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ABSTRACE

The capability of prediction of the radar echoes (radar cross sections)
of aerospace vehicles is necessary for either modifying (reducing) such cross
sections for the purpose of reducing detectability, and/or categorizing such
cross sections for the purpose of identification. Such predictions can be
accomplished by measurements (radar range, unechoic chamber, etc.). The
purpose of the capability of computing radar cross sections (vis-a-vis
measurements) is to reduce both cost and time. The state-of-the-art of such
computational methods consists of computer solving the scattering integral
equations by matrix inversion methods. The matrix nature of such formulations
and solutions restricts the size of the targets for which radar cross sections
can be calculated on even the largest and fastest existing computers to no
more than the order of one wave length, and renders the possible solutions
computer-time consuming and costly. The purpose of the k-space method is the
capability of rapid and cost-efficient computer calculations of radar cross
sections of aerospace vehicles, particularly those of much larger size than
one wave length. The technical means by which this purpose is achieved is
summarized next.

The initial-value problem is solved by means of a k-space formulation
of tL• field equations, thereby replacing the conventional integral equation
for-mulatior by a set of two simultaneous algebraic equations in two unknowns
in two spaces (the constitutive boundary condition being an algebraic equation
in x-space). These equations are solved by an iterative generalized-
relaxation method with the aid of the Fast Fourier Transform (FI.V) algorithm
connecting the two spaces, requiring trivial initial approximations. Since
algebraic and FFT equations are used, the number of arithmetic multiply-add
operations and storage allocations required for a numerical solution are
reduced from the order of N3 and N2 respectively (for solving the matrix
equations resulting from the conventional integral equations) to the order
of Nlog 2 N and N respectively (where N is the number of data points required
for the specification of the problem). The convergence rate of the iterative
process is optimized by generalizing the conventional relaxation factors to
a relaxation function and/or its generalized inverse determined by the Eigen
values of the appropriate Green's function. These Eigen values are obtained
numerically in Nlog 2N operations (vis-a-vis the conventionally required N3

operations) by means of the FFT of the Green's function cast into a circulant
matrix form. The advantage gained in speed and storage is thus of the order
or tV/loq:ýN and N respectively. This method is thus considerably more affi-

cient, and permits exact numerical solutions for much larger problems, thin
is possible with the conventional integral equation - matrix inversion method.
Arguments are presented towards the view that the field equations are more
fundamental in k-space. The physicnl and mathematical meaning of both the
continuous and discrete k-space representations are discussed. The details
and some numerical results of the application of this method to three-dimon-'

sional electromagnetic scattering are presented. it is shown that the
scattered far fields are yielded directly in k-space.
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INTRODUCTION

The main subjects of this report are a Generalized Relaxation method

and a Generalized Inverse method fu- iteratively solving large integral

equations. These methods are sp. rif.,ally applicable to the k-epace

formulation of such .intfegral equations. This k-space formulation was

developed earlier by this ,.%thor utder a previous contract, and was

specificilly addressed to t:he ,'roblem of electromagnetic scattering, The

purpose of the generalized r'elaxation nethod and the generalized inverse

method is the acceleration of the convergence rate and the enlargement of the

domain of applicability of the previously developed iterative method of

solution of the k-space formulation. Since the basic k-space formulation

I and its method of solution is applicable to all the initial value problems

of mathematical physics which conventionally lead to integral equations,

this report consists of a brief development of the k-spaoe formulation of

the initial value problem, with brief treatment of the electromagnetic

scattering problem as a special case; and with detailed emphasis on the

development of the generalized relaxation function method and the generalized

inverse method (the reader is referred to the above cited earlier report for

a detailed and tutorial presentation of the k-space formulation of the

3 electromagnetic scattering problem).

The organization of this report is as follows. In Section 1, the

(conventional matrix formulation of the inil ial value problem is briefly

reviewed. In Section 2, the k-space formulation of the initial value problem

and its conventional iterative relaxatioh method of solution are formally

Bcjarski, N. N., K-Space Formulation of the Electromagnetic Scattering
Problem, Air Force Avionics Laboratory, Wright-Patterson Air Force
Base, Technical Report AFAL-TR-71-75, March 1971, Final Report to
USAF Contract F33615-70-C-1345, AD 882 040.
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developed. In Section 3, the special case of the k-space formulation of the

general wave scattering problem is formally developed. Section 4 consists

of the detailed development of the matrix theory perspective of the k-space

formulation, necessary for the subsequent development of the generalized

relaxation method and the generalized inverse method. Section 5 consists of

the detailed development of the generalized relaxation method, and Section 6

consists of the detailed development of the generalized inverse method.

In Section 7, the special case of the k-space formulation of the electro-

magnetic scattering problem is formally developed, and a brief review of

earlier obtained numerical results in summarized. In Section 8, a summary .

of the state-of-development of the method, its present limitations, and

recommendations for future needed research, are presented. The applicability

of the method to the non-monochromatic (wide band) electromagnetic scattering

problem, electromagnetic problems other than scattering, and the general I
initial value problems of mathematical physics, are also discussed.

This author is indebted to Dr. Charles H. Krueger, Jr., of the

Air Force Avionics Laboratory, Wright-Patterson Air Force Base, Ohio, for

developing the details, programming and verifying, the two-dimensional

k-space formulation of the electromagnetic scattering problem.

