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ABSTRACT

The capability of prediction of the radar echoes (radar cross sections)
of aerospace vehicles is necessary for either modifying (reducing) such cross
sections for the purpose of reducing detectability, and/or categorizing such
cross sections for the purpose of identification. Such predictions carn be
accomplished by measurements (radar range, unechoic chamber, etc.). The
purpose of the capability of computing radar cross sections (vis-a-vis
measurements) is to reduce both cost and time. The state-of-the-art of such
computational methods consists of computer solving the scattering integral
equations by matrix inversion methods. The matrix nature of such formulations
and solutions restricts the size of the targets for which radar cross sections

~can be calculated on ever the largest and fastest exigsting computers to no

more than the order of one wave length, and renders the possible solutions
computer-time consuming and costly. The purpose of the k-space method is the
capability of rapid and cost-efficient computer calculations of radar cross
sections of aerospace vehicles, particularly those of much larger size than

one wave length. The technical means by which this purpose is achieved is
summarized next.

The initial-value problem 18 solved by means of a k-space formulation
of tL: field equations, thereby replacing the conventional integral equation
formulatior by a set of two simultaneous algebraic eguations in two unknowns
in two spaces (the constitutive boundary condition being an algebraic equation
in x-space). These equations are solved by an iterative generalized-
relaxation method with the aid of the Fast Fourier Transform (FFT) algorithm
connecting the two spaces, requiring trivial initial approximations. Since
algebraic and FFT equations are used, the number of arithmetic multiply=-add
operations and storage allocations required for a numerical solution are
reduced from the order of N3 and N2 respectively (for solving the matrix
equations resulting from the conventional integral equations) to the order
of Nlog,N and N respectively (where N is the number of data points required
for the specification of the problem). The convergence rate of the iterative
process is optimized by generalizing the conventional relaxation factors to
a relaxation function and/or its generalized inverse determined by the Eigen
values of the appropriate Green's function. These Eigen values are obtained
numerically in Nlog,N operations (vis-a-vis the conventionally required N3
cperations) by means of the FFT of the Green's function cast into a circulant
matrix form. The advantage gained in speed and storage is thus of the order
of 1%4/1logsN and N respectively. This method is thus congsiderably more offi-
tient, and permits exact numerical solutions for much larger problems, than
is possible with the conventional integral equation - matrix inversion method.
Arguments are presented towards the view that the field equations are more
fundamental in k-space. The physical and mathematical meaning of both the
continucus and discrete k-space representations are discussed. The details
and soma numerical results of the application of this method to three-dimon-'
sional electromagnetic scattering are presented. It is shown that the
scattered far fields are yielded directly in k-space.
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INTRODUCTION

The main subjects of this revort are a Gemeralized Relaxation method
and a Generalized Imverse method fu: iteratively solving large integral

equations. These methods are sp.~if .cally applicable to the k-epace

formulation of such infegral equations. This k-space formulation was

developed earlier by this : athor under a previous contract, and was
specifically addressed to the oroblem of electromagnetic scattering. The
purpose of the generalized 1elasation wethod and the generalized inverse
method is the acceleration of the coavergence rate and the enlargement of the

domain of applicability of the previously developed iterative method of

solution of the k-space formulation. Since the basic k-space formulation

and its method of solution is applicable to all the Znitial value problems
of mathematical physics which conventionally lead to integral equations,

this report consists of a brief development of the k-space formulation of
the initial value problem, with brief treatment of the electromagnetic
scattering problem as a special case; and with detailed emphasis on the
development of the genecralized relaxation function method and the generalized
inverse method (the reader is referred to the above cited earlier report for

a detailed and tutorial presentation of the k-space formulation of the
electromagnetic scattering problem).

The organization of this report is as follows. In Section 1, the

conventional matrix formulation of the inifial value problem is briefly

reviewed. In Section 2, the k-space formulation of the initial value problem

and its conventional iterative relaxaticn method of solution are formally

Bcjarski, N. N., K-Space Formulation of the Electromagnetic Scattering
Problem, Air Force Avionics Laboratory, Wright-Patterson Air Force
Base, Technical Report AFAL-TR-71-75, March 1971, Final Report to

USAF Contract F33615-70-C-1345, AD 882 040.
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developed. In Section 3, the special case of the k-space formulation of the

general wave scattering problem is formally developed. Section 4 consists

of the detailed development of the matrix theory perspective of the k-space /

B i D sl oy e

™

formulation, necessary for the subsequent development of the generalized

relaxation method and the generalized inverse method. Section 5 consists of

the detailed development of the generalized relaxation method, and Section 6
consists of the detailed development of the generalized inverse method.
In Section 7, the special case of the k-space formulation of the electro-

magnetic scattering problem is formally developed, and a brief review of %

3 earlier obtained numerical results in summarized. In Section 8, a summary

of the state-of-development of the method, its present limitations, and
3 recommendations for future needed research, are presented.

By p ey

S,

The applicability

]
3 of the method to the non-monochromatic (wide band) electromagnetic scattering ;
f problem, electromagnetic problems other than scattering, and the general &
é initial value problems of mathematical physics, are also discussed. "

E

This author is indebted to Dx. Charles H. Krueger, Jr., of the
Air Force Avionics Laboratory, Wright-Patterson Air Force Base, Ohio, for
developing the details, programming and verifying, the two-dimensional
k-space formulation of the electromagnetic scattering problem.

