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1.  Introduction* 

A matrix A with components a.., i,j B 1,2,...,h,  [written 

A = (a,-.*)] is called a Toeplitz matrix if a  = a,  . A particular 

case is when a.. = a:. .i. 

In mathematical statistics Toeplitz matrices arise in several 

contexts; see, for example, Grenander and Szegö [8].  Consider the 

following frequently occurring case.  Let  {x : t = ...,-1,0,1,...} 

be a wide-sense stationary stochastic process with foxt =0  for all 

t.  Its covariance sequence satisfies 

(1.1) £x x = CovCx^jX ) = 0"|  . I , s,t = ...,-1,0,1,..., ' t s        t  s      s-t '       *    '     ' 

*The author acknowledges financial assistance from the Ford Foundation 
and leave from the University of Tucumfin, Argentina. 



that is j a function of  j s—t'j  only»  If x = (x-.?0.. ,xT) '  is a finite 

segment of  {x },  then its covariance matrix is the T x T matrix 

aQ o1 T-l 

(1.2) 
°1   °0 

JT-2 

GT-1 aT-2 

Z„ is a matrix of Toeplitz type. 

It is important to note that E  can also be viewed as 

(1.3) 
T-l 

k=0 

where G, = ~k (g±„ )  and 

(1.4) CT
(k) - 1 sij 

- o, 

ji-j j = k, 

£„ is a linear combination of simple known matrices G_ = I, 

.£.,„„ i ,GT_, , ' the coefficients being the parameters a,.  This structure 

has been exploited to find the maximum likelihood estimators of the 

a, 's under normality; see, for example, Anderson [1], [2], [4], and 

references therein.  Here we shall be concerned with finding the 

inverse of  £_,,  and it turns out that the linear structure can be 



used to devise a practical procedure for such purpose.  For a solution 

of a similar problem, with different G.'s,  see Mustafi [11]. 

It must be pointed out at the outset that there exists wide 

interest in finding either exact or approximate values for the components 

of such inverse matrices, since that knowledge can be used to derive 

the statistical theory for procedures defined in terms of them.  For 

example, the author's interest in the inverse analyzed in Sections 

2, 4, 5 and 6 stems from the study of Walker's [16] estimation pro- 

cedure for the moving-average time-series model. 

In many cases the underlying assumptions imply that 

(1.5) a        = 0, |i-j| > m, 

where m is a nonnegative integer. We may call these processes 

"finitely correlated of order m".  The case of lack of correlation 

corresponds to m = 0.  If m < T-l,  then  E  has m diagonals 

above and m below the main diagonal with (possibly) nonzero components, 

and all other components are zero.  For some of these matrices the 

inverse is known. When m = 1,  Shaman [12], [13]  gave several forms 

of the exact inverse., and several approximations.  One of the methods 

in his paper is extended in Section 2 to the case m = 2. 

In Section 3 a different approach is used for the particular 

case E- = I + pGL ,  and a new expression for the exact inverse, and 

some approximations, are presented.  The method is then applied in 



Section 4 to invert  I + p.G-. + PT§O»  an<^ ^n Section 5 to the general 

matrix with such a structure.  The proposed method is used at some 

points in conjunction with a condition that is stated and proved in 

an Appendix; it is related to "diagonal matrices of type r"  (cf. 

Greenberg and Sarhan [7] and others) defined by the fact their components 

satisfy a.. = 0 whenever  Ii-jI > r. 

Finally Section 6 discusses an approximation based on a well- 

known relation between autoregressive and moving-average time series. 

Since for a~ 4  0 

m m 
(1-6) I  a 6 = a £ p G , 

j=0 J J    j=0 J  3 

where p„ = 1;  p. = o,/o~,     j = l,2,...,m, we see that there is no 

loss of generality in taking the coefficient of G«  in (1.3) to be 

one, as will be done below whenever it is convenient. 



2.  The Inverse of I + p,G, + PoG? by evaluation of cofactors, 

Let ET = (a±. ) = I + p^ + P2?2»  
p2 ^ °'  and 

-1 (T) 
E_ = WT = (w;. ).  The components of W_ can be computed from 

(2 a) w. r(T) 

ij 

cofactor of a.„ 

i?Ti 

The method presented in this section consists in expressing all the 

determinants that may appear in (2,1), in terms of some determinants, 

like |Z   |, each one of which satisfies a certain difference equation. 

In this section we use the following notation, where a subscript 

denotes the order of the corresponding matrix or determinant, and 

we omit the superscripts in the components to simplify the writing. 

We also use the notation of partitioned matrices: 

(2.2) Z    = \Z 

L = 

(2.3) 

0 

0 

0 

0 

0 

p., 

0 

0 

E  , 
~s-l 

.. o p2 Pl 

L = 
s 



/pl P2 0 0 0                   .. .     0 0 0 

hi 1 pl p2 0     .. .     0 0 0 

\ P2 Pl 1 pl p2 ., .     0 0 0 

K    = B. 0 0 0 0 • . ' » 
~s • e • • 0 a o 9 

" • • f 0 * 0 s 

0 0 0 0 0     .. •     PX 1 p 
4) \ 

\0 0 0 0 0     .. •     P2 
Pl 

1 

P2 o 

h-1 

K = K 
s   ' ~s 

By expanding I  in terms of the components in its first row, 

Durbin ([5], p. 315) found that the determinants satisfy the linear, 

homogeneous, fifth-order difference equation 

(2.5)  -V(1-p2)Vl+(P2-pi)Sn-2+p2<prp2)En-3+p2(p2-1)En^+p2En-5 = °' 

The associated polynomial equation 

(2.6) -z +(l-p2)z +(p2~p1)z +p2(p1-p2)z +p2(p2-l)z+p2 = 0 

can be written in a symmetric way using the substitution -p«x = z; 

after division by p„ we obtain 

(2.7) 

2        2 
5 , 1"p2 4 . pl~p2  3 . 

X  H x  H r— X  + 
prp2 2,_ 
 s— X + 

1-Pr 
x + 1 = 0, 



Zero is not a root of (2.7), and if x* is a root so is  1/x*.  Since 

there must be five roots, +1 or -1 must be one of them.  (They 

are the only "self inverses"«) By inspection we see it is -1. Then 

(2.7) factors as 

1 1 
(x+1) (x-x. ) (x - —) (x-x_ ) (x - r—) 

(2.8) 
= (x+1)(x2-dlX+l)(x

2-d2x+l) 

= (x+1)[x4-(d1+d2)x
3+(2+d1d2)x

2-(d1+d2)x+l] 

= x5 + (l~d1-d2)(x
4+x) + (2+d1d2-d1-d2)(x

3+x2) + 1, 

where d. = x. + 1/x., i = 1,2«  Equating coefficients in (2.7) and 

the last line of (2.8) we obtain 

1-Po P-J-Po 
(2.9) l-dl-d2 = —^,    2+d1d2-d1-d2 - —/, 

2 P2 

If we define 

2      2 
2p9-l        p -2p„+2p 

(2.10) „•„__£_     v = -J: £ 1 
P' P2 

then (2.9) can be written as 

(2.11) d1+d2 - u,     
2+did2 " v' 



This  system has  solutions 

(2.12) dl'd2  = 2 u+Ju +4(2-v) -^[2p2-l ± J(2p2+l)2-4p2 

and another pair with the roles of d-  and d2  interchanged.  Since 

2 
we want to determine the roots x„  from x -d„x+l =0, we see that 

(2,12) gives rise to all possible different roots.  They are given by 

(2.13) X1'X3  " 2 
di± fdr4 x2,x4 = \ d2  ± Jd2-4 

Note that    x^X'2 = x^ = 1.    We conclude that the roots of   (2.7)   can be 

labeled 

  1 
(2.14)    x,   = -1,    x2 = T ^lTl'4) '     X3 = k?    X4 = 2 d2+| d2"4   '     x5  = T. 

Substituting back    z = ~p„x,     (2.6)  has  the  following  roots: 

-P 
\/. . J-J) Z»    —    P9*     2«    — 

2 / 2     I 
T 

di+fdr4 ' z3 
-2p, -p 

d1+|/dJ-4 
z4 -   -/k+^-4   , 

-2p, 

2       2 
d„+Jdf-4 

In general the  roots   (2.15)   can be real or complex,   and some  or all 

can be  identical.     Hence  the solution of   (2.5)  will  take different 

forms  depending  on  this  fact.     As  an example, which will be  also  used 

as  illustration in subsequent derivations,  if  all  roots  are distinct 



then (2.5) has solution 

5 
(2.16) Z = I C.z° , 

i=l 

where the z.  are the roots given in (2.15). 