This author is also indebted to Messrs. Leslie E. Whitford and

William I!opkins of the Computing and Information Systems Division, Computer

Science Center, Wright-Patterson Air Force Base, Ohio, for directing the

programning effort and performing the actual programming respectively, of

the one- and three-dimensional k-space formulations of the electromagnetic

scattering problem, as well as for several important suggestions.
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1. THE CONVENTIONAL MATRIX FORMULATION OF THE INITIAL VALUE PROBLEM

Consider the n-dimensional scalar, vector, or tensor field ý(x) and

the source density w(x), governed by the linear m-th order differential

field equation

iL 
O Lw w(x)

where the n-dimensional linear differential scalar, vector, or tensor

operators LO and L are of the form3 o
L = ~a ; I=l,2,...,n (2)

I i=o

1=biGL (3)

subject to the n-dimensional scalar, vector, or tensor constitutive equation

w(x) = a(x) 4(X) • (4)

The conventional n-dimensional integral repre3entation of the

I generalized initial value problem associated with the field equation (1) is

S *(X) =fOg(xx') w(x') dx' + x), (5)

3



subject to the constitutive equation (4) where *i(x) is the externally A

imposed field (initial value field, the source distribution of which is

external to the problem defined by the ons'titutive equation (4) ), D is

the domain of non-vanishing 0(X), and g(X) is the appropriate Green's

function, vector, or tensor, satisfying the iifferential equation

L gx)--- 6wx .(6)

The constitutive equation (4) can also be viewed as the boundary

conditions imposed by a specific physical situation on the differential

field equation (1), which is invariant to the specific physical situation.

The conventional numerical method of solution of this initial value

problem is by means of numerical matrix inversion methods [1), applied to

the Fredholm integral equation of the Second Kind, formed by combining

(4) and (5), i.e.,

ý(x) - K(xlxl) OWX) d nx, 0= Wx (7) -

D

where the integral transform kernel K(xlx') is given by

K(XIXI) E g(XIXI) a(XI) .(8) --E

(It should be noted that in cartesian coordinates, this kernal K(xlx')

is always a compound kernel of the form K(Xlx') = g(X-X') o(X'); i.e.,

composed of a difference kernel and a snparable product kernel).

4i
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Such matrix inversion methods require of the order of N2 computer
storage allocations, and of the order of N3 arithmetic multiply-add

operations (for matrix inversion) for the execution of a numerical solution,

where N is the number of data points required for the numerical specifi-

cation of the constitutive equation (4) (the specification of the non-van-

ishing portion of o(×) ). The practical size limit with state-of-the-art
i computers is for N of the order of several hundred.

1
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2. THE K-SPACE FORMULATION OF THE GENERAL INITIAL VALUE PROBLEM

The k-space representation and solution of the generalized n-

dimensional initial value problem is presented next.

'I The n-dimensional Fourier Transform of the differential field equation

t (1) yields the local algebraic scalar, vector, or tensor k-space field

equation

I
S~L(k W k) L W Lw~k (k) (9)

L where

IPk 9 OW(x d x ,etc., (10)

and where, by virtue of (2) and (3), the quantities L (k) and L W(k) areI polynomials of the form

m

L W a (ik)j (11)

j =0

"rn

L Wk) b. (ik)J (12)w
j =0

Preceding page blank
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The k-space representation of the generalized n-dimensional initial

value problem, consistent with the x-space integral representation (S), thus
is the algebraic scalar, vector, or tensor equation (vie-a-vis the conven-
tional integral or differential equation representation)

O(k) = G(k) W(k) + 0 (k) , (13)

subject to the algebraic x-space constitutive equation (4), i.e.,

w(X) = o (X)X) , (14)

where, I

L WkG(k) - w (15) ,

L (k)

which clearly can be taken as the Green's function (or vector or tensor) in

k-space, i.e.,

G(k) +-• g(X) (16) .

'Iv

The generalized n-dimensional initial value problem is thus reduced
to a set of two local algebraic (scalar, vector, or tensor) equations in two I
unknowns in two spaces, i.e., (13) and (14).

The k-space representation (13) et seq. also clearly follows from (S)
and the n-dimensional convolution theorem since

8



I

g(xlx') g(x-x') (17)

I
in any cartesian coordinate system.

The unique existence [2] of this k-space representation is restricted
1I to media for which

I Sio(x), dnx < (18)

If o(x) is in general non-vanishing only in a finite n-dimensional

x-domain, then the pair of algebraic equations (13) and (14) can be solved

numerically with the aid of the n-dimensional Fast Fourier Transform (FFT)

algorithm [3] as the connection between the two spaces, by the following

iterative relaxation method [4]; the recursion relationship for whi-h is

W n(k) = F(klx) wn(X) (19.1)

(k) = G(k) W (k) + D k) (19.2)

I W = F(xlk) n (k) (19.3)

wn+1 (x) = ai G(X) 0 (x) + (1-a) wn(X) , (19.4)i
where a is an appropriately chosen relaxation coefficient (best numerical

results Lo date were obtained for a=½), and where F(kIx) and F(xlk) designate

the Fast Fourier Transform algorithm operator and its inverse respectively.I
The initial approximation w.(x) can be taken as any known simply

* prograr.mable approximation to the problem, including the trivial case

wo(X) 0, the computer programing of which consumes virtually no signifi-

9
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cant, much needed for data, core storage allocation (which is not the case
with any other non-trivial initial approximation, which, at best, would

reduce by two the total number of iterations required).

