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throughput of a given multi-processor multi-memory processing system under
multiprogramming. Finally, the total system model allows us to derive the
response cime distribution of an entire computer system under study.

Since all major factors (such as various system overhead times and idle times)
which may decrease a system's computational capacity available for users' useful
work are explicitly considered in the analyses using the above models, the
performance predicted by these analyses is very realistic. A comparison of the
performance of an actual system, the Multics system of M.I.T., and the corre-
sporiding performance predicted by these analyses confirms the accuracy of
performance prediction by these models. Then, these analyses are applied to
the optimization of computer systems and to the selection of the best perform-
ing system for a given budget. The framework of performance evaluation using
these hierarchically orgenized analytical models guides human intuition in
understanding the actual performance problems and provides us with reliable
answers to basic performance questions on system throughput and response time,
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ABSTRACT

This thesis presents a comprehensive set of hierarchically
organized modular analytical models developed for the performance
evaluation of multiprogrammed virtual-memory time-shared computer
systems using demand paging. The hierarchy of models contains a user
behavior model, a secondary memory model, a program behavior model, a
processor model, and a total system model. This thesis is particularly
concerned with the last three models. The program behavior model
developed in this thesis allows us to estimate the frequency of paging
expected on a given processing system. The processor model allows us to
evaluate the throughput of a given multi-processor multi-memory
processing system under multiprogramming. Finally, the total! system
model allows us to derive the response time distribution of an entire
computer system under study.

Since all major factors (such as various system overhead times and
idle times) which may decrease a system's computational capacity
available for users' useful work are explicitly considered in the
analyses using the above models, the performance predicted by these
analyses is very realistic. A comparison of the per formance of an
actual system, the Multics system of M.I.T., and the corresponding
performance predicted by these analyses confirms the accuracy of
performance prediction by these models. Then, these analyses are
applied to the optimization of computer systems and to the selection of
the best performing system for a given budget. The framework of
performance evaluation using these hierarchically organized analytical
models guides human intuition in understanding the actual performance
problems and provides us with reliable answers to most of the basic
quantitative performance questions concerning throughput and response
time of actual mndern large-scale time-shared computei systems,
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CHAPTER 1

THE PERFORMANCE EVALUATION PROBLEM

1.1. Motivation

Almost ten years have passed since the appearance of the first
general-purpose time-sharing computer system marked by the CTSS system
(C9]. This system is still in operation at M.I.T. although it is being
replaced by later time-sharing computer systems because of its limi-
tations on supporting sophisticated users. Many other systems hLave
been developed in the effort to correct the deficiencies of earlier
systems. Notably. the Multics syst~m [C10,Cl12], the successor of CTSS,
and the IBM 360 model 67 system [A3,Ll1] incorporated many elaborate
ideas into their design to efficiently provide sophisticated users with
their own virtual computers. These large-scale systems have stimulated
the development of a number of smaller systems such as GE 235, RCA
Spectra mode! 46, CDC 3300, DEC PDP-10, and XDS 940 and Sigma 7.

As pointed out by Rosen [R2], especially large-scale time-sharing
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systems (the Mutlics system and the 360/67 system) have fallen far
short of the performance anticipated in the initial design staye. The
elaborate ideas incorporated into these systems, such as paging, segmen-
tation, multiprogramming, multi-processing, and memory hierarchy.
combine to create an enormously complex system and therefore it was
hard to estimate how efficient such an ambitious sysiem would be.
Moreover, it was difficult to estimate the impact of :he behavior of
sophisticated user programs in this environment upon the system. In
fact, it is not easy even now to predict the performance (e.g.,through-
put, response time, etc.)of such complex time-shared computer systems;
it is generally believed that the most accurate prediction of the
performance of a system in question is obtained by extrapolating the
observed performance of "similar' existing systems. But & little
investigation often reveals that each system Is very different in hard-
ware, software, and user characteristics from others. Therefore, other
existing systems do not directly provide us with a reliable performance
projection of a system, although an examination of performance differ-
ences of similar systems may be very interesting. Some examples of
difficult questions on the performance of these modern large-scale
time-shared computer systems are listed for reference in Tabie 1-1.

It is obvious that we need some sort of comprehensive theory of

performance evaluation thut is capable of answering these quantitative

performance questions concerning hardware, software, and user character-

istics of these computer systems.
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Table 1-1 Some Difficult Performance Questions

What is the best configuration to provide time-sharing s:rvice for

200 sophisticated users at a place such as M.I.T.?

What is the maximum number of users that can be supported by a certain
system of a given configuration, without discouraging them with ex-

cessively slow responses?

What are the future procurement plans to improve the throughput of a
certain system if that system must evolve? Should we purchase another
processor, another unit of primary memory, or a faster secondary

memory device?

How sensitive is the system performance to the changing user charac-

teristics?

Does sharing affect the cost/performance of a given system very much?

How much does multiprogramming improve the performance of a certain

system?

How can we keep the system performing optimally by tuning system

parameters when a certain system overhead is halved?

What is the optimum page size for a proposed system? How sensitive

is the performance to the page size?
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1.2. Computer Systems to be Studied

This thesis will be concerned with performance evaluation of these
complex systems, i.e., multiprogrammed virctual-memory time-shared
computer systems using demand paging. Before beginning a discussion of
the performance evaluation problems, a brief description of such comput-
er systems to be studied is given in this section, in order to avoid
ambiguities associated with the conplex structure of these systems.

A typical system is schematically depicted in Figure 1-1. The
entire system is composed of a processing system and a finite population
of interactive users at their terminals. Each interactive user of the
computer system thinks for a while and then requests a computation
(hereafter called a job) to be performed by the processing system, by
typing a command line at his terminal. The job thus requested is re-
ceived and first placed in the memory queue Qm by the processing system.

The processing system is assumed to have more than one processor,
and a two-level virtual-memory consisting of multi-unit primary memory
(usually, core) as the first level and large secondary memory as the

second, as shown in Figure 1-2. This multi-processor multi-memory

processing system is assumed to have a two-dimensional address trans-

lation mechanism using both segmentation and paging [D2]. When this
processing system finds some space in primary memory that can be allo-
cated to a new user job, one of the jobs in Qmis moved, under the
First-Come First-Served (fCFS) discipline, to the processor queue Qp.
The jobs in Qp are scheduled one by one, (usually) under the FCFS
discipline, for a processor's service when one of the processors becomes

available, and then each job is executel (in the running state of
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Figure 1-1) by the procescor until it encounters a part (page), of its
Frogram, that is missing in primary memory ( a missing page fault is
said to have occurred). Control of the processor is transferred from
the user job to a supervisor module, named the page fault handler. which
then requests the missing page to be brought from secnndary memory for

that user job, under a demand paging strategy. At this point, the

processor becomes available for another job in Q . On the other hand,
P

the page-faulted user job enters the page-wait state, waiting for the

requested page. When it is eventually transferred from secondary memory
to primary memory, the user job reenters the processor queue Qp (or the

page-ready state), becoming ready for another service by a processor.

Because there usually exist several jobs competing for service by
processors, each job is executed in an interleaved fashion, cycling
through the above three states many times. When the job is eventually
completed, the result is returned, as a system response, to the terminal
user who requested this job, and he then starts thinking about which
job to request next.

A series of jobs being requested by a user is generally called a
process. It is assumed that a user can request & job only after he
receives the system's response tu his preceeding job request. 1If &
user's job is located within the section of Figure 1-1 surrounded by a
broken line, his process is said to be eligible Secause it is eligible
for a processor's service; otherwise it is said to be ineligible.

The number of eligible processes existing at any instant should be
determined by considering, at least, their demand for primary memory

available to eligible user processes, in order to avoid thrashing,
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i.e., excessive competition for primary memory space leading to a less
than optimum use of system resources. The computer system to be con-
sidered is actually assumed to have a simple (static) mechanism to
avoid thraehing, called multiprogramming of degree g, which allows a
maximum of q (a constant) processes to be simultaneously eligible.
Summing up, the computer system to be studied is characterized by
the parameters shown in Table 1-2. This table lists only major system
parameters which are believed to be important in performance evaluation.
The precise definition of these system parameters will be given as they

are introduced in the thesis.
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Table 1-2 Major System Parameters

System Hardware:

number of processors

size of primary memory

number of primary memory units

size of secondary memory*

speed of processors and primary memory
speed of secondary memory

channel organization and capacity¥*

memory cycle interference

System Software:

scheduling algorithm¥*

multiprogramming algorithm (degree of multiprogramming)
page replacement algorithm

page size

paging overhcad

miscellaneous overheads

data-base lockout

Users and Their Programs:

number of interactive users

types of interactive users¥

user's think time

execution time required by each user interaction (job)
program size

reference pattern of programs

decree of sharing among user processes

* Comments will be given in Section 1.6,
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1.3. Nature of the Problem

As the complexity of time-shared computer systems grew, the perfoim-
ance evgluation nf these costly systems became vital. Therefore, many
performance evaluation technijues have been developed. Lucas [L4]
recently classified these techniques, according to their purposes of

performance evaluation, into the following three categories.

(A) System selection techniques

(B) Performance projection techniques

(C) Performance mon‘toring techniques

The first category of techniques is intended to select a particu-
lar system from various systems available from many manufacturers when
system performance is a major criterion to make a purchase order. Lucas
suggests that synthetic programs (a comprehensive set of benchmark
programs, so to speak) are most appropriate in this category. The
second category of techniques are intended to estimate the performance
of a system that does not yet exist or only partially exists. Within
this category, Lucas claims that simulation is most power ful because of
its relative flexibility in modeling complex systems. The last category
of techniques is intended to collect data on the actual performance of
an existing system. These data are used to identify the operating
condition of the system so as to forecast the impact of changes in the
system, possibly with the help of the techniques of the second category.
Monitoring uses both hardware and software methods.

According to this classification, the performance evaluation

tr.chniques to be presented in this thesis belong to the second category
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and are especially concerned with the following three general performance

problems of modern large-scale time-shared computer systems.

(1) performance prediction for a given configuration

(2) performance optimization for given (hardware) configuration

(3) 'configuration selection for a given budget

Performance prediction means a functional expression of system
per.ormance (e.g., throughput, response time, etc.) in terms of varicus
system parameters concerning hardware, software, and user characteristics
of the system; a performance prediction technique estimates the perform-
ance of a given (hardware-software-user) configuration. Performance
optimization deals with the problem of how to improve the performance
of a given system without changing its hardware: the system performance
is optimized with respect to certain adjustable paran.ters of the
operating <ystem such as the degree of multiprogramming, the page size,

and vavious resource allocation algorithms, without changing the

hardware cost, Lastly, configuration selection1 is the problem of

deriving the optimum system configuration which attains the best
performance, constrained by a given purchase budget; this involves

an optimization of hardware configuration as well as that of the operat-

ing system.

1The configuration selection problem is simpler than the system selection
problem because we need not be concerned with various differences of
nifferent systems in machine structure such as word length, width of

data transfer paths, machine instruction repertory, etc,
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Unfortunately, simulation approaches, recommended for this category
of pioblems by Lucas, require enormous amount of development effort
and operating cost. This becomes espec!ally apnarent if a simulation
model includes many micro and macro opera:ions in evaluating the per-
formance of various possible configurations of a certain system. More-
over, simulation approaches tend to lack the capability of yielding a
general insight into the cause-and-effect relationship of perforrance
problems. To compensate these weaknesses of simulation approaches, this
thesis explores the possivility of using analytical models in tacklirg

the above three general problems of computer system performance.
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1.4, Review of Analytical Computer Models

Because analytical models will be developed in this thesis to
project the performance of large-scale time-shared comrurer systems,
this section briefly reviews and examines the analytical computer models
developed as performance projection techniques until now.

These models are stochastic in nature and their analysis usually
:nvolves queuing theory. Because it is generally difficult to include
many mutually related system parameters (see Table 1-2) in a mathemati-
cally tractable model, most of these analytical models are concerned

with subsystem behaviors. They may be classified into:

(a) processor scheduling models
(b) secondary memory models
(c) multiprogramming models

(d) program behavior models

Processor scheduling models usually include a single processor, an
infinfte (sometimes, finite) user population, and a scheduling algorithm
(e.g., First-Come First-Served, Round-Robin, Processor Sharing, Feed-
Back). and aim to study the effect of a scheduling parameter (e.g.,
quantum length) upon response time of a user job (conditioned upon its
execution time). These models are most abundant among the above four
classes and were extensively surveyed by McKinney [M2). For example,
general analyses by RR, PS, anu FB algorithms were presented respective-
ly by Chang [C2], Baskett [B2|, and Schrage [S5].

Secondary memory models are intended to estimate the (average) time

to fetch a block of information from a secondary memory device (e.g.,
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disk, drum, bulk core, etc.) used as part of virtual memory. Fewer
papers have been published in this area. Coffman's work [C5.C6] is,
however, worthy of a special note. He derived the average time required
to fetch a page of information crom a sector drum under demand paging,
using an embedded Markov chafa technique {C8].

Multiprogramming models are relatively newer class of models and
were analyzed by Smith {S7). Wallace and Maason (W2}, Bagen [B6], Moore
[M3], Rice [Rl1}], et al. These models combine processor scheduling
models (with a FCFS discipline) and secondary memory models, making a
significant step toward a 'system model". They include several (a fixed
number) jobs under multiprogramming, each of which is serviced by a
processor and then by one of the secondary memory devices in a cyclic
fashion, as schematically shown in Figure 1-3. Service time of each
server (processor, 1/0 devices) is usually assumed to be exponentially
distributed and branchings are specified by constant (unconditonal)
probabilities (e.g., Pj of Figure 1-3). This class of models aims to
evaluate the effect, upon the server utilizations, of the hardware con-
figuration as well as of the number of jobs under multiprogramming,
i.e., the degree of multiprogramming. Smith and Wallace et al formulated
their problems as a Markov process and numerically obtained the perfom-
ance of these models using a power ful queue analysis program called RQA
{(Wl}. On the other hand. Buzen, Moore, Rice. and others explicitly
analyzed the performance of their multiprogramming models using Gordon
and Newell's method [G2] or Jackson's decomposition thorem concerning

queuing networks [c7.J1]. The effect of non-exponential service times
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i processor

q circulating jobs
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1/0 device 1 L
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Figure 1-3 Typical Multiprogramming Model
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was examined by Gaver [Gl]. The problem of optimizing the degree of
multiprogramming under a simple assumption was studied by Wallace and
Mason. The effect of system overhead was carefully analyzed by Lewis
and Schedler [L2].

Finally, there exists another class of gnalytical models, i.e.,
program behavior models. These models are intended to study the paging
behavior of programs being executed by a processor within a limited
amount of primary memory. There seem toO be at least two different
popular approaches in modeling program behavior, Markovian program
models [K1] end Denning's working-set program models [D1, D3]. The
paging behavior of programs is modeled by a Markov chain in the first
approach, while the paging behavior is measured by the number of dis-
tinct pages referenced during a given time interval in the second

approach. Both of these attempt to derive a success function, i.e.,

the probability that a reference is made to a page already in primary
memory expressed as a function of the primary memory size, for a certain
page replacement algorithm. However, no practically useful results have
been obtained about the dynamic paging behavior of programs.

Although many analytical models have been developed and analyzed,
there still exists a general consensus especially among system designers
that these models are not good enough to answer the performance questions
that they face (see Table 1-1). This is probably due not only the
system designers' insufficient efforts to try to use studied models in
understanding the behavior of an actual system, but also to certain
important detects of these analytical models; most of the analytical

models developed until now have serious weaknesses in at least some of
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the following aspects.

(1) System behavior versus subsystem behavior; almost all analyti-
cal models attempt to represent only a subsysteml, and this
is the very rcason why many system analysts abandon an analyti-
cal approach and choose a costly simulation approach. Perhaps,
we neec another modzl which is capable of combining all sub-
sysiem models meaningfully so as to estimate the performance
of the entire system.

(2) Paging activities and multiprogramming capability; this aspect
of the modern large-scale time-shared computer system is not
considered in the processor scheduling models, but is usually
considered in the multiprogramming models. Therefore, we
should favor the latter models. The program behavior models
developed until now are not good enough to consider a multi-
programmed situation,

(3) Space-domain considerations; the size of primary memory is not
considered in the multiprogramming models. Moreover, these
models consider only a single-processor system, in spite of
the increasing intersst in multi-processor multi-memory systems.

(4) oOverhead considerations; almost all models do not consider

the overhead of system programs, although a major implication

1There are some analytical models of an entire system [S4,Tl]. However,
these models are apparently too simple to reasonatly represent multi-

programmed time-shared computer systems using demand paging.
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of modern time-shared computer systems with paged memory is
considered to be system overhead.

(5) Good choice of performance measure; the improvement of utili-
zation factors of system resources is not an ultiaate goal.
Better performance measures are the system throughput, namely,
the amount of user computation accomplished by the entire
system per unit time, and the system response time experienced

by interactive terminal users.

We will attempt to correct these defects of the existing analytical
models in this thesis research s rhat we can realistically attack per-
formance prediction problems, performence optimization problems, and

configuration selection problems.
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1.5. Approach to be Taken

Modeling of multiprogrammed virtual-memory time-shared computer
systems using demand Paging must include many system parameters, as seen
in Table 1-2. It is actually this multiplicity of interacting system
parameters that has prevented analytical computer models from being a
reasonable representation of these systems as their entirety; a straight-
forw.rd inclusion of all important System parameters in an analytical
model would not allow mathematical tractability in its analysis. Inter-
estingly, it has been observed also in simulation approaches that a
simulation model which attempts to account for both ""macro-operations"
(e.g., user's think time) and "micro-operations" (e.g., state transitions
of eligible processes, dynamic program behavior) can be prohititively
expensive to run [B4]. On the contrary, the results obtained from the
oversimplified analytical models cannot convince the system designers of
their practical value as a design aid, Therefore, we are in a dilemma of
mathematical tractability and multiplicity of interacting system parameters.

However, a solution to this dilemma may be found by noting that all
system parameters do not necessarily interact and that the system
behavior involves vario. : activities of different time scales., For
example, user behavior (e.g., think time, jobs to be requested, etc.)
tends to be logically independent of dynamic program behavior unless
the user is encouraged to be Particulary careful about the program
behavior. We find that the activities of the entire system may be
categorized into "macro-activities' (e.g.. memory queuing of user jobs,
terminal user behavior---activities on the order of seconds), "micro-

activities" (e.p , state transitions of eligible pProcesses---millisecond
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activities). Thus, we can obtain several semi-independent activities
of the entire system which interact only through their prime inter-
relationships. When all the semi-independent activities are connected
according to their prime inter-relationships, we generally obtain hier-
archically organized system activities. One such result is shown in
Figure 1-4. The approach to be taken in analyzing the behavior of the
entire ccmpiter system in this thesis is to develop a separate model

for each semi-independent activity of this hierarchy in such a way that
any model has, as its input parameters, at least one system parameter
produced (as an output) by each immediate lower-level model, if such
models exist, as well as its own set of system parameters. A system
parameter produced as an output of a model can be regarded as a perform-
ance index of that model. If such a performance index is not the output
of the top-level mcdel, it is called an intermediate performance measure.
Now it is clear that the entire computer system is represenced by a set

of hierarchically orpanized modular models.

We will use a particular hierarchy of modular models depicted by

Figure 1-4. It includes the following five modular models.

(1) program behavior model(s)
(2) secondary memory model
(3) user behavior model

(4) processor model

(5) total system model

The program behavior model(s), to be developed for the behavior of
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Figure 1-4 Hierarchical Organization of Modular Models
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prograns being executed on the processing system, aim(s) to derive the
mean length of program execution before a page fault (that is, the mean
time between page faults denoted as "mtbpf') as a function of various
system parameters such as program characteristics, the primary memory
size, the page replacement algorithm being used, the page size, the
degree of sharing among eligible processes, the degree of multipro-
gramming, etc. The secondary memory model aims to derive the mean
length of time required to fetch a page of information from the second-
ary memory system (that is, the mean page fetch time denoted as "mpft')
as a function of memory device characteristics, the channel . ‘ganization,
the input/output traffic intensity, etc. Because the performance of the
secondary memory system (disk, drum, bulk core, or a combination of
these) can be reasonably predicted by a simple queuing model like an
M/G/1 queue [C8], or by the fairly complex drum model of Coffman [c5,
C6], the thesis will not develop a new mudel in this area. The user
behavior model exists for a user's function to think and request a
computation called a user job. 1In this thesis, we simply assume that
think time, which a user needs to decide and request a job, and exe-
cution time required by such a user job are both expunentially distrib-
uted because they are known to be roughly exponential [S4]; we will not
be concerned with any internal mechanism of these interactive users
(e.g., under which condition a user's think time tends to be expornential).
Immediately above the program behavior model and the secondary
memory model, there exists the processor model. This is a multipro-

gramming model improved in sich a way that the performance of a multi-
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Programming mechanism implemented on a multi-processor multi-memory
pProcessing system (see Section 1.2.) can be measured in percentile
throughput, i.e., the percentage of the system's computational capacity
utilized for users' useful work. This means that the objective of the
processor model is to derive the percentiie throughput of the system as
a function of the number of Processors and primary memory units, their
operating speed, the speed of secondary memory, various overheads of the
operating system, the degree of multiprogramming, user process behavior,
multi-processor interferences (such as memory cycle interference and
data-base lockout), and so on. Particularly as for the user process
behavior and the speed of secondary memory, it will be assumed that the
time between page faults and the page fetch time are both exponeatially
distributed with m2ans predicted by the analyses of the program behavior
model and the secondary memory model respectively. Becaus= percentile
throughput turns out to be linearly proportional to the throughput of
the processing system, i.e., the average number of user jobs completed
per unit time (this relation will be shown later in Chapter 3), the der-
ivation of percentile throughput using the processor model is called a

throughput aralysis. The throughput analysis using the above multi-

programming model aims to overcome the defects of the existing multi-
Programming models concerning the space-domain considerations, the
overhead considerations, and the performance measure.

At the top level. there exists the total system model. This model
combines all other models in the hierarchy, and aims to derive a distri-

bution of the system's response time as an explicit function of the
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number of processors, the number of interactive users, the percentile
throughput predicted by the processor model, and the user characteris-
tics such a. user think time and execution time of a user job both of
which are assumed to be exponentially distributed. This means that it

will be possible to derive the percentile response time, i.e., the time

limit which guarantees that a certain proportion (e.g., 90 percent) of
response times is shorter than that limit, as a function of various
system parameters describing the configuration of the computer system.
Therefore, the result to be presented is much more informative than the
result of the average response time, because the fluctuations of re-
sponse times around the average can be accurately predicted. It seems
that this is the first derivation of the distribution of response time
of a multiprogrammed time-shared computer system using demand paging.

It should be pointed out that the response time and the system
throughput predicted in this approach reflect not only processor hard-
ware characteristics, system software (operating system) characteristics,
and user behavior characteristics, but also secondary memory character-
istics and program behavior characteristics. This was made possible by
the use of a set of hierarchically organized modular models each of
which involves only a few system parameters, while the entire computer
system includes more than twenty important system parameters. This
thesis will consider all the system parameters of Table 1-2 except those
starred, in evaluating the performance of multiprogrammed virtual-memory
time-shared computer systems using demand paging, explained in Section

1.2.
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Aside from the fact that this hierarchical organization permits

mathematical tractability and the existence of such a multiplicity of

interacting system parameters, it has the following equally important

aspects.

