
iAC Tft-10*

PERFORMANCE EVALUATION OF
SRAMMED TIME-SHARED COMPUTE

Akiro Sukinu

^YSTE/

i
SEPTfMBEt 1972

-roi^?^

TW. r»»#orcK wa» «wp^ertvd by *• Ad^-anrad R*$»o^

f^w« Agency af A« D^ ortWMt of tefon«» tmtkr ^^

AWA Ofd«r Nr,. TO95, and WQI «Poniiervd by ONf under

CAMillDC

MASSACHUSETTS INSTITUTE Of TECHNOIOGV

PROJECT MAC

MASSACHUSiTTS 0213v

»■■■■fc

BEST
AVAILABLE COPY

UNCLASSIFIED
St ..rtl\ i IdiftMfu «dun

DOCUMENT CONTROL DATA R&D
>■ «wn*» i f«i »I/it «fton of titlv. buJv ut mburmt t mn4 indtamf *nnotmtiun mu»» 6r «nferrJ i*firn r^ir '•r^// report M r|<« M/IV J.

O^'C-SA^iNG ACTIVITY (Corporar* «i.*ftor>

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

[«.RferoN* »CCun,Tv CL*i*i»-irA' OK

UNCLASSIFIED
16 CROUP

NONE r t «tPO" T Tl TLC

/
PERFORMANCE EVALUATION OF MULTIPROGRAMMED TIME-SHARED COMPUTER SYSTEMS o

4 DCSCM'VTivCsoTCt (Typ* of rmpott and mcfusfvr J«m>

INTERIM SCIENTIFIC REPORT
r^

f> *L. . MONitt fftrif ncm«, mddlm tnttiml. tmtt nmmj)

AKIRA SEKINO

» HCPOWT O» Tt ;*. TOTAL NO O' PASES

SEPTEMBER 1972 280
76 NO OF RETS

•« CONTMACT OR GRANT NO

N00014-70-A-0362-00Ü6
b P«OJCC T NO

««. OMISINATOX'S KCPORT SUMBEXHI

MAC TR-I03 A.
y_

»h. OTMCn REPORT NOtSi {Any orA«r number» ,«||«r^n«>' 6* •*%i$a4d
fhia repurt,

NONE
.^;: :x

10 OISTNISUTION STATCMC 4 T

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

JuPPLtMENTAHT NOTES

PH.D. THESIS, DEPT. OF ELECTRICAL
ENGINEERING, AUGUST 1972

,-'

OFFICE OF NAVAL RESEARCH

»BSTRACT

This thesis presents a comprehensive set of hierarchically organized modular
analytical models developed for the performance evaluation of multiprogrammed
virtual-memory time-shared computer systems using demand paging. The hierarchy
of models contains a user behavior model, a secondary memory model, a program
behavior model, a processor model, and a total system model. This thesis is
particularly concerned with the last three models. The program behavior model
developed in this thesis allows us to estimate the frequency of paging expected
on a given processing system. The processor model allows us to evaluate the
throughput of a given multi-processor multi-memory processing system under
multiprogramming. Finally, the total system model allows us to derive the
response time distribution of an entire computer system under study.
Since all major factors (such as various system overhead times and idle times)
which may decrease a system's computational capacity available for users' useful
work are explicitly considered in the analyses using the above models, the
performance predicted by these analyses Is very realistic. A comparison of the
performance of an actual system, the Multics system of M.I.T., and the corre-
sponding performance predicted by these analyses confirms the accuracy of
performance prediction by these models. Then, these analyses are applied to
the optimization of computer systems and to the selection of the best perform-
ing system for a given budget. The framework of performance evaluation using
these hierarchically organized analytical models guides human intuition in
understanding the actual performance problems and provides us with reliable
answers to basic performance questions on system throughput and response time.

DD ^,1473
i-N OIOJ-014-6600

(PAGE I)

/tl UNCLASSIFIED
Security Classification

V

UNCLASSIFIED
S«cufit> CUitlfici'ion

KC< laOMOt

Computer System Models

Performance Evaluation

Time-Shired Computer Systems

Operating System

System Response Time

System Throughput

Program Behavior

Virtual Memory

Mu11 iprogramming

Multiprocessing

Multics

Operations Research

DD .fr..1473 BACK,
(PAGE 2) It) UNCLASSIFIED

Security Classification

MAC TR-103

PERFORMANCE EVALUATION OF

MULTIPROGRAMMED TIME-SHARED COMPUTER SYSTEMS

Aklra Seklno

September 1972

This research was supported by the Advanced Research
Projects Agency of the Department of Defense under
ARPA Oraer No. 2095, and was monitored by ONR under
Contract No. N0Ö014-70-A-0362-0006

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSE1 "S 02139

2J

PERFORMANCE EVALUATION OF
MULTIPROGRAMMED TIME-SHARED COMPUTER SYSTEMS

by

AKIRA SEKINO

Submitted to the Department of Electrical Engineering
on August 28, 1972, in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

ABSTRACT

This thesis presents a comprehensive set of hierarchically
organized modular analytical models developed for tne performance
evaluation of roultiprogrammed virtual-memory time-shared computer
systems using demand paging. The hierarchy of models contains a user
behavior model, a secondary memory model, a program behavior model a
processor model, and a total system model. This thesis is particularly
concerned with the last three models. The program behavior model
developed in this thesis allows us to estimate the frequency of paging
expected on a given processing system. The processor model allows us to
evaluate the throughput of a given multi-processor multi-memory
processing system under multiprogramming. Finally, the totaJ system
model allow* us to derive the response time distribution of an entire
computer system under study.

Since all major factors (such as various system overhead times and
idle times) which may decrease a system's computational capacity
available for users' useful work are explicitly considered in the
analyses using the above models, the performance predicted by these
analyses is very tealistic. A comparison of the performance of an
actual system, the Multics system of M.I.T., and the corresponding
performance predicted by these analyses confirms the accuracy of
performance prediction by these models. Then, these analyses are
applied to the optimization of computer systems and to the selection of
the best performing system for a given budget. The framework of
performance evaluation using these nlcrarchically organized analytical
models guides human intuition in understanding the actual performance
problems and provides us with reliable answers to most of the basic
quantitative performance questions concerning throughput and response
time of actual modern large-scale time-shared computer systems.

THESIS SUPERVISOR: Fernando J. Corbato
TITLE- Professor of Electrical Engineering

'

ACKNOWLEDGEMENT

I would like tc express my appreciation to my thesis supervisor,

Professor Fernando J. Corbato, for the time and effort he spent

discussing this research with me, and in particular for his helpful

comments which greatly improved the presentation of this thesis.

1 am also indebted to my readers. Professors J. H. Saltzer and

R. C. Larson, for their constructive review and comments.

Th-.nks are also due to my colleagues, D. H. Hunt and L. L.

Scheffler, for their critical reading of earlier drafts of this thesis,

and to my friends, H. Matsumoto for her assistance in typing this thesis

and M. Watanabe for his assistance in drawing figures of this thesis.

TABLE OF CONTENTS

SECTION PAGE

ABSTRACT

ACKNOULEDGEMENT

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

2

3

4

8

11

CHAPTER 1 THE PERFORMANCE EVALUATION PROBLEMS

1.1. Motivation

1.2. Conputer Systems to be Studied

1.3. Nature of the Problem

1.4. Review of Analytical Computer Models

1.5. Approach to be Taken

1.6. Some Comments about the Models

1.7. Thesis Organization

12

12

15

21

24

30

37

41

CHAPTER 2 PROGRAM BEHAVIOR ANALYSIS 43

2.1. Introduction 43

2.2. First-order Markov Model Applied to the PRA Studies 50

2.2.1. Program Behavior Model and Paging Algorithms 50

2.2.2. Behavior of the PRA System 55

2.2.3. Evaluation of Paging Behavior of Markovian Programs 65

2.3. Zeroth-order Markov Model Applied to the Page Size Problem

7..3.1. Program Behavior Model for the Page Size Studies

2.3.2. Pagination, Page Size, and Missing-Page Probability

2.4. Random Behavior Model Applied to the Memory Size Problem

2.4.1. Ranuom Bihavior Model

2.4.2. Evaluation of Paging Behavior of Random Programs

2.4.3. Numerical Examples of Random Program Behavior

2.5. Macroscopic Paging ferformance Model for Multiprogramming

2.5.1. Model of Sharing among Eligible User Processes

2.5.2. Evaluation of mtbpf in Multiprogramming Environment

2.6. Summary

70

70

72

82

82

84

97

103

103

109

117

CHAPTER 3 THROUGHPUT ANALYSIS

3.1. Introduction

3.2. Preliminary Considerations

3.3. Single Processor System

3.3.1. Single Processor Multiprogramming Model

3.3.2. Multiprogramming with FCFS Scheduling

3.3.3. Multiprogramming vith Preemptive Priority Scheduling

3.4. Dual Processor System

3.4.1. Dual Processor Multiprogramming lodel

3.4.2. Multiprogramming vlth FCFS Scheduling

3.5. Seme Extensions

118

118

120

126

126

130

133

139

141

146

156

CHAPTER 4 RESPONSE TIME ANALYSIS

4.1. Introduction

4.2. Total System Model

4.3. Analysis of the Model Behavior

4.3.1. Derivation of Queue Length Distribution

4.3.2. Derivation of Effective Percentile Throughput

4.3.3. Derivation of Response Time Distribution

4.3.4. Relationship with an Infinite Population Model

4.4. Some Remarks on Modeling Errors

159

159

162

1'J9

169

173

176

188

191

CHAPTER 5 MODEL VALIDATION, PERFORMANCE PREDICTION AND OPTIMIZATION,

AND CONFIGURATION SELECTION

5.1. Introduction

5.2. Model Validation

5.2.1. Instrumentation and Multics Performance

5.2.2. Validation of Processor Model

5.2.3. Validation of Total System Model

5.3. Performance Prediction

5.3.1. Effect of System Parameters upon Throughput

5.3.2. Effect of Percentile Throughput upon Response Time

5.3.3. Effect of User Characteristics upon Response Time

5.4. Performsnce Optimization

5.4.1. Optimizatior)f Multiprogramming Algorithm

5.4.2. Optimization of Page Size

5.5. Configuration Selection

194

194

196

196

202

203

208

208

212

219

222

222

228

232

CHAPTER 6 CONCLUSIONS 235

APPENDIX A THROUGHPUT ANALYSIS PROGRAM 243

A.I. Source Program 246

A.n. A Sample Console Session 253

APPENDIX B RESPONSE TIME ANALYSIS PROGRAM 255

B.I. Source Program 257

B.n. A Sample Console Session 266

NOTATION 269

GLOSSARY 272

BIBLIOGRAPHY 275

BIOGRAPHICAL NOTE 280

LIST OF FIGURES

FIGURE PAGE

1-1 Multiprogrammed Virtual-Memory Time-Shared Computer

System Using Demand Paging 16

1-2 Multi-Processor Multi-Memory Processing System 17

1-3 Typical Multiprogramming Model 26

1-4 Hierarchical Organization of Modular Models 32

2-1 Allocation of Primary Memory Space A7

2-2 FSA Representation of PRA System 54

2-3 Distribution of p(b) 77

2-4 Effect of Pagination on Missing-Page Probability 78

2-5 Effect of Page Size on Missing-Page Probability 80

2-6 State Transition Diagram of the Random Behavior Model 87-88

2-7 Some Examples of p(n) 91

2-8 Mean Headway between Page Faults 93
;

2-9 Growth of the'Number of Primary Memory Pages and the

Number of Page Faults 93

2-10 Simpler Derivation of the Average Execution Time of a

Random Program 95

2-11 Effect of Endiig-Page Weight upon mhbpf 98

2-12 Effect of Primary Memory Size upon mhbpf 99

2-13 Effect of Primary Memory Size on Total Program Execution

Time 101

2-14 Overlapping of Non-Resident Program Minnory Spaces

2-15 Behavior of Various Components of mtbpf

2-16 Effect of Primary Memory Size and Degree of Sharing upon

mtbpf

106

113

115

3-1 Locations of Eligible Processes

3-2 State Transition Diagram of the FCFS Single Processor

Multiprogramming Model

3-3 (q ; m , n) Configuration

3-4 Behavior of an Eligible Process (Y = l)

3-5 State Transition Diagram of the FCFS Dual Processor

Multiprogramming Model

3-6 Percentile Throughput ae a Function of the Degree of

Multiprogramming

128

132

140

145

148

158

4-1 Sample Behavior of a Typical Computer System

4-2 Tradeoff of Execution Speed and Percentile Throughput

4-3 Scherr's Model for Uniprogramned Non-Paging Time-Shared

Computer Systems

4-4 Stare Transition Diagram of the Behavior of the Total

System Model

4-5 Iterative Estimation of Effective Percentile Throughput

163

165

168

171

175

5-1 A Typical Multics Processing System Configuration

5-2 Effect of Percentile Throughput upon Average Response

Time

197

213

10

5-3 Average, 10, and 90 Parcantll« Response Times 215

5-4 Probablllcy Densities of Response Times 217

5-5 Probability Distribution Functions of Response Tls>*s 218

5-6 Effect of User's Think Tine upon Average Response Time 220

5-7 Effect of Execution Tüte of User's Job upon Average

Response Time 221

5-8 Configuration Selection Process 233

/'

LIST OF TABLES

TABLE
PAGE

1-1 Some Difficult Perfonuance Questions 14

20

67

1-2 Major System Parameters

2-1 Comparison of PRA Performances

2-2 Effect of Multiprogramning and Sharing upon mtbpf 116

3-1 Does Each Processor Time Depend on the Following Factors? 122

3-2 State Table of the FCFS Single Processor Multiprograiming

Model l32

3-j Processor Time Breakdown for the PP Scheduling Model 138

3-4 State Table of the FCFS Dual Processor Multlpvograirmlng

Model
147

200

5-1 Typical Performance of the Multlcs Syst« un^er a Full

Load

5-2 Validation of tne Processor Model 204

5-T Validation of the Total System Model 207

211
5-4 Alternative Approaches to Improve System Throughput

5-5 Predicted Effective Percentlle Throughput 215

5-6 Optimization of Percentlle Throughput of a Dual Processor

224 Configuration

5-7 Optimization of Percentlle Throughput of a Single Processor

227 Configuration

^

CHAPTER 1

THE PERFORMANCE EVALUATION PROBLEM

1.1. Motivation

Almost ten years have passed since the appearance of the first

general-purpose time-sharing computer system marked by the CTSS system

(09J. This system is still in operation at M.I.T. although it is being

replaced by later time-sharing computer systems because of its limi-

tations on supporting sophisticated users. Many other systems Lave

been developed in the effort to correct the deficiencies of earlier

systems. Notably, the Multics sysr-m [010,012], the successor of CTSS,

and ehe IBM 360 model 67 system (A3,LI) incorporated many elaborate

ideas into their design to efficiently provide sophisticated users with

their own virtual computers. These large-scMe systems have stimulated

the development of a number of smaller systems such as GE 235, RCA

Spectra mode1 46, CDC 3300, DEC PDP-10. and XDS 940 and Sigma 7.

As pointed out by Rosen [R2]. especially large-scale time-sharing

w

13

systems (the Mutlics system and the 360/67 system) have fallen far

short of the performance anticipated in the initial design sta^e. The

elaborate ideas incorporated into these systems, such as paging, segmen-

tation, multiprogramming, multi-processing, and memory hierarchy,

combine to create an enormously complex system and therefore it was

hard to estimate how efficient such an ambitious sy^irem would be.

Moreover, it was difficult to estimate the impact of :he behavior of

sophisticated user programs in this environment upon the system. In

fact, it is not easy even now to predict the performance (e.g.,through-

put, responre time, etc) of such complex time-shared computer systems;

it is generally believed that the most accurate prediction of the

performance of a system in question is obtained by extrapolating the

observed performance of "similar" existing systems. But *» little

investigation often reveals that each system is very different in hard-

ware, software, and user characteristics from others. Therefore, othei

existing systems do not directly provide us with a reliable performance

projection of a system, although an examination of performance differ-

ences of similar systems may be very interesting. Some examples of

difficult questions on the performance of these modern large-scale

time-shared computer systems are listed for reference in Table 1-1.

It is obvious that we need some sort of comprehensive theory of

performance evaluation that is capable of answering these quantitative

performance questions concerning hardware, software, and user character-

istics of these computer systems.

14

Table 1-1 Some Difficult Performance Questions

• What is the best configuration to provide time-sharing s rvice for

200 sophisticated users at a place such as M.I.T.?

• What is the maximum number of users that can be supported by a certain

system of a given configuration, without discouraging them with ex-

cessively slow responses?

• What are the future procurement plans to improve the throughput of a

certain system if that system must evolve? Should we purchase another

processor, another unit of primary memory, or a faster secondary

memory device?

• How sensitive is the system performance to the changing user charac-

teristics?

• Does sharing affect the cost/performance of a given system very much?

• How much does multiprogramming improve the performance of a certain

system?

• How can we keep the system performing optimally by tuning system

parameters when a certain system overhead is halved?

• What is the optimum page size for a proposed system? How sensitive

is the performance to the page size?

-<-_

15

1.2. Computer Systems to be Studied

This thesis will be concerned with performance evaluation of these

complex systems, i.e., multiprogrammed vircual-memory time-shared

computer systems using demand paging. Before beginning a diacussion of

the performance evaluation problems, a brief description of such comput-

er systems to be studied is given in this section, in order to avoid

ambiguities associated with the conplex structure of these systems.

A typical system is schematically depicted in Figure 1-1. The

entire system is composed of a processing system and a finite population

of interactive users at their terminals. Each interactive user of the

computer system thinks for a while and then requests a computation

(hereafter called a ^ob) to be performed by the processing system, by

typing a command line at his terminal. The job thus requested is re-

ceived and first ^acad in the memory queue (^ by the processing system.

The processing system is assumed to have more than one processor,

and a two-level virtual-memory consisting of multi-unit primary memory

(usually, core) as the first level and large secondary memory as the

second, as shown in Figure 1-2. This multi-processor multi-memory

processing system is assumed to have a two-dimensional address trans-

lation mechanism using both segmentation and ju^ina (D2]. When this

processing system finds some space in primary memory that can be allo-

cated to a new user job. one of the jobs in (^is moved, under the

First-Come First-Served (FCFS) discipline, to the processor queue ^

The jobs in 0 are scheduled one by one, (usually) under the FCFS

discipline, for a processor's service when one of the processors becomes

available, and then each job is execute.! (in the runninB state of

16

>.
00
<u
Q

00
c

>-
oo
o
u
a.

3
X

^ n
i i

(0 1 M
0

1 in 00 ■
0) c XI
9)
u c

0

o i
M H 1

T5
1
w

c 1 OJ
f—t

>, D.
Irf E

O c
E u
« M
£ •H

«0
>. 3
h
(0 01

T3
n a C

o o
u

Oi

<u V
3 >> CO If
0)

eg
'

3 1
cr £ I

u 1 in
o ■ 1 .-4
(0

CO
(0
c

00
c (0 1

<u Pu 1 •r4 •ft
o
o 1 B c
M 01 •H

Pu t H

2

£
i

- —

1
J

1

1

O^
CO

v «
3 o
0) •l-l

3 >.
cy ■a

CD

u £ 4J

0 1
E 3
<u cr i <u

M , f

at
c

•D
C

E

M
e

M
11

13
H >-
co

CO
I

a>
E

u
§
0)
X
i

i—i
c«
3

4-1
»1

•H
>
T3
"J

CO
U
0£
o

3

01
h
3
oo

•H

17

ET
(0 >. e

1 >-
■

o d) Fi i X w
C/J

><
h
Q
g
0) <-)
S u >. •H
H c
i« 3
E
i-i
u
tu

in
u
o
Ul
co
<u
u
o
1-1
p-

E
4-1

tn

c
•H
U]
0.
0)
u
o
C

I

o
co
co
0)
o
o E
I

^

4)

3
t>0

18

Figure 1-1) by the proces-or until it encounters a part (page), of its

program, that is missing in primary memory (a missing page fault is

said to have occurred). Control of the processor is transferred from

the user job to a supervisor module, named the page fault handler, which

then requests the missing page to be brought from secondary memory for

that user job, under a demand paging strategy. At this point, the

processor becomes available for another job in Q . On the other hand
P

the page-faulted user job enters the page-wait state, waiting for the

requested page. When it is eventually transferred from secondary memory

to primary memory, the user job reenters the processor queue Q (or the
P

page-ready state), becoming ready for another service by a processor.

Because there usually exist several jobs competing for service by

processors, each job is executed in an interleaved fashion, cycling

through the above three states many times. When the job is eventually

completed, the result is returned, as a system response, to the terminal

user who requested this job, and he then starts thinking about which

job to request next.

A series of jobs being requested by a user is generally called a

process. It is assumed that a user can request a job only after he

receives the system's response to his preceeding job request. If s

user's job is located within the section of Figure 1-1 surrounded by a

broken line, his process is raid to be eligible because it is eligible

for a processor's service; otherwise it is said to be ineligible.

The number of eligible processes existing at any instant should be

determined by considering, at least, their demand for primary memory

available to eligible user processes, tn order to avoid thrashing.

ia^Ma

19

I.e., excessive competition for primary memory space leading to a less

than optimum use of system resources. The computer system to be con-

sidered is actually assumed to have a simple (static) mechanism to

avoid thrashing, called multiprogramming of degree q. which allows a

maximum of q (a constant) processes to be simultaneously eligible.