In order to avoid the ntmerical difficulties arising from aliaaing,

i.e., the fictitious periodic nature of the FFr (which is a discrete and
finite Fourier transform, vis-a-vis .the continuous and infinite Fourier

transform implied by (10)), and the possible singularities in the Green's

functian (or vector or tensor) in k-space, it becomes necessary to choose

an n-dimensional hyper-rectangular box of tice the size (in each dimension)

of the smallest hyper-rectangular box in which the non-vanishing o(x) is

imbeddable as the x-domain for the FFT, and take the Green's function, vector,

or tensor as (in conventional FFT notation [S])

N1  N2  Nn I
G(U'v'", A =-nx E "" "lJ Wv'.• ' WN°Y- g(a,P,",--Y) ,(20)NI N

N1  N2  N n

where 2T i/N ii
W - e , Jul,2,..-,n (21)

AX. Ak. = 27/N. (22)iij•k J ..

Anx = Ax1 AX2 A.. AX (23.1)

N = N1 N2 ... Nn , etc., (23.2)

and where appropriate use must be made of the n-fold periodicity properties il
of the FF1 [6] for both (20), as well as the desired placement of otx) and

W (X) in the hyper-rectangular FFT x-domain.

I10 p



The numerical difficulty arising from the possible singularity of the

Green's function at the origin of the x-space (i.e., g(O) = -) can be

alleviated by taking advantage of the appropriate principal value integral

representation of the field equation (5), (e..7., 17]), i.e.,

In
[(X) = Z wWX + PfDg(xIx') w(X') dnx' .a ,'X) (24)

T1 It thus immediately follows that g(O) for (20) can be taken as

g(O) = (25)

Since Pigebraic and FFT equations are used, the number of arithmetic

multiply-add operations required [8] for a solution is reduced from the

order of N3 (required for the numerical matrix inversion needed for solvirg

the matrix i.-quations resulting from the conventional integral equation

representation of the problem) to the order of N log12 N, and the storage

requirement is reduced from the order of N2 (required for storing the

matrix associated with the Green's function needed for the matrix method of

solution) to the order of N (required for storing the k- and x-space functions).

The advantage gained in speed and storage is thus of the order of N2 l0o 2 N

and N respectively. This method is thus considerably more efficient, and

permits exact numerical solutions for much larger problems. To date.
acoustic scattering problems of the order of N=1O14 have been successfully

solved, and problems of the order of 107 are feasible with state-of-the-art

computers.

S11



3. THE K-SPACE FORMULATION OF THE GENERAL WAVE SCATTERING PROBLEM

I i
For the general n-dimensional wave scattering problem, the (range and

phase normalized) scattered far fields in x-space are in general simply and

algebraically related to the n-dimensional Fourier Transform of the induced

I (by the incident field W (X) ) source distribution wt~x), i.e., W(k), which

is clearly yielded directly by the iterative solution (19) without addi-

tional computations. Since this is not the case with the conventional

matrix method of solution of the integral equation representation of the

scattering problem, the k-space method of solution presented is particularly

and additionally attractive when applied to scattering problems.

For the special case of the n-dimensional Helmholtz (time-reduced)

wave equations for which

n

_-2+ k (26)

j=O

where k. - , and c is the wave velocity in the free space (this deviationc

r from conventional notation is for the purpose of distinction from k, the

Fourier Transform variable of x), the n-dimensional k-space Green's function,

in the notation of (9), (15), and (16), is clearly

G(k) = '('(k) (k , (27.1)•. W

'(k) = 1 (27.2)k2 k2

The form of the Green's function 7(k) in k-space is clearly invariant

to the dimensionality n of the space, which is not the case for the Green's

function W(X) in x-space.

Preceding page blank 13



Thus, by virtue of the previously stated relationship between the

(range and phase normalized) scattered far fields in x-space and the source

distribution W(k) in k-space, and conservation of energy considerations

(mathematically equivalent to Parseval's formula) for passive media of finite

spatial extent (see (18) ), it follows that the Radiation Condition (the

boundary condition or constitutive equations at infinity) for the Helmholtz

equation Green's function in k-space can be stated as

<= O lk I k. (28)

'(k )
S

where ks is the propagation wave number vector of the scattered far fields.

It can thus be argued that the field equations of mathematical physics

are more fundamental in k-space because of the simple local algebraic nature

of these equations in k-space (vis-a-vis the global nature of the integral

or differential representation of these field equations in x-space), and

the invariance of the form of the k-space Green's function for the Helmholtz

equation with respect to the dimer.sionality of the space; particularly when

bearing in mind that the Fourier Transform is the only transform known for

which a fast algorithm exists. However, the constitutive equations (or

boundary conditions) are more fundamental in x-space because of their local

algebraic natL.re in x-space.

1
I
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4. THE MATRIX THEORY PERSPECTIVE OF THE K-SPACE FORMULATION

I
[ The equivalent matrix theory perspective of the k-space formulation can

best be developed from the integral equation (7) for the one-dimensional
problem, with the generalization to n-dimensional integral equations then

j becoming obvious; i.e., by (7) and (8)

I °8
O(x) -fg(x1x?) c(x,) O(xW) dx' = *f(x) . (29)J °

If x is discreteized in M equal intervals Ax in the domain (o,a), then

x a = Ax ; a = 0,1,2,..-,M 0(30)

and (29) yields

I ~M-

ON Za g(xalxal) a(xa,) O(Xal) Ax *O Cxa) .(31)

a 1=0II ci'

Introducing the M-dimensional vectors a and 0 as

ct O(x ) (32)

A.