Since I  is defined only for n >_ 1,  (2.5) holds for n _>_ 6, 

and the sequence satisfying the difference equation and for which 

(2.16) is the general solution is £, ,£„,... .  The boundary conditions 

to determine C,  i = 1,...,5, • can be taken to be (2.16) for 

n = 1,...,5, with the left-hand sides evaluated explicitly as 

Z±  = 1, 

2 
^2 = 1-Pi> 

(2.17)        23 = (l-p2)(l+p2-2p^), 

2 2   4 4   2    2 2 2^ = E3-(p1+p2)+(p1+p2)+2p1p2-2p1p2, 

2    2     2    22   22 
E5 = E4-p1£3+2p1p2(l-p1-p2+p2)-p2(l-p1-p2) 

Following the same approach we expand LT in terms of the 

components in its first row and find that 

(2.18)      Ln - p1Ln_1 + P2Ln_2 - PlP2Ln_3 
+ p2Ln-4 = °' 

The polynomial equation is 

(2.19) y - pxy + p£y - p-^y + P2 = 0. 



and  after replacing    p„x = y    it becomes 

(2.20) 4 4 3  3,     32 
P2x    - P1P2X    + p2x    - p-p2x + p2 - o, 

which has symmetric coefficients and can be studied in the same way 

as equation (2.7).  The roots y ,  s = 1,2,3,4,  of (2.19) are 

obtained from 

(2.21)   dx = 2^rpi+fr4p2+8pr d„  - 2pT(pripr4p2+8p2|; 

2 2 
*i= T 

di+lldr4 » y2 
2p, 

y^ • 

p2/ 

d^-4 3       2 d2+jd2-4j,     y,,  = 
2p, 

d„+Jdf-4 
'2T2 

The particular case of all roots distinct leads to solving (2.18) 

by the sequence 

(2.22) v    *  n L =  ) C.y", 
i=l 

n = 1,2,. 

The four boundary  conditions needed  to  determine  the    C's     can 

be  taken to be  (2.22)   for    n =  1,2,3,4    with  the left-hand sides 

evaluated explicitly as 

(2.23) 

L,   = 

L„  = 

L„ = 

L,   = 

2_ 
P -I     Pn » 

3    2 
pl+p2pl~2plp2' 

2 2     2 
P1L3~P2 ^^pl~p2^-p2^pl~p2^ 

10 



Expanding    K      by the  components  in its  first row we have 

(2.24) Kn = P1V1-P2Kn.r n.2,3,... 

In the special case that E  is given by (2.16), 

5     r, 1 
(2.25) K +p„K , = Pl  T C.z.  . n y2  n-1  rl .£<  l i 1=1 

which is a first-order, inhomogeneous, linear difference equation. 

The complete solution is the sum of the general solution of the 

homogeneous case  [C(-p ) ]  and a particular solution of the inhomo- 

geneous case.  Provided that only one root (for E )  equals p9, 

(2.26)    Kn = C(-p2)
n + \  plCl \-  P* + Pl j C.   1  z» . 

The second summand corresponds to the root  2- = p~; no other z, 

can be equal to P_  in (2.26); if more than one root equals p_, 

instead of the factor l/(z.+P„) we have to use l/2p 

The new constant G in (2.26) will be evaluated from (2.26) for 

n = 2,  with K = p .  Note that 

K2=Pl(l-p2), 

(2.27)      K3 = P1(l-pJ) - P1P2(1-P2), 

K4 = P1E3 " P2K3 " P1d-P2)(l+P2-2P
2

1) - P2K3. 

11 



With this background we now find expressions for the components 

-1 
w..  of Wm = Em .  Since Wm is symmetric we restrict attention to ii     -'T  ~T ~T 

the components on and above the main diagonal. 

1st case:  i = j.  Then w.. = B../£_, where B.„  is the cofactor 
 — ' **-        11   11 T ii 

of a...  In terms of submatrices 
ii 

(2.28) B. . = 
11 

h-1 p2? 

p2?    h-1 

where E  has its upper right-hand element equal to 1 and all other 

elements equal to zero.  We use Laplace's expansion in terms of minors 

of the first i - 1 columns; then 

(2.29) ii   i-l T-i K2 1-2 T-i-1 

To make (2,29) valid for all  i, we define E_= 1,  £_. = 0. 

2nd case:  i < j. 

(2.30) (-l)i+V, = 
1J 

~i-l 

P25* 

F 

L, 

P2E T-j 

where    F    has  its  lower left-hand  element equal  to    p..,     the  two 

12 



adjacent elements equal to p ,  and all other elements equal to 0. 

We expand (2.30) by Laplace's formula in terms of minors of the first 

i-1 columns.  In these columns there are three non-vanishing minors 

with non-zero complementary minors, namely 

(2.31) ~i-ll   Zi-1! 

(2.32) 

1   0 

h-2             *2 

i   Pl 

o ...... o ! P2 

2  i-2 

and 

(2.33) K. 0 ~i-2 

_ _|  

= p2K±_2, 

0 ...... 0 , p2 
i 

* i *i where K is K flipped about its secondary diagonal, so that K  = K . ~s    ~s J&» '-s'    s 

If we denote by A (i,j),  s = 1,2,3,  the corresponding cofactors, then s 

(2.34)    (-1)1+JB  = Ei_1A1(i,j)-p2Ei_2A2(i,j)+p2Ki_2A3(i,j) 

The A (i,j)'s are computed using Laplace's expansion in terms of 

13 



the last T-j  columns,,  Then 

A^i.j) = VjVi~P2VjVi-l+P2ET-j-lLj-i-2' 

A2(i,j) = 2T_j(P1Lj„i„1-P2Lj_i_2)-P2KT_j(p1Lj_i_2-p2Lj_i_3) 

(2°35) 4. 3v (    T      o2T    -> 
+P2

i:T-j-l(plLj-i-3"P2Lj-i-4) ' 

2 4 
A3(i,j) = P2

E
T_j

L
j_i_1-P2

KT-jLj-i-2+p2ET-j-lIjj-i-3- 

For j = [T/2]+l,...,T,  say, these formulas are valid for all i < j, 

provided we define EQ = L_ '= 1,  KQ = 0,  E_ = L_ = K_ =0 for 

s >  0,  For j < [T/2J+1 similar arrangements could be made.  In fact, 

due to the structure of W  we only need to compute those components of 

the last  [(T+l)/2]  columns on and between the principal and secondary 

diagonals, and then deduce the remaining components using the symmetry 

of W  and its persymmetry (symmetry with respect to its secondary 

diagonal).  They lead for example to 

(2.36)  w.. " wx-i+l T-i+1'       i ~ j »• • • »T-j ;  j - 1,2 ,. ,., [T/2]. 

We summarize these results as follows: 

Proposition 2.1.  Let Z = I+p G +p.G2, with p2 4-  0,  and 

Z"1 = WT = (w^).  Then 

(2.37)  w.(^ = (-l)i+j -=iL ,  i = j,...,T-j+l;  j = [T/2]+l,. ,. ,T, 

14 



where the B.„ . are given in (2.29) when i = j  and in (2,34) and 
" ' ~~      ij    ~~ ' ~ .  ~ —~—-   

(2o35)  when    i  < j,     in  terms  of  the determinants     E   ,L  ,K.,    which         J _____ _ ——    s » s s s »    

are defined in (2„2)T-(2 = 4) and, satisfy the .difference, equations (2.5), 

(2„18) and- (2,24),   respectively.  The remaining elements of W_ are 

obtained using w;/ = w:.  and  (2.36)» 

If p2 = 0 but. pr 980,  then LB - pj, Kg = P1E__1, (-l)
i+jBi. - 

E._,A.(i,j), A-(i,j) - p:r  Z__.,  and the solution reduces to 

E   E 
(2.38) w(T) = (-p.^-1 -1"]: T"J 

which is of form given, for example, by Shaman [12]. 

Hence, in principle at least, this method gives a complete 

-1 
solution to the problem of finding E_ .  For large T the computations 

involved may be quite laborious,.  As we saw in (2.29) the components 

along the main diagonal are functions of the E  determinants only; 

but if i ^ j, even in row i - 1 we already have all types of 

determinants»  In effect 

(2.39)    ETwlj(-l)J
+1 == ET^Lj_=rp2KT_jLj_2+p2

3ET_j_1Lj_3, 

j = 2,3,....T. 

15 



3»  The inverse of I + pG_  by solving difference equations. 

_i 
A different approach will now be used to find E  = WT in the 

case of m = 1, that is,  E_ = I + pG,. Of course, we assume p ^ 0. 