This author is also indebted to Messrs. Leslie E. Whitford and
William llopkins of the Computing and Information Systems Division, Computer
Science Center, Wright-Patterson Air Force Base, Ohio, for directing the o
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programming effort and performing the actual programming respectively, of -
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the one- and three-dimensional k-space formulations of the electromagnetic o
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scattering problem, as well as for several important suggestions.
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1. THE CONVENTIONAL MATRIX FORMULATION OF THE INITIAL VALUE PROBLEM

Consider the n-dimensional scalar, vector, or tensor field ¢(X) and
the source density w(X), governed by the linear m-th order differential
field equation

L, o) = = L, wtx) ()

where the n-dimensional linecar differential scalar, vector, or tensor
operators L¢ and Lw are of the form

’

m

L¢ - 4 55—-)i 3 1=1,2,000,n (2)
=0 J

m
- ] i
Lw = 2 bi ('&;{) s (3)
i=o

P

subject to the n-dimensional scalar, vector, or tensor comstitutive equation

wix) = g(x) ¢(x) . 4)

The conventional n-dimensional integral representation of the
generalized initial value problem associated with the field equation (1) is

$(x) =Ig(xlx') wix) & + ol (5)
D
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subject to the constitutive equation (4) where ¢i(x) is the externally
imposed field (initial value field, the source distribution of which is
external to the procblem defined by the conséitutive equation (4) ), D is
the domain of non-vanishing o(X), and g(x) is the appropriate Green's

function, vector, or tensor, satisfying the differential equation

it Lo e e

L.
L¢ gtx) = - L 8(x) . (6)

e Lo St o D L sl il

M

The constitutive equation (4) can also be viewed as the boundary
conditions imposed by a specific physical situation on the differential
field equation (1), which is invariant to the specific physical situation.

-a

The conventional numerical method of solution of this initial value
problem is by means of numerical matrix inversion methods [1], applied to

the Fredholm integral equation of the Second Kind, formed by combining
(4) and (5), Z.e.,

Do A it P

z
3,
H

a

Il

d(x) —IK(xlx') d(x") d"x' = ¢'(x) , (7N -
D

where the integral transform kernel K(X{x') is given by

K(x]x") = g{x]x") olx") . (8) -

(It should be noted that in cartesian coordinates, this kernal K(x|x')
is always a compound kernel of the form K(X|x') = g(x-X') o(x"); Z.e.,

composed of a difference kernel and a separable product kernel).
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Such matrix inversion methods require of the order of N2 computer
storage allocations, and of the order of N3 arithmetic multiply-add
operations (for matrix inversion) for the execution of a numerical solution,
where N is the number of data points required for the numerical specifi-
cation of the constitutive equation (4) (the specification of the non-van-
ishing portion of o(x) ). The practical size limit with state-of-the-art
computers is for N of the order of several hundred.
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2. THE K-SPACE FORMULATION OF THE GENERAL INITIAL VALUE PROBLEM

e o il
gt & e Syt dho b ¥ it

The k-space representation and solution of the generalized n-

I dimensional initial value problem is presented next.

I 4

The n-dimensional Fourier Transform of the differential field equation g

(1) yields the local algebratec scalar, vector, or tensor k-gspace field 3
{ equation g
1 |
g
L¢(k) ok) = - L (k) Wek) (9) E;
|

1 3
i where 3
E _ ikex n 3
: olk) = ) ¢(x) d'x , ete., (10) .
and where, by virtue of (2) and (3), the quantities L¢(k) and Lw(k) are %

E polynomials of the form 3

] j :
Ly = Yy tikT (11) 3
E Jj=o

Hil
L (k) = Z b. (1K) (12)
W J

j=o

Preceding page blank
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The k-space representation of the generalized n-dimensional initial
value problem, consistent with the x-space integral representation (5), thus
is the algebraic scalar, vector, or tensor equation (vis-a-vis the conven-

tional integral or differential equation representation)

oK) = G(K) Wk) + o (k) , (13)

subject to the algebraic x-space constitutive equation (4), z.e.,

wix) = a(X) ¢(x) , 14)
where,
Lw(k)
G(k) = - (18)
L¢(k)

which clearly can be taken as the Green's function (or vector or tensor) in

k-space, z.e.,

G(k) « g(x) (16)

The generalized n-dimensional initial value problem ig thue reduced
to a set of two local algebraic (scalar, veetor, or tengor) equations in two
unknowns in two spaces, t.e., (13) and (14).

The k-space representation (13) et seq. also clearly follows from (5)

and the n-dimensional convolution theorem since

- h

¢
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g{x]x') = g{x-x*} (17)

;

é; in any cartesian coordinate system.

33 %

g% The unique existence [2] of this k-space representation is restricted i
. to media for which g
.=. ) %
' I IG(X)l d X < o (18) g

If o(X) is in general non-vanishing only in a finite n-dimensional

x~-domain, then the pair of algebraic equations (13) and (14) can be solved
numerically with the aid of the n-dimensional Fast Fourier Transform (FFT)
algorithm [3] as the connection between the two spaces, by the following
iterative relaxation method [4]; the recursion relationship for which is

W k) = Fk|x) w (0 (19.1) »

; ¢n(k) = G(k) Wn(k) + ®i(k) (19.2) ;
¢, () = Fix|k) ¢ (k) (19.3)
wn+1(X) = a giX) ¢, (X) + (1-a) wn(x) , (19.4) :

phgetiaz)e

where o is an appropriately chosen relaxation coefficient (best numerical - 3
results to date were obtained for a=4), and where F(k|x) and F(x|k) designate
the Fast Fourier Transform algorithm operator and its inverse respectively.

3
i
The initial approximation wo(X) can be taken as any known simply i
prograrmable approximation to the problem, including the trivial case §

- £
R )

wo(X) = 0, the computer programming of which consumes virtually no signifi-

K4
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cant, much needed for data, corc storage allocation {which is not the case
with any other non-trivial initial approximation, which, at best, would
reduce by two the total number of iterations required).

