of Korea ports.	365	421 173
All other Philippine ports	127 74	78
Pusan, Rep. of Korea Inchon, Rep. of Korea	30	44
Rep. of Korea optional		
ports	30	37
Cebu, Philippines	26	10 13
Singapore	7	T2

continued--

1. P. 1.

Table 45. U.S. Waterborne Exports of Natural Phosphates by Foreign Port Destination, 1968 and 1969 continued--

praticion agente

(In thousands of short tons)

Foreign port zone	1968	. 1969
Keelung, China (Taiwan) Kaohsuing, China (Taiwan). Total	0 - 657	13 64 854
<u>13 - Australia</u> Fremantle Geelung City. Auckland, N.Z. Melbourne. Port Kembla. Adelaide. All other Australia ports. Newcastle. Lyttleton, N.Z. Other Tasmania ports. Port Lincoln Total.	151 147 93 79 71 57 53 32 22 21 17 743	- 25 16 43 25 - 8 7 - - - - - - - - - - - - - - - -
15 - Japan Other Japan ports. Ube. Okinawa-Buckner Bay, Naha. Niigata. Osaka. Miyako. Tokyo. Moji. Sakaide. Wakamatsu. Nagoya. Minamata. Miihama. Kawasaki. Chiba. Sakata. Tokuyama. Yokkaichi. Kushiro.	724 264 250 235 218 132 110 108 93 90 79 73 66 60 50 45 40 39 31	608 212 206 156 167 31 89 31 20 38 38 38 76 61 107 43 - 42 10

يعترجه بالتلة بالتقط

Table 45.	U.S. 1	Waterborne	Exports	of Natural	Phosphates
by Foreig	n Port	Destinatio	on, 1968	and 1969	continued
	(In	thousands	of short	t tons)	

Foreign port zone	1968	1969
Yokohama	29	99
Kobe	-	17
Total	2,736	2,051
Total, above-listed ports	10,482	9,921
Total, all reported ports	10,612	9,993

Note: Individual items may not add to totals due to rounding. Figures are rounded to the nearest thousand. This accumulation accounts for approximately 99 percent in 1968 and 1969 of all reported ports.

Source: RRNA tabulations of unpublished Bureau of the Census data on computer tape, Series SA-305 and SA-705.

Comparison of Two Bureau of the Census Sources on U.S. Alumina Imports, 1968 and 1969 Table 46.

(In thousands of short tons)

	Commodity code 5136 530 Series FT 135	e 5136 530 135	Commodity code 5136 Series SA 305	e 5136 A 305
Country of origin	1968	1969	1968	1969
Australia	697,929	1,309,810	697,293	1,308,325
Jur InamJur Jame ica	4/4,4U2 108,569	4U2,653 103,928	3/5,/53 133,253	355,084 103,972
GuyanaJapan	24,176 10,957	67,983	17,446 10,957	 68,084
Subtotal	1,316,033 ^a /	1,884,374 <u>b/</u>	1,234,702	1,835,465
Other code 5136 imports	340	370	ł	
Total	1,316,373	1,884,744	1	

a/ Excludes 28,100 short tons of commodity code 5136 530 imports from the Lee-ward and Windward Islands, Republic of South Africa, Canada, and the Netherlands. b/ Excludes 254 short tons of commodity code 5136 530 imports from Canada and b/ Excludes ? West Germany.

U.S. Department of Commerce, Bureau of the Census, statistical series as indicated. Source:

557.

بر م

and shirt was

「ない」のないない、ない

1

÷

ŝ

ì

「二十二日の二日」

558.

Commodity	No. of U.	S. ports	No. of for	eign ports
groups	1968	1969	1968	1969
Imports				
Crude oil	44	39	84	81
Petroleum products	73	75	110	115
Iron ore	26	23	51	52
Bauxite	22	19	23	21
Alumina	6	13	10	11
Exports				
Coal	26	27	174	175
Total grains.	71	74	409	381
Food grains. Feed grains. Soybeans	59 52	59 55	306 270	275 252
and meal	46	46	181	179
Phosphate rock	22	15	157	139
Total, all above-listed commodities	130	125	626	594

Table 47. Number of U.S. and Foreign Ports Sending or Receiving Bulk Commodities in U.S. Foreign Trade, by Commodity, 1968 and 1969

الاستيتاب التبلقوات

Source: RRNA tabulations of unpublished U.S. Bureau of the Census data on computer tape, Series SA-305 and SA-705.