By the definition of an inverse 

(3ol) I = ETWT = (I+p^)^ = Wj+pGj^Wj. 

In terms of components (3.1) is 

(3.2) 6ij = pwi-i j+wij+pwi+l j'    J=1»2»--.»T;  i = 2,3,.,.,T-1, 

(3.3) 6      =       wlj+pw2j9       j = 1,2,...,T (i=l), 

(3.4) 6Tj = pwT_l9J4wTj, j = 1.2.....T (i-T), 

where 6b„ is Kronecker's delta function. We consider the solution 

of (3.2) as a second-order, linear difference equation in i,  for each 

fixed j;  that is, we proceed column by column.  The associated 

polynomial equation is 

2 
(3.5) px + x + p = 0, 

which has roots 

(3.6) xn =  ^—— ,      x l+Vl-4p2 = -l-Vl-4p 
1     2p X2      2p 

2 

16 



For any p # 0, x.x. = 1.  For covariance matrices we further 

restrict our attention to the case  |p| < h-     Hence  |x-| < 1 and 

[x_| > 1, or  |x.| > 1 and  |x„j < 1. We choose to present all 

results as functions of x, ,  |x.  < 1. 
1  '1 

The general solution of (3.2) in the homogeneous case is then 

(3.7) w„„ = A(j)x-+B(1)x, . 
n   J 1  J 1 

To find the complete solution we must take S.c     into account.  This 

can be done for example by expressing <5 „ „  as a linear combination 

of sines and cosines, since it is true that 

(3.8) 5..) = I = MM', 
ij   ~  ~~ 

where M is orthonormalo  See Anderson [3], Section 4.2.2,  Instead 

of this direct approach, we shall use (3.2) only when 6 „ „ =0;  in 

particular we shall restrict attention to the w.„'s above and on the 

main diagonal. 

Let us consider the T-th column first.  Its components satisfy 

0 = W1T + PW2T 

0 = pw1T + w2T + pw3T 

(row 1), 

(row 2), 

(3.9) 

0 = pwT_2jT + wT_ljT + 

1 - PWT_1)T + wTT 

pw, TT (row T-l), 

(row T). 

17 



The equations from rows 2 through T-l have as solution the sequence 

(3.10)      wiT = A(T)x^+B(T)x1
i, i = 1,2,...,T. 

The equations for rows  1 and T will be used as boundary conditions 

to find A = A(T)  and B = B(T): 

0 = (Ax +Bx1
1) + p(Ax +Bx 2) 

-2 
= Ax (l+px1) + Bx  (x.,+p) 

= Ax1(- £-) + Bx~
2(-px*) = -p(A+B), 

1 = p(Ax^~1+Bx^T+:L) + (Ax^+Bx~T) 

= Ax^~1(p+x1) + Bx~
T(px1+l) 

r. T+1B -(T+l), = -p[Ax  +Bx.     J. 

Hence 

T+l 
Xl 

,-  2T+2, 
P(1~X1  } \ -1 

and 

1      T+l+i T+l-i 

18 



We next consider the (T-l)-st column, for which the set of 

equations is 

0 = w1 T-1 + pw2 T_1 (row 1), 

0 = pw T_1 + w2 T_1 + pw3 y,^ (row 2), 

.9 a a 

(3.13) 

0 = pWT-3sT-l 
+ WT-2,T-1 + pWT-l,T-l        (row T"2>' 

1 = PWT-2,T-1 + WT-1,T-1 + PWT,T-1 (row T_1)' 

0 = pWT-l,T-l +WT,T-1 (r0W TK 

The equations in rows 2 through T-2 have solution w„ __, = 

A(T-l)x. + B(T-l)x. o  Row 1 provides one boundary condition and 

row T-l the other, provided we make the value of w„ __.  explicit 

(Rows 2 through T-2  involve w. ~_,  only up to i = T-l.)  Since 

W„ is symmetric, this is achieved by letting w„ _ , = w„,_.. _, where 

w„ i T was already evaluated in column T. 

In this manner we proceed column by column to derive a general 

expression for w. ., i <_ j, We now prove that for s * 0,l,...,T-3, 

say, 

1+2     2 s 
a  1A^  TT    -  Xl    1 / T+l-s+i   T+l-s-i, (3.14)  w     =      2T+2   (x       - x      ),  i < T-s. 

P (1-^  ) 

19 



We already proved that (3.14) holds for s = 0 (j = T).  Suppose 

it holds for s(0 <_ s <_ T-5, say);  it suffices to show that from 

this assumption we can show it holds for s + 1. 

Column T-s-1 gives rise to the equations 

° S              Wl,T-s-l+ pW2,T-s-l> 

(3.15) 0 = Pw..^^., + w.^^ + iw^^,,.!,       i - 2.3 T-a-2, 

1 = PWT-s-2sT-s-l 
+ WT-s-l,T-s-l + pWT-s,T-s-1' 

and other equations for components below the main diagonal.  We use 

the first and third lines of (3,15) as boundary conditions to 

determine A(T-s-l)  and B(T-s-l),  taking w^  _ . , = wm  - _  = 
°      T-s,T-s-1   T-s-1,T-s 

w* as given from the known solution of column T-s.  The equations are 

(3.16) 

A(T-s-l) + B(T-s-1) - 0, 

A(T-s-l)xJ S + B(T-s-l)x,T+S - w* - - 
1 1 p 

and the solution is 

A(T-s-l)\    T-s 

(3.17) | =A^(-J) 
B(T-s-1)/ l  Xl 

20 



T-s x. 

1-x' 
2T-2s 

,-  2s+4wi  2T-2s)' 
1   (l-x1  )(1-x 

(l-x^)(l-x^T+2: 

/-l\ 

1 

2 
l+x,+„ 

I 
.+x 2s+2 

-*!       ) 

T-s x. 
1 

-lj 

Hence 

(3.18) w    _x 

2 
1+x + = o+X' 

2s+2 

~xl  ^ 

(x 
T-s+i K?-8-1), X   """   XjZ J O O  9 ) J."*S   1} 

which is what we wanted to show. 

When s equals T-l or T-2, i.e. when we deal with columns 

j = 1 and 2,  the system (3.15) does not hold because then most 

of the components in the column are below the main diagonal.  Since 

W  is symmetric with respect to its two main diagonals, 

from the components in columns T,T-1,  etc. we can deduce those in 

columns  1,2,  etc., respectively, by means of the relations 

(3.19) w. „    —   W „ „    -   W„    , , ..    _    „ , - . 
IJ ji T-i+l,T-j+l- -*-»3       -*- > ^» .».,1. 

Substituting    j  = T-s     in   (3.14),  and     (1-x^    ^)/(l-xp 

2 2s 
1 + x..  +o..+ x.   ,    we have 
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Proposition 3.1. Let ET = IT + pC^, with p ^ 0, ad 

l"1 = WT - (wJP).  Let xL = (l/2p)(-l+\(l-4p
2)  and assume that 

l-4p2 > 0» Then 

(3.20) w (T) 
ij 

1-x 
2T-2J+2 

? 2T+2 
p(l-x^)(l-x^i+/) 

(x' j+l+i x
j+1_:S j - 1,2,....Tj . i < j 

Two different forms of this formula are derived in the Appendix 

using a different argument. 

Shaman [12] gave this result as 

w 
(T) 
ij 

(3.21) 

(-l)j~i[(-x1)   1-(-x1)i][(-x1)   T+J   1-(-Xi)
T-J+1] 

Vl-^P2   [(-x1)"T"1-(-x1)T+1] 

x.. (1—X, ) (,X.    —X« ) 

X 1"T~1   \/l-4p2   (l-x2T+2) 

2T-2J+2 
P (l-Xj^) 1-x! 

x1\ll-4p2J p(l-x2)(l-x2T+2) X 
j+l+i i+l-is (x^ - x^ ) 

which agjfees with  (3.20) because the quantity inside the brackets 

equals    1. 

From (3.20) we can derive some approximations,  provided     |x-|   < 1 

and    T    is  large.     Taking    i  < j     as  in   (3.20)  we have 
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m   (l-xf-^^Xxf^-xf1-) 
(3.22) wjt' =  ±— -i- ±  ,      for any j; 

j+l+i_ j+l-i 

(3.23) wfT) = -i 1  , for j small; 
1J      P(l-xj) 

n  2T-2J+2, j+l-i 

(3.24) wjt; = - ±- 5-i-  , for j iarge, 
J P(l-xp 

In particular, under the same assumptions, we have that the 

following approximations are very good for columns 1 and T: 

i T+l-i 
/O OC\ rf^) Ä"      *• ,,C^) -=f   _i  

ll     p  '       lT       p 

The present author [10]  found use for approximations like those 

in (3.22)-(3„25) in developing some asymptotic statistical theory, 

since the omitted parts behave like x..  or x.. , and when  |x1 | < 1 

they could be safely neglected for limit purposes. 