Sunming up, the computer system to be studied is characterized by

the parameters shown in Table 1-2. This table lists only major system

parameters which are believed to be important in performance evaluation.

The precise definition of these system parameters will be given as they

are introduced in the thesis.

20

Table 1-2 Major System Parameters

System Hardware:

number of processors

size of primary memory

number of primary memory units

size of secondary memory*

speed of processors and primary memory

speed of secondary memory

channel organization and capacity*

memory cycle interference

System Software:

scheduling algorithm*

multiprogramming algorithm (degree of multiprogramming)

page replacement algorithm

page size

paging overhead

miscellaneous overheads

data-base lockout

Users and Their Programs:

number of interactive users

».ypes of interactive users*

user's think time

execution time required by each user internction (job)

program size

reference pattern of programs

decree of sharing among user processes

* Comments will be given in Section 1.6,

21

1.3. Nature of the Problem

As the complexity of time-shared omputer systems grew, the perfo-in-

ance evaluation ->f these costly systems became vital. Therefore, many

performance evaluation techniques have been developed. Lucas [L4]

recently classified thess techniques, according to their purposes of

performance evaluation, into the following three categories.

(A) System selection techniques

(B) Performance projection techniques

(C) Performance monitoring techniques

The first category of techniques is intended to select a particu-

lar system from various systems available from many manufacturers when

system performance is a major criterion to make a purchase order. Lucas

suggests that synthetic programs (a comprehensive set of benchmark

programs, so to speak) are most appropriate in this category. The

second category of techniques are intended to estimate the performance

of a system that does not yet exist or only partially exists. Within

this category, Lucas claims that simulation is most powerful because of

its relative flexibility in modeling complex systems. The last category

of techniques is intended to collect data on the actual performance of

an existing system. These data are used to identify the operating

condition of the system so as to forecast the impact of changes in the

system, possibly with the help of the techniques of the second category.

Monitoring uses both hardware and software methods.

According to this classification, the performance evaluation

techniques to be presented in this thesis belong to the second category

 , _.__

22

and are especially concerned with the following ^hree general performance

problems of modern large-scale time shared computer systems.

(1) performance prediction for a given configuration

(2) performance optimization for given (hardware) configuration

(3) configuration selection for a given budget

Performance prediction means a functional expression of system

performance (e.g., throughput, response time, etc.) in terms of various

system parameters concerning hardware, software, and user characteristics

of the system; a performance prediction technique estimates the perform-

ance of a given (hardware-software-user) configuration. Performance

optimization deals with the problem of how to improve the performance

of a given system without changing its hardware: the system performance

is optimized with respect to certain adjustable parau.wters of the

operating stem such as the degree of multiprogramming, the page size,

and various resource allocation algorithms, without changing the

hardware cost. Lastly, configuration selection is the problem of

deriving the optimum system configuration which attains the best

performance, constrained by a given purchase budget; this involves

an optimization o" hardware configuration as well as that of the operat-

ing system.

The configuration selection problem is simpler than the system selection

problem because we need not be concerned with various differences of

different systems in machine structure such as word length, width of

data transfer paths, machine instruction repertory, etc.

23

Unfortunately, simulation approaches, recommended for this category

of fiobl^ms by Lucas, require enormous amount of development effort

and operating cost. This becomes especially apparent if a simulation

model includes many micro and macro operations in evaluating the per-

formance of various possible configurations of a certain system. More-

over, simulation approaches tend to lack the capability of yielding a

general insight into the cause-and-effeet relationship of performance

problems. To compensate these weaknesses of simulation approaches, this

thesis explores the possibility of using analytical models in tackling

the above three general problems of computer system performance.

24

I.A. Review)f Analytical Computer Models

Because analytical models will be developed In this thesis to

project the performance of large-scale time-shared com^ot^r systems,

this section briefly reviews and examines the analytical computer models

developed as performance projection techniques until now.

These models are stochastic in nature and their analysis usually

.nvolves queuing theory. Because It la generally difficult to include

nany mutually related system parameters (see Table 1-2) in a mathemati-

cally tractable model, most of these analytical models are concerned

with subsystem behaviors. They may be classified Into:

(a) processor scheduling models

(b) secondary me-uory models

(c) multiprogransnlng models

(d) program behavior models

Processor scheduling models usually include a single processor, an

infinite (sometimes, finite) user population, and a scheduling algorithm

(e.g.. First-Come First-Served, Round-Robin, Processor Sharing, Feed-

Back), and aim to study the effect of a scheduling parameter (e.g.,

quantum length) upon response time of a us«r Job (conditioned upon its

execution time). These models are most abundant among the above four

classes and were extensively surveyed by McKinney [M2I. For example,

general analyses by RR, PS, ant FB algorithms were presented respective-

ly by Chang [C2], Baskett [B2j, and Schräge |S5|.

Secondary memory models are intended to estimate the (average) time

to fetch a block of information from a secondary memory device (e.g..

25

disk. drum, bulk core, etc.) u.ed a. part of virtual memory. Fewer

paper, have h.en publl.hed In thi. area. Coffman'. work |C5.C61 I.,

however, worthy of a .pecial note. He derived the average time required

to fetch a page of Information Iron, a sector drum under demand paging,

using ai embedded Markov chain technique (CS).

Multlprograanlng model, are relatively newer cla.. of model, and

„•re analyted by Smith (S71. Wallace and M...on [«], ü.gen (Bb). Moore

IH31, Rice [111, «t al- TT,e8e modeU co'nblne proces.or .chedullng

model, (with a FCFS dl.clpllne) and .econdary memory model., making a

.Ignlflcant .teP toward a ".ystem model". THey Include .everal (a fixed

number) job. under multiProgra«nlng. each of which i. .ervlced by a

proce.eor and then by one of the .econdary memory device. In a cyclic

faahlon, a. .chematlcally .hown In Figure 1-3. Service time of each

..rv.r(proce..or, i/o devices) li u.ually a..umed to be exponentially

dl.trlbuted and branchings are .pecified by constant (uncondltonal)

probabllltle. (e.g.. P, of Figure 1-3). Thl. cla.. of models aim. to

.v.luate the effect, upon the server utilizations, of the hardware con-

figuration a. well a. of the number of job. under multiprogramming.

I.e.. the degree of multiprogramming. Smith and Wallace et al formulated

their problem, a. a Markov proce.. and numerically obtained the perfom-

ance of the.e model, u.lng a powerful queue analy.i. program called RQA

[Mil. On the other hand. Buzen, Moore. Rice, and other, explicitly

analyzed the perfonnance of their multiprogramming model, u.lng Gordon

and Newell's method 102) or Jack.on'. decompo.ltIon thorem concerning

queuing network. IC7.J1,. The effect of non-exponential .ervlce time.

26

processor

q circulating Jobs

secondary memory

I/O device 1 — *•

I/O device 2

Figure 1-3 Typical Multiprogramming Model

27

was examined by Gaver [Gl]. The problem of optimizing the degree of

multiprogramming under a simple assumption was studied by Wallace and

Mason. The effect of system overhead was carefully analyzed by Lewis

and Schedler [L2].

Finally, there exists another class of analytical models, i.e..

program behavior models. These models are intended to study the paging

behavior of programs being executed by a processor within u limited

amount of primary memory. There seem to be at least two different

popular approaches in modeling program behavior, Markovian program

models [Kl] and Dennlng's working-set program models [Dl, 03). The

paging behavior of programs is modeled by a Markov chain in the first

approach, while the paging behavior is measured by the number of dis-

tinct pages referenced during a given time interval in the second

approach. Both of these attempt to derive a success function, i.e.,

the probability that a reference is made to a page already in primary

memory expressed as a function of the primary memory size, for a certain

page replacement algorithm. However, no practically useful results have

been obtained about the dynamic paging behavior of programs.

Although many analytical models have been developed and analyzed,

there still exists a general consensus especially among system desien.«

that these models are not good enough to answer the performance questions

that they face (see Table 1-1). This is probably due not only the

system designers' insufficient efforts to try to use studi.-d models in

understanding the behavior of an actual system, but also to certain

Important detects of these analytical models; most of t'.e analytical

models developed until now have serious weaknesses In at least some of

28

the following aspects.

(1) System behavior versus subsystem behavior; almost all analyti-

cal models attempt to represent only a subsystem1, and this

is the very '.ason why many system analysts abandon an analyti-

cal approach and choose a costly simulation approach. Perhaps,

we need another model which is capable of combining all sub-

sysuem models meaningfully so as to estimate the performance

of the entire system.

(2) Paging activities and multiprogramming capability; this aspect

of the modern large-scale time-shared co/nputer system is not

considered in the processor scheduling models, but is usually

considered in the multiprogramming models. Therefore, we

should favor the latter models. The program behavior models

developed until now arc not good enough to consider a multi-

programmed situation.

(3) Space-domain considerations; the size of primary memory is not

considered In the multiprogramming models. Moreover, these

models consider only a single-processor system, in spite of

the increasing inteisst in multi-processor multi-memory systems.

(4) Overhead considerations; almost all models do not consider

the overhead of system programs, although a major implication

1
There are some analytical models of an entire system [S4,Tl). However,

these models are apparently too simple to reasonably represent multi-

programmed time-shared computer systems using demand paging.

29

of modern time-shared computer systems with paged memory is

considered to be system overheid.

(5) Good choice of performance measure; the improvement of utili-

zation factors of system resources is not an ultimate goal.

Better performance measures are the system throughput, namely,

the amount of user computation accomplished by the entire

system per unit time, and the system response time experienced

by interactive terminal users.

We will attempt to correct these defects of the ex sting analytical

models in this fhesis research sr that we can realistically attack per-

formance prediction problems, performence optimization problems, and

configuration selection problems.

30

_1.5. Approach to be Taken

Haling „f n,ultIprogr,»ed vlrtua-.en.ory t!„».„„„„„ con,puter

•T.«-. uSl„e de„an, pagin8 mu8t iaclade naiiy ^^^ famttnB ^ ^^

I. Tab.e 1-1. It u a = tu.uy thls „uuipUcity ., lnteractlng 8v8tem

P««.»» that „.. prevented analytIcal computer ^^ ^ being i

»..onabU rep„aentati„n „ theSe systms a8 thelr „^^ . 8tralght_

forw.rd indusion of .„ ln,p<,rt6nt 8ystem ^^^ ^ ^ ^^^^^

«Ode! would «,. aUo. «tb-ttd tractabUit), i„ ltl analy.u. „,.„.

"tlngly, 1, ha. bean observei al8o in 8imulatlon apI>i.oache8 ^ a

Simulation .„del „hlch ..t-»t. to accouut for both "nacro-oparatlou."

(e.g., user., thluk tlM, B„d .■™l„„.operatlo„8.. (o.g., 8tate tranaltlon»

of .Uglble proceaaea, dynamic program behavior) can be prohltItlvely

expenalve to run [B^l. On the contrary, the reaulta obtained fro. the

oueral^Ufled analytical „odela cannot convince the ayate« de.lgnera ,f

their practical value as a desien aiH Th»^^ a aesign aid. Therefore, we are in • dilemma of

mathematical tractability and multiplicity of intsr*,^ F xtityor interacting system parameters.

However, a solution to this dilemma may be found by noting that all

•y.tem parameters do not necessarily interact and that the system

behavior involves vario. . activities of different time scales. For

example, user behavior (e.g., think time, jobs to be requested, etc.)

tends to be logically independent of dynamic program behavior unless

the user is encouraged to be particulary careful about the program

behavior. We find that the activities of the entire system may be

categorized into "macro-activities" (e.g.. .emory queuing of user jobs,

terminal user behavior-activities on the order of seconds), "micro- '

activities" (.., , state transit,ons of eligible processeg...millisecond

— .

31

activities). Thus, we can obtain several semi-independent activities

of the entire system which interact only through their prime inter-

relationships. When all the semi-independent activities are connected

according to their prime inter-relationships, we generally obtain hier-

archically organized system activities. One such result is shown in

Figure 1-4. The approach to be taken in analyzing the behavior of the

entire computer system in this thesis is to develop a separate model

for each semi-independent activity of this hierarchy in such a way that

any model has, as its input parameters, at least one system parameter

produced (as an output) by each immediate lower-level model, if such

models exist, as well as its own set of system parameters. A system

parameter produced as an output of a model can be regarded as a perform-

ance index of that model. If such a performance index is not the output

of the top-level model, it is called an intermediate performance measure.

Now it is clear that the entire computer system is represenced by a set

of hierarchically organized modular models.

We will usr a particular hierarchy of modular models depicted by

Figure 1-4. It includes the following five modular models.

(1) program behavior model(8)

(2) secondary memory model

(3) user behavior model

(4) processor model

(5) total systei-i model

The program behavior model(s), to be developed for the behavior of

 ,

32

response time

number of processors
number of users

number of processors
number of primary memory units
system overhead
degree of multiprogramming

user's think tine
job's execution time

program characteristics
primary memory size
page replacement algorithm
page size
degree of sharing
degree of multiprogranmlng
etc.

device characteristics
channel organization
input/out put traffic
etc.

Figure 1-4» Hierarchical Organization of Modular Models

3:

programs being executed on the processing system, aim(s) to derive the

mean length of program execution before a page fault (that is, the mean

time between page faults denoted as "mtbpf") as a function of various

system parameters such as program characteristics, the primary memory

size, the page replacement algorithm being used, the page size, the

degree of sharing among eligible processes, the degree of multipro-

gramming, etc. The secondary memory model aims to derive the mean

length of time required to fetch a page of information from the second-

ary memory system (that is, the mean page fetch time denoted as "mpft")

as a function of memory device characteristics, the channel v -«^anization.

the input/output traffic intensity, etc. Because the performance of the

secondary memory system (disk, drum, bulk core, or a combination of

these) can be reasonably predicted by a simple queuing model like an

M/G/l queue [C8], or by the fairly complex drum model of Coffman [C5,

C6], the thesis will not develop a new mudel in this area. The user

behavior model exists for a user's function to think and request a

computation called a user job. In this thesis, we simply dssume that

think time, which a user needs to decide and request a job, and exe-

cution time required by such a ^»er job are both exponentially distrib-

uted because they are known to be roughly exponential [S4]; we will not

be concerned with any internal mechanism of these interactive users

(e.g., under which condition a user's think time tends to be exponential).

Immediately above the program behavior model and the secondary

memory model, there exists the processor model. This is a multipro-

gramming model improved in such a way that the performance of a multi-

34

programming mechanism implemented on a multi-processor multi-memory

processing system (see Section 1.2.) can be measured in percentile

throughput, i.e., the percentage of the system's computational capacity

utilized for users' useful work. This means that the objective of the

processor model is to derive the percenti.e throughput of the system as

a function of the number of processors and primary memory units, their

operating speed, the speed of secondary memory, various overheads of the

operating system, the degree of multiprogramming, user process behavior,

multi-processor interferences (such as memory cycle interference and

data-base lockout), and so on. Particularly as for the user process

behavior and the .peed of secondary memory, it will be assumed that the

time between page faults and the page fetch time are both exponentially

distributed with m.ans predicted by the analyses of the program behavior

model and the secondary memory model respectively. Becaus. percentile

throughput turns out to be linearly proportional to the throughput of

the processing system, i.e., the average number of user jobs completed

per unit time (this relation will be shown later in Chapter 3), the der.

ivation of percentile throughput using the processor model is called a

throughput analysis. The throughput analysis using the above multi-

programming model aims to overcome the defects of the existing multi-

programming models concerning the space-domain considerations, the

overhead considerations, and the performance measure.

At the top level, there exists the total system model. This model

combines all other models in the hierarchy, and aims to derive a distri-

bution of the system's response time as an explicit function of the

35

number of processors, the number of interactive users, the percentile

throughput predicted by the processor model, and the user characteris-

tics such a, user think time and execution time of a user job both of

which are assume«! to be exponentially distributed. This means that it

will be possible to derive the percentile response time, i.e., the time

limit which guarantees that a certain proportion (e.g., 90 percent) of

response times is shorter than that limit, as a function of various

system parameters describing the configuration of the computer system.

Therefore, the result to be presented is much more informative than the

result of the average response time, because the fluctuations of re-

sponse times around the average can be accurately predicted. It seems

that this is the first derivation of the distribution of response time

of a multiprogrammed time-shared computer system using demand paging.

It should be pointed out that the response time and the system

throughput predicted in this approach reflect not only processor hard-

ware characteristics, system software (operating system) characteristics,

and user behavior characteristics, but also secondary memory character-

istics and program behavior characteristics. This was made possible by

-he use of a set of hierarchically organized modular models each of

which involves only a few system parameters, while the entire computer

system includes more than twenty important system parameters. This

thesis will consider all the system parameters of Table 1-2 except those

starred, in evaluating the performance of multiprogrammed virtual-memory

time-shared computer systems using demand paging, explained in Section

1.2.

36

Aside from the fact that this hierarchical organization permits

mathematical tractability and the existence of such a multiplicity of

interacting system parameters, it has the following equally important

aspects.

(1) This organization allows human understanding of the very

complicated behavior of modern complex computer systems and

therefore provides us with an insight into the cause-and-

effect relationships existing in such systems.

(2) If the behavior of a subsystem becomes known through the

experimental or monitoring studies of a partially existing

system, the behavior of the corresponding model can be re-

placed by the actual behavior of that subsystem. Therefore,

available information abo.it subsystems can be usefully util-

ized in predicting the performance of the entire system with

an increased accuracy.

(3) Change in subsystem configuration (e.g., secondary memory

configuration), expected especially on evolving computer

systems, does not require an overall change of the entire

analysis; only the parameters of that subsystem need to be

modified.

37

1.6. Some Comnents about the Models

Comments may be in order as to why some of the system parameters

of Table 1-2 are out of consideration In this thesis. In studying the

paging activities under multiprogramming, this thesis «s&umes a two-

level virtual memory consisting of primary and secondary memories. In

this context, the key parameter of secondary memory is not its sire but

its speed, and therefore it is simply assumtd in the thesis that the

secondary memory system is large enough to store all the system and

user programs; we do not explicitly consider the sire of secondary

memory. As for the channel considerations. It will be assumed for

simplicity of the analysis that the processing system Is not channel-

limited. Therefore, the dynamic queuing delay associated with channel

service will noc be expllcl:ly conslderea, but some fixed service time

by channel may be Included as part of the page ;»tch '•ime of secondary

memory.

Scheduling algorithms of the system described In Section 1.2 are

all FCFS and any alternative algorithm will not be considered. But, as

Is well known, actual systems usually employ more sophisticated algo-

rithms. For example, the Multlcs system uses a refined variation of FB

scheduling algorithm (01) with a pre-paglng and post-purglr.g technique

(rather than strict demand paging) for Jobs in the memory queue. It

should be reallred that what we want to accomplish in this thesis Is to

develop a performance evaluation methodology which Is capable of de-

riving percentlle throughput (or system throughput) and response time

of a "reasonably basic" system like the one described as a typical

system In Section 1.2. as a function of various Important system parame-

ters. Then, it becomes clear that Inclusion of «n alcernative sched-

uling algorithm like a RR or FB algorithm (for Jobs In the memory

queue) In the proposed framework of the performance evaluation theory

Is not very attractive, because It is known In queuing theory [B2,C7]

that (overheadless) scheduling algorithms cannot affect percentle

throughput or average response time if the execution time of user Jobs

Is only probablllaclcally known and follows an exponential distribution,

as assumed In Section 1.2 and as observed on the Multlcs system, for

example: scheduling algorithms however van affect the variance of

response time because of their intended favoritism for certain (e.g.,

short) jobs at the expense of others (C?). Percent lie throughput and

average response time only deteriorate if the process (Job) twitching

overhead associated with quantum run-out of the alternative scheduling

algorithm Is not negligible. (Note that the Introduction of pre-paglng

and post-purging aainly almj to reduce this overhead.) Therefore, in

making a hard effort to include as many "Important" system parameters

(those which affect percentile throughput c* average response time)

lUnder a RR algorithm, for example, a fixed amount of time, called a

quantum, in given to each process becoming eligible. The process Is

allowed to remain eligible until it uses up this amount of processor

time. If this process needs more processor time to complete Its Job,

It becomes inelijible and Joins the end of the memory queue. This state

transition path Is not Included in Figure l-l, because we assume a FCFS

algorithm. I.e., the RR algorithm with a Infinitely large quantum.

as possible in the fraaevurk of this approach, . Iternative scheduling

algorithms will not be considered; such a refinement may be applied

after the computer system undet study is optimised with respect to

percentile throughput.

For Job« in the processor queue, the Hultics system uses a pre-

emptive scheduling algorithm (to accomplish a biased primary memory

allocation |B3|) with a dynamic eligibility control mechanism based on

a working-set estimate of user processes (01 | (rather than the static

eligibility control mechanism of Section 1.2). This elaboration does

improve percentile throughput, but we consider it as a refinement of

the FCFS scheduling (i.e., an unbiased primary memory allocation) with

the static eligibility control mechanism. Therefore, these details will

not be considered in this thesis.

Finally, it should be mentioned that many random variables are

assumed to be exponentially distributed not simply because of mathemati-

cal amenability but, more importantly, because of experimental evidence.

