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FOREWORD

The research reported herein was conducted by the
staff of Monsanto/Washington University Association under
the sponsorship of the Advanced Research Projects Agency,
Department of Defense, through a contract with the Office
of Naval Research, N00014-67-C-0218 (formerly N0O0014-66-C-0045),
ARPA Order No. 876, ONR contract authority NR 356-484/4-13-66,
entitled, "Development of High Performance Composites."
The prime contractor is Monsanto Research Corporation.
The Program Manager is Dr. Rolf Buchdahl (Phone 314-694-4721).
The contract is funded for $7,000,000 and expires

30 June, 1974.
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Morphology and the Elastic Modulus of Block
Polymers and Polyblends

Lawrence E. Nielsen

Monsants Company
St. Louis, Missouri 63166

ABSTRACT

The theory of the elastic moduli of composite materiais
in which an inversion of the phases car occur is reviewed.
The morphology of the system and the packing fraction of the
dispersed phase are important in detérmining the moduli.

The applicability of the theoretical equations is illustrated
for four systems of block polymers and polyblends. In three
of the systems, phase inversion occurs. Agreement between
theory and experiment is good, and where the morphology of
the composites is known, the iaoduli agree with the values

expected for that morphologv.

(HPC 71-144 from the Monsanto/Washington University Association

sponsored by the Advanced Research Projects Agency, Department

of Defense, under Office of Naval Research Contract N00Cl4-67-C-0218.)



= =y

T RN PN, ey PR SR e .

-

Morp’ clogy and the Elastic Modulus of Block Polymers
' and Polyblends

INTRODUCTION

The elastic moduli ;nd morphology of block polymers
and polyblends can be modified by changing the reslative
concentration of the components, by heat and solvent
treatments, and by the intensit& of mechanical mixing. 1In
these two-phase systems the dispersed phase can be spheres,
aggregated spheres, or cylindrical or plate-like in shape.
Over certain composition ranges, both phases can bhe continuous,
or the phases can become inverted - the dispersed phase can
become the continuous phase. These different morphologies
have widely different moduli and other mechanical properties.
It will be shown that if the morphology of a given block
polymer or polyblend.is known, then reasonable predictions
of the elastic moduli can be raade by using the theoretical

equations developed for composite materials.

THEORY

Earlier attempts to relate the concentration of the
two components and the morphology of two phase systems such
as polyblends and block polymers with their elastic moduli
have been made by Takayanagi (1,2) and by Kaelble (3,4).
These workers used series and parallel combinations of the
components in models which give the highest upper bound and
the lowest lower bound to the modulus. It is very difficult

to relate the modulus of such a model with the actual

morphology of the real systemn.

l
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A better method which imposes much narrower limits on
the moduli and which is capable of incorporating the
morphology of the tvo-phase system in a less ambiguous
manner is to use the recent theory of the noduli of composite
materials. Kerner (5) developed a theory in which either of
the phases can be a dispersion of spheres in a matrix of
the other component. More recently Halpin and Tsai (6,7)
have developed ctuations which are general enough to cover
the complete range of moduli from the lowest lower bound
(series models) to the highest upper bound (paralicl models).
They also showed how the moduli can be calculated for many
systems of widely different morphologies including
dispersions of spheres, fiber-filled materjals, etc.

Nielsen (8) extended the Halpin-Tsai equations by using

the concept of a generalized Einstein coefficient to cover
still other morphologies, including dispersions of aggregated
spheres and short fibers randomly oriented. Lewis and
Nielsen (9,10) were able to narrow the limits on the upper
and lower bounds on the moduli by taking into account the
maximum packing fraction cf the filler phase.