Shaman [12] gave the approximation 

(r£\ \-l) (     X-l ) X• 
(3.26) w '      =  •) —:— = — -prrTT——sr > all    j >     i < j > J ||l-4p2 x1(l+2px1) J' -J> 

based on a different argument. 
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4.  The inverse of I + p.,G, + P2?o by solving difference equations. 

We now apply the basic idea of Section 3 to the case m = 2, 

that is, H - I + p^G.. + POGOJ P2 ^ 0« 5T is assumed positive 

definite, but otherwise no further restrictions are placed on p.  and 

> 

p«. Then 

(4.1) I - ETWT = WT+p1G1WT+p2G2WT . 

In terms of components (4.1) is, for all j, 

(4.2) 815  = Wlj+Piw2j  +p2w3j      <i=1>: 

(4.3) 62j =        p^j  +w2j+P1w3j  +P2
w4j      (i-2), 

(4.4) «u -P2
wi-2,j+p-lwi-l.j-h'ij+plwi+l,j+p2wi+2,j ' 1-3,4,....T-2, 

(4.5) 6^1(J  = P2wT_3jj+P1wT_2sj+wT_1>j+p1wTj (i-T-1), 

(4.6) '«TJ  -P2
wT-2,J+f?lwT-l.j+,'l3 (i=T)° 

We plan to solve the equations in (4.2)-(4.6) for each column 

(j fixed) to find the components of W_ above the main diagonal. 

The characteristic equation associated with the fourth-order linear 

difference equation (4.4) is 

4   3 2 (4,7) p2x +P-.X +x +p1x+p2 = 0, 

or dividing through by P2(P2 ^ 0) > 
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(4.8) 
4P13      2  Pl   , .   . 

x + — x + — x H x + 1 = 0, 

Since (4.8) is symmetric in its coefficients it can be treated as 

equations (2.7) or (2,20). We are thus led to find the roots of 

(4.9) x -d.x+1 i 0, 
i 

i m   1,2, 

where the    d.     satisfy the system 

(4.10) d.+d   - - -r LI p. 1 2       p2 

This system is like (2.11) and hence has solutions 

(4.11) A    -  1 
dl - 2 +i. p2 np2 

pl> 
+4 2 - 

2 ~ 2 P9 "I / P 

2 - 
1 +4 2 

1 

2 P2 _ 

and the four roots of (4.7) can be labeled x^, 1/x.. , x?, l/x„0 

If the roots are distinct, the solution of (4.4) in the homogeneous 

case is given by the sequence 

(4.12)   w±j = cJ(j)xJ+Gj(j)x1
i+C3(j)xJ+cJ(j)x2

i,  j-l,2,...,T;  i=l,2,...,T. 

If the roots are real and either x. = x~  or x., = 1/xL,  then the 

solution can be written as 
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(4.13) w  = [C1(j)+iC2(j)]x^+[G3(j)+iG4(j)3x1
:L,  i,j = 1,2, ...,T. 

For the sake of Illustration we now consider the evaluation of 

the constants in (4.13), where we take  |x.| < 1. This case arose 
2 

in the study of Walker's paper [16], with p., = —^~y>     Po = —-—K» 
l+2p    l       l+2pZ 

See Mentz [10]. 

The components in column T of W„ satisfy the equations 

0 = w1T + P1w2T   + P2
W
3T     (row 1), 

0 = P1W1T   + W2T + P1W3T   + P2W4T     ^row 2^ 

(4,14) 0 - P2wi_2jT + P1w1_1>T + wiT + P^^ + P2wi+2>TS  i = 3,. .. ,T-2 

0 = P2
W
T_3 T 

+ Piwx-2 T + WT-1 T + P1WTT ^row T-1^» 

1 = P2
wx_2 T + P1WT-1 T + WTT ^r0W T^' 

The solution of the difference equation for rows 3,...,T-2  is (4.13). 

We can use the equations for rows  1,2,T-1 and T as boundary 

conditions to specify the C, = C, (T) ,  h = 1,2,3,4.  For example the 

first equation gives 

0 - (G1+C2)x1+(C3+C4)x~
1+p1(C1+2C2)x

2+p1(C3+2C4)x1
2 

+P2(C1+3C2)x^+p2(C3+3C4)x^
3 

2   3 2    3-1-2-3 
(4.15)    = C1(x1+p1x +p2x1)+C2(x1+2p1x1+3p2x )+C3(x1 +P]_x1 +P2x1 ) 

-1    -2    -3 
+G,(x- +2p.x- +3p2x1 ) 

-  Ciall+C2al2+G3ai3+C4a14' 
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say,. The remaining conditions lead to 

0 - C1(p1x1+x^+p1xJ+p2xJ)+C2(p1x1+2x^+3p1xJ+4p2xJ) 

+C3 (p1xJ1+x^2+p1x^3+p2x^4)+C4 (p1x^1+2xj;2+3p1x-3+4p2x^4) 

= G1a21+C2a22+C3a23+C4a24   ; 

(4.16)     0 =  C1xJ(p2x-3+p1x-2+x-Vp+G2Tx^(^2x-34^1x-2-^-1+p1) 

+C3x-T(p2x3+Plx2+x1+p1)+C4Tx-T(^3- p2x3+^p1x2+^x1+p1) 

T T   (0) -T -T   fO") 
= C1x1a31+C2Txia^2^C3X1  a^+C^  a^ ; 

1 -  C1x^(p2x^2+p1x^1+l)+C2TxJ(^2x^24^p1x^1+l) 

-T 2 -T T-2       2  T-l +C
3

X1   (p2x1+p1x1+l)+C4Tx;L   (~x~P'2Xil   T Pxxi+1) 

=  C1xJa41+C2Tx^°)
+C3x-T

a43+C4Tx-Tag) . 

The use of the superscript    "(0)"    will be clarified below.     If 

C(T)  »   (C1(T),C2(T),C3(T) ,C4(T))'     is  the vector of  constants  for 

column    T,     then 

C(T) 

(4.17) x. 

f41 

,all        a12\ 

Va21 a2z/ 

/a        Ta(0)\ 
'31 xa32 

Ta (0), 
42 

/» 

x. 

13        "14' 

\*23        a24/ 

/a Ta(0)\ /a33 34 

la Ta(0)' >a43 a44, 

M   V1       o 
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-11 A,o\     1   /O' -12 

xTA(0) X-
T

A5
0)

/ i 1-21 xl *22/ 

'B11      ?12\  /o\ 

b iB21 ?22j V 

/?iW 

\§22y/ 

where u = (0,1)'  and the introduction of the A./'s and B„„'s  is ~ij        _ij 

self-explanatory. By partitioned inversion 

?22        (xl ^22    x1^21  -11-12)       " Xl1^22    Xl  -21  -11^12 

-1 

(4=18) 

/a      +x2V0) Ta(0) +x2Ta(0)\~1 

fa33      xl q33 a34 1 q34 

• x. 

.     2T  (0) 
\a43      Xl q43 T.a^+x2T^0) 

44 

1 q34 

2T  (0)1 
lq44/ 

a(0) +X2T   (0) 
T/_  44        xl q44 

x. 

_   (0) 2T  (0)\ -ia34    - x± q34 1 

\ a43       xl  q43 
2T   (0) 2T  (0) -   a,„ a„„ + x.   a:' a33 + xl q3s'    / 

where 

Art = 

(4.19) 

Tla    a(0>  a(0)a    ]+*2Tla    n
(0)4=Ta(0)n(0)   T* <° V°>   •     n<°> Tla33a44 "a34 a43l+Xl   ia33q44 +Ta44 q33 ~Ta34 q43 "a43q34 

4T!   (0)   (0)     (0)   (0), 
+xl   lq33 q44 ~q43 q34 ) » 

and     (qfP)  - -A^A^A- ..     Note, that    qf0)  = q'^0)  + q"f0),     for some ij -21  -11-12 nij ^ij nij     ' 
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?(0)      "(0) coefficients q ; '  and q „ „   that depend on T only through 

expressions like (T-t)/T, t - 1,2s3. Note also that 

x. 
(4.20)    B00 - -± 

22  A 0 

/Ta (0) 
44 -Ta(0)\ ia34 

\-a 
43     33 

+ x 2T 
/q44 

1 n(0) 
\"q43 

-o(0)\ q34 

n(0)/ q33/ 

Now 

?12 
-1 

~~11~12?22 

(4.21) 

K(4}   -T*^ 
-A_1A -11-12 

-a 43 33 

/.CO) _Q(0)\ 
q44 q34 

2T -1 

U(0) q(0)/ Yq43 q33/ 

x. 

