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1.  Introduction 

The problem of classifying an observation into one of two multi- 

variate normal populations with a common covariance matrix might be 

called the classical classification problem. Fisher's linear discri- 

minant function [Fisher (1936)] serves as a criterion when samples are 

used to estimate the: parameters of the two distributions.  The exact 

probabilities of misclassifications when using this criterion are 

difficult to compute because the distribution of the criterion is 

virtually intractable. Wald (1944) made considerable progress towards 

finding the distribution, but only managed to express the criterion as 

a function of three angles whose distribution he gave. T. W. Anderson 

(1951) and Rosedith Sitgreaves (1952) continued with the problem. For 

further references see T. W. Anderson, Das Gupta, and Styan (1972), 

Subject Matter Code 6.2. 

If the parameters are known, the Neyman-Pearson Fundamental Lemma 

can be applied to the classical classification problem [as done by Wald 

(1944)] to obtain a discriminant function that is linear in the components 

of the vector to be classified.  The distribution of this statistic is 

normal; the mean and variance depends only on the Mahalanobis distance 

between the two populations.  Since the procedure for classification is 

to classify into one population or the other depending on whether this 

statistic is greater or less than a constant, the probabilities of mis- 

classification are found directly from the normal distribution.  If the 

constant is 0, the probabilities are equal and the procedure is minimax. 

*This paper was presented to the NATO Advanced Study Institute on 

Discriminant Analysis and Applications on June 12, 1972, at Kifissia, Greece. 
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When the parameters are unknown and there is available a sample from 

each population, the mean of each population is estimated by the mean of 

the respective sample and the common covariance matrix of the populations 

is estimated by using deviations from the respective means in the two 

samples.  The classification function W, proposed by T. W. Anderson 

(1951), is obtained by replacing the parameters in the linear function 

resulting from the Neyman-Pearson Fundamental Lemma by the estimates; 

the substitution for parameters has been called "plugging in" estimates. 

This criterion differs from Fisher's discriminant function by sub- 

traction of the average of the Fisher discriminant function at the two 

sample means.  Then the distribution depends only on the population 

distance, and this fact makes the distribution problem simpler [T. W. 

Anderson (1951) and Sitgreaves (1952)], though it is still rather 

intractable. 

When the sizes of the two samples increase, the limiting distri- 

bution of W approaches a normal distribution, whose mean and variance 

depend on the Mahalanobis distance; if the limiting mean is subtracted 

from W and the difference is divided by the limiting standard devia- 

tion, the statistic has the standard normal distribution as its limiting 

distribution.  Bowker and Sitgreaves (1961) and Okamoto (1963) with correction 

(1968) have given asymptotic expansions of the distributions to the order 

of the reciprocal of the square of the sample sizes.  The approximate 

probability depends on the unknown parameter (the distance). 

The "Studentized" W statistic is W less the estimate of its 

limiting mean divided by the estimate of its limiting standard devia- 

tion.  It, too, has the standard normal distribution as its limiting 

distribution.  If a statistician wants to set his cut-off point to 



achieve a specified probability of misclassification, he can use this 

Studentized W.  An asymptotic expansion of the distribution of this 

statistic has been given by T. W. Anderson (1972). 

In this paper we compare these two approximations to the probab- 

ilities of misclassification and their uses. For further discussion 

of the classification problem see Anderson (1958), Chapter 6. 

2. The asymptotic expansion of the distribution of the classification 
statistic W 

Let the two populations be N(y  , E) and N(y  , Z), and let the 

i  v   (1)        (1)   A       (2)        (2)        .  , two samples be x1  , . .. , XL.   and x..  , .. . , XL: , respectively. 

