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Morphology and the Elastic Modulus of Block 
Polymers and Polyblends 

Lawrence E. Nielsen 
Monsanto Company 

St. Louis, Missouri 63166 

ABSTRACT 

Hie theory of the elastic moduli of composite materials 

in which an inversion of the phases can occur is reviewed. 

The morphology of the system and the packing fraction of the 

dispersed phase are important in determining the moduli. 

The applicability of the theoretical equations is illustrated 

for four systems of block polymer«* and polyblends.  In three 

of the systems, phase inversion occurs. Agreement between 

theory and experiment is good, and where the morphology of 

the composites is known, the moduli agree with the values 

expected for that morphology. 

(HPC 71-144 from the Monsanto/Washington University Association 

sponsored by the Advanced Research Projects Agency, Department 

of Defense, under Office of Naval Research Contract N00014-67-C-0218.) 
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Morp ology and the Elastic Modulus of Block Polymer« 
end Polyblends 

INTRODUCTION 

The elastic moduli and morphology of block polymers 

and polyblends can be modified by changing the rslative 

concentration of the components, by heat and solvent 

treatments, and by the intensity of mechanical mixing.  In 

these two-phase systems the dispersed phase can be spheres, 

aggregated spheres, or cylindrical or plate-like in shape. 

Over certain composition ranges, both phases can be continuous, 

or the phases can become inverted - the dispersed phase can 

become the continuous phase,  ttiese different morphologies 

have widely different moduli and other mechanical properties. 

It will be shown that if the morphology of a given block 

polymer or polyblend is known, then reasonable predictions 

of the elastic moduli can be roade by using the theoretical 

equations developed for composite materials. 

THEORY 

Earlier attempts to relate the concentration of the 

two components and the morphology of two phase systems such 

as polyblends and block polymers with their elastic moduli 

have been made by Takayanagi (1,2) and by Kaelble (3,4). 

These workers used series and parallel combinations of the 

components in models which give the highest upper bound and 

the lowest lower bound to the modulus.  It is very difficult 

to relate the modulus of such a model with the actual 

morphology of the real system. 
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A better method which imposes much narrower limits on 

the moduli and which is capable of incorporating the 

morphology of the two-phase system in a less ambiguous 

manner is to use the recent theory of the moduli of composite 

materials.  Kerner (5) developed a theory in which either of 

the phases can be a dispersion of spheres in a matrix of 

the other component. More recently Halpin and Tsai (6,7) 

have developed t^uaMons which are general enough to cover 

the complete range of moduli from the lowest lower bound 

(series models) to the highest upper bound (parallel models). 

They also showed how the moduli can be calculated for many 

systems of widely different morphologies including 

dispersions of spheres, fiber-filled materials, etc. 

Nielsen (8) extended the Halpin-Tsai equations by using 

the concept of a generalized Einstein coefficient to cover 

still other morphologies, including dispersions of aggregated 

spheres and short fibers randomly oriented. Lewis and 

Nielsen (9,10) were able to narrow the limits on the upper 

and lower bounds on the moduli by taking into account the 

maximum packing fraction of the filler phase. 

The highest upper bound of the modulus is given by the 

rule of mixtures: 

M - Mi *! + Ma t2 (1) 

where M is the modulus of the composite, Mi is the modulus of 

component 1, and ^i is the volume fraction of component 1. 
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This equation holds for models in which the components are 

arranged parallel to one another so that an applied stress 

elongates each component the same amount.  The lowest lower 

bound to the modulus is found in models in which the components 

are arranged in series with the applied stress; the equation 

for this case is: 

Curves numbered 1 and 2 of Figure 1 for the modulus of the 

composite divided by the modulus of the rubber correspond to 

equations 1 and 2 for the case of MJ/MJ» 1000. This modulus 

ratio is approximately the correct value for composites made 

up of a rigid polymer and an elastomer. 

The Halpin-Tsai equations are (6,7): 

Mi " 1 - B*2 
(3) 

MJ/MJ - 1 
B - M./k, ♦ A (4> 

where the subscripts 1 and 2 refer to the continuous phase 

and the dispersed phase, respectively. The constant A is 

determined by the morphology of the system; for dispersed 

spheres in an elastomeric matrix, A « 1.5, for instance. 

