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ABSTRACT

Numerical solutions using the Martree
characteristic method for the propagation of spherical
blast waves in a detonation gas are preseated in the
present paper. Two models have been studied, the reacting
blast wave (R-B-W) model and the finite kinetic rate (F-K-R)
model. The R-B-W model 5ssumes the reaction rates to be
infinitely fast, and the reactive shock wave is treated as

a discontinuity. In the F-K-R model the double front

approximation is used. Empirical relationships for the
dependence of the induction time on reactant concentrations
and thermodynamic states used in the present calculation

are taken from the experimental work of White and Strehlow.
The location of the reaction front is determined using the
quasi-steady kinetic approxXimation as proposed by Strehlow.
F¢¥ the R-B-W model, the present numerical solution is

used as a referznce tc assess the accuracies and the domains
of ?aiidity_of the various existing analytical solutions
{i.e., quasi~similar method of Oshima, perturbation method
of Melnikova and Sakurai and the density profile method of
Porzel). It is found that the density profile method of
Porzel is the most accurate as well as having the widest
range of validity for both the parameters at the shock and
the flow profiles behind the blast. The present solution

also confirms the result of Levin and Chernyi in that the

C-J state is reached at a finite radius for cylindrical and
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spherical waves. The asymptotic formula of Levin and
Chernyi also predicts the correct value for the C-J radius.
However, it is found.from the present solution that the

J-T-Z similarity solution as assumed by Levin and Chernyi

00 0 A RN

is not recove}ed in the limit as tne C~J state is reached.

Instead the solution tends towards the planar solution. A : ;f: A
new asymptotic decay law is proposed and found to be

independent of the flow gradients to the first order in
£

€° and is identical to Levin and Chernyi's formula. Hence

it clarifies the correctness of Levin and Chernyi's
asymptotic law which is based on an incorrect assumption
of the asymptotic form of the solution since the C-J radius
is independent of the flow gradient. The finite kinetic

solution reveals all the essential qualitative features of

a spharical combustion wave. Quantitative predictions of
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the shcek and reaction front trajectories as well as the

critical vnergy for direct initiation are correlated with
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n

previous experimental data. Based on a blast wave model for
a multiheaded detonation front, the present F-K-R solution

is used to predict the transverse wave spacings.
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1. Introduction

The propagation of blast waves.in a detonating

WA 0 o 0

gas has received considerable attention in the past

decade (1']3). The majority of the theoretical studies
are of the analytical type where the classical point blast
similarity solution of Taylor (14) and Sedov (15) i§ extended ,%,E
to account for the energy release due to chemical reactions. A
In these reacting blast wave (R-B-W) models, the detonation
front is assumed to be a discontinuity (i.e., infinite reaction
rates), hence all the non-similar techniques (16-18) developed
for non-reacting blast waves with counter-pressure effects are

directly applicable to the R-B=W model (1s 3s 75 95 11} = 4y

these non-similar solutions of the R-B-W model account for
small departures from the strong point blast similarity
solution and hence break down as the initially overdriven
blast wave approaches the Chapman-Jouguet (C-J) condition.

Their validity is restricted to the regime where the shock

#*

e

radius R, is small as compared to the characteristic explosion

length R, (i.e., RSIRO < 1). It is one of the aims of the

present paper to assess the extent of validity of the gv;’

non-similar analytical solutions in terms of the numerical
solution of the R-B-W model presented herein. The asymptotic

motion as the blast apuroaches the C=J state has been analysed

by Levin and Chernyi 15) with the rather surprising conclusion

that while a planar reacting blast decays to a C=J wave

asymptotically {(i.e., M, > Moy as R =) a cylindrical or

§§heriéa? reacting blast wave approaches the (-J state at a
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finite radius (i.e., Ms -+ MCJ as R, - RCJ)' Levin and
Chernyi's asymptotic decay law is based or the assumption
that as the blast wave approaches the C-J state the solution
‘tends to the classical Jouguet (]9)-Taylor (20)-Ze1dovich (21)
(J-T-2Z) similarity solution for a diverging C-J detonation.