In order to avoid the numerical difficulties arising from aliasing,
i.e., the fietitious periodic nature of the FFT (which is a discrete and
finite Fourier transform, vis-a-vis the continuous and infinite Fourier
transform implied by (10)), and the possible singularities in the Green's
function (or vector or tensor) in k-space, it becomes necessary to choose
an n-dimensional hyper-rectangular box of twice the size {in each dimension)
of the smallest hyper-rectaigular box in which the non-vanishing o(X) is
imbeddable as the x-domain for the FFT, and take the Green's function, vector,
or tensor as (in conventional FFT notation [5])

Ny N2 Nn
5.1 = -1 51
2 2 2
LI N ] = - n L N ] -ua -vB LN N 2 -OY ec e
Glu,v, ,0) 8 % E E E I'!N1 WN2 WNn gla,R, .Y, (20)
A
2 2 2
where Zni/NJ
WN *e » J21,2,000,n (z1)
J
ax, bk, = 2n/N, (22)
J J
8% = Bx) Bxy eer Bx (23.1)
N = Ny Np eee Nn , ete., (23.2)

and where appropriate use must be made of the n-fold periodicity properties
of the FFT [6] for both (20), as well as the desired placement of o{x) and
¢'(x) in the hyper-rectangular FFT x-domain.
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The numerical difficulty arising from the possible singularity of the
Green's function at the origin of the x-space (Z.e., g{(0) = =) can be
alleviated by taking advantage of the appropriate prinecipal value integral
representation of the field equation (5), (e.g., [7]), Z.e.,

$(x) = £ wix) + pfg(xlx') wix') d"x' + ¢':;'x) (24)
D
It thus immediately follows that g(0) for (20) can be taken as
L
g(o) = § — . (25)
n
A%

Since aigebraic and FFT equations are used, the number of arithmetic
multiply-add operations required [8] for a solution is reduced from the
order of N3 (required for the numerical matrix inversion needed for solving
the matrix cquations resulting from the conventional integral equation
representation of the problem) to the order of N log, N, and the storage
requirement is reduced from the order of N2 (required for storing the

matrix associated with the Green's function needed for the matrix m=thod of

solution) to the order of N (required for storing the k- and x-space functions).

The advantage gained in speed and storage is thus of the order of N2 log, N
and N respectively. This method is thus considerably more efficient, and
To date,

acoustic scattering problems of the order of N=10" have been successfully

permits exact numerical colutions for much larger problems.

solved, and problems of the order of 107 are feasible with state-of-the-art

computers.
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3. THE K-SPACE FORMULATION OF THE GENERAL WAVE SCATTERING PROBLEM

For the general n-dimensional wave scattering problem, the (range and
phase normalized) scattered far fields in x-space are in general simply and
algebraically related to the n-dimensional Fourier Transform of the induced
(by the incident field ¢'(x) ) source distribution w'Xx), Z.e., W(k), which
is clearly yielded directly by the iterative solution (19) without addi-
tional computations. Since this is not the case with the conventional
matrix method of solution of the integral equation representation of the
scattering problem, the k-space method of solution presented is particularly
and additionally attractive when applied to scattering problems.

For the special case of the n-dimensional Helmholtz (time-reduced)

wave equations for which

- 2_\2
L¢'E(BXJ~) + k3, (26)

where ko = % , and ¢ is the wave velocity in the free space (this deviation
from conventional notation is for the purpose of distinction from k, the
Fourier Transform variable of x), the n-dimensicnal k-space Green's function,
in the notation of (9), (15), and (16), is clearly

Gtk) = w(k) L,k (27.1)
1
¥(k) = ——— (27.2)
k2 - k2

The form of the Green's function ¥(k) in k-space is clearly invariant
to the dimensionality n of the space, which is not the case for the Green's

function y(X) in x-space.
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Thus, by virtue of the previously stated relationship between the
(range and phase normalized) scattered far fields in x-space and the source
distribution W(k) in k-space, and conservation of energy considerations
(mathematically equivalent to Parseval's formula) for passive media of finite
spatial extent (see (18) ), it follows that the Radiation Condition (the
boundary condition or comstitutive equations at infinity) for the Helmholtz

equation Green's function in k-space can be stated as

Mks)

wks)

< o » lksl = ko > (28)

where kS is the propagation wave number vector of the scattered far fields.

It can thus be argued that the field equations of mathematical physics
are more fundamental in k-gpace because of the simple local algebraie nature
of these equations in k-space (vis-a-vis the global nature of the integral
or differential representation of these field equations in x-space), and
the invariance of the form of the k-space Green's function for the Helmholt:z
equation with respect to the dimersionality of the space; particularly when
bearing in mind that the Fourier Transform is the only transform known for
which a fast algorithm exists. However, the constitutive equations (or
boundary conditions) are more fundamental in x-space because of their local

algebraic nat.re in x-space.
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4. THE MATRIX THEORY PERSPECTIVE OF THE K-SPACE FORMULATION

The equivalent matrix theory perspective of the k-space formulation can
best be developed from the integral equation (7) for the one-dimensional
problem, with the generalization to n-dimensional integral equations then
becoming obvious; Z.e., by (7) and (8)

a
$(x) -fg(xlx') a(x'") ¢({x') dx' = ¢l(x) . (29)

0

If x is discreteized in M equal intervals Ax in the domain (o,a), then

Xy =68 5 a=0,1,2,000M ; (30)
and (29) yields
M-1
1
olx ) - Z g(xalxu,) olx 1) ¢lx ) Bx = ¢ (xa) . (31)
a'=o

Introducing the M-dimensional vectors ¢a and ¢; as

b, = 0(x,) (32)
o) = ¢l (x) (33)
a a”
15
I — — s -——-—..M

IR S e e oo R e g s L S e £ e S L s g) S SR Sy s SRS L USSR




PR T T
s A -

ezt SR

the M-dimensional (square) diagonal matrix Oug B 3

£
Q)
]