The extension of these equations is given by (8-10): 
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M  ^ 1 + ^li (5) 
M    I - Bff t 

A - k - 1 (6) 

^ = 1 + 
(i -y » (7) 

where k is a generalized Einstein coefficient, and i|» is a 

function which takes into account the maximum packing fraction 

♦m of the dispersed phase. The maximum volumetric packing 

fraction ♦, is indirectly related to morphology, and it 

generally has a value between 0.5 and 0.9.  It has a value 

of 1.0 in the original Halpin-Tsai equations. The constant. 

A and k are strongly dependent upon the morphology of the 

composite. 
For inverted systems in which the continuous phase is 

the nore rigid one. It is convenient to rewrite equations 

4 to 6 as 

and 

M,   1 ^ A1 Bi », (8) 

FT  I - B1 f ^t 

Mt/Ma - 1 jgj 
Bi - M/M, + ^ 

Ai   A * 
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In the inverted system, the subscript 2 still refers to the 

dispersed phase, which is now the low modulus phase. 

Curves 3 and 4 of Figure 1 illustrate the Halpin-Tsai 

equations for dispersed spheres. Curves 5 and 6 of Figure 1 

illustrate the modified equations 5 to 10 for dispersed 

spheres with 4> »0.64 (random close packing), a Poisson's 

ratio of 0.5 for the elastomer phase, and a Poisson's ratio 

of 0.35 for the rigid phase.  The Halpin-Tsai equations and 

their modification put much narrower limits on the moduli 

than the series or parallel models used in the past. 

Morphologies other than dispersed spheres generally have 

similar spreads between the upper and lower modulus curves. 

In real systems of polyblends and block polymers, both 

phases may be continuous, or there may be an inversion of 

the phases as the composition ratio is changed.  In this 

situation the equations giving the upper and lower bounds to 

the modulus must be combined in some manner.  Empirically it 

has been known for a long time, and recent calculations on 

crystalline polymers(11) indicate, that a combination of the 

two equations is approximately given by 

log M - ♦u log Mu + 4L  log ^ (11) 

M and JL are the upper and lower bounds to the modulus, 

respectively, at a given composition.  In this equation ♦u is 

the fraction of the low modulus material that is in a continuous 

phase in the overlap region where both phases are essentially 
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continuous, while ^ is the fraction of the rigid material 

that is in the overlap region (10). 

Figure 2 may illustrate the point more clearly for some 

chosen over-all composition f 

♦c " (1 " ♦m1 

♦."♦- 
K ♦u " 1 - ♦L " |" - (i - jm • <") 

♦^ is the packing fraction of the low modulus material in 

the inverted system. For the unmodified Halpin-Tsai equations, 

♦L is the volume fraction of the rigid phase, and ^ is the 

volume fraction of the elastomeric phase for any value of $   . 
c 

The Einstein coefficient k Or A), which is very 

sensitive to the morphology of the system, is proportional to 

the initial slope of the modulus-concentration curve near ♦ - 0 

and ♦ - 1 for dispersed systems in which both phases are not 

continuous. Einstein coefficients have been published for 

many systems (6,12,13).  Some of these are listed in Table I. 

The listed values of k [or of (A •♦• 1)] are for rigid particles 

in a matrix of lower modulus. The values for inverted systems, 

in which the matrix has a higher modulus than the dispersed 

phase, can be determined from equations 6 and 10.  If Poisson's 

ratio of the matrix is not 0.5, a correction should be applied 

to the Einstein coefficient (8). 
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The values of the Einstein coefficient or of A do not 

uniquely define the morphology of a system; »ore than one kind 

of morphology can have the same Einstein coefficient. For 

Instance, aggregates of spheres can have the same values as 

•hort fibers or rods.  In addition, some phases may appear 

to be continuous when they actually are not. For Instance, 

very long, but discontinuous, fibers, ribbons, and oriented 

flakes may give high moduli characteristics of a continuous 

phase.  Thus, If one or more of the dimensions of a particle 

are very large compared to the other dimensions, such fillers 

appear to the matrix phase to be continuous. Therefore, moduli 

do not completely describe a system; additional morphological 

Information is required.  However, on the other hand, if the 

morphology of a system is known, in principle the moduli can 

be accurately calculated.  In the overlap region where both 

phases are essentially continuous, the exact morphology does 

not appear to be important. The important factor is then 

how much of each phase is present, and this is determined by 

4 and 4' . Changes in morphology which occur as the concentra- 
m     m 
tlon changei are also largely compensated for by the values of 

5 and ♦' since they depend upon the packing and morphology at 
m     m 
high concentrations while the value of the Einstein coefficient 

is determined by the morphology at very low concentrations. 

