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1. Introduction®
A matrix A with components aij’ i,j = 1,2,...,h, [written
A= (a;4)] is called a Toeplitz matrix if ;4 = @_y. A particular

case is when a., = a;. ..
ij li-3]

contexts; see, for example, Grenander and Szegd [8].

following frequently occurring case.’

In mathematical statistics Toeplitz matrices arise in several

" Let

Consider the

{X: t=--cs,-l,0’l,oau}

t

be a wide-sense stationary stochastic process Wiﬂn'éxi =0 for all

te.

(lfl? gxtxs N Cov(xt,xs) =

Its covariance sequence satisfies

*The author acknowledges financial assistance from the Ford Foundation

*ls-t]®

and leave from the University of Tucumdn, Argentina.

s,t =

coey=13051,.



that is, a function of |s~t] only. If x = (xr.,.,XT)' is a finite

segment of '{xt}3 then its covariance matrix is the T x T matrix

(1.2) z =

I 1s a matrix of Toeplitz type.

It is important to note that gT can also be viewed as

TEI
(1.3) In'= ) oG
T k=0 k~k
=

where gk = (gij ) and

k . .
(1.4) géj) =1, li-3] = k,

=0, Ii—jl %k's

§T is a linear combination of simple known matrices 90 = I,

'GP“°‘3§T—1’ the coefficients being the parameters O~ This  structure
has been exploited to find- the maximum likelihood estimators of the

k's under normality; see, for example, Anderson [1], ‘[2], [4], and

o
references therein. Here we shall be concerned with finding the

inverse of §T, and it turns out that the linear structure can be
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used to devise a practical procedure for such purpose. For a solution
of a similar problem, with different Qj'33, see Mustafi [11].

It must be pointed out at the outset that there exists wide
interest in finding either exact or approximate walues for the components
of such inverse matrices, since that krnowledge can be used to derive
the statistical theory for procedures defined in terms of them. For
example, the author's interest in the inverse analyzed in Sections
2, 4,5 and 6 stems from the study of Walker's [16] estimation pro-
cedure for the moving-average time-series model.

In many cases the underlying assumptions imply that
(1.5) o, . =0, [i=3| > m,

where m 1is a nonnegative integer. We may call these processes.
"finitely correlated of order m'".  The case of lack of correlation
corresponds to m = 0. If m < I-l, then §T has m diagonals
above and m below the main diagonal with (possibly) nonzero components,
and all other components are zero. ' For some of these matrices the
inverse is known. When m = 1, Shaman [12], [13] gave several forms
of the exact inverse, and several approximations. Onevof the methods
in his paper is extended in Section 2 to the case m = 2.

In Section 3 a different approach is used for the particular

case ZT =1+ pgl, and a new expression for the exact inverse, and

some approximations, are presented. The method is then applied in



Section 4 to invert I + plgl + 9292’ and in Section 5 to the general
matrix with such a structure. The proposed method is used at some

points in conjunction with a condition that is stated and proved in

an Appendix; it is related to ''diagonal matrices of type r'" (cf.
Greenberg and Sarhan [7] and others) defined by the fact their components

satisfy aij

Finally Section 6 discusses an approximation based on a well-

= 0 whenever |i-j| > r.

known relation between autoregressive and moving-average time series.

Since for % # 0

m m
Y} 0.6, =0 p.G,
=0 471 szo i~3’

(1.6)

Po = 13 Oj = Gj/GO, j=1212,...,m, we see that there is no

loss of generality in taking the coefficient of G, in (1.3) to be

0

one, as will be done below whenever it is convenient.

[N



et

PSS

2, The inverse of I + plgl + 0292 by evaluation of cofactors.

Let §T = (Gij ) =1+ 9191 + 0,605 0y # 0, and
g}l = WT = (w£§>). The components of WT can be computed from
ofactor of o,
(2.1) O e 1
H P
~T

The method presen£ed in this section consists in expressing all the

determinants that may appear in (2.1), in terms of some determinants,

like ]gT], each one of which satisfies a certain difference equation.
In this section we use the following notation, where a subscript

denotes the order of the corresponding matrix or determinant, and

we omit the superscripts in the components to simplify the writing.

We also use the notation of partitioned matrices:

(2.2) e = 1251 s
1 0 0 0 0 '
/px. Py Py . PE
Py Py 1 Py Py oeo 0 0 0 pzt
O o, po 1 p, ... 0O 0 O 0
L = ® 2 «l ° cl % = . 1 gs—l 2
"e S : |
|
0 0 0 0 e e [32 pl 1 O_L___________...
[
0O o 0o 0 ... O Py P 0 IO”’ODZ Py
2.3) '
L o= |n | ;
s ~8



P1 Py 0 0 0
g 1 ey by 0
Py P L Py Py 0 0
e = . . 5 5 ; : B ’
0 o) 1 o)
2.4 1
( _) 0

k= [ ] .

By expanding ZT in terms of the components in its first row,
Durbin ([5], p. 315) found that the determinants satisfy the linear,

homogeneous, fifth-order difference equation

]

2 2 3 3
(2.5) _zn+(1-pz)2n_l+(p2—pl)Zn_2+92(pl—pz)Zn_3+pz(pz—l)zn_4+922n_5 = 0,

The associated polynomial equation

) 5 4 2.3 2 2.3 5
(2a6) ~2 +(l‘pz)2 +(92"pl)z +92(Dl_92)2 +92(pz’1)2+92 =0

can be written in a symmetric way using the substitution ~pyX = 23

we obtain

after division by pg

2 2
5 17Py 4 PPy 5 PPy o, 17p
2.7) x” + x + X"+ ———=x"+ —=x 4+ 1 = 0.
Py pg 05 Py

(R

[——
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Zero is not a root of (2.7), and if x® d1s a root so is 1/x*. Since
there must be five roots, +1 or -1 must be one of them. (They
are the only ''self inverses'.) By inspection we see it is -1. Then

(2.7) factors as

o
]

GerD) (emxy) G - ;ﬁ—la (x-x,) Gx - ;1{?

(x+1) (xz—d1x+1) (xz-d2x+1)

(2.8
_ 4 .3 2 .
= (x+1)[x -(dl+d2)x +(2+d1d2)x —(d1+d2)x+l]
= x5 + (1-d.-d )(x4+x) + (24+d.d,-d.-d )(x3+x2) + 1
12 12 "1 72 ?
where.di = % + l/xi, i =1,2. Equating coefficients in (2.7) and

the last line of (2.8) we obtain

) pi'pz
(2.9) l—dl—d2 = —E——3 2+dld2—dl—d2 o
2 p2
If we define
20,-1 P -2p,+2p
(2.10) u = 2, G it 2 2,
0y 2
)
then (2.9) can be written as
(2.11) dl+d2 =y, 2+dld2 = v.



This system has solutions

=1 [ 42—y | = =220, - \’- 2_p02
(2.12) d;»d, = 2[“ + fuT+4 (2 V)] 7o [sz 1=t (2p2+l) 4p1},

2

and another pair with the roles of dl and d2 interchanged. Since
we want to determine the roots xj from xz—dix+l = 0, we see that
(2.12) gives rise to all possible different roots. They are given by

2 B D
(dl + d1—4), X, 2%, = 2(d2 + Jd2—4),

(2.13) XX —=%

Néte“thatJ<X1X3 = xzxg 1. We conclude that the roots of (2.7) can be

labeled.