T4p = AX GaB o(xu) , (34) E

|

e St i e,

1;a=8 o
638 = (35)
0;a#8,

T

)

and the M-dimensional mairix 9yp 35

b b s 2

PRI

gaB = g(xa]xs) , (36)

then in cartesian tensor notation (with summation convention implied), (31)

becomes

ool Lt i A o 08 o st

_ ]
by = 9a8 gy ¢Y % 37

.o

which, in conventional matrix notation becomes 3

¢ - gob = ¢ (38) '

Al

B S

(I - godo = ¢i : (39)

where I is the identity matrix.

oo
s

v
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i

(The conventional matrix imversion solution of the problem is
accomplished by forming a matrix s=go directly, without the separate intro-

duction of the diagonal matrixlo, and numerically inverting the matrix (I-s),
yielding the solution ¢=(I-s)" ¢' ).

i A o el AR

In? roducing the M-dimensional genmeratrix vector Yo (generatrix of
the matrix g)

e Dot A g bl 8

it o a3

Yo T 9lx) (40)

and vecalling that the Green's function gix|x') is always a difference
function (see text subsequent to 8) of the form

glx|x") = g(|x-x']) , (41)
yields with the aid of (36}
9ug = Ya-g (42.1) %
= Ypq (42.2)
= V)qeg| (42.3)

It thus follows that the (MxM) Green's matrix g is a symmetrie matrix
derivable from the M~dimensional Green's gemeratrix vector y by (42).

Introducing a .(2M+1) dimensional space, Z.¢., an N-dimensional space

(o g Gl o g P -
Bl T 43 s % .
" L o o e g e g el o

of dimension (ZM+1}, Z.e.
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N=2M+ 1, (43) i

3

¥

for the vectors ¢, ¢! , and y in which the first M components are defined as é
per (30) through (42), and the remaining components are defined by the i
periodic relationships i%
9 = N-g ° M< g <N-1, 44) :

P , . ] !

¢G—¢N‘0. ’ M<3§N1: (45) f

Yd = YN"O HER < a < N-1 ’ (46) wi f

and in which the first MxM components of the diagonal of the matrix o are
defined as per (34) and (35), and the remaining components of the diagonal

are defined as zero, Z.e.,

Ax 6 O(th) ; 0<a,8 <M

of
an = (47)
0 ; M<a,8 SN-1,
clearly leaves the now N-dimensional matrix equaticn
l
$ - gop = ¢ (48)

consistent with (31), (38), and (39).
However, the NxN Green's matrix g resulting from the N-dimensional

now periodice generatrix vector y, still given by (42), is now not only
symnmeti-.- . but also has the additional property of being a cireculant matriz [9].
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Some well known special properties of circulant matricies [10] will now
be recast into a somewhat more convenient notation and general form; for this
purpose, however, it becomes convenient to introduce the NxN Fourier matrix F,
defined as

1 2ul
.
F =z—%® R (49)
Ha N
which clearly is a symmetric unitary matrix, Z.e.
Fua = Fau (50)
FFEr =1, (51)

It should be noted that this Fourier matrix has only N distinct
elements (thus requiring only N storage allocations). The matrix multiplication
of this matrix hy a vector requires only iNlog,N arithmetic multiply-add
operations if the FFT algorithm is used.

The specia! properties of a circulant matrix can now be stated as
follows:

1. The Fourier matrix is the wnitary transformation matrix which
diagonalizes a circulant matrix, <.e.

FgF =g (52)

where g' is the diagonal Eigen matriz of g. The rationale for choosing
the factor 1//N in (49) is now evident; namely, the conventional
definition without this facior would have lead to merely a

. adian
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(i

stmilarity trangformation matrixz, which is clearly far less general.

The Eigen values )\ of a 2irculant matrix g are related to the
generatrix vector y of the incident matrix and the Fourier matrix by

A = WF v

u pe o ? (53)

I.e., The vector formed by the set of Eigen values of a circulant
matrix is the Fourier transform of the generatrix vector of this
circulant matrix. The practical significance of this equation (53)
is that whereas it takes N3 arithmetic multiply-add operations to
compute the complete set of Eigen values of a general matrix, it
takes only 3NZog,N arithmetic multiply-add operations to compute
the complete set of Eigen values of a circulant matrix, since (53)
can be computed with the aid of the FFT algorithm (matrix multipli-
cation by the Fourier matrix can always be accomplished with the
FFT algorithm). Furthermore, whereas N2 storage allocations are
needed for a general matrix, only N storage allocations are needed
for the generatrix vector completely and uniquely defining a
circulant matrix.

The Eigen vectors eﬁa)

of a eiroculant matrix are totally independent
of the (N independent) elements of the circulant matrix (and the
elements of its generatrix vector), and are proportional to the

vectors formed by the rows or colwmns of the Fourier Matriz; i.e.

e KF . (54)
u Ha

The practical significance of this equation (54) is that the Eigen
vectors of a circulant matrix can be gererated directly by inspection
cf the Fourier matrix (49); Z.e., the N N-th roote of unity.
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§ 4. The imverse of a circulant matrix g is also a ciroulant matriz, ;

and is given by 1
I 1_ .t ;
g = F (55) ;
i

where the quantity 1 is a diagonal matriz, the diagonal elements
A

of which consist of the reciprocals of the Eigen values X of the
circulant matrix g.

Lt L

An alternative formulation of (55), in terms of the generatrix y

of the circulant matrix g, as per (53), in a consistent notation, is

1
g - F+{NF }F ; (6)
Y

i.e., the quantity {} in (56) is a diagonal matrix, the diagonal

elements of which consist of the reciprocals of the elements of
the vector (W Fy).

T gl o ot e e @

At

ot S R AT it Dbk

P

Akl L

The practical significance of (55) and (56) is similar to those
stated subsequent to (53).