(X, , (33)¢a - xa

I
15
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, 1-7 a.. --1ý=1 -

the M-dimensional (square) diagonaZ matrix aB as 10I
aa Ax 6a $ ONx) (34)

a 0; a ,(35)

and the M-dimensional matrix gaa as

g -g(X xale (36)
gaO a a

then in cartesian tensor notation (with summation convention implied), (31)

becomes

iI
oa - gas By ; (37)

which, in conventional matrix notation becomes

4
0 _ goo = 0i (38)

(I -ga)=01 ; (39)

where I is the identity matrix.

16

16
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(The conventional matrix inversion solution of the problem is
accomplished by forming a matrix sega directly, without the separate intro-

Auction of the diagonal matrix a, and numerically inverting the matrix (I-s),
yielding the solution 0=(I-s) -•1 .

Int',ioducing the M-dimensional generatrix vector ya (generatrix of

I ~the matrix a)]

7a - g(x a) (40)

and recalling that the Green's f-mction g(xlxl) is always a difference

5! function (see text subsequent to 8) of the form

I g(×lx,) = g(Ix-x'j) , (41)

yields with the aid of (361

I ga = Ya-B (42.1)

= Y (42.2)

I = . (42.5)

3 It thus follows that the (MxM) Green's matrix g is a symmetric matrix

derivable from the M-dimensionaZ Green's qeneratrix vector y by (42).

Introducing a .(2M+1) dimensional space, i.e.., an N-dimensional space

I of dimension (2M+1), i.e.

17



N = 2M + 1 , (43)

for the vectors *, * , and y in which the first M components are defined as

per (30) through (42), and the remaining components are defined by the

periodic relationships

'C = ¢N-c M~a<N-1 , (44)

Oa = N-a M; M a <N-1 (45

Ya ; M a <N-1 , (46)

and in which the first MxM components of the diagonal of the matrix a are

defined as per (34) and (35), and the remaining components of the diagonal

are defined as zero, i.e.,

Ax a(x) ; 0 as <M
•ag ~(47) •

as 0 M < a,$ <N-1 -

clearly leaves the now N-dimensional matrix equatien

0 - goo = (48)

consistent with (31), (38), and (39). -

However, the NxN Green's matrix 9 resulting from the N-dimensional

now periodic generatrix vector y, still given by (42), is now not only 1i

sys•met2-,,. but also has the additional property of being a circulant matrix 19).

18 I'



I Some well known special properties of circulant matricies [10] will now

be recast into a somewhat more convenient notation and general form; for this

Spurpose, however, it becomes convenient to introduce the NxN Fourier matrix F,

"defined as

I1 27" I

F S- e (49)I-

which clearly is a symmetric unitary matrix, i.e.

F Jim F al(50)

F Ft =I. (51)

I IIt should be noted that this Fourier matrix has only N distinct

elements (thus requiring only N storage allocations). The matrix multiplication

J of this matrix by a vector requires only ½Nlog2 N arithmetic multiply-add

operations if the FFT algorithm is used.I
The special properties of a circulant matrix can now be stated as

3follows:
]. The Fourier matrix is the unitary transformation matrix which

I diagonalizes a circuZant matrix, i.e.

i
F g F =g' (52)

I
where g' is the diagonal Eigen matrix of g. The rationale for choosing

the factor 1I1 in (49) is now evident; namely, the conventional

definition without this factor would have lead to merely a

19
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similarity transformation matrix, which is clearly far less general.

2. The Eigen values X of a •-ircuZlant matrix g are related to the

generatrix vector y of the incident matrix and the Fourier matrix by

X, =V5 F y (53)
LI Ia a

I.e., The vector formed by the set of Eigen values of a circulant 1
matrix is the Fourier transform of the generatrix vector of this

circulant matrix. The practical significance of this equation (53)

is that whereas it takes N3 arithmetic multiply-add operations to

compute the complete set of Eigen values of a general matrix, it

takes only ½Nlog2 N arithmetic multiply-add operations to compute 1

the complete set of Eigen values of a circulant matrix, since (53)

can be computed with the aid of the FFT algorithm (matrix multipli-

cation by the Fourier matrix can always be accomplished with the

FFT algorithm). Furthermore, whereas N2 storage allocations are

needed for a general matrix, only N storage allocations are needed

for the generatrix vector completely and uniquely defining a

circulant matrix. A

3. The Eigen vectors e of a circuZant matrix are totally independent

of the (N independent) elements of the circulant matrix (and the

elements of its generatrix vector), and are proportional to the

vectors formed by the rows or columns of the Fourier Matrix; i.e.

e =A F . (54)

U PU
The practical significance of this equation (54) is that the Eigen

vectors of a circulant matrix can be generated directly by inspection 3
cf the Fourier matrix (49); i.e., the N N-th roots of unity.
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4. The inverse of a circulant matrix g is also a ciroulant matrix, x
and is given by

-F {t } F (55)

where the quantity - is a diagonal matrix, the diagonal elements

of which consist of the reciprocals of the Eigen values X of the

circulant matrix g.

An alternative formulation of (55), in terms of the generetrix y

of the circulant matrix g, as per (53), in a consistent notation, is

g = Ft j F (56)

i.e., the quantity f) in (56) is a diagonal matrix, the diagonal
elements of which consist of the reciprocals of the elements of

the vector (Yf" Fy).