Table 48. Number of U.S. and Foreign Ports Sending or
Receiving Large Quantities of Bulk Commodities in
U.S. Foreign Trade, by Commodity and Volume Han-
dled, 1968 and 1969

Commodity	No. c by	of U.S. mil. s. handled	t.	No. of by	foreig mil. s. handle	n ports t. d
	10+	5-10	1-5	10+	5-10	1-5
Imports			19	68		
Crude oil Pet. prod Iron orea/ Bauxite Alumina	1 1 2 0 0	4 1 0 0 0	8 11 8 5 0	1 1 1 0 0	2 5 2 0 0	10 7 4 6 0
Exports Coalb/ Total grains. Food grains. Feed grains. Soybeans	1 0 0 0	1 3 0 0	1 13 5 8	0 0 0	1 1 0 0	5 10 2 4
and meal Phos. rock	0	0 1	3 0	0 0	0 0	1 0
Imports			196	9		
Crude oil Pet. prod Iron ore <u>a</u> / Bauxite Alumina	0 1 2 0 0	5 1 0 0 0	9 14 6 5 0	1 2 1 0 0	1 3 2 1 0	16 10 5 5 0
Exports Coal <u>D</u> / Total grains. Food grains. Feed grains.	1 0 0 0	1 2 0 0	1 11 3 6	0 0 0 0	1 0 0 0	9 10 1 3
Soybeans and meal Phos. rock	0 0	0 1	5 0	0 0	0 0	1 1

 a/ Includes Canadian shipments from St. Lawrence and Great Lakes ports and deliveries to U.S. Great Lakes ports.
 b/ Excludes U.S. shipments from Great Lakes ports and deliveries at Canadian ports.
 Source: Tables 24 through 45.

Table 49. U.S. Major Bulk Commodity Imports or Exports Exceeding One Million Tons in 1968 and 1969 at U.S. Ports of Origin or Destination, by Commodity

Commodities	Annual volumes						
COMMOUTCIES	Total	At port	s handli	ng (mi	1. s.t.)		
	TOTAL	Over 10	5-10	1-5	Total		
Tmporte			1968				
Imports Crude oil Pet. prod Iron ore Bauxite Alumina	61.4 77.4 47.4 14.4 1.3	10.5 31.5 20.9	29.9 6.8 	15.8 22.6 23.2 13.9	56.2 60.9 44.1 13.9		
Exports Coal <u>a</u> Total grains. Food grains. Feed grains. Soybeans and meal Phos. rock	34.4 52.8 19.8 20.7 12.3 10.6	24.4	7.5 22.1 8.8	2.5 23.3 11.1 16.4 6.7	34.4 45.4 11.1 16.4 6.7 8.8		
			1969				
Imports Crude oil Pet. prod Iron ore Bauxite Alumina	63.9 86.5 42.5 16.3 1.9	31.1 22.8	39.3 7.8 	20.0 30.1 14.7 15.4	59.3 69.0 37.5 15.4		
Exports Coala/ Total grains. Food grains. Feed grains. Soybeans	39.7 47.0 15.4 18.4	27.7	9.4 14.4 	2.6 22.1 6.5 12.9	39.7 36.5 6.5 12.9		
and meal Phos. rock	13.2		8.2	9.2	9.2 8.2		

(In millions of short tons)

a/ Excluding exports from ports on the Great Lakes. Source: Tables 24 through 34.

Table 50. U.S. Major Bulk Commodity Exports and Imports Exceeding One Million Tons in 1968 and 1969 at Foreign Ports of Origin or Destination, by Commodity

(In millions of short tons)