The proof of (55) and (56) follows directly from (49) et seq.

b A N i e RAE o bt 25

All the preceding properties of a circulant matrix can be extended to

n-dimensional spaces by the introduction of the n-dimensional NxN Fourier :
matrix (see 49) as

y 1 -2l
Fuasll-—-—e N P35 ; (57)
J7 1 /WJ.
21
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where the matrix multiplication of this n-dimensional NxN Fourier matrix by

an n-dimensional vector (of N elements) is accomplished numerically with the
aid of the n-dimensional FFT algorithm.

i

:x TR

(For the limiting case of N»x; Z.e.,
a Hilbert space, the preceding properties simply revert back to the Fourier
integral transform properties, where it is now clear that the Eigen value

o Pl G

spectrun (k) of a difference function g(x-x') is the integral ourier trans-
form of the generatrix function g(x) ).

Uiy bt il Rl St A i

The iterative solution (19) can now be developed in matrix theory
& perspective form (48) et seq. By (48) and (52)

E
%
9
3
4
e
E
e
-5
i
E
z
:=
B
=
E;
§

it

¢ - Flg'Fog = o', (58) .

P e O b

A ]

where now both o and g' are diagonal, where the matrix F has only N distinct
elements requiring storage allocations, and where all the implied matrix
multiplications can be executed with the aid of the FFT algorithm.

P

Choosing any vector ¢ for ¢ clearly yields the self consistent vector
¢, by (48) as

s

o e

AL

o i -
¢ =goe +o . (59)

AR

1f o is taken as the n-th approximation of ¢, then clearly ¢, can be
taken as the (n+1)th approximation of ¢; Z.e.

|
S A (60)

s en g g o b e G

This recu:sion relationship (60) for the iterative solution of (48) is
equivalent to the Neumann Sevrics expansion of (48), the sufficient condition

for the convergence of which is that the norm of the matrix operator go be
less than unity; Z.e.

Ol On b beel

L T A e St L L,
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lgo] <1 . (61)

By (53), and the diagonality of o, this norm can clearly be computed
in NZogoN operations.

For those cases for which (61) is not satisfied, the iterative
relaxation method can be developed as follows; let o be a real scalar
relaxation factor such that

bppq = b, + (=ade (62)
which, with the aid of (59) yields
41 = [ 1 - all-go) Jo + ad' . (63)

n

An alternative more rigorous derivation of (63) is as follows; (48)

can be written as
(I-gold = ¢ . (64)
thus

ap! (65)

a(I-go)d

¢ -~ ¢ + all-god¢

ad (66)

23
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¢ - [ I - all-gal))e = a¢’ . (67)
The Neumann series expansion of (67) is
¢ = Z[ I- m(?[-gc:)]J (a¢l) ; (68)
J=0

And, consistent with (60), the recursion relationship for the iterative

solution of (67) is

by = [ 1= all-g)le, + ab' . (69)

n

which is consistent with the iterative k-space solution (19). The sufficient

condition for the convergence cf (69) is

| 1T - all-go) | <1 . (70)

The conventional relaxation method thus reduces to finding the

relaxation factor a which minimizes |I-u(I-go)|, and thus maximizes the

convergence rate of (69).

The essence of the k-space formulation, from a matrix theory
perspective, is in (52), (58), and (63), in which only the diagonal matricies

7' and ¢ need be stored, and all matrix multiplications (executed by the FFT
algorithm) are via the Fourier matriz F. This becomes most evident if (63)

and (52) are combined into
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o = L1 - a-Flg'Faile + a0’ , (1)

¢

n

which is consistent with the iterative k-space solution (19).

The mathematical meaning (vis-a-vis the physical meaning discussed
earlier) of the k-space formulation is thus in having found the trans-
formation matrix (the Fourier matrix) which diagonalizes the discrete field
equaticns (5) in a new coordinate system (the k-space), and possessing the
means of executing this transformation economically in speed and storage

(1.e., with the FFT algorithm).
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5. THE GENERALIZED RELAXATION METHOD

The difficulty with the conventional relaxation method is the
difficulty of finding a relaxation factor which optimizes convergence rate,
as well as the fasic question of the existence of such a factor which

!.
B

assures convergence at all.

These difficulties are alleviated if the relaxation factor is not
restricted to being a real scalar, but is generalized to being a complex

i 2t B et D e ' L D05 2 A Mo bt

matriz.

Sl prd B

The trivial and naive such relaxation matrix o clearly is

a = (1—go)'1 , (72)

for which the iterative recursion relavionship (69) and the convergence

condition (70) respectively become

1
n+l (73)

(74)

"
o
A
—

.

| T - a(T-go) |

namely; the iterative process converges in one iteration to the exact

solution. This trivial and naive choice of a as the solution to the problem

was presented merely for the purpose of making the following argument:

Preceding page hlank
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The best knoum approximation to the eolution of the problem should be :I é
chosen as a relaxation matrix, and not as the initial approximation, in the E
iterative process (since convergence is determined solely by the relaxation o“ :

matrix and is independent of the initial approximation chosen).

However, prior to searching for a practically suitable choice of the
matrix a, certain practical limitations must be imposed on the properties of
this matrix. A completely arbitrary matrix o will negate all the storage and
speed advantages of the k-space method, since such an arbitrary matrix will
require of the order of N2 storage allocations and arithmetic multiply-add
operations for the execution of the implied matrix multiplications in (69). i

AL it B L o

A natural such choice of special properties for the matrix a, which ;
will preserve the speed and storage advantages of the k-space method, con- 3
sistent with the matrix theory perspective of the k-space formulation, clearly
are that the matrix o« be diagonal, circulant, or compourd (the product of

a diagonal and a circulant matrix). ;

(The conventional scalar relaxation method can now be viewed as the
special case of the gemeralized relaxation matriz being fully degenerate).

it Mgt i

The general required properties of the relaxation matrix will be

examined next.