It is not at all obvious that the flow gradients behind a

decaying blast should steepen and become infinite at the C-d

stais as described by the J-T-Z similarity solution. Hence

in ¥hs preseni paper it seemed worthwhile to verify this
asyrigtotic deciy law of Levin and Chernyi by comparing it
with an exact auwzrical solution of the R-B-W model. It is
particularly interesting to see if the flow gradients behind
the decaying blast do indeed steepen and take on the J-T-Z
profiles as the C-J state is reached.

In an effort to understand the chemical reactions in
the transient hydrodynamic flow structure of a decaying blast
wave, theoretical studies on a finite kinetic rate (F-K-R)

model have been made (6, 22, 23).

These studies are of an
analytical nature where the hydrodynamics and the chemical
kinetics are decoupled by assuming that the heat release. bf

chemical reactions has a negligible influence on the motion

io? the blast wave. Based on this assumption, the hydrodynamic

flow structure can be obtained from the non-similarity solution

of a non-reacting blast, and with the flow structure known the
kinetic rate equations can then be integrated to establish the

réaction profiles and induction time behind the blast wave.

Such analytical solutions exclude a priori the all-important
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coupling mechanisms between the energy released by chemical
reactions and the hydrodynamic flow field. Hence these
solutions cannot thr;w 1ight on the interesting expérimental
observations such as the re-esfabl?shmeht phenomenon and

the cuistence of a critical energy for direct initiation.
The present paper also describes the resuit of a numerical
soiut%an of the F-K-R model. The theoretical predictions of
tie various propagation regimes of a reacting blast, the
dependency of the critical energy for direct initiation on
the initial condition of the explosive system as well as the
dimensions of transverse wave spacings of multiheaded detonation
waves using the blast wave model are compared with existing

experimental results.

2. Theoretical Models and Method of Solution

The basic model is that of a point spherical blast
wave propagating in a detonating gas. In the reacting blast
wave (R-B-W) formulation, the reaction rates are assumed to be
infinitely fast so that in effect the chemical reactions release
the erergy, Q per unit mass, right at the shock front which is
treated as a discontinuity. 1In the fin-te kinetic rate (F-K-R)
formulation, the two-front approximation used by Bishimov,
Korobeinikov and Levin (}D), is adopted. The two-front model
assumes that the chemical energy Q is released at the reaction
front only. The reaction front trails behind the leading shock
front by an induction distance. The location of the reacticn

front is determined by the standard quasi-steady kinetic method

'M{kﬁl}»z}h;ﬁém,,"3:5.»&)%WWWWWWWIW!L\IIWIIIMM&»lMUWWWiWW’"“""”"‘“”“”““"“'"!"’“"““f“‘"“f”""“""“" i n‘.‘...‘. i




Tirst used by Strehlow (24) in his study of the

propagation of a reaction shock wave in a converging
channel and later used by Bach, Knystautas and Lee (22),
Lundstrom and OppeAheim (5), and Bishimov, Korobeinikov
and Levin (10) in their studies of the:- F-K-R model. The
empirical experimental relationship for the dependence of
the induction time on the fuel-oxygen concentrations and

the thermodynamic variables, i.e.,

l-m B S

m ;
log @, [05] [fuel] )= A + AT (2.1)

are used. In the numerical solution of the gasdynamic

equations, the Hartree characteristic method as used by
(25)

in their numerical solution for a

Chou and Huang

non-reacting blast wave is adopted in the present work.

The perfect gas constant y assumption is used throughout

the present study. The details of the basic conservation

equations, the Rankine-Hugoniot relationships for the

reacting shock front as well as the method of computation

using the Hartree characteristic scheme have already

appeared in journal publications. It suffices here to
(3, 25)

mention the appropriate references

3. Comparison with Analytical Solutions for the R-B-W Model

Existing analytical solutions for the R-B-W model
are based on the following non=similar techniques developed

to account for counter-pressure effects in non-reacting blast
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-and Lee (27). The method assumes the form of the density

waves: i) the quasi-similar technique of Oshima, ii) the
perturbation solution of Melnikova and Sakurai and iii) the
power-law density profile method of Porzel. Oshima's méthod
was first used by Lee (m for the R-B-W model in 1965 and
later by Struck (9) and Brossard (17),  The method is based
on the assumption that the flow field is locally similar.
Hence the partial differential gasdynamic equations are
reduced tc ordinary différentia] equations based on the
instantancous shock strength. Oshima‘'s method conserves