The highest upper bound of the modulus is given by the

rule of m!xtures:

M=M ¢, + M2 ¢ (1)
where M is the modulus of the composite, M, is the modulus of

component 1, and ¢, is the volume fraction of component 1.
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This equation holds for models in which the components are
arrangea parallel to one another so that an applied stress

elongates each component the same amount. The lowest lower

bound to the modulus is found in models in which the components

are arranged in series with the applied stress; the equation
for this case is:
¢, ¢

+ (2)

1.
M- M TN,

Curves numbered 1 and 2 of Figure 1 for the modulus of the
composite divided by the modulus of the rubber correspond to
equations 1 and 2 for the case of M,/M, = 1000. This modulus
ratio is approximately the correct value for composites made
up of a rigid polymer and an elastomer.

The Halpin-Tsai equations are (6,7):

1+ AB¢2

M '

My = T4z 3)

2 Mz/Mx -1 “)
M,/M, + A

where the subscripts 1 and 2 refer te the continuous phase
and the dispeésed phase, respectively. The constant A is

determined by the morphology of the system; for dispersed

spheres in an elastomeric matrix, A = 1.5, for instance.

The extension of these equations is given by (8-10):



o g Sy G ed

M 1 + AB$,
. 1 (5)
A=k-1 : (6)
(1 - o)
V=14 —r— ¢, (7)
m

where k is a generalized Einstein coefficient, and ¢y is a
fuonction which takes into account the maximum packing fraction
¢ € the dispersed phase. The maximum volumetric packing
fraction ¢, :g indirectly related to morphology, and it
generally has a value between 0.5 and 0.9. It has a value
of 1.0 in the origin#l Halpin-Tsai equations. The constants
A and k are strongly dependent upon the morphology of the
composite. |

For inverted systems in which the continuous phase is

the more rigid one, it is convenient to rewrite equations

4 to 6 as
El. 1l + Ai Bi ¢2 @)
M l - Bi w ¢2
i Ml7M2 + Ai
and

- l‘. =
A =y | (10)
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In the inverted system, the subscript 2 still refers to the
dispersed phase, which is now the low modulus phase. |
Curves 3 and 4 of Figure 1 illustrate the Halpin-Tsai
equations for dispersed spheres. Curves 5 and 6 of Figure 1l
illustrate the modified equations 5 to 10 for dispersed
spheres with ¢ = 0.64 (random close packing), a Poisson's
ratio of 0.5 for the elastomer phase, and a Poisson's ratio
of 0.35 for the rigid phase. The Halpin-Tsai equations and
their modification put much narrower limits on the moduli
than the series or parallel models used in the past.
Morphologies other than dispersed spheres generally have
similar spreads between the upper and lower modulus curves.
In real systems of polyblends and block polymers, both
phases may be continqous, or there may be an inversion of
the phases as the composition ratio is changed. 1In this
situation the equations giving the upper and lower bounds to
the modulus must be combined in some manner. Empirically it
has been known for a long time, and recent calculations on
crystalline polymers (11) indicate, that a combination of the

two equations is approximately given by
log M = ¢, log M, + ¢, log M; . (11)

Mu and ML are the upper and lower bounds to the modulus,
respectively, at a given composition. In this equation ¢u is
the fraction of the low modulus material that is in a continuous

phase in the overlap region where both phases are essentially
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continuous, while °L is the fraction of the rigid material

that is in the overlap region (10).

Figure 2 may illustrate the point more clearly for scme

chosen over-all composition ¢c .

0. - (1 - ¢l
¢ = ¢

T ¢ Al W ¢ e M

0& is the packing fraction of the low modulus material in
the inverted system. For the unmodified Halpin-Tsai equations,
’L is the volume fraction of the rigid phase, and ou is the
volume fraction of the elastomeric phase for any value of ’c'
The Einstein coefficient k (»r A), vhich is very
sensitive to the morphology of the system, is proportional to
the initial slope of the modulus-concentration curve near ¢ = 0
and ¢ = 1 for dispersed systems in which both phases are not
continuous. Einstein coefficients have been published for
many systems (6,12,13). Some of these are listed in Table 1I.
The listed values of k [or of (A + 1)] are for rigid particles
in a matrix of lower modulus. The values for inverted systems,
in which the matrix has a higher modulus than the dispersed
phase, can be determined from equations 6 and 10. If Poisson's
ratio of the matrix is not 0.5, a correction should be applied