(2.14) x, = -1, x, =

N =

2
d2+ d2—4), Xg

’2 1 _ 1
dl+ dl—4), X3=-}-{;, x4— 5

Substituting back =z = —PyX;s (2.6) has the following roots:

—292 —pz

—-p
- -2 “ 2_ - —2 -2 d 2
(2-15) Zl = p2, 22 = 2 d1+ dl 4 s 23 == ) F—’ 24 = 2 d2+ d2‘_4
d.+ds-4
_ 1V
_2p2
z2, = — ==
> 2
: d2+ dz—h

In general the roots (2.15) can be real or complex, .and some or all
can be identical. Hence the solution of (2.5)'will take different
forms depending on this fact. As an example, which will be also used

as illustration in subsequent derivations, if all roots are distinct

1
x4'

3

—1

[S—
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then (2.5) has solution
5 n
(2.16) £ = ) C.z; ,

where the z, are the roots given in (2.15).

Since L is defined only for n > 1, (2.5) holds for n > 6,
and the sequence satisfying the difference equation and for which
(2.16) is the general solution is 21,22,..w . The boundary conditions
to determine Ci’ i=1,...,5, «can be taken to be (2.16) for

n=1,...,5, with the left-hand sides evaluated explicitly as

Zl =1,
2
L, = 1-p7
2
(2.17) 23 = (1—92)(1+°2—2°1)’

o 2, 20, 0 b, by o 2 2 2
2y = Zg=(oyto, )t oy +oy)+2040,-2070,,

™
1]

2 2 02 2. 2 22
5 24—9123+20102(1—ol—oz+pz)-pz(l—pl-pz).

Following the same approach we expand LT in terms of the

components in its first row and find that

4

Lici ¥ Pl o ~ PPl gt 0oL 4= 0.

(2.18) 'Ln - oL,

The polynomial equation is

4 3 2 2 4
(2.19) Y = ey¥ F o,y - oege,y te, =0,



and after replacing x =y it becomes

)

4 4 33 32 3 4 _
(2.20) Py¥ = pyPyX + PpX = PP,yX + Py = 0,

which has symmetric coefficients and can be studied in the same way
as equation (2.7). The roots Vg 8 = 1,2,3,4, of (2.19) are

obtained from

1 2 2 . e ’ 2 21 .
(2.21) dl - 292 pl+ 91_492+892)’ d2 = 292 (pl— 91—402'*'8[32),
P 2p e 2p
2 2 2 2 2 2
y, = 5 d,+|d. -4 |, vy, = —F=—, y=—-‘d+d—4), y, = ———
1 2 . 1 1 2 dl+ ‘di—ll- 3 2 2 2 4 d2+ d%—l}

The particular case of all roots distinct leads to solving (2.18)

by the sequence

4 ®
(2.22) L = ] Cy, n=1,2,...

*
The four boundary conditions needed to determine the Ci's can
be taken to be (2.22) for n = 1,2,3,4 with the left-hand sides

evaluated explicitly as

1=pl,

2
Ly, = pi-0,,
(2.23) 2 Ll

=
|

3,2
3 = P1FPy01720490,>

2 22
4 = Pqlapy [(p7-py) -0, (07=p5) 1.

10
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Expanding KT by the components in its first row we have

(2.24) K =02 _=p,K 15 - n = 2,3,..,

In the special case that . is given by (2.16),

5

_ n-1
(2.25) K +0,K 1 =07 izlc,z

ii °?

which is a first-order, inhomogeneous, linear difference equation.
The complete solution is the sum of the .general solution of the
homogeneous case [é(—pz)n] and a particular solution of the inhomo-

geneous case. Provided that only one root (for ZT) equals Py

(2.26) K = 8(-p,)" + = p.C, 2 o% + Ez)c L0
. n ) 2 P11 0, P 7P sEy 1 Egre,

The second summand corresponds to the root z; = 0,3 no other zj

can be equal to p, in (2.26); if more than one root equals Py

instead of the factor 1/(z +02) we have to use l/2p2,

]
The new constant © in (2.26) will be evaluated from (2.26) for
n =2, with Kl = Dlo Note that
K2 = pl(l_pz)s
_ 2

~
I

2

P23 = PK 2K3-

13 3

11



With this background we now find expressions for the components
Wij of W, =X, . Since WT is symmetric we restrict attention to
the components on and above the main diagonal,

lst case: i = j. Then Weg = Bii/ZT’ where Bii is the cofactor

of Gii° In terms of submatrices

(2.28) B.. =

where g* has its upper right-hand element equal to 1 and all other
elements equal to zero. We use Laplace's expansion in terms of minors

of the first 1 - 1 colums; then

2
(8529 Bii = ZimafrosmPoliorog-1-

To make (2.29) valid for all i, we define 20 =1, Z_l = 0.
2nd case: i < j,
21 F 0
1+ } .
(2.30) 18, 0, B L., F ,
*

where F has its lower left-hand element equal to pl, the two

12
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adjacent elements equal to Pys and all other elements equal to O,

We expand (2.30) by Laplace's formula in terms of minors of the first

i~1 columns. In these columns there are three non-vanishing minors

with non-zero complementary minors, namely

(2.31) |z, 4l =2, 4
o
[
I 6 =
(2.32) Bz P2 Poli 2>
| °1
——— =1
0 icouar 0 | P2
and
Lo
|
K | o K
SRR S RO s
i 1
0 %6 o i © | Py
® *
where Ks is KS flipped about its secondary diagonal, so that |§S] = Ks,

If we denote by As(i,j), s = 1,2,3, the corresponding cofactors, then

i+,  _ e - .-
(2.34) (-1) Big T 2y 18 (50008, A (3,1 H0,K, 5A4(5,3).

The As(i,j)'s are computed using Laplace's expansion in terms of

13



the last T-j columns. Then

¢ o oy 3
Al(lsJ) = ZT_ij_i szT_jLj_i_l+pzzT_j_1Lj_i_2s

° s — 2 - 2
By (153 = Ty oLy g 1=pply g p)=eoKp y(oqly 4 o=ppls s o)
(2.35) 3 2 .
-ooL,
+p22T_j_l(ple_i_3 Py 3_1_4),
A,(i,3) = pyZi,_.L ~p2Ky_.L 40, L
3(1s 22r-3Py-1-17P2 Ko sLymi 2P Br_yo1lyoi-3e
For § = [T/2)+1,...,T, say, these formulas are valid for all {i < i,

provided we define ZO = LO'= 1, 'KO =0, Z_S =L g~ K—s =0 for

s > 0, For j < [T/2]+1 similar arrangements could be made. In fact,

due to the structure of WT we only need to compute those components of
the last [(T4+1)/2] columns on and between the principal and secondary

diagonals, and then deduce the remaining components using the éymmetry

of WT and its persymmetry (symmetry with respect to its secondéry

diégdﬁal). They lead for example to

(2.36) w 1=4,...,T=3; 3= 1,2,...,[T/2]. .

13 © Vrei41,T-§+1°

We summarize these results as follows:

Proposition 2.:1. Let I = ;+plgl+92§2, with Py # 0, and

ST
(T)
13

L =W, = (w

Lo Wer ). Then

B

it By | |

.30 W = DT ALy e g g - /20,
T

14



where the Bij are given in (2.29) when 1 = j and in (2.34) and

(2.35) when i < j, in terms of the determinants ZS,LS,KS, which

are defined in (2.2)-(2.4) and. satisfy. the difference equations (2.5),

(2.18) and.(2.24), .respectively. The remaining elements of (WT are
@ _ @

obtained using w

ji and (2.36).

ij
- g . _ 5 o _anyit] _
If p, =0 but oy # 0, then L_ = Pys st-plLS_l,( 1). Bij =
- PR b £ .
Zi_1A1<l,J>, Alclgj) Py Ip_ye and the solution reduces to
() §-i Pa-17-3
(2.38) wiyt = (-ey) 5 ,

T

which ié of form given, for example, by Shaman [12].