the total energy, hence shock trajectories and the variation
of shock strength with radius are adequately described.
However, the flow structure behind the blast wave is poorly
predicted since the method fdils to conserve the total mass
enclosed by the blast at any instant. The method of Melnikova
and Sakurai is based on perturbing the similarity solution
of Taylor and Sedov for the strong pcini blast. The solution
is written in the form of a power series in ?lﬁsz. This
perturbation method was- used by Korobeinikov (7) and Bach

{ ] ,
and Lee (3) for the R<B-~-W model. The method is rigorous but

due to the asymptotic nature of the perturbation expansion,
the solution diverges rapidly as the blast decays to the C-J
condition. The power-law density profile method was originally

suggested by Porzel (18) and developed by Rae (26) and Bach

profile behind the blast wave to be given by a simple power-law
form. Then from the conservation of mass and momentum equations,

the forms for the particle velocity and the pressure profiles




can be obtained. The complete solution is obtained using
the known profiles in the energy integral. This method was
applied to the R-B-W model by Bach and Lee (3) and found to
be an extremely accurate method even as the blast approaches
the C=J condition. In comparing the present solution with
these various analytical solutions, the particular case of
stoichiometric CZHZ'OZ mixture at an initial pressure of

100 torr and at room tempegature is used. Thus Fig. 1
compares the variation of shock strength n' = (MCJ/MS)z

with shock radius RS/RO from the various analytical solutions
with the present numerical solution. It can be seen that
for the relatively strong reacting blast regime (i.e.,

0 2 n' < .25) a1l the analytical solutions are almost
identical to the numerical solution. Departures from tpe
exact numerical solution occur in the range .25 < n' 2 1.
The density profile method of Porzel yields a solution that
follows closely to the numerical solution throughout the
entire range 0 < ' < 1.

In Fig. 2, the pressure profiles behind the reacting
blast wave for various blast radii from the analytical
solutions are compared with the present numerical solution.
For the relatively sirang blast regime (i.e.; 0 S n' £ .4)

the profiles from the perturbation and the Porzel solutions

are almost identical to the exact numerical solution. For

the region close to the shock front, the profiles using
Oshima®s method are identical to those froa the numerical

solution; however, they begin to deviate progressively from




it as onesapproaches the center of symmetry. For the
regime of moderate shock strength, the perturbation solution
retains the close agreement with the exact solution. Porzel's
method yields a good description of the profile near the
front but predicts a lower value for the pressure near the
center of symmetry. A1l the analytical solutions break down
in the asymptotic regime as MS -+ MCJ except the method of
Porzel which still yields an adequate approximate description.
The density distribution behind the decaying reactive

blast is shown in Fig. 3. Except for the very strong blast

regime where n' £ .25, the perturbation solution fails to

provide an adequate description of the density distritution.

For n' > .5, the second order perturbation solution over-corrects
the first order solution and the density ratio at the front
itself deviates significantly from the correct value. The

- § asymptotic nature of the perturbation series is thereby
demonstrated in this figure. Again the method of Porzel

yields a fairly good description down to the asymptoiic regime

as ﬁg > HCG;

The particle velocity profiles are shown in Fig. 4.
We can see that as a consequence of failing to conserve mass,
- the particle velocity profile deviates significantly from the
é present numerical solution in the moderate blast strength
: regime (i.e., n' ¥ .8). Porzel's method once again is quite

ade. <%~ in the asymptotic regime as HS - HCE'

in geucral from the n' vs Rs!Rc plot &id the pressure,

density and particle velocity profiles just described we can
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conclude that Porzel's method is by far the superior of
all the non-similar analytical techniques and yields an
adequate description of the dynamics and flow structure
of reacting blasts for the entire regime of propagation,

i’sé-, 0_<. n‘ ..E 1-

4. The Asymptotic Regime

In their analysis of the asymptotic decay of a
reacting blast wave to its C-J state, Levin and Chernyi (5)
obtained an expression for the shock decay coefficient
9 = Rgasiisz,by evaluating the three conservation equations
at the front £ = 1 and then taking the limit as ﬂs + HCJ
e =1’ =1 - Mcazlhsz + 0, i.e.,