to the Einstein coefficient (8).
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The values of the Einstein coefficient or of A do not
uniquely define the morphology of a system; more than one kind
of morphology can have the same Einstein coefficient. For
instance, agoregates of spheres can have the same values as
short fibers or rods. In addition, some phases may appear
to be continuous when they actually are not. For instance,
very long, but discontinuous, fibers, ribbons, and oriented
flakes may give high moduli characteristics of a continuous
phase. Thus, if one or more of the dimensions of a particle
are very large compared to the other dimensions, such fillers
appear to the matrix phase to be continuous. Therefore, moduli
do not completely describe a system; additional morphological
information is required. However, on the other hand, if the
morphology of a system is known, in principle the moduli can
be accurately calculated. In the overlap region where both
phases are essentially continuous, the exact morphology does
not appear to be important. The important factor is then
how much of each phase is present, and this is determined by
’m and Qé . Changes in morphology which occur as the concentra-
tion changes are also largely compensated for by the values of
’m and Qé since they depend upon the packing and morphology at
high concentrations while the value of the Einstein coefficient

is determined by the morphology at very low concentrations.

EXPERIMENTAL

Four examplcs from the literature will be used to

illustrate the use of the theory. The first example is a series



of styrene-butadiene-styrene block polymers reported by
Holden, et al., (14) and discussed by Kzelble (3,4).

Figure 3 shows the experimental data for Young's modulus

and a calculated curve which fits the data quite well.

The calculated curve results from two curves using the
following values: 1. Polyatyrene dispersed in polybutadiene
with A = 3.0, and ¢m = 0.8. 2. Polvbutadiene dispersed in
polystyrene with A; = 0.86, ¢é = 0,85, and a polystyrene
Poisson's ratio of 0.35. (A better fit to the data might

be obtained by changing these values somewhat, but these
illustrate the point.) Unfortunately, the morphology of
these samples has not been published, but the above values
strongly suggest thewfollowing changes in morphology as the
<uncentration of polystyrene increases: At low concentrations
of polystyrene, the polystyrene appears to be either aggregates
of about six spheres (13) or rods with an aspect ratio of
about € to 1.0 (12). Already at about 15\ polystyrene, both
phases tend to be continuous. The region of phase inversion
where both phases are more or less continuous covers the
range from 15% to 808 polystyrene. From 80% to 1008 poly-
styrene, the polybutadiene is dispersed as spheres in the
polystyrene. This type of information would be hard to deduce
from sevies or parallel models, the limits of which are also
shown in Figure 3. However, as pointed out by Kaelble, such
models do also predict phase inversion for this series of

block polymers.
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A second example is a series of polyblends of poly-
styrene in styrene-butadiene rubber ¢s reported by
Kraus, et al., (15). Figure 4 shows the experimental values
along with calculated values using the following constants:
A= 1.5, ¢m = 0,64, Ai = 0,86, ¢$ = 1.0, and Poisson's
ratios of 0.5 and 0.35 for the rubber and the polystyrene,
respectively. Again, the detailed morphology of these
ma-erials has not been published, but the above constants
suggest the following behavior on aédition oi. polyestyrene
to rubber: Almost immediately at very low concentrations of
polystyrene, it tends to become a continuous phase, possibly
by forming fibrous strings with an aspect ratio of about
15 to 1.0. The region of two continuous phases continues
until a volume fraction of about 0.64 is reached. At higher
concentrations of polystyrene, the rubber appears to be
dispersed as spheres, although there are no experimental
points except the point for pure polystyrene to really make
this conclusion valid. In any case, the morphology is such
as to make the experimental curve unsymmetrical about the
mid composition point of ¢ = 0.5. On the other hand, the
block polymer case is nearly symretrical about ¢ = 0.5.