Hence, in principle at least, this method gives a complete
gsolution to the problem of finding §;lo For large T the computations
involved may be quite laborious. As we saw in (2.29) the components
along the main diagonal are functions of the I determinants only;
but if i # j, even in row i = 1 we already have all types of
determinants. In effect

>j+l = 3

(2.39) Zp (-1 R T LS S, ORI T

j=2,3,...,T.

15



3. The inverse of I + pgl by solving difference equations.

1

A different approach will now be used to find 3~ = WT in the
case of m= 1, that is, ET =1 + pgla Of course, we assume p ¥ 0.

By the definition of an inverse

(3.1) I = g Wp = (I+0G)Wp = WytoG Wo.

In terms of components (3.1) is

(3.2) 8 j=1,2,...,T3 1=2,3,...,T-1,

13 T PYg 1Y,y

1,2,...,T (i=1),

o
II

(3.3) §,, = w1j+pw

1 23°

(3.4)

[og]

T3 = pr—l,j+WTj’ j=1,2,...,T (i=T),

where .6ij is Kronecker's delta function. We consider the solution
of (3.2) as a second-order, linear difference equation in i, for each
fixed j; that is, we proceed column by column. The associated

polynomial equation is
(3.5) px2 +x+p =0,

which has' roots

(3.6) NS TS BT . = 1-Y1-40°

1 2p > 2 20

16
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l For any p ¢ 0, XX, = l. For covariance matrices we further
.] restrict our attention to the case |p| < %, Hence lei <1 and
!

|x2| > 1, or Ix > 1 and lx2| < 1. We choose to present all

|

”] results as functions of Xy |x1| < 1.
The general solution of (3.2) in the homogeneous case is then
1]

] (3.7) vy = AR

To find the complete solution we must take éij into account. This

can be done for example by expressing Gij as a linear combination

‘ of sines and cosines, since it is true that
(3.8) (§,.) =1 =mM",

where M is orthonormal. See Anderson [3], Section 4.2.2, Instead

of this direct approach, we shall use (3.2) only when Gij = 0; in

( particular we shall restrict attention to the Wij's above and on the
main diagonal.

i Let us consider the T-th column first. Its components satisfy

1Tt P (row 1),
5' O SiPMyp o opH ¥ (zow 2,
(3.9) . . ,
i Q= LI + Vro1,T + PWop (row T-1),
l L= W 1,t t Vor (row T).

17



The equations from rows

(3.10) W, = A(T)x +B(T)x

iT

The equations for rows

to find A = A(T) and

0= (Axl

2 g

through T-1 have as solution the sequence

1 i=1,2,...,T.

1 and T will be used as boundary ﬁonditions

B =

-1
+Bxl

B(T):

-2

2
) + p(Ax1+Bxl )

= Ax (1+pxl) + Bx (x +p)

- _ b =2 w2y o _
= Axl( <) T Bxl ( pxl) p (A+B),

1l = p(AX

_ [AXT+1
Hence
A(T) 1
(3.11) \ =
T+1
B8(T) 1
and
(3.12) = L
: Vit T 2T+2
p<l—x1

1

T- l

-T

) + (Ax +Bx1 )

l

(p+xl) + Bx (px +1)

~(T+1),
x] .
=] ;
1 0 1
XT+1
= 1 R
~(T+1) - o (12> *%)
) - -1
P

T+1+i_ T+l—i

(x )s
) *1 1

i=1,2,...,T.

18
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We next consider the (T-1)-st colum, for which the set of-

equations is

0= W11 t oWy pg (row 1),

0= pwl’T_1 + wst_1 + pWS,T—l (row 2),
(3.13) . : | .

O =owp 3 pog ¥ ¥pg 71 T PVpog 11 (row T-2),

1= pWT—Z,T—l + wT—l,T—l + pr,T—l (row T-1),

0= pr—l,T—l + Vpopog (row T).

The equations in rows 2 through T-2 have solution LA
b

A(T-l)xi + B(T-l)xllo Row 1 provides one boundary condition and

row T«1 the other, provided we make the value of w explicit

T,T-1
(Rows 2 through T-2 involve W oo only up to i = T-1.) Since
2

WT"is symmetric, this is achieved by letting w, where

~

T,7<1 = Yr-1,T°

Wp_q p Was already evaluated in colum T.
H
In this manner we proceed column by column to derive a general

expression for Wij’ i < j. We now prove that for s =0,1,...,T-3,

say,
2 2s
(3.18). v, o a i R N
Lt A F N 1 > hl
o(l~x1 )

19



We already proved that (3.14) holds for s =0 (j = T). Suppose
it holds for s(0 < s < T-5, say); it suffices to show that from
this assumption we can show it holds for s + 1.

Column T-s-1 gives rise to the equations

0= Wi pog-1 T PV Teg-10
= § = 2 — G n
(3.15) O oW1, 7-s-1 T Vi, T-s-1 P P14, Tos=1" i=2,3...,T-s=2,
1=op

+
Vreg-2,T-g-1 | "Tes-1,T-s-1 * P¥T-g,T-s-1°

and other equations for components below the main diagonal. We use

the first and third lines of (3.15) as boundary conditions to

determine A(T-s-1) and B(T-s-1), taking Vg, T-s-1 = VT-g-1,T-g -

W “as given from the known solution of column T-s. The equations are

A(T-s-1) + B(T-s-1) = 0O,
(3.16)

A(T—s—l)xi_s + B(T—s—l)x£T+s L %

2

and the solution is

A(T—s—l)\ T-s -1
(3.17) ot NS S -;—)

: l_XZT—Zs
B(T-s-1) 1 1

20



S

T-s 2s+4, .. 2T-28)
x) i l_(l x] )1 x] -1
. 2T-2s 0 2 2T+2
l—xl (l—-xl)(l—xl ) 1
2 2s+2
) 1+x1+”.+xl XT_S 1
212 e 1)
Hence
2 2s+2
+X_F oot .
(3.18) w _ St %1 (oISt [ T-s-i e
° i,T-s-1 2T+2 1 1 ’ ’
p(l-x1 )

which is what we wanted to show.

When s equals T-=1 or T-2, i.e. when we deal with colums

j =1 and 2, the system (3.15) does not hold because then most

of the components in the column are below the main diagonal,
WT is' symmetric with respect to its two main diagonals,
from the components in columns T,T-1, etc. we can deduce th

columns 1,2, etc., respectively, by means of the relations

(3.19) Wij'= Wji = WT—i+l,T—j+l’ : i,3=1,2,...,T.

Substituting j = T-s in (3.14), and (l-xis+2)/(1—xi) =
1+ xi +. .0+ xis,' we have

21
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- Proposition 3.1. Let §T = I, + oG
-1

ET = WT = EW§§))e Let x; = (1/2p) (-1+ i—4p2) and assume that

1° with p # 0, and

144p2 > 0. Then

1 2T-25+2

T 1 j+1+41 +1-1 . ..
(3.20) wij) = 5 s (xi = xi M, §=1,2,...,T3 1 <.
p(i—xl)(l—xl )

Two different forms of this formula are derived in the Appendix
using a different argument.