/'(0) »(0)\ /"(0) 
b13 bi4 b13 

+ x' 2T 

"(0)\ 
314 

I   '(0) '(0) l. 
\b23 b24    / \l 

"(0) "(0), 
23 24 

say.     Hence    B^     and    B„2    have  the same kind of structure.     Finally 

we have that 
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(4,22) C(T) - 

/CO)   "(0) 2T\ 
y14  + D14 xl 

'(0)   "(0) 2T 
24     24  1 

•Ta(0) - a(0)X
2T 

34   q34 1 

u33   + q<°>*f 

and this completes the solution of (4.13) for column T„ 

For column T-l the set of equations is obtained from (4.14) by 

replacing" T by T-l in the column index of w„»s  and interchanging 

0 with 1 in the left-hand sides of rows T-l and T.  All 

components w   ., i - 1,2,...,T, satisfy the homogeneous difference 

equation and hence the last two equations in the set can still be 

used as boundary conditions=  Hence 

/(0)   "(0) 2T\ 
13     13  1 

(4o23) C(T-l) = 

b»(0) +b"(0)x2T 
23 23 

„ (0) .  (0) 2T Ta, ,' + q ,, x. 
44 44 1 

y        (0) 2T 
\~a43 " q43 xl 
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The remaining components on and above the main diagonal can be found 

using Proposition Al of the Appendix.  It is argued there that in the 

present case condition (A.l) can be replaced by an equivalent one 

relating the first two rows to each of the remaining ones.  The 

conditions we use here are 

(4o24)       6n.w, „+9„,w„. = w..,   ' i = 3,4,.o.,T; j > i, li lj  2i 2j   ij ' '   9 '  J — ' 

for columns j - [T/21+1,...,T; cf. Greenberg and Sarhan, [7],  Then 

the following steps will provide the needed components: 

Step 1,  Find columns T and T-l of W ,  from (4=12), (4.13), or 

similar, and (4.22), (4=23), or similar, depending upon the nature 

of the roots of (4.7); 

Step 2.  Using (3,19) deduce rows 1 and 2 from columns T and 

T-l, 

Step  3.     Determine  the proportionality  constants     8 in   (4.24), 
S L 

from columns T and T-l; 

Step 4. Using repeatedly (4=24), find those components w.„  satisfying 

i = j,..=,T-j+l;  j = [T/2J+l,....,T-2. 

Proposition 4.1=  Let £  and W„ be as in Proposition 2.1.  Then 

(T) 
the w..  s are determined by means of the procedure consisting of 

Steps 1 through 4 described above, together with (3.19). 
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Proposition 4.1 gives a constructive way to obtain E  . We 

now proceed recursively as in Section 3, trying to gain some insight 

(T) 
into the final form of the w„. 's, and to suggest some approximations. 

It must be anticipated that for this case, when m = 2,  it was not 

possible to obtain a closed, explicit expression like that of (3.20) 

when m = 1. 

From the solution of columns T and T-l, namely (4.13) 

together with (4.22) and (4.23), we can derive sequentially all 

columns of ' W„,.  Consider column T-s»  for s = 2 ,3,. .. ,T-5,  say. 

Its components satisfy the equations 

°= Wl,T-s +plW2,T-s    +p2w3,T-s <i<L>» 

°= PlWl,T-s ^.T-s        +plw3,T-s    +p2w4,T-s ^2^ 

(4.25)0 - P2wi_2>T_s +P1wi_l9T_s      +wi>T_s        +P1wi+1)T_s+P2wi+2jT_s,  i=3,...,T-s-2, 

0 - p2wT-s-3,T-s+plwT-s-2,T-s+wT-s-l,T-s+plwT-s,T-s+p2wT-s+l,T-s  tt-T-s-1), 

1 = p2Vs-2,T-s+plwT-s-l,T-s'H'T-s,T-s+plwT-s+lsT-S
+p2wT-s+2,T-s  <i=T-s), 

plus other homogeneous equations for rows i > T-s. 

The solution of the equations in rows  3 through T-s-2  is 

given by the sequence (4,13) for j = T-s  and i = 1,2,...,T-s,  The 

equations for i = 1,2 in (4o25) provide two boundary conditions. Using 

the symmetry of W_ we can link the equations for rows T-s-1 and T-s 

with the components in columns T-s+1 and T-s+2, which we take as 

known, by letting w^^^ - w^^^ = w*.  and wT_s+2jT_s = 
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wT-s,T-s+2  5 ws   c Hence the boundary conditions  are 

w l.T-a +plW2,T-s+p2W3,T-s 

PlWl,T-s +wr (4.26) "1"1,T-s -J2,T-S 
+plW3,T-s+p2W4,T-s 

p2WT-s-3,T-s+plWT-s-2 ,T-s^T-s-l,T-s+PlWT-s,T-s 

0, 

0, 

-P2ws, 

p2WT-s-2sT-s+plWT-s~lsT-s+WT-s9T~s - l-P1ws-p2 

** 
w 

These equations  can be  solved as we did in   (4.15)-(4.23) when 

s  =  0    and    1.     The system for    s  = 2a3,„.o5T-5     is 

(4o27) 

C(T-s)  - 

/. all a12\ 

\a21        a22 

3^«j \ *•   S yäjjA 

a.,     (T-s)a (s) 
42 

a13        a14 

\a23        a24/ 

/a„     (T-s)a^A 
-T+s 

x. 

l33 

a43     W$ 

"p2ws 

L-PlWs-p2W 

where for    s  = 0,1,„„.,T-5 , 

(4o28) 

(s) a    ' = 
32 

a(s> _ 
34 

a00 ... 
a42 ~ 

a(s) _ a44 " 

T^s-3 -3 T-s-2 -2       T-s-1    -1 
T-s     p2Xl T-s     P1X1 T-s     Xl    + pl   » 

T-s-3 3 T-s-2 2   .   T-s-1 
T-s     P2X1 + T-s    plXl T-s     xl      pl   ' 

T-s-2 -2 T-s-1 -1+1 
T-s     P2X1 T-s     P1X1 ' 

T-s-2 2   , T-s-1 
p0x,  + T-s     ^2Ä1 T-s     '11 PlX1       +1       o 
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By an argument parallel to  that of  (4.17)-(4„23),  it follows that 

(4.29) 
T-s x. 

C(T-s)  = 

7b* <B) b'(s)\ 
,D13 14 

J(s) ,'(s) 
'23 24   / 

K 
+   X 

2 (T-s) 

(s) "(s)\ 
13 14 

K"(s)        U"M> 
iD23 24 

/(T-s)a^}  -(T-S)a(
3f\ n.. —n    .    \ 

+x 
2(T-s) 

144 434 

-a 
43 33 V« .(B)     (s) 

•43    q33 

"p2Ws 

i-P1ws-p2ws 

-P2ws 

1-P1ws-P2w8 

where 

A    -  (T-S)(a    a(s)-a(s)a    )-x2(T~s)[(T-s)(a(s)q(s)-a(s)a(ö)) s       U  sna33a44    a34  a43;     1 [K    SMa34 q43      44 q33  ; 

./•       (s) (s),"L   4(T-s),   (s)   (s)     (s)   (s). 
+ (a43q34 "a33q44  }J+X1 (q44 q33    q43 q34  }' 

*±?) = ~4lhlh2> .  i>i= 3>4> 

(4.30) '(s) '(s)\ 
13 

23 

14 /(T-s) 

-1 
-A      A 
-11-12 

'(s) '(a). 

(s) 
*44 

24 -a 43 

•(T-s)a^A 

"•33 

/"(s) "<s)\ /jo) n(s)\ 
b13 b14 q44 q34 

"(s) 
23 

-1 
-A     A 
-11-12 

h"(s)/ b24    / -q 
(s) 
43 C(S) q33. 

and  the    A,,     arise  from  (4.27). 
~ij 
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From (4.29) it is clear that we can justify the following: 

Proposition 4.2. Let l_ and W_ be as in Proposition 2.1. Then 

(T) the    w.  's have the form        ij  

(4.31)  w£>_8  =   (F1+iF2)x^S+i+(F3+iF4)x^S-i+(F5+iF6)xJ(T-s)+i 

+(F7+iF8)xJ(T"S)_i,       s  =  2.....T-5;     i  <  T-s, 

where the F 's depend on s  (column index), provided equation (4.7) 

has roots x.. = x„, x„ = x» = 1/x- . 