<he third example is a series of polystyrene-elastomer
blends studied by Cigna (16). Electron micrcecopy showed
these materials to be essentially spheres of the elastomers
in a polystyrene matrix with little, if any, tendency for

phase inversion to occur at concentrations of elastomers below
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30 percent. Many polyblends were studied, undoubtedly with
small ~hanges in morphology, so at a given concentration of
elastomer therc was some scatter in the values of the shear
moculi. An average experimental curve was drawn by Cigna
through the experimental points as shown in Figure 5. The
Kerner equation (or the Halpin-Tsai equation for spheres)
gave values considerably higher than the experimental values.
However, the modified equations using ¢$ = 0,55 and Ai = 0,86
gave good agreement with the experimental values. A value of
Ai = 0.86 is the expected value for spheres in a matrix of
Poisson's ratio 0.35. A value of ¢$ = 0.55 is between the
values for random loose packing (0.60) and simple cubic
packing (0.524) of spheres. Thus, in this case the behavior
predicted from the morphology is in very good agreement with
the actually observed experimental results.

An example where the dizcontinuous phase does not appear
to be dispersed spheres at either end of the composition
range is the series of polyblends of polybutadiene and
styrene-butadiene (SBR) rubber reported by Fujimoto, 2t al. (17).
The SBR copolymer contained 57.3% styrene. A comparison of
the experimental data at -25°C and the calculated results
are given in Figuce 6. An excellent match of the experimental
results is achieved by using the values: A = 4.35, B = 0.92,

¢
coefficients (or A values) indicate that the dispersed phases

a 0.60, Ai = 0.3, Bi = 0,97, ¢$ = 0.70. The Einstein

near ¢ = 0 and ¢ = 1 ure not dispersed spheres but are either

fibers with an average aspect ratio of about 8 to 1 or very

LT —

.
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- large aggregates. This system also has a very nharrow range

of compositions in which two continuous phases simultaneously
exist; phase inversion is complete between a voliLne fraction
of 0.3 to 0.6 of SBR copolymer.

where the necessary morphological information is available
in the four examples discussed, there is agreement between the
experimental and the calculated results. In the other cases,
reasonable morphologies have been deduced by fitting the
theoretical equations to the experimental data. However,
additional information on the morphology is needed to test

the complete validity of this approach.
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Table I
Einstein Coefficients for Composites

Filler Phase Modulus| Einstein Coefficient k
Spheres G 1+(7-5vl)/(8-10vl)
Large aggregates of spheres G 2.50/¢a
Aggregates of 2 spheres G 2.58 +
Rcds - axial ratio 4 G 3.08

* " " 6 G 3.84

2 " R - G 4.80

" " " 10 G 5.93

F 2 e 15 G 9.4
Uniaxial fiber-filled EL 1+ 2L/D

" " " ET 1.5

" " " GLT 2.0

" " " GT 1.5
Ribbon-filled (w/t) + EL o

" - ' ET 1+ 2w/t

" " ETT 1.0 N

" " GLT 1+ (w/t)

s " (w/t) » = GLT’ 1.0

" ?(Ww/t) + ® GTT 1.0
M= M¢,M, ¢, M ©

¢y ¢

é-- At ﬁf M 1.0

= Poisson's ratio of matrix

= Diameter of rod
= Width of ribbon

Vi

¢ .

L = Length of rod

D

w

t = Thickness of ribbon
T

= Transverse to fibers or ribbons

Subscript L = Longitudinal direction

= Parking fraction of spheres in aggregate
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List of Figures

Modulus ratio of composites: Curve 1 - Parallel element
model; Curve 2 - Series model; Curve 3 - Halpin-Tsai

(or Kerner) shear modulus for elastomeric spheres dispersed
in a rigid polymer; Curve 4 - Rigid spheres dispersed in
elastomeric phase; Curve 5 - Elastomeric spheres in rigid
matrix for ¢' = 0.64 (random packing)i and Curve 6 - Rigid
spheres disp@rsed in an elastomeric matrix for ¢ém = 0.64.

Notation used in calculation of modulus when there are two
continuous phases over part of the composition range.

Modulus of S-BD-S block polymers as a function of composition.
Center curve calculated using A = 3.0, ¢p = 0.80, v, = 0.5,
A, = 0.86, ¢y, = 0.85, v, = 0.35. ;

Modulus of polyblends of polystyrene and SBR.