Shaman [12] gave this result as

~TH=1__, yT-3+,

@ DITME T titer) ~x,)

H Vimio? [ ™ hm (o)

w
+

Xl—T+j—1

(1_X§T—2j+2) (xii_xi)

xl_T_l ql—4p2 (l—xiT+2)

_ 272342
1

(3.21)

p(l-Xi) 1
xl\l—4p2 p(l—xi)(l—xiT+2)

= -

41+ j+1-i
(xg - Xi 1)s

which agiees with (3.20) because the quantity inside the brackets
equals 1.
From (3.20) we can derive some approximations, provided [xl[ <1

and T is large.” Taking i < j as in (3.20) we have

22




—24+2, ,_ f+1+i  41-i
(qy (oA I,
(3.22) Lo = - 5 s for any 3J;
p(l—xl)
G414 +1-i
(3 23) (T) = xl xl o
.23, w0 = - . for j small;
. p(l-Xi)
Y 14
- <l_xiT 23+2)x2 1-1
(3.24) Wij = - R for j 1large,

p(l-Xi)

In particular, under the same assumptions, we have that the

following approximations are very good for columns 1 and T:

T+1-1
X

~_ 1 (1) o 1
(3.25) well ¥ - o * Wi E 5

The present author [10] found use for approximations like those
in (3.22)-(3.25) in developing some asymptotic statistical theory,
since the omitted parts behave like xi or xiT, and when |xl' < 1

they could be safely neglected for limit purposes.

Shaman [12] gave the approximation

j+i-1
X1

= = s all j, 1<,
ij 1—4p2 xl(l+2pxl)

based on a different argument.
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4. The inverse of I + P16 t 0,8 by solving difference equations.

We now apply the basic idea of Section 3 to the case m = 2,
that is, gT =1+ 9191 + 9292’ Py # 0. ET is assumed positive -
definite, but otherwise no further restrictions are placed on Py and
Py Then .

(4.1) I = ZpWe = Woto G Wotpn G Wy

In terms of components (4.1) is, for all j,

(4.2) 61j = wlj+plw_2j +p2w3j (i=1),

(4.3) 62j = P1¥1 5 +w2j+plw3j +92w4j (i=2),

(4.4) 844 = oWy g 4101¥5 1 Wi IVigr 41P2V440 5 0 1=3,4,...,T-2,
(4.5) aT—l,j = pZWT—3,j+plWT—2,j+wT—l,j+plWTj (i=T-1),

(4.6) $ +w (i=T).

4 = P2¥ro2, 5P 1Yr-1, 5V

We plan to solve the equations in (4.2)-(4.6) for each column

(j fixed) to find the components of W, above the main diagonal.
The characteristic equation associated with the fourth-order linear

difference equation (4.4) is

o

hs 3.2 B
(4.7) x +plx +x +p1x+p2_— 0,

°2

or dividing through by p,(p, # 0),
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P p
(4.8) x4 T x3 e x2 + = x+1=0,

) ) )

Since (4.8) is symmetric in its coefficients it can be treated as

equations (2.7) or (2.20). We are thus led to find the roots of
2
(4.9) X —dix+l = 0, i=1,2,

where the di satisfy the system

(4.10) d4d, = - L 244 d, = -
: R T 1% =5

This system is like (2.11) and hence has solutions

Py

)

o
- Ll 1
(4.11) d1 = 2{ 5, +

and the four roots of (4.7) can be labeled X1 1/x1, X, ]./xze
If the roots are distinct, the solution of (4.4) in the homogeneous

case is given by the sequence
» *oo .1 koL =i i, ¥ oo =i .
(4.12) Wij = Cl(J)X1+CZ(J)X1 +03(j)X2+C4(J)X s  JB142%ss o Ty 1=1,24.4 &, T

If the roots are real and either X, =%, or x = 1/§2, then the

" solution can be written as
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(4.13) Wiy = [Cl(j)+i02(j)]xi+[c3(j)+iC4(j)]Xii, 2 G o O SRR,

For the sake of illustration we now consider the evaluation of

the constants in (4.13), where we take lxll < 1. This case arcse
2
2p SIRED
[ °
1+2p2 ) 1+2p2

in the study of Walker's paper [16], with py =
See Mentz [10]

The components in column T of WT satisfy the equations

0= Wyp FPiVar F Ro¥ap

+ Wy, +

OFs 2T

©

13T T PWur (row 2),

P1¥1T
(4.18) 0 = powy 5 p ¥ 0qWs g o F Wy ¥ P¥ypg p ¥ P¥ygp pp 17 35000 T2,

0= W,

Po¥rg r T P1¥p_g ¢ T Vg 7 P1VpT

L=ey¥p g p ¥ Py¥r g, 1+ Ypr

The solution of the difference equation for rows 3,...,T-2 is (4.13).
We can use the equations for rows 1,2,T-1 and T as boundary
conditions to specify the Ch = Ch(T), h =1,2,3,4. For example the

first equation gives

2

o
f

=1 2 -
{C1+Cz)x1+(C3+C4)x1 +p1(Cl+2C2)x1+pl(C3+2C4)x1

, 3 -
+92(C1+302)x1+p2(CB+3C4)X13

~ 2. 3 2 3 -1 2, -3
(4.15) = Cl(x1+plxl+p2xl)+C2(x1+201x1+3p2x1)+03(x1 +plx1 +p2x1

)

-1 -2
+Ca(xl +2plx1 +3p2x1

1t

C13117Cp315%C38) 5+Cs 2145
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[

[

et

say. The

(4.16) 0 =

remaining conditions lead to

3

-1, -2, -3, _-4 -1, -2, -3, -
FC3(p gy Thxy o X, Togx; HC, (o yxy H2x) 30, x) THhopx)

ni

T, 3, 2
+C3x1 (p2x1+plxl+x1+pl)+C4Tx

Cyx183;1C, Tx 34,

i1t

C13y1%Cya),+C3ay31C a5, 3

- 2 - by, 2 3 4
= Cl(plx1+xi+plx1+p2xl)+62(plxl+2x1+3plxl+4p2xl)

-3,T7-2

)

~2,T-1 -1

T -3 -2, -1 T,T-3
Clxl(pzx1 +p.lx1 +x1 +pl)+C2TxlC—T—p2xl +—="p

TP1¥) Tp % e

T T_(0)

-T

+C.x

371

a

-T ,T-3
1 O
-T_(0),

337C, T ag,7 3

3,72

Po¥ T P1¥

T T-2

- T -2 -1
—-Clxl(pzxl +p1X1 +l)+C2TxlC—T—p

~T ,T-2

2. 7-1 -1,
¥y TF P1¥Xy D)

~T 2 2.7-1
+C3xl (p2Xl+plxl+l)+C4TXl (—Trp2x1+—T—plxl+l)

T T (0) -T

= Clxla41+C2Txla42

3%y 853

-T_(0)

+04Tx1 a44 .

2 T--lXl+p

1t T 1’

The use of the superscript "(0)" will be clarified below. If

c(T) = (Cl(T),Cz(T),CB(T),C4(T))' is the vector of constants for

colum T,

c(m

(4.17)

then
411 %12
491 )
(0)
a Ta
1 31 32
1
(0)
41 T8y

13

27
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(0)
Tag,

g
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-1

41 412 9V (B Bag| [9) [Bypv
= = = "
(0) ~-T,(0) _
1A2 %) 49 E By1 Bopf W 222y

where u = (0,1)' and the introduction of the A .'s and B,.'s is

self-explanatory. - By partitioned inversion

= [T, (0)_ T, (0) (0)__ 2T, (0) =
Byp = (%1 Ay 1A21 A11A12] [ 2 21 AllAlz)
-1
2T_(0) 0) . 2T (0)
333 T X, q35 Tag,” *+ %) a4,
= XT
1
2T_(0) 1a(® 4 2T ©)
(4.18) 843 T %) Q4 T3 pn b %1%,
(0) , 2T (0) (0) _ 2T (0)
T[T T %y Y4 “Ta3,7 - XTqgy
X
= -1
-5 ,
2T (0) 21_(0)
3 T % Y3 833 T %) 433
where
i 2O 0 ®e 112 (s (@400 OO, (O
by = T{3333,, 33, 43) ( 3394 13, 935 -Ta3,7q,3"-3, 443,
(4.19)
4T( (0) (0) (0)_ (o)
33 944 "3 934
and (0)) = - (0) Note. that q(o> '(0> "(0), for some