0= -Ke* -K,¢€

!
JCY + ) (=T )§
2(')/'* i) AR | +77Cj

_ Yil dP |
2 2 dé ’g-s

E-s0

K

numerical constant j = 0, 1, 2 for planar, cylindrical
nd spherical waves respectively and g = llﬁcaz. Levin

id Chernyi then assumed that the blast wave solution recovers




the J-~T-Z similarity solution in the limit as € - 0, hence

-~

-4

9|, —oo ke (1-£)°

TR

By further assuming that the particle velocity graéient
approachies infinity as € - 0 1ike s“%, one notes that xz +
Tike E-% as € + 0 and Eq. 4.1 yields in the 1imit as € + 0
for J # 0 the following relationship:

9 = ce”

where C is some arbitrary constant. For the pianar case
where j = §, one notes from Eq. 4.2 that K} =0 and as € + 0,
the J-T-Z soplution yields

2:
Yl

Hence Ky > 1as e+ 0 for the planar c¢sse and Eq. 4.1

9%
dfg

=1
-0

becomes in the limit as ¢ + 0,
g = — ¢

From the definition of 6, one notes that

’ de i
-— — = ZR = ‘3’5)
2Regre - “Nvdre

since n' ¥ 1 as £ » 0. Using the above equation and Eq. 4.5

for j = 0 and Eq. 4.4 for j # 0, c.e gets the following results

(4.8

00500 O M
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€= €3 —Ctn Ri for j#0 (4.8)

LY

where §§§§ €49 and ¢' are arbitrary integration constants.

From Eq. 4.7 it is evident that for planar waves, the decay

to the C-J state is asymptotic with R_ » = as € + 0. However,

from Eq. 4.8, one notes that in the limit as ¢ + 0, Ry * Rgy

,, _ €2
(Re), .o = Reg = Rgoexp(—=2) (4.9)

The present numarical solution confirms the concTusion of

Levin and Chernyi that the decay to the C-J state is

,,,,,

achieved at a finite radius for diverging waves (i.e.,

= 1, 2). From the present numerical solution the value

[

of Rej for various values of y and Mgy are shown in Fig. 5.
Here Re, is calculated from:
a) the present numerical solution
b) Levin and Chernyi's asymptotic formula
€) an asymptotic formula newly derived in the
present paper
d) values quoted by Chernyi, Korobeinikeov et a1 (10)
for three chosan values of M., which characterize

the mixture and for various valuss of vy.
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To check the asymp.otic formula of Levin and
Chernyi, the arbitrary constants ng, €, and C' in
Eq. 4.9 are evaluated by matching Eq. 4.8, at some
finite but smail value of ¢ (typically ¢ 1-n' ™~ .05
for n' v .95), with both the present numerical solution
and also the analytical solution using Porzel's method.
With the constants thus determined, Levin and Chernyi's
values of Réé found from %q. 4.9 agree well with those
from the exact numerical solution. Alsco shown in Fig. 5

are the values Of:RcJ quoted by Chernyi, Korobeinikov et
al (8).

Again, good agreement with the present exact

s

ﬁ

numerical solution is obtained. The discrepancies that

I
H\‘i

fil

do exist are due to the choice of igﬁ or g‘o {or so). If

'}

b

one chooses e closer to zero (i.e., ﬁs 2-355) the values

of Rej obtained from the asymptotic formulae will agree

i |

even better with the exact values from the numerical
solution. Hence we conclude that the asyuptotic formulaz
given by Levin and Chernyi predicts correctly the value of

RCJ‘ ché?gr, from the present numerical solution, it can

Ol b -

be observed from Fig. 4 that the particle velocity profile

it

as € » 0 does not recover the J-T-Z similarity solution.
3 The gradient at the front as € +» 0 remains finite instead
% of approaching infinity as predicted by the J-T-Z solution.