EXPERIMENTAL 

Four example« from the literature will be used to 

Illustrate the use of the theory. The first example is a series 
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of styrene-butadiene-atyrene block polymers reported by 

Holden, at al., (14) and discussed by Kaelble (3,4). 

Figure 3 shows the experimental data for Young's modulus 

and a calculated curve which fits the data quite well. 

The calculated curve results from two curves using the 

following values: 1. Poly-tyrene dispersed in polybutadiene 

with A ■ 3.0, and 4 - 0.8.  2. Polybutadiene dispersed in 

polystyrene with Ai - 0.86, ^ - 0.85, and a polystyrene 

Poisson's ratio of 0.35.  (A better fit to the data might 

be obtained by changing these values somewhat, but these 

illustrate the point.)  Unfortunately, the morphology of 

these samples has not been published, but the above values 

strongly suggest the following changes in morphology as the 

concentration of polystyrene increases: At low concentrations 

of polystyrene, the polystyrene appears to be either ajgregates 

of about six spheres (13) or rods with an aspect ratio of 

about 6 to 1.0 (12). Already at about 15% polystyrene, both 

phases tend to be continuous.  The region of phase inversion 

where both phases are more or less continuous covers the 

range from 15% to 80% polystyrene. Prom 80% to 100% poly- 

styrene, the polybutadiene is dispersed as spheres in the 

polystyrene.  This type of information would be hard to deduce 

from series or parallel models, the limits of which are also 

shown in Figure 3.  Howevrr, as pointed out by Kaelble, such 

nodels do also predict phase inversion for this series of 

block polymers. 
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A second example 1» a series of polybleids of poly- 

styrene in styrene-butadiene rubber is reported by 

Kraus, et al., (15). Figure 4 shows the experimental values 

along with calculated values using the following constants: 

A - 1.5, ^ - 0.64, Ai - 0.86, ^ - 1.0, and Poisson's 

ratios of 0.5 and 0.35 for the rubber and the polystyrene, 

respectively. Again, the detailed morphology of these 

materials has not been published, but the above constants 

suggest the following behavior on addition of.  polystyrene 

to rubber: Almost immediately at very low concentrations of 

polystyrene, it tends to become a continuous phase, possibly 

by forming fibrous strings with an aspect ratio of about 

15 to 1.0. The region of two continuous phases continues 

until a volume fraction of about 0.64 is reached. At higher 

concentrations of polystyrene, the rubber appears to be 

dispersed as spheres, although there are no experimental 

points except the point for pure polystyrene to really make 

this conclusion valid.  In any case, the morphology is such 

as to make the experimental curve unsymmetrical about the 

mid composition point of ♦ - 0.5. On the other hand, the 

block polymer case is nearly symmetrical about *  - 0.5. 

The third example is a series of polystyrene-elastomer 

blends studied by Cigna (16). Electron microscopy showed 

these materials to be essentially spheres of the elastomers 

in a polystyrene matrix with little, if any, tendency for 

phase inversion to occur at concentrations of elastomers below 
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30 percent. Man;/ polyblenda were studied, undoubtedly with 

small changes in morphology, so at a given concentration of 

elastomer there was some scatter in the values of the shear 

moduli.  An average experimental curve was drawn by Cigna 

through the experimental points as shown in Hgure 5.  The 

Kerner equation (or the Halpin-Tsai equation for spheres) 

gave values considerably higher than the experimental values. 