The user's think time measured by Scherr (54) Is roughly exponential,

and the execution time of user Jobs being monitored by a built-in meter

of the Multlcs system Is almost exponential. Page fetch time tends to

be close to an exponential distribution especially If secondary memory

consists of a cumbi mn of a frequently-used high-speed device (e.g.,

drum) and a less-frequently-used low-speed device (e.g., disk). The

distribution of time between page faults has not been measured on the

Multlcs system, but it is very probable that this distribution appears

like an exponential distribution. These observations of MIT systems.

of course, do not necessarily "«ssen the Importance of extending the

40

exponential assumptions to more general ones. In fact, the execution

time of uaar Jobt of some other systems is reported to be more like a

hyper-exponential distribution or a Weibull distribution, possessing a

large coefficient of variation 1A2).

41

1.7. Thesis Organization

This thesis cakes a bottom-up approach in describing the models

developed for hierarchically organized subsystems. Each chapter of this

thesis presents results obtained for a different subsystem.

Chapter 2 is devoted to the studies of dynamic program behavior,

and presents several program behavior models evaluating mtbpf as a lunc-

tion of various system parameters. Chapter 3 is dedicated to th';

studies of the processing system, and presents a result of the through-

put analysis using the processor model, i.e., a ii.odel of the multi-

programming mechanism implemented on the multi-processor multi-memory

processing system. Chapter A is devoted to the studies of the response

time characteristics of the entire computer system, and presents the

result of the response rime analysis using the total system model

formulated as a queuing process. Thus, Chapter 2 through Chapter 4

collectively consider the performance prediction problems, i.e., the

problems of expressing computer system performance as a function of

various system parameters de '■ribing its configuration

Chapter 5 presents many numerical results obtained by these

analytical models as well as the actual performance data collected from

the Multics system of M.I.T. The validity of these models is first

examined and then the effect of various system parameters upon the over-

all system performance (i.e., the system throughput and the system

response time) is numerically evaluated using these models. The problem

of optimizing a given computer system with respect to certain operating

system parameters (the degree of multiprogramming and the page size) and

the problem of deriving the best performance system for a given budget

42

are realistically considered. This chapter tackles all the performance

evaluation problems mentioned in Table 1-1 numerically.

The last chapter, i.e.. Chapter 6, summarizes the problems solved

in this thesis and those that still remain to be solved. Throughout the

thesis, a stochastic modeling approach is used. This thesis therefore

represent an application of some known techniques (or their slight

variations) in Markov process theory and queuing theory to performance

evaluation problems of computer systems. The enphasis, however, is on

the identification of the actual performance problems and the develop-

ment of a framework of performance evaluation methodology.

A reader who is intere ted simply in finding out the application of

the framework of performance evaluation developed in this thesis to the

performance problems of actual computer systems is suggested to read

Chapter S immediately after this chapter. If a reader is interested in

understanding modeling techniques for computer systems, he should read

Chapter 2 through Chapter 4 carefully. Each of these three chapters can

be read individually without much trouble. If he decides to read in

this way, the notation and glossary included at the end of this thesis

may be helpful. Chapter 6 is useful to those vho are searching for

research topics in the area of computer system performance evaluation.

Hi

CHAPTER 2

PROGRAM BEHAVIOR ANALYSIS

2.1. Introduction

Virtual memory computer sy.r.Lems have enabled the memory system to

appear to their users (programmers) as If It is virtually infinite in

size. Therefore, the nasty problem of carefully overlaying programs

within a relatively limited primary memory space has been removed from

the user's programming considerations. Virtual memory is assumed,

throughout this thesis, to be implemented by "segmentation" and "paging"

[02], on a two-level physical memory system consisting of primary memory

and secondary memory.

These computer systems have a mechanism for translating program-

generatel addresses into the correct physical memory addresses (02).

The set ef program-generated addresses is called the virtual address

space (virtual memory) and the set of physical memory addressee the

physical address space (physical memory). Segmentation organizes the

44

Virtual address space into blocks, called segments, cf arbitrary size.

By allocating each program to its own segment, programs can have their

own "linear" virtual address space within themselves. This means that

a processor accesses each word of a program residing at a certain loca-

tion of the virtual address space, using a two-component address (two-

dimensional address) consisting of a segment name (segment number) and

a word name (word number). Paging further organizes each segment into

blocks, called pages, of a fixed size (usually 1,024 or 512 words).

This means that a word name is represented by a page number and an

offset. Each segment usually has several pages of information (proce-

dure and data).

Correspondingly, the physical memory is organized into equal-size

blocks of locations, known as page-framos. which serve as sites of

residence for pages of segments. Because a processor can execute only

that portion of a program (segment) which resides within primary memory

which is relatively limited in size, the operating system must exercise

a special algorithm, called a paging algorithm, to keep only the pages

being needed for a progress of program execution in primary memory at

all times, by transferring pages of the program back and forth between

primary and secondary memories. The paging algorithm decides when to

fetch a page from secondary memory and which page to be removed from

primary memory when one of the pages in there must be replaced by the

page to be fetched. If a page is fetched only on demand, i.e., only

after that page is found "missing" in primary memory in the course of

program execution (a page fault is said to have occurred), then the

45

fetch rule is said to be demand paging; otherwise, it is said to be pre-

paging. The rule used to select a page for removal is called a page

replacement algorithm. These two functions (page replacement and fetch-

ing) of the paging algoriJ-hm aro carried out by a supervisor program,

named a page fault handler, which is a part of the "resident" supervisor.

In fact, the processing of a page fault requires some other things

such as the bookeeping of the page table, the initiation of a channel

program, the handling of a paging interrupt, etc. [Cll]. These super-

visory operations required to process a page fault are collectively

called the paging overhead. From the above explanation, it should be

clear that each burst of continuous program execution, i.e., the running

state of each elegible process (see Section 1.2.), consists of (at least)

user program execution and paging overhead execution. The length of

thi: continuous program execution in the running state is called a time

between page faults (abbreviated as tbpf) and the length of user program

execution within tbpf is called a headway between page faults (abbrevi-

ated as hbpf). The means of these variables are respectively called the

mean time between page faults (mtbpf) and the mean headway between page

faults (mhbpf).

As explained in Section 1.2., the computer system to be studied is

under multiprogramming of degree q. This means that q eligible (user)

processes compete for service by a processor and for the use of page-

frames of primary memory. Because segmentation enables any segment to

b» shared (a single copy of a segment in virtual memory can be simulta-

neously used by different users), some of these page-frames are physi-

cally shared by these eligible processes. Therefore, the efficiency of

._

46

primary memory is heightened by segmentation. However, some part of the

primary memory space is not available to no.i-resident oro.r^ (programs

whcih are not always resident in primary memory) invoked by eligible

processes, because resident Supervisor nro.rams stay at certain physical

memory addresses at all times. This situation is schematically depicted

in Figure 2-1. The total primary memory space with M page-frames is

divided into two areas, i.e., the area with mr pa^e-frames for resident

supervisor programs and the area with mn page-frames for non-resident

programs (user profirams and non-resident supervisor programs). Eligible

user processes execute not only non-resident programs but also resident

(supervisor) programs, and therefore they can potentially utilize any

part of the primary memory space.

Dynamic paging behavior of user processes in this environment is

known to have a great impact on the system's overall performance [K2]

and therefore it has been extensively studied by many researchers. It

is believed that at least the following system parameters are significant

in determining the performance of programs, which is usually measured by

the mhbpf of user processes,

(1) program characteristics (size, reference pattern)

(2) primary memory size (m , m , M)
r' n

(3) paging algorithm

(4) page size

(5) degree of sharing among user processes

(6) degree of multiprogramming (q)

Belady [B3], Brawn and Gustavson [B5], Coffman and Varian [C4], Hatfield

47

m.

resident

supervisor

V

non-resident programs

invoked by q user processes

M = m + m
r n

Figure 2-1 Allocution of Primary Memory Space

mmmm

48

and Gerald [Hl], Tsao, Coraeau, and Margolin [T2], and Baer and Sager

[Bl], among others, have experimentally investigated the effect of

various syscem parameters upon the mhbpf (or its equivalent) of user

processes. On the other hand. Denning [Dl,D3], Mattson, Gecsei, Slutz

and Traiger [Ml], Chang [Cl], Aho, Panning and Ullman [Al], King [Kl],

Woolf [W3], and others have carried out analytical studies of the dynamic

behavior of user processes.

Research performed by Denning, Woolf, and King represents three

different analytical (probabilistic) approaches to the problem consider-

ed in this chapter, and therefore some comments about their results are

in order. Deiining defined the working set, W(t,T), of a user process at

time t to be the set of pages that the process has referenced during the

time interval (t-T,t), and he has demonstrated the usefulness of his

model using the working set as an aid for guiding one's intuition in

understanding program behavior and possibly as a has .B for further

program behavior analysis. Wool' considered prograa behavior to be an

execution of a series of loops and successfully evaluated the effects of

program characteristic^, primary memory size, and page sise. However,

this elaborate model has not been validated against actual program

behavior. On the other hand, King formulated program behavior as a

Markov process in evaluating the effect of paging algorithms as well as

those of program characteristics and primary memory size. These analyti-

cal studies do explain various behaviors of programs experimentally

observed, but none of these has proved to serve as a practical design

aid to predict a program's quantitative performance (e.g., mhbpf) as a

function of the system parameters mentioned above. In particular, the

49

effects of sharing and multiprogramming have never been fully studied.

In the following sections of this chapter, four program behavior

models mostly using a Markov process approach will be developed to study

the effects of those six system parameters mentioned above upon the

mhbpf (or its equivalent) of a program (a user process,). All of these

four models consider at least the effect of program characteristics and

of primary memory size, but each of them concentrates on the evaluation

of the effect of a particular system parameter. The models to be

presented in Sections 2.2, 2.3, and 2.4 are especially concerned with

the effect of the paging algorithm in use, the effect of the primary

memory size, and the effect of the page size, respectively. The model

to be presented in Section 2.5 considers a multiprogramming environment

and is particularly concerned with the effect of the decree of multi-

programming and that of sharing among user processes under multi-

programming.

Readers who are only peripherally interested in the analysis of

program behavior may skip Sections 2.2, 2.3, and 2.4,and directly mov«

to Section 2.5, which describes a macroscopic paging performance model

for multiprogramming. The result of this section will be extensively

used in the succeeding chapters. Sections 2.2. 2.3, and 2.4 present

detailed analyses of dynamic program behavior and can be read

individually without difficulty. However, a reader can grasp the basic

approach used in this chapter more thoroughlv by reading ther. in the

order of these sections.

50

2.2. Flrsr-order Markov Model Applied to the PRA Studies

In Section 2.2., we present a program behavior model developed to

study the effect of £age replacement algorithms (abbreviated as PRAs)

as well as those of program characteristics and primary memory size.

upon the mhbpf of a user process operating on a multiprogrammed virtual

memory time-shared computer system using demand paging . To simplify

the analysis, we assume that the primary memory space (m) is partition-
n

ed into q equal-size areas, one for each eligible process, and that the

PRA under study Is exercised within the area reserved for each user

process (this kind of PRA is called a local PRA as opposed to a global

PRA [D2]). Then, the analyst of program behavior under multiprogranming

reduces to that of program benavior under uniprogramming.

2.2.1. Program Behavior Model and Pa^inp. Algori'hms

Consider a program consisting of a set ?={?.,?»,...,p } of n pages.

As the program is executed by a processor, it generates a sequence r r
1 2

...rt... of references to pages, where if rt=Pi we say that the progrfm

references page pi at the t-th reference (or at time t). We assume

that such a sequence, known as a page reference string, is generated by

a probabilistic law associated with the program. In particular, if r

depends only on r
t.k+1 J-• • .r,. » then the probabilistic behavior of the

The result described in Section 2.2. can be regarded as an extension

of King's work [Kl], although this was independently derived. He used

a zeroth-order Markov model for exactly the same purpose.

51

program forms a k-th order Markov chain. This Markov chain actually

can be reduced to a first-order Markov chain of n states by considering

a direct product (P) of the set P, I.«., a state augmentation rechenlque

(H2). Therefore, we will consider, without loss of genernllty. only

programs that are modeled by a fli^t-order Markov chain.

The probabilistic behavior of these programs Is characterized by a

transition matrix P of the following form IH2]. where an element of the

matrix p11 represents a condltonal probability of a reference to a

page p. at time t+1, given that a page pi was referenced at time t.

tX+1 pi

p

'll P12 •'• Pln

'21 P22 •'• P2n

Pnl Pn2 nn

(1.2 I)

We assume that the elements of this matrix do not depend on time t, I.«.,

the program behavior Is stationary . Hereafter, we call this type of

program a (stationary first-order) Markovlan program.

Suppose that primary memory consists of a set M=(f .f^ ^J of

m page-frimcs where m<:n. Although the most general paging algorithm

may be the one which fetches (replaces) an arbitrary number of pages at

an arbitrary Instant of time, we will consider the algorithms which

lLewls and Yue [L3] have pointed out that program behavior represented

In (LRU stack) distance reference strings rather than page reference

strings tends to be more stationary.

52

fetch (replace) only one page at an Instant of a page fault, i.e..

demand paging alRorithms. In this case, the studies of paging algorithms

reduce to those of PRAs,

With this much of background, we can formally describe a PRA for M

and P. as foil)ws.

Definition A page replacement algorithm for M amd P Is a five-tuple

system 1= (S,I,0,f,g) where

(1) S is a finite set of system states and is represented by a direct

product of finite sets (S .S S) of PRA control states, roemoiy amp *

states, and program states, i.e.,

B ■ S s S x I . • m p'

where

(a) S is a finite set of PRA control states, S ■ {• }, which

is defined separately for each PRA later,

(b) Sn Is a finite set if mcnory states, indicating a set of pages

resident in primary memory, such that

S - {■ | * C P, I • I s ■} ,

(c) S Is a finite set of program states,

V{,p|gPcp*|8P|-=1}-

such that If s = {p^ then page p of the program Is being

referenced.

This definition Is similar to that of Aho et al (Al) or King [JO.].

53

(2) I Is a finite input alphabet which contains all the elements of

page reference strings, i.e.,

I - {pj Ip^ P } = P.

(3) 0 is a finite output alphabet

0 - {0.11

whose meaning is defined below,

(4) f is a next state function of the mapping

S x I - S such that

., ,, t t t . , t+1 t+1 t+1,
lf f<8.' V8p;Pi)= (na '\ '»p >

then p.€ s and s = [p. t. r i m p i r £ *»

(5) g is an output function of the mapping

S x I - 0 such that

► ,. .^ (0 lf P^ •t , t t t . ri m
g(8a' 9m- 8p;pi)= \

[I otherwise (i.e., page fault).

(6) Initial states of S , S . and S are empty sets (;). i.e., am p

0 0 0
8 = S =8 s CD.
amp

It should be noted th*«: a PRA for M and P is a (deterministic)

transition-assigned finite-state automaton (FSA) with states S x S x S . — — — amp

inputs P, and outputs 0, as shown in Figure 2-2. The triple, (s .s .s).
amp

The superscript t means "at time t". For example, s means that the

PRA control state at time t is s .

54

rlr2 01 ... 0

0={0,1}

f : S x I - S

g : S x I - 0

Figure 2-2 FSA Representation of PRA System

55

represents a state of this FSA and is called a confiRuration of the

PRA system Z [Al,Kll. As the system I receives a page reference string

r r ...r , the configuration of this system changes like

„ «f n<o anrf I's The output sequence, generating an output sequence of 0 s and i s. ine w

which indicates when a page fault takes place, depends only on a page

reference string, the PRA in use, and primary memory size (m). This

i.plies that once a PRA is chosen for a computer system under study

with a fixed amount (m) of primary memory, the probabilistic property of

the occurence of "1" in the output sequence, i.e., the occurrence of

page faults, is completely determined by the probabilistic property of

the corresponding input sequence, i.e., the probabilistic law given by

the P matrix.

2.2.2. Behavior of the PRA System

We will proceed to determine the PRA control states left unspecifi-

ed in the previous section and enumerate the number of distinct states

that the PRA system I can assume for each of various PRAs. Then, noting

that the probability associated with the transition from a certain

current state to another is completely determined by that pair of state

and the P matrix, we will see that the probabilistic behavior of the

system Z can be viewed as a Markov chain defined over these states.

First of all, note that for any demand paging PRA

s

56

r(s;'V{pi}) if p^
f(Sa'VSp;Pi) =' (s;'Sm+fPi}'fpi]> if p^v M^

l(8I'Sm+{pi}-{pj}'{pi}) lf Pl*V 1^1^ Pj^m
(2.2.2)

where p is the page replaced by page p, and s' is a state which is
J la

generally different from s . Observing that the PRA is exercised only

When ^m'11111 and that the Pro8ran> is assumed to operate indefinitely

within primary memory of m page-frames, we will neglect all the system

states for which |s |<m ; we will now enumerate the number (N) of
m s

distinct states that the system E can assume, for each of the following

several PRAs, assuming that |s | =m.

Random PRA The page to be replaced is chosen randomly from the

pages currently contained in primary memory. Therefore, the PRA itself

need not remember any kind of priorities associated with resident pages

i.e., the PRA is "memoryless", and N is determined by the number of
s

different combinations of only s and s . That is to say
p m "

N (Random) =m(n) (2.2.3)

LRU PRA This well-known algorithm chooses the least-recently-

used page (i.e., the page with the longest time since the last refer-

ence) and removes it from primary memory. This algorithm must maintain

an ordered list (called a LRU stack [Ml]) of resident pages to remember

how recently each resident page was referenced in the past. Noting

that there exist m! different ordered lists and that each ordered list

 ,

57

automatically determines s , N is obtained as
p s

N (LRU) = m!(n) (2.2.4)
s m

FIFO PRA This easy-to-implement algorithm chooses the page which

stayed in primary memory for the longest time for removal. This

algorithm must maintain an ordered list of resident pages to remember

in which order each resident page was fetched into primary memory.

Noting that there exist m! different ordered lists and that s cannot

be implied by each of those lists in any way, Ng is obtained as

N (FIFO) = m!m(n) (2.2.5)
s m

LET PRA This algorithm removes the page with the gongest expected

_time (LET) until next reference [M1,A1,D2]. Because the expected time

until next reference to each page can be analytically calculated only

from s and the P matrix (as will be shown below), the PRA itself is
P

memoryless. Therefore, N is obtained as

N (LET) = m(n) (2.2.6)
s m

Another similar PRA removes the page with the longest expected

time since the last reference. Because this PRA uses information

about the backward distance (into the past) from the faulted page to

each resident page, we call this PRA the backward LET PRA (B-LET) .

N is given by Eq.(2.2.6). We call the former LET PRA the forward
s

LET PRA (F-LET) . It should be noted that the LRU PRA, an approximation

to the B-LET PRA, is often used on an actual computer system in the

hope that the B-LET PRA is fairly close to the F-LET PRA for typical

(actual) programs.

58

Now we are ready to consider a Markov chain model of the behavicr

of the system E for each of these PRAs. For this purpose, we borrow

an example of a Markovian program which was used by Chang [Cl] in

proving that the F-LET PRA does not necessarily minimize the number of

P'ge faults for a general Markovian program. Chang's example1 is re-

produced in the form of a P matrix.

tV+1 Pl P2 P3

(2.2.7)

We assume that our primary memory has only two page-frames, i.e., M =

{fvf2}.

Random PRA Let [Q, j } denote a state of E where s = [p. p } and
m i' j

sp= [Pi} . Then, there exist the following six states in S, for this

PRA.

S = ([(Ö, 2 } , [1 , g| } , f 0, 3 } , { 2 , @] , { C», 3 } , { 1 , ©} }

Noting the P matrix of Eq. (2.2.7) and the random nature of this PRA,

we obtain the transition matrix 5 specifying the probabilities of tran-

sitions among these states.

This example happens to have zero diagonal elements in the P matrix,

but probably most actual programs tend to have fairly large diagonal

elements corresponding to locality of memory references.

. ,. . .

59

{(P,2} {!£)} f@,3} {2,©} {(5,3} [im

fi =

©,2} I 0

(1,(2)} '

{^3}

(2,0)}

dJ} \ o

c

0

0

0

£
2
1
2

0

0

0

1

£
2
J.
2

1-c
2

0 1-c
2

1-d
2

0
1-d

2

1-d
d
2

0

0 0 0

0 0 1-c

0 0 0

1

LRU PRA Let f (P, j } similarly denote a state of E where s = m

{PJ} P. 3 and s = { p. 3 ; page p is least recently used. Then, there

exist the same six states in S as above, and the (£ matrix is obtained

as

[0,2] {1,(23 ftf),3} {2,(2)3 {&33 {ij}

m23
/0

c 0 0 0 1-c

{i,@3 h 0 0 1-d 0 0

{gui d 0 0 1-d 0 0

s. (2^3 0 0 1 0 0 0

{(£133 1: c 0 0 0 1-c

[I,® 0 1 0 0 0

FIFO PTIA Let {(f). A3 enote a state of T, where s ■

{ p, 3, and page p. stayed in primary memory for the longest time.