Eé The value of the velocity gradient from the present exact

sclution is found to approach that of the plarar case instead,

i.e.,

IR AL

0N Iy
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From a physical point of view this result is quite plausible

since as thne spherical wave expands, curvature effects becofie

progressively unimportant. At large shock radii, diveraing

vaves must become essentially planar when curvature efforts
are nagligible.

The fact that Levin and Chernyi's formula predicts
the same value for RCJ as the present numerical solution
even though the numérical solution yields a totally different
value for the velocity gradient in thé limit as RS -+ RCJ
= requires clarification. Instead of assuming that the J-T-Z
é%%' solution is recovered as € + 0 with the result that %%}g=1 *> ®,
s we take the particle velocity gradient to approach e+0

a finite constant o as indicated by the present numerical

solution. Hence from Eq. 4.3 we see tnat Kz »> 1%13 as € =+ 0.
From Eq. 4.1 and Eq. 4.6, we obtain
Rey o |
dRe _ _gde
1 Rs T2(Ke"r Ky € )
Rso €

and carrying out the integration leads to the following
asymptotic law instead of that given by Levin and Chernyi

(5.e., Eq. 4.8):

|

i 0 \K
Re = Rgq ( v K2 ) 2 (4.11)

|
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In the limit as € = 0 and Rs + Rey we get

, .

instead of Eq. 4.9 as given by Levin ahd Chernyi. In the
present asymntotic law, we find first that for the planar
case; j = 0 and Eq. 4.2 yields K1 = 0. Hence Eq. 4112
yié}dS'RcJ + o as € » 0 as predicted by Levin and Chernyi.
In arriving at this result from our asymptotic law note that
it is not necessary to assume that the J-T-Z solution is
recovered in the 1imit as € - 0 as is required in Levin and

Chernyi's analysis. By expanding Eq. 4.12, we obtain
Rey = Rso (I

up to the order of éé%. From Eq. 4.13, we see therefore
that ch is independent on Kz, hence independent of the

rticle velecity gradient. This independence of Reg oOn

pai

%%-7 _ implies that it is irrelevant whether the J-T-Z

e Eﬁ
£

solution is recovered or not in the limit as &+ 0.
If we approach the exponential term in Levin and Chernyi's
formula given by Eq. 4.9 we see that it is identical to

Eq. 4.13 to the order of € . This explains why identical
results for keg are obtained using Eq. 4.9 and from the
present numerical solution even though the numerical solution
does not approach the J-T-Z similarity solution as € = 0.

The present solution indicates that the particle velocity




rggiiﬁientraf the front approaches that of the planar case

(i-.e., Eq. 4.10), hence k, = 1. The values of Ry computed

from Eq. 4.13 using‘xz = 1 yield valués much closer to the
:éigct ones than the Levin and Chernyi formula even though

the same value of ¢. is used to evaluate the constants in

0
the asymptotic formulae.

The range of validity of the asymptotic formula
'(;;}f—iei, Eq. 4.1 with K = 1) can be seen from Fig. 6 where
the shock decay coefficient 8 is plotted against the shock
%itength nt = (“CJ/“s)z' For the range .6 $ 7 = 1 the
asymptotic law yields almost identicél_resu}ts to the exact
numerical solution. In other words, the decay from moderate
strengths to the final C-J state is adequately described by
the asymptotic formulae. Hence as far as the decay sf:tﬁe
reacting blast is concerned the asymptotic formula coupled
with an analytical sclution such as the solution using
‘Porzel's method can provide a good description of the entire °
decay process fromn' = 0 ton' = 1.

It is also interesting to note from Fig. 5 that a
decaying reacting blast approaches the C-J state in less
than an explssion length R, for most gaseous explosives with
the range 5 = Mea < 10 and vy i.1.3. From previous experiments
on direct initiation of €2H2-02 mixtures, the critical energy
for direct initiation is of the order of 0.3 joules for
stoicniometric mixtures at an initial pressure of 100 torr.
The explosive length for this case is of the order of 1 cm.

Hence the C-~J state is reached when the blast radius is of the

order of 0.7 cm. This makes experimental verification of the
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early time regime in which the reacting blast solutions

are valid extremely difficult, and existing measurements
of the shock parameters are mostly limited to the asymptotic

regime.