Commodities		Annu	al volu	nes	
	Total	At port	s handl:	ing (mi	l. s.t.)
	TOLAL	Over 10	5-10	1-5	Total
Timporto			1968		
Imports Crude oil Pet. prod Iron ore	. 77.4	13.6 15.3 11.5	12.2 37.8 17.0	22.8 12,7 10.0	48.6 65.8 38.5
Bauxite Alumina	14.4	 	1/.0 	12.7	12.7
Exports Coala/ Total grains Food grains Feed grains	52.8 5. 19.8		5.3 6.5 	10.7 16.5 3.5 7.0	16.0 23.0 3.5 7.0
Soybeans and meal Phos. rock				2.9	2.9
Imports			1969		
Crude oil Pet. prod Iron ore Bauxite Alumina	86.5 42.5 16.3	12.4 28.4 11.5	7.7 25.6 12.7 5.4	35.6 21.3 10.6 9.2	55.7 75.3 34.8 14.6
Exports Coala/ Total grains Food grains Feed grains	5. 15.4		9.9	15.2 18.3 1.1 4.0	25.1 18.3 1.1 4.0
Soybean and meal Phos. rock				2.9 1.0	2.9 1.0

a/ Excluding exports to Canadian ports. Source: Tables 35 through 52. 562.

Table 51. Percentage Distribution of U.S. Major Bulk Commodity Imports or Exports Exceeding One Million Tons in 1968 and 1969 at U.S. Ports of Origin or Destination, by Commodity

Commodities		Annua	al volu	nes	
COMMONTELES	Total	At port	s handl:	ing (mi	1. s.t.)
	IULAI	Over 10	5-10	1-5	Total
Imports			1968		i
Crude oil	100.0	17.1	48.7	25.7	91.5
Pet. prod	100.0	40.7	8.8	29.2	78.7
Iron ore	100.0	44.1		48.9	93.0
Bauxite	100.0			96.5	96.5
Alumina	100.0	معن اللبة			
Exports					
Coal	100.0	70.9	21.8	7.3	100.0
Total grains.	100.0	-	41.9	44.1	86.0
Food grains.	100.0		~~	56.1	56.1
Feed grains. Soybeans	100.0			79.2	79.2
and meal	100.0	·		54.5	54.5
Phos. rock	100.0		83.0		83.0
		c = bgc	1969		
Imports	<u> </u>				
Crude oil	100.0		61.5	31.3	92.8
Pet. prod	100.0	36.0	9.0	34.8	79.8
Iron ore Bauxite	100.0	53.6		34.6	8.2
Alumina	100.0			94.5	Sta . 5
	100.0				
Exports	1.00.0	.			
Coal	100.0	69.8	23.7	6.5	100.0
Total grains. Food grains.	100.0		30.6	47.0 42.2	77.6 42.2
Feed grains.	100.0			42.2	42.2
Soybean				, 70.1	/ • • +
and meal	100.0			69.7	69.7
Phos. rock	100.0		82.0		82.0
	1				

Source: Table 49.

Commodities	Annual volumes						
Contriodicies	Total	At ports	s handli	ing (mi	1. s.t.		
	TOTAL	Over 10	5-10	1-5	Total		
			1968				
Imports Crude oil	100.0	22.1	19.9	37.1	79.1		
Pet. prod	100.0	19.8	48.8	16.4	85.0		
Iron ore	100.0	24.3	35.9	21.1	81.2		
Bauxite	100.0			88.2	88.2		
Alumina	100.0						
Exports							
Coal	100.0		15.2	30.7	46.0		
Total grains.	100.0		12.3	31.3	43.6		
Food grains.	100.0			17.7	17.7		
Feed grains. Soybeans	100.0			33.8	.33.8		
and meal	100.0			23.6	23.6		
Phos. rock	100.0			-			
			1969				
Imports Crude oil	100.0	19.4	12.1	55.7	87.2		
Pet. prod	100.0	32.8	29.6	24.6	87.0		
Iron ore	100.0	27.1	29.9	24.9	81.9		
Bauxite	100.0		23.1	56.4	89.6		
Alumina	100.0	,			02.0		
	1 - 00.0						
Exports Coal	100.0		24.4	37.5	62.0		
Total grains.	100.0		44.4	37.5	62.0 38.9		
Food grains.	100.0			7.1	7.1		
Feed grains.	100.0			21.7	21.7		
Soybean	1.00.0			<u>6</u> 1,/	<i>4</i> . . /		
and meal	100.0			22.0	22.0		
Phos. rock	100.0	-	-	10.0	10.0		

Table 52. Percentage Distribution of U.S. Major Bulk Commodity Exports and Imports Exceeding One Million Tons in 1968 and 1969 at Foreign Ports of Origin or Destination, by Commodity

Source: Table 50.