The practical significance of (55) and (56) is similar to those

stated subsequent to (53).

The proof of (55) and (56) follows directly from (49) et seq.

All the preceding properties of a circulant matrix can be extended to
n-dimensional spaces by the introduction of the n-dimensional NxN Fourier

matrix (see 49) as

nf 2 i

F Pj "J-J (57)
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where the matrix muZtiplioation of this n-dimensional NxN Fourier matrix by

[ an n-dimensional vector (of N elements) is accomplished numerically with the

aid of the n-dimensional FFT algorithm. (For the limiting case of N-ý; i.e.,

a Hilbert space, the preceding properties simply revert back to the Fourier

integral transform properties, where it is now clear that the Eigen value
F spectf r, ofth of a difference function g(x-x') is the integral ourier trans-

form of the generatrix function g(x) ).

The iterative solution (19) can now be developed in matrix theory

perspective form (48) et seq. By (48) and (52)

Lt

* - F g'Fo¢ *i (58)

where now both a and g' are diagonal, where the matrix F has only N distinct

elements requiring storage allocations, and where all the implied matrix

multiplications can be executed with the aid of the FFT algorithm.

Choosing any vector n for 0 clearly yields the eetf consistent vector

ýn by (48) as

On =gon + (59)

If *n is taken as the n-th approximation of *, then clearly *n can be

taken as the (n+l)th approximation of 0; i.e.

IiOn+1 = goon + €0 . (60)

This recui:sion relationship (60) for the iterative solution of (48) is

equivalent to the Newnevn Series expansion of (48), the sufficient condition

for the convergence of which is that the norm of the matrix operator go be

less than unity; i.e.
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I

I I Igal < 1*(61)

By (53), and the diagonality of a, this norm can clearly be computed

5 in Nlog 2N operations.

For those cases for which (61) is not satisfied, the iterative
relaxation method can be developed as follows; let a be a real scalar

relaxation factor such that

In+ = 'cn + (1-00)n n (62)

which, with the aid of (59) yieldsI
n+1 = [ - a(I-go) ]0n + ao (63)

I An alternative more rigorous derivation of (63) is as follows; (48)

can be written asI
(I-ga)o = €I (64)

I thus

I
ia(I-ga)o =0 (65)

3 - 0 + a(I-ga) =MO (66)
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- [ - -(67)

The Neumann series expansion of (67) is i

I - a(I-go)]J ()) (68)

j=o

And, consistent with (60), the recursion relationship for the iterative

solution of (67) is 4
€n+l [ I - e(I-ga)]4n + (69)

which is consistent with the iterative k-space solution (19). The sufficient J
condition for the convergence cf (69) is

I a I-ga) 1< (70)

The conventional relaxation method thus reduces to finding the

relaxation factor a which minimizes I I-(I-go)j, and thus maximizes the

convergence rate of (69).

The essence of the k-space formulation, from a matrix theory
perspective, is in (52), (58), and (63), in which only the diagonaZ matricies

j' and a need be stored, and all matrix multiplications (executed by the FFT Wr

algorithm) are via the Fourier matrix F. This becomes most evident if (63)

and (52) are combined into

""I
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In+l = I - aI-F t g'Fa)]4rn + acl (71) j
which is consistent with the iterative k-space solution (19).

The mathematical meaning (vi8-a-vis the physical meaning discussed

I earlier) of the k-space formulation is thus in having found the trans-

formation matrix (the Fourier matrix) which diagonalizes the discrete field

equations (S) in a new coordinate system (the k-space), and possessing the

means of executing this transformation economically in speed and storage

(i.e., with the FFT algorithm).

I
3
I

I
ii 4
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S. THE GENERALIZED RELAXATION METHOD

The difficulty wi.th the conventional relaxation method is the

difficulty of finding a relaxation factor which optimizes convergenca rate,

as well as the fasic question of the existence of such a factor which

assures convergence at all.

These difficulties are alleviated if the relaxation factor is not

restricted to being a real scalar, but is generalized to being a complex

matrix.

The trivial and naive such relaxation matrix a clearly is

(I-go) (72)

for which the iterative recursion relaxionship (69) and the convergence

condition (70) respectively become

-n+1 = a4l (73)

I I- a(-ga) I = 0 < 1 (74)

namely; the iterative process converges in one iteration to the exact

solution. This trivial and naive choice of a as the solution to the problem

was presented merely (or the purpose of making the following argument:

Preceding page Wlank
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The best known approximation to the solution of the problem should be I
chosen as a relaxation matrix, and not as the initial approximation, in the

iterative process (since convergence is determined solely by the relaxation

matrix and is independent of the initial approximation chosen).

However, prior to searching for a practically suitable choice of the

matrix a, certain practical limitations must be imposed on the properties of

this matrix. A completely arbitrary matrix a will negate all the storage and

speed advantages of the k-space method, since such an arbitrary matrix will

require of the order of N2 storage allocations and arithmetic multiply-add

operations for the execution of the implied matrix multiplications in (69).

A natural such choice of special properties for the matrix a, which

will preserve the speed and storage advantages of thL k-space method, con-

sistent with the matrix theory perspective of the k-space formulation, clearly

are that the matrix a be diagonal, circulant, or compound (the product of

a diagonal and a circulant matrix).

(The conventional scalar relaxation method can now be viewed as the

special case of the generalized relaxation matrix being fully degenerate).