5. The Finite Kinetic Rate (F-K-R) Solution

For the numerical solution of the double front

F-X-R model, the empirical relationskips for the induction

time are taken from White (30)

4 2
S B 17,300 L
Log (r- [0 [CaHa])= - 10.81 e (5.1)
Strehlow (24)
o ~ 17,153 s
lOg(T{_'[ozjk “10.269 + Tg—é—_-r— (5‘2)
and Strehlow and Engel (31)
\ 6 7 3 17,060 -
fo 1= - .56 7 7 7
‘(Og(-;-i_ LOZ]) 10.56 + '—-—-——-——-4.58,‘_ (5.3)

To illustrate the typical numerical results, the particular
case of stoichiometric acetylene-oxygen mixture at an initial
pressure of 100 torr is chosen. Fig. 7 shows the variation

of the shock Mach number with shock radius for various values
of the initiation eneray £ﬁ‘ For a given initiation energy Eé,
the initial decay is similar to that of the R-B-W solution
which assumes the reaction rates to be infinite. This is to

be expected since in the early time regime the shock is very




strong, ﬁehté the induction distance is sufficiently small
for the discontinuity assumption to be valid. As the blast
expands and-weakeqs‘the reaction zone progressively lags
behind. From Fig. 7 we note that the shock decays past the
C-J state for the particular mixture whereupon a quasi-steady
state is reached whénrthe shock and reaction front complex
propagate at a constant sub C-J velocity. The existence of
this quasi-steady regime of propagation has been confirmed
experimentally by Soloukhin (32), Bach, Knystautas and Lee (22),
Struck (9 and Brossard (’1). The present solution also
confirms the existence of a critical energy for direct
initiation. From Fig: 7 we note that for E; < 001 joules,

the quasi-steady regime cannot be obtained. The shock decays
continuously to the acoustic limit and the trailing reaction
front completely decouples from the shock and continues to
propasate as a spherical flame. This sub-critical energy
regime of propagation has been studied previously by the

(22)

Authors on laser spark generated spherical detonations.

The present numerical solution breaks down, marking the

termination of the quasi-steady regime after a finite period

of time. This is due to the fact that sharp gradients are

developed in the flow field behind the reaction-shock front
complex during this quasi-steady regime. The development of
these sharp gradients in presgire, density and particle velocity
in the flow field are illustrated in Figs. 8 to 10. It is to

be noted that these sharp gradients are not a result of the
stability of the numerical scheme used. Rather, it is a

physical phenomenon that occurs whenever a shock wave is
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 -supported solely by chemical reactions that occur at a

finite rate. Other numerical studies of the propagation

:~§?—egéthérmic shock waves (33, 24) also demonstrate the

:onset of oscillations and instability under the critical
conditions when the shock is mainly supported by the

:energy released due to combustion. Experimentally it is
found that the termination of the quasi-steady regime is
marked by the sudden violent transition to a multiheaded

(22)

-spherical detonation wave Therefore as far as

“.qualitative features are concerned the present numerical

solution confirms gxisting experimental observations of
spherical detonation phenomena.

A quantitative comparison betweea the present
solution and experimental results for the shock and
reaction front trajectories are shown in Figs. 11 and 12.

In Fig. 11, the stoichiometric C2H2-62 mixture is diluted

by 70% inert Nz. Initiation is by laser spark with spark

energy E; = 0.3 joules. This corresponds to the sub-critical
régimé where the shock and reaction front progressively
decouple from each other. In Fig. 12, the mixture is
undiluted and the same initiation energy E, = 0.3 joules
corresponds to tﬁe critical energy for direct initiation.
Experimentally it is observed that decoupling of the shock
and reaction front is followed by a quasi-steady regime at
the termination of which is the re-establishment to a highly
asymmetrical multineaded spherical detonation. Photographic
récords of these two cases are given in a previous paper (22)5

From Figs. 11 and 12 we can see that the present solution agrees




quite well wiﬁh experiments as far as shock and reaction
trajactories are concerned.