(1)

(2)

3

This organization allows human understanding of the very
complicated behavior of modern complex computer systems and
therefore provides us with an insight into the cause-and-
effect relationships existing in such systems.

If the behavior of a subsystem becomes known through the
experimental or monitoring studies of a partially existing
system, the behavior of the corresponding model can be re-
placed by the actual behavior of that subsystem. Therefore,
available information about subsystems can be usefully util-
ized in predicting the performance of the entire system with
an increased accuracy.

Change in subsystem configuration (e.g., secondary memory
configuration), expected especially on evolving computer
systems, does not require an overall change of the entire
analysis; only the parameters of that subsystem need to be

modified.
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1.6. Some Comments about the Models

Comments may be in order as to why some of the system parameters
of Table 1-2 are out of consideration in this thesis. In studying tie
paging activities under multiprogramming, this thesis assumes a two-
level virtual memory consisting of primary and secondary memories. In
this context, the key parameter of secondary memory is not its size but
its speed, and therefore it is simply assumed in the thesis that the
secondary memory system is large enough to stcie all the system and
user programs; we do not explicitly consider the size of secondary
memory. As for the channel considerations, it will be assumed for
simplicity of the analysis that the processing system is not channel-
limited. Therefore, the dynamic queuing delay associated with channel
service will nec be explicizly considered, but some fixed service time
by channel may be included as part of the page istch rime of secondary
memory.

Scheduling algorithms of the system described in Section 1.2 are
all FCFS and any alternative algorithm will not be considered. But, as
is well known, actual systems usually employ more sophisticated algo-
rithms. For example, the Multics system usec a refined variation of FB
scheduling algorithm [01] with a pre-paging and post-purging technique
(rather than strict demand paging) for jobs in the memory queue. It
should be realized that what we want to accomplish in this thesis is to
develop a performance evaluation methodology which is capable of de-
riving percentile throughput (or system throughput) and response time
of a "reasonably basic" system like the one described as a typical

system in Section 1.2, as a function cf various important system parame-
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ters. Then, it becomes clear that inclusion of an alternative sched-
uling algorithm like a RR or FB algorithm (for jobs in the memory
queue) in the proposed framework of the performance evaluation theory
{s not very attractive, because it is known in queuing theory [B2,C7]
that (overheadless) scheduling clgorithms cannot affect percentle
throughput or average response time if the execution time of user jobs
is only probabilistically known and follows an exponential distribution,
as assumed in Section 1.2 and as observed on the Multics system, for
example: scheduling algorithms however :an affect the variance of
response time because of their intended favoritism for certain (e.g.,
short) jobs at the expense of others [C7]. Percentile throughput and
average response Lime only deteriorate if the process (job) switching
overhead associated with quantum run-out‘ of the alternative scheduling
algorithm is not negligible. (Note that the introduction of pre-paging
and post-purging mainly aims to reduce this overhead.) Therefore, in
making a hard effort to include as many "important' system parameters

(those which affect percentile throughput c- average response time)

lUnder a RR algorithm, for example, a fixed amount of time, called a
quantum, {s given to each process becoming eligible. The process 1is
allowed to remain eligible until it uses up this amount of processor
time. 1f this process needs more processor time to complete its job,

it becomes inelijible and joins the end of the memory queue. This state
transition path is not included in Figure 1l-1, because we assume a FCFS

algorithm, i.e., the RR algorithm with a infinitely large quantum.
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as possible in the framework of this approach, . lternative scheduling
algorithms will not be considered; such a refinement may be applied
after the computer system under study is optimized with respect to
percentile throughput.

For jubs in the processor queue, the Multics system uses a pre-
emptive scheduling algorithm (to accomplish a biased primary memory
allocation [Bl]) with a dynamic eligibility control mechanism based on
a working-ret estimate of user processes [0l] (rather than the static
eligibility control mechanism of Section 1.2). This elaboration does
improve percentile throughput, but we consider it as a refinement of
the FCFS scheduling (i.e., an unbiased primary memory allocation) with
the static eligibility control mechanism. Therefore, these details will
not be considered in this thesis.

Finally, it should be mentioned that many random variables are
assumed to be exponentially distributed not simply because of mathemati-
cal amenability but, more importantly, because of experimental evidence.
The user's think time measured by Scherr [S4] is roughly exponential,
and the execution time of user jobs being monitored by a built-in meter
of the Multics system is almost exponential. Page fetch time tends to
be close to an exponential distribution especially if secondary memory
consists of a combination of a frequently-used high-speed device (e.g.,
drum) and a less-frequently-used low-speed device (e.g., disk). The
distribution of time between page faults has not been measured on the
Multics system, but it is very probable that this distribution appears
like an exponential distribution. These observations of MIT systems,

of course, do not necessarily "essen the importance of extending the
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exponential assumptions to more general ones. In fact, the execution
time of user jobs of some other systems is reported to be more like a
hyper-exponential distribution or a Weibull distribution, possessing a

large coefficient of variation [A2].
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1.7. Thesis Organization

This thesis takes a bottom-up approach in describing the models
developed for hierarchically organized subsystems. Each chapter of this
thesis presents results obtained for a different subsystem.

Chapter 2 is devoted to the studies of dynamic program behavior,
and presents several program behavior models evaluating mtbpf as a func-
tion of various system parameters. Chapter 3 is dedicated to the
studies of the processing system, and presents a result of the through-
put analysis using the processor model, i.e., a nodel of the multi-
programming mechanism implemented on the multi-processor multi-memory
processing system. Chapter 4 is devoted to the studies of the response
time characteristics of the entire computer system, and presents the
result of the response time analysis using the total system model
formulated as 2 queuing process. Thus, Chapter 2 through Chapter 4
collectively consider the performance prediction problems, i.e., the
problems of expressing computer system performance as a function of
various system parameters de~~ribing its configuration.

Chapter 5 presents many numerical results obtained by these
analytical models as well as the actual performance data collected from
the Multics system of M.I.T. The validity of these models is first
examined and then the effect of various system parameters upon the over-
all system performance (i.e., the system throughput and the system
response time) is numerically evaluaicd using these models. The problem
of optimizing a given computer system with respect to certain operating
system parameters (the degree of multiprogramming and the page size) and

the problem of deriving the best performance system for a given budget
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are realistically considered. This chapter tackles all the performance
evaluation problems mentioned in Table 1-1 numerically.

The last chapter, i.e., Chapter 6, summarizes the problems solved
in this thesis and those that still remain to be solved. Throughout the
thesis, a stochastic modeling approach is used. This thesis therefore
represent an application of some known techniques (or their slight
variations) in Markov process theory and gueuing theory to performance
evaluation problems of computer systems. The emphasis, however, is on
the identification of the actual performance groblems and the develop-
ment of a framework of performance evaluation methodology.

A reader who is intere ted simply in finding out the application of
the framework of performance evaluation developed in this thesis to the
per formance problems of actual computer systems is rsuggested to read
Chapter 5 immediately after this chapter. 1f a reader is interasted in
understanding modeling techniques for computer systems, he should read
Chapter 2 through Chapter 4 carefully. Each of these three chapters can
be read individually without much trouble. If he decides to read in
this way, the notation ~nd glossary included at the end of this thesis
may be helpful. Chapter 6 is useful to those who are searching for

research topics in the area of computer system performance evaluation.



CHAPTER 2

PROGRAM BEHAVIOR ANALYSIS

2.1. Introduction

Virtual memory computer sy items have enabled the memory system to
appear to their users (programmers) as if it is virtually infinite in
size. Therefore, tue nasty problem of carefully overlaying programs
within a relatively limited primary memory space has been removed from
the user's programming considerations. Virtual memory is assumed,
throughout this thesis, to be implemented by '"segmentation" and '"paging"
[D2], on a two-level physical memory system consisting of primary memory
and secondary memory.

These computer systems have a mechanism for translating program-
generatel addresses into the correct physical memory addresses [D2].

The set ¢f program-generated addresses is called the virtual address

space (virtual memcry) and the set of physical memory addresses the

physical address space (physical wemory). Segmentation organizes the

S
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virtnal address space into blocks, called segments, cf arbitrary size.
By allocating each prograin to its own segment, programs can have their

own "linear" virtual address space within themselves. This means that

a processor accesses each word of a program residing at a certain loca-

tion of the virtual address space, using a two-component address (two-

dimensional address) consisting of a segment name (segment number) and

a word name (word number). Paging further organizes each segment into
blocks, called pages, of a fixed size (usually 1,024 or 512 words) .
This means that a word name is represented by a page number and an
offset. Each segment usually has several pages of information ( proce-
dure and data).

Correspondingly, the physical memory is organized into equal-size
blocks of locations, known as page-frames, which serve as sites of
residence for pages of seginents. Because a processor can execute only
that portion of a program (segment) which resides within primary memory
which is relatively limited in size, the operating system must exercise

a special algorithm, called a paging algorithm, to keep only the pages

being needed ror a progress of program execution in primary memory at
all times, by transferring pages of the program back and forth between
primary and secondary memories. The paging algorithm decides when to
fetch a page from secondary memory and which page to be removed from
primary memory when one of the pages in there must be replaced by the
page to be fetched. 1If a page is fetched only on demand, i.e., only
after that page is found "missing" in primary memory in the course of

program execution (a page fault is said to have occurred), then the
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fetch rule is said to be demand paging; otherwise, it is said to be pre-

paging. The rule used to select a page for removal is called a page

replacement algorithm. These two functions (page replacement and fetch-

ing) of the paging algorithm aro carried out by a supervisor program,

named a page fault handler, which is a part of the '"resident" supervisor.

In fact, the processing of a page fault requires some other things
such as the bookeeping of the page table, the initiation of a channel
program, the handling of a paging interrupt, etc. [Cll]. These super-
visory operations required to process a page fault are collectively

called the paging overhead. From the above explanation, it should be

clear that each burst of continuous program execution, i.e., the running
state of each elegible process (see Section 1.2.), consists of (at least)
user program execution and paging overhead execution. The length of
thiz continuous program execution in the running state is called a time

between page faults (abbreviated as tbpf) and the length of user program

execution within tbpf is called a headway between page faults (abbrevi-

ated as hbpf). The means of these variables are respectively called the

mean time between page faults (mtbpf) and the mean headway between page

faults (mhbpf).

As explained in Section 1.2., the computer system to be studied is
under multiprogramming of degree q. This means that q eligible (user)
processes compete for service by a processor and for the use of page-
frames of primary memory. Because segmentation enables any segment to
be shared (a single copy of a segment in virtual memory can be simulta-
neously used by different users). some of these page-frames are physi-

cally shared by these eligible processes. Therefore, the efficiercy of
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primary memory is heightened by segmentation. However, some part of the

primary memory space is not available to non-resident programs (programs

whcih are not always resident in primary memory) invoked by eligible

processes, because resident supervisor programs stay at certain physical

memory addresses at all times. This situation is schematically depicted
in Figure 2-1. The total primary memory space with M page-frames is
divided into two areas, i.e., the area with m. page-frames for resident
supervisor programs and the area with m page-frames for non-resident

programs (user programs and non-resident supervisor programs). Eligible

user processes execute not only non-resident programs but also resident
(supervisor) programs, and therefore they can potentially utilize any
part of the primary memory space,

Dynamic paging behavior of user processes in this environment is
known to have a great impact on the system's overall performance [k2]
and therefore it has been extensively studied by many researchers. It
is believed that at least the folliowing system parameters are significant
in determining the performance of programs, which is usually measured by

the mhbpf of user processes.

(1) program characteristics (size, reference pattern)
(2) primary memory size (mr’ m > M)

(3) paging algorithm

(4) page size

(5) degree of sharing among user processes

(6) degree of multiprogramming (q)

Belady [B3], Brawn and Gustavson [B5], Coffman and Varian [C4], Hatfield
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M M
resident non-resident programs
supervisor invoked by q user processes

Figure 2-1 Allocstion of Primary Memory Space
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and Gerald [Hl], Tsao, Comeau, and Margolin [T2), and Baer ard Sager
[Bl], among others, have experimentally investigated the effect of
various system parameters upon the mhbpf (or its equivalent) of user
processes. On the other hand, Denning [D1,D3], Mattson, Gecsei, Slutz
and Traiger [Ml], Chang [Cl], Aho, Tenning and Ullman [Al], King [K1],
Woolf [W3], and others have carried out analytical studies of the dynamic
behavior of user processes.

Research performed by Denning, Woolf, and King represents three
different analytical (probabilistic) approaches to the problem consider-
ed in this chapter, and therefore some comments about their results are
in order. Deuning defined the working set, W(t,T), of a user process at
time t tobe the set of pages that the process has referenced during the
time interval (t-T,t), and he has demonstrated the usefulness of his
model using the working set as an aid for guiding one's intuition in
understanding program behavior and possibly as a basis for further
program behavior analysis. Woolf considered prograu behavior to be an
execution of a series of loops and successfully evaluated the effects of
program characteristics, primary memory size, and page size. However,
this claborate model has not been validated against actual program
behavior. On the other hand, King formulated program behavicr as a
Markov process in evaluating the effect of paging algorithms as well as
those of program characteristics and primary memory size. These analyti-
cal studies do explain various behaviors of programs experimentally
observed, but none of these has proved to serve as a practical design
aid to predict a program's quantitative performance (e.g., mhbpf) as a

function of the system parameters mentioned above. In particular, the
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effects of sharing and multiprogramming have never been fully studied,

In the following sections of this chapter, four program bebhavior
models mostly using a Markov process approach will be developed to study
the effects of those six system parameters mentioned above upon the
mhbpf (or its equivalent) of a program (a user process). All of these
four models consider at least the effect of program characteristics an’
of primary memory size, but each of them concentrates on the evaluation
of the effect of a particular system parameter. The models to be
presented in Sections 2.2, 2.3, and 2.4 are especially concerned with
the effect of the paging algorithm in use, the effect of the primary
memory size, and the effect of the page size, respectively. The mode!l
tv be presented in Section 2.5 considers a multiprogramming environment
and is particularly concerned with the effect of the degree of multi-
programming and that of sharing among user processes under multi-
programning.

Readers who are only peripherally interested in the analysis of
program behavior may skip Sections 2.2, 2.3, and 2.4,and directly move
to Section 2.5, which describes a macroscopic paging performance rodel
for multiprogramming. The result of this section will be extensivel:
used in the succeeding chapters. Sections 2.2, 2.3, and 2.4 presen:
detailed analyses of dynamic program behavior and can be read
individually without difficulty. However, a reader can grasp the dzsic
approach used in this chapter more thoroughly by reading the= in z7e

order of these sections.
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2.2. First-order Markov Model Applied to the PRA Studies

In Section 2.2., we present a program behavior model developed to
study the effect of page replacement aljorithms (abbreviated as PRAs)
as well as those of program characteristics and primary memory size,
upon the mhbpf of a user process operating on a multiprogrammed virtual
memory time-shared computer system using demand pagingl. To simplify
the analysis, we assume that the primary memory space (mn) is partition-
ed into q equal-size areas, one for each eligible process, and that the
PRA under study is exercised within the area reserved for each user
process (this kind of PRA is called a local PRA as opposed to a global
PRA [D2]). Then, the analys‘s of program behavior under multiprogramming

reduces to that of program behavior under uniprogramming.

2.2.1. Program Behavior Model and Paging Algorithms

Consider a program consisting of a set P={p1,p2,...,pn} of n pages.
As the program is executed by a processor, it generates a sequence rlr2
..rt... of references to pages, where if rt=pi we say that the progrem

references page Py at the t-th reference (or at time t). We assume

that such a sequence, known as a page reference string, is generated by

a probabilistic law associated with the program. In particular, if rt+1

r , then the probabilistic behavior of the

depends only on rt-k+1""’ ¢

1The result described in Section 2.2. can be regarded as an extension
of King's work [K1], although this was independently derived. He used

a zeroth-order Markov model for exactly the same purpose.
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program forms a k-th order Markov chain. This Markov chain actually
can be reduced to a first-order Markov chain of nk states by considering
a direct product (Pk) of the set P, i.e., a state augmentation techenique
[H2]. Therefore, we will consider, without loss of generality, only
programs that are modeled by a first-order Markov chain.

The probabilistic behavior of these programs is characterized by a
transition matrix P of the following form [H2], where an element of the
matrix pij represents a conditonal probability of a reference to a

page pj at time t+l, given that a page Py was referenced at time t.

g\ﬁfl Py Py ot Py
P; | P11P12 0 Pin
P, | P21 Pa2 o Paq
oo : (2.2.1)

I~
u

. . . .

Pa | Po1 Pn2 **" Pon |

We assume that the elements of this matrix do not devend on time t, i.e.,

the program behavior is stationarxl. Hereafter, we call this type of

program a (stationary first-order) Markovian program.

Suppose that primary memory consists of a set M={f1’f2""’fm} of
m page-frames where m<n., Although the most general paging algorithm -
may be the one which fetches (replaces) an arbitrary number of pages at

an arbitrary instant of time, we will consider the algorithms iiich

lLewis and Yue [L3] have pointed out that program behavior represented
in (LRU stack) distance reference strings rather than page reference

strings tends to be more stationary.
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fetch (replace) only one page at an instant of a page fault, i.e.,

demand paging algorithms. In this case, the studies of paging algorithms

reduce to those of PRAs,

With this much of background, we can formally describe a PRA for M

and P, as follows.

Definltionl

A page replacemant algorithm for M and P is a five-tuple

system T = (S5,1,0,f g) where

(1) S is a finite set of system states and is represented by a direct

product of finite sets (Sa,Sm,Sp) of PRA control states, memory

states, and program states, i.e.,

where

S::SXSXS,
a m P

(a) S, 1s a finite set of PRA control states, S = [sa}, which

(b)

(c)

is defined separately for each PRA later,
Sm is a finite set f memory states, indicating a set of pages

resident in primary memory, such that
= = <
Sm [sm |qm P, Ism' m},
Sp {s a finite set of program states,

= C =
Sp {sp Isp P, Ispl I

such that if 85" { pi] then page p, of the program is being

referenced,

1

This definition is similar to that of Aho et al [Al] or King {K1].
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(2) 1 is a finite input alphabet which contains all the elements of

page reference strings, i.e.,
) {p1 |Pi € P} =p,
(3) O is a finite output alphabet
0= {0.1}
whose meaning is defined below,
(4) f is a next state function of the mapping

Sx1I1 - 8§ such thatl

1 ¢+l  t+l

t t t+
,sp.pi):=(sﬂl » 8, 5 S. )

t
if f(sa, s,

t+l t+l
then p,¢ sm and sp o {Pi}s

i

(5) g 1is an output function of the mapping

SxI = o0 such that
t
0 if pic sm

(st st st' )=
8 8’ m! P'Pi =

1 otherwise (i.e., page fault),

(6) initial states of Sa’ Sm, and Sp are empty sets (v), i.e.,

It should be noted that a PRA for M and P is a (deterministic)
transition-assigned finite-state automaton (FSA) with states S X S X Sp.

inputs P, and outputs O, as shown in Figure 2-2. The triple, (sa.sm.sp)

1 t
The superscript t means "at time t'. For example, s, means that the

PRA control state at time t is sa'
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I=PpP

f:8x1I~-8
g:8xI~-0

p————3 (01 ... 0

o={0,1}

Figure 2-2 FSA Representation of PRA System

A e
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represents a state of this FSA and is called a configuration of the
PRA system I [Al,K1]. As the system T receives a page reference string
172

r.r,...r , the configuration of this system changes like
t

t t ¢t t+l _t+l  t+l

0 00 1 11
(sa,sm,sp),(sa'l,sm,sp),...,(sa,sm,sp),(sa »Sm 25p

)

generating an output sequence of O's and 1's. The output sequence,
which indicates when a page fault takes place, depends only on a page
reference string, the PRA in use, and primary memory size (m). This
implies that once a PRA is chosen for a computer system under study
with a fixed amount (m) of primary memory, the probabilisticpropertyof
the occurence of "1" in the output sequence, i.e., the occurrence of
page faults, is completely determined by the probabilistic property of

the corresponding input sequence, i.e., the probabilistic law given by

the P matrix.

2.2.2. Behavior of the PRA System

We will proceed to determine the PRA control states left unsperifi-
ed in the previous section and enumerate the number of distinct states
that the PRA system I can assume for each of various PRAs. Then, noting
that the probability associated with the transition from a certain
current state to another is completely determined by that pair of states
and the P matrix, we will see that the probabilistic behavior of the
system T can be viewed as a Markov chain defined over these states.

First of all, note that for any demand paging PRA




1
(s25s {Pi}) if p_es_

£(s,0808,5P) =4 (shos +Hp JIp D) if pyds , Js [<m
(S;,Sm"'{Pi}'{Pj }: {Pi}) if Pi“sm, 'sm| =m, pjesm
(2.2.2)

where pj is the page replaced by page Py and s; is a state which is
generally different from s, Observing that the PRA is exercised only
when lsm|:=m and that the program is assumed to operate indefinitely
within primary memory of m page-frames, we will neglect all the system
states for which lﬂn|<“1; we will now enumerate the number (Ns) of
distinct states that the system ¥ can assume, for each of the following

several PRAs, assuming that Isml =m.

Random PRA The page to pe replaced is chosen randomly from the
pages currently contained in primary memory. Therefora, the PRA itself
need not remember any kind of priorities associated with resident pages
i.e., the PRA is 'memoryless", and Ns is determined by the number of
different combinations of only sp and S That is to say,

n

m) (2.2.3)

Ns( Random ) = m (

LRU PRA This well-known algorithm chooses the least-recently-
used page (i.e., the page with the longest time since the last refer-
ence) and removes it from primary memory. This algorithm must maintain
an ordered list (called a LRU stack [Ml]) of resident pages to remember
how recently each resident page was referenced in the past. Noting

that there exist m! different ordered lists and that each ordered list
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automatically determines Sp’ Ns is obtained as

N oM
NS(LRU) = m-(m) (2.2.4)

FIFO PRA This easy-to-implement algorithm chooses the page which

stayed in primary memory for the longest time for removal. This

algorithm must maintain an ordered list of resident pages to remember
in which order each resident page was fetched into primary memory.
Noting that there exist m! different ordered lists and that sp cannot

be implied by each of those lists in any way, NS is obtained as

N_(FIFO) = mtm () (2.2.5)
LET PRA This algorithm removes the page with the longest expected

time (LET) until next reference [M1,A1,D2]). Because the expected time
until next reference to each page can be analytically calculated only

from 25 and the P matrix (as will be shown below), the PRA itself is

memoryless. Therefore, Ns is obtained as
n
NS(LET) =m(m) (2.2.6)

Another similar PRA removes the page with the longest expected
time since the last reference. Because this PRA uses information
about the backward distance (into the past) from the faulted page to
each resident page, we call this PRA the backward LET PRA (B-LET) .
NS is given by Eq.(2.2.6). We call the former LET PRA the forward
LET PRA (F-LET) . It should be noted that the LRU PRA, an approximation
to the B-LET PRA, is often used on an actual computer system in the

hope that the B-LET PRA is fairly close to the F-LET PRA for typical

(actual) programs.
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Now we are ready to consider a Markov chain model of the behavicr
of the system T for each of these PRAs. For this purpose, we borrow
an example of a Markovian program which was used by Chang [C1] in
proving that the F-LET PRA does not necessarily minimize the number of
p~ge faults for a general Markovian program. Chang's example1 is re-

produced in the form of a P matrix.

e\t Py Py Py
Py 0 ¢ l-c

P = P, d 0 1I-d (2.2.7)
p3ﬂI{I

We assume that our primary memory has only two page-frames, i.e., M =
{fl,fz}.
Random PRA Let {(©), j } denote a state of ¥ where s = {pi, Py } and

sp= {Pi}. Then, there exist the following six states in S, for this

PRA,

s={{0,2},{1,0},{0,3},{2,0},{0,3},{1,8}]

Noting the P matrix of Eq. (2.2.7) and the random nature of this PRA,
we obtain the transition matrix Q specifying the probabilities of tran-

sitions among these states.