The general required properties of the relaxation matrix will be

examined next.

The norn implied in the convergence condition (74) must clearly be

taken as the Euclidean norm or the spectral radius, i.e., the largest -'

magnitude (absolute value) of the Eigen value of the matrix operator A in

(74) where

A =_ I - a(I-ga) . (75)

It now becomes convenient to introduce the matrix B, defined as j

2
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I
I
I

B Egc ; (76)

I!
thus.1

SA I - a(I-B) (77)

I The Eigen values of A are given by the determinental equation

I
det A XA I ) 0= (78)

j The convergence condition (74) for optimal convergence rate thus is

I max IAAI < 1 (79)
I ÷~0.

If the set of all Eigen values IXAI is chosen as exactly zero, then

clearly (74) is satisfied in such a fashion that the resulting a yields an

exact solution at the first iteration (as was the case with the previously

presented naive example of a=(I-ga) ); i.e., a numerically closed form

solution of the form (see 71)

I
0 ao . (80)

For this choice, the determinental equation (78) thus becomes
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det A 0 (81)

which, with the aid of (77) becomes

det {I -c(I-B) ] =0 (82)

which can be rewritten as

det (I-cx+aB) = 0

det [(a-l - I+B)] = 0

det a det [B- (1- 0 (83)

which is satisfied by

det [B-a( )] 0 (84)

The determinental equation which determines the Eigen values X of the -

matrix B is

det (B- •B I) =0 , (8s)

30
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It thus follows from (84) and (85) that if the matrix (I-c-I) is

chosen as the diagonaZ matrix {XB}, i.e., consistent with the previously

introduced notation 0,

1-1 .(86)

"then (81) is satisfied identically. It thus follows from (86) that a is the

diagonal matrix

(87)
1-

Examination of (76) thus reveals that knowledge (or a rapid means of

computing) of the Eigen values of the matrix go would yield a numerically closed

form solution of the problem; i.e., (80). Such knowledge or means are clearly

not available. However, since a is a diagonal matrix, an approximation for

j 7the Eigen values of the matrix go are available; namely, the product of the

Eigen values of the matricies g and a (which, in general, for non-diagonal o,

are not equal to the Eigen values of the product of the matricies), i.e.,

A g A (88)

B_

where the Eigen values X are the diagonal elements of the diagonal matrix a,

j I and the Eigen values X are given by (53), and are computable easily and

rapidly. To the extent to which (88) is a good approximation, a good choice

1 for the diagonal matrix a is thus

ac= - •g • (89)
g3



It can be shown that for a chosen as per (89), the norm of A is

always less than unity.

In the k-space notation of (19), with the aid of (53), (89) yields

73

a (90)4
(x) =1 -a(x) G(x)

where G(x) is G(k) colocated in x-space; i.e.., G(k) evaluated at k=x.

For purposes of computer programing (storage allocations) the

solution (19)-(90) can be simplified by introducing s defined by

_* + s , (91)

and O(x) defined by B(x) o(xW a(x); i.e.., by (90),

ox) (92)B~)=1 -a(x GW "-

The recursion relationship for the generalized relaxation function

iterative solution (19)-(90) thus becomes

W nkW = F(klx) w n(W (93.1)

0S(k) = G(k) W(k) (93.2)

ýS(x) = F(xlk) sn(k) (93.3)

W+(x) = x) [ *s(x) * 1(x) -G(x) *n(x) J (93.4)
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IAn artificial test case of N=8 was programmed, with the following

numerical results. For cases for which the conventional relaxation method
succeeded, convergence was accelerated from about 30 iterations by the

conventional method to about 6 iterations by the generalized method. For3 cases for which the conventional relaxation method failed, convergence was

reached in about 10 iterations by the generalized me-thod for those cases for

3 which the magnitude of the largest element of a was less than about 103, and

the generalized method failed for those cases for which the magnitude of the

3 largest element of a approached about 103.

It thus seems that the generalized relaxation function method cannot

overcome the difficulties presented by a norm of A of about 103 and larger

(vie-a-vis a norm A - 1 for the conventional method). Although higher

precision in the computations could undoubtedly overcome this difficulty,

such higher computational precision is totally undesirable since it defeats

the very purpose of the basic method; i.e., economy of speed and storage.

It is to the alleviation of this difficulty that the next section is addressed.

II
!
I
I
I

I
I
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6. THE GENERALIZED INVERSE METHOD

oloiThe generalized relaxation function method can now be put in the

following perspective. The Neumann series solution (or the method of
successive approximations) of (48), i.e.,

II
90= (94)

'1

I is applicable if

norm (go) <1 . (95)

J

The conventional matrix method solution of (48) is applicable if

norm (ga)< , (96)

and possesses the additional property of accelerating (over the Neumann series

;{ solution) and uniforming convergence if (96) is satisfied.

The generalized relaxation method of solution of (48) is applicable if

norm (go) < 103 , (97)

and further accelerates uniform convergence if (97) is satisfied.

Preceding page blank
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This section is addressed to the problem of solving (84) subject to I
the condition

norm (go) > 1 (98)

I
For that purpose let a be chosen as the compound matrix

a E (-go) (-1) (99)

i.e., the negative of the generalized invearse (11] of the product of thecirculant matrix g and the diagonal matrix a.