For the samé experimental conditions as Fig. 11,
the induction times for each particle crossing the blast
wave at different initial radii are measured from the
experimental records. A comparison with the results

from the present solution indicates fairly good agreement

(Fig. 13). Also shown in Fig. 11 are the results obtained
from an analytical solution based on Porzel's method where

it is assumed that the energy released by chemical reaction
has a negligible influence on the hydrodynamic flow structure.
The importance of the chemical energy in perturbing the
non-reacting blast flow structure even in this case of 70%
inert nitrogen dilution is self-evident.

From the present solution it is also possible to

determine the critical energy for direct initiation for

a given mixture at given initial conditions. The particular

*case for stoichiometric C,H,-0, mixtures is shown in Fig. 14,

The experimental results are based on the laser spark as an
energy source. The small range in experimental data is due

to the limited power range of the ruby laser used. The

theoretical prediction of the limiting critical energy based

; gl
R S LB

e

on the numerical solution of the F-K-R model yields values
which are considerably lower than the experimental results

using the laser spark from the Q-switched ruby laser. Of all

i

the .experimental initiation results currently available those

with the Taser spark from the Q-switched system, apart from
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were felt to be the ones most appropriate for comparison

experiments.

being the most extensively available, represented the

shortest deposition times (~ nanoseconds) and hence

-

in view of the theoretical premise of vanishing pulse length.

‘We attribute the discrepancy to two possible causes. The

first is that approximate global kinetic data are used in

‘the theoretical calculations. Moreover, such calculations
indicate that the solution is very sensitive to the specific
values of the empirical constants used in the global induction
time relations among which there exist significant discrepancies
depending on the source quoting the relationship. The second
f§ﬁ§sib1é source of disagreement is that strictly speaking the
laser spark from a Q-switched ruby system does not simulate
ideally the limiting value of source energy (i.e., not infinite
power since pulse duration ~ 20 nanoseconds). More reliable
conclusions in this régard have to await initiation experiments
with sub-nanosecond laser sparks which would simulate the
infinite source power and hence the limiting source energy

criterion more closely. We are currently initiating such

6. Prediction of Transverse Wave Spacings

The cellular dimension in a multiheaded detonation
front is an important characteristic of the explosive system
and its initial conditions. A recent theoretical attempt has

been made by Strehlow (34) to predict the cellular dimension or

the transverse wave spacing. Detailed experimental observations (2j
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of the motion of a "detonation wavelet" in between

collisions of transverse waves indicates that it behaves

like a decaying reactive blast wave. The minimum strength

of a detonation wavelet just orior to the explosive

re-energization by the collision of a pair of transverse

waves is found to be of the order of Ms,ﬁ 3. From Fig. 7

we note that the minimum sheck strength which corresponds

to an initiation energy equai to the critical value is also

of the order of 3. For any initiation energy less than the

critical value the shock decays to the acoustic limit. Hence
that the energy released in the collision of a

pair of transverse waves corresponds to the critical value

we can mzke a formal analogy and take the shock radius when

HS is a mirimum as the longitudinal dimension of the detonation

cell. Using the present numerical solution, it is then possible

to evaluate the dimension of a detonation cell based on the

above reasoning. A comparison between the theoretically

predicted values with the experimental data of Sirehiaw(Bl)

for argon d{luted 6232-02, HZ'OZ’ and CZH4-02 mixtures are

shown in Figs. 15 to 17 respectively. The predictions of the

transverse wave dimensions made in this way based on the present

numerical solution of the F-K-R model are in rough agreement

with experimental measurements of Strehlow (31). Once again

the discrepancies can possibly be attributed to the global

approximate kinetic rate asgumption used in the numerical

solution and the oversimplified representation of the

re-energization of "detonation wavelets" upon mutual transverse




collision by a point energy source of infinite power
density. It has been pointed out by Strekiow that the
blast wave model for transverse wave spacing can at best

be used in a qualitative sense Since the-energy released by
the collision of transverse waves is not instantaneous as
assumed in tne theoretical model, and also from experiments
it is found that the center of the curved detonation wavelet
does not correspond to the point where the transverse waves
collide. However, in view of the fair agreement between

the theoretical results and experimental data we conclude
that the blast wave model can be used to provide an a-priori
prediction of the transverse wave spacings at present until
better theoretical models are developed. It is to be noted
that the fundamental mechanisms for the propagation of
multiheaded detonation waves remain obscure, and the
oresent blast wave model fails to throw light on why nature

prefers detonative combustion to proceed in such a complex

manner although the model does predict the cellular dimensions

themselves.