Then, there exist the following twelve states:

60

[4 2 M l^i.} , C1,(J] , { 1 ^} , {^, 3 } , { 2 , .3,}

iA,G] ,(2,A), {iö, 3i,{41,i}, {l,ä}, fl,ffi})

The state transitions are specified by the following ^ matrix.

t42] {(fAl Cd«) (lyÄ} As] ®M ÄÖ) {2A^3} {(Tij ci6^}
1^2} /o 0 c 0 0 0 1-c 0 0 0 0

mi 0 0 0 c 0 0 0 0 0 0 1-c

fil®) d 0 0 0 0 0 1-d 0 0 0 0

(lA) 0 d 0 0 0 0 0 0 0 0 1-d

1^3} 0 0 0 0 0 0 1-d 0 0 d 0

fftAl 0 d 0 0 0 0 0 1-d 0 0 0

14®} 0 0 0 0 1 0 0 0 0 0 0

(2A} i 0 0 0 0 0 1 0 0 0 0 0

143} 0 0 0 0 0 c 0 0 0 0 1-c

{®/i} 0 0 c 0 0 0 0 0 0 0 0

l^®}
\0

0 0 0 0 1 0 0 0 0 0

dA \o 0 1 0 0 0 0 0 0 0 0

0\
0

0

0 I

0

0

0

0

0

1-c

0

0

LET PRA First of all, we must derive the expected time, E(t),

to elapse until the first reference to a page p, starting from a page

p. (1 ^i, j £n) in order to establish the decision rule of this PRA.

Let P. be the matrix obtained from P by setting p., -6 , (Kronecker's -j _ ^ e r.^ jk

delta) for all k, i.e., making page p. an artificial trapping state

[H2], as shown below.

61

^J

Pl P2
Pl/Pll Pl2

P21 P22

0 0

Pnl Pn2 *'• Pnj

P I

2n

. 0
(2.2.8)

nn/

Observing that the j-th column of (P) gives the probabilities that

page p. is referenced at the k-th reference starting from each page [112]^

we see that the probabilities that page p is referenced for the first

time at the k-th reference starting from each page is given by the j-th

column of the difference matrix, (P,) - (P,

the artificial trapping state.) Therefore,

k k-1
column of the difference matrix, (P,) - (P.). (Note that page p is

—-J J

00

EkUp.^P,)1^1} =
k=l -r -j

P2

• pj •
E(tlj)

E(t)

E(t .)

(2.2.9)

where (P.) s (0)

62

Repeating a simlilar calculation for each j (Uj^n), we can obtain the

matrix E(t) which contains E(tij) as its i-j element.

E(t) =

1 E(t12)

E(t21) 1

lE(tnl)E(tn2)

E(tln)

E(t2n)

(2.2.10)

We call E(t) the distance matrix and EU^) the distance from a page pi

to a page py It should be noted that this matrix is not necessarily

symmetric.

Now we can describe the LET PRAs more clearly using the concept of

distances. Suppose that a page pi was found to be missing in primary

memory when \sj~m in the course of program execution. Then,

f(VVVV = ^V^iHPjUp.})

where | E(t.) = max E(t) if F-LET is used,

Pke8m

E(t) = max E(t) if B-LET is used,
rk m

* sa = Sa = ^ (memoryless algorithm).

(2.2.11)

This means that the F-LET and the B-LET PRAs coincide if the ordering of

row elements of the distance matrix, with respect to the magnitude of

their values, is the same as that of the corresponding column elements

(or more strongly, if the distance matrix is symmetric). For this

reason, the LRU PRA presumably performs well if the distance matrix of

real programs tends to be symmetric.

''■--'w-a"--'-^--'-' ...

63

For the P matrix of Eq. (2.2.7), with c.0.1 and d-0.5, we obtain

the following distance matrix.

E(t) =

1 1.9 1.16^

3 1 1.58 ''

4 1 1

Therelore, as is clear from Eq. (2.2.11), the decision rule of the

F-LET PRA can be stated as follows:

s
m

r page to be removed m

{PpP23 P3 Pi fP2'P3}

{p2,P3} Pi P2 CP1,P3}

[?v?3] P2 Pi {p2'P3}

Similarly, the decision rule of the B-LET PRA can be stated as follows:

t+1
m g*- r page to be removed

m t

Ep^Pj) P3 P2 {PPP3}

{p2,P3} Pi P3 ivvV2)

(PpPj) P2 ?! {P2'P3}

Now, let [$, j } denote a state of Z where s^ {p., P^ and spE. [p^.

Then, for each of LET PRAs, we have the same set cf six states a»

obtained for the Random PRA. ihe transition matrix for the F-LET PRA

is given by

64

{©,2} {1,@} {^3} [2,33 f&3} [1,^]
85.2) 10

d

c 0 1-c 0 0

{i,®} 0 0 1-d c 0
©,3} 0 0 0 1-d d 0

[2,<2>] 0 0 1 0 0 0

^,3} 0 0 c 0 0 1-c 0=0.1

us 1 o 0 1 0 0 o d=:0.5

The corresponding matrix for thi B-LET PRA is given by

[0,2] {1,0} {0,3} [2,0)} [(9,3} [1,0]

1°. {(5,2}

[1,0}
{0,3}

{2,0}
{(D,3}

fi,®

d

d

0

0

0

c

0

0

0

0

0

0

0

0

1

c

1

0

0

1-d

0

0

0

0

0

0

0

0

0

1-c

1-d

0

0

1-c

0 i

c=0.1

d=.0.5

Thus, we have obtained the transition matrix 2 which characterizes

the Markovian behavior of the PRA system E for each PRA.

65

2.2.3. Evaluation of Paging Behavior üf Markovtan Programs

Now that we have enumerated the number of system states, each of

which satisfies the Markov Ian property, and have shown how the state

transitions can be determined when a PRA is chosen for a given program,

the next natural step Is to evaluate the program behavior in this

environment. Therefore, this section is concerned with how often a

page fault occurs as a given Markov Ian program Is executed in a given

amount of primary memory under the dynamic memory managemant of a given

paging algorithm.

We will use the missing-page probability p defined below to measure

the frequency of page faults.

expected number of page faults observed during the period [0,t]
p . Iln, _

(2.2.12)

It should be noted that the missing-page probability Is the inverse of

mhbpf, as is clear from this definition.

As a Markovian program is executed under a given PRA the PRA

system I operates over a set of N Markovian system states making two

kinds of state transitions, i.e., those each accompanied by a page

lault and those not accompanied by a page fault. We call them page-

fault transitions and non-page-fault transitions respectively. Then,

the missing-page probability can be expressed as

66

P - Um Prob{occurr.nce of a P«ge-i«ult tr.n.itlonat time tj

5*/ /•.»/ 8Um 0f the a11 conditi«>n«l probabllltl,
*w i r(k) 0f Pa8e-fault transitions from state k
K=i L \ given that the system is now in state k

where K(k) is the steady-state probability of the k-th state of the

system Z . The value of n(k) (k-I,2,...,Ng) can be determined by solv-

ing the balance equations [H2I

- = -Sfi (2.2.14)

where n is a row vector whose elements are n(k) (k-l,2,...,N). Thus,

we have presented a method to evaluate the missing-page probability

(or mhbpf) of a given Markovian program operating in a given amount of

primary memory under the dynamic memory management of a given demand

paging algorithm.

Next, we will give some numerical results using the example of the

previous section. Let us first evaluate the performance of the three

page program, operating in the two page-frame primary memory under the

LRU PRA, that we discussed in Section 2.2.2. Solving Eq. (2.2.14) with

the 5 matrix (c = 0.1, d = 0.5) obtained before, we get

£ = (*@'2),na,Q),n<&,3),n(2>0),n(S>,3),n(l,0))
= (0.204, 0.020, 0.388, 0.204, 0 , 0.184)

Then, we can calculate the missing-page probability, using Eq. (2.2.13)

as follows:

 ^ -.

67

p = 0.204 (l-c)+0.020 (1-d) +0. 388 p+0.184

» 0.184+0.010-»-0.194 + 0.184

- 0.572

The missing-page probabilities were similarly evaluated for other

PRAs considered in the previous sections. The result is summarized in

Table 2-1. It should be pointed out that the result of Table 2-1

depends heavily on a particular choice of the P matrix. However, it is

reasonable to expect that the B-LET and the LRU PRAs, which use the

"backward" Information about the program behavior, generally do not

perform well for a Markovian program whose P matrix is rather asymmet-

ric; in fact, their performance shown in Table 2-1 Is significantly

worse than that of others. Similarly, the FIFO PRA does not perform

well. On the other hand, the F-LET PRA, which uses the "forward"

Information about the program behavior, outperformed other PRAs. It

Is however known that the F-LET PRA does not necessarily minimize the

missing-page probability of a first-order Markovian program. Chang [Cl]

actually gave a better PRA, for this Markovian program, which has the

same decision rule as that of the F-LET PRA described In Section 2.2.2.

except that If a page fault occurs when s = { P-,p03 then page p, is
m Z 3 3

removed. For this PRA. the missing-page probability is found to be

0.388 by the above evaluation method.

Thus, It has been shown that the paging behavior of any Markovian

program can be analytically evaluated as a function of (1) program

characteristics, (2) the paging algorithm, and (3) primary memory size.

However, the method which has been described In Section 2.2. has a

68

Table 2-1 Comparison of PRA Performances

PRA Miss ing-Page Probability

Random 0.475

LRU 0.572

FIFO 0.565

F-LET 0.408

B-LET 0.673

69

serious drawback concerning the amount of required computation. To

examine this problem, let us assume that the computer system uses a

memoryless PRA (such as the Random or the LET PRA). The number of

system states was found to be

N = m () =
s " m ' (m-1) ! (n-m)!

and we must solve the simultaneous equations in N variables, given by
s

Eq. (2.2.14), in evaluating the missing-page probability. Although

sparsity of non-zero elements in a 2 matrix m^.y help, solving such simul-

taneous equations in, say, three hundred variables requires much compu-

tation time. For example, if we have n=10 and m=8, then we get N =360.

If we have a pair of more reasonable numbers, like n=50 and m=40, for a

typical situation of the Multics system, then N becomes a tremendously
s

large number. Therefore, if we want to study the behavior of more

realistic programs, it seems that we must somehow simplify our model.

King [Kl] used a simplified model, for which p..= ß. for all i in

the P matrix, in specifying a program's reference pattern. This means

that the page to be referenced at time t+1 no longer depends on the

page being referenced at time t. Therefore, the program behavior is

completely memoryless and the third component of a state of the PRA

system £ , s , can be reduced to an empty set, i.e., 8=9. This type

of program behavior model is called a zeroth-order Markovian program

(or a multinomial process model). The number of system states N> de-

creases in this simplified model by a factor of m, but the evaluation

of this method still requires a large amount of computation.

70

2.3. Zeroth-order Markov Model Applied to the Page Size Problem

In Section 2.3, we will consider the effect of another system

parameter, i.e., the page size, upon the paging behavio:: of programs.

Because the page size must be changed to examine its effect, we must be

concerned with a program's reference pattern not only over its pages but

within each of those pages. We must be concerned also with how a compiler

forms a program's pages by combining smaller pieces of that program, i.e.,

the pagination process of the compiler. The effect of page size upon a

program's paging behavior has been experimentally studied by Hatfield et

al [HI], Informatics, Inc. [II], and Baer et al [Bl]. This aspect of

the page size problem , i.e., this aspect of the problem of determining

the optimum page size, has rarely been studied in an analytical approach.

So far as known to the author of this thesis, only Woolf [W3] has examined

the effect of page size upon the frequency of paging analytically. The

approach to be taken in this section is completely different from that of

Woolf because of the way in which programs are modeled. Other aspects

of the page size problem will be discussed later in Chapter 5.

2.3.1. Program Behavior Model for the Page Size Studies

A program usually possesses a fundamental property known as locality

of information references [Dl-3], i.e., a program's tendency to reference

a subspace of its address space during any interval of its execution.

We call a set of pages in such a favored subspace of its address space

71

a set of favored pa^es or a favored se': in this section. Control of a

program usually stays in a favored set for some time and then enters

another favored set. Therefore, we can evaluate the program behavior

by analyzing the behavior of each successive favored set using a Markov

model described in Section 2.2.

If we take a close look at each page of a favored set, we find

that there are portions which are referenced frequently (e.g., loops)

and protions which are not (e.g., program code following a loop, rarely

used data, etc.) We roughly call each of these logically identifiable

portions a program block. Thus, each page of a favored set is composed

of (several) program blocks combined together by a compiler.

Now we are concerned with a program's reference pattern on the

level of program blocks. In view of the computational drawback of

first-order Markovian programs discussed in Section 2.2.3, we use a

zeroth-order Markovian program model for the behavior of a favored set.

Let b (j=l,2,...) and p(b) be the j-th program block and its probabil-

ity of reference in the favored set respectively. For the sake of sim-

plicity, we assume that all the program blocks have the same size, s(b),

and that only one page size, s(p), is used on the computer system.

Furthermore, we assume that the block size s(b) divides the page size

s(p). Denoting the i-th page of the favored set and its probability

Roughly speaking, a "favored set" corresponds to a program's module

being referenced by a process. This loosely defined concept should be

distinguished from the more strictly defined "working set" of Denning

[D1,D3].

72

of reference by p.(1=1,2,.,.,n) and p(p.) respectively, we have

p(pj = 2 P(b.) (2.3.1)
b. e p. •*

n n
Ep(p) a E I p(b) = 1 (2.3.2)

i=l i=lb.ep. J

J i

Because these program blocks generally have different probabilities

of reference, the program pages of the favored set have different

probabilities of reference. One of the very interesting problems in

this area of study is that of determing a set of program blocks to be

contained in each page of the favored set so as to minimize the expected

number of page faults during its execution. This problem is called the

pagination problem. The paging behavior of program is known to depend

heavily on the quality of pagination [HI].

2.3.2. Pagination. Page Size, and Missing-Page Probability

We proceed to evaluate the performance of programs under paging in

terms of missing-page probability, for different paginations and differ-

ent page sizes. It is known that the F-LET PRA is optimum for zeroth-

order Markovian programs in the sense tnat it minimizes the expected

number of page faults [Al]. Therefore, we assume that this PRA is in

use for the computer system under study.

We now consider three different paginations for the program (the

favored se > described in Section 2.3.1, i.e., a zeroth-order Markovian

program. Without loss of generality, we can assume that b. and p. are

.

73

both numbered in the order of monotonically decreasing probability;

that is to say,

P(b1) a p(b2) ^ p(b3) & ... > p(bk) (2.3.3)

PC?!) ä P(P2) " P(P3) ^ ... ^ P(pn) (2.3.4)

Best Paginanion The best pagination must have the property that the

missing-page probability p is minimum for any size ta ((KmSn pages) of

primary memory available to the program. Noting that the F-LET PRA

retains m-1 most-frequently-used pages and the page which caused a page

fault for a zeroth-order Markovian program, we get

m

P ^ 1- 2 P(p.) (2.3.5)
1=1 1

Let r be the number of program blocks that can be contained in a page,

i.e., r=s(p)/s(b). Then, the best pagination is the one for which the

most-frequently-used page p contains the r most-frequently-used program

blocks b1,b2,...,b , the second most-fi^quently-used page p contains

the second r most-frequently-used program blocks b ,. b b
r+P r+2 ' 2T'

and so on. In other words,

P. = { b,. 1N .,. \>,. ,N ,„, ... , b. } Isisn (2.3.6) vi. ^ (i-Ur+l' (i-l)r+2' ' ir ^

It is easy to prove that this pagination has the property that the

missing-page probability is minimum for any m, under the F-LET PRA.

Furthermore, page references are best localized by this pagination.

Worst Pagination It seems that any one pagination generally cannot

guarantee that the missing-page probability given by Eq. (2.3.5) is

maximum for every size m of primary memory. To see this, assume that

74

there exists a worst pagination with page reference probabilities p*(p.)

(1=1,2,...^). Then, for an arbitrarily chosen pagination with page

reference probabilities pCp.) (i=l,2,...,n), the following inequalities

must be simultaneously satisfied;

?*(?!> * ?(?!> for m=l ^

P*(P1) + P*(p2) s p^) + p(p2) for „^2

£ P*(P1) s E p(p.)
1-1 L * i=l I

for m=k

n
S P*(pi) s E p(p)

i=l i i-1 1
for m=n /

(2.3.7)

where p*(pi) and pipj are both numbered in the non-increasing order, as

given by Eq. (2.3.4). The first inequality of Eq. (2.3.7) means that

the largest page reference probability is minimized by the worst pagina-

tion. There generally exists just one pagination which satisfies this

inequality, but tms pagination does not guarantee the rest of the in-

equalities of Eq. (2.3.7), in general. Therefore, we must give up

searching for the "universal" worst pagination that is independent of m.

Instead, we say that a given pagination is near-worst if the resulting

page reference pattern is reasonably close to a uniform distribution.

In fact, it can be shown that as r = s(p)/s(b) approaches infinity the

missing-page probabilicy of such a near-worst pagination for a given

size (m) of primary memory becomes

(2.3.8)

m
p -1 - Ep(p.) „s^.i.;

1=1 i n n

The following simple algorithm seems to be a practical one to derive a

«■

75

near-worst pagination.

Algorithm to derive a near-worst paRination Assume that the reference

probabilities of program blocks of a given program (a favored set) are

arranged in the non-increasing order and that we 'Aant to derive a near-

worst pagination for page size 2s(b). The derivation algorithm consists

of successive mergers of program blocks; merge the most-and the least-

frequently-used blocks (b.. and b), merge the second most-and the second

least-frequently-used blocks (b and b .), merge the third mosf- and

the third least-frequently-used blocks, and so on, in order to form the

pages which tend to have the same magnitude of reference probabilities.

If the number (nr) of the program blocks is not even, an appropriate

modification is necessary (e.g., adding a dummy block). If we want a

near-worst pagination for page size 4s(b) , then arrange the above

newly created pages of size 2 3(b) in the order of non-increasing proba-

bility and repeat the above pair-wise successive mergers.

Random Pagination The program blocks are randomly selected and merged

into pages. The missing-page probability of a random pagination is

bounded by those of the best and the worst paginations. Perhaps, a

random pagination is fairly close to a casual pagination found in most

actual user programs. The analytical evaluation of the missing-page

probability of this pagination for a given program is not as easy as it

seems, but the performance of this pagination could be easily evaluated

by a similation. (We will not consider this pagination any further in

this thesis.)

76

Next, we present an illustrative example of the program behavior

under paging, to show

• the effect of pagination (due to a compiler's code optimization,

loading order of program modules, programming style, etc.)

• the effect of page size

upon the missing-page probability (the inverse of mhbpf) as a function

of the size of available primary memory.

Example We must specify the reference pattern of a program to be

studied. Let us assume that s(b) is 256 words and that the distribution

of p(b) is given by Figure 2-3. Then, we can numerically evaluate the

lower and the upper bounds of the missing-page probability of an arbi-

trary pagination for a given page size, by examining the performance of

die best an-^ the worst paginations.

Let us consider the case of s(p)=512 ■ rds, first of all. Then, we

obtain, for the best pagination,

p(p1)=l/16+l/i6, p(p;))=l/16+l/16, p(p3)=l/32+l/32

. p(p30)=l/128+l/128

and for a near-worst pagination.

p(p1)=l/16+l/128, p(p2)=l/16+l/128. p(p)=l/i6+l/128

. p(p30)=l/128+l/128

Noting that memory management is under the demand paging F-LET PRA, we

obtain the result shown in Figure 2-4. It is seen that the region bounded

77

03

A

3

CM

vo

a.

J
^

rtS

c
o

•r-l
4J
3

XI
•i-l
u
u
to

•H
Q

i
CM

|
•■-I

>0Ü

^

^

78

1.0

.9

.8 •

.6

.5

.4

missing-page

probability

best pagination

s(p) = 512 words

near-worst

pagination

m

k words

size of available
primary memory

Figure 2-4 Effect of Pagination on Missing-Page Probability

79

by the two curves1, which represents the variation of program perform-

ance due to pagination, is rather narrow for this choice of page size,

i.e., s(p)=512 words. Similarly, the Sounding curves were derived for

each choice of page size (256, 512, 1024, and 2048 words) using the

algorithms described above, in order to examine the effect of page size

upon the missing-page probability p. This result is shown In Figure 2-5.

It is clear that the bounded region becomes wider, having a common lower

bound -urve, as the page size Increases. It should be noted that the

upper bound curve for s(p)=2048 words is very close to the straight

line given by Eq. (2.3.8). In summary, the following observations may

be made:

(1) If a given program is optimally paginated (like the best

pagination), a choice of page size does not affect the missing-

page probability (or mhbpf).

(2) The choice of smaller page size tends to attain the smaller

missing-page probability (or the longer mhbpf) if a given

program is casually paginated.

We assumed in the above analysis that program blocks are relocatable

within a program's address space. However, it is apparent that a

program will behave as poorly as the one with a near-worst pagination

^he bound given by a near-worst pagination is not exactly an upper

bound because it is not the worst possible pagination for each memory

size m, but it is believed to be fairly close to the tightest upper

bound. For this reason, it Is treated as if it is the exact upper bound

80

p missing-page
probability

8(^«2048 words

1024 words

512 words

near-worst

paginations

256 words

P-1-!?

best paginations

(256, 512, 1024, 2048 words)

•^ m
k words

size of available
prinary memory

Figure 2-5 Effect of Page Size on Missing-Page Probability

81

•ven if the program blocks are not relocatable, if that progran happens

to posses» such a bad loading order of machine instructions as the one

gen*rated by the near-worst pagination. Therefore, program behavior

like that seen in this section should be universally found on any virtual

memory computer system.