The recursion relationship for the iterative solution (69) thus becomes

(-1) T
~n1=(go) ( - )(100)

subject to the norm condition (70), which, due to the choice (99) of a 4 '

becomes i

g g > (102)

which is the desired condition (98).
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Equation (100) reduces to

I

J Since the determinant of g is in general non-zero, the inverse of g

can be computed economically and efficiently (with N storage allocations and

½Nioq2N operations) by (55); the generalized inverse of g can thus be takenI -1
as the conventional inverse g . Since a is a diagonal matrix with one-half

of its diagonal elements consisting of zeros, the determinant of a vanishes;

it is thus necessary to take its generalized inverse. A suitable such

- generalized inverse is clearly (in the previously introduced notation) the

diagonal matrix {4}; i.e., a diagonal matrix, the diagonal elements of which
consist of the reciprocals of the elements of the diagonal matrix a for those

values for which the diagonal elements of a do not vanish, and zero otherwise

(thus yieldind a diagonaZ generaliZzed inverse with again one-half of its

diagonal elements consisting of zeros). Equation (103) can thus be written

as

L

n+1 a . (104)
$I

Close examination of the derivation of (48) from (38) reveals that

(105) could also have been derived directly from (38) by a process similar

to the one that lead to (48).

t" Convergence of (104) under conditions (102) can be further accelerated

by the re-application of the method of Sect. 4; i.e.,

44 :4
A

n = {n} ( n _i ) (105.1)

n+1 = •n + (1-i)n (105.2)

n n
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where, consistenL with the derivation of (90) and its notation, a is chosen as

a( - 1 (OS.3)

a(x) GWx

For computer programming purposes, (105) can clearly be put into the

simplified concise form of (93).

With the results of this and the previous sections, it is thus always

possible to determine the norm of (go) economically and efficiently, and

choose the appropriate economical and efficient method of solution of (48), I

no matter what that norm is.
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I 7. K-SPACE FORMULATION OF THE ELECTROMAGNETIC SCATTERING PROBLEM

I
Three-dimensional electromagnetic monochromatic scattering by passive

I inhomogeneous meoia, including perfect conductors, of finite spatial extent

and arbitrary shape, is considered.

The time-reduced electric and magnetic field wave equations, valid for

all linear inhomogeneous media, in terms of the total current density [12],

are respectively

3
VxvxE(x) - k. E(x) = Iop, J(x) (106)

I vxvyH(x) - k2 H(x) = VxJ(x) (107)

which, with the aid of Maxwell's first and second equations, and the equation
I ~of continuity for the total charge and current density, can be written as ,

v2 E - k2 E = -Iw.o(J + 1 vv.J) (108)

V2 H- k2 H -vxJ . (109) 1

I For non-magnetic media and perfectly conducting media, the appropriate

constitutive equations for the total volume and surface current density J(x)

and K(X) respectively are

3



J = ( af - IWXe ) E (110)

K= n x H (111)

where af and Xe are the free charge conductivity and electric susceptibility

of a (Pon-magnetic) medium respectively, and n is the outward surface unit

vector of a perfectly conducting medium.

The latter (111) is usually regarded as a boundary condition for

perfect conductors, but in the context of this paper, this equation must be

regarded as a geometrically constraining condition on the flow of all charges.

By the relationship between surface and volume current densities,

consistent with the FFT notation, the volume current density for a perfectly

conducting medium, can be written as

j L K (112)
dv

Sn x H (113)Av

AS
xH(114) -

where AS is the finite differential vector surface area in the FFT cell of

volume Av = A3x.

The conventional magnetic [13] and electric [14] field principaZ value

J I scattering integral equations IL
40I
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I
H- 2pf vg x n f x H) ds =2H' (115)

E 3J , J - +l1VVo f( +dv (116)

can thus be re-formulated into a form consistent with the k-space formulation

(13, (14), et seq., i.e.,

I
i H(k) = 2 G(k) x J(k) + 2 H (k) (117.1)

J(x) = Ci&0-) x H(x) , (117.2)

I where

a(x) -= (117.3)

G(k) F(klx) vg(x) (117.4)

V.•el-// x 0
Vg(X) ( (117.5)

0 x 0

r lxi (117.6)

and

I
41



E(k) = 1'(k).J(k) + E (k) (118.1)

JCx) (X) - WXeX) ECx) , (118.2)

where

rck) -Fckjx)7CxC 118.3)

1 4

f w + -o(I+ VV)g ; X 0
Wy(X) = (118.4)31s I ; X =0

Equations (117) and (118) can now be numerically solved economically

and efficiently by the methods of the preceding sections.

Defining the range and phase normalized scattered far-field S(k ) as

S5k /4;_r- 2 FS(x) e-ks (119)
s r

where FS x) is any scattered field satisfying the relationship F F + F )

which is consistent with the conventional definition [15] of the radar power ]
cross section a and the relationship

0 S.Se (.20) -

readily reveals that the range and phase normalized electric and magnetic

scattered far-fields Se and Sm are given directly by the k-space current
density distributions
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ii ,~kozo "
S (k - [ J(k) kk.J(k) (121)V'_ k=k

I
SM(k s) - kxJ(k) (122)

I rs k=ks

3 where zo is the impedence of free space. (As dictated by the transversality

of the scattered far-fields in free space, SeW S and Ks are indeed all

I orthogonal to each other).