1'I‘his example happens to have zero diagonal elements in the P matrix,
but probably most actual programs tend to have fairly large diagonal

elements corresponding to locality of memory references.
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@2} (102} (6,3} (2,0} ©,3} {1,0}
2} I 0 c 0 -1;—° 0 -1;—°
1-d 1-d
(1,0} { d 0 o = 0
©®,3} % 0 0 1-d % 0
2 ? 2,81 o 0 1 0 0 0
@31) o 3 < 0 0 l-c
{1,60} \ 0 % % 0 0 0
LRU PRA Let {(@®, j } similarly denote a state of T where s =

{pi, pj} and sp={pi} ; page pjis least recently used. Then, there

exist the same six states in S as above, and the Q matrix is obtained

as
@2} (1,2} B3} (2,6} 6,3} (1,6}
©,2} 0 c 0 0 0 1-c
{1,8} d 0 0 1-d 0 0
@13} | 4 0 0 1-d 0 0
2 (2,68 | o o 1 o o o
@®s31 | o c 0 0 0 1l-c
{1, o o 1 o o0 0
FIFO_PRA Ltet {(@),A\} cenote a state of T where s, =1p,, P 1, 5 =

{pi} , and page Py stayed in primary memory for the longest time.

Then, there exist the following twelve states:
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. @, 21,(0,4}, (4,8}, (1,8}, 8,31),(2,3)
{{é},@} 2 {2’@}, {m, 33’ {@‘,.é.}}’ {_ﬁ"d}, {l,a}s

The state transitions are specified by the following Q matrix.

21 (02 AG) (1,80 8,31 (04 A8} (2.4 i 31 (0.3) (D63 1.8

@\ 23 / 0 0 ¢ 0 0 0 1lc 0 0 0 0 0 \
A} o 0o 0o ¢ O O 0 O 0 0 1l-c © \
A fa o o o o0 o 14 0 0 0 0 0|
(14 /0 4 0o o o o0 0 0 0 0 1-d 0
B3| o o o o o o0 14 o0 o0 d 0
®Aj o d o o 0 0 ©0 1-d 0 0 0
2,6} | o o o o 1 0 0 0 o0 0 0
{2,4] i o o o0 o0 o0 1 o0 0 0 o0 0|
@3l{o o o o o ¢ 0o 0 0 0 1lc O |
@A {o o ¢ o o o o o 0 o0 l1-c!
A& \lo o o o o 1 0o o0 o0 0 0
(14 \o o o o o 0 0 0 0 0|
LET PRA First of all, we must derive the expected time, E(tij)’

to elapse until the first reference to a page pj starting from a page
pi (l1<i, j<n) in order to establish the decision rule of this PRA.
Let Ej be the matrix obtained from P by setting pjk:=5jk (Kronecker's

delta) for all k, i.e., making page pj an artificial trapping state
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[H2], as shown below.
P Py e P, P
P1 P11 P1p +++ Py Pin

B, = : :
o, 0 0 : ; (2.2.8)
Pn Pnl an Pnj e pnn

Observing that the j-th column of (P )k gives the probabilities that

3
page pj is referenced at the k-th reference starting from each page [H2],
we see that the probabilities that page pj is referenced for the first

time at the k-th reference starting from each page is given by the j-th

column of the difference matrix, (Ei)k- (gj)E'l (Note that page pj is
the artificial trapping state.) Therefore,
P P P,
' )
pl E(tlj' ‘
© : Py | .- E(tzj) .
k-
zk{(gj)k-(gj) }= . . (2.2.9)
k=1 . . .

P oo ECE_L) ...

where (gj)o =(0).
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Repeating a simlilar calculation for each J (1<j<n), we can obtain the

matrix E(t) which contains E(tij) as its i-j element.

1 E(t. ) ... E(tln)

E(t,,) 1 e.. E(t,)
o) = 4 2n (2.2.10)

\ E(t:nl) E(t:nz) .o

We call E(t) the distance matrix and E(tij) the distance from a page Py
to a page pj. It should be noted that this matrix is not necessarily
symmetric,

Now we can describe the LET PRAs more clearly using the concept of
distances. Suppose that a page p; was found to bte missing in primary

memory when Isnl|=tn in the course of program execution. Then,

B(s 58,8 5P ) (s;,sm'*{l’i}-{pj},{pi})

where E(tij) max E(tik) if F-LET is used,

P 6s,
E(tji) = max E(tki) if B-LET is used, (2.2.11)
pkE:sm
{ s, = s; = ¢ (memoryless algorithm).

This means that the F-LET ané the B-LET PRAs coincide if the ordering of
row elements of the distance matrix, with respect to the magnitude of
their values, is the same as that of the corresponding column elements
(or more strongly, if the distance matrix is symmetric). For this

reason, the LRU PRA presumably performs well if the distance matrix of

real programs tends to be symmetric,
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For the P matrix of Eq. (2.2.7), with ¢=0.1 and d=0.5, we obtain

the following distarice matrix.

1 1.9 1.16
E(t) = 3 1 1.58°
4 1 1,

Thereiore, as is clear from Eq. (2.2.11), the decision rule of the

F-LET PRA can be stated as follows:

s; r, page to be removed s::"l
{pysp,] Py Py { pysP3)
{pyspq) Py P, {py,p5l
{pysp4} P, Py { ppsPsl

Similarly, the decision rule of the B-LET PRA can be stated as follows:

s:‘ r, page to be removed s:‘ﬂ
{pysp,} Py P, {Ppysp4l
{p,,P5) Py Py {pysp,}
{pysp43 P, Py { ppspsl

Now, let {(i), j } denote a state of I where s = {pps pi} and 5 = {pi}.
Then, for each of LET PRAs, we have the same set cf six states as

obtained for the Random PRA. the transition matrix for the F-LET PRA

is given by

g RSN LSS p—
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@2} (1,8} (€3} (2,6} (@3} {1,8)
@,2} ( 0 c 0 l-c 0 0 \

{1,8} | 4 0 0 1-d o0 0

q = @3} (o 0 0 14 d 0

- (2,8} | o 0 1 0 0 0
@3} | o 0 c 0 0 lec| c=0.1
(1,00 { o 0 1 0 0 0 | d=0.5

The corresponding matrix for the B-LET PRA is given by
(0,2} (1,0} (0,3} (2,8} 0,3} (1,0

@2} | 0 c 0 0 0 l1-c |
(1,8} | 4 0 0 0 0 1-d
Q = @3} 4 0 0 14 0 0
- {2,801 | o 0 1 0 0
@3} o 0 ¢ 0 1-c/ c=0.1
(1,8} l 0 0 1 0 0 d=0.5

Thus, we have obtained the transition matrix Q which characterizes

the Markovian behavior of the PRA system &£ for each PRA.
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2.2.3. Evaluation of Paging Behavior of Markovian Programs

Now that we have enumerated the number of system states, each of
which satisfies the Markovian property, and have shown how the state
transitions can te determined when a PRA is chosen for a given program,
the next natural step is to evaiuate the program behavior in this
environment. Therefore, this section is concérned with how often a
page fault occurs as a given Markovian program is executed in a given
amount of primary memory under the dynamic memory managemant of a given
paging algorithm.

We will use the missing-puge probability p defined below to measure

the frequency of page faults,

expected number of page faults observed during the period [0,t]
t

p-lim

t—o

(2.2.12)
It should be noted that the missing-page probability is the inverse of
mhbpf, as is clear from this definitiom.

As a Markovian program is executed under a given PRA, the PRA
system I operates over a set of Ns Markovian system states making two
kinds of state transitions, i.e., those each accompanied by a page
fault and those not accompanied by a page fault, We call them page-

fault transitions and non-page-fault transitions respectively. Then,

the missing-page probability can be expressed as
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P = lim Prob{occurrence of a Page-fault transition at time t)
t—<

N sum of the all conditional probabilitien
= Z? n(k)|{ of page-fault transitions from state k,
k=1 given that the system is now in state k |

(2.2.13)

where n(k) is the steady-state probability of the k-th state of the
system L . The value of n(k) (k=1,2,...,Ns) can be determincd by solv-

ing the balance equations [H2]
= 129 (2.2.14)

where 1 is a row vector whose elements are (k) (k=1,2,...,Ns). Thus,
we have presented a method to evaluate the missing-page probability
(or mhbpf) of a given Markovian program operating in a given amount of
primary memory under the dynamic memory management of a given demand
paging algorithm.

Next, we will give some numerical results using the example of the
previous section. Let us first evaluate the performance of the three
page program, operating in the two page-frame primary memory under the
LRU PRA, that we discussed in Section 2.2.2. Solving Eq. (2.2.14) with

the Q matrix (c=0.1, d=0.5) obtained before, we get

(ﬂ@,z),ﬂ(l,a),n@,3),n(2,@),n(®,3),7!(1,@))
(0.204, 0.020, 0.388, 0.204, 0 , 0.184 )

L

Then, we can calculate the missing-page probability, using Eq. (2.2.13),

as follows:
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p = 0,204 (1l-c)+0.020 (1-d ) +0.388 p +0.184
= 0.184 +0.010 +0.194 +0.184

= 0.572

The missing-page probabilities were similarly evaluated for other
PRAs considered in the previous sections. The result is summarized in
Table 2-1. It should be pointed out that the result of Table 2-1
depends heavily on a particular choice of the P matrix. However, it is
reasonable to expect that the B-LET and the LRU PRAs, which use the
"backward"” information about the program behavior, generally do not
perform well for a Markovian program whose P matrix is rather asymmet-
ric; in fact, their performance shown in Table 2-1 is significantly
worse than that of others. Similarly, the FIFO PRA does not perform
well. On the other hand, the F-LET PRA, which uses the "forward"
information about the program behavior, outperformed other PRAs. It
is however known that the F-LET PRA does not necessarily minimize the
missing-page probability of a first-order Markovian program. Chang [Cl]
actually gave a better PRA, for this Markovian program, which has the
same decision rule as that of the F-LET PRA described in Section 2.2.2.
except that if a page fault occurs when S = { pz,p3} then page Py is
removed. For this PRA, the missing-page probability is found to be
0.388 by the above evaluation method.

Thus, it has been shown that the paging behavior of any Markovian
program can be analytically evaluated as a function of (1) program
characteristics, (2) the paging algorithm, and (3) primary memory size.

However, the method which has been described in Section 2.2. has a
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Table 2-1  Comparison of PRA Performances

PRA Missing-Page Probability
Random 0.475
LRU 0.572
FIFO 0.565
F-LET 0.408
B-LET 0.673
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serious drawback concerning the amount of required computation. To
examine this problem, let us assume that the computer system uses a
memoryless PRA (such as the Random or the LET PRA). The number of

system states was found to be

n'!
= (m-1)! (n-m)!

n
NS= m(m)

and we must solve the simultaneous equations in NS variables, given by
Eq. (2.2.14), in evaluating the missing-page probability. Although
sparsity of non-zero elements in a Q matrix msy help, solving such simul-
taneous equations in, say, three hundred variables requires much compu-
tation time., For example, if we have n=10 and m=8, then we get NS=36O.
If we have a pair of more reasonable numbers, like n=50 and m=40, for a
typical situation of the Multics system, then NS becomes a tremendously
large number. Therefore, if we want to study the behavior of more
realistic programs, it seems that we must somehow simplify our model,
King [K1] used a simplified model, for which pij= Bj for all i in
the P matrix, in specifying a program's reference pattern. This means
that the page to be referenced at time t+l no longer depends on the
page being referenced at time t. Therefore, the program behavior is
completely memoryless and the third component of a state of the PRA
system T Sp’ can be reduced to an empty set, i.e., s = ¢. This type

P

of program behavior model is called a zeroth-order Markovian program

(or a multinomial process model). The number of system states Ns de-
creases in this simplified model by a factor of m, but the evaluation

of this method still requires a large amount of computation.
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2.3. Zeroth-order Markov Model Applied to the Page Size Problem

In Section 2.3, we will consider the effect of another system
parameter, i.e., the page size, upon the paging behavior of programs.
Because the page size must be changed to examine its effect, we must be
concerned with a program's reference pattern not only over its pages but
within each of those pages. We must be concerned also with how a compiler
forms a program's pages by combining smaller pieces of that program, i.e.,
the pagination process of the compiler. The effect of page size upon a
program's paging behavior has been experimentally studied by Hatfield et
al [H1], Informatics, Inc. [Il], and Baer et al [Bl]. This aspect of

the page size problem , i.e., this aspect of the problem of determining

the optimum page size, has rarely been studied in an analytical approach.
So far as known to tﬁe author of this thesis, only Woolf [W3] has examined
the effect of page size upon the frequency of paging analytically. The
approach to be taken in this section is completely different from that of
Woolf because of the way in which programs are modeled. Other aspects

of the page size problem will be discussed later in Chapter 5.

2.3.1, Program Behavior Model for the Page Size Studies

A program usually possesses a fundamental property known as locality

of information references [D1-3], i.e., a program's tendency to reference

a subspace of its address space during any interval of its executicn.

We call a set of pages in such a favored subspace of its address space
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1, . .
a set of favored pages or a favored se“ in this section. Control of a

program usually stays in a favored set for some time and then enters
another favored set. Therefore, we can evaluate the program behavior
by analyzing the behavior of each successive favored set using a Markov
model described in Section 2.2.

If we take a close look at each page of a favored set, we find
that there are portions which are referenced frequently (e.g., loops)
and protions which are not (e.g., program code following a loop, rarely
used data, etc.) We roughly call each of these logically identifiable

portions a program block. Thus, each page of a favored set is composed

of (several) program blocks combined together by a compiler.

Now we are concerned with a program's reference pattern on the
level of program blocks. In view of the computational drawback of
first-order Markovian programs discussed in Section 2.2.3, we use a
zeroth-order Markovian program model for the behavior of a favored set.
Let bj (j=1,2,...) and p(bj) be the j-th program block and its probabil-
ity of reference in the favored set respectively. For the sake of sim-
plicity, we assume that all the program blocks have the same size, s(b),
and that only one page size, s(p), is used on the computer system.
Furthermore, we assume that the block size s(b) divides the page size

s(p). Denoting the i-tb page of the favored set and its probability

1Roughly speaking, a "favored set" corresponds to a program's module
being referencad by a process. This loosely defined concept should be
distinguished from the more strictly defined "working set" of Denning

[D1,D3].
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of reference by pi(i=1,2,...,n) aud p(pi) respectively, we have

p(p;) = Z p(bJ.) (2.3.1)
b, €p,
J 1
n n
zppy)) = T T pb) =1 (2.3.2)
i=1 i=1bj€pi

Because these program blocks generally have different probabilities
of reference, the program pages of the favored set have different
probabilities of reference. One of the very interesting problems in
this area of study is that of determing a set of program blocks to be
contained in each page of the favored set so as to minimize the expected
number of page faults during its execution. This problem is called the

pagination problem. The paging behavior of program is known to depend

heavily on the quality of pagination [Hl].

2.3.2. Pagination, Page Size, and Missing-Page Probability

We proceed to evaluate the performance of programs under paging in
terms of missing-page probability, for different paginations and differ-
ent page sizes, It is known that the F-LET PRA is optimum for zeroth-
order Markovian programs in the sense that it minimizes the expected
number of page faults [Al]. Therefore, we assume that this PRA is in
use for the computer system under study.

We now consider three different paginations for the program (the
favored se!) described in Section 2.3.1, i.e., a zeroth-order Markovian

program., Without loss of generality, we can assume that bj and p; are



73

both numbered in the order of monotonically decreasing probability;

that is to say,

2 2 2 2
p(by) = p(by) = p(by) = ... = p(by) (2.3.3)
= i p )
P(py) = P(py) = P(Py) 2 ... 2 p(p) (2.3.4)
Best Paginaf:ion The best pagination must have the property that the

missing-page probability p is minimum for any size m (0<ms<n pages) of
primary memory available to the program. Noting that the F-LET PRA
retains m-1 most-frequently-used pages and the page which caused a page

fault for a zeroth-order Markovian program, we get

m
p~1-z p(pi) (2.3.5)
i=1

Let r be the number of program blocks that can be contained in a page,
i.e., r=s(p)/s(b). Then, the best pagination is the one for which the
most-frequently-used page p1 contains the r most-frequently-used program
blocks bl’bZ""’br’ the second most-frequently-used page P, contains
the second r most-frequently-used program blocks b br+2""’ b2r’

r+l’

and so on. In other words,

= i 2.3.6
Py = U b(inyrans Pramnyreps oo 2 Dy J 1sism (2.3.6)

It is easy to prove that this pagination has the property that the
missing-page probability is minimum for any m, under the F-LET PRA.

Furthermore, page references are best localized by this pagination.

Worst Pagination It seems that any one pagination generally cannot

guarantee that themissing-page probability given by Eq. (2.3.5) is

maximum for every size m of primary memory. To see this, assume that
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there exists a worst pagination with page reference probabilitiesp*(pi)
(i=1,Z,...,n). Then, for an arbitrarily chosen pagination with page
reference probabilities p(pi) (i=1,2,...,n), the following inequalities

must be simultaneously satisfied;

p*(p,) =< p(py) for m=1 \

p*(py) + p*(p,) < p(p)) +p(p,) for m=2

k k .
2.3.7
Z p*(py) < I p(p,) for m=k ‘ ( )
i=1 * =l N
. I
n T n . J
z P*(Pi) < T p(pi) for m=n /
i=1 i=1

where p*(pi) and p(pi) are both numbered in the non-increasing order, as
given by Eq. (2.3.4). The first inequality of Eq. (2.3.7) means that
the largest page reference probability is minimized by the worst pagina-
tion. There generally exists just one pagination which satisfies this
inequality, but tuis pagination does not guarantee the rest of the in-
equalities of Eq. (2.3.7), in general. Therefore, we must give up
searching for the "universal" worst pagination that is independent of m.
Instead, we say that a given pagination is near-worst if the resulting
page reference pattern is reasonably close to a uniform distribution.

In fact, it can be shown that as r =s(p)/s(b) approaches infinity the
missing-page probabilicty of such a near-worst pagination for a given

size (m) of primary memory becomes

m
n-m m
p=1-Zp(p)="1-0 (2.3.8)

The following simple algorithm seems to be a practical one to derive a
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near-worst pagination.

Algorithm to derive a near-worst pagination Assume that the reference

probabilities of program blocks of a given program (a favored set) are
arranged in the non-increasing order and that we want to derive a near-
worst pagination for page size 2 s(b). The derivation algorithm consists
of successive mergers of program blocks; merge the most- and the least-
frequently-used blocks (b1 and bnr)’ merge the second most- and the second
least-frequently-used blocks (b2 and bnr-l)’ merge the third most-. and
the third least-frequently-used blocks, and so on, in order to form the
pages which tend to have the same magnitude of reference probab.lities.
If the number (nr) of the program blocks is not even, an appropriate
modification is necessary (e.g., adding a dummy block). If we want a
near-worst pagination for page size 4 s(b) , then arrange the above

newly created pages of size 2 s(b) in the order of non-increasing proba-

bility and repeat the above pair-wise successive mergers.

Random Pagination The program blocks are randomly selected and merged

into pages. The missing-page probability of a random pagination is
bounded by those of the best and the worst paginations. Perhaps, a
random pagination is fairly close to a casual pagination found in most
actual user programs. The analytical evaluation of the missing-page
probability of this pagination for a given program is not as easy as it
seems, but the performance of this pagination could be easily evaluated
by a similation. (We will not consider this pagination any further in

this thesis.)
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Next, we present an illustrative example of the program behavior

under paging, to show

* the effect of pagination (due to a compiler's code optimization,
loading order of program modules, programming style, etc.)

* the effect of page size

upon the missing-page probability (the inverse of mhbpf) as a function

of the size of available primary memory.

Example We must specify the reference pattern of a program to be
studied. Let us assume that s(b} is 256 words and that the distribution
of p(bj) is given by Figure 2-3., Then, we can numerically evaluate the
lower and the upper bounds of the missing-page probability of an arbi-
trary pagination for a given page size, by examining the performance of
the best an. the worst paginations.

Let us consider the case of s(p)=512 - 'rds, first of all. Then, we

obtain, for the best paginatio:,

p(p1)=1/16+1/16, p(p2)=1/16+1/16, p(p3)=1/32+1/32

. P(P3o)=1/128+1/128
and for a near-worst pagination,

p(p1)=1/16+1/128, p(p2)=1/16+1/128, p(p3)=1/16+1/128

, P(pyy)=1/128+1/128

Noting that memory management is under the demand paging F-LET PRA, we

obtain the result shown in Figure 2-4. It is seen that the region bounded




77

(*q)d 30 vorangraasta g-z anda
$3901q_Zg 9t L S S
- % % *%'e'q
8C1/1
%9/1
e/l
91/1

Anava



1.0

P

#

78

missing-page
pProbability

s(p) =512 words

near-worst
pagination

best pagination

i 2 - —
) 1o 1 k words
size of available
primary memory

Figure 2-4 Effect of Pagination on Missing-Page Probability



79

by the two curvesl, which represents the variation of program perform-
ance due to pagination, is rather rarrow for this choice of page size,
i.e., s(p)=512 words. Similarly, the bounding curves were derived for
each choice of page size (256, 512, 1024, and 2048 words) using the
algorithms described above, in order to examine the effect of page size
upon the missing-page probability p. This result is shown in Figure 2-5.
It is clear that the bounded region becomes wider, having a common lower
bound ~urve, as the page size increases. It should be noted that the
upper bound curve for s(p)=2048 words is very close to the straight

line given by Eq. (2.3.8). In summary, the following observations may

be made:

(1) 1If a given program is optimally paginated (like the best
pagination), a choice of page size does not affect the missing-
page probability (or mhbpf).

(2) The choice of smaller page size tends to attain the smaller
missing-page probability (or the longer mhbpf) if a given

program is casually paginated.

We assumed in the above analysis that program blocks are relocatable
within a program's address space. However, it is apparent that a

program will behave as poorly as the one with a near-worst pagination

1The bound given by a near-worst pagination is not exactly an upper
bound because it is not the worst possible pagination for each memory
size m, but it is believed to be fairly close to the tightest upper

bound. For this reason, 1t is treated as ff it is the exact upper bound.
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even if the program blocks are not relocatable, if that program happers
to possess such a bad loading order of machine instructions as the one
gen=rated by the near-worst pagination. Therefore. program behavior

like that seen in this section should be universally found on anyv virzual
memorv computer system.