Finally, some conments may be in order about the drawbacks of the

model which has been used in Section 2.3. First of all. it should be

remembered that the model Is based on the stationary zeroth-order

Markov property of program behavior. This Is perhaps the least accurate

assumption of this model. Second, the model assumes a single program

block .1« which divide, the page size. In order to be more realistic,

we must consider the probability distribution of block ilM and page-

boundary crossover of program blocks. Third, we have noi derived the

exact performance of actual (casual) paginations. The lower bound of

the mis.lng-page probability given by the best pagination may be loose

If a non-optimal PRA (like the LRU PRA) Is In use. However. In spite of

that« drawbacks of this simplified model. It has successfully demonstrated

th* basic relationship between pagination, page size, and the steady-

state paging behavior of programs. While the smaller page size was

found to yield a longer mhbpf In the steady-state program behavior, it is

clear that the larger page size yields a longer mhbpf In Its transient-

state behavior (e.g.. when the primary memory is not yet filled with

pages). This aspect will be further considered In the next section and

later in Chapter 5 when the page size problem will ho discussed tron an

overall viewpoint.

b2

2.4. Random Behavior Model Applied to the Memory Size Problem

In Section 2.4., we will consider a simplified zeroth-order Markovian

program, called a random behavior model, to study primaily the effect of

primary memory size upon its paging behavior. We will consider both the

transient-state program behavior, i.e.. the initial stage of program

execution generating a number of page faults, and the steady-state

program behavior, i.e., the following stage of program execution where

the rate of page faults is smaller kecause available primary memory space

is fully utilized. It has been experimentally observed (B5,Hl,T2) that

paging behavior of programs Is more sensitive to the available primary

memory «lae-than to any other parameters (e.g., a page replacement algorithm),

while primary memory is usually the most expensive element of a computer

system. Therefore, an evaluation of program behavior within a limited

amount of primary memory Is very Important from a cost-performance view-

point. We will express the mhbpf of a random behavior model of programs,

as a function of program size, primary memory size, and a parameter

which determines the total length of program execution time. It will be

clearly seen how thrashing (I.e., excessive competition for primary memory

page-frames leading to a less than optimal use of system resources) starts

to occur as the primary memory size Is gradually reduced.

2.4.1. Random Behavior Model

We will again acr-ime partitioned primary memory under the management

of a demand-paging local page replacement algorithm, as In Sections 2.2

and 2.3. A general zeroth-order Markovian program, used in Section 2.3,

83

is further simplified by requiring that all pages (except a special

page) be equally probable in its page reference pattern.

This program behavior model is assumed to have, besides ordinary

pages, two special pages, i.e., a starting page which contains an ertry

point of the program and an ending page which contains an exit point of

the program; it is assumed that program execution begins from the start-

ing page p1 and ends iranediately upon entrance to the ending page pn

where n is the size of the program under study. Transfer of processor

control among n pages may occur only at the multiples of a unit time t0,

i.e., t=kt where k = 1,2,3, It is furthermore assumed that the

ending page can be referenced with a constant probability e at any stage

of program execution. Therefore, the page reference pattern of this

program behavior model, which we call ■ random behavior model or a random,

program hereaft.r, U characterized by the following transition matrix.

I l~e l'e

pl p2 •■ • Pn.lpn
1-e 1-e ..
n-1 n-1 n-1
1-e l-e
n-1 n-1 *

1-e
' n-i e

• •
• •
• •

• •
• •
• •

1-e 1-e
n-1 n-1 •

1-e
pn-ll n-1 n-1

pn \ 0 0

(2.4.1)

In other wnrds.

HU

M

In

nj

nn

I-e
y -n-i

P(Pn) » e

0

1

(2.4.2)

Thus, a random behavior model has three independent parameters, i.e.,

program size (n), the reference probability (e) of the ending page, and

the unit time (tg) of this discrete-time Markovian model. The program

being modeled references the starting page, then some number of pages at

random, and finally the ending page. The number of pages referenced

during the execution of this program is a random variable. This may be

interpreted in such a way that the number of pages to be referenced during

a program execution depends on the arguments given to that program, but

a random program represents nevertheless a very special class of programs.

The essense of this artificial program consists In its capability to

yield some insights into the memory size problem, i.e., the problem of

evaluating the effect of primary memory size upon the dynamic paging

behavior of programs. Because of the uniformness of its page reference

characteristics, the paging perforrsance of a random progiam does not

depend on a particular demand-paging page replacement algorithm in use.

2.4.2. Evaluation of PaginR Behavior of Random Programs

We will analytically evaluate the mhbpf of a random program

85

operating in a limited amount of primary memory under demand paging, as

an explicit function of the sire (m) of primary memory and the three

independent parameters (n,e,and t0) of a random program, in thii section.

First of all. we should briefly consider mhbpf because there seem

to exist at least two reasonabk definitions of mhbpf for our problem.

Suppose that we make K experiments to run a random program. Let T-(
T
tl)

and n (n) be the execution time of the random program and the number
P Pi

of page faults generated by this program, in the (l-th) experiment.

Then, the following two definitions of mhbpf seem to be reasonable:

K T . T

mhbpf, = I C-—)^ = E ("TT")
1 i-1 "pi "p

K (2.4.3)

.^ Tei E (T)
. . , i=l e^ mhbpf2 = -j = j-^y

i-l Pl

In deriving mhbpf, all experiments are equally weighted In the fonner

definition, while all page faults are equally weighted in the latter

definition. Because we usually use the latter definitior in calculating

mhbpf from on-line monitoring results of an actual computer system, we

use the latter definition of mhbpf in evaluating the paging performance

of a random program in this section.

Now we proceed to derive the mhbpf of a raadom program, characteriz-

ed by n, e. and tn, operating in primary memory of m page-frames. Let

S and S (1=0,1,2,...) respectively denote a state of the random program

where it is still running after causing exactly i page faults and a stare

8 b

of the random program where it has referenced the ending page .ifter

causing exactly i page faults. There exist nnly three possible state

transitions from S^ i.e., a transition to itself, a transition to S.

and a transiton to S.^. Now we want to derive the probabilities associ-

«ted with these three state transitions,i.e., p „ and -
i, i ' •'iji+l' pi,i+r

Because each page of the program is assumed to be equally probable in a

page reference string at any stage of the program execution, all that

matters is the number of pages which exist in primary memory. If we

assume that no page of the program was initially in primary memory, then

there must be min(i,m) pages in primary memory when the program is in

state S1. Therefore, noting Eq. (2.4.1) or Eq. (2.4.2), the probabil-

ities associated with these state transitions are found as follows:

Pi,i -"^i,-^

pi,i+l = (n-l-«ii»(l,»)>jf} (2.4.4)

pi,i+l
= e

Thus, the entire paging behavior of the random program is described by

the state transition diagram of Figure 2-6. It should be noted that the

behavior of this random program Is now formulated as a discrete-time

Markov process. It is seen that if the program fits into the available

memory space (nsm+1) the number of page faults to be generated is at

most n, but if the program does not fit Into the memory space (n>ni + I)

an infinite number of page faults can occur at least theoretically. A

comparison of Figure 2-6 (a) and Figure 2-6 (b) reveals that the Figure

2-6 (b) with n=m+l reduces to the Figure 2-6 (a). This means that it

87

+
E

VI

c

1
0

I
m

I
v

E
<5
ti
00
TO

c
c

to

I
(SI

_. _._._ ..

'«muujp

88

c

1

I
5

«1
o

I
a
c
o

u
H

cq

B

89

suffices to analyze only the latter case, i.e., n^m + l. because the

result of rhe former case (n^m+l) can be obtained simply by setting

n=m + l in .he analysis of the latter case (n^m+l). Therefore, we

assume hereafter that n^m + l,i.e., the program does not (necessarily)

fit into the prinary memory space.

Let p(n) be the probability that n (2Sn) page faults result
P

during the execution of this random program. This probability can be

obtained by multiplying all the probabilities given on the branches

leading to the state Sn of Figu.e 2-6 (b), with an extra consideration

on looping at each intermediate state [H21. If 2«np<m+l, we obtain

p<v ■ i-(7TT-)'[(-n^(l-e)),(Tjikir)]

!— n-1

•K^f(l-e))'(-17br)] K^^a-eW^np-JKLe)
l" n-1 n-1

^^Z [n+2e-3 1 l n+3e-4 ' n+^p-De-np

e "P (n-i)^l-e)) 2Sn SnH.1 (2.4.5.)
" 1-e ^ n+ie-(i+l); P

)]••

If n ^m + 1. then p(n) is similarly obtained as
P P

P^p^ ITT li=Pn+ie-(i+l) ' ln+me-(m+l)

n -m-1

r^Un (2.4.5b)
P

Now let w be the ratio of the reference probability of the ending page

ard that of an ordinary page. i.e..

90

W = /lie. (2.4.6)

We call w the ending-page weight-. if the ending-page weight is one,

that is, if the reference probabities of all the n pages of the random

program are equal, Eq. (2.4,5) reduces to

PCnp)

—[2snpsiiH-l (2.4.7a)

1 .n-m-^P-"1-1

n-l("^r) m+1SnP (2.4.7b)

From these results, we can readily obtain the average number, E(n) of
P '

page faults to be caused by this program. To illustrate the shape of

P(np), some examples are given in Figure 2-7. Figure 2-7 (a) shows the

effect of w on p(np), for a random program which fits into the memory

space, and therefore the value of np ranges from 2 to n. On the other

hand, Figure 2-7 (b) shows an example of a random program which does

not fit into the memory space and therefore the value of n ranges from
P

2 to infinity.

Next, we proceed to derive the average program execution time E(T)

Noting that the program execution time is the sum of the holding times of

all the intermediate states leading to the end state, we first derive the

expected holding time, E(t1), of a state S^ The holding time in S

follows a geometric distribution with a parameter 1-p , and therefore,

noting Eq, (2,4.4),

91

P(np)

,w =5.0
.5

.4

.3

.2

.1

0 12 3

n -10
„-lailfc

l-e

w -1.0

w -0.3

4 5 6 7 8 9 10 11

(a) Effect of Ending Page Weight (n«m+l)

(b) Examplo. of p(n) for which n>in+l

Figure 2-7 Some Examples of p(n)

_ _

92

J-l E(ti) = tojfoJ,(Pi'i) ^^^
S

l-%i

n-1
n-ie-(i+l) iSm (2.4.8a)

n-1
n-me-(nH-l) m ^ (2.4.8b)

The general shape of E(ti) is shown in Figure 2-8. It is seen that as

the number of pages in primary memor- increases the expected holding

time (or the mean headway between page faults) increases. From

Eq. (2.4.8), we obtain the average program execution time with exactly

n page faults. E(T (n)).
P * P

E(Te(np)) = 1: E (t^ (2#4<9)

The general shapes of the curves which show the growth of the number of

pages in primary memory and that of the number of pages faults are given

in Figure 2-9. Averaging E(T (n)) obtained above, with respect to n ,
e P p

we can obtain the desired average execution time. E(T), of the program,

as follows.

E ^ = n^ P(nP) ^W* (2.^.10)
P

93

Figure 2-8 Mean Headway Between Page Faults

number

■

number of page fauly

number of primary
memory pages

time

Figure 2-9 Growth of the Number of Primary Memory

Pages and the Number of Page Faults

94

However, E(T) may be obtained by a more direct method. Let S ,
c s

S , and S denote respectively a starting state where the random program

is about to start its execution with no page in primary memory, a running

state where the program is running without ever referencing the ending

page, and an ending state where the program has rei renced the ending

page. Noting that the reference probability of the ending page is

assumed to be e (a constant) in any stage of the program execution, we

find that these three stites form a simple Markov chain shown in Figure

2-10 Therefore, the average execution time, E(T), of this program Is

given by the first passage time to state S . Thus,

OB

E (T) = (1+ E I'd-«)1"»«)tn
1=0

-(i+i)t0

= (~ + 2)t0 (2.4.11)

It is seen that the reference probability of the ending page completely

determines the average execution time of the program and that the average

execution time is roughly proportional 'o the ratio of the program size

and the ending-page weight.

Finally, we can obtain the mhbpf of this random program by combining

the results of Eq. (2.4,5) and Eq. (2.4.11), ss follows:

i i « »■ i

95

G>
l-e

Figure 2-10 Simpler Derivation of the Average

Execution Time of a Random Program

. . _

96

mhbpf

E(Te)

E(np)

n-1
v w + 2) 'o

n en^
np-l

n A(i)]
IU-2

1-e i=i

n <:m+l (2.4.12a>

n-1
(— + 2) t0 w

E {JV 7TA(I))+ I J-^ TT A(i)M^VlnM [
=2 i-6 i=l n=m+2^-

eli=l Mn4ine-(nH-l) ; J

m+1

I

where A(i)

"P

(n-i)(l-e)

n+ie-(i+l)

nZm+2 (2.4.12b)

In particular, if the reference probabilities of the ending page and an

ordinary page are equal, i.e., w=l, then Eq. (2.4.12) reduces to

mhbpf

,2in±lit
n+2 C0

2(n-l)(n-H)

2n2-2mn+(nri-2)(m-l) 0

n ^m+1

n5nri-2

(2.4.13a)

(2.4.13b)

It can be easily verified that as m/n approaches zero, i.e., as the

available memory size becomes much smaller than the program size, the

mhbpf of the program approaches t , the unit time of this discrete-time

97

Markov process model.

2.4.3. Numerical Examples of Random Proaram Behavior

In the previous section, the average execution time, the average

number of page faults, and the mhbpf of a random program were explicitly

obtained as a function of the primary memory size (m), the program size

(n), the ending-page weight (w), and the unit time of the discrete-time

Markov process model (t0). In this section, the effects of these para-

meters on the program's performance will be nuKerlcally evaluated.

As is clear from Figure 2-7 (a) and Eq. (2,4.11), the ending-page

weight w has a major effect on both the average number of page faults

and the program's average execution time. Therefore, the effect of w

upon the program's mhbpf, which is the ratio of these two averages, was

numerically evaluated in Figure 2-11. It is seen that the smaller the

value of w becomes the longer mhbpf becomes. The other point to be

noted is that mhbpf is almost independent of the program size so long

as the program fits into the available primary memory space.

Next, we move on to the central theme of this section, that is, a

numerical evaluation of the effect of primary memory size m, using

Eq. (2.4.12). This result is summarized in Figure 2-12. It is observed

that the curve rpp>-esenting the length of mhbpf branches into several

downward curves each corresponding to a particular primary memory size

as the program size increases. In particualr, it should be noted that

as the program size exceeds the memory size the downward branch curve

representing mhbpf abruptly decreases and from then on it continues to

98

V)
<u

CO

UI
u
E TO
M

IM • I
o <u
«1 oo
in CD
e a

<f 8
ii II
o

o
r-l

N

E
TO
u
oc
o

a

o
CN

o o

do

o

IM
a

-i
c
o a.
3

•H
a)

(U
00
nj

PL.
i
00
c

•1-1

c
w
>*J
o

o

I
CN

<u
u
p
00

o
CN

u
at

CN
o
CN

in in

99

II
N

e

o

a,
^3

B
o
o.
3

CD
N

•H
CO

u

I

y

«4-1
14-1

W

I

0)

3
00

I

100

decrease only gradually, approaching the unit time t of the model

asymptotically. This kind of abrupt decrease of mhbpf was called thrash-

ing by Denning [D2]. However, this abruptness shown in Figure 2-12 is

somewhat exaggerated by the uniform page reference probabilities assumed

in the random behavior model; if this taodel could include some less-

frequently-used pages also this abrupt decita&e of mhbpf would be moder-

ated. The other way to interpret this figure is to fix the program size

instead of the primary memory size. Then, mhbpfs of a given random

program operating in the primary memory of various sizes can be obtained.

For example, the mhbpf of a random program, with n = 100 pages, w = 0.3,

^nd t =4 millisecond, operating in the primary memory of 80 page-frames

is found to be about twice as long as that of the same program operating

in the primary memory of 40 page-frames. The ratio of mhbpfs correspond-

ing to two arbitrarily chosen primary memory sizes, however, depends on

the chosen values of m and n.

Finall'y, the effect of primary size m upon the program's average

total execution time was numerically evaluated, assuming that the average

total execution time of a random program is given by the sum of the

program's average execution time and the average total time to be spent

for handling page faults. In other words, denoting the expected paging

overhead time necessary for handling a page fault by t
P

E(total execution time) = E(T) + E(n)•! (2.4.14)
e p p

The result is shown in Figure 2-13. It is seen that the average total

execution time of each random program gradually increases as the available

primary memory size becomes smaller than the program size. This increase

101

E ■
0)

te
w

O M
i

oc
Q
a

s
ai
N

•H
U)

►<
H

S

)-
CD
E

•H
l-i
a. s

CD
U
öD
o
u
D.
u
0)

o
in

o
(U

01 i
0)
60 vf
CD
a II n a o In <f o
ii n II

c 3 ^

R

o
CM

E

C
o

3
o
QJ
X
w
E
CD

oo
o
u
p-,

o
H
C
o
(U
N

•r-i
w

>.

i
|

u
PL,

o
IM
IM
w

en
^-i

i
ts

<u
u
3
60
•fl
In

j

102

in total execution time is due entirely to the increase in the number of

page faults encountered during the program execution. Brawn and

Gustavson [B4] measured tne paging behavior of several actual programs

on the IBM M44/44X system and plotted the curves corresponding to those

shown in Figure 2-13. Their measurement result of actual computer

programs is very similar to that of Figure 2-13, except in the following

two respects. First, the increase of program execution time was observed

by them when the available primary memory size became smaller than a

certain fraction (typically, 60 percent rather than 100 percent seen in

Figure 2-13) of the program size. This probably means that at most 60

percent of the entire program pages were referenced at one time because

of locality of information references. Second, the slope of their

curves representing increasing program execution time is steeper than

that of those shown in Figure 2-13. This probably means that the

(expected) paging overhead time of their system is larger than the values

(4 and 8 msec.) that we assumed in Figure 2-13.

103

2.5. Macroscopic Paginsj Performance Model for Multiprogrammins

In the previous sections, we assumed a partitioned primary memory

with a local page replacement algorithm, and therefore we did not consid-

er sharing of segments among eligible user processes. However, on

actual computer systems like the one described in Section 1.2, any non-

resident program as well as any resident supervisor program is sharable

among eligible user processes. Therefore, we will now proceed to consid-

er the effect of sharing of resident and non-resident programs upon the

paging behavior of these user processes. First, we will develop a

simple model of sharing in estimating the number of page-frames

effectively available to each user process under multiprogramming. Then,

in deriving the mhbpf of these user processes, we will use a linear model

of pagiig performance discussed by Saltzer [S3] as a babis. By combining

the results of thesa two models, it will be possible to express the mtbpf

of an eligible user process as a function of the size (mr,mn,and M) of

primary memory, the degree (q) of multiprogramming, and the degree of

shar ing.

2.5.1. Model of Sharing among Eligible User Processes

As we have seen in Section 2.5, the number of primary memory page-

frames available to a user process plays a major role in dertermining

the paging behavior of programs. In this section, we will develop a

simple model of sharing and then use it to estimate the number of primary

memory page-frames, including those being shared, available to each user

process under multiprogramming.

104

We assume that the paging behavior of all user processes under multi-

programming, i.e., all eligible user processes, is probabilistically

identical; we will consider only one class of user processes whose

paging behavior is probabilistically specified. We assume that each

eligible user process is scheduled for service by a processor under the

FCFS discipline and therefore the processors are equally accessible to

the processes. Thus, it is fairly reasonable to expect that each of q

existing eligible user processes uses approximately the same amount of

primary memory under the management of a demand-paging global page re-

placement algorithm. It is assumed that the entire primary memory space

is fully utilized by these q eligible user procejses under the memory

allocation depicted in Figure 2-1.

Now we are ready to present a model of (segment) sharing among the

eligible user processes.

Model of Sharing

2
(1) Sharing of resident programs: ax10 percent of m page-frames

occupied by the resident programs is actually used by each eligible

user process, on the average.

2
(2) Sharing of non-resident programs: b x 10 percent of the memory

space (m page-frames in size) of each eligible user process, taken

out of m page-frames reserved for non-resident programs, overlaps
n

with the memory space (m. page-frames in size) of another eligible

user process, on the average. Any auch overlapping of memory spaces

is independent of any other overlapping of memory spaces.