The norm implied in the convergence condition (74) must clearly be
taken as thc Euclidean norm or the spectral radius, i.e2., the largest
magnitude (absolute value) of the Eigen value of the matrix operator A in

(74) where
(75)

AsT -~ all-go) .

It now becomes convenient to introduce the matrix B, defined as

28




m
(1]

90

A=1- al(I-B)

The Eigen values of A are given by the determinental equation

det ( A -2, 1)

1]
o

The convergence condition (74) for optimal convergence rate thus is

maz IAAI <1
+ o .

If the set of all Eigen values {AA} is chosen as exactly zero, then
clearly (74) is satisfied in such a fashion that the resulting o yields an
exact solution at the first iteration (as was the case with the previously

presented naive example of m=(I-go)-1 ); t.e., a numerioally closed form
solution of the form (see 71)

©-
[}

ad .

For this choice, the determinental equation (78) thus becomes

A PEE OGN Guqg buwof feuf Guq oo ) Gud Smd Ged Sed Ot SN G0 W NS N
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(77)

(78)

(79)

(80)
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det A=0 , (81)

which, with the aid of (77) becomes

OB At 2 o A ol b )

det [1-alI-B)] =0 , (82)

which can be rewritten as

< bttt AR Lot S SRt ok

f det (I-a+aB)

"
(o]
sl

det [a(a-1-I+B)] =0

det o + det [B- (I-aH]=0 , (83) ;

which is satisfied by :
det [B-(I-a)]=0 . (84) % 3

The determinental equation which determines the Eigen values Ag of the - ]

matrix B is o ;
S

det ( B - g I )=0 , (85) 3




Kb TR

It thus follows from (84) and (85) that if the matrix (I-u 1) is
chosen as the diagonal matrix {AB}, Z.e., consistent with the previously
introduced notation {},

= {a.} . (86)

then (81) is satisfied identically. It thus follows from (86) that a is the

1
={ —3 (87)
@ { T-2g }

diagonal matrix

ki R ML

Lad gy

™

Examination of (76) thus reveals that knowledge (or a rapid means of

computing) of the Eigen values of the matrix go would yield a numerically closed

l form solution of the problem; Z.e., (80). Such knowledge or means ave clearly

JEA N

not available. However, since ¢ is a diagonal matrix, an approximation for
the Eigen values of the matrix go are available; namely, the product of the
Eigen values of the matricies g and o (which, in general, for non-diagonal o,
are not equal to the Eigen values of the product of the matricies), Z.e.,

o A R AT R,

Ag = A A (88)

AN e PR

where the Eigen values Ao are the diagonal elements of the diagonal matrix o,
and the Eigen values A _ are given by (53), and are computable easily and
rapidly. To the extent to which (88) is a good approximation, a good choice
for the diagonal matrix a is thus

1
“{T“T’Tc} (89)

g
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It can be shown that for o chosen as per (89), the norm of A is j
always less than unity.
In the k-space notation of (19), with the aid of (53), (89) yields
1
ox¥) = TG00 600 (90)
where G(x) is G(k) colocated in x-space; Z.e., G(k) evaluated at k=x. - E
For purposes of computer programming (storage allocations) the .. ;
solution (19)-(90) can be simplified by introducing ¢° defined by
i
b= +¢° (1) ;
and B(x) defined by B(x) £ o(x) a(x); f.e., by (90), . 1
. alx) )
B(x) = 75 B (92) -
The recursion relationship for the generalized relaxation function a’?
iterative solution (19)-(90) thus becomes -
-
3
4
W (k) = Fek|x) W, (%) (93.1) I
$2(k) = Gk) W (k) (93.2) l
87000 = Fix|io 25 tk) (93.3) .
, 1
W) = B0 [ ¢:(x) +4 00 -6 W )] (93.4) ;
32 7 3
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An artificial test case of N=8 was programmed, with the following
numerical results. For cases for which the conventionai relaxation method
succeeded, convergence was accelerated from about 30 iterations by the
conventional method to abouc 6 iterations by the generalized method. For
cases for which the conventional relaﬁation method failed, convergence was
reached in about 10 iterations by the generalized method for those cases for
which the magnitude of the largest element of a was less than about 103, and
the generalized method failed for those cases for which the magnitude of the
largest element of a approached about 103,

It thus seems that the generalized relaxation function method cannot
overcome the difficulties presented by a norm of A of about 103 and larger
(vis-a-vie a norm A ~ 1 for the conventional method). Although higher
precision in the computations could undoubtedly overcome this difficulty,
such higher computational precision is totally undesirable since it defeats
the very purpose of the basic method; Z.e., economy of speed and storage.

It is to the alleviation of this difficulty that the next section is addressed.

33

e ik o

N P ) 10 Loy O

e St Bt

LR e b B Bl o

ol




e T T T T T e e, T = -
i ket TR TE] G-l s 4% il TN NI TR, TR Ranii £tk g

6. THE GENERALIZED INVERSE METHOL

The generalized relaxation function method can now be put in the
following perspective. The Neumann series solution (or the method of

successive approximations) of (48), Z.e.,

L[ b -gob =6 (94)
E is applicable if
E norm (go) < 1 (95)
E The conventional matrix method solution of (48) is applicable if
E norm (go) S 1 , (96)
1
and possesses the additional property of aceelerating (over the Neumann series
solution) and wuniforming convergence if (96) is satisfied.
The generalized relaxation method of solution of (48) is applicable if
norm (go) < 103 , (97)
and further accelerates uniform convergence if (97) is satisfied.
, Preceding page blank
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This section is addressed to the problem of solving (84) subject to

the condition

norm (go) > 1 (98)

For that purpose let a be chosen as the compound matrix

oz (=g (99)

i.e., the negative of the generalized inverse [11] of the product cf the

eirculant matrix g and the diagonal matrix o.