Finally., some comments may be in order about the drawbacks of the
model which has been used in Section 2.3. First of all, it should be
remembered that the model is based on the stationary zeroth-order
Markov property of program behavior. This is perhaps the least accurate
assumption of this model. Second, the model assumes a single progranm
block slze which divides the page size. In order to be more realistic.
we must consider the probability distribution of block size and page-
boundary crossover of program blocks. Third. we have not derived the
exact performance of actual (casual) paginations. The lower bound of
the missing-page prcbability given by the best pagination may be loose
if a non-optimal PRA (like the LRU PRA) is in use. However, in spite of
these drawbacks of this simplified model. it has successfully demonstrated
the basic relationship between pagination. page size. and the steadv-
state paging behavior of programs. While the smaller page size was
found to vield a longer mhbpf in the steady-state program behavior, it is
clear that the larger page size yields a longer mhbpf in its transient-
state behavior (e.g.. when the primary memory is not vet filled with
pages). This aspect will be further considered in the next section and
later in Chaptar 5 when the page size problem will be discussed frvom an

overall viewpoint.
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2.4. Random Behavior Model Applied to the Memory Size Problem

In Section 2.4., we will consider a simplified zeroth-order Markovian

program, called a random behavior model, to study prima: ‘ly the effect of

primary memory size upon its paging behavior. We will consider both the

transient-state program behavior, i.e., the initial stage of program

execution generating a number of page faults, and the steady-state

program behavior, i{.e., the following stage of program execution where

the rate of page faults {s smaller lrecause available primary memory space
is fully utilized. It has been experimentally observed [B5,H1,T2]) that
paging behavior of programs is more sensitive to the available primary
memory size-than toany other parameters (e.g., a page replacement algorithm),
while primary memory is usually the most expensive element of a computer
system. Therefore, an evaluation of program behavior within a limited
amount of primary memory {s very important from a cost-performance view-
point. We will express the mhbpf of a random behavior model of programs,
as a function of program size, primary memory size, and a parameter

which determines the total length of program execution time. It will be
clearly seen how thrashing (i.e., excessive competition for primary memory
page-frames leading to a less than optimal use of system resources) starts

to occur as the primary memory size is gradually reduced.

2.4.1. Random Behavior Model

We will again assume partitioned primary memory under the management
of a demand-paging local page replacement algorithm, as in Sections 2.2

and 2.3. A general zeroth-order Markovian program, used in Section 2.3,
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is further simplified by requiring that all pages (except a special
page) be equally probable in its page reference pattern,

This program behavior model is assumed to have, besides ordinary
pages, two special pages, i.e., a starcing page which contains an ertry
point of the prcgram and an ending page which contains an exit point of
the program; 1t is assumed that program execution begins from the start-
ing page p, and ends immediately upon entrance to the ending page P
where n is the size of the program under study. Transfer of processor
control among n pages may occur only at the multiples of a unit time tO’

i.e., t =kt where k=1,2,3,.... It is furthermore assumed that the

0
ending page can be referenced with a constant probability e at any stage

of program execution. Therefore, the page reference pattern of this

program behavior model, which we call a random behavior model or a random

program hereafter, is characterized by the following transition matrix.

1 B

Py p2 : Fh-1Pn
l-e 1-e ... l-e
P; | a-1 n-1 n-1 €
l-e l-e l-e
P2 n-1 n-1 vt n=-1 €
Eos | L @.4.1)
l-e l-e l-e
-1l n-1 n-1 n-1 ¢
P, 0 0 .o 0 1 }

In other words,
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Pyy = p(pj) = i—:‘l’- i#n, 3#n

Pin = P(P) = e i#n

Pnj -0 i#n (2.4.2)
Pan © !

Thus, a random behavior model has three independent parameters, f{.e.,
program size (n), the reference probability (e) of the ending page, and
the unit time (to) of this discrete-time Markovian model. The program
being modeled references the starting page, then some number of pages at
vandom, and finally the ending page. The number of pages referenced
during the execution of this program is a random variable. This may be
interpreted in such a way that the number of pages to be referenced during
a program execution depends on the arguments given to that program, but

a random program represents nevertheless a very special class of programs.
The essense of this artificial program consists in {ts capability to

yield some insights into the memory size problem, i.e., the problem of

evaluating the effect of primary memory size upon the dynamic paging
behavior of programs. Because of the uniformness of its page reference
characteristics, the paging performance of a random program does not

depend on a particular demand-paging page replacement algorithm in use.

2.4.2. Evaluation of Paging Behavior of Random Programs

We will analytically evaluate the mhbpf of a random program
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operating in a limited amount of primary memory under demand paging, as
an explicit function of the size (m) of primary memory and the three
independent parameters (n,e,and to) of a random program, in this section.

First of all, we should briefly consider mhbpf because there seem
to exist at least two reasonablk definitions of mhbpf for our problem.
Suppose that we make K experiments to run a random program, Let Te(Tei)
and np(n 1) be the execution time of the random program and the number
of page faults generated by this program, in the (i-th) experiment.

Then, the following two definitions of mhbpf seem to be reasonable:

’

K Tei Te
mhbpf, = L (—)/K = E ()
i=1 “pi P
K (2.4.3)
151 Tei E (Te)
mhbpf2= X = E(n)
£ n P
=1 P!

In deriving mhbpf, all experiments are equaily weighted in the former
definition, while all page faults are equally weighted in the latter
definition. Because we usually use the latter definition in calculating
mhbpf from on-line monitoring results of an actual computer system, we
use the lacter definition of mhbpf in evaluating the paging performance
of a random program in this section.

Now we proceed to derive the mhbpf of a random program, characteriz-
ed by n, e, and tO’ operating in primary memory of m page-érames. Let
S, and gi (1=0,1,2,...) respectively denote a state of the random program

i
where it is still running after causing exactly i page faults and a state
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of the random program where it has referenced the ending page after
causing exactly i page faults. There exist r~ly three possible state

transitions from Si’ i.e., a transition to itself, a transition to S,

i+l

and a transiton to §1+1. Now we want to derive the probabilities associ-
ated with these three state transitions,i.e., p s P: :.4, and p, .
i, i i, i+l i, i+l

Because each page of the program is assumed to be equally probable in a
page refercnce string at any stage of the program execution, all that
matters is the number of pages which exist in primary memory. If we
assume that no page of the program was initially in primary memory, then
there must be min(i,m) pages in primary memory when the program is in
state Si' Therefore, noting Eq. (2.4.1) or Eq. (2.4.2), the probabil-

ities associated with these state transitions are found as follows:

l-e
pi,1 = min(i,m)n_1
l-e
pi,i+1 = (n-l-min(i,m))n_1 (2.4.4)
Pi,i41 = ©

Thus, the entire paging behavior of the random program is described by
the state transition diagram of Figure 2-6. It should be noted that the
behavior of this random program is now formulated as a discrete-time
Markov process. It is seen that if the program fits into the available
memory space (n<m+1) the number of page faults to be generated is at
most n, but if the program does not fit into the memory space (n>m+1)
an infinite number of page faults can occur at least theoretically. A
comparison of Figure 2-6 (a) and Figure 2-6 (b) reveals that the Figure

2-6 (b) with n=m+1 reduces to the Figure 2-6 (a). This means that it
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suffices to analyze only the latter case, i.e., n2m+1, because the
result of the former case (n<m+1) can be obtained simply by setting
n=m+1 in the analysis of the latter case (n2m+1). Therefore, we
assume hereafter that n2m+1,i.e., the program does not (necessarily)
fit into the primary memory space.

Let p(np) be the probability that np(2 Snp) page faults result
during the execution of this random program. This probability can be
obtained by multiplying all the probabilities given on the branches
leading to the state gnp of Figure 2-6 (b), with an extra consideration

on looping at each intermediate srate (H2]. 1f 2 Snp£rn+1, we obtain

1 n-2 1
= 1o . i- ) —————————)
P(n?) (1 31:? ) [C(l-e)) ( anllez ]

1
(n -llﬂl-e))] e
n-1

(ESBe (g 1 IEER A

n-1 (n-2)(1- e)] [(n -3)(l- Q)]. B [(n -nat+l)(l-e) o

“nte-2 'l n+2e-3 n+lde-4 n+(n -l)e-n
n =)l P

e £ _(n-i)(l-e) 2.4.5a

= 1. 1-( nrie- (1+1) > (2.4.54)

1f npztn+1. then p(np) is similarly obtained as

Sn 194 ¢! __l)] [5 n-m=1Y(1- el‘

p(np) : l-a [ n+1e -(i+l) n+me-(m+1)
n+1$np (2.4.5b)

Now let w be the ratio of the reference probability of the ending page

ard that of an ordinary page. i.e..
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(2.4.6)

We call w the ending-page weight. If the ending-page weight is one,

that is, if the reference probabities of all the n pages of the random

program are equal, Eq. (2.4.5) reduces to

n—fl 250, smt] (2.4.7a)
p(np) a3
1 n-m-1 P M-l
n_-l-(ﬁ m+1Snp (2.4.7b)

From these results, we can readily obtain the average number, E(np), of
page faults to be caused by this program. To illustrate the shape of
p(np), some examples are given in Figure 2-7. Figure 2-7 (a) shows the
effect of w on p(np), for a random program which fits into the memory
space, and therefore the value of np ranges from 2 to n. On the other
hand, Figure 2-7 (b) shows an example of a random program which does
not fit into the memory space and therefore the value of np ranges from
2 to infinity.

Next, we proceed to derive the average program execution time, E(Te).
Noting that the program execution time is the sum of the holding times of
all the intermediate states leading to the end state, we first derive the
expected holding time, E(ti), of a state Si' The holding time in Si
follows a geometric distribution with = parameter l-pi,i , and therefore,

noting Eq. (2.4.4),
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(a) Effect of Ending Page Weight (n=m+ 1)

HnF'}

A%

(b) Example of p(np) for which n>m+1

Figure 2-7 Some Examples of p(np)
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[+
. -1,
E (ti) =ty ] (P1 1) (1 Pi,i)
=0
1-py 4

—n-l i<m (2.4.8a)

_ [ n-1e-(i+1) TR,
—n-1_ msi (2.4.8b)

n-me~-(m+l)

The general shape of E(ti) is shown in Figure 2-8. It is seen that as
the number of pages in primary memor'- increases the expected holding
time (or the mean headway between page faults) increases. From

Eq. (2.4.8), we obtain the average program execution time with exactly

np page faults, E(Te(np)).

ng-1
E(Te(np)) = ifb E (ti) (2.4.9)

The general shapes of the curves which show the growth of the number of
pages in primary memory and that of the number of pages faults are given
in Figure 2-9. Averaging E(Te(np)) obtained above, with respect to np,

we can obtain the desired average execution time, E(Te), of the program,

as follows.,

E (T,) = nEQ p(np) E(Te(np)) (2.4.10)
P
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However, E(Te) may be obtained by a more direct method. Let Ss’
Sr’ and Se denote respectively a starting state where the random program
is about to start its execution with no page in primary memory, a running
state where the program is running without ever referencing the ending
page, and an ending state where the program has re: renced the ending
page. Noting that the reference probability of the ending page is
assumed to be e (a constant) in any stage of the program execution, we
find that these three states form a simple Markov chain shown in Figure
2-10 Therefore, the average execution time, E(Te)’ of this program is
given by the first passage time to state Se. Thus,

( 1+ % is(1-e)i7te e,

E (T)
¢ =0

1
( 1+ i )to

(2242, (2.4.11)

It is seen that the reference probability of the ending page completely
determines the average execution time of the program and that the average
execution time is roughly proportional to the ratio of the program size
and the ending-page weight.

Finally, we can obtain the mhbpf of this random program by combining

the results of Eq. {2.4.5) and Eq. (2.4.11), as follows:
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Figure 2-10 Simpler Derivation of the Average

Execution Time of a Random Program
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mhbp £
_ ECT,)
E(np)
(== +2)t,
n <mtl (2.4.12a)
r n enp np-l
r {1 TT A@) ]
np=2 e i=1
=)
n-
(— +2)¢t
m e %-1 - ¢ ki n, —m- 1\
{—E A(1) } + I {-—E n A(i)J.(gn'm'IZSI-e!) P j
np=2 L8 nica N =m+2 T | ntme- (m+1)
n 2 m+2 (2.4.12b)
where A(i) = {n-i)(1-e)

n+ie-(i+l)

In particular, if the reference probabilities of the ending page and an

ordinary page are equal, i.e., w=1, then Eq. (2.4.12) reduces to

mhbp £

lr%u t:o a <mtl (2.4.134)

2(n-1) (n+l)

7 t n 2 nrt2 (2.4.13b)
2n" -2mn+(m+2) (m-1)

0

It can be easily verified that as m/n approaches zero, i.e., as the
available memory size becomes much smaller than the program size, the

mhbpf of the program approaches to, the unit time of this discrete-time



Markov process model.

2.4.3. Numerical Examples of Random Program Behavior

In the previous section, the average execution time, the average
number of page faults, and the mhbpf of a random program were explicitly
obtained as a function of the primary memory size (m), the program size
(n), the ending-page weight (w), and the unit time of the discrete-time
Markov process model (to). In this section, the effects of these para-
meters on the program's performance will be numerically evaluated.

As is clear from Figure 2-7 (a) and Eq. (2.4.11), the ending-page
weight w has a major effect on both the average number of page faults
and the program's average execution time. Therefore, the effect of w
upon the program's mhbpf, which is the ratio of these two averages, was
numerically evaluated in Figure 2-11. It is seen that the smaller the
value of w becomes the longer mhbpf becomes. The other point to be
noted is that mhbpf is almost independent of the program size so long
as the program fits into the available primary memory space.

Next, we move on to the central theme of this section, that is, a
numerical evaluation of the effect of primary memory size m, using
Eq. (2.4.12). This result is summarized in Figure 2-12. It is observed
that the curve representing the length of mhbpf branches into several
downward curves each corresponding to a particular primary memory size
as the program size increases. In particualr, it should be noted that
as the program size exceeds the memory size the downward branch curve

representing mhbpf abruptly decreases and from then on it ¢~ ntinues to
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decrease only gradually, approaching the unit time £y of the model
asymptotically. This kind of abrupt decrease of mhbpf was called thrash-
ing by Denning [D2]. However, this abruptness shown in Figure 2-12 is
somewhat exaggerated by the uniform page refereuce probabilities assumed
in the random behavior model; if this model could include some less-
frequently-used pages also this abrupt decicase of mhbpf would be moder-
ated. The other way to interpret this figure is to fix the program size
instead of the primary memory size. Then, mhbpf's of a given random
program operating in the primary memory of various sizes can be obtained.
For example, the mhbpf of a random program, with n =100 pages, w=0.3,
and t0=4 millisecond, operating in the primary memory of 80 page-frames
is found to be about twice as long as that of the same program operating
in the primary memory of 40 page-frames. The ratio of mhbpf's correspond-
ing to two arbitrarily chosen primary memory sizes, however, dependc on
the chosen values of m and n.

Finally, the effect of primary size m upon the program's average
total execution time was numerically evaluated, assuming that the average
total execution time of a random program is given by the sum of the
program's average execution time and the average total time to be spent

for handling page faults. In other words, denoting the expected paging

overhead time necessary for handling a page fault by Eb,
E(total execution time) = E(T ) + E(np)-Ep (2.4.14)

The result is shown in Figure 2-13. It is seen that the average total
execution time of each random program gradually increases as the available

primary memory size becomes smaller than the program size. This increase
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in total execution time is due entirely to the increase in the number of
page faults encountered during the program execution. Brawn and
Gustavson [B4] measured tne paging behavior of several actual programs

on the IBM M44/44X system and plotted the curves corresponding to those
shown in Figure 2-13. Their measurement result of actual computer
programs is very similar to that of Figure 2-13, except in the following
two respects. First, the increase of program execution time was observed
by them when the available primary memory size became smaller than a
certain fraction (typically, 60 percent rather than 100 percent seen in
Figure 2-13) of the program size. This probably means that at most 60
percent of the entire program pages were referenced at one time because
of locality of information references. Second, the slope of their

curves representing increasing program execution time is steeper than
that of those shown in Figure 2-13. This probably means that the
(expected) paging overhead time of their system is larger than the values

(4 and 8 msec.) that we assumed in Figure 2-13.
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2.5. Macroscopic Paging Performance Model for Multiprogramming

In the previous sections, we assumed a partitioned primary memory
with a local page replacement algorithm, and therefore we did not consid-
er sharing of segments among eligible user processes, However, on
actual computer systems like the one described in Section 1.2, any non-
resident program as well as any resident supervisor program is sharable
among eligible user processes. Therefore, we will now proceed to consid-
er the effect of sharing of resident and non-resident programs upon the
paging behavior of these user processes. First, we will develop a
simple model of sharing in estimating the number of page-frames
effectively available to each user process under multiprogramming. Then,
in deriving the mhbpf of these user processes, we will use a linear model
of paging performance discussed by Saltzer [S3] as a babis. By combining
the results of these two models, it will be possible to express the mtbpf
of an eliigible user process as a function of the size (mr,mn,and M) of
primary memory, the degree (qy) of multiprogramming, and the degree of

sharing.

2.5.1. Model of Sharing among Eligible User Processes

R el G e e

As we have seen in Section 2.5, the number of primary memory page-
frames available to a user process plays a major role in dertermining
the paging behavior of programs. In this section, we will develop a
simple model of sharing and then use it to estimate the number of primary
memory page-frames, incl#ding those being shared, available to each user

process under multiprogramming.



104

We assume that the paging behavior of all user processes under multi-
programming, i.e., all eligible user processes, is probabilistically
identical; wve will consider only one class of user processes whose
paging behavior is probabilistically specified. We assume that each
eligible user process is scheduled for service by a processor under the
FCFS discipline and therefore the processors are equally accessible to
the processes. Thus, it is fairly reasonable to expect that each of q
existing eligible user processes uses approximately the same amount of
primary memory under the management of a demand-paging global page re-
placement algorithm. It is assumed that the entire primary memory space
is fully utilized by these q eligible user processes under the memory
allocation depicted in Figure 2-1.

Now we are ready to present a model of (segment) sharing among the

eligible user processes.

Model of Sharing

(1) Sharing of resident programs: a:<102 percent of m page-frames
occupied by the resident programs is actually used by each eligible

user process, on the average,

(2) Sharing of non-resident programs: b):102 percent of the memory

space (m0 page-f;ames in size) of each eligible user process, taken
out of m page-frames rcserved for non-resident programs, overlaps
with the memory space (m0 page-frames in size) of another eligible
user process, on the average. Any such overlapping of memory spaces

is independent of any other overlapping of memcry spaces.
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We will first investigete the properties of sharing of non-resident
programs. For this purpose, let P1(1a1,2,...,q) be the i-th eligible
user process, mO(Pl’P2’°°"P1) be the average size of overlapping of i
(non-resident program) memory spaces used by processes P1 through Pi'
and mo(P1+P2+...+P1) be the average size of (non-resident progrza) joint
memory space of processes P1 through Pi' Then, under the assumptions of

our model of sharing, we have

mo(Pl, PZ) = b-wo

2
mo(Pl, Pz, P3) =b mo (2.5.1)

mo(Pl, PZ’ cen Pi) =b 'm

Therefore, as illustrated in Figure 2-14, we get
mo(P1+ PZ) = (2-b)m0

2
my (B )+ Pyt Pg) = (3-3b467)mg

In general [Fl], we obtain

my(By+ Pyt oo +PO)
= Tmy(P,) - Im(P,, P )+ Emy(By, B, P) -
all singles all pairs all triples
.1)9-1
.+ (-1) p) mo(Pl, Pz, cee Pq)

all q-tuples
Qa1 4 (Byere Q4 (-py2 SRR
= 1O+ Deew) + Deem o+ (D) g
q )
-z (vt hem

i=1 0

q
- (12 (2.5.2)
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ao(P1+ P2) = (Z-b)lh

(a) two processes

2
+P,) = (3-3b40°) my

mo(P1+ P2

(b) three processes

Figure 2-14 Overlepping of Non-Resident Program Memory Spaces
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Thus, we have obtained the averape size of total memory space which is
required by the non-resident programs invoked by a set of q eligible user
processes.

This average size of primary memory space associated with the q

eligible user proczsses can be easily proved to have the following prop-

erties:
Property 1
;f% mo(P1+ P2+...+ Pq) = qm0 (2.5.3a)
3 = (2.5.3b
Hm mo( P+ Pyt...+ pq) = m, )
b-1
Property 2
Bm(q) = mo(P+ Pot.. .+ Pq+1) - my (P, + P2+...+Pq)
= (1-b)dem (2.5.4)
Property 3
"o
lim mo( Pl+ P2+. .ot Pq) = (2.5.5)

q-=

The dependency ot mo(P1+ P2+...+ Pq) upun the degree(b) of sharing
is seen in Property 1; Eq. (2.5.3a) means that if there is not any
sharing at all the total memory space required by the q user processes
under multiprogramming is simply q times as large as the memory space
required by each process, and Eq. (2.5.3b) means that if non-resident
programs are completely shared by the q user processes under multi-

programming (consider a special-purpose computer system) the total



108

memory space required is equal to the space of oaly one process.

Property 2 indicates that mo(P1+ P2

function of the degree of multiprogramming and that if one more user

+...+ Pq) is a non-decreasing

process must be made eligible without changing the effectively available
memory space (mo) of each process then the additional primary memory
space to be required is given by a geometric probability distribution.
Property 3 means that an infinite number of eligible user processes can
coexist using a finite primary memory space because we assumed
"independent' sharing (overlapping of memory spaces) cf the processes'
non-resident program.

Finally, we will evaluate the average number of page-frames which
are available to each of these q user processes under multiprogramming,
assuming that a given primary memory of M page-frames is divided into
two areas, i.e., the area with m page-frames for vesident programs and
the area with mn(=M-mr) page-frames for non-resident programs (see
Figure 2-1).

From the first assumption concerning our model of sharing, the
average numher of page-frames storing the pages of resident programs
used by an eligible process is am__. On the other hand, the average
number (mo) of page-frames available to the eligible process for storing

non-resident programs is found from Eq. (2.5.2) to be

. (2.5.6)

Y .-

Therefore, the average total number (m) of page-frames available to

each of these 4 user processes under multiprogramming (using the primary
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memory depicted by Figure 2-1) is obtained as follows:

bm
n

m =am_+

et i) (2.5.7)

The overall percentile saving of primary memory due to sharing of

segments is given by 1 - (M/qm).

2.5.2. Evaluation of mtbpf in Multiprogramming Environment

In this section, we will present a simple macroscopic mocdel of
paging behavior which relates the average number (m) of page-frames
effectively available to a user process under multiprogramming to the
mtbpf of the user process.

Before getting into the development of this model, we must briefly
consider tbpf (time between page faults) and mtbpf (mean time between
page faults). It was previously stated that each burst of continuous
program execution, i.e., tbpf, consists of at least user program exe-
cution ana paging overhead execution. To be more realistic, tbpf
includes a proportion of time (tm) spent as miscellaneous overhead of
the supervisorl, as well as a proportion of time (tu) spent as a user's
useful work and a proportion of time (tp) spent as paging overhead of

the supervisor. That is to say,

thpf = tu+ tp+ tm (2.5.8)

1This complication is now necessary as a step to evaluate the amount of

user-oriented computation in Chapter 3.
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The first component, tu’ of the tbpf includes the execution of both user

programs and non-overhead-type (user-oriented) supervisor programs (e.g.,

input/output control programs), and is generally called a headway between

page faults (hbpf). The second component, tp’ of the tbpf includes several

tupervisory functions required to handle a page f:ilt, as roughly

explained in Section 2.1, and is generally called a paging overhead time.