The observation to be classified is x, which has the distribution 

(1) (2) 
N(y, £), where y=yvy or y^p^. The classification statistic 

W is 

(1)        W = (I(1) - x(2V S-1 [x - \  (x^ + x(2))] , 

where 

Nl N2 

(2)       -(1)-f  I *1} . -(2)=F-  I - Nl j=l ~J N2 j=l ~J 

(3)  nS = I' (xf1)-x^)(xf1)-x^)' + I' (xf2>-^2>)(xf2>-^'2>)' 
j=i    J J j=i    J J 

and n = N +N - 2.  The rule is to classify x as coming from 

N(y(1), V)    if W> c and from N(y^2), 2) if W£c, where c may 

be a constant, particularly 0, or a function of x  , x  , and S. 
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The squared Mahalanobis distance is 

(4) 
,   (1)   (2)., „-1 , (1)    (2). 

which can be estimated by 

(5) a= (x^-x^)' S"1 (x^-x^) 

The limiting distribution of W as N -*- °°    and N„ -*- °° is normal with 

variance a and mean y a if x is from N(y  , £) and mean - -r- a 

(2) 
if x is from N(y • s E); that is, the standard normal distribution 

N(0, 1)  is the limiting distribution of  (W - y a)/Ja    for x coming 

(1^ 1 f2^ 
from N(y  , E)  and of  (W + — a)/-/ä    for x coming from N(u  , £). 

Okamoto's expansion of the probability distribution [(1963), 

Corollary 1] to terms of order  h   is 

1   .2 

(6)    Pr 
iW-f A 

<  u U=y (1) '(u) + - cj)(u) <;A l + f k £=2 1    1_ _ £-1] 
2    k'   .2 

A 2 

<l+-k+y-) II) £Z3 + 3EZ2_+1 1 +A 
2-n 

2 k 

-A a +h K + i 
K    A 

2 
u    - (1+Ik+H>^+1 

u 

+ 0(n 2)   , 

where k = limrr>00 ^/No 
as N ">• °° and N -* °°, A = a, and $ ( )  and 

<$> ( )  are the cumulative distribution function and density of N(0, 1), 

respectively.  If, Üin^ \^2  
= 1' then 

y=u (i) , lim -i = | = $(u) + i <j>(u)  A|\ - ^ N 
J 

Ezl + 32=1 + £ 
LA2    2   4 

u-A + 1 
4r 

n 

2 
u - + 1 

LA< 

2 J 

3      -2 1 + 0(n Z) 

_ 4 _ 



= *(u)  +i(J.(u)    <p2 + x (A+u)(l~u2)  - £±i A 

2 £=2      3p+l      Al 

LA2 2 4 
u^,     + 0(n 2) 

The relation between the cut-off point c and the argument u is 

(8) *  1*2       C " \ ä2 c = uA + y A  ,  u =  T  

,(D The probability of misclassification when x is from N(u  , E)  is 

(6) [or (7)] with u given by (8); the probability depends importantly 

on the parameter 

A cut-off point of particular interest is c = 0, which corresponds 

to u = -yA.  If N. = N_, this defines a minimax procedure.  In this 

case the probability of misclassification is 

(9)  Pr <W < 0 
N. 

„<». li^-i  -*c-f)+i *<f> *? + !* N 
n-*» 2 I 

+ 0(n~2) . 

As far as this approximation goes, the correction term is positive; 

that is, the probability of a misclassification error is greater than 

the value of the normal approximation.  For a given value of A the 

correction term and hence the probability (to order n ) increases 

with p.  For a given value of p the probability (to order n ) 

decreases with A. 

Okamoto (as well as Bowker and Sitgreaves) expanded the character- 

istic function.  The method of Anderson (1972) could be used to obtain 

the result. 
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3. The asymptotic expansion of the distribution of the Studentized W 

To use the approximate probability given by (6) one must know the 

2 
parameter a = A , but this is generally unknown; then the statistician 

cannot achieve, even approximately, a desired probability. However, he 

can use the fact that a is a consistant estimate of a and therefore 

(W - -y  a)//a and  (W + — a)/fa    have N(0, 1) as the limiting distri- 

bution in cases y = ]i    and y =  y  , respectively. 