11 12° Ay = ¥ 9y
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'(0)

coefficlents qij and q

1" (0)

13 that depend on T only through

‘expressions like (T-t)/T, . t = 1,2,3. Note also that

(.0 o (0) ©  _ (0
T |[T244 Tag, s 3y
=) 2T
(4:20) §22 = Z—(; + xl
& i L0
43 33 93 933
3 ) =
NoW
‘B, = -ATTA B
2 1210502
§ ©) .. (0) (0) (0)
xT . Ta44 Ta34 q44 —q34
1] -1 2T -1
"3, ~411%12 - X A4
- (0) {¢))
(4.21) 443 833 93 9337/ |
' (0) ' (0) "(0) "(0)
R b3 big b3 by,
_ x| 4+ 2T ’
B, 1
'(0) '(0) '"(0) "(0)
P23 Py CER T

say. Hence 512 and Bys have the same kind of structure. Finally

we have that
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'(0) + b"(O) 2T

14 X1
) L "0 2T
7| Pas " T By, %
£y
(4.22) o(m) = ,
0| 7o ) _ (02
Tagy” —q34'%
(0) 2T
833 T d337%;

and this completes the solution of (4.13) for column T.

For column T-1 the set of equations is obtained from (4.14) by
replacing” T by T-1 in the column index of Wij’ and interchanging
0 with 1 in the left-hand sides of rows T-1 and T. All

components w, i=1,2,...,T, satisfy the homogeneous difference

i,1-1°
equation and hence the last two equations in the set can still be

used as boundary conditions. Hence

'(0) , ,"(0) 2T
13 T P13 'x

B ) L "(0) 21

r| P23 23 %1
*1
(4.23) C(T-1) = 3=
0 1a(® 4 ¢ (0) 2T
o, T 9, %
. (0) 2T
“843 T Y3 %
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The remaining. components.on and above the main diagonal can be found
using Proposition Al of the Appendix. "It is argued there that in the

present case condition (A.1l) can be replaced by an equivalent one

.relating the first two rows to each of the remaining ones. The

conditions we use here are

(4.24) ' 8, v,
R

14 W, ., i=3,4,...,T5 §>1,

31921925 = Vi3

for columns j = [T/2]+1,»--,T;cf; Greenberg and Sarhan, [7]. Then
the following steps will provide the needed components:

Step 1. Find columms T and T-1 of WT’ from (4.12), (4.13), or
similar, and (4.22), (4.23), or similar, depending upon the nature
of the roots of (4.7):

Step 2. TUsing (3.19) deduce rows'l and 2 from columns T and

T-1,

Step 3. Determine the proportionality constants est in (4.24),
from columms T and T-1;

Step 4. Using repeatedly (4,24), find those components wij satisfying

i = j’°°°3T_j+1; j = [T/2]+1’toe"T"2e

Proposition 4.1. Let ET and wT be as in Proposition 2.1. Then
(1),

15 °

Steps 1 through 4 described above, together with (3.19).

the w are determined by means of the procedure consisting of
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Proposition 4.1 gives a constructive way to obtain E_lb We

now proceed recursively as in Section 3, trying to gain some insight
into the final form of the WS)'S; and to suggest some approximations.
It must be anticipated that for this case, when m = 2, it was not
possible to obtain a closed, explicit expression like that of (3.20)
when m = 1.

From the solution of columns T and T-1, namely (4.13)
together with (4.22) and (4.23), we can derive sequentially all

columns of Wi. Consider column T-s, for s = 2,3,...,T-5, say.

Its components satisfy the equations

Wi,T-s - P1¥2,1-8 P2¥3 g (i=1),

+w

P1¥1,1-¢ 2,T-s  TP1¥3 1 P2V, g (i=2),

0= 1= —y -
(4.25)% = Po¥3o9,1-8 *P1¥i-1,1-s  i,1-s  TP1Viel,1-6*P2%i42, 1> 3735000, Tm82,

+w

= PV -3, T-6TP 162, T-s ¥ r-5-1,T-s P 1V -5, T-s P 2¥ 1 st+1,7-s (1=T-s-1),

+w (i=T-s) >

= PV g2, rstP 1V s-1, s V-5, -8 TP 1V T-s+1, T-s TP 2V T-542 , T-5
plus other homogeneous equations for rows i > T-s.

The solution of the equations in rows 3 through T-s-2 is
given by the sequence (4.13) for j = T-s and 1i=1,2,...,T-s. The
equations for i = 1,2 in (4.25) provide two boundary conditions. Using
the symmetry of WT we can link the equations for rows T-s-1 and T-s

with the components in colums T-s+1 and T-s+2, which we take as

£
=W

i and w

known, by letting w

T-s+1,T-s ~ "T-s,T-s+l T-g+42,T-s
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Wk
= Wpog,r-s42 T Vs °

(4.26)

0¥ g-3,T-s P 1¥ =52, T-6

PoV¥peg-2, -5 P1¥T—s-1, -5

P1Y1,T-5

Hence the boundary conditions are

Yy, T8 oWy pog™Po¥3 g = 0s
Wy s 0¥y gty o = 05
N
+WT.—s—l,T—s+plWT—s,T—s = TPoWg»
e 1 E3
T-g,T-8 = LTPVsTRV,

These equations can be solved as we did in (4.15)-(4.23) when

s =0 and 1.

The system for s = 2,3,...,

T-5 is

-1
11 %12 Ay Ay Y
(4.27) d21 %22 wE Y 0
C(T-s) = ‘ ,
ey a (8) oy a(8) *
az; (T-s)ag, agy (I-s)ag, —PyWg
T-5 -T+s
1 ¥
oy 2 (8) (s) * *%
3y (T-8)a, 2,3 (I-8)a,, P WPy
where for s = 0,1,...,T-5,
(s) _T-s-3 -3 , T-g-2 -2 . T-g-1 -1
830" = TTos Po¥y T g Pi¥y YT ¥ tepo
(s) T-s-3 3., T-s-2 2 T-g-1
a - 2=8=3 1-s=Z L=8=1
o 34 Tos Po*1 T i P1¥1itTs *at e
(8)  T-s-=2 -2 T-s-i -1
a42 T T-g ple * -s p1x1 +1,
(8) _ T-s-2 T-s-1
44 T TTs Po*i S %t 1.
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By an argument parallel to that of (4.17)-(4.23), it follows that

34

'(S) V(S) "(_S) "(S) 7 %
b3 b4 | by3 D14 ~PoVg
|+ x‘;(T_S)
: (4..29) '(S) '(S) "(S) "(S) = ek
s P23 P24 P23 P24 P1Ys P2
Q(T—s) = i
7l -
ey (8) (s) (s) (s) ®
(T-8)a,," ~(T-8)ay, Qs 34 ~PyWg
+xi(T_s)
( ) ( ) * E T
L\ %3 %33 443 935 J P ¥sPavy
where
~ () (8 2(T-8) [ r_ () (8)__(s) (5)
by = (T-s)(agqa;,"~ag,” a,3)-%; [(-9) (3537 0,5 -2,57 4537
: (s) (s) 4(T-8) , (8) (s) (8) (&)
+(8, 343, 3339, )]+x1 (4,47 933 ~d43793,7 )
(q§§)) = AT AT, 1.3 = 354,
(4.30) ' (s) " (s) (8 (s)
big b4 (T-8) ~(T-8)ag,
i
= 41180 ’
'(s) '(s)
23 bag "33 333
"(s) "(s) (s) (s)
b3 P14 U4, a3,
-1
= ~81181) ’
"(8) "(s) (s) (s)
23 b2 7943 433
and the éij arise from (4.27).
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From (4.29) it is clear that we can justify the following:

Proposition 4.2. Let %, and W, be as in Proposition 2.1. Then

tp 2mc ¥p
‘the 'w(§)' “have the form
(4.31) wi(T)_ = (F +iF, )xT S+i+(F3+iF4)x:{—s 1+(F +iF )x3(T 8)+1
H]
+(F +1F8)x3(T s)- 1 8 = 2,,..,T-5; i< T-s,

where the Fh's depend on s (column index), provided equation (4.7)
has roots X = Xy Xy =X, = 1fxl.