The third component, tm, of the tbpf includes several supervisory

functions required to handle miscellaneous faults, such as segment

faults, protection faults, various nor-paging interrupts, etc., which

occur during the duration of the tbpf, and is generally called a

miscellaneous overhead time. Denoting average values by barred symbols,

the mean time between page faults (mtbpf) is expressed as

mtbpf = t,* tp+ t s (2.5.9)

where E;, E;, and Eﬁ respectively represents the mean headway between

page faults (mhbpf), the mean paging overhead time, and the mean

miscellaneous overhead time,

We assume that the mhbpf (or E;) of a user process under multi-

pProgramming can be determined by the average number (m) of page-frames

that are effectively available to the user process and, in particular,

that the mhbpf is generally expressed as

t

u tu(m)

2 3
c0+ c,m + c,ym + cam ... (2.5.10)

where ci(i=0,1,2,...) are constant coefficients. On the other hand, the

miscellaneous faults (segment faults, protection faults, non-paging
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interrupts, etc.) are likely to occur uniformly at any instant during
the execution of a user's useful work. Therefore, it is reasonable to
assume that the miscellaneous overhead time is linearly proportional to

the mhbpf. That is to say,

6t (2.5.11)

m u

cr
1}

where 0 (a constant) is called the miscellaneous overhead coefficient.

It has been experimentally observed on the Multics system that the
paging overhead time is roughly independent of the primary memory size,
although the execution times of certain supervisory functions included
in the paging overhead (e.g., the execution of a page replacement
algorithm) may depend on the primary memory size. Therefore, we assume
that the paging overhead time, Ep’ does not depend on the primary memory
size, Thus, the mtbpf of an eligible user process which effectively

uses m page-frames of the primary memory is given by

mtbpf = mtbpf(m)
= (tu+ tm) + tp
= (146 )-Tu(m) + Ep (2.5.12)

On the other hand , Saltzer [S3] describes a linear model of
paging performance , which was developed from performance measure-
mer.ts of the Multics system. He observed that the mhbtf of an eligi-

ble user process is approximately linearly proportional to the size of
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primary memoryl, for a wide range of the primary memory size. This
observation justifies (at least partially) the approximation of E; with

only the second term of Eq. (2.5.10). Thus,

tu(m) = cl'm (2.5.13)

We call this simple model of mhbpf a linear paging model and we expect

it to serve as a macroscopic model of paging behavior of user processes.
Therefore, combining this linear paging model and the model of
sharing developed in the previous section, we obtain the following

expression for the mtbpf of an eligible user process.

mtbpf

(1406 ) tu(m) + tp

= (1+6)°c1m + tp
bm
n

= (1+6)'c1°(am+ Y+ € (2.5.14%)

1-(1-b)4 P

The behavior of the above three components (E;, E;, and E?) of the
mtbpf is explained as a function of the primary iemory space (mn) avail-
able to non-resident programs in Figure 2-15. The gross behavior of the

mtbpf as a function of m and the degree (q) of multiprogramming is

This observation was made about the averaged behavior of an aggregate
of programs invoked by an eligible user process. It does not necessarily

represent the behavior of a particular program.
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mEbpE
-~
qr = iJnlt: Hg#”fff Eﬁ
/ f//,-""f-
/ /’//’ ﬁ/&/ mt bpf
f’/:ffff i
— -
#_,.f:::f-*‘ |
'turl_-m

; mean headway between page favlts made in resident programs
. mean miscellaneous overhead time spent in resident programs
; mean headway between page faults made in non-resident programs

: mean miscellaneous overhead time spent in non-resident programs

T +t_ , t =t

+Tt , mthpf =t +t_+t_.
ur ur m mr mn u m

P

Figure 2-15 Behavior of Various Components of mtbpf
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similarly shown in Figure 2-16. It should be noted that the mtbpf of an
eligible user process under multiprogramming of a given degree increases
linearly with the available primary memory size. Finally, to evaluate
the effect of sharing upon the mtbpf of eligible user pProcesses under

multiprogramming, three cases concerning sharing (no sharing, ten percent

sharing, twenty percent sharing of non-resident programs) were considered.

This result is given in Table 2-2. It is observed that the effect of
sharing upon mtbpf becomes more evident as the number of user processes
that must compete with each other within a fixed amonnt of primary memory
increases. Later in Chapter 5, the gain in overall system pe;formance
(i.e., the system throughput and the system response time) due to sharing

of programs will be numerically evalua:ced,

3

RRER o B SRR R ® i i e,
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100 | = 384 page-frames q=1
msec me= 84 page-frames
(L+6)sc1=0.3
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i L i > mn
0 100 200 300
page~-frames

Figure 2-16 Effect of Primary Memory Size and Degree of Sharing
upon mtbpf
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Table 2-2 Effect of Multiprogramming and Sharing upon mtbpf

Degree of Degree of Sharing
Multiprogramming of Non-Resident Programs
q b=0 b=0,1 b=0.2
1 99.5 msec 99.5 msec 99.5 msec
2 54.5 56.9 59.5
3 39.5 42,7 46.4
4 32.0 35.7 40.0
5 27.5 31.5 36.3
6 24.5 28.7 33.9
7 22.3 26.8 32.3
8 20.7 25.3 31.1
© 9.5 18.5 27.5

M= 384 page-frames, m_ = 84 page-frames, m = 300 page-frames,

(1+6)oc1=0.3, a= 0.1, ?p:? msec.
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2:6. Summary

Because program behavior is so complex that we have developed
several models each of which studies only a particular aspect ol program
behavior, rather than attempting to develop a single "universal' program
behavior model. The first three models respectively attack the PRA
(page replacement algorithm) studies, the page size problem, and the
memory size problem. The analyses of these models respectively allows
us to evaluate numerically the possible differences in program perfor-
mance (the mean time between page faults) duve to the PRA (page replace-
ment algirithm) in use, the page size being used, and the size of
primary memory available to a user process. The macroscopic paging
performance model described in Section 2.5 is based on a model of
sharing and Saltzer's linear paging model, and allows us to evaluate
the mtbpf (mean time between page faults) of user processes under multi-

programming of a given degree.

T, T Tp—

L s e



CHAPTER 3

THROUGHPUT ANALYSIS

3.1, Introduction

Having studied program behavior within a limited amount of primary
memory, we shall proceed to evaluate the performance of a processing
system consisting of processors, primary and seconday memories, and
user .nd supervisor programs (see Figure 1-4). The hardware is, in
general, assumed to possess multiple processors and multiple primary
memory units, with secondary memory system as part of the virtual
memory (see Fig. 1-2). The operating system is assumed to allow multi-
ple jobs to possess some of their pages in primary memory using a multi-
programming mechanism,

Our ultimece goal of this thesis is to «develop a methodology to
optimize such multi-processer multi-memory multiprogrammed virtual-
memory computer system in cost-performance., As the first step towards

this goal, Chapter 3 presents a method to evaluate the performance of

TERTEC T T NI RC TN AT p— e e i L e Ak & T
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a processing system of a given hardware configuration (number of
procesc.is, number of primary memory units, speed of processors, speed
of memory system, size of memory system, etc.), a given software
configuration (size of resident supervisor, various overhead times,
degree of multiprogramming, etc.) and given user program characteristics
(mhbpf, etc.).

We choose system throughput, i.e., the average number of jobs that

can be completed within a unit time, as our performance measure of the
processiny system. In e-aluacing the throughput of the procesaing
system of a given configuration, various wastages of the system's
computational capacity (various idle times and system overhead times to
be defined) will be considered. Therefore, the system's effective
ccaputational power can be evaluated accurately. The result of this
analysis then allows us to optimize the degree of multiprogramming
realistically in such a way that throughput of the system is maximized.
Tt will be seen in Chapter 4 that this optimization apprcach leads to
the minimization of the average response time experienced by each

interactive user of the computer system.
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3.2. Preliminary Considerations

Before getting into a mathematical anaysis of thé system through-
put of a multi-processor multi-memory multi-progra~=ed virtual-memory
computer, some preliminary considerations will be given in this section
in order to put the following analysis in proper perspective.

We have seen in Chapter 2 how the three compcnents (Iu,iiﬁ E;) of
mtbpf depend on the primscy memory size. We now consider how each of
these can be affected by a multi-processor multi-memory configuration
of the processing system. A program's execution time is generally
prolonged on a multi-processor computer system because of multi-

processor interference such as memory cycle interference and data-base

lockout. The fermer is the interference caused by the occasional
conflict of multiple processors for a memory cycle of a particular
primary memory unit and the latter is the interference caused by the
occasional conflict of multiple processors for the use of a particuler
shared, writable data-base which cannot allow simultaneous accesses of
multiple processors. Because a memroy cycle of a primary memory unit
or a shared writable dats-base can be used only serially, only one of
the conflicting processors can use it immediately and others must wait
for their turn to use it. Therefore, mtbpf is prolonged on the multi-

processor computer system.
Table 3-1 summarizes the way in which the dependency of the three
components of mtbpf, i.e.,

;u (mean headway between page faults),
Em (mean miscellaneous overhead time), and
t

(mean paging overhead time),
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upon the multi-processor interference as well as upon the primary memory
size will be considered in later mathematical analyses. It is assumed
that all fault handlers (page fault handler, segment fault handler,
protection fault handler, etc.) of the supervisor are either permanently
resident or almost always resident in primary memory by virtue of the
fact that these most-frequently-used programs are likely to be shared by
many user processes., On the other hand, non-resident programs such as
user programs are assumed to be initially in the secondary memory system
and to be brough: into primary memory under demand paging, as stated in
Chapter 2. Under these assumptions, we will use the macroscopic paging
performance model described in Section 2.5; ?p is independent of primary
memory size but Iu and ?6 depend on (are roughly linearly proportional
to) the size of primary memory effectively available to each user
process under multiprogramming, as shown in the first row of Table 3-1.
It is well-known that the execution of a page fault handler
involves some shared, writable data-bases (i.e., resource tables and
resource queues [S1)) which may significantly delay the execution of the
page fault handler on the multi-processor computer system, while the
execution of users' useful work or of miscellaneous fault handlers
normally dces not involve such frequently-used shared writable data-bases.
Therefore, only ?p is assumed to be significantly affected by data-base
lockout, as shown in Table 3-1. On the other hand, the execution of any
program is subject to memory cycle interference on the multi-processor
computer system. Therefore, all three components of mtbpf are assumed
to be affected by memory cycle interference, as shown in Table 3-1. 1t

has been actually found on the Multics system (to be reported in
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Section 5.2, that a noticeable amount of processor time is lost due to
the multi-processor interference.

In order to comsider quantitatively the effect of this multi-
processor interference, let t ., t ., and t . denote the t , t , and t

ui mi pi u’ m p

of an i-processor (i=1,2) computer system. Letting Km (1 SKNS 2) be
the slow-down factor due to memory cycle interference on a dual proces-
sor system, ve have the following relationship between the tu of a

single processor system and that of a dual processor system with the

same configuration.

7’ -— —
' t2 = Xt (3.2.1)

where the value of Km will be determined in a later analysis. Assuming
the same degree of memory cycle interierence for the handling of mis-

cellaneous faults, we have

tm2 = Km tml . (3.2.2)

On the other hand, the relation betsreen the paging overhead time of a
single processor system and that of a dual processor system is more
complex because o1 the additional interference caused by data-base lockout.
We assume that the execution time of the page fault handler on a dual
processor system is stretched by a factor of Kz (1 SK"SZ) because of
data-base lockout and is further prolonged by a factor of Km because

of memory cycle interference. That is to say,

T . =KsK,* (3.2.3

p2 m £ tpl

Under these conditions, the linear relation between T:‘m and ;u

1 1

of Eq. (2.5.11) is now generalized to

——y
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t . =06t . i=1,2 (3.2.4)
mil ul

It should be noted that the miscellaneous overhead coefficient § is

independent of the number (i) of processors. Thus, mtbpf of the single

and dual processor systems can be expressed as:

€1t Emi* tp1

mtbpf (1 CPU)

(]+5)tu1+ tp1

(3.2.5)

mtbpf1

mtbpf(2 CPUs)= t,ot t ot tp2

Kmtul

+ Kot KKgt o)

K o ( (140)T_ + szpl) (3.2.6)

K. (mtbp f2)

Finally, we are ready to give an expression for the percentage of
the system's computational capacity spent as users' useful work (to

be called the percentile throughput of the system), taking into con-

sideration all of the above system overheads and the possible processor
idle time. Let u be a wtilization factor, of the processors of the
processing system, which will be analytically obtained by the through-
put analysis of this chapter as a function of various system parameters

such as

(1) the number of processors,
(2) the number of primary wmemory units,

(3) the degree of multiprogramming,
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(4) various system overheads,
5 mtbpfi (i=1,2)
(6) mpft (the mean page fetch time) of the s2condary memory

system,

Then, the desired percentile throughput 6 of the multi-processor
computer system can be expressed as:

t
ui
= Y ntbpf(i CPUs) (3.2.7)

Now let T be an arbitrary length of time. Then, the total time that
can be spent as users' useful work by the i processors during T is
i6T. Let Te1s Tapse--s Ty Pe the execution times of k user jobs
(excluding all the system overhead times) which were completed during
T. Then, assuming that the computer system was under a full load, the

system throughput © can be obtained as follows:

6 = lim —%—
T—ow
k io T
= lim( b PP
T T Te1+Te2+ . +Tek}
T
- (T )/k
j=1 ¢
= -%;L (3.2.8)
Te

where ?e is the average execution time required for a job's useful work,
Therefore, it has been shown that the percentile throughput is linearly

proportional to the system throughput.
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3.3. Single Processor System

In this section, we will be concerned with the performance of a
single processor processing system under multiprogramming of a fixed
degree (q). It is assumed that the time between page faults (tbpf) of
each user process follows a certain stationary probability distribution
with a (constant) mean determined by the size of primary menory avail-
able to the job. (In detailed reality, tbpf or hbpf depends on the
size of primary memory actually being used at the moment rather than
the amount of memory that can be used, as scen in Chapter 2, but this
initial wicroscopic transient behavior of programs is only macroscopi-
cally considered hereatter.) It is also assumed that the computer
system under study is fully loaded with user jobs; there always exist
at least q executable user jobs on the computer system. This means
that q user processes are being multiprogrammed at all times. Therefore,
in modeling the behavior of the multiprogramming mechanism described
in the section suriounded by a broken line of Figure l-i, we need not
explicitly consider the completions of job executions or the entries
of new eligible user processes. Furthermore, because the processing
system has only one processor we need not consider any multi-processor

interference in this section.

3.3.1. Single Processor Multiprogramming Model

A model of multiprogramming described here involves the following

resources of the computer system.
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(1) a processor queue (Qp) which contains page-ready processes,
i.e., the eligible user processes waiting for a service by a
processor of the processing system

(2) a processor (CPU) which can service one eligible user process
at a time

(3) a secondary memory system (SM) from which a missing-page is
brought into primary memory on demand for the eligible user

process that has requested the page.

As explained in Section 1.2, if an eligible user process is waiting
for a processor's service in the processor queue Qp’ the process is

said to be in the page-ready state. If the process is being serviced

by the processor, it is said to be in the running state. 1f the

process is waiting for a missing-page, it is said to be in the page-
wait state. The (mean) length of time in the running state exactly
corresponds to the (mean) time between page fau .s and the (mean)
length of time in the page-wait state exactly corresponds to the
(mean) page fetch time. All the eligible user processes simultaneously
cycle around these three states in our conceptual model of multi-
programming, as shown in Figure 3-1.

We usually assume that the jobs in Qp are scheduled under the
FCFS discipline for the processor's service when the prbcessor is
available. A preemptive priority scheduling discipline is also
considered briefly. We assume that a service by the se.:ondary memory
svstem to locate and transfer a missing-page of a process into primary

memory is always immediately initiated and carried out in parallel
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with services by the same secondary memory system for other page-wait
Processes; the input/output channel is assumed not to limit the rate of
page transfers between primary and secondary memories.

Finally, we must specify the probabilistic property of both the
time between page faults (tbpf) and the page fetch time (pft). We
assume that tbpf independently follows an exponential distribution with
a mean of 1/0 which is determined by the macroscopic pPaging performance

model of Section 2.5, That is to say,

f(t) = ae'at t=20

where (3.3.1)

ek T AT 4T L (46T 4T
mtbpf, = —~=T et tpl.. (1+6)tu1+ tpl

Similarly, we assume that pft independently follows an exponential
distribution with a mean of 1/B. That is to say,

g(t) = e Pt t20 (3.3.2)

where mpft = 1/ should be determined by a separate analysis using a

aal W L

g ——
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secondary memory model (see Figﬂre 1-4)1. This assumption would be
reasonable especially if secondary wemory consists of a combination of
frequently-used high-speed devices and less-frequently-used low-speed

devices,

3:3.2. Multiprogramming with FCFS Scheduling

We will proceed to evaluate the system throughput of the single
processor processing system described in the previous section, assuming
that the FCFS discipline is used in scheduling page-ready eligible pro-
cesses [C3]). Weassume that tbpf of each eligible user prrcess follows
the identical probability distribution of Eq. (3.3.1).

Then,.a state of our model of the processing system is characterized

by the number (i) of page-ready processes (waiting in Qp), the number (j)

1Coffman's result concerning a paging drum [C5,C6] or the well-known
result of M/G/1 queues [C8] may be used in this area. In particular,
the built-in meters of the Multics system show that Coffman's result,
reproduced below, is accurate envugh to predict the mpft of a paging
druminpractice. Letting T,N, and p respectively be the drum revolution
time, the number of sectors, and the sector utilization factor,

mpft =

(T/2) T
+
1-0p N
where the first and the second terms respectively represent the mean
access time, which is subject to a queuing delay, and the constant page

transfer time.

E

ks
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of running processes (using the CPU), and the number (k) of page-wait
processes (associated with the SM), where i+j+k=q and j<1, as shown
in Figure 3-1. Therefore, each (i, j,k) tuple defines a state of the
model, as given in Table 3-2. Noting that the holding time of each
state is exponentially distributed, we see that the behavior of this
model can be regarded as a continuous time Markov process, in fact, a
simple birth and death process known as the machine repairman model
(or the machine interference problem) [F1,J2], defined over these q+1
states of Table 3-2, All possible state transitions and the correspond:
ing transition rates! are shown in the state transition diagram of
Figure 3-2.

The Rrobability . (i=0,1,...,q) that one finds the system in Si

at a randomly chosen instant after the system has been in operation for

a long time, i.e., the steady-state probability n, of a state Si’ can

i
be obtained by solving the balance equation [F1,H2]

an, = (q-i+1) B n l1<isgq (3.3.3)

q
under the condition L n,= 1. Thus,

j=0 1

llf the transition rate associated with an Si'* Sj transition is ¢,

then this means that the conditional probability that this transition
will occur in the next At, given that the present state is Si’ is given

by ¢ A~ for j#i and suitably small At.



f lll......II..IIIIII-IIIII-II-I-I-nlln--------nn--------I---——--—-_“

132

Table 3-2 State Table of the FCFS Single

Processor Multiprogramming Model

State Qp CPU SM

Name 1 3 K
So 0 0 q
S1 0 1 q-1
82 1 1 q-2
S3 2 1 q-3
Sq_1 q=-2 1 1
) -1 1 0
q q

o. ?F

Figure 3-2 State Transition Diagram of the FCFS
Single Processor Multiprogramming Model
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q-i [}
o -1)!
e 01 (3.3.4)
L (/3
3=0

where 0 =a/B. In particular, the processor idle probability :0 is
given by

Q0
—gfo: (3.3.5)

13
L (@’/3Y)
=0

K=

0

Therefore, the percentile throughput of this system is obtained

from Eq. (3.2.7) as

T
ul
8= (I-n5)* " T38)T + T
ul p

) = (l-no)c'tul (3.3.6)

The corresponding system throughput can be readily oblained frum

Ea. (3.2.8).

3.3.3. Multiprogramming with Preemptive Priority Scheduling

We »ill briefly consider the system throughput of the same single
processor computer system, assuming that a preemptive rioricy (PP
discipline like that of the Multics system [Ol] is used in scheduling
page-ready eligible user processes. When this discipline is used, a'l
the eligible user processes have their own distinct priorities upon

which preemption decisions are solely based. Suppose that the super-

-
= T
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visor decides to allow a ready process to become eligible at a certain
instant when there exist q' eligible user processes (see Figure 1-1).
This entering process is immediate'y awarded a priority q'+1 (=gq),
the iowest priority (i.e., largest in value) among existing q' +1
eligible user processes. Whenever a process becomes ineligitle by
completing the execution of the requested user jnob, the process loses
its priority and accordingly changes o priority of other eligible user
processes take place. Suppose that the leaving process has a priority
q". Then, if the priority of a remaining process is lower.than that of
the leaving process (i.e., larger than q”), then the priority is
heightened by one (i.e., decrease¢ .y one in value); otherwise, the
priority is left unchanged. Thus, this algorithm gives a higher
priority t: an older eligible user process, maintaining a set of
distinct piiorities for the existing eligible user processes. The page-
ready processes in Qp are always ordered according to their distinct
priorities and the process with the highest priority is scheduled for
the processor's service when the proceasor is available. What is more,
if the priority of this process is higher than that of the running
process, this process is allowed to preempt the processor by suspending
the progress of the running process as soon as possible. Therefore, an
eligible process with a higher priority has a greater chance to use both
the processor and the primary memory. Thue, an older eligible user
process tends to own more pages in primary memory than newer eligible
user processes, under a global page replacement algorithm. We assume

again that the computer system is under a full load.

T T g N — - e B e B st . . g mr s =
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Instead of using the tbpf distribution of Eq. (3.3.1), we assume
the following set of equations for the tbpf distributions of user

processes under the PP discipline.

-, t
fl(t) = ae 1 for the highest priority process °

-02(:
fz(t) = a,e for the priority 2 process

"

-t (3.3.7)
fq(t) = aqe 9 for the lowest priority process
where als QZS saq and tZ.O. J

The fact that an older process, i.e., a higher priority process, owns a
greater number of +get in primary memory is reflected by a longer mtbpf,
1/01, of a higher priccity process. As for the pft distribution, we
still assume Eq. (3.3.7).

What characterizes a state of this modified model is not just the
number of processes in each of those three st;tes of eligible user
processes but the combination of priorities of processes in each of
those three states., Then, it is again possible to model the behavior
of this model by a continuous time Markov process. Let an (i, j,k) tuple
represent a state of this model, where i is a (particular) combination
of priorities of the page-ready processes, j is a priority of the
runnine zcocess, and k is a combination of priorities of the page-wait

processes. Then, it can be easily proved that the tctal number (Ns) of

these (Markovian) states o° this model is given by

q
N= £ (0 =29 3.3.8
8 k0 K ( )
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Unfortunately, a general expression for n,, like Eq. (3.3.4) of the

i’

FCFS scheduling model, is too complicated to write out (although n, can
be easily evaluated numerically) and therefore we will simply give an

illustrative example.

Exsmple Case of q=2

Because the supervisor allows only two eligible processes in primary
memory there exist only priority 1 and 2 processes. Defining four
possible states as shown below, we obtain a stata transition diagram

shown also below.

ay
Q CPU  sM e'@
S 1,2
0 (1,2) 2 a,
S, 1) (2

I ), (%
53 (2) (1)

Letting £==(no, Ty Tos n3) be the steady-state probabilities of

states (So, Sl’ SZ’ 53), these steady-state probabilities can be
obtained by solving the balance equation
n*A=0

3

under the condition T ni=l, where A is the transition rate matrix [H2]
i=0

and takes the following form for this example.