However, the modified equations using 4* ■ 0.55 and A. - 0.86 

gave good agreement with the experimental values. A value of 

A^ ■ 0.86 is the expected value for spheres in a matrix of 

Poisson's ratio 0.35. A value of 6*  » 0.55 is between the m 

values for random loose packing (0.60) and simple cubic 

packing (0.524) of spheres. Thus, in this case the behavior 

predicted from the morphology is in very good agreement with 

the actually observed experimental results. 

An example where the discontinuous phase does not appear 

to be dispersed spheres at either end of the composition 

range is the series of polyblends of polybutadiene and 

styrene-butadiene (SBR) rubber reported by Fujimoto, *t al. (17) 

The SBR copolymer contained 57.3% styrene. A comparison of 

the experimental data at -25*C and the calculated results 

are  given in Figure 6.  An excellent match of the experimental 

results is achieved by using the values: A ■ 4.35, B ■ 0.92, 

<_ - 0.60, A. » 0.3, B. - 0.97, ♦' - 0.70.  The Einstein -" x        x        m 

coefficients (or A values) indicate that the dispersed phases 

near 4» = 0 and ^ « 1 t.re not dispersed spheres but are either 

fibers with an average aspect ratio of about 8 to 1 or very 
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large aggregates. This system also has a very narrow range 

of compositions in which two continuous phases simultaneously 

exist; phase inversion is complete between a voltne fraction 

of 0.3 to ü.6 of SBR copolymer. 

Where the necessary morphological information is available 

in the four examples discussed, there is agreement between the 

experimental and the calculated results.  In the other cases, 

reasonable morphologies have been deduced by fitting the 

theoretical equations to the experimental data. However, 

additional information on the morphology is needed to test 

the complete validity of this approach. 

xrtVnovledcfment 

Thl. re.e.rch -a. ««ort- by th. Mvanced B»B..rch 

Project. Agency of the Department of Defenee and wa. 
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Table I 

Einstein Coefficients for Composites 

Filler Phase 

Spheres 

Large aggregates of spheres 

Aggregates of 2 spheres 

Reds - axial ratio 4 
m        g 

"       "       "8 

"   10 

"   15 
Uniaxial fiber-filled 

n N 

H 

Ribbon-filled   (w/t) 

-*>     OB 
" ■ (w/t) ■+ 

n ■ (w/t) ■*■ 

M  - >•»♦, +M2«2 

1 
M  " ä7 + 

♦a 
M2 

Modulus 

G 

G 

G 

G 

G 

G 

G 

G 

ET 
GLT 
Gl 

ET 

^T 
GLT 
01T' 

TT 
M 

M 

Einstein Coefficient k 

^(T-SvJ/CS-lOv,) 
2.50/*a 
2.58 ♦ 
3.08 

3,84 

4.80 

5.93 

9.4 

1 + 2L/D 

1.5 

2.0 

1.5 

1 + 2 w/t 
1.0 

1 + (w/t) 
1.0 

1.0 

11 

1.0 

L 

D 

w 

t 

T 

', ■ Poisson's ratio of matrix 
- Parking fraction of spheres in aggregate 
- Length of rod 

■ Diameter of rod 
■ Width of ribbon 
- Thickness of ribbon 

» Tfansverse to fibers or ribbons 

Subscript L - Longitudinal direction 
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List of Figures 

1. Modulus ratio of composites: Curve 1 - Parallel element 
model; Curve 2 - Series model; Curve 3 - Halpin-Tsai 
(or Kerner) shear modulus for elastoraeric spheres diapersed 
in a rigid polymer; Curve 4 - Rigid spheres dispersed in 
elastomeric phase; Curve 5 - Elastomeric spheres in rigid 
matrix for (j)' » 0.64 (random packing); and Curve 6 " ^S10 

spheres dispersed in an elast.omeric matrix for ♦m ■ 0.64. 

2. Notation used in calculation of modulus when there are two 
continuous phases over part of the composition range. 

3r Modulus of S-BD-S block polymers as a function of composition. 
Center curve calculated using A= 3.0, ♦„,= 0.80, Vj - 0.5, 
Aj^ « 0.86, ^ = 0.85, Vj - 0.35. 