Analogous expressions can be derived for other patterns of roots.
We omit those details here.
For many purposes it appears that in (4.22) and (4.23) one can

discard the part with xiT as a factor, and further approximate AO

in (4.19) by its first term. Then

/ '(0)

14

'(0)

T 24 T
1 X

X
22O [, G(1-1) = L

(4.32) ¢(T) =

- (0)_ (0) = (0)_ (0)
T(agqa,,'~a3,73,9) [ 34 T(a358,, 23,7 8;5)

33
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Further for T-s reasonably large, can

be taken as equal for all relevant s, and respectively equal to

-3 | _
agy = PpX) F 09X F X Fpg = a4,
= 3 -
834 = PpXy . Foy¥y KXt 0y = 344,
(4.33) e 5y
Ao = Py¥y + 0%y + 1 = 840
 ve g 2 - g
ar iy s AT =Fpg

Then there would exist more similarity between (4.17) and (4.29)
for g > 0, and;the computations in the recursive procedure will be

simplified,
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5. A general case.

In this section we analyze the general case

m
5.1 .= Y p.G.,

where 90 =1, Pg = 1, o # 0, and 1 <m < T,

The approach of Section 2 can in principle be attempted to find
. _ (T) -1 : A
the components Wij of WT = ZT . By a careful examination one can
find out which of the non-zero minors in the first i~1 columns of the
cofactor of Gij have non—-zero complementary cofactors.

We observed in the case m = 2 that we needed three classes of
determinants satisfying linear difference equations of orders 5, 4
and 2, respectively; of course if these classes could all be reduced

to a single one (say the ZT)9 this would be achieved at the cost

of augmenting the order of the difference equations involved. Hence

(T)

in general we expect complicated expressions for the wij .

The approaches of Sections 3 and 4 seem more promising to find WT’
or at least some of its columns (or rows). By the definition of

inverse

| m m
(5.2) L= W= [ 0.GHy = Wt ] o

which in terms of components is
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(5.3)

5. . -
1j Y13

5 =

23 P1¥15 V24

6 A = a e 0

i Pr-1¥147 " P11, Vg
5, = can

ij Pn¥i-m J+ +p1 i-1,j vy ij

8 = A+ :
Tomtl,i © PoT-2mtl, 3T PV, Y rime 1 g
8.5 = o+

T4 P, 3T TPV g, 5 TV

This system will be solved for each j

+o1Ws 4 teto g,y (=D
+ B s 5 0 i=

plW3J + +mem+2 e (1 2) >
FoyVngr,y Tty g (A=),
+plwi+l,j Feeotp o itm .4 i=m+l,...,T-m,
T gt oWy (RTmmD),

(1=T).

(fixed column) and i < j, that

is, for components above and on the main diagonal.

The linear difference equation of order 2m corres

ponding to

rows mkly...,[-m, in the homogeneous case, has the associated

characteristic equation

_ 2m 2m-1
0= pmz + _12 +=oe+pm
(5.4)
2
= 5 (2 m+l)+ -1( 2m-1

which is symmetric in its coefficients.

Dm(pm # 0) we have

(5.5) 0= (z +1) +

Pm- 1( 2m-1
p

m

38
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m

m+l m-1
+20 )+
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Dividing through by
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The roots of (5.5) occur in pairs, zj and l/zj(zj # 0)., Hence

(5.5) equals

(5.6)

where

(5.7)

or

(5.8)

z 1 D
0= 1 (Z-ZJ) = 1 (Z-zj)(z - E—) = 1 (27-2zd .+1),
ji=1 j=1 j j=1 N
d, =z, + . 22 -d,z. +1=20 j= 1,2 m
j j sz j jj 3 > L ]
: 1 ]2 ;
zj = E{dji dj—4), J = 1,2,...,m,

Equating coefficients between (5.5) and (5.6) we are left with a

system of nonlinear equations to be solved for the dj'so We already

found they are given by (4.10) when m = 2; when m = 3 they are.

(5.9)

Pa
e a,*d, +dy,
Py
. 3rd,d,+d A hd,d s,
-l 2a.42d.42d.+d.d.d
o 172d,%2d4+d, d,ds.
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In general we will have m nonlinear equations to be solved for
dl,,uu,dm. Even when the order of the difference equation is 2m,
the system is of order m. The system and (5.8) will furnish the
2m = roots of (5.4), say, Zl’l/zl’°'°’zm’l/zm“

"The procedure can be viewed in another equivalent formulation.

(5.5) is equal to

m
0 o -;I_-__ zm + z h (Zm+h+zm“h)
pm h= pm
(5.10)
m P _
=iz 42 ) SRRy,
pm h= pm

Let us substitute s = z+l/z = (22+l)/z, i.e., zs = 22+l. Then

st = (zz+l)n = zzn+l+nz2[zz(n_2)+1]+...+(252n, if n = 2r,
/(5°11) - 22n+l+n22[22<n“2>+1]+.,.+(:)zn_l(22+l), if n = 2r+l,
and after successive substitutions
(5.12) 2204 = .z‘n(sn+cnzsn'2 o),
for some coefficients an° Using (5.12) we see tha? (5.10) becomes
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m p 2h
0= zm{-l—+ ) bz Zl}

°n  h=1 Pm z

m o
(5.13) - zm[l—-+ ] RisMo " ﬂ
P h=1 "m
= vl {Jl tee ot (——'+° 4 s
p Om

where z # 0. For full details see Anderson [4].

Hence we have reduced the problem of solving (5.4), which is a
polynomial equation of order 2m (in z), to that of solving
(5.13), which has also a polynomial equation (in s), but of order.

m. Once Sysce++s8 ~ are available, the roots of (5.4) are given by

2 2
S S S 8,
i i 1 i i R
(5.14) Zi=-2—- 7 -1, —z;=—2—-+ 5 -1, i=1,2,...,m.
If Z9sZgseccs2 ~ are distinct, then
(T) T I S
(5.15) L [C (D zte (D] i< 3
The form (5.15) will have to be altered if some of the zh's coincide.
The 2m constants in the final expression for w( ) can be

evaluated from boundary conditions extracted from (5;3), for each j.
In particular for columms 1,2,...,m and T-m+l,...,T, theé boundary

conditions are just the first m and last m equations in (5.3); in
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fact one of: the resulting linear systems will determine the constants
for. all columns:

To determine the rest of the components, say, above and on the
main diagonal, we can use the two approaches introduced in Section 4:
the procedure involving the result stated in the Appendix, and the
recursive procedure that works column by column.

Application of the result in the Appendix leads to:

Proposition 5.1. Let I, be given by (5.1), with Gy = I, pp=1,

T

-1

=W = (D
r = Wp = (wij ). Then the

and’ Pr #0, 1l <m<T, and let J

.w§§)13' are determined by means of a procedure consisting of the

" following  four steps:

. Step 1.  Find volums - .T-m#l,...,T of WT from (5.15) or similar

expreskibns;, depending upon the nature’ of the roots of (5.4), where -

. the "2t * constants are’.evaluated from boundary conditions: provided

by the first''m and last m equations in (5.3);

Step 2. Using (3.19) deduce rows 1,2,...,m, from columns

T=m+l,...,T}

Step' 3. “Determine’ the proportionality constants est in

t]

(for colums J3=[T/2]+1l,...,T-m) £from columns T-m+l,y...,T;
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Step 4. Using repeatedly (5.16) find those components wij"satisfying

i=j,ee0sT=j+1; ' j. =[T/2]+1,...,T-m, and all others using (3.19).