,

105

We will first invest igate Che properties of sharing of non-resident

programs. For this purpose, let P^l-1,2,... ,q) be the 1-th eligible

user process, m (P^P ,... ,P.) be the average size of overlapping of 1

(non-resident program) memory spaces used by processes P. through P^.

and m (P 4P +,..+P) be the average site of (non-resident program) joint

memory space of processes P through P . Then, under the assumptions of

our model of sharing, we have

W P2) " btm0

Vl' V P3>-kS (2.5.1)

mo(pr p2' ••• » pi) = b ' ,mo

Therefore, as Illustrated In Figure 2-14, we get

m0(Pl+ V = (2"b)m0

m0(P1+ P2+ P3) = f3-3b+b2)m0

In general [Fl], we obtain

m0(P1+ P2+ ... + Pq)

^VV" Em0(Pi'Pm)+ E V^' V V "
all singles all pairs all triples

... + (-l)<'_1Iin0(P1, Pr ... , Pq)
all q-tuples

= [<J)-1 + ty'l-b) + (^'(-b)2* ... ♦ (J)«(-b)q'll«m0

= C (^'C-b)1'1^
1=1

. (ilu^ilj^ (2.5.2)

106

•o(V P2) - (2-b> »0

(a) two processes

W P2+ P3) " (3-3b+b ^»o

(b) three processes

Figure 2-14 Overlapping of Non-Resident Program Memory Spaces

 mm

107

Thus, ve have obtained the average size of total memory space which Is

required by the non-resident programs Invoked by a set of q eligible user

processes.

This average t.ize of primary memory space associated with the q

eligible user processes ran be easily proved to have the following prop-

erties:

Property 1

11m m^P^ P2+...+ P) = qm0 (2.5.3a)
b-* 0

!lm m (PJ+P2+...+ P) - m0 (2.5.3b)
b-» 1

Property 2

A«0(q) - »0(W-
+ Vl)'m0(Pl+P2+--+Pq)

= (l-b)q»m (2.5.4)

Property 3

m
Um rart(P,+ P,-»-...+ P) - — (2.5.5)

0 12 q D
q--

the dependency ot ««(^1+ P.*...* P) "pwn the degree(b) of sharing

Is seen in Property 1; Eq. (2.5.3a) means that If there is not any

sharing at all the total memory space required by the q user processes

under multiprogramming Is simply q times as large as the memory space

required by each process, and Eq. (2.5.3b) means that If non-resident

programs ar» completely shared by the q user processes under multl-

programning (consider a special-purpose computer system) the total

108

memory space required is equal to the space of only one process.

Property 2 indicates that m-(P.+ ?„+...+ P) is a non-decreasing
U 1 2 <)

function of the degree of multiprogramming and that if one more user

process must be made eligible without changing the effectively available

memory space (m) of each process then the additional primary memory

space to be required is given by a geometric probaLUity distribution.

Property 3 means that an infinite number of eligible user processes can

coexist using a finite primary memory space because we assumed

"independent" sharing (overlapping of memory spaces) of the processes'

non-resident program.

Finally, we will evaluate the average number of page-frames which

are available to each of these q user processes under multiprogramming,

assuming that a given primary memoiy of M page-frames is divided into

two areas, i.e., the area with m page-frames for resident programs and

the area with m (=M-m) page-frames for non-resident programs (see

Figure 2-1).

From the first assumption concerning our model of sharing, the

average number of page-frames storing the pages of resident programs

used by an eligible process is am . On the other hand, the average

number (m) of page-frames available to the eligible process for storing

non-resident programs is found from Eq. (2.5.2) to be

mn = V ä (2.5.6)
0 n l(lb)q

Therefrre, the average total number (m) of page-frames available to

each of chese q user processes under multiprogramming (using the primary

109

memory depicteu by Figure 2-1) is obtained as follows:

b m
m = am + ^-r (2.5.7)

r l-(l-b)q

The overall percentile saving of primary memory due to sharing of

segments is given by 1 - (M/qm).

2.5.2. Evaluation of mtbpf in Multiprogramming Environment

In this section, we will present a simple macroscopic model of

paging behavior which relates the average number (m) of page-frames

effectively available to a user process under multiprogramming to the

mtbpf of the user process.

Before getting into the development of this model, we must briefly

consider tbpf (time between page faults) and mtbpf (mean time between

page faults). It was previously stated that each burst of continuous

program execution, i.e., tbpf, consists of at least user program exe-

cution ann paging overhead execution. To be more realistic, tbpf

includes a proportion of time (t) spent as miscellaneous overhead of

the supervisor1, as well as a proportion of time (tu) spent as a user's

useful work and a proportion of time (t) spent as paging overhead of

the supervisor That is to say,

tbpf = tu+ tp+ tm (2.5.8)

^his complication is now necessary as a step to evaluate the amount of

user-oriented computation in Chapter 3.

no

The first component, t^ of the tbpf includes the execution of both user

programs and non-overhead-type (user-oriented) supervisor programs (..g.,

input/output control programs), and is generally called a headway between

pa8e faUltS (hb'f)- The second sonant, tp, of the tbpf includes several

.uper.isory functions required to handle a page f. alt, as roughly

explained in Section 2.1, and is generally called a pagin. overhead tin«.

The third component, t^ of the tbpf includes several supervisory

functions required to handle miscellaneous faults, such as segment

faults, protection faults, various non-paging interrupts, etc., which

occur during the duration of the tbpf, and is generally called a

miscellaneous overhead MmP. Denoting average valueB by barred symbols,

the mean time between page faults (mtbpf) is expressed as

mtbpf - t + t + t . /Orox
u p m' (2.5.9)

where tu, tp, and ^ respectively represents the mean headway betw^n

^fi^faults.(mhbpf), the mean paein. svgrhgadj^ and the mean_

miscellaneous overhead time.

We assume that the mhbpf (or tj of a user process under multi-

programming ran be determined by the average number (m) of page-frames

that are effectively available to the user process and, in particular,

that the mhbpf is generally expressed a*

"t = "t (m)
u u

= c0+c1m+ c2m
2+ c3m

3+... (2.5.10)

where c^i^O, 1,2,...) are constant coefficients. On the other hand, the

miscellaneous faults (segment faults, protection faults, non-paging

Ill

interrupts, etc.) are likely to occur uniformly at any instant during

the execution of a user's useful work. Therefore, it is reasonable to

assume that the miscellaneous overhead time is linearly proportional to

the mhbpf. That is to say,

t =61 (2.5.11)
m u

where 6 (a constant) is called the miscellaneous overhead coefficient.

It has been experimentally observed on the Multics system that the

paging overhead time is roughly independent of the primary memory size,

although the execution times of certain supervisory functions included

in the paging overhead (e.g., the execution of a page replacement

algorithm) may depend on the primary memory size. Therefore, we assume

that the paging overhead time, t , does not depend on the primary memory

size. Thus, the mtbpf of an eligible user process which effectively

uses m page-frames of the primary memory is given by

mtbpf * mtbpf(m)

= (T +1) +T v u m p

= (1+6)«t (m) + E (2.5.12) v u p

On the other hand , Saltzer [S3] describes a linear model of

paging performance , which was developed from performance measure-

mer.ts of the Multics system . He observed that the mhbtf of an eligi-

ble user process is approximately linearly proportional to the size of

ttMmi ^^_.

112

primary memory , for a wide range of the primary memory size. This

observation justifies (at least partially) the approximation of I with

only the second term of Eq. (2.5.10). Thus,

t (m) = c • m u I m (2.5.13)

We call this simple model of mhbpf a linear paging model and we expect

it to serve as a macroscopic model of paging behavior of user processes

Therefore, combining this linear paging model and the model of

sharing developed in the previous section, we obtain the following

expression for the mtbpf of an eligible user process.

mtbpf = (1+6)• t (m) + t
u p

= (1+6)• c. m + t 1 P
b m

= (l+ö).c • (am + Q—) + t (2.5.14)
1 r l-(l-b)q P

The behavior of the above three components (t , t , and t) of t-hp
u m p7

mtbpf is explained as a function of the primary memory space (m) avail-
n

able to non-resident programs in Figure 2-15. The gross behavior of the

mtbpf as a function of mn and the degree (q) of multiprogramming is

This observation was made about the averaged behavior of an aggregate

of programs invoked by an eligible user process. It does not necessarily

represent the behavior of a particular program.

113

t ; mean headway between page faults made in resident programs
ur

t ; mean miscellaneous overhead time spent in resident programs
mr

t ; mean headway between page faults made in non-resident programs
un

t : mean miscellaneous overhead time spent in non-resident programs
mn

t = t +t ,t=t +t , mtbpf = t + t + t
u ur un ' m mr mn ' u m p

Figure 2-15 Behavior of Various Components of mtbpf

114

similarly shown in Figure 2-16. It should be noted that the mtbpf of an

eligible user process under multiprogramming of a given degree increases

linearly with the available primary memory size. Finally, to evaluate

the effect of sharing upon the mtbpf of eligible user processes under

multiprogramming, three cases concerning sharing (no sharing, ten percent

sharing twenty percent sharing of non-resident programs) were considered.

This result is given in Table 2-2. It is observed that the effect of

sharing upon mtbpf becomes more evident as the number of user processes

that must compete with each other within a fixed amount of primary memory

increases. Later in Chapter 5, the gain in overall system performance

(i.e., the system throughput and the system response time) due to sharing

of programs will be numerically evaluated.

^.---^.. ■■..^^-■inMiaMaaaiV.ti».!--.^, i,-1.4.,.-.■.■:...-.- —r- riti jj«!^- ■ II • i

115

mtbpf

100

msec

50

M = 384 page-frames
mT- 84 page-frames
(1+Ö)»ci= 0.3

100 200
m

300

page-frames

Figure 2-16 Effect of Primary Memory Size and Degree of Sharing

upon mtbpf

116

Table 2-2 Effect of Multiprogramming and Sharing upon mtbpf

Degree of
Multiprogramming

Degree of
of Non-Res

Sharing
ident Programs

o hmO b.0. 1 b«0.2

1 99.5 msec 99.5 msec 99.5 msec

2 54.5 56.9 59.5

3 39.5 42.7 46.4

4 32.0 35.7 40.0

5 27.5 31.5 36.3

6 24.5 28.7 33.9

7 22.3 26.8 32.3

8 20.7 25.3 31.1

9.5 18.5 27.5

M=384 page-frames, m = 84 page-frames, m =300 page-frames,

(l+6)«c =0.3, a» 0.1, t =7 msec.
1 P

117

2.6. Summary

Because program behavior is so complex that we have developed

several models each of which studies only a particular aspect ol program

behavior, rather than attempting to develop a single "universai" program

behavior model. The first three models respectively attack the PRA

(page replacement algorithm) studies, the page size problem, and the

memory size problem. The analyses of these models respectively allows

us to evaluate numerically the possible differences in program perfor-

mance (the mean time between page faults) due to the PRA (page replace-

ment algirithm) in use, the page size being used, and the size of

primary memory available to a user process. The macroscopic paging

performance model described in Section 2.5 is based on a model of

sharing and Saltzer's linear paging model, and allows us to evaluate

the mtbpf (mean time between page faults) of user processes under multi-

programming of a given degree.

'IS

CHAPTER 3

THROUGHPUT ANALYSIS

3.1. Introduction

Having studied program behavior within a limited amount of primary

memory, we shall proceed to evaluate the performance of a processing

system consisting of processors, primary and seconday memories and

user nd supervisor programs (see Figure 1-4). The hardware is, in

general, assumed to possess multiple processors and multiple primary

memory units, with secondary memory system as part of the virtual

memory (see Fig. 1-2). The operating system is assumed to allow multi-

ple jobs to possess some of their pages in primary memory using a multi-

programming mechanism.

Our ultlmpce goal of this thesis is to develop a methodology to

optimize such multl-processer multi-memory imiltiprogrammed virtual-

memory computer system in cost-performance. As the first step towards

this goal. Chapter 3 presents a method to evaluate the performance of

>.«..»r...,.^-,.^.^«,K.^,..,.■■> ,., -»■,>> Th-nr , .m*mm.„~.

119

a processing system of a given hardware configuration (number of

procesc.i«, number of primary memory units, speed of processors, speed

of memory system, size of memory system, etc.), a given software

configuration (size of resident supervisor, various overhead times,

degree of multiprogramming, etc.) and given user program characteristics

(mhbpf, etc.).

We choose system thro^hput. I.e.. the average numbet of Jobs that

can be completed within a unit time, as our performance measure of the

processing system. In e aluating the throughput of the processing

system of a given configuration, various wastages of the system's

computational capacity (various Idle times and system overhead times to

be defined) will be considered. Therefore, the system's effective

computational power can be evaluated accurately. The result of this

analysis then allows us to optimise the degree of multlprogranining

realistically In such a way that throughput of the system Is maximized.

Tt will be seen In Chapter 4 that this optimization approach leads to

the minimization of the average response time experienced by each

Interactive user of the computer system.

i:o

3.2. Preliminary Considerations

Before getting into a mathematical anaysis of th« system through-

put of a multi-processor multi-memory multi-progra""««*! virtual-memory

computer, some preliminary considerations will bs given in this section

m order to put the foll'wing analysis in proper perspective.

We have seen in Chapter 2 how the three components (t . t , T) of
u m p

mtbpf depend on the primary memory size. We now consider how each of

these can be affected by a multi-processor multi-memory configuration

üf the processing system. A program's execution time is generally

prolonged on a multi-processor computer system because of mu11i-

processor interference such as memory cycle interference and data-base

lockout. The former is the Interference caused by the occasional

conflict of multiple processors for a memory cycle of a particular

primary memory unit and the latter is the Interference caused by the

occasional conflict of multiple processors for the use of a particular

shared, writable dafa-base which cannot allow simultaneous accesses of

multiple processors. Because a memroy cycle of a primary memory unit

or a shared writable database can be used only serially, only one of

the conflicting processors can use it immediately and others must wait

for their turn to use it. Therefore, -ntbpf is prolonged on the multi-

processor computer system.

Table 3-1 summarizes the way in which the dependency of the three

components of mt.bpf, i.e..

t (mean headway between page faults),

t (mean miscellaneous overhead time), and

t (mean paging overhead time),
P

121

upon the multi-processor interference as well as upon the primär) memory

size will be considered in later mathematical analyses. It la assumed

that all fault handlers (page fault handler, segment fault handler,

protection fault handler, etc.) of the supervisor arc either permanently

resident or almost always resident in primary memory by virtue of the

fact that these most-frequently-used programs are likely to be shared by

many user processes. On the other hand, non-resident programs such as

user programs are assumed to be initially in the secondary memory system

and to be brought into primary memory under demand paging, as stated in

Chapter 2. Under these assumptions, we will use the macroscopic paging

performance model described in Section 2.5; t is independent of primary

memory size but t and t depend on (are roughly linearly proportional
u m

to) the size of primary memory effectively available to each user

process under multiprogramning, as shown in the first row of Table 3-1.

It is well-known that the execution of a page fault handler

involves some shared, writable data-bases (i.e.. resource tables and

resource queues [SI)) which may significantly delay the execution of the

page fault handler on the multi-processor computer system, while the

execution of users' useful work or of miscellaneous fault handlers

normally dees not Involve such frequentIv-used shared writable data-bases.

Therefore, only t is assumed to be significantly affected by data-base
P

lockout, as shown in Table 3-1. On the other hand, the execution of any

program is subject to memory cycle Interference on the multi-processor

computer aystera. Thrrefore, all three components of mtbpf are assumed

to be affected by memory cycle Interference, as shown in Table 3-1. It

has been actually found on the Multlcs system (to be rtported in

■

122

e
oo -^

; c *J
•«4
oo 'a a

a «
o
c a «1

C P
a) a<

1 ^
€>■•
M
kl
0

u
ni
u.

(A
oc 3
c o

■w «
3c

c
(0 «I

—< - B
P4 «-H ■-<

w 4J e a ?!
o
c

M E V U ■c
c u

e <a «
0 it

"O
c
«
a
Al 5

J c
i

H 2
V 0)

j

h
e
a
d
w
a
y

b

f
a
u
l
t
s

r
u a a o a

1 c n

2 S.
|
Q

/
e e A IM /

o
o / u 4J

J5 w /
* / 2 u u •s * / (- C 3 3 S pi/ .5 « 00

U -H
00

Wi -3 / u W «H 1M «M a u / Q.
Wi o

0 g j VM V '• 4J U 1 o u
c u

3
O U

I 4< -• 0 * o i N at u « j —< at m O CO

/ «
u o u / 01 >> o « o / > u u M U

/ <" -H a eg a. / u
iJ >, >^ i x i / o u u. t. — ■ —•

/ ^ 0» O o >-• « u
i f u <M £

5 3
U —i i «9 U-* ty a 3

f M 0) E E E T3 E

123

Section 5.2.1)that a noticeable amount of processor time is lost due to

the multi-processor interference.

In order to consider quantitatively the effect of this multi-

processor interference, let t ,, t ., and t . denote the t , t , and t K ui mi pi u m p

of an i-processor (i=l,2) computer system. Letting K (1SK ^2) be

the slow-down factor due to memory cycle interference on a dual proces-

sor system, we have the following relationship between the t of a

single processor system and that of a dual processor system with the

same configuration.

Srt = 'S/ul (3.2.1)

where the value of K will be determined in a later analysis. Assuming
m

the same degree of memory cycle interierence for the handling of mis-

cellaneous faults, we have

"t 7 = K T . (3.2.2)
m2 m ml .

On the other hand, the relation befeen the paging overhead time of a

single processor system and that of a dual processor system is more

complex because oi the additional interference caused by data-base lockout.

We assume that the execution time of the page fault handler on a dual

processor system Is stretched by a factor of K. (1SICS2) because of

data-base lockout and is further prolonged by a factor of K because

of memory cycle interference. That is to say,

T 0 = K .K. «T . (3.2.3)
p2 m i pi

Under these conditions, the linear relation between t , and t .
mi ui

of Eq. (2.5.11) is now generalized to

124

(3.2.4)

It should be noted that the miscellaneous overhead coefficient 6 is

t . = 6t . i = l,2
mi ui

independent of the number (i) of processors. Thus, mtbpf of the single

and dual procesi r systems can be expressed as:

mtbpf(l CPU) = t .+ t .+ t . r ul ml pi

= (1-^)1 ,+ t .
ul pi

■ mtbpf (3.2.5)

mtbpf(2 CPUs)= tu2+ tm2+ tp2

= K I .+ K t .+ K K.! .
m ul m ml m £ pi

= V((l4*)Tul+K£rpl) (3-2-6)

£Km.(mtbpf2)

Finally, we are ready to give an expression for the percentage of

the system's computational capacity spent as users* useful work (to

be called the percentile throughput of the system), taking into con-

sideration all of the above system overheads and the possible processor

idle time. Let u be a .'tilization factor, of the processors of the

processing system, which will be analytically obtained by the through-

put analysis of this chapter as a function of various system parameters

such as

(1) the number of processors,

(2) the number of primary vaemory units,

(3) the degree of multiprogramming.

125

(4) various system overheads,

(5) mtbpfi (1=1,2)

(6) mpft (the mean page fetch time) of the secondary memory

system.

Then, the desired percentile throughput G of the multi-processor

computer system can be expressed as:

t ,
a ui b = u»—

mtbpf(i CPUs) (3.2.7)

Now let T be an arbitrary length of time. Then, the total time that

can be spent as users' useful work by the i processors during T is

i6T. Let Tel, T ,..., T be the execution times of k user jobs

(excluding all the system overhead times) which were completed during

T. Then, assuming that the computer system was under a full load, the

system throughput Q_ can be obtained as follows:

9 ■ lla-J- — T X-»oo

" lim[T * T .+T ,+ ••• +T .) T—oo el e2 ek

-11. ie

T—»oo
(ST)/k
J-l J

ie_
(3.2.8)

where T is the average execution time required for a job's useful work.

Therefore, it has been shown that the percentile throughput is linearly

proportional to the system throughput.

126

3.3. Single Processor System

In this section, we will be concerned with the performance of a

single processor processing system under multiprogramming of a fixed

degree (q). It is assumed that the time between page faults rcbpf; of

each user process follows a certain stationary probability distribution

with a (constant) mean determined by the size of primary memory avail-

able to the job. (In detailed reality, tbpf or hbpf depends on the

size of primary memory actually being used at the moment rather than

the amount of memory that can be used, as seen in Chapter 2, but this

initial macroscopic transient behavior of programs is only macroscopi-

cally consiaered hereafter.) It is also assumed that the computer

system under study is fully loaded with user jobs; there always exist

at least q executable user jobs on the computer system. This means

that q user processes are being multiprogrammed at all times. Therefore,

in modeling the behavior of the multiprogramming mechanism described

in the section surrounded by a broken line of Figure 1-i, we need not

explicitly consider the completions of job executions or the entries

of new eligible user processes. Furthermore, because the processing

system has only one processor we need not consider any multi-processor

interference in this section.

3.3.1. Single Processor Multiprogramming Model

A model of multiprogramming described here involves the following

resources of the computer system.

.

127

(1) a processor queue (0) which contains page-ready processes,

i.o., the eligible user processes waiting for a service by a

processor of the processing system

(2) a processor (CPU) which can service one eligible user process

at a time

(3) a secondary memory system (SM) from which a missing-page is

brought into primary memory on demand for the eligible user

process that ^las requested the page.

As explained in Section 1.2, if an eligible user process is waiting

for a processor's service in the processor queue Q . the process is

said to be in the page-ready state. If the process is being serviced

by the processor, it is said to be in the running state. If the

process is waiting for a missing-page, it is said to be in the page-

wait state. The (mean) length of time in the running state exactly

corresponds to the (mean) time between page fau .s and the (mean)

length of time in the page-wait state exactly corresponds to the

(mean) page fetch time. All the eligible user processes simultaneously

cycle around these three states in our conceptual model of multi-

programming, as shown in Figure 3-1.