Dl Bessibain o o o b il e PR . S B — T N S .
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[-28 B 0 B
a -, =B B 0
A - 1 1
0 0 —al al
[az 0 B -az-ﬁ
The solutions are:
) (B4, )23y
0™ ..3...2 2 2 2
27438 alﬂi a2+ﬁozl+23a1a2+ala2
n B 0y
1 3 2 2 2 2
28" +38 oz1+B a2+Ba1+23a1a2+a1a2
2
g ™ B 02 2 2 2
2p7+3p%0 4B 0, HBa]+2p0 0,0 Uy
(28"011)301
!

=3 ..2 2 2 2
2p 4380y +B o+ 4260 A HOY0L,

The processor idle probability is given by o Therefore, the
percentile throughput can be obtained by inserting 9 into Eq. (3.3.6)
of the previous section. The priority 1 (higher priority) process uses
the processor with a prote! ility n1-+n2 and the priority 2 (lower
griority) process with a probability Ty 1f a1:=a =0, then we see

2

rhat the 9 obtained from the above equation agrees with the T given

by Eq. (3.3.5) of the previous model. This corresponds to the fact

e i
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that a preemption scheme does not improve the processor utilization if

(11=Cl2 = . ..=aq, under the assumption of exponential distributions.

Finally, a numerical example of processor time breakdown is shown in
Table 3-3, assuming that Q) =Q,=0. It is clearly seen that the
priority 1 process uses the processor much more than-the priority 2

process because of the preemptive pricrity scheduling discipline.

Table 3-3 Processor Time Breakdown for

the PP Scheduling Model

o= o/
Processor Time Breakdown 0.5 1.0 1.%
Priority 1 Process 0.667 0. 500 0. 400
Priority 2 Process 0.256 0.300 0.290
Idle Time 0.077 0. 200 0.310
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3.4. Dual Processor System

The model of a single processor pProcessing system under multi-
programming of Section 3.3 is now generalized to a dual processor mul:i-
memory processing system under multiprogramming. To specify the gross

configuration of the system, we use a notation (q; m, n) where

(1) q is the degree of multiprogramming,
(2) m is the number of Processors (msq),
(3) n is the number of Primary memory units, each of which can

be accessed through its own memory controller,

as schematicallyshown in Figure 3-3. We will be concerned with the
system throughput of the (9;2, n) configuration system in Section 3.4.
Although the system of this configuration is generally expected to
have a much larger compuiational capacity than a single processor
system, this system will encounter new problems which may seriously
limit its computaticnal power. These problems are caused by multi-
processor interference such as memory cycle interference and data-base
lockout. These interference sources effectively reduce the speed of
the processing system. We will therefore develop a model ‘of the
(9; 2, n) configuration pProcessing system and evaluate the throughput
of this system. The effective loss of the system's computational
capacity due to multi-processor interference, various system overheads,
and the multiprogramming (processor) idle time (to be defined) will

also be evaluated.
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3.4.1 Dual Processor Multiprogrameing Model

A model of multiprogramming on the (q; 2, n) configuration systen

is based on the following assumptions:

(1) The virtual memory is paged. A given page of the prirary
memory system is found in a memory unit i (1<ic<n, with & pruba-
bility 1/n (uniformness assumption).
(2) The length of in-page operation of a program (the lengzh =i
time during which processor control remains within a particular
page without making any reference to other pages) follows ar
exponential distribution with a mean of ?in:=1/10.
'Q‘Ot

fo(t) = Qe tz0 (3.4.1)
(3) A page fault occurs with a probability p (missing-page
probability) when processor control is trznsferred to ancther rage.
The missing-page probability {is common to all user programs.
(4) A missing-page will be fetched from the secondary memory
system. The length of time required to complete a page fetch, cr,
the page fetch time (pft). follows an exponential distributicn wizh

a mean of 1/B.

- t ’ -

g(t) =BeB c20 (3.2.2)

(5) The processor queue (Qp) is common to Ttwo processars. MoTe-
over. the processing system is assumed to have move than ¢ fots at

Cew

all times to ensure the existence of ¢ eligible processes unce

multiprogramming of degree q (full lead assumpzion).
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(6) If both processors direct their accesses to the same unit of
primary memory at all times, the execution time of a program on
each processor would be stretched by a factor of Y (1<y<2), on

the averagel. Y is called the memory (cycle) interference

coefficient. We say that a memory unit has no interference if

Y=1 and that a memory unit has a complete interference if Y=2.

First, we will prove that tbpf anproximately follows an exponen-
tial distribution under these assumtions. Noting that abpf consicts

of successive in-page operations (see Section 2.4.2), we see that

£,(t) = Prob{ hbpf = t }

© i successive in- l total length of
= Z | Prob{page operations I'Prob{i in-page operations
i=1 before a page fault) =t

(3.4.3)

The probability that i in-page operations take place before a page

fault occurs is given by a geometric distribution with a parameter of

p, as is clear from the assumption (3). The sum of i exponentially
distributed (identical) -variables is known to follow an Erlang distri-
bution of phase i, i.,e., the i-fold convolution of identical exponential

distributions [Fl1]. Therefore, Eq. (3.4.3) becomes

1The value of the effective slow-down factor due to memory cycle inter-

ference(Km) for a given configuration will be calculated using the value

of v.

e PR e———————re |
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N . ok i71e~00t
£(t) = T [{(1-p)1'1p } { < B
i (i-1)!

1=1

.t @ {o.t(l-p)}
0 0
aop e ¢y —m—

i=0 i!

-aot aot(l-p)
aop e ' e

'Cxopt

= e (3.4.4)

oP
Thus, hbpf has been proved to follow an exponential distribution of a
mean of 1/aop. This means that the sum of hbpf (tu) and the miscella-
neous overhead time (tm) approximately follows an exponential distri-
bution with a mean of (1 +5)/Ctop. Noting that the paging overhead time
is considerably shorter than the sum of hbpf and tm, we. can expect

that tbpf roughly follows

f(t) =ae >F £20

where (3.4.5)
) - - 146 __1

mt:bpf2 == \1+6)tu1+K2 tpl agP —alp

Thus, we have seen that the model analyzed in Section 3.3 can be regard-
ed as a special case of the model developed in this section (see
Eq. (3.3.1)); the previous model actually corresponds to a (q; 1, n)
configuration system with the above formulation.

Under these assumptions, each eligible user process cycles around

the three states, i.e., the page-ready state, the running state, and
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the page-wait state, as shown in Figure 3-4. It should be noted that
if two processors happen to use the same primary memory unit for which
Y#1 then the rate oy an/(l +06) of Figure 3-4 must be replaced by al/Y.
It is important to note that non-resident pPrograms (e.g., user programs)
and resident programs (e.g., fault handlers) are treated as if they are
equally susceptible of rage faults in this formulation. This formula-
tion was adopted for the sake of simplicity of the analysis. Finally,
we will finish this section by defining some terminology to be used in

the following analysis.

Multiprogramming idle time: the processor time lost when process-

ors do not have executable eligible user jobs, i.e., when at least

q-1 jobs are simultaneously in the page-wait state.

Memory interference idle time: the processor time lost due to the

unavailability of memory cycles when two processors simultaneously

access the same unit of primary memory (memory cycle interference).

Data-base lockout idle time: the ;rocessor time lost due to the

unavailability of certain shared writable data-bases (data-base

lockout).

Besides these various idle times,we lose a non-negligible fraction of
the system's computational capacity because of paging overhead and

miscellaneous overhead of the supervisor.
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3.4.2, Multiprogramming with FCFS Scheduling

We will now evaluate the system throughput of the (q; 2, n) con-
figuration system as well as the multiprogramming idle time, the memory
interference idle time, the date-pase lockout idle time, and other
capacities wasted as various system overheads, under the assumptions
stated in the previous section.

In analyzing the behavior of the (45 2, n) configuration system, we
should first note that a state of the system is characterized by the
number (i) of page-ready processes (waiting in Qp), the number (j) of
running processes (using the CPUs) the number (k) of page-wait procecses
(associated with the SM), and a variable (s) which indicates the existence
of memory cycle interference (s =1 if interference exists and §=0
otherwise). Then, it follows that each (i,j,k,s) tuple defines a
state (BSE )of the system, as shown in Table 3-4, The number of
states thus defined is found to be 2q9. We see that these states are
mutually related by the transitions with transition rates indicated in
Figure 3-5, and therefore the behavior of the system can be modeled by
a continuous time Markov process defined over these states,

Let sn? be the steady-state probability of sS:. Ther, the steady-
state probabilities 5 can be obtained by sclving the balance equation
n*A=0, i.e., the following set of simultaneous equations given by

Eq. (3.4.6) through Eq. (3.4.14).

o I P SR
R R R R - REIEETT————
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Table 3-4 State Table of the FCFS Dual Processor
Multiprogramming Model

::xze Qp — e :ﬁtzzerence
i 3 k 8
osg 0 0 q 0
osg'l 0 1 q-1 0
osg'z 0 2 q-2 0
lsg‘z 0 2 q-2 i
osg'3 1 2 q-3 o
533 1 2 q-3 1
OS ; q-3 2 1 0
1s; q-3 2 1 1
osg g-2 2 0 0
1sg q-2 2 0 1
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20, p(n-1) 20, p(n-1) 20, (1-p) (n-1)
1 k-1 1 k-1 1 k k+1
o Moy G T (1) + DBy )
2a,(1-p) 2o4p 20 p(n-1) K
= (kp + = L i ) (ynp) 1<k<q-3 (3.4.6)
20.p 20.p 2a, (1-p)
1 k-1 1 z-1 1 k+1
ny (1ﬂ2 )+ n (0ﬂ2 i n (0ﬂ2)+ (k+1)p (1 2 )
Zal(l-p)(n-l) 2(zlp(n-l) 2a1p K
= (kp + =5 + ~ + )(lnz) 1<k<q-3 3.4.7)

Left Boundary Conditions

20, (1-p)(n-1) 1 za,(1-p) 2qp 2a,p(n-1)

oy (r)+B(yny) = (———+——r— ) (o“g)
(3.4.8)
20, (1-p) 20, (1-p) (n-1) Zoi p(n-1) 2a,p
1 0 1 1 0
n (0“2)-'-B (1"2) = ( ny ny t ny ) (1“2)
(3.4.9)
Right Boundary Conditions
20,p(n-1) 2a,p(n-1) 2o, (1-p) (n-1) (q-1) (DB
"8 .1 . g 1 e, - T g
a G2 3+ el L I+ Yy (173 A (o™ 1])
201(1.'?) q-2
= ((q-2)8 # =t 2a1p) (on2 ) (3.4.10)
20, (1-p) (q-1)8
1.9 1 .92 q-
oy (12%’“ Y (023)+ a G )t (0“11)
2o, (1-p)(n-1) 2a.p .
- ((q-2)B +— +—Ly 737% (3.4.11)

ny Y 172

73 +qp(rd) = (1922208, Q1B 45 5y (37
(3.4.12)

1P(o z

P (on‘f'l) = qB (0“8) (3.4.13)
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Normalization Conditon

q-2 q-2
(0 1 + ( )+ 2 ( ) + z (1 2) = 1 (3.4.14)

Because there are 2q independent equsiions in 2q unknown variables, the
s“? 's can be uniquely determined.

Now we are ready to expre.s several interesti.ig performance measures
of the system's computation:l capacity in terms ot the steady-state
probabilities obtained atuve, It is assumed that the system's computa-
tional capacity (2C), mcasured in the total number of instructions that
can be performed by tl.e system's two processors under the ideal condi-
tion, breaks down irto the capacity (Cmi) wasted as multiprogramming
idle time, the caricity (Cii) wasted as memory interference idle time,
the capacity (Cp3 wasted as the paging overhead including the capacity
(Cdi) wasted as data-base lockout idle time, the ~apacity (Cm) wasted

as the miscellaneous overhead, and the rest, i.e., the capacity (Cu)

used as users' useful work. These capacities are evaluated as follows:

Capacity wasted as multiprogramming idle time

(]
]

-1
2 (Ong) +C (Onz )

mi

(2070 +(oni Dlec (3.4.15)
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Capacity wasted as memory interference idle time

CioZ I 1
{ T (r)}e@-=)e2C
k=0 1 2 Y

(]
[

ii =

-2
-Y;l--{qz ()} 2¢
Y ko !2

Capacity wasted as the paging overhead

t

- -c - — P2

Co = (2C - Cpy= €14)° Tebpf (2 CPIIs )
Kgto1

= (2C - Cm -C,.)

i~ “11’° mebpt

2

= (2C - Cmi- Cii).aKthl

1 = kT oL
where — =mtbpf2 = (1+6) tu1+Kth1 = P

Cdi= (Kz-1)°Cp

Capacity wasted as the miscellaneous overhead

t
m2
Cp = (2€ - Cpy- Ci4)° Tebpf (2 CPUs )
t
ml
= (2C - G- €390 bt

= (2C - cmi- cﬁ)-aG €1

(3.4.16)

(3.4.17)

(3.4.18)

(3.4.19)
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Capacity used as users' useful work

c
u

(2C - Cm

Memory interference s low-down

(2C - Cm -

i~ Cyy)°

C..)e tu2
i ii” mtbpf (2 CPUs )

tu1

mtbp £

2

(2c - C i Cii)'a?Ll (3.4.20)

factor

q-2

[
K = k=0

Z { () +Y () 11+ L (37T

2 (3.4.21)
R ET n)+ (1) ] 4L (4971,
k=0 02 172 2 ‘01
Percentile throughput
8 oy tu2
mtbpf (2 CPUs )

I T T

B 2C mtbpf2
C
u

= 73C (3.4.22)

It is seen from Eq. (3.4.22) that the percentile throughput of the

(q;2,n) configuration system is expressed as a function of user

Program chnracteristics (E;l,p)

, the system overhead structure (EEI,G,K

and hardware characteristics (n,B,Y). The system throughput 8 of this

configuration can be obtained by substituting Eq. (3.4.22) into

Eq. (3.2.8).

. k . X ,
An expression for snj 1s generally too complicated to write out

and therefore the expressions given by Eq. (3.4.15) through Eq. (3.4.22)

can only be numerically evaluated (this will be done in Chapter 5),

'e):
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except for some simple cases. However, one of those simple cases for
which sn? is not too complicated may be worth being explicitly analyzed

as an illustrative example.

Example A (2;2,n) Configuration System
The state transition diagram of Figure 3-5 now reduces to the four

state transition diagram given below.

The equations given by Eq. (3.4.6) through Eq. (3.4.14) correspondingly

reduce to:

20, (1-p) (n-1) 20, (1- p)

1 0 ,gg 1) 1

~ (7p) ¥ (o 1) = { +20,p} (0“2

2. (1-p) 20, (1-p)(n-1) 2x,p

1 B - 1 1 0

(0“2)+ a (o" 1) = { oy +— 3 Gny)
20 p

2 () e (r9) 28 () = (B+0qP) ()
a]_P (0]1::::) = ZB (0“(2))

() + () * (o7 D+ (o) =
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Solving these equations, we get

Tr2 _ n02
0°0 L (140) %4y -1
Tr1 _ 2nQ
0l L+o)dy -1
Tr0 = n-1

0"2 n(1+0')2+Y- 1

0 Y
1™ =

n(1+0')2+ y-1
where O =Otlp/B =a/B.

Thus, from Eqs. (3.4.15) and (3.4.16), we obtain the following
result concerning the capacities wasted as multiprogramming idle time

and as memory interference idle time.

no (1+0) o (1+0)

C 0 = *2C = °2C
| ™ a+e) ey -1 (140 )2+(3;;-l)
1 RSN
C,. = Y- 2C = il 2¢
11

n(1+0‘)2+Y-1 (1+0)2+(y;—1)

The system's computational capacities used as various overheads (Cp,Cm)
and as users' useful work (Cu) respectively follow from Eqs. (3.4.17),
(3.4.19), and (3.4.20). The memory interference slnw-down factor is

obtained from Eq. (3.4.21).

K = (n-1)+Y2+n0‘
m (n-1)+Y+no

Finally, the percentile throughput is obtained from Eq. (3.4.22) as
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6 - 1+0 .az
ul

aro)’+ (L

It should be noted that as (Y- 1)/n approaches zero (either n—wx,i.e.,
an infinite number of memory units, or Y —1, i.e., no memory cycle
interference) the effect of memory cycle interference disappears.
Furthermore, the multiprogramming (processor) idle probability of this
dual processor system under this limit is Cmi/ZC = 0/(14g). Although
the multiprogramming (processor) idle probability of a (1; 1, n) con-
figuration system was also found to be g/(140) from Eq. (3.3.5) of the
previous section, the split system (q; 1, n) generally gives a larger
multiprogramming idle probability than tue (combined) dual processor
(2q; 2, n) configuration system, under the nc memory interference
condition mentioned above. Needless to say, this does not necessarily
mean that the (2q; 2, n) system is morr efficient than the (q; 2, n)
system; the comparison must be made in terms of percentile throughput

rather than multiprogramming idle probability.
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3.5. Some Extensions

We have been concerred with the throughput of the multi-processor
multi-memory processing system under multiprogramming. In particular,
we have presented an analytical method to evaluate the throughput of a
single processor and a dual processcr systems under multiprogramming.
In this section, we will give brief remarks on some extensions of the
results obtained in this chapter.

The ttudy of the system throughput of this chapter has been mainly
confined to the FCFS scheduling model; a brief investigation of the PP
(preemptive priority) scheduling model for a single processor system
left the value of the mtbpf of each pProcess with a distinct priority
unspecified. It is perhaps possible to determine the values of these
mtbpf's and then evaluate the throughput of such a model, by assuming
that the processor time breakdown among eligible user processes is
proportional to the primary memory space usage breakdown among them.
Then, it would be possible to evaluate the performance gain of the PP
scheduling model over the FCFS scheduling model quantitatively, using
the macroscopic paging performance model of Section 2.5. As for the
dual processor system, even the analysis of the FCFS discipline model
was rather complicated. Inclusion of the PP scheduling would increase
the number of Markovian states of this model and necessarily complicate
its analysis. Therefore, no attempt to study the dual processor PP
scheduling model is made in this thesis.

Processing systems involving more than three processors have not

been considered. 1In order to examine the complexity of such systems,
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let us consider a general (q; m,n) configuration system. Speaking of
memory cycle interference alone, there exist many kinds of memory cycle
interferences on this system, such as interference between two process-
ors, that among three processors,..., that among m processors.
Therefore, we must define a different Y (memory interference coefficient)
for each kind of memory cycle interference. Such a complicated formula-
tion of the problem, however, tends to reduce the mathematical tractabil-
ity, and therefore it seems necessary to consider the effect of memcry
cycle interference indirectly much like the effect of data-base lockout
on the (q; 2, n) configuration system was considered in this chapter.
Finally, let us briefly consider the optimization of the multi-
processor multi-memory processing system under multiprogramming, with
respect to the degree of multiprogramming. The method of evaluating the
system throughput developed in this chapter enables us to investigate
the effect of the degree (q) of multiprogramming upon the system through-
put of a given hardware configuration. If the system allows only a few
eligible user processes :he percentile thioughput would be small because
of relatively large multiprogramming idle time. On the contrary, if the
system allows too many eligible user processes the percentile thrcughput
would be again small because of relatively frequent paging overhead
execution. Therefore, we expect a modal curve for the percentile
throughput like the one shown in Figure 3-6; the percentile tkroughput
is maximized when the degree of multiprogramming has a certain value
(q*). This optimization will be carried out numerically in Chapter 5,

and therefore detailes will not be given in this section.

Wil S e O O
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CHAPTER 4

RESPONSE TIME ANALYSIS

4,1. Introduction

Now that a method to evaluate the throughput (or the percentile
throughput) of a multiprogrammed virtual-memory computer system of a
given multi-processor multi-memory configuration has been developed, we
shall proceed in this chapter to evaluate the response time experienced
by interactive users of such a time-shared computer system. From a
system manager's viewpoint efficient utilization of system resources,
or, more concretely, the maximization of the system throughput is most
important, On the other hand, service of good quality such as fast
system response or high system reliability is most desirable from a
user's viewpoint. As will be described i this chapter, the system
response time and the system throughput are closely related. In fact,

the response time analysis of this chapter is firmly based on the

system's percentile throughput that was evaluated by the throughput

LS g IR N —

| Te——.
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analysis of Chapter 3.

It will be seen that the maximization of the system throughput
generally leads to the minimization of the system response time.
Therefcre, the computer system under study is assumed to be optimized
with respect to the degree (q) of multiprogramming; i.e., the system is
under multiprogramming of degree q* (q= q*), where the percentile
throughput (or system throughput) of the system of a given configuration
is maximized by the throughput analysis of Chapter 3 when q is equal to
1* (see Figure 3-6). It is clear that if interactive users impose a
full load on the system the percentile throughput of the system (or
system throughput) is independent of the actual number of users (because
of the load leveling of the multiprogramming mechanism),

On the other hand, the response time is clearly an increasing
function of the number of users. Therefore, one may ask how many
interactive users can be supported by such an optimized computer system
without discouraging them with excessively slow system responses.

Scherr [S4] considered the problem of analyzing the vperformance of
a CTSS-like computer system and proposed a simple quesing model to
predict the average response time. Because the computer system under
study in this thesis is much more sophisticated, the model must reflect
those sophisticated features of the system such as paging, multi-
programming, etc. Therefore, we will extend the queuing model used in
Scherr's analysis in the following two directions. First, his model
(developed for uniprogrammed non-paging computer systems like the CTSS

system [C9]) will be generalized to multiprogrammed paging comruter
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systems. Second, in view of the fact that interactive terminal users
are more concerned with something like the worst response time out of
ten trials rather than the average response time, the analysis to be
given in this chapter will derive a probability distribution of response
times. (Scherr derived only the average response time of a simpler
system.) Thus, we can evaluate the moment of any order (average,
variance, etc) of response times, and, perhaps more importantly, we can

derive the percentile system response time, i.e., the time limit which

guarantees that a certain proportion of response times is shorter than
this limit (e.g., the 90 percentile system response time).

The analysis of this chapter makes it possible to express the
distribution of the response time of a multiprogrammed time-shared
virtual-memory computer system of a given configuration, as a function

of various system parameters such as

(1) the number of processors

(2) the percentile throughput 0 of the processing system
(3) the number of (interactive) users

(4) think time of each user

(5) execution time required by each user's job

This implies that it now becomes possible to determine the number of
interactive terminal users that can be supported by the optimized

computer system of a given hardware configuration with the assurance
that, for example, the 90 percentile system response time is shorter

than five seconds.

-
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4.2. Total System Model

Let us consider an m (1l SmS®) processor multiprogrammed virtual-
memory computer system optimized with respect to the degree of multi-
programming, with N interactive terminal users. When this system is in
operation, the existence of N interactive users however does not assure
the existence of q* (q*=optinum degree of multiprogramming) jobs that
can be multiprogrammed on the system. The actual number (q9') of jobs
(user processes) under multiprogramming may become smaller than q* from
time to time 1if the total number (N) of interactive users is not large
enough to impose a full load upon the system, as shown in Figure 4-1 (a).
Correspondingly, the actual percentile throughput (8') should become
smaller than Gq* (Gq#=optimized percentile throughput) at least from
time to time, under the same loading condition. However, we do not
know exactly how ' reacts to a sudden change of q'. If ©' can almost

instantaneously react to a change of q' (the case of fast throughput

reaction), then ©' as a function of time appears like a step-wise
function for which the height of each step is simply given by the steady-
state solution for Bq (the percentile throughput when there exist q
eligible user processes) obtained in Chapter 3, as shown by the solid
line in Figure 4-1 (b); otherwise, 6' should show a humping curve as
shown by the broken line beside the step-wise solid line in the same

figure. If the reaction of 6' is very slow (the case of slow through-

put reaction), €' may be reasonably approximated by a constant function
[S6], as shown by the horizontal line in Figure 4-1 (b); the value (height)

of this function may be given by the average of the percentile through-
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put of the system in operation, which we call the effective percentile

throughput 9(N). That is to say,

{(q’;ﬂ 8,)+( igq*;{i eq*)}/(l-EO) 4.2.1)

B(N) =

i=1
where‘Ri is th: probability that i user jobs are either waiting or being
serviced on the ictual processing system, ;0 is the probability that no
Jobs are being serv.ced (i.e., the system is completely idle), and Gi
(i=1,2,...,q%,...) is the percentile throughput of the system under
multiprogramming ~f degree q=i. It should be noted that ;i is a
function of N (the number of users) as well as of other system parameters.
This means that the effective percentile throughput of the system under
multiprogramming is dependent on the number of users unlike that of the
system under uniprogramming. (®(N) will be often denoted simply as ©
hereafter.)