It can thus be shown that the conventionally defined [16] electric

polarization scattering matrix pnc is given directZy in k-space by

iko z o

T1 Sk=k(

S

I where, in the conventional notation for spherical coordinates, 1? are the

Eigen-polarizations (spherical coordinate unit base vectors) 0s and 0s

associated with the scattered far-field propagation vectc- k s, and J(k) is

the k-space current density induced by an electric incidLit plane wave field

of the form and polarization

E I(x)= ekix P (124)I
where t are the Eigen polarizations (spherical coordinate unit base vectors)

J and 01 associated with the incident propagation vector ki.

The solution to the k-space formulation of the three-dimensional

scattering problem (for the electric field equations (118) for non-magnetic

media, and the magnetic field equations (117) for perfect conductors) has been

!43



numerically computer executed for a limited number of cases by the iterative

method of solution (19), with final results within about one db. of exact

known analytic closed form solutions after about 30 iterations. For example,

see Fig. 1-5 for comparison of this technique with the exact solution of

Mie [17] for the perfectly conducting sphere (of radius a). The failure of

this k-space technique in the near-vicinity of koa = 2.75 (see Fig. 1) is due

to the fact that koa = 2.75 is the occurrence of the first Eigen frequency

(internal resonance of perfectly spherical shell). This difficulty can be

readily and simply alleviated by the appropriate incorporation of the method

of Mitzner [18] into the k-space method. However, since the objective of

this project was to prove the feasibility and merits of the k-space method,

and not the generation of an operational user-library of computer programs,

such an incorporation was taken as beyond the scope of this project.

For the results of the application of the k-space method to two-

dimensional electromagnetic scattering, the reader is referred to the work
of Krueger [19].

i
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8. SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS

U
The basic feasibility and merits of the application of the k-space

method to electromagnetic scattering has essentially been demonstrated
sufficiently to warrant the following conclusions and recommendations.

For small scatterers (N<10 2 ), the preference of the k-space method
over the conventional integral equation - matrix inversion method cannot yet

be justified. For medium-sized scatterers (N-300), the k-space method is5 Iindeed more efficient than the integral equation - matrix inversion method.

For Zayrge scatterers (N>10 3 ), the k-space method is capable of yielding useful
results in realistic computer time; whereas the integral equation - matrix

inversion method cannot even be computer implemented for such sizes.

SI For present-day, state-of-the-art computer size and speed, the size
limit for which the k-space method could be implemented is of the order of

SN-10 7 (i.e., about 10,000 times as many dita points than possible with the

conventional integral equation - matrix inversion method).

For the generation of a user-library type computer program of the k-

bpace method that would utilize a maximum of the basic inherent advantages
and applicabilities or the method, the following effort would be needed.

1. Implement appropriately and efficiently the generalized relaxation

function and the generalized inverse methods into the k-spaceI formulation of the electromagnetic scattering program.

2. Develop a completely general computer program for reading
arbitrarj shapes and arbitrary electromagnetic properties into
the k-space method.

3. Conduct a thorough error analysis such that error bounds will bej Iavailable to the user of such a system.
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4. Develop (or implement an existing) Fast Fourier Transform (FFT)
,p.rogram. operative on disc-to-core-to-disc data, which would be
capable of handling of the order of 107 data points; i.e., the
state-of-the-art size limit of discs (vis-a-vis the presently
utilized in-core FFT limited to about 104 data points).

S. Investigate the feasibility and desirability of replacing a disc-
to-core-to-disc soft-wired (software compiled) FFT program (see
item 4 above) with a hard-wired (hardware ccmpiled) Fast Fourier
Analyzer (FFA).

6. Implement a mixed-mode k-space formulation capable of solving
three simultaneous equations in three unknowns (i.e., the electric
and magnetic fields simu1taneously with the current densities),
applicable simultaneously to volume, surface, and line current
density representations of the electromagnetic scattering problem;
thus realizing solutions for large complex compound scattering
problems (e.g., perfect conductors with absorbing materials and

wire antennas).

The preceding conclusions and recommendations dealt with monochromatic

electromagnetic scattering; the subject to which this report was addressed.

It is now reasonable to conclude that the k-space method is also applicable

with similar advantages to wide band electromagnetic scattering. This can

be accomplished by a four-,r iensional k-space formulation of the relativistic

four-dimensional time-dependent Poisson equation; vis-a-vis the presently

implemented k-space formulation of the Helmholtz equation (time-reduced wave

equation). The additional advantage of such a formulation is that the

relativistically corrcct Doppler shifted spectrum for arbitrary time-

dependent motion (including time-dependent rotation, acceleration and

deformation) would be yielded directly and efficiently.

Furthermore, the k-space method could similarly be applied with full

advantage to electromagnetic problems other than scattering; e.g., radiation

(antennas) problems, propagation problems, etc.

Since the k-space method does not require the constitutive boundary

equation conditions to be linear algebraic. this method becomes applicable

with full advantage to (electromagnetic) initial value problems resulting

from interactive systams that conventionally yield several coupled

simultaneous no.,- linear integro-differential equations (P.g., magneto-ionic
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5 plasw. with aci'ustic waves and thermodynamic coupling); whereas the

,zonventional matrix inversion method is not applicablc to such non-linear

5 integral equations.

In conclusion, it is noteworthy that the k-space formulation is appli-
cable with full advantage to all the initial value problems of mathematical

physics that arise from linear field equations subject to linear or non-

linear constitutive boundary condition equations; which conventionally lead
to (linear or non-linear) integral equations, including multiple simultaneous

such equations governing interactive systems.

I
I

I

I
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