We can write 

(10) W-|a= (x(1)-x(2V f1 <*-K(1)) - 

Then 

(11) Pr < —± u\    = Pr<j(x"(1) - x"(2))' S"1 (x-y) 

< u Ax^-^ys-1^-^)  + (x<1)^(2>)»S-1(^1)-y) 

Since x has the distribution N(y, E)  independently of x  , x  . 

and S, the conditional distribution of  (x  -x  )'S  (x-y)  is 

N[0, (7(1)-x(2Vs~1ZS~1(x(1)-£(2))], and 

<12> ^U^Vs-Vii) 
r = 

has the distribution N(0, 1).  Then (11) is 
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JW-fa 
(13)       Pr< -— < u> = Pr<r < 

= ^$ 
u /(x<1)-^2>)'S-1(x(1>-7(2>) + (x^-x^'s"1^1^) 

(x^^x^^'S-^S-1^1^^2)) 

—(1) —(2) where the expectation is with respect to x  , x  , and S. 

When y=y,x-x  , x   - y, and S converge in probability 

to y   - y  ,0, and E, respectively.  We can expand the argument of 

$( )  in a Taylorrs series in terms of -/n    times the differences between 

the estimates and their probability limits.  When the expansion includes 

third degree terms and the expecations computed, the result is 

(14) Prfe < u 
Va" ~ 

\X=]1 (1)\  = $(u) + £ <|,(u) ^E~i (1+k) - Cp - \ + \ k)u - \ u3l + 0(n~2) 

Interchanging    1SL     and    N      gives 

(15)       Pr 
V+|a 

/a" 
< v u-y(2)j>  = $(v) - ^ <fr(v) 

+ 0(n~2)   . 

2Z1   Cl+I)  +  (p_l + l_)v + lv3" 

The proof of these results was given by T.  W.  Anderson  (1972).     If 

llmn-*» VN2 " k = X» 

(16) Pr<  < u 
•a" 

(1)     , .     Nl ]i=]iK     ,   lxm — 
n-*»    2 

L>   =  ö(u)  +!,(,(„) ^2 £Z1 (p + i)u - j u3 

+ 0(n 2) 
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The correction term in (14) [(15) or (16)] is positive for u < 0. 

If p = 1, the correction term does not depend on A; if p > 1, the 

correction term decreases with A. For u < 0, the correction term 

increases with p. 

For u = - 7T A     (which is not    c = 0) 

N., 

8 (17;     Prfs < - f|p-y(1), li» / = i \- H- |) +i *(f) ^2 *£ + %ü 
l/ä ~  ~ n-x»    2 I 

+ 0(n"2)  .. 

A + 4 32 f 

4. Numerical values of the correction term for the Studentized W when N.. = N~ 

We can obtain an idea of the importance of the term of order 1/n 

by studying numerical values of it.  We consider the second term in (16), 

which is the error to order  n   of using $(u) for the probability of 

misclassification.  The correction relative to the nominal probability 

of misclassification is 

(18) I 4>(u) 
n $(u) 

3i 
2^-(p+i)u-J- 

Table 1 gives values of the term in brackets for the five values of u 

corresponding to values of $(u)  of  .1, .05, .025, .01, and .005, and 

various values of p and A.  It is 4.0893 for u = -1.28155 [$(u) = .1], 

p = 2, and A= 2.  The correction relative to the nominal probability 

of misclassification is the value in the table multiplied by the ratio 

(})(u)/ll>(u) divided by n = N- + N - 2.  In the example above it is 

4.0893 x 1.755 = 7.1767 divided by n.  If ^ = N2 = 25, then n = 48 

and the correction relative to the nominal probability of misclassification 

8 - 



is about .15. Here the correction would be rather small. For values 

of N- and N„ somewhat larger, one might be willing to neglect the 

correction.  One would hope that for these values of N..  and N  the 

error when using this correction term would be rather small. 