4. Modulus of polyblends of polystyrene and SBR. 

5. Modulus of polystyrene containing a dispersed elastomeric 
phase.  The solid line is the average experimental modulus 
line of Cigna.  The points were calculated using Ai ■ 0.86 
(spheres), (j)^ = 0.55, and vl   = 0.35. ) 

6. Modulus of polybutadiene - SBR rubber blends at -250C. 

7. Schematic diagrams illustrating the concept of connectivity 
of phases.  Phase 1 has zero connectivity in A and C. 
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APPENDIX 

Justification For the Logarithmic Rule of Mixtures In the 
Overlap Region '■ "  

Einpirically, it has been known that the logarithmic 

rule of mixtures (equation 11) is useful for predicting the 

modulus of crystalline polymers as a function of the degree 

of crystallinity or for predicting the modulus of polyblends 

in the region of phase inversion.  Very little theoretical 

justification for its use has been presented, however.  There 

are two intuitive arguments for its use; 

1. There are two general equations which are capable of covering 

all values of the moduli M of composite systoms from the lowest 

lower bound to the greates*: upper bound.  These are the Halpin- 

Tsai equations (equations 3-5), and 

Mn = M1
n ♦1 + M2n <,2 ;  -1 < n < + 1. (a) 

The logarithmic rule of mixtures is the limiting case of 

equation (a) as n -»■ 0.  The Halpin-Tsai equations and 

equation (a) are symmetrical with respect to all upper and 

lower bounds when log M is plotted as c> function of (fr2.  They 

are not symmetrical on a M versus (j», plot. 

2. The second argument involves giving equal relative vaighting 

factors to both low and high moduli.  When the upper and lower 

limits to the moduli are greatly different, equal weighting is 

achieved on a logarithmic scale but not on a linear scale. 
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The most important argument for using a logarithmic 

rule of mixtures can be visualized by writing equation 11 

in exponential form. 

♦u  M *L (b) 
M = "u  ' ML 

where subscripts U and L refer to equations for,the upper and 

lower bounds of the moduli. The quantities ^ and <!>„ refer 

to the relative amount of each phase participating as a 

continuous phase-net the total amount of each phase present. 

Thus, ^ can be considered the "connectivity" of the rigid 

phase.  If ^ = 0, none of the rigid phase is continuous, 

while if *L = 1, all of the rigid phase is continuous in the 

region of overlap between (1 - *'m) and ^ (see Figure 2). | 

Likewise, ♦„ can be considered the "connectivity" of the low        ] 

modulus component in the overlap region. The concept of | 

connectivity can be illustrated by the overly simplified 

sketches in Figure 7.  In Figure 7A and 7C, the rubber phase        | 

is dispersed (its connectivity is zero), and the modulus of 

the composite is high.  In Figure 7B and 7D the connectivity 

^ has increased, and the modulus of the composite decreases 

even though the quantity of rubber has not changed and the 

appearance of the rubber phase is nearly the same.  A similar, 

v,^i^c if n > G so that the connectivity but inverse situation, holds if G1  >  ^2  so tuau 

♦L of the rigid component increases in going from Figure 7A 

to 7B.  As the connectivity of one phase increases, the 
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Connectivity of the other phase decreases in accordance with 

the equation 

♦L ♦ ♦ü - I- (O 

In the overlap region where phase inversion is taking place, 

the connectivities (J)L and 4).. change more rapidly than the 

volume fractions of the components ({), and (K. 

The connectivity must be random in nature for the 

logarithmic rule of mixtures to hold.  If the connectivity 

of the particles becomes oriented primarily in one-direction, 

anisotropy develops.  In the extreme case of orientation 

parallel to the direction of stress, a parallel type of 

model holds in which the ordinary ru^e of mixtures is obeyed: 

M = M1 (|)1 + M2 ♦2. (d) 

The other extreme is orientation perpendicular to the direction 

of applied tensile stress; in this case a series type of model 

system develops in which the inverse rule of mixtures holds: 

M       M1        ^     M2        ' {ml 

On a log M versus ty-  plot, equations (d) and (e) are symmetrical 

about the line for the logarithmic rule of mixtures.  Rotation 

of such plots 180° corresponds to rotating the specimen 90°. 
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Figure 7 
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Schematic diagrams illar.tratlng the concept o£ connectivity 
of phases. Phase 1 has zero connectivity in A and C. 
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