The recursion relationship for the iterative solution (69) thus becomes

’ (100)

subject to the norm condition (70), which, due to the choice (99) of «

becomes

| gy ] < (101)

lgo | > 1, (102)

which is the desired condition (98).
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Equation (100) reduces to

(-1 (-1

¢n+1 =g g ( ¢n -¢ ) . (103)

Since the determinant of g is in general non-zero, the inverse of g

1t o e e AL o

can be computed economically and efficiently (with N storage allocations and

iNlog,N operations) by (55); the generalized inverse of g can thus be taken

bt e st O

. . -1 . . . . .
as the conventional inverse g . Since ¢ is a diagonal matrix with one-half

"

of its diagonal elements consisting of zeros, the determinant of o vanishes;
it is thus necessary to take its generalized inverse. A suitable such
generalized inverse is clearly (in the previously introduced notation) the

diagonal matrix {%ﬁ; i.e., a diagonal matrix, the diayonal elements of which

. consist of the reciprocals of the elements of the diagonal matrix o for those

‘ values for which the diagonal elements of o do not vanish, and zero otherwise 3
- (thus yieldind a diagonal generalized inverse with again one-half of its 2
- diagonal elements consisting of zeros). Equation (103) can thus be written g
. as g
i
. o =g s ~¢ . (104) :

n+1 o] n

Close examination of the derivation of (48) from (38) reveals that

(105) could also have been derived directly from (38) by a process similar |

g- to the one that lead to (48). %
i Convergence of (104) under conditions (102) can be further accelerated %
‘. by the re-application of the method of Sect. 4; z.e.,

it bl i

Py (105.1)

0 W, gt

s = 1 g7 -
¢, =5 g (o -0

(105.2)

¢$ % -
n+l = u¢n + (1 a)¢n




where, consisteni with the derivation of (90) and its notation, o is chosen as {

alx) = 3 (105.3)
T alx) G(x)

|

H

b
£
2
9
3
TG
H

!

For computer programming purposes, (105) can clearly be put into the

simplified concise form of (93).

z With the results of this and the previous sections, it is thus always _fé
3 possible to determine the norm of (go) economically and efficiently, and é
] choose the appropriate economical and efficient method of solution of (48), %é
i ' no matter what that norm is. "
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7. K-SPACE FORMULATION OF THE ELECTROMAGNETIC SCATTERING PROBLEM

Three-dimensional electromagnetic monochromatic scattering by passive
inhomogeneous meaia, including perfect conductors, of finite spatial extent

and arbitrary shape, is considered.

The time-reduced electric and magnetic field wave equations, valid for
all linear inhomogeneous media, in terms of the total current density [12],

are respectively

UxUxE{X) - k3 E(X) = Twpo J(X) (106)

IxJ (X) (107)

vxVxH(X) - k3 H(x)

which, with the aid of Maxwell's first and second equations, and the equation

of continuity for the total charge and current density, can be written as

= =lwpeld + -:;2 ved) (108)
9

m
|

92 E - k2

(109)

V2 H-k$H=-vxd .

For non-magnetic media and perfectly conducting media, the appropriate
constitutive equations for the total volume and surface current density J(x)

and K(X) respectively are

A T B A W b s 0

4

oSNl Jin

bt St St vt o il

algr gt

LR i ok

j
i
§
32




J=( g - wae ) E (110)

K=n=xH (111)

23
H
k.
4
3
e
3
3
2

where o and X, are the free charge conductivity and electric susceptibility
of a (ron-magnetic) medium respectively, and n is the outward surface unit ' 3
vector of a perfectly conducting medium.

Lk e i

3 3
& ?
§ The latter {111) is usually regarded as a boundary condition for 5
3 perfect conductors, but in the context of this paper, this equation must be 2

; taken as a constitutive equation in the truest sense, particularly if E
regarded as a geometrically constraining conditiocn on the flow of all charges. %

3 By the relationship between surface and volume current densities, k

. consistent with the FFT notation, the volume current density for a perfectly
conducting medium, can be written as

it kS

| J = 9—3 K (112) ;
E = %%-n x H (113) ;
; ;
AS -9

= =2—x H (114) 4

5 A3x o 4

where AS is the finite differential vector surface area in the FFT cell of
volume Av = A3x.

The conventional magnetic [13] and electric [14] field prineipal value
scattering integral equations
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M (115)

-3

H-2 7I.Vg x {nxH)ds

(116)

1 ]
E - TTwe, J - fwwe qj.( I+ 2 Vv )g-d dv

can thus be re-formulated into a form consistent with the k-space formulation
(13, (14), et seq., i.e.,

H(K) = 2 G(k) x Jek) + 2 H' (k) (117.1)
J(x) = o(¥) x H(X) , (117.2)
where
o(x) = A5 (117.3)
= 83x
G(k) = F(k|x) vg(x) (117.4)
Tkor
v(e—h—r—) ; x#0
Ug(x) = (117.5)
0 ; x=0

(117.6)
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Ek) = I'(K)~d¢k) + E' (k)

Jx) = [ cf(x) - the(x) ] E(xx)

where

I'tk) = Ftk]x) v

.

Twio (I +%2 Wig ; X#0
y{X) =
3lwee

(118.1)

(118.2)

(118.3)

(118.4)

Equations (117) and (118) can now be numerically solved economically

and efficiently by the methods of the preceding sections.

Defining the range and phase normalized scattered far-field S(ks) as

- Limit s -ik_+x
S(ks) =0, . fAnr? F2(x) e ' e

(119)

where F>(X) is any scattered field satisfying the relationship F = Fi + F° )
which is consistent with the conventional definition [15] of the radar power

cross section ¢ and the relationship

readily reveals that the range and phase normalized electric and magnetic
scattered far-fields Se and Sm are given directly by the k-space current

density distributions

(+20)
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lkoZo k .E
S (k)= [ Jk) - kked(k) ] (121)
& s Van k=k,

i
S (k)= kxJ (k) , (122)
Y/ k=k_

where zo is the impedence of free space. (As dictated by the transversality
of the scattered far-fields in free space, Se’ Sm and KS are indeed all

orthogonal to each other).