1 
We might also be interested in the correction at u = - •=• A. 

Table 2 gives the information.  For example, for A = 4  $(- y A) = .022750 

(which would be the minimax probability if the parameters were known) and 

the correction is the appropriate number in the fourth column multiplied 

by  .053991 divided by n.  If N± =  N2 = 25 and p = 2, then n = 48 

and the correction relative to the nominal probability is 7 x 2.383/48 

= .3475. 

5.  Comparison of the expansions of the distributions of W and the 
Studentized W 

It is striking that the asymptotic expansion of the distribution of 

the Studentized W is much simpler than that of W itself [the comparison 

of (6) with (14) and (7) with (16)], except for the particular case of 

u = - y A [(9) with (17)] which has special meaning for W (c = 0), but 

not for the Studentized W. 

It is of interest to compare the correction terms of the two 

asymptotic expansions.  The difference is 

|W ~ 1  a    J   (1)1     P ~ 2" a 
(19)  Pr< — < u y=y  > - Pr</ -— < u 

JZ /ä 
u-M-hHn) -nux- £zi 2+k+l/k  p-l 2    A      2 

2 
a. r r-i   a. J- 1, a. •'• 1\   P~3 j. 2P~3  1 , ,11 , A , 
+ I(1 + 2 k + 2 k> ^2 + 4  ~ 2 k + 2 k + 4-J U 

j. r/i a 1\ 1  j. Ai  2 j. r2+k+l/k . 3,  3l  n,  -2S + I (1 + £•) j +  AJ u + [ ^— + j]   u ^ + o(n ) . 

- 9 - 



If    lim        N,/N. = k = 1,  the expression simplifies to 
ir*»    12 

|W - 7 a |        , 1 v 
(20)      Pr< — < u|U=yVJ-\  lim 

/a" n-x» 

Nl      1       ,^-1% Nl y=y  , lim — 

• (v)    2^ + ^A+2   p£f+2£=3+f 

+ AJu2   -   :^2+|]u3/ + 0(n~2)   . 

u 

In particular, for u = - y A the difference is 

(21) 
(1)     „     Nl y=y       ,  lim =• — Pr<W < 0 (1) lxm — 

n-x»    2 

=4*6    ¥+(J4)A4ä
3

    +0(n~2)   . 32 

Put another way, the correction term for Pr{(W-a)/»/a <- j A} is twice 

the correction term for Pr{W < 0} plus $(j A){A/8 + A /32}/n. The 

latter term, which does not depend on p, is usually small; values of 

3 
A/8 + A /32 are given in Table 3. Comparison with Table 2 shows that 

for p > 1 this term is small except for large A. Thus, roughly speaking, 

the correction for the Studentized W is about that of W itself. 

Okamoto (1963) has given numerical values of the term of order 1/n 

and the term of order 1/n  in the expansion of Pr{w £ o|y=li '}    for 

N- = N- = 100  (n = 198) for various values of p and A. His values 

for 1/ri are about twice the values we can Compute from Table 2.  In his 

2 
table for small values of p and A the ratio of the term of order 1/n 

2 
to the term of order 1/n is very roughly 1/n. The maximum of the 1/n 

term over A increases with p. At p = 7, for example, it is about .0008. 

The table suggests that for small or moderate values of p the second 

correction term can be safely ignored for moderately large values of N 

and N„. 
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6.  Comparison of approximate densities and moments 

Corresponding to the approximate distributions of  (W-oO/^oT and 

(W-a)//a  (for y=]i  ) are densities and moments.  It is of some 

interest to compare these. 

1 2 
The approximate density of  (W - •=- A )/A is 

(22)  <Ku) <1 n 
(1+,k + I^ + M + iI + A 

2 2k' A2 '  2 2 k  4 

3+ypk"2 (p-6)/k 
A u 

/p-6   ,.   ,  1.    ,   11\   .   3p-8      11      A2|      2 
^(1 + 2k + 2kJ+    2      +2kVj    U 

_  /£Z6 
A 

+   (L±M1+A)    u3 + f1 + 2 k + 2 k + j   u4 
A A* 

which for    k = 1    is 

(23)       <j)(u)    <1 - n 
;2 *| + api + £ + (1. ^ A) u. (2 ^ + ^i + |.