We usually assume that the jobs in Q are scheduled under the

FCFS discipline for the processor's service when the processor is

available. A preemptive priority scheduling discipline is also

considered briefly. We assume that a service by the secondary memory

svstem to locate and transfer a missing-page of a process into primary

memory is always immediately initiated and carried out in parallel

:-'■:.■ .. _ .

128

?
00
TO
a

X
CO

a
ö
G

Cfl

tn
ui
(U o
o a
(X

cr
II

+

'S
■5
c
c a

m
(U
tn

(U
u
o u
a

o
o
ii

'-N

^
^ D CO

(U
CO

(U t CO

1

8.
a

D o
o a u

a
•H

K
1)
CO

en
«
o

2

H
14-1
O

s
•2
4J
CD

2

I

129

with services by the .ame secondary memory system for other page-wait

processes; the input/output channel is assumed not to limit the rate of

page transfers between primary and secondary memories.

Finally, we must specify the probabilistic property of both the

time between page faults (tbpf) and the page fetch tim (pft). We

assume that tbpf independently follows an exponential distribution with

a mean of 1/a which is determined by the macroscopic paging performance

model of Section 2.5. That is to say.

f(t) = ae

where

-at
t ^ 0

1 -
mtbpfl " ¥■ Sal* ^ %! - <1+Ö)tul

+ t

(3.3.1)

Similarly, we assume that pft independently follows an exponential

distribution with a mean of 1/ß. That is to say.

8(t) = ße'ß,:

t^o (3.3.2)

where mpft = 1/ß should be determined by a separate analysis using a

L^

130

secondary memory model (see Figure 1-4)^ This assumption would be

reasonable especially if secondary memory consists of a combination of

frequently-used high-speed devices and less-frequently-used low-speed

devices.

3.3.2. Multiprogramming with FCFS Scheduling

We will proceed to evaluate the system throughput of the single

processor processing system described in the previous section, assuming

that the FCFS discipline is used in scheduling page-ready eligible pro-

cesses fC3]. We assume that tbpf of each eligible user prrcess follo'-s

the identical probability distribution of Eq. (3.3.1).

Then, a state of our model of the processing system is characterized

by the number (i) of page-ready processes (waiting in Q), the number (j)

Coffman's result concerning a paging drum [C5,C6] or the well-known

result of M/G/l queues [C8] may be used in this area. In particular,

the built-in meters of the Multics system show that Coffman's result,

reproduced below, is accurate enough to predict the mpft of a paging

drum(in practice. Letting T,N, and p respectively be the drum revolution

time, the number of sectors, and the sector utilization factor,

mpft - Ü^i + 2-
1 - P N ,

where the first and the second terms respectively represent the mean

access time, which is subiect to a queuing delay, and the constant page

transfer time.

131

of running processes (using the CPU), and the number (k) of page-wait

processes (associated with the SM), where i + j+k = q and j^l, as shown

in Figure 3-1. Therefore, each (i,j,k) tuple defines a state of the

model, as given in Table 3-2, Noting that the holding time of each

state is exponentially distributed, we see that the behavior of this

model can be regarded as a continuous time Markov process, in fact, a

simple birth and death process known as the machine repairman model

(or the machine interference problem) [F1,J2], defined over these q + 1

states of Table 3-2. All possible state transitions and the correspond-

ing transition rates are shown in the state transition diagram of

Figure 3-2.

The probability n. (i=0,1,...,q) that one finds the system in S

at a randomly chosen instant after the system has been in operation for

a long time, i.e., the steady-state probability n of a state S , can

be obtained by solving the balance equation [F1,H2]

a«.- (q-i+1) ß «, - IsiSq (3.3.3)

under the condition E n. = 1 . Thus,
1=0

If the transition rate associated with an S.-* S . transition is a,
i j

then this means that the conditional probability that this transition

will occur in the next At, given that the present state is S., is given

by a A4- for j^i and suitably small At.

132

Table 3-2 State Table of the FCFS Single

Processor Multiprogramming Model

State
Name

i

CPU

J

SM

k

so 0 0 q

Sl 0 q-l

S2 1 q-2

S3
• • •

2 q-3

Vi q-2 1

s q-l 0

(q-i)ß

<q-2)ß

<q-3)ß

Figure 3-2 State Transition Diagram of the FCFS

Single Processor Multiprogramming Model

133

Z (aJ/j!)
J-0

wherea=a/p. In particular, the processor Idle probability « Is

given by

aq/a'. ,, , ,,
v^i — <3,3-5)

E (aJ/j:)
j-o

Therefore, the percent lie throughput of this system I« obtained

from Eq. (3.2.7) as

6 - ^-V'CH^T^T, ' ^VcTul (3-3-6) x
 ul pi

The corresponding sysfm throughput can be readily obtained fri/m

Ea. (3.2.8).

3.3.3. MultlproRrammlng with Preemptive Priority Scheduling

We i-'lll briefly consider the system throughput of the same single

processor computer system, assuming that a preemptive priority (PP)

discipline like that of the Multlcs system (01) Is used In scheduling

page-ready eligible user processes. When this discipline Is used, a'I

the eligible user processes have their own distinct priorities upon

which preemption decisions are solely based. Suppose that the super-

134

visor decides to allow a ready process to become eligible at a certain

instant when there exist q* eligible user processes (see Figure l-l).

This entering process is ionediatcly awarded a priority q* +1 ("q).

the lowest priority (i.e., largest in value) among existing q'-fl

eligible user processes. Whenever a process becomes ineligible by

completing the execution of the requested user Job, the process loses

its priority and accordingly changes of priority of othar eligible user

processes take place. Suppose that the leaving process has a priority

q". Then, if the priority of a remaining process is lower than that of

the leaving process (i.e., larger than q'). then the priority is

heightened by one (I.e., decreasec1 y one in value); otherwise, the

priority is left unchanged. Thus, this algorithm gives a higher

priority tsä An older eligible user process, maintaining a set of

distinct priorities for the existing eligible user processes. The page-

ready processes in Q are always ordered according to their distinct

priorities and the process with the highest priority is scheduled for

the processor's service when the processor is aviilable. What is more,

if the priority of this process is higher than that of the running

process, this process is allowed to preempt the processor by suspending

the progress of the running process as soon as possible. Therefore, an

eligible process with a higher priority has a greater chance to use both

the processor and the primary memory. Thus, an older eligible user

process tends to own more pages In primary memory than newer eligible

user processes, under a global page replacement algorichm. We assume

again that the cotrputer system is under a full load.

135

Instead of using the tbpf distribution of Eq. (3.3.1), we assume

the following set of equations for the tbpf distributions of user

processes under the PP discipline.

' (3.3.7)

fj^t) ■ o^e for the highest priority process N

-a2t
f2(t) ■ a.e for the priority 2 process

• • •
-Q t

f (t) ■ a e s for the lowest priority process

where a.« a,s ... sa and t * 0.
il q

The t ict that an older process, i.e., a higher priority process, owns a

greater number of get in primary memory Is reflected by a longer mtbpf,

1/a., of a higher prWlty process. As for the pft distribution, we

still assume Eq. (3.3.7).

What characterizes a state of this modified model is not Just the

number of processes In each of those three states of eligible user

processes but the combination of priorities of processes In each of

those three states. Then, It Is again possible to model the behavior

of this model by a continuous time Markov process. Let an (i,).k) tuple

represent a state of this model, where I Is a (particular) combination

of priorities of the page-ready processes, J is a priority of the

running pmcess. and k is a combination of priorities of the page-wait

processes. Then, It can be easily proved that the total number (N) of

these (Markovlan) states or this model Is given by

q
Ns- * (k) - ^ (3-3.8) 8 k=0

136

Unfortunately, a general expression for n , like Eq. (3.3.4) of the

FCFS scheduling model. Is too complicated to write out (although it can

be easily evaluated numerically) and therefore we will simply give an

illustrative example.

Example Case of q = 2

Because the supervisor allows only two eligible processes In primary

memory there exist only priority 1 and 2 processes. Defining four

possible states as shown below, we obtain a state transition diagram

shown also below.

%
CPU SM

so (1,2)

sl (I) (2)

S2 (2) (1)

S3 (2) (1)

Letting «=(n0, n., it-, JT_) be the steady-state probabilities of

states (s S., S S), these steady-state probabilities can be

obtained by solving the balance equation

it • A » 0

under the condition E n = 1, where A Is the transition rate matrix [H2
1=0

and takes the following form for this example.

137

-2ß ß ü ß \

Ql -VP ß 0

0 0 ^l al

\a2
0 ß ■«2-N

The solutions are:

^tal)ala2
n0 "" 2ß3+3p2 .j+ß^^^ßQ^^jQ,

ßa1a2

ni " 2ß3+3ß2a1+ß
2a2+ßa

2+2ßa1a24a1a2

P2 (2^40.40^)

n2 " 2ß3+3ß2a1+ß
2a2+ßQ

2+2ßala24aia2

(2ß-Kr1)ßa1

^ = 2ß3+3ß2a1+ß
2a2-^a

2+2ßa1a2-K)(1a2

The processor idle probability is given by n^ Therefore, the

percentile throughput can be obtained by inserting «0 into Eq. (3.3.6)

of the previous section. The priority 1 (higher priority) process uses

the processor < ith a prob*: mty n^^ and the priority 2 (lower

priority) process with a probability Ky If O^-Oj-a, then we see

Chat the X obtained from the above equation agrees with the n0 given

by Eq. (3.3.5) of the previous model. This corresponds to the fact

138

that a preemption scheme does not improve the processor utilization If

CX^^a^" • • . = Cx , under the assumption of exponential distributions.

Finally, a numerical example of processor time breakdown is shown in

Table 3-3, assuming that a. =a =a. It is clearly seen that the

priority 1 process uses the processor much more than-the priority 2

process because of the preemptive priority scheduling discipline.

Table 3-3 Processor Tine Breakdown for

the PP Scheduling Model

Processor Time Breakdown

Priority 1 Process

Priority 2 Process

Idle Time

139

3.4. Dual Processor System

The model of a single processor processing system under multi-

programming of Section 3.3 is now generalized to a dual processor mul::i.

memory processing system under multiprogramming. To specify the gross

configuration of the system, we use a notation (q; m, n) where

(1) q is the degree of multiprogramming,

(2) m is the number of processors (mSq)

(3) n is the number of primary memory units, each of which can

be accessed through its own memory controller,

as schematicallyshown in Figure 3-3. We will be concerned with the

system throughput of the (q;2, n) configuration system in Section 3.4.

Although the system of this configuration is generally expected to

have a much larger computational capacity than a single processor

system, this system will encounter new problems which may seriously

limit its computational power. These problems are caused by multi-

processor interference such as memory cycle interference and data-base

lockout. These interference sources effectively reduce the speed of

the processing system. We will therefore develop a model of the

(q; 2, n) configuration processing system and evaluate the throughput

of this system. The effective loss of the system's computational

capacity due to multi-processor interference, various system overheads,

aid the multiprogramming (processor) idle time (to be defined) will

also be evaluated.

140

Secondary Memory System

B
<u
u
in

H

§
■u

CO
1-1
o
CO
CO
<u
o
o
^1

CO

141

3.4.1 Dual Processor Multiprogranming Model

A model of multiprograraming on the (q; 2, rO configuration systtn

is based on the following assumptions:

(1) The virtual memory is paged. A given page of the prirary

memory system is found in a memory unit i (ISl^nj with & proba-

bility 1/n (uniformness assumption).

(2) The length of in-page operation of a program (the Itngth of

time during which processor control remains within a particular

page without making any reference to other pages) follows an

exponential distribution with a mean of t.^l/S'.Q.

f0(t)=V
V t^o (3.^.1;

(3) A page fault occurs with a probability p (missing-page

probability) when processor control is transferred to another F^-

The missing-page probability Is common to all user programs.

(4) A missing-?age will be fetched from the secondary memory

system. The length of time required to complete a page fetch. :r.

the page fetch time (pft). follows an exponential distributicr. vlth

a mean of 1/ß.

-ßt .>n (3.4.2)
g(t) = ße ^0

(5) The processor queue (0) is common to two processors. Xcre-

over, the processing system is assumed to have nei-e than c >-rs a:

all times to ensure the existence ?i q eligible processes ur.i*r

multiprogramming of degree q (full load assur.p:ior.V

142

(6) If both processors direct their accesses to the same unit of

primary memory at all tines, the execution time of a program on

each processor would be stretched by a factor of V (l^Y-2), on

the average . Y is called the memory (cycle) interference

coefficient. We say that a memory unit has no interference if

Y = l and that a memory unit has a complete interference if Y = 2.

First, we will prove that tbpf aoproximately follows an exponen-

tial distribution under these assumtions. Noting that hbpf consists

of successive in-page operations (see Section 2.4.2), we see that

f^t) = Prob{ hbpf = t]

= S
i=l

(i successive in- \ Atotal length of
\ »Prob- i Probjpage operations

[.before a page faultj
in-page operations^

(3.4.3)

The probability that i in-page operations take place before a page

fault occurs is given by a geometric distribution with a parameter of

p, as is clear from the assumption (3). The sum of i exponentially

distributed (identical) variables is known to follow an Erlang distri-

bution of phase i, i.e., the i-fold convolution of identical exponential

distributions [Fl]. Therefore, Eq. (3.4.3) becomes

The value of the effective slow-down factor due to memory cycle inter-

ference (K) for a given configuration will be calculated using the value
m

of Y.

143

I

, i i-1 -aot.> fa t e 0)1

1 i=lk l (l-l): v

= OUP e

-a0t » ia0t(l-p)j
>i

i=0

-a0t a0t(l-p)
a0P e • e

= a0p e
-a0Pt (3.4.4)

Thus, hbpf has been proved to follow an exponential distribution of a

mean of l/cy.. This means that the sum of hbpf (tu) and the miscella-

neous overhead time (tj approximately follows an exponential distri-

bution with a mean of (l+5)/a0p. Noting that the paging overhead time

is considerably shorter than the sum of hbpf and t^ we can expect

that tbpf roughly follows

-at
f(t) = a e

where

t^O

1+6 _ 1
mtbP£2 '^= (1+6)tul+KAtpl"a0p "a p

(3.4.5)

Thus, we have seen that the model analyzed in Section 3. 3 can be regard-

ed as a special case of the model developed in this section (see

Eq. (3.3.1)); the previous model actually corresponds to a (q; 1, n)

configuration system with the above formulation.

Under these assumptions, each eligible user process cycles around

the three states, i.e., the page-ready state, the running state, and

144

the page-wait state, as shown in Figure 3-4. It should be noted that

if two processors happen to use the same primary memory unit for which

Y/l then the rate 0^=0^/(1+6) of Figure 3-4 must be replaced by a fy.

It is important to note that non-resident programs (e.g., user programs)

and resident programs (e.g., fault handlers) are treated as if they are

equally susceptible of rage faults in this formulation. This formula-

tion was adopted for the sake of simplicity of the analysis. Finally,

we will finish this section by defining some terminology to be used in

the following analysis.

Multiprogramming idle time: the processor time lost when process-

ors do not have executable eligible user jobs, i.e., when at least

q - 1 jobs are simultaneously in the page-wait state.

Memory interference idle time: the processor time lost due to the

unavailability of memory cycles when two processors simultaneously

access the same unit of primary memory (memory cycle interference).

Data-base lockout idle time: the rocessor time lost due to the

unavailability of certain shared writable data-bases (data-base

lockout).

Besides these various idle times,we lose a non-negligible fraction of

the system's computational capacity because of paging overhead and

miscellaneous overhead of the supervisor.

'•--^- - - ■'--^-—

145

ec
c

•H
C
c '

OJ
00 TO
&
00 Ö c
•H II
(0 Ö
CO

•H
g

a)
o
c
S
b
(U

(U / M-l
oo x 0)
TO / h g
a/ i—1 (U

Ö 0) w
do CO
TO f*.
&

g S1

sv a u ••-• S\ o CO
0) -rt CM CO
00 4J 9
TO TO o

PH h o
1 0) C
6 P. tu
H O

__——

1

/-\ '
>^

•o TO
U a a
I cy

(U
60 TO

P4 >-/

1
>.
tl

^\ Q
•u £
•1-1 0)

TO S
3

p~.
0) b
00 TO
TO •o

PL, C
^-z o

0
<a
m

CO.

•1-1

. ^■^.^ä.-äm.,^^,. , .__ .

146

3.4.2. Multiprogramming with FCFS Scheduling

We will now evaluate the system throughput of the (q; 2. n) con-

figuration system as well as the multiprogramming idle time, the memory

interference idle time, the date-oase lockout idle time, and other

capacities wasted as various system overheads, under the assumptions

stated in the previous section.

In analyzing the behavior of the (q; 2, n) configuration system, we

should first note that a state of the system is characterized by the

number (i) of page-ready processes (waitin", in Q), the number (j) of

running processes (using the CPUs) the number (k) of page-wait proce^aes

(associated with the SM), and a variable (s) which indicates the existence

of memory cycle interference (s = 1 if interference exists and s=0

otherwise). Then^ it follows that each (i,j,k,s) tuple defines a

l k » state(s
S
jJ
of the astern, as shown in Table 3-4. The number of

states thus defined is found to be 2q. We see that these states are

mutually related by the transitions with transition rates indicated in

Figure 3-5, and therefore the behavior of the system can be modeled by

a continuous time Markov process defined over these states.

k k
Let sit be the steady-state probability of S Then, the steady-

s J

state probabilities n can be obtained by solving the balance equation

£«A = 0, i.e., the following set of simultaneous equations given by

Eq. (3.4.6) through Eq. (3.4.14).

147

Table 3-4 State Table of the FCFS Dual Processor

Multiprogramming Model

state
name

sq oso

obi

0 2

s<-2
12

sq-3
0S2

1 2

i

0

0

0

0

1

1

CPU

j

0

1

2

2

2

SM
Memory
Interference

k

q

q-l

q-2

q-2

q-3

q-3

s

0

0

0

0^
q-3

q-3

q-2

q-2

2

2

2

2

1

1

0

0

0

1

0

1

148

1
C

x
o
h

3
i:
h
o ■
j

E a.

(5

E
(0

«5

m
c
h

K
u.

149

—■—^J
H—^—(in2)+-—^ i^HWm^)

20.(1-?) top p(n-l) .
(kß+—i-jj +-~-' —~)(on2) 1<k5:<I-3 (3.4.6)

^A'1^ <0«2"1>+^r:^ (Off2>+ ^M>P V2+l)

to.d-pXn-l) aa.pdi-l) to.p .
(kß+-L-- + _L__ + _l_)(i^) ^^3 (3.4.7)

Left Boundary Conditions

^■PX"-1*, o,xfl, u .zji(1-?).2aip fV<^)w o,
 ^ <ln2)+P(On2)n(--S +"r--r n)(0,t2)

(3.4.8)

 Ö (o"2)+Mln2)-(^ + —1^ +-—)(ln2)
(3.4.9)

Right Boundary Conditions

toup(B-l) n , 2a p(n-l) « to (l-p)(n-l) (q-l)(n-0ß _,

-((q-2)ß+-~; + tojp) (0n^) (3.4.10)

2aiP C-l 2aiP q-1 2ai(1-p) q.2 (q"1)ß q-l

2a.(l-p)(n-l) 20^ n _
((q.2)ß » l ^ +-J-) (lirJ *) (3.4.11)

^vr^ <i«r2>^P(0^0). (Xa=mi=m+ii^i+aiP)(oÄrt)
(3.4.12)

C^P^J"1) ■ qß(0n3) (3.4.13)

150

Normalization Conditon

ifV+ vr1)+ £<o*\>+l^A* ■i (3.4.14)

Because there are 2q independent equ .ions in 2q unknown variables, the

k , .
gitj s can be uniquely determinef

1.

Now we are ready to exprf .s several interesti .g performance measures

of the system's computation .1 capacity in terms of the steady-state

probabilities obtained ab.ve. It is assumed that the system's computa-

tional capacity (2C), treasured in the total number of instructions that

can be performed by t ,e system's two processors under the ideal condi-

tion, breaks down IT to the capacity (C^) wasted as multiprogramming

idle time, the capicity (C^) wasted as memory interference idle time,

the capacity (Cp wasted as the paging overhead including the capacity

(Cdi) wasted as data-base lockout idle time, the -apacity <C) wasted
m

as the miscellaneous overhead, and the rest, i.e., the capacity (C)

used as users useful work. These capacities are evaluated as follows:

Capacity wast, d as multiprogramming idle time

cmi -2c v*+ c vr1)
■ ^VQ) +<onl'1)],C (3.4.15)

151

Capacity wasted a8 memory interference idle time

q-2

cli = { K^Hi--^*20
k=0

-^•(^(^»•w
k=0

(3.4.16)

Capacity wasted as the paging overhead

kp2
C
p = <2C ■ C

mi" Cii),mtbpf (2CPrs)

- <2C • c«i-Cii>,s5?7:

= (2C - C .- c..)*aK.t , v mi ii I pi
(3.4.17)

where ^ =n>tbPf2 = (1+6) tul+ Kxtpl = —

cdi = (Kx-1),cP
(3.4.18)

Capacity wasted as the miscellaneous overhead

wm2
Cm = (2C ' Cmi' Cii),mtbpf (2CPUs)

ml
- <2C -cmr ^'SSF?