The application of the "column by colum'" procedure can be

summarized as follows:

Proposition 5.2... Under the same hypotheses of Proposition 5.1, the

for i <°j are given by (5.15) or similar expressions, depending

upon the nature of the roots of (5.4). The .2m constants are

-~ evaluated ‘from boundary conditions extracted. from the system (5.3), as

- .follows: - For columms T,Thl,goe,T—m+l, the conditions are the first

m  and last m. equations: in: (5.3); for columms .j = T-m,T-m-1,...,[T72]+1,

say, wWe assume that columms j+1,j42,...,j+tm are already available,

and then the conditions are the first 'm equations, plus eguations for

rows Gem+l,...3J with the substitutions

(T) (ry . %
Yi+l,5 T V3,341 T V130
ICONN ¢ O B
32,5 T V4,342 = V230
(5.17) ¢
¢ %
SO @

2 . =W, = W .,
jim,j jsjtm mj’

" the' remaining' columns-  can' be obtained using (3.19), by symmetry of

WT’
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To prove Proposition 5.1 one only notes that (5.16) is equivalent
to the condition of Proposition A.l in the Appendix; see comments: ;
there.
To prove Proposition 5.2 we note that for column j,[T/2]+1<j<T-m, !
..theﬁCUmpletE'system.of,eduations.is composed of the first m in (5.3),
plus- the homogeneous eguations

(5.18) - Weo F

1], hed =0, 1= o+l ,m2, ... ,j-m,

i

P b, 14n 30

plus equations

0 = : g gk et s
Pnjeamed, 5T P I e, Y e, 5P LY w2 g P g,y (BRED),
(5.19) " o : . ;
0. = o o+u o oo . . e (5=
P sem-1, 47 O gag Mgy Iy Tty gy GRIRD),
1= W, oeeedpow, o g e

plus other (homogeneous) equations for rows i > j. The sequence
satisfying (5.18) is Wij’ i=1,2,...,j; 50 that the components in
the left-hand sides of (5.17) have to be obtained from the columns
already determined.

Note 1. To avoid vacuous statements, T 1is taken to be large emnough
compared with m.

Note 2. In Proposition 5.2 the equation for row j is inhomogeneous,
and all other are homogeneous (i.e., &., = 0).

i3
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"Note 3. In some particular instances the procedures described in

Propositions 5.1 or 5.2. or both will disclose an explicit general

(T)

“expression for w,;.;’, 1 < j, as was exemplified in Section 3.

1]
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6.~ An approximation.

"~ Suppose I is T x T of Toeplitz type with components
that satisfy (1.5) for some m, 1 < m < T-1. Further suppose that
oo,olg,uu,cm,0,0,,a. are the covariances of a stationary process
(that is, a covariance matrix of any order with these elements is

y
positive semi definite).. Then one can always find coefficients
uo,al,,.g,am such that L = ZMA’ the covariance matrix of a vector
et 1 ) . " "

3 b 8

(xl ot oi xT) of' random variables generated by the "moving-average

model”

(6.1) X = e+ a

OISR SRR B oeeey=1,001,...,

t-1 m t-m’

where the et'S“"arE“independent, §et'= 0, fti =1, for all t.
See, for example, Anderson [3], Chapter 5.

This way of:looking at I gives rise to a different approxi-
mation for §—1 “that is frequently used, at least for small wvalues

of m, and that we now discuss in the general case. It consists in
(6.2) Y- & I

where. §AR is the covariance matrix of (V1’°'°’VT) generated by

the "autoregression"

(6.3) Ggy, t oy gttt oy o= e, t = co0,=1,0,1,...,

46
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where the ¢

¢S have the properties of those of (6.1).

Let Iy = Lo, (1,11 = Loy, G-D 1, Iy = [o,p(1, 1] = [oppG-D].
The autoregressive covariances satisfy the Yule-Walker equations
m m

6.4y - - urOAR(—r) = l,_ z urcAR(s—r) =0, 8= 1,2 .50
r=0 - =0

if the roots ”xl”"’xm of the polynomial equation

. = I m_l * 80 =
(6.5) M(x) = agX + o)X Feoeot o 0
are different, then
m
*
“(6.6) o,g(M) = ) st:, h=1,2,3,...,

*
and the  constants Ké are determined from the first' m equations in

(6.4), namely

1= uOOAR(O) +oo e um_chR(—m+1) + uchR(_m)’

I

(6.7) : 0 uOcAR(l) oot um_lOAR(-m+2) + umOAR(—m+l),

= uoOAR(m—l) dro o o um;chR(O) + uchR(-1)7

together with
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(6.8) 0,5 (-h) = 0 ,p (0 h=1,2,...,m

-1

see Anderson [3], Chapter 5. Hence if EMA = <W£§))’ then

69 w® ionap - TS T k@t f
o ij = UAR. 1,3) = ) SXS =/ % j XS s J 21,
s=1 s=1
N * 3
where Ks(j; = sts is constant along columns of ZAR' We want to

compare (6.9) with the exact form (5.15), that is, with

g1

ij U}MX(O) :

T) 1 : I SRR S
(6.10) _ w< )=_ e S;l[cs<3)zsl+cs(3)zsll, j > i

here the zg are taken to be distinct, and they, together with their

"~ reciprocals; are the 2m roots of (5.4), that we now write as.

2m
0 = UMA(m)z +o oot OMA(m)

(6.11) = 20y, (2" +o e ot oy, (m)z ]

a B

= g l GMA(h)zh,
=~

because OMA(h) = GMA(—h); since no root equals zero, this shows that

zl,wg,zm,l/zl,“egl/zm are also the 2m roots of

L h
(6.12) 0= VY o. (h)z .
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"The key fact to interpret the approximation is the relation

5 h =1
(6.13) Y o)z = M(z)M(z 7)),
h=-m

taken from Anderson [3], Section 5.7. It asserts that the expression

in £ - in the left-hand side of (6.13), formed by the covariances of:

the moving-average model, admits a factorization in terms of polynomials

‘in z and z-l, each formed by the coefficients of the model.

If in the approximation (6.9) we choose all roots xs to be
less than one in absolute value, which without loss of generality we
can always' do when dealing with second-order moments, it then appears
that the approximation (6.9) consists in omitting from the exact
expression (6.10) the part involving positive powers of those roots.

The constants in (6.9) and (6.10) are related in a similar

fashion: the m equations in (6.7) bear to those in (5.19) to be

“used for columhs not near the end points, the same type of relation

that M(2Z) bears to M(Z)M(z_l); further the m boundary conditions

“provided by rows i =1,2,...,m of (5.3) to determine the C_ and

S
1

'CS,' constitute an "end effect" that is neglected as part of the

" approximating process. The first assertion follows because (5.19) is

also expressible as

m

Z GM:A.'(r)Wj"S"'r,j = OMA(O)’ s = 09

(6.14) T O

=) s =1,2,...,m-1,
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while (6.7) is

)

m
) arcAR(s—r) =

= 1, 8 =f0,

r=0

(6@15) = O, 8 = 1’2’ ,m—-l;
‘writing (6.13) as

kS ‘ r v s-1 [ T -gtr'
(6.16) E Opp (V2" = ( L oz [ o ,

=-m =0 r'=0
the relation follows by identifying wj,__s.+r 5 with z° in the left-

H

hand side, and OAR(Shr) with 25

in the right-hand side, for each
8. Further (6.8) can be taken to correspond to (5.17)

As an illustration, when m = 1,'.&0 =1 and @) = 0, (6.10)

bacomes
' (6.17) | w§§) = éﬁi% Xi +.§£i% Xli’
e 1+a 1+o
where x; = (1/2p)(—l+V1—402), p = a/(1+a2), and hence x = -a.