Modulus of polystyrene containing a dispersed elastomeric
phase. The solid line is the average experimental modulus
line of Cigna. The points were calculated using Ay = 0.86
(spheres), ¢, = 0.55, and v, = 0.35. \

Modulus of polybutadiene - SBR rubber blends at -25°C.

Schematic diagrams illustrating the concept of connectivity
of phases. Phase 1 has zero connectivity in A and C.



APPENDIX

Justification For the Logarithmic Rule of Mixtures In the
Overlap Regicn

Empirica}ly, it has been krown that the logérithmic
rule of mixtures (equation 11) is useful for predicting the
modulus of crystalline polymers as a function of the degree
of crystallinity or for predicting the modulus Sf'polyblends
in the region of phase inversion; Very little theoretical
justification for its use has been preseﬁted, however. There
are two intuitive arguments for its use:
1. There are two general equations which are capable of covering
all values of the moduli M of composite systems from the lowest
lower bound to the greates*t upper bound. These are the Haléin-

Tsai equations (equations 3-5), and

= n n .
M = Ml ¢1 + M2 ¢2 :

-1 <nc<+1. (a)
The logarithmic-rule of mixtures is the 1imiting case of
equation (a) as n + 0. The Halpin-Tsai equations and
equation (a) are symmetrical with respect to all upper and

lower bounds when log M is plotted as & function of ¢2. They

are not symmetrical on a M versus ¢2 plot.

2, The second argumen*. involves giving equal relativea weighting
factors to both low and high moduli.. When the upper and lower
limits to the moduli are greatly different, ejual weighting is

achieved on a logarithmic scale but not on a linear scale.

SN
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The most important argument for using a logarithmic
rule of mixtures can be visualized by writing equation 11

in exponential form.

M My o M (b)

where subscripts U and L refef to_equations for.ihé upper and
lower bounds of the moduli. The quantities ¢L and ¢U refer
to the relative amount of each phase participating as a
continuous phase—not the total amount of each phase present.
Thus, ¢, can be considered the "connectivity" of the rigid
phase. If ¢L 0, none of the rigid phase is continuous,
while if ¢L = 1, all of the rigid phase is continuous in the
region of overlap between (1 - ¢' ) and ¢ (see Figure 2).
Likewise, ¢U can be considered the "connectivity" of the low
modulus component in the overlap region. The concept of
connectivity can be illustrated by the overly Simplified
gketches in Figure 7. 1In Figure 7A and 7C, the rubber phase
is dispersed (its connectivity is zero), and the modulus of
the composite is high. In Figure 7B and-7D thé connectivity
¢U has increased, and the modulus of the composite decreases
even though the quantity of rubber has not changed and the
appearance of the rubber phase is nearly the same. A similar,
but inverse .situation, holds if G, > G, so that the connectivity
¢L of the rigid component increases in going from Figure 7A

to 7B. As the connectivity of one phase increases, the
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connectivity of the other phase decreases in accordance with
the equation

o, + ¢y = 1. (c)

In the overlap region where phase inversion is taking place,
the connectivities ¢L and ¢U change more rapidly than the
volume fractions of the components ¢l and ¢2. C

The connectivity must be random in nature for the
logarithmic rule of mixtures to hold. If the connectivity
of the particles becomes oriented primarily in one.direction,
anisotropy develops. In the extreme case of orientation

parallel to the direction of stress, a parallel type of

model holds in which the ordinary rule of mixtures is obeyed:
M = Ml ¢l + M2 ¢2- . (d)
The other extreme is orientatinn perpendicular to the direction

of applied tensile stress; in this case a series type of model

system develops in which the inverse rule of mixtures holds:

¢ ¢

1l 1 2

— == + R (e)
M Ml M2

On a log M versus ¢2 plot, equations (d) and (e) are symmetrical

about the line for the logarithmic rule of mixtures. Rotation

of such plots 180° corresponds to rotating the specimen 90°.
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