We shall approximate the behavior of a multi-processor processing
system of such an actual computer system with that of a hypothetical
multi-processor processing system of Figure 4-2, for which the system's
computational capacity can be fully utilized for users' useful work,
but its execution speed is 6 (0s6<1) times as slow as the actual
processing system. We assume that each processor of the hypothetical
system services user jobs one by one up to completion, under the FCFS
scheduling discipline. A discussion on the possible modeling errors
will be collectively given later in this chapter and therefore that
is not our current concern.

Finally, in order to characterize the behavior of interactive
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terminal users, we assume the following :

(1) A user's think time (Tt)’ i.e., the length of time required by
an interactive user to decide and request the next job from a
terminal, independently follows an exponential distribution with a
mean of ft= 1hi.
-ut

f(t) =pe t20 (4.2.2)
(2) The execution time (Te) of each user's job (excluding all the
system overhead times to be added) independently follows an expo-
nential distribution with a mean of E;==1/k0, on the actual multi-
processor computer system. |

-Aot
go(t) = koe t20 (4.2.3)

Available measurement results of actual computer systems[e.g., S4]
indicate that both of these distributions are roughly exponentiall.
Therefore, these two assumptions seem to be fairly reasonable. The
second assumption obviously implies that the execution time of each
user's job, when executed on the hypothetical system, follows an expo-

nential distribution with a mean of Te/6=1/6}\051/}\, That is to say,

g(t)=>\e->\t t20 }

where )= 9}\0

(4.2.4)

1The effect of non-exponential distributions upon the response time

characteristics of a similar model is considered by Jaiswal([J2) and

D'Avanzo[D4].
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Thus, the behavior of an actual multiprogrammed virtual-memory

computer system depicted in Figure 1-1 is now approximated with that of

alled the total system model, like the one

the hypothetical system, ¢

shown in Figure 4-3.

T R
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4.3. Analysis of the Model Behavior

It should be noted that the total system model developed in the
previous section is basically the multi-server machine repairman model
or an M/M/S1 queue with a finite population [C8,F1,J2]. We shall
proceed to derive a response time distribution of the computer system

under study using the total system model, step by step, in this section.

4.3.1. Derivation of Queue Length Distribution

As the first step in deriving a response time distribution, this
section is concerned with the derivation of a distribution of the queue
length, i.e., the number of user jobs either waiting or being serviced
(executed) on the processing system.

Noting, as before, that a state of the model is characterized by
the number of interactive users currently thinking, the number of inter-
active users (jobs) queuing in front of the hypothetical processing
system, and the number of interactive users (jobs) being serviced by
the processors (see Figure 4-3), let Si (0 i <N) denote a state of the
model where i user jobs requested by the corresponding i interactive

users are either being serviced or waiting for their turn to be serviced

1The first, second, and third components of this notatiom specify
respectively the type of the arrival process, the type of the service
process, and the number oi servers of the queuing system. In this case,

both the arrival and service processes are Markovian (i.e., exponential)

and the queuing system has S servers.
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on the processing system, i.e., the queue length is i. (We assume N to
be constant and that the service for one of the waiting user jobs starts
as soon as a processor becomes available.) Then, the behavior of this
stochastic process can be schematically described by a state trzasition
diagram shown in Figure 4-4. Because the effective execution speed of
the processors depends on the value of 8' (the "actual" percentile
throughput) at that moment, the rates Ai (the rate with which one of the
user processes oa the processing system completes its execution when
there exist i (1 <i <N) user processes on the processing system) depends
on how ©' reacts to the changes of the actual number (q') of user
processes under multiprogramming. Therefore, the rates Ai are specified
for two cases, i.e., the case of fast throughput reaction and that of
slow throughput reaction, in Figure 4-4.

Now let ) (0<i<N) se the steady-state probability of Si' Then,

the steady-state probabilities can be obtained [Fl] by solving

(N-l);xﬂi = xi+1“i+1 0<isN-1 (4.371)
N
under the condition T ni=-1. Thus, T is obtained by recursion, for the
i=0
case of slow throughput reaction, as follows:
. N, i . h
= <
T[i (i) p 1[0 1 1<m
N! pi
v <
m! (N-1)! _i-m "0 mels
L _ r (4.3.2)
i M Te
where R ol I T —
A e —
0 BTt 1
m-1 N e
N, i N! p
.= () + T T(N-3)' -
0 1=0 i i=mm.(N i)! i-m J
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Note that T, is the probability that nne finds i user jobs either wait-

ing or being serviced on the processing system at a randomly chosen

instant after the system has operated for a long time. Therefore, T
gives a steady-state probability distribution of thz queue length found
at a randomly chosen instant.

The analysis of the czse of fast throughput reaction is exactly
analogous to that of the above case, and therefore we will consider
bnly the case of slow throughput reaction hereafter.

T w let Pi (0<1i<N) be the steady-state probability that an
arriviné user job (one of the N users) finds i jobs either waiting or
being serviced on the processing system at the inctant it joined the
job queue Q. In other words, Pi is the distribution of the queue length
at an arriving instant of a user job. Then, noting that the expected
number of arriving users who find exactly i user jobs ahead of themselves,

during a duration of time T, is given by (N-i)un,  *T, we find that Pi

i
is expreassed as

(N-i)pn, T N-1 3
Pi = N = N-a o105
T (N-j)wrj T
j=0 > (4.3.3)

N
where Q = I jm, J
j=0

It should be emphasized that Pi is different from n, in nature; for

i
example, PN is zero because no user can request a new job when jobs of

all interactive users are either waiting or being serviced on the

processing system, while N ir obviously non-zero.
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4.3.2. Derivation of Effective Percentile Throughput1

Now it should be noted that the queue length distributions, y and
Pi’ of the previous section involvg B(N), as clear from Eq. (4.3.2),
whose value is still unknown because ;i is not known (see Eq. (4.2.1)).
Therefore, we proceed to determine the value of 6(N) in this section.

It is reasonable to expect that Ty (of the hypothetical system)
gives a fair estimate of ;i (of the actual system) if O(N) can be
accurately estimated. This argument suggests that one solve Eq. (4.3.2)

and

q*1

8(N) = {(151 ng 8, )+ (Eq*ﬁi) eq*}/(l-ﬂo) (4.3.4)

simul taneously. (;i of Eq. (4.2.1) was replaced by g in Eq. (4.3.4).)
Therefore, we must solve these non-linear simultaneous equations.

However, if we note that any distribution of n, obtained from Eq. (4.3.2),

i
assuming a certain value fo- 8(N), gives an estimate of 8(N) which is
bounded by 61 and eq*, then we find that the value of B(N) may be

iteratively determined, as flollows.

1The analysis of this section is required only for the case of slow

throughput reaction.
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Procedure to determine the value of B(N)

~

Step 1 Set the variable 6 to Qq*, i.e., 6= Gq*.

Step 2  Assuming that 9(N)==é, evaluate n, using Eq. (4.3.2).

i

5 q*-1 N
Step 3  Compute G={ T n,08)+( = n,)06 }/(l'ﬂ ).
(2wt (2 s)od/farg

Step &4 If lG(N) - él <¢, then go to the next step. Otherwise,
return to Step 2. (The value of ¢ should be small eﬁough

to assure the desired accuracy of the estimation.)

Step 5 é thus ohtained is an estimate of 6(N).

The initial overestimation of 6(N) in step 1 leads to the under-
N
estimation of T T in step 2, which in turn leads to the underestimation
1=q*
of B(N) in step 3. (See Figure 4-5) The condition of step &4 is usually

not satisfied and therefore we must return to step 2. The underestima-
N

tion of 6(N) then leads to the overestimation of & Ty
1=q*

time, which in turn leads to the overestimation of 6(N) in step 3. But

in step 2 this

the overestimated value of 6(N) is certainly smaller (closer to the 6(N)
being estimated) than the initially overestimated value of 6(N), 1i.e.,
Qq*. Repeating this kind of oscillation around the value being estimated,

as shown in Figure 4-5, the value of 8(N) can be determined by the

above iterative procedure. In deriving a numerical example to be
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given in Chapter 5, it was observed that 8 converges within several
iterations when ¢ was chosen to be about 0.2 percent of B(N). 1If the

number of users (N) is large enough to impose a heavy load upon the

N

syste -~ 6~
y m,cheniga*ni 1 and 8 Gq*.

Therefore, the above procedure
converges without need for iterations. It was furthermore observed
that the use of 91 (rather than Gq*) as the initial estimate for 6(N)
in step 1 leads to the convergence to the same value of é. Therefore,
it is felt that this iterative procedure uniquely determines the value

of B(N).

4.3.3. Derivation of Response Time Distribution

The system response time is generally defined as the time elapsed
between the receipt by the system of a user's specified job request and
the satisfaction of that request at the terminal. For our total system

model, we define the (system) response time (Tr) to be the total length

of time which is spent on the processing system by each user job.
Therefore, the system response time consists of both the waiting time
and the execution time of the job.

Let p{Tr=t} and P(s) be the probability density of the system

response time and the corresponding Laplace transform. Then,




177

@
S P{T=t])e % at

P(S) =
J 0
2 N -st
=j {f’k’ip{Tl;tlijobs}e Jdt
0 Vi=0
N o
= I [% p{Tr=t|i jobs }e.st dt] (4.3.5)
i=0 JO

where p{Tr=t|i jobs} denotes a conditional probability density of the
system response time given that i jobs were found ahead of an arriving
job on the processing system. Noting that the m-processor (1l sm < )
processing system schedules arriving jobs (whose execution times are

exponentially distributed) according to the FCFS discipline, we see that

@
J p{T:tlijobs}e-Stdt
0 r

A
ey 0<i<m-1 (4.3.6)
mA )i+l:m( _A_
s+m) S+A ) "N
mh i+l-m
where the first component, (sm)\) , of the latter case represents

the Laplace transform of the waiting time and the following second
component, (s_:‘-)\)’ represents the Laplace transform of a job's execu-

tion time. Substituting Eq. (4.3.6) into Eq. (4.3.5), we get

m-1 N itl-m
- A ~mA A 4.3.7
P(s) = & {Pi s+)\} + z {Pi(s-ﬁm)\ \ s+ \} (4.3.7a)
i=0 i=m
Nin ) m-1 i N-1 i XL -m,
ez irN-i-Dr T T | 5 i-m( m ) }
N-Q s+x |i=0 *° ( ’ i=m1m! (N-i-1)'m s+mi

(4.3.7)
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We can thus derive the k-th moment E((Tr)k), of the system response
time, using a well-known technique of differentiating P(s) and then

setting s to zero [H2].

k
kdP -
ECr)Y) = (nkLEE k=1,2,3,... (4.5.8)
3 ds §=0

In particular, the average response time is obtained as follows.

E(Tr)

_ de(s) ,
ds s=0

Nig_ (m-1 i
)

N-Q\i=0 1!(N-i-1)! (s+0)? | s=0
n N!no(N;:I{ pi ( ol ]H-l-vv}). A
N-Q\i=mlmt (N-1-1) tm! ™™ | s (s+0)? |s=0
Ntx A N-1 i i-m
+ 2 — Z { - o (t+1-m).(m_") . —m }
N-Q s+) i=m\m!(N-i-1)m s+m\ (s+ml) 8=0
Nix 1 -1 i N-1 i
T e A
N-Q VA /{i=0 {i!(N-i-1)! i=m{m!(N-i-1}! nq
m-1 i N i
i=0 id(N-i)! i=m m!(N-i)m il
= -Tt (4.3.9)
m-1 i N-1 i
r —E—— 14 £ s
i=0 it (N-i-1)} i=m m!(N-i-1)m l1<m<N

This result agrees with Scherr's result [S4] if B(N)=1. Some

special cases of Eq. (4.3.9) may be worth mentioning.
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N i
y —io

i=0 (N-1)¢

N-1 i
§ —a

E(T) = { 1=0 (N-i-1)! (4.3.10)

Te
\ =N
8 (m=N)

Obviously, the result for m=N means that if a processor can always

start its service for a user's job as soon as the job is submitted by
an interactive user the average response time is given by the average
execution time of the job.

Now we proceed to invert P(s) to obtain the probability density

of the system response time p{ T =t }. Let

\ A o i+l-m
Pl(s) iy , P2(s) = s—ﬂ(m (4.3.11)

Then, we must invert Pl(s) and P2(s) in order to invert P(s) given by

Eq. (4.3.7). Denoting the inverse Laplace transform operator by I:l,

-1 - -
L =L l[s—}«x} e et £20 (4.3.12)

Next, we perform a partial fraction expansion for Pz(s) as the first

step to invert P2(s), assuming temporarily that m#l,

M) o L( mA i+l-m
2 ~ s+A \ st}
C C (o] (o]
A LT D s (4.3.13)
s+A  smA  (s+m)) (s4m)) T ™ n#1

where ) (0 <k < i+l-m) are the unknown constants to be determined.

These constants are easily found to be
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o i+l-m
¢ = (s+1) Pz(s),ﬁ:_x,= ’(E{T) \
. oL i [(smx)“bmf’ (5)]
i+1-m-J i ds" 2 §=-m\ i
(4.3.14)
- = (_l)j.__i% (m;\)iﬂ-ml f'
j! (S+)\) !S:-m)\
-(m 141l-m
(m-1)311 )J 0<js<i-m m#l

Now, noting that

L_l[ 1 ] gk-1 -at
== (4.3.15)

K
(s+a) (k-1)! Ks1,2,5,...

Pz(s) specified by Eqs. (4.3.13) and (4.3.14) can be inverted.

L' [Pz(s)]

i+l-m i-m i+l-m i-m-j -mAt
- L) . e At_ 5 (m)\)-H-1 ; LB e (4.3.16)
m-1 §=0 (m-1)37" 2 (i-m-j)! m# 1

Using the results of Eqs. (4.3.12) and (4.3.16), the probability
density of the response time of the m-processor system (m#1) is

obtained as follows:



181

p{T =t]
=£1 [P(s)]

Nin, ym-1 i -
o{ s __g__)“ At

N-Qli=0 10(N-i-1)"

[=]
™~

+

Nig. N-1 pi ( % i+l-m _)\t-i-m((mx)i+1-m ti-m-je-m)\t \)
N-Q i=m e

v e
m! (N-i-1) tm k{“—"l) 3=0 (m-l)j"’lxj (i-m-j)! )

- Xe'XC nom;}{(ﬁ)(N-i)pi}

N-Q  i=0
N-m-1 i . oy 1 r 3
+ m_&___(_l“_!.,) pm“O J P — (e A Mt {(m-1)Ac} )
N-Qim: i=0 | (N-m-1-1)!(m-1) j=0 3!
m#1 (4.3.17)

For the single processor system (m=1‘), Eq. (4.3.7) reduces to

i+l

; _L_
N-l —
i
T s+A P

N i+l (N-1i-1)!
A 1 i=0
P(s) = 1fopi(s“) oA (4.3.18)
5o DT

Therefore, the probability density of the response time of the single

processcr system is obtained, using Eq. (4.3.15), as follows:
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The probability distribution function, P{T} St}, of the system

response time can be obtained by integrating the probability density
given by Eq. (4.3.17) or Eq. (4.3.19) from 0 to t. For m#1, noting
first that

t
5 ed e ML dt
0

M k-0 (§-kyt m0K o

i e-mkt 3 Jgtk
= me— - z [
m @m0k m)

)

1=1,2,... (4.3.20)

the integration of Eq. (4.3.17) gives

~
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N-Q\m! =0 k(N-m-l-i)!(m-l) - Myt ™ k=0 k')
(4.3.21)
Then, noting that
i
AR
j=0'™ / k=0 K!
i+1-}
m
- oty L-(5) I(mmj}
j=0|' ™ 1 - m—“‘f i1
: {(m-l))\t}j m-1 i i (m)\t)j
=m| T - ‘(m-1)] T 4.3.22
[j:O X ( m ) . o 1 , ( )
the third (last) term of Eq. (4.3.21) becomes
N m 1 o pi
- “") (N-m-1-1) ¢ (m-1)* (N-m-l-i)!m“l
i - <
(N-m-1-1) t (m-1) }* jO L (N-m-l-i)' i+l o 3

(4.3.23)
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Therefore, the probability distribution function of tke system response

time for m#1 is obtained as

P{ TSt }
-At m-1
e _ools (f)(n-i) ol
N'Q 1i=0
m (Nt\ m N-m-l ot -mie L (maeyd
+——_(—,)O o L Till-e 2_’-
NQ\® i:'\l(N-m-l-i)!m j=0 !
- i -at
m (Nty m_N-m-k P e -m-Dre L{m-1ac}
- —:(—')p 9 £ Till-e D e ———
NEQIVAL 1:0((N-m-1-1)9(m-1) =0 §!
where (4.3.24)
ﬂo 1
N-Q -1 ol N-1 i
Vo —— % N
1=0 11 (N-i-1)!  fom mi(N-1-1) 1l ™ m#l
For m =1, the integration of Eq. (4.3.19) similarly gives
P{T st}
- Mt (.ﬂ oAt o el )
) =0 (N-1-1) 111 {1 3=0 (1-) 1]
1o (N-1-1)1
N'l{ ol é (At)i}
(N-i-1)! it
_ o -ht{ i=0 j=0 ., .3.25
= 1 e N-1 1 (4 3 )
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Thus, we have derived the expressions for the probability density
and the probability distribution function of the response time of a
multiprogrammed multi-processor time-shared virtual-memory computer
system. The result of the probability distribution function of the
system response time enables us to evaluate the percentile response
time numerically, as will be carried out in Chapter 5.

Finally, the last part of this section presents two somewhat periph-
eral but rel:z:ed results; a result of the response time distribution
conditioned on @ job's execution time and a result of the first-time
response time distribution (to be defined). Each of these results can
be obtained by a slight modification of the analysis of this section.

We have assumed until now that execution times of all user jobs are

only probabilistically (exponentially) known. Now we assume that the
execution time of a particular arriving job is completelyknown, but the
execution time of other user jobs already on the processing system are
only probabilistically known as above. Then, the response time (Tr) to
be experienced by a user who has requested a job requiring an execution
time of Te seconds (excluding all the overhead times to be added) is
given by the sum of the waiting time (Tw) in the job queue Q and its own
execution time Te. Letting the Laplace transform of the waiting time Tw
be Pw(s), we have (see Eqs. (4.3.5),(4.3.6),and (4.3.7)) therefore the

following expression.

=
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P (s) =J P{T =t}e™® qc
N
=z
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1=o[ ‘go ¥ | )

m-1 © . N ® )
=L [Pig 6(t)e SCdtJ'f' z [PiS p{ Tw=t|i jobs Je Stq¢

1=0 0 i=m 0 4
m-1 N 1-mtl
A
=L P, + T p (_“.’_)
o0 1 fom  1Us4m) (4.3.26)

where 6(t) is a delta function at t=0. Using Eq. (4.3.15), this can

be readily inverted as follows:

p{T =t]
m-1 N i-m -mAt
i-m+l t e

=(Z P )O() + TP, (m) EBZESYE

{0 & o] (i-m)!

i -mAit N-m-1 1
-1 t

=N!:3,(m P .)G(CHm_?&___(.B%)pmﬂo T —(N-(‘:lzi)'ﬂ

N'Q i=0 i.(N'i‘l). -Q m: i=0 m g =0

(4.3.27)

Therefore, the probability density of the system response time

conditioned on a job's execution time, p['l‘r=t ITe}’ is given by
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p{Tr=t|Te}

= p{ T = t-Te}

Nt [0l i -mA(t-T,) N -m-1
- “o( P ,)6(: 1, yome T e }p {uCe- Te)}

N-Q \j_o 1! (N-i-1) . 0 (N-m-1-1)! i!

(4.3.28)

Thus, if the execution time of a job is known in advance, the results
given by Eqs. (4.3.17) and (4.3.19) must be modified, as given by

(4.3.28). The corresponding probability distribution function and
its moments can he easily obtained from the above result.

We have becn concerned with the response time to he experienced by
each of N interactive terminal users who are currently using the time-
shared computer system. One may ask a question about the system
response time to be experienced by a new user who is about to join the
existfng N user population by typing the "login" command at his terminal.

This first-time response time should be slightly different from the one

with which we have been concerned because such a new user joins the
system independently of the system state (e.g., the number of queuing
users). Let Tez (i.e., Te:=Tez) be the execution time (excluding all
the overhead times to be added) of the "login'" command. Then, noting
this new user's random arrival to the system, we see that the Laplace
transform Pw(s) of the probability density of the waiting time Tw

experienced by this user is given by Eq. (4.3.26) with P1 replaced by .
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Therefore, the probability density of the response time to be experienced

by the login command, p{Tr(login):=t|'rel}, is obtained as follows:

p[ Tr(login) =t l Te!.}

p{ Tw(login) =t=- Tez}

= i
-m)\(t°TeL)(N!\ pmﬂ N m{u(t‘Tg‘}

ol 0 Z N3 110
i=0(N m-1i) 1!

m-1
Ny i
z (1)0 “Q-ﬁ(t-Tez) + mle o

i=0

(4.3.29)

Thus, the probability density of the first-time response time has been
obtained. The corresponding probability distribution function and its

moments can be readily derived from the above result.

4.3.4. Relationship with an Infinite Population Model

In developing queuing models for time-shared computer systems,
one must make a fundamental choice between the use of an infinite or
finite population model. It is clearly stated in [M3] that the finite
population model is much more appropriate as a model of time-shared
computer systems. The basic difference resulting from the size of the
population consists in the fact that the arrival rate of the finite
population model is dependent on the state of the system (e.g., the
number of queuing usecrs) while the arrival rate of the infinite
population model is not; the arrival rate of the finite population model

increases (decreases) if the number of queuing users decreases
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(increases), showing the existence of a negative feedback mechanism to

stabilize the number of queuing users. but the arrival rate of the
infinite population model is always constant. In view of the fact that
the infinite population model is however ofte used in modeling computer
systems, we will make a brief remark about the relationship of these

two kinds of models in this section.