Analogous expressions can be derived for other patterns of roots. 

We omit those details here. 

For many purposes it appears that in (4=22) and (4„23) one can 

2T 
discard the part with x..  as a factor, and further approximate An 

in (4.19) by its first term.  Then 

Ä» 

(4.32)     C(T)  - 
TU    a(D)   a(0)a    ) U  33*44    a34 a43} 

b 

hTä 

'(0) 
'14 

'(0) 
24 

(0) 
34 

1*33   / 

x. 
C(T-l)   5 

Tfa    a(0)   a(0)ä     ^ T(a33a44 "a34 a43} 

b13    ' 

b'(0)| 
23 

(0)1 Ta 
44 

W 
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Further for T-s reasonably large, a^ , a\t  >  a42  anc* aH      can 

be taken as equal for all relevant s, and respectively equal to 

-3     -2   -1 
a32 ~ P2X1 + plxl + xl + pl = a31' 

(4.33) 

a3^ = p2
xi    + Pixi + x]_ + P^ - a33» 

a42 = P2X12 + P^l1 + X * a41' 

a44 "* P2X1 + plxl + X      " a43 ' 

Then there would exist more similarity between (4.17) and (4.29) 

for s > 0, and the computations in the recursive procedure will be 

simplified. 
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5„  A general case» 

In this section we analyze the general case 

m 

«s-« ?T= left- j-0 J : 

where GA = I, pA = 1, p / 0. and 1 < m < To 
~0  ~   0       m — 

The approach of Section 2 can in principle be attempted to find 

(T) -1 
the components w,   of . W_ = E  .  By a careful examination one can 

find out which of the non-zero minors in the first  i-1 columns of the 

cofactor of aov  have non-zero complementary cofactors. 

We observed in the case m = 2 that we needed three classes of 

determinants satisfying linear difference equations of orders 5, 4 

and 2,  respectively; of course if these classes could all be reduced 

to a single one (say the E ),  this would be achieved at the cost 

of augmenting the order of the difference equations involved» Hence 

(T) 
in general we expect complicated expressions for the w.„ . 

The approaches of Sections 3 and 4 seem more promising to find WT, 

or at least some of its columns (or rows).  By the definition of 

inverse 

m m 

ST=T - ji^j-j-T " -T^j^T' 

which in terms of components is 

3? 



6 
13 = wij        +piw

2j        
+°--+eA+i5j 

(i=1)> 

2j " plwlj      "^j +plw3j +-°°+pmwm+2,j   (i=2)> 

^3 = p»-lwlj+'-,+plwm-l,J^»d +plWm+l,j     +^-+P
m

w2m9j     (i=m)> 

6ij = P»Wi-«.j+'"+Plwi-lij
4wlJ +PlWi+l,j    +-"+pmwi-Hn,J'  i-Hri-l.-.-.T-m. 

6T-m+lsj  
=    PmWT-2IIH-lJ+,''+plwT-mJ^T-m+lJ+plwT-iIri-29j

+°i,+p
m-lwTj     (^~**V. 

ÖTj = PmWT-m9j
+e"+plwT-lsj^Tj (*=T> 

This system will be solved for each    j     (fixed column)  and    i _< j ,     that 

is,  for components  above and on  the main diagonal. 

The  linear difference equation of  order    2m    corresponding  to 

rows    m+1,...,T-m,     in the homogeneous  case, has the associated 

characteristic equation 

(5.4) 

„ „2m, _2m—1,        . 
0 = pm2    +pm-lZ +°'8+pm 

=  Pm(z2m
+1)+Pm_1(z2m-1H-Z) + ^ • .+p1(«nri"1+«ai-1)4*,n

f 

which is symmetric in its coefficients.  Dividing through by 

p (p 4  0) we have mm 

/P c\   A  ,..2m,nN ,  m-1, 2m-l, N ,   ,  1, m-1, m-KL , 1  m (5.5)   0 = (z +1) +  (z   +z) +• • •+ —(z  +z  ) H z . 
p p p Km *m m 
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The roots of (5.5) occur in pairs,  z„  and 1/z.(z. 4  0).  Hence 

(5.5) equals 

2m        m 
(5.6) 

^ul ni m 
o = n (z-z,) = n (z-2.)(z - ±-) =   n (z -zdj-i), 

j-i  J  j=i  J   2j  j=i   J 

where 

(5.7)     d « z. + — ,    z - d 2 +1-0,    j = 1,2,.„.,m, 
J     J    zs. J     J J 

or 

(5.8) Zj -|(d±^-4), J - 1,2 m. 

Equating coefficients between (5.5) and (5.6) we are left with a. 

system of nonlinear equations to be solved for the d„'s„ We already 

found they are given by (4.10) when m = 2; when m = 3 they are 

r3 
= di+d2+d3' 

(5.9) £- 3+d1d2+d1d3+d2d3, 

— = 2d1+2d„+2d„+d1d0d». p„    1  2  3 12 3 
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In general we will have m nonlinear equations to be solved for 

d. ,'..".,d . Even when the order of the difference equation is 2m, 

the system is of order m.  The system and (5.8) will furnish the 

2m roots of (5.4), say,  z ,1/z , ,,„,z ,1/z . 

'". The procedure can be viewed in another equivalent formulation, 

(5.5) is equal to 

r ph ,„m+h,„m-hs o . L. z + y ^L (z
m+h

+z
m-h) 

ft m     L,       r,        v 

(5.10) 

m     n13! m 

1    . m v  h -h/.2h..,N —*-  z + z  ) —- z  (z +1) 
P    m u  1  P m       h=l m 

2 2 
Let us  substitute     s -  z+l/z =   (z +l)/z,     i.e.,     zs =   z +1.     Then 

n„n       /• 2, - vii       • 2n i      -2r  2(n-2),-T,        , ,nv n , £ n z s    =  (z +1)     =  z    +l+nz   [z /+l]+"«+(  )z   , if    n =  2r, 

=   z2n+l+nz2[z2(n"2)+l]+.^+(J)Z
n"1(z2+l),     if n = 2r+l, 

and after successive substitutions 

(5.12) z2n+l = zn(sn+Cn2s
n 2 +•••), 

for some coefficients C ..  Using (5.12) we see that (5.10) becomes 
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0 = z m i_ +    I    Ph z2h+l 
P   T."I P    h m  h=l m  z 

(5.13) 
m h+  I ^h+a9s

h-2 +...•) 
pm  h-1 Pm 

Jh2< 

=s Z 
m _h sm+o8.+ (-L+...) 

P P m in 

where z ^ 0.  For full details see Anderson [4]. 

Hence we have reduced the problem of solving (5.4), which is a 

polynomial equation of order 2m (in z),  to that of solving 

(5.13), which has also a polynomial equation (in s), but of order 

m.  Once s,»...,s  are available, the roots of (5.4) are given by 

s.     UsA2 s.      \Ts.\2 

(5.14).        Z
i = 2i-V21    -1» f^+lf   -1, ± - ;1,2,. ...m. 

i 

If Z,)ZM...,Z  are distinct, then 
12m 

m 
(5.15) wi? = JJVJK+VJK

1 
i < j 

The form (5,15) will have to be altered if some of the z 's coincide. 

(T) 
The 2m constants in the final expression for w„.  can be 

il 

evaluated from boundary conditions extracted from (5.3), for each j. 

In particular for columns l,2,.„.,m and T-m+l,...,T,  the boundary 

conditions are just the first m and last m equations in (5.3); in 
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fact one of the resulting linear systems will determine the constants 

for"..all columns. 

To determine the rest of the components, say, above and on the 

main diagonal, we can use the two approaches introduced in Section 4: 

the procedure involving the result stated in the Appendix, and the 

recursive procedure that works column by column„ 

Application of the result in the Appendix leads to: 

Proposition 5.1. Let. 2      be given by (5.1), with GQ = I, p„ = 1, 

and p f'-O-, l£m<T, and let g"1 -• WT - (w!?
}).  Then the 

(T) 
.w.. 's are determined: by means of a procedure consisting of the 

following- four- steps: 

.Step Iv Find- columns ..T-m+1, „ 0. ,T of_ WT from (5.15) or similar 

expressions', depending upon, the nature of' the roots of (5 „4), where 

the 2m" ' constants are" evaluated from boundary conditions provided 

by the- first- m and- last m equations in (5.3); 

Step 2. Using" (3,19) deduce rows  1,2,... ,mt     from columns 

T-m+l*.'. o ,T; 

Step "3v" ' Determine the- proportionality constants 8   in 

(5ol6)  ei„w
(
1
T}+80.wi

T.)+°°°+e iT)=w..s   i » m+l,...,T; •  j > i, li lj 2i 2j     mi mj   ij9 '  ' *   J — ' 

(for columns j=[T/2]+l,„..,T-m)  from columns T-m+1,...,T; 
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Step 4,  Using repeatedly (5=16) find those components w.„  satisfying 

i = j,...,T-j+l; j. = [T/2]+l,J0.,T-m,  and all others using (3.19). 