2)u: 

+ (i H "3 + (?+1U4 

The approximate density of  (W - y a)//a is 

(24) •(»,1- i [p . i + I t + iE=iHl*l u . (p-l + lWu*..^]|, 

which for k = 1 is 

(25)      <Ku) <1 - i P + 4 + 2 £Z1 -(p-i>u2-^J 
- 11 - 



1 2 
The approximate mean of  (W - •=- A )/A is 

(26) 1 
n 

-6 + \ pk - \  (p - 12)/k  p_n 

A 

which for k = 1 is 

(27) 
1^ 
n 

12  P-U, 
A     2 

the approximate second-order moment is 

1 , .11. 

(28) 
. r(2p-30) (1+yk+ii) 

1 + A  —L £JL_ + 3p + 
n L        A2 

26 - i + ±A2 
k  2 

which for k = 1 is 

(29) l+i n 
'^60 + 3p _ 25 + 1 A2 

The approximate mean of  (W - •=- &)/•/&    is 

(30) _ 1 (p-l)(l+k) 
n    A 

which for k = 1 is 

(31) 1 o P-1 
' n   A 

the approximate second-order moment is 

(32) 1 + - (2p + 1 + k) 

which for k = 1 is 

(33) 1 + - (2p + 2) n  r 

12 - 



In each case the "approximate" moment is the moment of the approxi- 

mate density.  The approximate second-order moment is also the approximate 

variance.  For  (W - -x a)//a    the approximate mean is negative for p > 1 

(while it is 0 for the standard normal distribution); its numerical 

value increases with p and decreases with A. The approximate variances 

are greater than 1  (the value for the standard normal distribution); 

it increases with p, but does not depend on A. 

7. Achieving a given probability of misclassification 

Suppose one wants to achieve a given probability p of misclassifi- 

(1) cation when \}=\s       , say.  How should one choose the cut-off point 

c = u/a + — a for W or equivalently u for  (W - y a)/v^a? 

Let u- be the number such that $(
U

Q)  
= P*  Then the probability 

of misclassification is 

(34) p+i*(u0) 
(p-1)(1+k)   ,   1 ,ln    1 3]   , _, -2. 
TA (P ~ 4 + 2 k)u0 _ 4 u0j + 0(n } 

-1 
The correction term of order n   contains the unknown parameter A 

(if p > 1).  However,  A can be estimated by /a.     These facts suggest 

taking 

(35) u = u„ •  0  n 
(p-1)(1+k)   ,   1 ,1M     13' 
rtL— (P ~ 4 + 2 k) u0 ' 4 U0 

Va 

Then 

(36) 
W-Ta 

Pr< — < u 
/a"  ~ 

=/i)l = Pr[lll! + i(p-i)a^)< 4, u=y 
J rfe 

n /a" 

- 13 - 



where 

(37) u*suO + nI(p-i + lk)uO +iU0] 

_2 
If p = 1, this probability is (14) with u = u*, which is p+0(n ). 

When p > 1, we calculate the probability of misclassification as 

(38)  Pr{W -ya<u*/a"-^ (p-l)(l+k)} = Pr{ (x(1)-x(2) 'S-1(x-y) n 

< u* AxV-^2h's-\xa)-xi2))  + G^^h's-1^-»)  -  i (p-l)(l*)} 

= <S> 
u* /G^-^h's-1^-^) + G^-^h's-1^-») - i (P-i)(i+k) n 

/(x^-x^^ö^-x^) 

where x  -x  , x  -y and S have the joint distribution given in 

Anderson (1972). Then the expansion of $( )  is 

(39)  ${u* + — C*(Z,V) + ^ D*(Y,Z,V) + r* (Y,Z,V) 
/n 

n 
(p-l).(l-Hc) 1     L   (6?v.-6Vö) + r*(Y,Z,V) 

LA  A3 /K    ~ X 

•(u*) + (j»(u*) ^— C*(Z}V) + - W    ~ ~    n D*(Y,Z,V) 