It can thus be shown that the conventionally defined [16] electric

polarization scattering matrix P, is given directly in k-space by

€

ikoZo

p., = n_«J(k) , (123)
" w ® k=k

where, in the cenventional notation for spherical coordinates, n_ are the
Eigen-polarizations (spherical coordinate unit base vectors) ¢S and Os
associated with the scattered far-field propagation vectc ° ks’ and J(k) is
the k-space current density induced by an electric incide.t piane wave field
of the form and polarization

Iki-x

E‘(x) =t e » (124)

where § are the Eigen polarizations (spherical coordinate unit base vectors)
¢i and 0‘ associated with the incident propagation vector ki'

The solution to the k-space formulation of the three-dimensional
scattering problem (for the electric field equations (118) for non-magnetic
media, and the magretic field equations (117) for perfect conductors) has been
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numerically computer executed for a limited number of cases by the iterative
method of solution (19), with final results within about one db. of exact
known analytic closed form solutions after about 30 iterations. For example,
see Fig. 1-5 for comparison of this technique with the exact solution of

Mie [17] for the perfectly conducting sphere (of radius a). The failure of
this k-space technique in the near-vicinity of kea = 2.75 (see Fig. 1) is due
to the fact that ko.a = 2.75 is the occurrence of the first Eigen frequency
{internal resonance of perfectly spherical shell). This difficulty can be
readily and simply alleviated by the appropriate incorporation of the method
of Mitzner [18] into the k-space method. However, since the objective of
this project was to prove the feasibility and merits of the k-space method,
and not the generation of an operational user-library of computer programs,
such an incorporation was taken as beyond the scope of this project.

For the results of the application of the k-space method to two-

dimensional electromagnetic scattering, the reader is referred to the work

of Krueger [19].
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8. SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS

The basie feasibility and merits of the application of the k-space
method to electromagnetic scattering has essentially been demonstrated

sufficiently to warran: the following conclusions and recommendations.

For small scatterers (N<102), the preference of the k-space method
over the conventional integral equation - matrix inversion method eannot yet
be justified. For medium-sized scatterers (N~300), the k-space method is
indeed more efficient than the integral equation ~ matrix inversion method.
For large scatterers (N>103), the k-space method is capable of yielding useful
results in realistic computer time; whereas the integral equation - matrix

inversion method cannot even be computer implemented for such sizes.

For present-day, state-of-thec-art computer size and speed, the size
limit for which the k-space method could be implemented is of the order of
N~107 (Z.e., about 10,000 times as many d-ta points than possible with the

conventional integral equation - matwix inversion method).

For the generation of a user-library type computer program of the k-
space method that would utilize a2 maximum of the basic inherent advantages
and applicabilities or the method, the following effort would be needed.

1. Implement appropriately and efficiently the generalized relaxation
function and the generalized inverse methods into the k-space
formulation of the electromagnetic scattering program.

2. Develop a completely general computer program for reading
arbitrary shapes and arbitrary electromagnetic prcperties into
the k-space method.

3. Conduct a thorough error analysi: such that error bounds will be
available to the user of such a system.
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4. Develop (or implement an existing) Fast Fourier Transform (FFT)
grogram operative on disc-to-cora-to-disc data, which would be
capable of handling of the order of 107 data points; Z.e., the
state-of-the-art size limit of discs (vis-aq-vie the presently
utilized in-core FFT limited to about 10% data points).

5. Investigate the feasibility and desirability of replacing a disc-
to-core-to-disc soft-wired (software compiled) FFT program (see
item 4 above) with a hard-wired (hardware compiled) Fast Fourier
Analyzzr (FFA).

6. Implement a mixed-mode k-space formulation capable of solving
three simultaneous equations in three unknowng (i.e., the electric
and magnetic fields simultaneously with the current densities),
applicable simultaneously to volume, surface, and line current
density representations ¢f the electromagnetic scattering problem;
thus realizing solutions for large complex compound scattering

problems (e.g., perfect conductors with absorbing materials and
wire antennas).

The preceding conclusions and recommendations dealt with monochromatie
electromagnetic scattering; the subject to which this report was addressed.
It is now reasonable to cenclude that the k-space method is also applicable
with similar advantages to wide band electromagnetic scattering. This can
be accomplished by a four-d” sensional k-space formulation of the relativistic
four-dimensional time-dependent Poisson equation; vis~a-vis the presently
implemented k-space formulation of the Helmholtz equation (time-reduced wave
equation). The additicnal advantage of such a formulation is that the
relativistically corrzct Doppler shifted spectrum for arbitrary time-
dependent motion (including time-dependent rotation, acceleration and

deformacion) would be yielded directly and efficiently.

Ffurthermore, the k-space method could similarly be applied with full
advantage to electromagnetic problems other than scattering; e.g., radiation
(antennas) problems, propagatior problems, ete.

Since the k-space wethod does not require the constitutive boundary
equation conditiuns to be linear algebraic. this method becomes applicable
with full advantage 1o (electrumagnetic) initial value problems resulting
from interactive systems that conventionally yield several coupled

strultaneous non- linear integro-differential equatiors (~.g., magneto-ionic
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plaswa with accustic waves and thermodynamic coupling); whereas the
conventional matrix inversion method is not applicablc to such non-linear
integral equations.

In conclusion, it is noteworthy that the k-space formulation is appli-
cable with full advantage to all the initial value problems of mathematical
physics that arise from linear field equations subject to linear or non-
linear constitutive boundary condition equations; which conventionally lead
to (linear or non-linear) integral equations, including multiple simultaneous
such equations governing interactive systems.
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