We will particularly discuss the relationship between the M/M/m
queue with N users with which we have been concerned and the M/M/m queue
with an infinite population [C8,F1) whose arrival rate is uo(a constant).
For such an infinite population model, the steady-state probability P(i)
of finding i jobs on the system at the instant that a new job joins the

waiting queue is obtained [C8,Fl] as

i

—g—!—' P(0) 1<i<m
P(i) = ;
R 1) mei<m (4.3.30)
N m!m1 m -1
m-l i m
=u./ A, P(O) =|| £ i\+—1°—— |
where p= }10 ) io it . m! (m_p) J

It can be easily shown [F1] that as N—® and u—0 in our finite
population model in such a way that Ny remains a constant By T given
by Eq. (4.3.2) approaches P(i) given by Eq. (4.3.30). But for the series

$(P(i)/P(0)) to converge we must have

J%% = "utilization'" < 1 (4.3.31)
m

Noting that 6 is finite under this condition,
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N-i

lim P, = lim ﬂi = lim ﬂi =; P(i) (4.3.32)
N-e '  NowoNQ N +o
Nu= Ko Nu= Ho Nu= Ho

Therefore, both Pi and T approaches P(i) as N—«® and ;-0 under the
constraint Nu::po. This implies that the system response time obtained
for the finite population model approaches the system response time of
the infinite population model, under this limit. For example, the
probability density of the system response time given by Eq. (4.3.19)
approaches the corresponding solution of the infinite population model,

i.e.,

p{T=t]}= (A=pg) e (Aot t20 (4.3.33)

In the case of the infinite population model, the system response time
is exponentially distriﬁuted, as above. In contrast, the probability
density of the system response time obtained using the finite population
model of this section (see Egs. (4.3.17) and (4.2.19) will be numerically
found in Chapter 5 to be much closer to a normal distribution density

if the number (N) of interactive users is large. This tendency, usually
observed on actual computer systems [S6], is a result of the finiteness

of the user population.
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4.4. Some Remarks on Modeling Errors

We will finish the response time analysis of the multiprogrammed
time-shared computer system by examining the modeling errors which may
be introduced to this analysis. Looking back at what we have been
doing, we have developed a queuing theoretic model of the cuipiter
system whose characteristics were specified in Section 4.2 and have
analyzed the behavior of such a model to investigate the system response
time of the computer system under study. We will not consider what
happens if a given (actual) system is slightly different from the one
considered in Section 4.2 (the reader who is interested in this subject
should read D'Avanzo [D4]), but will be concerned with the errors
possibly introduced in approximating such an actual computer system
with our queuing model called the total system model.

We will particularly discuss three approximations being used in the
analysis. The first one is the approximation to use the hypothetical
system, of Figure 4-2, whose execution speed is traded for the percentile
throughput. As stated in the previous chapter, (1-9)}<102 percent of
the computational capacity of the actual computer system carnot be
utilized for users' useful computation; this proportion ¢f the system's
capacity is wasted either by the system overhead operations or by
processor idle time. If the length of each burst of these wastages is
comparable to the length of the execution time ci each job, then the
speed-capacity tradeoff will not give a good approximation. (Consider
the variance of the system response time, for example.) But fortunately.
on actual computer systems, these wastages (e.g.. paging overhead)

usually have much shorter lengths than the job execution times and
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moreover tend to occur uniformly in time. Therefore, this approximation
does not seem to introduce a significant error in the analysis.

The second approximation consists in the use of the effective
percentile throughput 8(N). Basically, the variable © system (actual
system) is approximated by the constant © system. This implies that if
8' of the actual system (N=fixed) varies very much in time this approx-
imation tends to underestimate, for example, the 90 percentile response
time. 1If that is the case, the use of 91 for B(N), i.e., the use of the
largest lower bound for B(), will give a good upper bound estimate of
the 90 percentile response time. This kind of underestimation may be
significant especially in the medium load range of N because of relative-
ly frequent fluctuations of ©' (see Figure 4-1); the estimated 90
percentile response time of the heavy load or the light load range of
N tends to be accurate.

The third approximation corsists in the fact that uver jobs are
executed up to completion under the FCFS discipline on the hypothetical
system while the jobs are not executed strictly in this way on an actual
multiprogrammed system using demand paging even if all the scheduling
disciplines (the ones associated with the memory queue and the processor
queue) are FCFS. To see this, consider a situation where a large job
and a small job enter the processor queue respectively at time t and
t+At. It is vewy likely that the small job which arrived at the process-
ing system later than the large one will be completed earlier than the
large one, because the small one is likely to demand a smaller aumber
of missing-pages than tke other. This means that a job which arrives

at the system later than another can be completed earlier or the actual
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multiprogrammed system under study. Therefore, we must consider the
effect of this kind of favoritism for short jobs upon the system
response time. The average response time is not affected because the
execution time is assumed to follow the (memoryless) exponential distri-
bution, but its variance or 90 percentile response time is. The
variance of the system response time is basically proportional to the
sum of the variances of job execution times because execution times are
assumed to be independent of each other. Considering that if the system
is under a heavy load the number of multiprogrammed jobs is constant (q¥)
but the number of jobs waiting in the memory queue varies in time, we
see that the variance of the response time of the system under a heavy
load is determined mainly by the varying number of the jobs in the FCFS
memory queue. Therefore, this argument suggests that the 90 percentile
system response time tends to be accurate as the number of jobs queuing
on the processing system increases., on the contrary, if there are only
moderate number of jobs on the processing system , the variance of the
response time would be affected by the favoritism for short jobs; the
variance (or 90 percentile response time) predicted by the total system
model is somewhat smaller (shorter) than that of the correspounding
actual system because the genuine FCFS scheduling discipline, used in
the model, is knosm to attain the smallest variance of response times

{c7]



CHAPTER 5

MODEL VALIDATION, PEKFORMANCE PREDICTION AND

OPTIMIZATION, AND CONFIGURATIGN SELECTION

5.1. Introduction

We have finished the development and analyses of all the hiersrchi-
cally organized modular models shown in Figure 1-4 that we intended to
describe in this thesis. It is time to examine the validity of these
models and to consider if the performance questions raised in Table 1.1
of Chapter 1 can be answered by a series of these analyses given in
Chapters 2, 3, and 4.

We will first examine the validity of the processor model and the
total system model by comparing the system performance predicted by
these two models and the available statistics of an actual computer
system, the Multics system of M.I.T. This validity examination of the
models is intended to present a rough idea about the accuracy of the
system performance that can be predicted by these models. Then, noting

that the performance questions of Table 1.1 can be classified into
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performance prediction problems (the second through the fifth questions),
performance optimization problems (the sixth through the eighth
questions), and a configuration selection problem (the first question),
we shall proceed to consider each class of problems quantitatively one

by one.
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5.2, Model Validation

In this section, the validity of the models developed in the
preceeding chapters will be examined by comparing the performance of an
actual large-scale time-shared computer system, the Multics system of
M.I.T. [C10,Cl12], with the performance result that can be obtained
using these mor.els, The instrumentation used in the development of
the Multics system and the performance statistics obtained from this
running system w'll be first described and then the details of the

statistical results will be presented.

5.2.1. Instrumentation and Multics Performance

The Multics system is a large-scale time-shared computer system
developed as a cooperative effort involving the Bell Telephone
Laboratories (from 1965 to 1969), the computer department of the
General Electric Company (subsequently acquired by Honeywell Information
Systems Inc.), and Project MAC of M.I.T. The system has all the
features of modern large-scale time-shared computer systems such as
paging, segmentation, multiprogramming, multi-processing, memory
hierarchy, and so on,

Thé current standard configuration of the Multics processing
system at M.I.T. includes two processors, three primary memory units
(128 k thirty-six bit words per unit) and the secondary memory system
consisting of drum and disk memories, with five or six eligible user
rrocesses under multiprogramming (see Figure 5-1). Occasionally, a

processor, a primary memory unit, and/or some part of secondary memory
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is removed from the servicing system, for maintenance or to create
another system for debugging a new version of the operating system [Cl2].
Therefore, the Multics system has been running wich one of the following
hardware configurations during the past year,

(1) large-scale configuration ... standard configuration1

(two-processor three-primary-memory-unit system)
(2) medium-scale configuration

(one-processor three-primary-memory-unit system)
3) sﬁall-scale configuration

(one-processor two-primary-memory-unit system)

In this way, every effort has been made to support the continued opera-
tion of che system.

Early in the design stage of this system, it was felt that the
cost of maintaining well-organized instrumentation can be made low and
the payoff in being able to "look at the meters" any time a performance
problem is suspected is very high. This initial conviction resulted in
a comprehensive set of system metering commands that can be used from
any terminal [S2] and the use of a DEC PDP-8 system as a peripheral
computer to test and monitor the operation of the Multics system [G3,G4].
The metering commands have proved to be extremely useful in measuring
the paging performance of programs, the secondary memory performance,

the processor time usage (among various system overhead times, idle

1Whenever there was not a need to reduce the configuration, this

standard configuration of the Multics system has been used.
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times, and users' useful computation time), and user behavior character-
istics. The use of the PDP-8 computer as a simulator of interactive
users [G3] has provided system developers with a convenient tool to

test the performance of a newly installed version of the operating
system; a standard benchmark (or a series of commands interspersed by
think times representing a typical debugging user process) has been run
from time to time during the past four years to measure the execution
time, the paging performance, and the response time of each command
included in the benchmark. Thus, these tools have enabled system
analysts to obtain the operatjonal statistics of the Multics performance
wvhich are essential in improving the succeedingversions of the operating
system,

Many performance statistics concerning the Multics system have
been accumulated using these measurement tools. Three sample results
each representing the performance of a different hardware configuration
were randomly chosen from these performance statistics to show the
typical performance of each of these three hardware cunfigurations.
These sample results are given in Table 5-1. Rkach sample result was
collected from the system during a thirty-minute session either in the
morning or afternoon of a normal working day when the system was
operating normally and was fully loaded with interactive terminal users.
Although the numbers given in Table 5-1 are subject to statistical
fluctuations, it is felt that they are representative f typical
performance of the Multics system and that they can be used for the

purpose of examining the validity of the models developed in this theeis.
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Table 5-1 Typical Performance of the Multics System
under a Full Load

Small Med ium Large

Gontiguration 1 CPU 1 CPU 2 CPUs
2 PM units 3 PM units 3 PM units
average number of 5.7 5.3 5.6
eligible processes ' * *
mtbp £ (msec) 16.5 29.7 31.9
mpft (msec) 32.4 33.2 30.9
mean paging overhead 5.4 6.1 9.0
time (msec)
TstZeEEb?'cIEé‘SrZZkEEbET _______________
multiprogramming idle 2.9 7% 1.8 % 8.8 7
memory interference idle 0 0 5.7
paging overhead 28.7 18.4 22.9
miscellaneous overhead 16.6 15.9 12,6
users’' useful computation 51.8 63.9 49.9
number of users 41 43 48
sresponiac tine CRaractelstice T T — ——'———
average queue length 16.7 14.9 14.9
average response time to
the PDP8 user simulator not measured 7.9 6.0
(sec)

July 1971
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Using a set of metering commands, the mean paging overhead times
(all the supervisory operations necessitated by s page fault are includ-
ed) of a single processor system and 4 dual processor system are
respectively found to be approximately 6 and 9 milliseconds long} Oo
the other hend, the value of the miscellaneous overhead coefficient (6)
is found to be between 0.2 and 0.35, with a typical value of 0.25. The
average think time of interactive users is found to vary from session
to session (e.g., 12 to 35 seconds), but it is typically 15 to 25
seconds long. These numbers represent shorter think times than observed
for the CTSS system by Scherr [S4]. The average execution time required
by an interactive job (excluding all the overhead times to be added) is
roughly 400 milliseconds long.

In a special measurement of multi-processor interference, it was
found that if two processors direct their accesses to a particular
primary memury unit at all times the execution time of a typical
program is stretched by about twenty percent. This means tnat the
value of the memory interference coefficient of the Multics system is
approximately 1.2, {.e., Y=1.2, On the other hand, it has been
generally observed on the large-scale configuration (with three primary
memory units) under a heavy load that the system typically loses 5 to 6

percent of each processor's processing time because of memory cycle

lNost: of the increase of the paging overhead time on a dual processor
system is due to the data-base lockout. As described in Table 3-1 of
Chapter 3, the Jata-base lockout is frequent enough to prolong signifi-

cantly program execution time only in the page fault processing.
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1
interference and another 5 to 6 percent of each processor's processing
time because of data base lockout. Most of the loss due to data-tase

lockout is being caused by the lockout of the page table.

5.2,2. Validation of Processor Mode’.

In this section, we examine the validity of the processor model of
Chapter 3 by comparing the performance of the above three configurations
of the Multics system to be predicted by the processor model and the
actual performance of the same system summarized in Table 5-1..

For this purpose, a program was written in PL/I to derive the
performance of the processing system under investigation using the

processor model. We call this program the throughput analysis progrém

and it is included in Appendix A together with an explanation about
how to use it and a sample console sescion using the program. This
program derives the processor time breakdown into various system over-
head times, idle times, and users' useful ccmputation time (i.e.,
percentile throughput), upon specification of the configuration of the
processing system under study.

in predicting the performance of each of the above three hardware
configuration of the Multics system, all the input parameters (except
the degree of multiprogramming) were set fairly close to the correspond-

ing measured values given in Table 5-1. The degree of multiprogramming

1This observation will be found consistent with the above measurement

result, y=1.2, numerically in Section 5.2.2.
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was then changed to see the effect on the resulting processor time
breakdown. The result is showu in Table 5-2 (a), (b) and (c¢). It is
clearly seen that as the degree of multiprogramming anproaches the
measured value of the average number of eligible processes of Table 5-1
the resulting processor time breakdown becomes very similar to the
measured processor time breakdown of Table 5-1. The closest result
analytically obtained for each configuration is enclosed by a broken
line in Table 5-2. Y¥or cxample, it is seen that the processor time
breakdown of the small-scale configuration predicted by the processor
model becomes very close to the measured performance of this configura-
tion given in Table 5-1 when the degree of multiprogramming is fixed
at either 5 or 6. The performance of the two-processor configuration
(i.e., the large-s:ale configuration) is also predicted fairly accurate-
ly by the processor model, as seen in Table 5-2 (c).

As a result of comparing the predicted performance of Table 5-2
and the actually measured performance of the Multics system, we conclude
that the processor model can be used as a practical tool of performince
prediction despite its simplified abstraction of complex structure of

actual computer systems (see Section 1.6).

5.2.3. Validation of Total System Model

In this section, we examine the validity of the total system
model developed in Chapter 4 by comparing the performance of the three
configurations of the Multics system to be predicted by the total

system model and the actual performance of the corresponding configura-
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Table 5-2 Validation of the Processor Model

(a) one-processor two-primary-memory-unit configuration, i.e.,
small-scale configuration

degree of multiprogramming 2 3 4 5 6
multiprogramming idle 39.4  20.5 9.2 . 3.5 1.1
memory interference idle 0 0 0 : 0 0.
paging overhead 19.8 26.0 29,7 ' 31.6 32.4
miscellaneous overhead 9.9 13.0 14.8 ' 15.7 16.1
users' useful computation 30.9 40.5 46.3 « 49.2 50.4 !

mtbpf = 16.5 msec, mpft = 32,4 msec, Ep1=5'4 msec, 6 =0.32

(b) one-processor three-primary-memory-unit configuration, i.e.,
medium-scale configuration

degree of multiprogramming 1 2 3 4 5 b
multiprogramming idle 53.8 23.9 8.5 . 2.4 0.6 ,
memory interference idle 0 0 0 ! 0 0!
paging overhead 9.4 15.5 18.6 :19.8 20.2
miscellaneous overhead 7.4 12,1  14.6 15,5 15.8 |
users' useful computation 29.4 48.5 58.3 !62.2 63.4 |

mtbpf =30 msec, mpft =35 msec, Epl =6.1 msec, § =0.25

(¢) two-processor three-primary-memory-unit configuration, i.e.,
large-scale contiguration

degree of multiprogramming 1 2 3 ' 4 5
multiprogramming idle 74.6 48.4 27.2 13,0 5.2
memory interference idle 0 1.7 3.5 ' 4.9 5.7
paging overhead 7.2 14,1 19.6 ' 23.2 25,1
miscellaneous overhead 3.6 7.2 10.0 . 11.8 12.8
users' useful computation 14.6 28.7 39.8 ! 47.2 51.2
e o0 v o o oL L. J

mtbpf = 31.9 msec, mpft - 30.9 msec, Kzt 1._9 msec, 6 =0.25, y=1.2,
p=0.1%

It has been numerically found that the resulting performance is rather
insensitive to a particular set of values of t. and p if t, /p =mtbpf
is constan’ (see Ffaction 3.4.1), Therefore, tﬁe value of plaas arbitrar-
ily chosen to be U.1. (An explanation of these input variables can te
found, for example, in Appendix A.)
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tions summarized in Table 5-1.

For this purpose, a program was written in PL/I to evaluate the
response time characteristics of the entire computer system under
investigation using the total system model. We call this program the

response time analysis program and it is incluced in Appendix B together

with an explanation about how to use it and a sample console session
using the program. The program has two phases: the first phase which
determines the effective percentile throughput and the second phase
which derives the resulting response time distribution.

Unfortunately, all of the data required to validate the entire
total system model is not available on the Multics system. For instance,
a response time distribution is not measured on the Multics system; one
of the metering commands is capable of measuring only the average queue
length as an indicator of the average system response time experienced
by a population of interactive users. On the other hand , the PDP-8
user simulator can measure the response time distribution for a
particular benchmark. Therefore, the average response time measured by
the user simulator represents the average response time experienced by
a population of all users only roughly. As for the input parameters
needed by the response time analysis program, the values of eq(wercen-
tile throughput of the system under wiltiprogramming of degree q(lsq=q¥*))
are not all measured; only the value of &(N) can be measured by a meter-
ing command (note that e(N)=*9q* under a heavy user load). Therefore,
we can at best examige the validity of the latter phase of the total
system model partially.

In predicting the response time characteristics of each of those
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three hardware configurations of the Multics system, the actual values
of the percentile throughput and the number of users were supplied as
input parameters to the response time analysis program. The average
execution time needed for useful computation of a user's job was chosen
to be 400 milliseconds long. ‘The average think time of users was
changed to see the effect upon the resulting average queue length (of
user jobs) and average response time, for each of the above hardware
configurations. The result is shown in Table 5-3 (a), (b), and (c).
The predicted performance which is closest to the actual performance
given in Table 5-1 is enclosed by a broken line for each configuration.
It is observed that a close match between the predicted performance and
the actual performance is obtained when the average think time of users
is chosen to be 14 to 20 seconds long. This result of user think time
is consistent with a general observation that the typical think time of
the Multics system is approximately 15 to 25 seconds long. However,
unavailability of a metering command for the measurement of users' think
time for each experiment prevents us from examining more details of the

validity of the total system model.
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Table 5-3 Validation of the Total System Model

(a) one-processor two-primary-memory-unit configuration, i.e.,

small-scale configuration.

average think time 16 ;18 20 22
(sec) 4 !
l t

average queue length 20.3 V17,7 15.1 12.7

average response time 15.7 : 13.7 11.7 . 9.8
__ (sec) e e =] :

percentile throughput=>51.8 7 , average execution time of a job=0.4 sec,

number of users =41,

(b) one-processor three-primary-memory-unit configuration, i.e.,

medium-scale configuration.

e =S

average think time 16 L& 0 ! 22
(sec) :

average queue length 17.5 : 14.3 11.4 : 8.9
i i

average response time 10.9 . 9.0 7.1 | 5.7
(sec) EET R S e

percentile throughput=63.9 % , average execution time of a job=0.4 sec,

number of users =43,

(c) two-processor three-primary-memory-unit configuration, i.e.,

large-scale configuration.

————— 1

average think time L 14 : 16 18 20
(sec) ¢ ]
' ;

average queue length L 13.3 9.4 6.6 4.8
n

average response time |, 5.4 3.9 AN 2.2
(sec) - -

percentile throughput=49.9 7 , average execution time of a job=0.4 sec,

number of users =48,
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5.3. Performance Prediction

It is now fairly reasonable to expect that the models developed in
this thesis can serve as a practical tool to predict the performance of
a Sysgem in question whose configuration is specified. Therefore,
we shall proceed to use these models in evaluating the effect of several
important system parameters upon the processor time breakdown and the

system response time.

5.3.1. Effect of System Parameters upon Throughput

In this section, we consider the probelm of improving the percen-
tile throughput of the large-scale (standard) config:ration of the
Multics system, i.e., the two-proucessor three-primary-memory-unit
configuration, as an example of investigating the effects of several
im:ortant system parameters upon its percentile throughput. We assume,
as our starting point, that the percentile throughput of this configura-
tion (under multiprogramming of degree 4) is 47.2 percent, as shown in
Table 5-2 (c). For the sake of simplicity, we do not change the degree
of multiprogramming in this section.

There are several possible approaches to improve the percentile

througbput of this configuration. For example,

(a) Addition of one more 128 kword primary memory unit
(b) Enhancement of secondary memory speed

(c) PReduction of system cverhead time

Apprcach (a) aims to increase the mtbpf of user processes under multi-
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programming by increasing the amount of primary memory available to
each eligible user process. The resident Multics supervisor programs
(including the I/0 buffer, the memory space required by the page table,
etc.) occupy approximately 90 kwords of primary memory space. Then,
using the linear paging model of Section 2.5.2., we can roughly expect
the mcbpf to become about 45 milliseconds long if 128 k words are added
to the current 384 kword primary memory. The longer mtbpf naturally
decreases the percentage of both multiprogramming idle time and paging
overhead time, and therefore increases the percentile throughput.

Approach (b) also aims to reduce the mu'tiprogramming idle time, by
having a shorter mpft. It is similarly possible to improve the percen-
tile throughput of the system. The shorter mpft is usually attained by
replacing the existing secondary memory device by a faster device.
Another way which is applicable to a rotating device like a drum is to
create multiple copies of each file on the device; the first copy access-
ed by the device head is read and transferred to primary memory, saving
some part of the device's access t:ime.1 We assume that the current mpft
can be somehow halved.

On the other hand, approach (c) aims to increasc the percentile
throughput not by decreasing the multiprogramming idle time as in the
above two approaches but by reducing the system overhecad time; the

multiprogramming idle time will not be affected in this approach. We

1By creating multiple copies on the device we decrease the memory space
of the device. This time-space tradeoff approach is being tested oa the

Multics drum for the purpose of reducing the mpft of the secondary memory system.

®
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assume that the slow-down factor (Kz) due to data-base lockout can be
reduced frca (the current value of) 1.5 to 1.2 by shortening each lock-
ing period of shared writable data-bases; this means that the mean
paging overhead time (KAEPI) would be approximately 7 (=~1,2x6) milli-
seconds long. The shorter mean paging overhead time may also be attain-
ed by reprogramming the page fault handler. Furthermore, we assume that
the miscellaneous overhead coefficient (6) can be reduced from the
current value (0.25) to 0.2 by reprogramming the miscellaneous fault
handlers.

The system performance resulting f:om each of these three approaches
was then evaluated using the throughput analysis program. The vesult is
summarized in Teble 5-4. The expected change in processor time usage is
clearly seen in each_apéroach. It should be noted that approach (z) attains
anearly 10 percent improvement in percentile throughput (really a relative
improvement of about 20 percent), while other approaches attain a 5 to
6 percent improvement. Howe.er, approach (a) may involve the highest
cost; the decision of choosing the right approach must be made in
consideration of the cost-performance. Thir aspect of configuration
selection will be discussed later in Section 5.5.

Finally, it should be mentioned that there are other approaches to
improve the system throughput. One could divide the primary memory into
smaller memory units in order to decrease the percentage of memory
interference idle time; the effect of having more memory units is seen
even in approach (a) where the number of memory units is increased only
by on