7. Conclusions

Using the present exact numerical solution as a
reféfénce for comparison, it is found that Porzel's method
of the power law density profile gives the most accurate
description of the motion of a reacting blast wave with the
widest range of ap;ii%abi!ity. In the asymptotic regime as

the blast approaches the C-J state, the present soiution
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confirms fhe results of Levin and Chernyi in that for
diverging waves, the C-J state is reached it a finite
radius. Although thé asymptotic law g%ven by Levin and

Chernyi does give the correct prediction of the C-J radius,

the assumption they invoke that the J-T-Z similarity is

recovered in the limit € + 0 is not supported by the present
results. Instead the present solution indicates that the
solution approaches the planar case in the limit with all the
flov gradients behind the front being finite. To resolve this
inconsistency, a new asymptotic decay law is developed based

on finite flow gradients behind the shock as the C-J state

is reached. The present asymptotic formula shows that to the
order of e%, the C-J radius is independent of the flow gradient
and hence explains why the formula of Levin and Chernyi yields
the correct value of RCJ while differing in the assumption as

to the nature of the flow gradient used in the analysis.
Comparing with the exact numerical solution it is found that

the asymptotic decay law is valid for a wide range of shock
strengths. Coupled with an analytical solution for the initial
early time propagation regime, the entire decay of a reacting
blast can be described quite accurately. The finite kinetic

rate solution is found not only to predict all the essential
qualitative features of the propagation of a spherical combustion
wave but predicts quantitatively the shock and reaction front
trajectories and the critical energy regime for divect initiation.
Using a blast wave model for cellular detonations the theoretically

predicted values of the transverse wave spacinas are found to be




in fair agreement with the experimental data of Strehlow.
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< 4 10. Fiqure Captions

3 Fig. 1 Comoarison of the variation of shock strength n°
g with shock radius RSIRO for spherical detonation
1 waveés, vy = 1.4, HCJ = 7.0501 from the various

%ﬁ ana?ytic§1 solutions with the numerical exact

solution,
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Comparison of pressure profiles behind the reacting

blast wave for various blast radii.

Fig. 3 Comparison of density profiles behind the reacting

blast waves for various blast radii.

Fig. 4 Comparison of particle velocity profiles behind the

reacting blast wave for various blast radii.
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Fig. 5 Comparison of the values of finite C-J radius Rcalko

for various values of y and MCJ' -

?%g.'ﬁi Variation of shock decay coefficient 6 with shock

strength.

'ﬁég. 7 Variation of shock Mach number with shock radius for

+

- spherical detonation waves corresponding to different

source energies.

Fig. 8 Pressure profiles for a spherical detonation wave
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with critical initiation energy (stoichiometric CZHZ-OZ,
Eo = 0014, Po = 100mmHg).
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Fig. 13

Fig. 14

Fig. 15

Fig. 16
Fig. 17

Density profiles for a spherical detonation wave
with critical initiation energy (stoichiometric

CH,=0,, E = .001J, P = 100mmHg).

Particle velocity profiles for a spherical detonation
wave with critical initiation energy (stoichiometric

Céﬂééﬂz, Eo-é .OOTJ,-PO = 100mmHg).

Spherical shock and reaction front trajectories in
a detonable mixture with sub-critical initiation

= ,3J, éo = 100mmHg).

energy (0.3(5¢,H,430,)+0.7My, E,

Spherical shock and reaction front trajectéries in

a detonable mixture (stoichiometric CZHZ"OZ’ E. =.3J,

0

. P_ = 100mmHg).

4]

The induction period for particles crossing a spherical

blast wave at different shock Mach numbers.

Comparison between theoretical predictions and
experimental results of critical initiation energies

(stoichiometric Czﬂzaoa).

Variation of transverse wave spacings of spherical

detonation waves with initial pressure of mixtures

(Czﬂgeoz-ﬁr, Hz-oz-ﬁr and CQH4-02’Ar respectively).
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