The application of the "column by column" procedure can be 

summarized as follows: 

Proposition 5»2.. Under the same hypotheses of Proposition 5.1, the 

(T) 
w.v  for i <_-. j" are: given by (5.15) or similar expressions, depending 

upon the nature of the roots of (5.4).  The 2m constants are 

evaluated from boundary conditions extracted from,the system (5.3), as 

follows: " For columns T ,T-1,. .„. rT-m+l,  the conditions are the first 

m and last m equations: in: (5.3).; for columns j: == T-m,T^m-l,..., [T/2]+l, 

say, we assume that columns j+1,j+2 ,. . •>,j+m are already available, 

and then the conditions are the first m equations,- plus equations for 

rows j-m+r,.o.;j with the substitutions 

(T) (T) * 
W „ , ,     ,    ~W„     „ . « -   w. „ , 

3+1 >3 J.3+1 ljs 

(T) (T) _     * 
Wj+2,j  ~Wj,j+2 =W2j» 

(5.17) 

(T) (T) * 
3+m»3 3»3+m        mj 

the remaining1 columns- can be obtained using (3.19) , by symmetry of 

W . ~T 
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To prove Proposition 5.1 one only notes that (5.16) is equivalent 

to the condition, of Proposition A.i in the Appendix; see comments 

tnere. 

To prove Proposition 5.2 we note that for column j,[T/23+l^jxT-m, 

. the: "complete system .af, equations is composed of the first m in (5.3), 

plus~ the- homogeneous equations 

m 
(5.18) w.±j + I Ph(v±_h)^±+h^) •- 0»   i ••- m+l,m+2,...,j-m, 

plus equations 

0 - p w„..<,_.',    +°°°+p Wo       o+w „     .,   o+p,w„     ,0   0-f
ot">+p w„,,   .       (i=j-m+l), m j-2m+l,j rl j-m9j     j-m+l,j  rl j-m+2,j 'm j+l,j J ' 

0 o ° 

Q • o 

(5.19)° 

0 = Pm^-m-l,j+° • •4plwJ-2,j-h'j-1.3 +plWjj    +" ^Pm^+m-lJ (i^-D » 

1=   P»Wj^.3t:"i+plwj-l.J-h'jJ  .  +plWj+l,J +00'+PmWj-hnsj-  
(i=j)' 

plus other (homogeneous) equations for rows  i > j.  The- sequence 

satisfying (5.18) is w„., i = 1,2,...,j,  so that the components in 

the left-hand sides of (5.17) have to be obtained from-the columns 

already determined. 

Note 1.  To avoid vacuous statements,  T is taken to be large enough 

compared with m. 

Note 2.  In Proposition 5o2 the equation for row j  is inhomogeneous, 

and ail other are homogeneous (i.e., 6  - 0). 
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'Note'3.  In some particular instances the procedures described in 

Propositions 5.1 or 5.2 or both will disclose an explicit general 

(T) 
expression for w„ „ , i <_ j, as was exemplified in Section 3. 
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6'o" 'An approximation. 

"' Suppose E is T x T of Toeplitz type with components at-
:., 

that satisfy (1.5) for some m,  1 <_ m < T-l.  Further suppose that 

an»a1 »• • * 'a >0»0,;...  are tne covariances of a stationary process 

(that is, a covariance matrix of any order with these elements is 

positive semi definite).  Then one can always find coefficients 

.ou.a ',.•.„,a  such that E = E  , the covariance matrix of a vector 
0 1m ~  -MA.' 

(x , ...,x_v) of random variables generated by the "moving'-average 

model" 

(6.1)  ' ' x. = an£,. + ane.' n +•••>+ a e.  ,     t = •••,-1,0,1,. t   0 t   1 t-l       m t~m 

9 
where the s 's  are independent,  |e = 0, tz    = 1,  for all t. 

See, for* example, Anderson [3], Chapter 5. 

This way of- looking at E  gives rise to a different approxi- 

-1 mation for E   that is frequently used, at least for small values 

of m,  and that we now discuss in the general case»  It consists in 

(6-2) E^ - EM, 

where. E.  is the covariance matrix of  (y, ,...,yT)  generated by 

the "autoregression" 

(6.3)    Vt + alyt-l +" ° °+ amyt-m = £t'     t= •".-1.0,1,..., 
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where the e 's have the properties of those of (6.1), 

Let hk"   C°MA(i'J)] = [üMA(i_j)]' l~AR=   [°AR(i'j)]'" [G
AR

(±
-J
)] 

The autoregressive covariances satisfy the Yule-Walker equations 

m .    m 
(6.4)      I  araAR(-r) = 1,   £ VAR(s_r) = °»   s = 1»2--- 

r=0 r=0 

if the roots X-^,. • • »xm of the polynomial equation 

(6.5) M(x) = a„xm + anx
m X +• • •+ a = 0 0     1 m 

are different, then 

(6=6) aAR(h) = I  Kx£, h- 1,2,3,.... 
s=l 

and the constants K^ are determined from the first m equations in 

(6*4), namely 

1 = VAR(0)
 
+ °°'+ VlaAR("m+1> + VAR("m>> 

(6.7)      0 - VAR(1) +...+ a^o^i-m+2) +  cy^-m-H), 

0 = a^^Cm-1) +..H- VlüAR(0) + VAR*"1* ' 

together with 
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(6.8) GAR(_h) = aAR(h)s h = 1»2' »5 

-1    (T) see Anderson [3]9 Chapter 5=  Hence if !„. = (w.. ),  then 

(6.9)      wg> = aAR(i5J) -  I K8XJ-1 -  [yj),;1,       j > i, 

* i where K (j) = K x  is constant along columns of EAT).  We want to S        S S ~AK 

compare (6.9) with the exact form (5.15), that is, with 

/rriV 1 ^ ' t 

here the z  are taken to be distinct, and they, together with their 
s 

reciprocals, are the 2m roots of (5.4), that we now write as. 

0 - a.,. (m)z  +° ° °+ o„. (m) 
MA MA 

(6.11) « zm[om(m)zm +• • •+ ffffi(i.)Z"
m] 

m v 

h~-m 

because o"MA'(h) - ov.A(-h);  since no root equals zero, this shows that 

z,.,,,.z ,1/z,...„ ,1/z  are also the 2m roots of 
1'   ' m'  1'   s  m 

m       , 
(6.12) 0 - l    ÖMÄ_(h)z

n,; 

h=-m 
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The key fact to interpret the approximation is the relation 

(6.13) I    a  (h)zft - M(z)M(z_1) 
h=-m 

taken from Anderson [3], Section 5.7. It asserts that the expression 

in z in the left-hand side of (6.13), formed by the covarlances of 

the moving-average model, admits a factorization in terms of polynomials 

-1 
in z and z  ,  each formed by the coefficients of the model. 

If in the approximation (6.9) we choose all roots x  to be 
s 

less than one in absolute value, which without loss of generality we 

can always do when dealing with second-order moments, it then appears 

that the approximation (6.9) consists in omitting from the exact 

expression (6.10) the part involving positive powers of those roots. 

The constants in (6.9) and (6.10) are related in a similar 

fashion: the m equations in (6.7) bear to those in (5.19) to be 

used for columns not near the end points, the same type of relation 

that M(z) bears to M(z)M(z  ); further the m boundary conditions 

provided by rows i = l,2,...,m of (5,3) to determine the C  and 
t 

Cg,  constitute an "end effect" that is neglected as part of the 

approximating process.  The first assertion follows because (5.19) is 

also expressible as 

m 

I    Wr)Vs+r,j = ÜMA(0)' s = °» r=—m 
(6.14) 

=0, s — l,2,...,m-l, 

49 



while (6.7) is 

m 
I  a a  (s-r) 

r~0 r AR 

(6.15) 

=' 1, 

- o, 

s - 0, 

s = 1,2,...,m-l; 

writing (6.13) as 

m 
(6.16) I   oM4(r)2 - 

r=-m 
MA 

/ m 
V   s-r 

r=o 

i  m 

I a ,z 
lr«=0 r 

-s+r' 

the relation follows by identifying w„ ...  . with z  in the left- 
j-s+r,j 

hand side, and a  (s-r) with z 
AK 

s-r in the right-hand side, for each 

s.  Further (6.8) can be taken to correspond to (5.17) 

As an illustration, when m = 1,  a_ = 1 and a.. = a, (6.10) 

becomes 

(6.17) w;. 
ij i j   n , 2  1  , , 2 1 ' 1+a 1+a 

where x. = (l/2p)(-l+Vl-4p ), p = a/(1+a ),  and hence x- = -a. 