1    *2 1 ll -fu*c'(z,y)-i (p-i)(i+k) i 

+ n 1Q/0 (p-l)(l+k) (5'Y-6'V6)> +-4TT r!(Y,Z,V) + ^ r*(Y,Z,V) 
A3 n3/2 

3/2 "8 2 '9 n 

+ r10n(I>5'Y> > 

- 14 



where C*(Z,V), D*(Y,ZSV), and r7n(Y,Z,V) are C(Z,V), D(Y,Z,V) and 

r7 (Y,Z,V)  of Anderson (1972), with u replaced by u* and r*(Y,Z,V) /n ~ ~ ~ ~ ~ ~ 

in the remainder term in (19) of Anderson (1972).  The expected value of 

$( )  is 

(40)  $(u*) + ^ (j>(u*) I- (P - \ + ^) u* - \ u*3] + 0(n 2) 

= $(uQ) + 0(n 
2) 

= p + 0(n"2) . 
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TABLE 1 

22ri.(p+I)u.|; 

u = -1.28155 

4>(u) - .100 

$(u) = .17550 

<|>(u)/*(u) = 1.755  8 

1 2 3 4 6 CO 

1 2.13 2.13 2.13 2.13 2.13 2.13 

2 5.41 4.41 4.08 3.91 3.74 3.41 

4 11.97 8.97 7.97 7.47 6.97 5.97 

8 25.10 18.10 15.77 14.60 13.43 11.10 

u = -1.64485 

*(u) = .05 

4>(u) = -10314 

<Ku)/*(u) = 2.063  8 

\A 
P   \ 1 2 3 4 6 00 

1 3.17 3.17 3.17 3.17 3.17 3.17 

2 6.81 5.81 5.48 5.31 5.15 4.81 

4 14.10 11.10 10.10 9.50 9.10 8.10 

8 28.68 21.68 18.18 17.06 14.68 

u = -1.95996 

*(u) = .025 

<Ku) = .05844 

4><u)/S(u) = 2. 

p\ 1 2 3 4 6 oo 

1 4.33 4.33 4.33 4.33 4.33 4.33 

2 8.29 7.29 6.96 6.79 6.63 6.29 

4 16.21 13.21 12.21 11.71 11.21 10.21 

8 32.05 25.05 22.72 21.55 20.39 18.05 
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u = -2.32635 

<Ku) =  -01 

<S(u) =  .02665 

<|>(u)/*(u)  = 2.665      8 

P\ 1 2 3 4 6 00 

1 6.06 6.06 6.06 6.06 6.06 6.06 

2 10.38 9.38 9.05 8.88 8.72 8.38 

4 19.03 16.03 15.03 14.53 14.03 13.03 

8 36.34 29.34 27.01 25.84 24.67 22.34 

u = -2.57583 1 

<|>00 =  -005 2 

*(u) =  .01446 4 

(j>(u)/*(u)  = 2.892 8 

7.49 7.49 7.49 7.49 7.49 7.49 

11.07 11.07 10.73 10.57 10.40 10.07 

18.22 18.22 17.22 16.72 16.22 15.22 

32.52 32.52 30.19 29.02 27.86 25.52 
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TABLE 2 

2 Ezi. + (£ + I) + A_ 
A   4  8;   32 

\A 

1 2 3 4 6 

1 .65625 1.50000 2.71875 4.50000 10.50000 

2 3.15625 3.50000 4.88542 7.00000 13.83333 

4 8.15125 7.50000 9.21875 12.00000 20.00000 

8 18.15625 15.50000 17.88542 22.00000 40.83333 

<K--| A) .35206 .24197 .129518 .053991 .0044318 

*(- f A) .30854 .15866 .066807 .022750 .0013499 

<j>(-y A)/*(| A) 1.141 1.525 1.939 2.383 3.283 

TABLE 3 

A . A^ 
8 + 32 

8  32 ,15626 .50000   1.21875 2.50000 7.50000 
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