“From (3.20)

__2T+2-2§, 3+l 2, . _2T+2-23
©.18) A = B(3) = — L ;:}rz - (1,+x1)'2(1 o )
'o(l—xl) (1—x1 ) (1—x1-)(1—x1 )
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so that

j . 2T42-2
1- o
6.19) WP oo L T (x-x 1) j>1
° 13 2 ITH2 . X17X ) =i
. —xl 1—x1

For the first-order autoregression Ve + OYe_q = Ep> the covariance

sequence is GAR(r) = (—a)r/(l—az), so that

o 3
o \3-i X P Er
6.20) WD a2l 71 -1 pnscl, j > i
ij 2 271 1 -
1-o l—x1

©

Hence in this case it is verified that the term containing x>

1 1s

neglected, and the "end effect" consists in taking (l-xiT+2—23)/(l;xiT+2)
as’ approximately equal to one in the coefficient of xii.

When m = 2, if (6.5) has roots X, # X, then GAR(r) is

given by Anderson [3], page 174, and

(r) . ; 1 *1 2 .
(6.21) w., =o0,,(-1) = - » J >4
ij AR (xl—xz)(l-xlxz) l_xi 2 E

which is of the form (6.9).

Another approach that is often used to analyze the approximations,

is to relate L Z,ps see e.g. Durbin [5]. For m=1,

MAtO

oy = 1,'a1 = O,
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o 1+oz2 o 0 0
(6.22) s A
2
0 0 0 . 1+a o

which differs from .EMA in that the components in places i = j =1

and i = 3j =T are 1 instead of 1+a25 For m = 2, oy = i1
ik oy o, 0 - . 0 0 0
o 1+a2 Oq 0 O o 0 0 0
1 1 1'7172 2 :
o, o.to.a 1+a2+a2 0 H0i O 0 0 0
2 71l 7172 b B ey R I
-l L) o o L] e
(6.23) Iy o o ) . : . : R
0 0 0 0 l+a2+a2 o.Fto.0, o
® & @ 12 112 2
0 0 0 0 o tae, 1+l
« o o ogtoya, o ay
0 0 0 s fol . oy oy 1
“which differs from gMA in that the components along the main diagonal
should all be 1 + ai + ag, and along the two adjacent diagonals should
 be a; + aj0,. The forms of zAR for different values of m were

given by Siddiqui [14] and Wise [17].
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For any m, there are differences between those components in

" two submatrices of order m x m,

main diagonal.

located at both end points of the
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APPENDIX

On a necessary and sufficient condition for a covariance matrix to : 1

have an inverse of diagonal type. In this appendix we state and prove ‘]
in detail a result that appears to have originated with Guttman [9]

and Ukita [15]. The conditions were used by Greenberg and Sarhan [7],

who call them sufficient conditions.

A matrix A = (aij) is said to be "diagonal of type " if

= 0 whenever [i-j| » r. From (1.5) it follows that a stochastic

>

a,,
i3
process which is finitely correlated of order m, gives rise to

covariance matrices which are diagonal of type r = mtl.

Proposition A.l. Let I = (oij) be a T x T symmetri¢ and positive

definite matrix. A necessary and sufficient condition that g_l = (wij) h .

be diagonal of type r 1is that there exist constants th such that

for t=1,2,...,T-r+1 ]

(A. 1) ..+ +b + b

i =0, t'=t+1,...,T.

£1% 41,6 T T P e1%hr-1, e
Proof. For the necessity of the condition, suppose that

y = <y1"°°’yT)' is a vector of jointly distributed random variables
with Ez = 0 and covariance matrizx % such that 2_1 is diagonal
of type r. There exists an upper triangular matrix B = (bij) with

b,. = 1, and a diagonal matrix D= (d.,.) with d,, > 0, such that
ii = ij ii
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(A.2) £ ~ = B'DB;

see e.g. Graybill [6], Section 8.6; B is "upper triangular of type

*
", id.e. bij =0 4if j-i > r. Let us introduce the new random vector
u = (ul,...,uT)', defined by
(A.3) u = By.
Then ‘Eg = 0, Fuu' = BIB' = §§_1Q_1~'_1§' = D_l, and the ut's are

uncorrelated. TFrom (A.3) we deduce that

(A.4) =1,2,...,T-r+l.

S ALY} AT R L PR} Y E

Solving (A.3) for ys Wwe note that §—1 = (le) is also upper

triangular and hence

T
(A.5) o z b Tu

From Graybill [6] it follows that there exists an upper triangular
~matrix T such that X"l = T'T. sSince 3§l is positive definite,

t;; # 0. Since Z“l is diagonal of type r, T is upper triangular

of type r. By choosing the diagonal matrix A conveniently,

AT = B _can be left upper triangular of type r and with by; = 1.

Then le = éé'-=_é2, and djy > 0.
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Multiplying (A.4) by (A.5) with t vreplaced by t', t' = t+l,...,T,
and taking expected values we have that
- ++b

(A.6) 0 =0, b t' = t+l,...,T,

£1%¢4+1 o t,r-1%t+r-1,t"?

which is (A.1).

Sufficiency. We have to show that if (A.1) holds, Wij =0 for
|i=3] > r. Consider i > j, that is, Vg is below the main diagonal.
The (T-1) x (T-1) cofactor of %44 will be evaluated by Laplace's
expansion using minors, formed by its last T-r-j columns. For
any one of these minors, if its complementary minor does not include
row 1 of §,_ then the first r columns of the latter are linearly
dependent. If row 1 of I is included, by using the relation (A.1)
gsuccessively and at most j-1 times the complementary minor camn be

brought into the equivalent form

M, My
(A.7) 3

where Mll is upper triangular and the first r columns of MZZ are

linearly dependent. In either case the complementary minor is O

and hence w,. = O. Q.E.D.
i3
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Condition (A.l) states the existence of a linear relation

' between successive sets of r adjacent rows of L3 an equivalent

and often useful formulation is to relate the first r-1 rows to each
of the remaining ones. For ¥ =2 and 3 the conditions were

written explicitly by Greenberg and Sarhan [7]; when r =.2 these

reduce to
o4 :
(A.8) 5—j-= hys i=2,3,...,T; 3§ =41,i+l,...,T,
13

where of course we require the relevant components in the first row
to be non-zero.

As an application of (A.8), let us rederive (3.20). In Section 3
the given matrix, £, is known to be diagonal of type r = 2.

From (3.12) we know that

T+1

*1 i -
(A.9) Wip = —————Eiqa—-(xl - % ) i=1,2,...,T;
using (3.19)

xT+1
_ _ 1 T-i+l1 _ _-T+i-1 _
(A.lO) Wil = WT_i‘"‘l,T = 2T+2 (xl Xl ), = 1’2’ ’T
p(1-x,7"7)

By symmetry of g-l, the components in its first row are

xT+1

_ 1 T3+l -THi-1 . _
(A.11) w1j = ) (xl %0 ), 18 1,2,...5T.
p (1-x77"7)
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The proportionality constants are obtained from (A.9):

w,
(A.12) A==

Applying these to (A.1l) we obtain

T+, i -i, . T-j+l_-T+j-1
R A *1 )
-1 27+2

ij

(A.13)
i -1y, T-j+1__-(T-j+1)
) (x]-%,7) (%1 %y )

p(xl-XII)(X$+l-XI(T+l)) ?

“which are two new versions of (3.20).
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