From (3.20) 

(6.18)  A(j) - -B(j) = 

,.  2T+2-21. j+1 
(1-X.^     J)x^ 

p(l-x^)(l-xJT+2) 
= -X 

. (1+x2)(l-x2T+2 2j) 

1  (l-x2)(l-x2T+2) 
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so that 

(6.19) 

j           2T+2- 
Xl    1_X1 
,2             2T- 
J-   X_           X""X„ 

1             1 

(X X\ o D 

For the first-order autoregression y + ay , = e ,  the covarianee 

r    2 
sequence is a.„(r) = (-a) /(1-a ), so that 

(6.20).   w^} ä ir«li_i = Jl_ "i = K(j)x1
i
s j>i« 

J     1-a    1-x, 

Hence in this case it is verified that the term containing x  is 

neglected, and the "end effect" consists in taking  (1-x..    ^)/(l-x.   ) 

-i 
as approximately equal to one in the coefficient of x . 

When m = 2,    if (6.5) has roots x1 £  x„,  then o.R(r)  is 

given by Anderson [3], page 174, and 

/ j-i+1   j-i+l< 
(T) 11       2 

(6„21)     W..  = öAri(j-i) = -J— TTT- T    n n— »    j > ij ARVJ (x1-x„)(l-x,x0)       ,2 .     2     *       J — J 12/v12'\ l-x1 1-x     / 

which is of the form (6„9)o 

Another approach that'is often used to analyze the approximations, 

is to relate E^ to §AR; see e.g. Durbin [5].  For m = 1, 

a0 = 1»'0li = a» 
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a   0 

(6o22) ?ii 

a 1+a 

0   0 

,0   0 

0   0 

0   0 

1+a  a 

which differs from ' E,..  in that the components in places  i = j = 1 

2 
and i = j = T are 1 instead of 1+a ,  For m = 2, a • = 1, 

a.  1+a..  a.+a-a« 

(6»23)   E -1 
AR 

2  2 
a? a.+a^a«. 1+a^a» a.+a-a2 

2 2 
1+a^+a» a^+a^a» a~ 

a.+a.a„ l+a1 

which differs from £MA in that the components along the main diagonal 

2   2 
should all be • 1 + a." + a_,  and along the two adjacent diagonals should 

_1 
be a. + a.a„. The forms of E.   for different values of m were 

given by Siddiqui [14] and Wise [17]. 
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For any m, there are differences between those components in 

two submatrices of order m * m, located at both end points of the 

main diagonal. 
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APPENDIX 

On a necessary and sufficient condition for a covariance matrix to 

have an inverse of diagonal type.  In this appendix we state and prove 

in detail a result that appears to have originated with Guttman [9] 

and Ukita [15].  The conditions were used by Greenberg and Sarhan [7], 

who call them sufficient conditions. 

A matrix A = (a..)  is said to be "diagonal of type r" if 

a, „ =  0 whenever  ] i-j | •>_  r.  From (1.5) it follows that a stochastic 

process which is finitely correlated of order m,  gives rise to 

covariance matrices which are diagonal of type r = m+1. 

Proposition A.l.  Let I = (a. „) be a T * T symmetric and positive 

-1 definite matrix.  A necessary and sufficient condition that E  = (w „) 

be diagonal of type r is that there exist constants b   such that  u— _—.   ts  —.  

for t = 1,2,...,T-r+l 

(A.l)        ott, + btlot+lit, +..-+ bt>MOttiuljtl - 0,  f-Wl,...,T. 

Proof.  For the necessity of the condition, suppose that 

y - (y-j > • • » >yT)'  is a vector of jointly distributed random variables 

~£ —1 with gy = 0 and covariance matrix E  such that  E   is diagonal 

of type r.  There exists an upper triangular matrix B = (b„„) with 

b00 = 1,  and a diagonal matrix D •= (d.„)  with d.„ > 0,  such that 
li ij li   ' 
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(A.2) E 1 = B'DB; 

see e.g. Graybill [6], Section 8.6; B is "upper triangular of type 

r", i.e. b„„ = 0 if j-i > r.  Let us introduce the new random vector 

u = (u-,...,u_)', defined by 

(A.3) u = By. 

Then ^u = 0, £uu' = BEB' = BB 1D V'V = D l,     and the u 's are 

uncorrelated.  From (A.3) we deduce that 

(A.4)   ut = yfc + btlyt+1 +•••+ *tfT_xyt+T_r t  = l,2,...,T-r+l. 

-1    ii Solving (A.3) for y, we note that B  = (b J)  is also upper 

triangular and hence 

T 
(A.5) yt = I  b V, t - 1,2,...,T. 

s=t 

* 
From Graybill [6] it follows that there exists an upper triangular 
•matrix T such that E-1 = T*T.  Since E-1 is positive definite, 
fcii ^ ^'  Since E~l is diagonal of type r, T is upper triangular 
of type r.  By choosing the diagonal matrix A  conveniently, 
AT = B can be left upper triangular of type r and with bit = 1. 
Then IT1 = AA' = A2, and d±i > 0. 
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Multiplying (A.4) by (A.5) with t replaced by t',  t' = t+l,...,T, 

and taking expected values we have that 

<A.6) 0 = ^tt.+b£l^t+lJt.+ •••+bt9r_l^+r-l5t• 
. i _ t+1     T 

which is (A.l). 

Sufficiency. We have to show that if (A.l) holds, w„. = 0 for 

[ i-j | _> r.  Consider i > j,  that is, w. .  is below the main diagonal. 

The  (T-l) x (T-i)  cofactor of a„„ will be evaluated by Laplace's 

expansion using minors, formed by its last T-r-j  columns.  For 

any one of these minors, if its complementary minor does not include 

row 1 of E,  then the first r columns of the latter are linearly 

dependent.  If row 1 of E  is included, by using the relation (A.l) 

successively and at most j-1 times the complementary minor can be 

brought into the equivalent form 

(A. 7) 

M 
-11 

M 12 

M. 
22 

where M   is upper triangular and the first r columns of M„„  are 

linearly dependent.  In either case the complementary minor is 0 

and hence w„„=0. Q.E.D. 
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Condition (A. 1) states the existence of a linear relation 

between successive sets of r adjacent rows of E; an equivalent 

and often useful formulation is to relate the first r-1 rows to each 

of the remaining ones.  For r = 2  and 3 the conditions were 

written explicitly by Greenberg and Sarhan [7]; when r = 2  these 

reduce to 

(A.8) 0
Ji=Xi'        i=2,3,...,T;  j = i,1+1,...,T, 
lj 

where of course we require the relevant components in the first row 

to be non-zero. 

As an application of (A.8), let us rederive (3.20).  In Section 3 

the given matrix,  E,  is known to be diagonal of type r = 2. 

From (3.12) we know that 

Y^l  *"""-|/9 1 •  lyZ j • • • ji j (A.9) 

T+1 
xi 

W1T "     ,.     2T+2. 
p(l-xx       ) 

using   (3.19) 

T+1 

(A.10)    wn = wT-i+l,T "     -  2T+2, (X1~"  " xi"    >'  i = l»2,...,T. 

-1 
By symmetry of 1     ,  the components in its first row are 

T+1 

(A. 11)       w... =     rtmT o  (x-i    "" xi    )>      J 
=
 1J2,...,T. 

J  pd^  ) 
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The proportionality constants are obtained from (A.9) 

x   -i 
W|T   

Xl _ X1 
(A. 12)        A, = -i- =  — , i = 2,3,...,T. 

i  wnm       -1 '    ' IT  x.. - x. 

Applying these to (A.11) we obtain 

T+l, i -iw T-j+l_ -T+j-1 

w„ . = 
x±     (x1-x1 )(x1 

J  -x1 
J  ) 

ij        f        -1W1  2T+2, pix^-Xj^  )(l-x1  ) 

(A.13) 

(x^-x-^Cx^^-x-^-^1)) 

. -lw T+l -(T+l). p(x1-x1 )(x1 -x1   ') 

which are two new versions of (3.20). 
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