= (2C - c .- c..)»aö t , v mi ii ui
(3.4.19)

152

Capacity used as users' useful work

t
C = (2C - C .- C)• ü2___ u mi ii'' mtbpf (2 CPUs)

= (2C - C .- C..)- tul mi ii'' mtbpf2

■ (2C " C.r Cil)^ul (3.4.20)

Memory interference slow-down fan-nr-

■ " q-2 , k T ; ~ (3.4.21)

Percentile throughput:

e = u - tu2

mtbpf (2 CPUs)

2C - C .- C. t , mi ii ul
2C 'mtbpf

C
u

2C (3.4.22)

It is seen from Eq. (3.4.22) that the percentile throughput of the

(q;2,n) configuration system is expressed as a function of user

program characteristics (I^p), the system overhead structure (I ^Ö^K),

and hardware characteristics (n,ß,Y). The system throughput 6 o/this

configuration can be obtained by substituting Eq. (3.4.22) into

Eq. (3.2.8).

An expression for /. u generally too complicated to write out

and therefore the expressions given by Eq. (3.4.15) through Eq. (3.4.22)

can only be numerically evaluated (this will be done in Chapter 5),

153

excep t for some simple cases. However, one of those simple cases for

which nk is not too complicated may be worth being explicitly analyzed
s j

as an illustrative example.

Example A (2;2,n) Configuration System

The state transition diagram of Figure 3-5 now reduces to the four

state transition diagram given below.

The equations given by Eq. (3.4.6) through Eq. (3.4.14) correspondingly

reduce to:

-4—(0"°'+f ^J' = {-^ +—1(1"2>

2a p n 9 i 2aip v^ +^r (i^^+2ß w =(ß+aip) (orti)

«I? ^ ■2ß ^

(/2) + ^ + (0«i) + (o^^ -1

■i ——

154

Solving these equations, we get

2

0^0

0^1

0rt2

0
1*2

na
n(l-Hj)+y-l

7.n<J

n(l+a)+Y-l

n-1

n(l+a) +Y- 1

n(l+CT) +Y- 1

where a =a1p/ß =a/ß.

Thus, from Eqs. (3.4.15) and (3.4.16), we obtain the following

result concerning the capacities wasted as multiprogramming idle time

and as memory interference idle time.

C =
ng (1+g) .2c = 2 (^

n(l+CT)+Y-l (1+CT)
2
+(U:)

•2C

C . =
ii

Y-l
■•2C =

(^) n

n(l+a) +Y-1 (l+a)2+(^)
■•2C

The system's computational capacities used as various overheads (C ,C)
p m

and as users' useful work (C) respectively follow from Eqs, (3.4.17),

(3.4.19), and (3.4,20). The memory interference stow-down factor is

obtained from Eq. (3.4.21).

= (n-l)+Y
2+ng

m (n-l)+Y + na

Finally, the percentile throughput is obtained from Eq. (3.4,22) as

155

6 -IZTf^'^
It should be noted that as (Y-l)/n approaches zero (either n-", i.e.,

an infinite number of memory units, or Y "*!, i.e., no memory cycle

interference) the effect .of memory cycle interference disappears.

Furthermore, the multiprogramming (processor) idle probability of this

dual processor system under this limit is C^/ZC = cr/(l-KT). Although

the multiprogramming (processor) idle probability of a (1; 1, n) con-

figuration system was also found to be CT/(1-K7) from Eq. (3.3.5) of the

previous section, the split system (q; 1, n) generally gives a larger

multiprogramming idle probability than Lae (combined) dual processor

(2q; 2, n) configuration system, under the no memory interference

condition mentioned above. Needless to say, this does not necessarily

mean that the (2q; 2, n) system is morr efficient than the (q; 2, n)

system; the comparison must be made in terms of perientile throughput

rather than multiprogramming idle probability.

156

3.5. Some Extensions

We have been concerned with the throughput of the multi-processor

multi-memory processing system under multiprogramming. In particular,

we have presented an analytical method to evaluate the throughput of a

single processor and a dual processor systems under multiprogramming.

In this section, we will give brief remarks on some extensions of the

results obtained in this chapter.

The : tudy of the system throughput of this chapter has been mainly

confined to the FCFS scheduling model; a brief investigation of the PP

(preemptive priority) scheduling model for a single processor system

left the value of the mtbpf of each process with a distinct priority

unspecified. It is perhaps possible to determine the values of these

mtbpfs and then evaluate the throughput of such a model, by assuming

that the processor time breakdown among eligible user processes is

proportional to the primary memory space usage breakdown among them.

Then, it would be possible to evaluate r.he performance gain of the PP

scheduling model over the FCFS scheduling model quantitatively, using

the macroscopic paging performance model of Section 2.5. As for the

dual processor system, even the analysis of the FCFS discipline model

was rather complicated. Inclusion of the PP scheduling would increase

the number of Markovian states of this model and necessarily complicate

its analysis. Therefore, no attempt to study the dual processor PP

scheduling model is made in this thesis.

Processing systems involving more than three processors have not

been considered. In order to examine the complexity of such systems,

*mf*s>~'
—————— . i

157

let us consider a general (q;ra,n) configuration system. Speaking of

memory cycle interference alone, there exist many kinds of memory cycle

interferences on this system, such as interference between two process-

ors, that among three processors,..., that among m processors.

Therefore, we must define a different Y (memory interference coefficient)

for each kind of memory cycle interference. Such a complicated formula-

tion of the problem, however, tends to reduce the mathematical tractabil-

ity, and therefore it seems necessary to consider the effect of meincry

cycle interference indirectly much like the effect of data-base lockout

on the (q; 2, n) configuration system was considered in this chapter.

Finally, let us briefly consider the optimization of the multi-

processor multi-memory processing system under multiprogramming, with

respect to the degree of multiprogramming. The method of evaluating the

system throughput developed in this chapter enables us to investigate

the effect of the degree (q) of multiprogramming upon the system through-

put of a given hardware configuration. If the system allows only a few

eligible user processes die percentile thtoughput would be small because

of relatively large multiprogramming idle time. On the contrary, if the

system allows too many eligible user processes the percentile throughput

would be again small because of relatively frequent paging overhead

execution. Therefore, we expect a modal curve for the percentile

throughput like the one shown in Figure 3-6; the percentile throughput

is maximized when the degree of multiprogramming has a certain value

(q*). This optimization will be carried out numerically in Chapter 5,

and therefore detailes will not be given in this section.

158

max

•

8 : percent lie throughput
when the degree of
multiprogramming is q

V__^

/
^\

J, q*-l

■^3

V+i"-

q*-l q* q*fl ...

degree of
multiprogramming

Figure 3-6 Percentile Throughput as a Function

of the Degree of Multiprogramming

„Sfc«

isl

CHAPTER 4

RESPONSE TIME ANALYSIS

4.1. Introduction

Now that a method to evaluate the throughput (or the percentile

throughput) of a multiprogrammed virtual-memory computer system of a

given multi-processor multi-memory configuration has bee*1 developed, we

shall proceed in this chapter to evaluate the response time experienced

by interactive users of such a time-shared computer system. From a

system manager's viewpoint efficient utilization of system resoirces,

or, more concretely, the maximization of the system throughput is most

Important. On the other hand, service of good quality such as fast

system response or high system reliability is most desirable from a

user's viewpoint. As will be described in this chapter, the system

response time and the system throughput are closely related. In fact,

the response time analysis of this chapter is firmly based on the

system's percentile throughput that was evaluated by the throughput

160

analysis of Chancer 3.

It will be seen that the maximization of the system throughput

generally leads to the minimization of the system response time.

Therefore, the computer system under study is assumed to be optimized

with respect to the degree (q) of multiprogramming; i.e.. the system is

under multiprogramming of degree q* (q= q*), where the percentile

throughput (or system throughput) of the system of a given configuration

is maximized by the throughput analysis of Chapter 3 when q is equal to

1* (see Figure 3-6). It is clear that if interactive users impoBe a

full load on the system the percentile throughput of the system (or

system throughput) is independent of the actual number of users (because

of the load leveling of the multiprograrani-g mechanism).

On the other hand, the response time is clearly an increasing

function of the number of users. Therefore, one may ask how many

interactive users can be supported by such an optimized computer system

without discouraging them with excessively slow system resnonses.

Scherr [S4] considered the problem of analyzing the oerformance of

a CTSS-like computer system and proposed a simple queuing model to

predict the average response time. Because the computer system under

study in this thesis is much more sophisticated, the modtl must reflect

those sophisticated features of the system such as paging, multi-

programming, etc. Therefore, we will extend the queuing model used in

Scherr's analysis in the following two directions. First, his model

(developed for uniprogramraed non-paging computer systems like the CTSS

system [C9]) will be generalized to multiprogrammed paging computer

161

systems. Second, In view of the fact that Interactive terminal uaers

are more concerned with something like the worst response time out of

ten trials rather than the average response time, the analysis to be

given In this chapter will derive a probability distribution of response

times. (Scherr derived only the average response time of a simpler

system.) Thas, we can evaluate the moment of any order (average.

variance, etc) of response times, and, perhaps more Importantly, we can

derive the percentile system response time. I.e., the time limit which

guarantees that a certain proportion of response tines Is shorter than

this limit (e.g., the 90 percentile system response time).

The analysis of this chapter makes It possible to express the

distribution of the response time of a multlprogranmed time-shared

virtual-memory computer system of a given configuration, as a function

of various system parameters such as

(1) the number of processors

(2) the percentile throughput 6 of the processing system

(3) the number of (Interactive) users

(4) think time of each user

(5) execution time required by each user's job

This Implies that It now becomes possible to determine the number of

interactive terminal users that can be supported by the optimized

computer system of a given hardware configuration with the assurance

that, for example, the 90 percentile system response time Is shorter

than five seconds.

I

162

4.2. Total System Model

Let us consider an m (isms») processor multlprogrammed virtual-

memory computer system optimized with respect to the degree of multi-

programming, with N Interactive terminal users. When this system Is in

operation, the existence of N Interactive users however does not assure

the existence of q* (q*=optlnum degree of multiprogramming) jobs that

can be multlprogrammed on the system. The actual number (q') ot jobs

(user processes) under multiprogramming may become smaller than q* from

time to time If the total number (N) ol Interactive users Is not large

enough to Impose a full load upon the system, as shown in Figure 4-1 (a)

Correspondingly, the actual percent lie throughput (0') should become

smaller than 6 (9 =optimized percent ile throughput) at least from

time to time, under the same loading condition. However, we do not

know exactly how 8' reacts to a sudden change of q1. If G' can almost

instantaneously react to a change of q* (the case of fast throughput

reaction), then 6' as a function of time appears like a step-wise

function for which the height of each step Is simply given by the steady-

state solution for 6 (the percent lie throughput when there exist q

eligible user processes) obtained In Chapter 3, as shown by the solid

line In Figure 4-1 (b); otherwise, 6' should show a humping curve as

shown by the broken line beside the step-wise solid line In the same

figure. If the reaction of 9* Is very slow (the case of slow through-

put reaction), 9' may be reasonably approximated by a constant function

(S6J, as shown by the horizontal line In Figure 4-1 (b); the value (height)

of this function may be given by the average of the percentlle through-

163

q*

LK

-^ t

(a) Number of User Pr >cesses under Multiprogramming

V U«^ 7

fa: t throughput reaction
 moc arate throughput reaction
 sic 7 throughput reaction

(b) Percentile Throug put

Figure 4-1 Sample Behavior of a Typical Computer System

164

put of the system in operation, which we call the effective percentile

throughput 9(N). That is to say,

where ni is th • probability that i user jobs are either waiting or being

serviced on the tctual processing system, T:Q is the probability that no

jobs are being serv.ced (i.e., the system is completely idle), and 6.

(1=1,2,...,q*, ...) is the percentile throughput of the system under

multiprogramming uf degree q =i . It should be noted that it. is a

function of N (the number of users) as veil as of other system parameters.

This means that the effective percentile throughput of the system under

multiprogramming is dependent on the number of users unlike that of the

system under uniprogramming. (9(N) will be often denoted simply as 6

hereafter.)

We shall approximate the behavior of a multi-processor processing

system of such an actual computer system with that of a hypothetical

multi-processor processing system of Figure 4-2, for which the system's

computational capacity can be fully utilized for users' useful work,

but its execution speed is 9 (O^Ssl) times as slow as the actual

processing system. We assume that each processor of the hypothetical

system services user jobs one by one up to completion, under the FCFS

scheduling discipline. A discussion on the possible modeling errors

will be collectively given later in this chapter and therefore that

is not our current concern.

Finally, in order to characterize the behavior of interactive

165

Actual System Hypothetical System

CPU 1

CPU 2
•

CPU m

<^>

CPU 1

CPU 2
•
i

CPU m

_.

throughput 6 x 10 $

speed 1

100

e

Figure 4-2 Tradeoff of Execution Speed and

Percentile Throughput

 __

- ■ HMB^BH

166

terminal users, we assume the following :

(1) A user's think time (Tj, i.e., the length of time required by

an interactive user to decide and request the next job from a

terminal, independently follows an exponential distribution with a

mean of T = 1/p..

-lit
f (t) = M e t^Q (4.2.2)

(2) The execution time (Te) of each user's job (excluding all the

system overhead times to be added) independently follows an expo-

nential distribution with a mean of T =1A , on the actual multi-

processor computer system.

"V
80(t) = X0e ts?0 (4.2.3)

Available measurement results of actual computer systems[e.g., S4]

indicate that both of these distributions are roughly exponential1.

Therefore, these two assumptions seem to be fairly reasonable. The

second assumption obviously implies that the execution time of each

user's job, when executed on the hypothetical system, follows an expo-

nential distribution with a mean of T /B= I/QXQ s 1/X. That is to say.

g (t) = Xe t ^0

where X = 9 \o '* (4.2.4) }

The effect of non-exponential distributions upon the response time

characteristics of a similar model is considered by Jaiswal[J2] and
D'Avanzo[D4].

167

Thus, the behavior of an actual multlprogratmned virtual-memory

computer system depicted in Figure 1-1 is now approximated with that of

the hypothetical system, called the total system model, like the one

shown in Figure 4-3.

168

1 —i CO

1 o

'O
1 "> <u u 4J
i o bD (U

m B i-H

1 m •H
B | 1 u C o

1 u 1 y

1 ^
1 B

j

(0

1 L 1 I —• adi

i-i

CD M
6 C

•H •H

B je
6

0) •■-I
H e
2

cy
«
9 >> i •o (0
3 CD J3
O" M o

••-1
A
o •o

>-J i
4-1
01
0)
3
(T
JB
h

g
CU

I

00
c

•H
00
CD

PL,

g
SB
T3

I
H
60

2

5
O

0)

u
(U

Ja
y
w

•H

(0
>!

OT
»•
il
4J
3 I
O

169

4.3. Analysis of the Model Behavior

It should be noted that the total system model developed in the

previous section is basically the multi-server machine repairman model

or an M/M/S1 queue with a finite population [C8,Fl,J2]. We shall

proceed to derive a response time distribution of the computer system

under study using the total system model, step by step, in this section.

4.3.1. Derivation of Queue Length Distribution

As the first step in deriving a response time distribution, this

section is concerned with the derivation of a distribution of the ^ueue

length, i.e., the number of user jobs either waiting or being serviced

(executed) on the processing system.

Noting, as before, that a state of the model is characterized by

the number of interactive users currently thinking, the number of inter-

active users (jobs) queuing in front of the hypothetical processing

system, and the number of interactive users (jobs) being serviced by

the processors (see Figure 4-3), let Si (O^N) denote a state of the

model where i user jobs requested by the corresponding i interactive

users are either being serviced or waiting for their turn to be serviced

^he first, second, and third components of this notation specify

respectively the type of the arrival process, the type of the service

process, and the number of servers of the queuing system. In this case,

both the arrival and service processes are Markovian (i.e., exponential)

and the queuing system has S servers.

170

on the processing system, i.e., the queue length is i. (We assume N to

be constant and that the service for one of the waiting user jobs starts

as soon as a processor becomes available.) Then, the behavior of this

stochastic process can be schematically described by a state transition

diagram shown in Figure 4-4. Because the effective execution speed of

the processors depends on the value of 9' (the "actual" percentile

throughput) at that moment, the rates \. (the rate with which one of the

user processes on the processing system completes its execution when

there exist i (l^i^N) user processes on the processing system) depends

on how 6' reacts to the changes of the actual number (q1) of user

processes under multiprogramming. Therefore, the rates X. are specified

for two cases, i.e., the case of fast throughput reaction and that of

slow throughput reaction, in Figure 4-4.

Now let it (O^i^N) be the steady-state probability of S.. Then,

the steady-state probabilities can be obtained [Fl] by solving

(N-i) ujt. = X. ,,«
i+1 i+1

OsiSN-1 (4.3.1)

N
under the condition En. »I. Thus, « is obtained by recursion, for the

i=0 1

case of slow throughput reaction, as follows:

*i * (i) P «0
Uism

where

m:(N-i)! i-m,Jl0 m

x ~ exo " er

V.N. 1 * N! . P1 " Jlo =
/■n(i)P +,r mJCN-l)!' i-m .i=0 i=m m

-1

* (4.3.2)

171

(N-mfl)|i

s v^ß-^v

nH-1

(Fast Throughput Reaction)

xrV(r V^V x3=3e3xo' ••• ' Sa^^O'

(Slow Throughput Reaction)

X^QWXQ, \2=2e(N)?i0. x3= 3e(#N) \0,

m m+1 - \- '» " --q-O- = ^ = me_\.

Figure 4-4 State Transition Diagram of the

Behavior of the Total System Model

172

Note that IK is the probability that one finds i user jobs either wait-

ing or being serviced on the processing system at a randomly chosen

instant after the system has operated for a long time. Therefore it
* i

gives a steady-state probability distribution of ths. queue length found

at a randomly chosen instant.

The analysis of the cese of fast throughput reaction is exactly

analogous to that of the above case, and therefore we will consider

only the case of slow throughput reaction hereafter.

"-W let Pi (O^isN) be the steady-state probability that an

arriving user job (one of the N users) finds i jobs either waiting or

being serviced on the processing system at the instant it joined the

job queue Q. In other words, Pi is the distribution of the queue length

at an arriving instant of a user job. Then, noting that the expected

number of arriving users who find exactly i user jobs ahead of themselves,

during a duration of time T, is given by (N - i)^« • T, we find that P

is expressed as

(N-i)|iit, T N-i
P = •«.
i N M n

E(N-J)nrt4T
N"Q

j=0 J

N
where Q = E j it.

j=0 2

(4.3.3)

It should be emphasized that P^^ is different from JT in nature; for

example, PN is zero because no user can request a new job when jobs of

all interactive users are either waiting or being serviced on the

processing system, while IT If obviously non-zero.

173

4.3.2. Derivation of Effective Percentile Throughput

Now it should be noted that the queue length distril atlons, it and

p., of the previous section involve e(N), as clear from Eq. (4.3.2),

whose value is still unknown because re. is not known (see Eq. (4.2.1)).

Therefore, we proceed to determine the value of G(N) in this section.

It is reasonable to expect that n (of the hypothetical system)

gives a fair estimate of n. (of the actual system) if 9(N) can be

accurately estimated. This argument suggests that one solve Eq. (4.3.2)

and

e(N) =|(Vtiei)+(^^i)
e

q*}/(1-V (4-3-4)

simultaneously. (K. of Eq. (4.2.1) was replaced by n , in Eq. (4.3.4).)

Therefore, we must solve these non-linear simultaneous equations.

However, if we note that any distribution of re. obtained from Eq. (4.3.2),

assuming a certain value fo - 9(N), gives an estimate of Ö(N) which is

bounded by 6, and 6 ., then we find that the value of 9(N) may be
 I. q*

iteratively determined, as flollows.

The analysis of this section is required only for the case of slow

throughput reaction.

174

Procedure to determine the value of 6(N)

Step 1 Set the variable B to 6 it, i.e., 6=6 *.

Step 2 Assuming that 9(N) = 6, evaluate n. using Eq. (4.3.2).

A / q*.l N . /
Step 3 Compute 6=.(I ntQt\+(Z n A 6 1/(1 - nn).

lVi=l l i; Vi=q* i; 'I/ 0

Step 4 If |6(N) - 9| •£ e. then go to the next step. Otherwise,

return to Step 2. (The value of e should be small enough

to assure the desired accuracy of the estimation.)

Step 3 6 thus obtained is an estimate of 6(N).

The initial overestlmatlon of e(N) in step 1 leads to the under-
N

estimation of T. JT. in step 2, which in turn leads to the underestimation
i=q* 1

of 6(N) in step 3. (See Figure 4-5) The condition of step 4 is usually

not satisfied and therefore we must return to step 2. The underestiraa-
N

tion of e(N) then leads to the overestimation of T. it in step 2 this
i=q*

time, which in turn leads to the overestimation of 6(N) in step 3. But

the overestimated value of e(N) is certainly smaller (closer to the e(N)

being estimated) than the initially overestimated value of 9(N), i.«.,

ö_#' Repeating this kind of oscillation around the value being estimated,

as shown in Figure 4-5, the value of e(N) can be determined by the

above iterative procedure. In deriving a numerical example to be

175

c
* o
as •-
a' (B

u
1*4 1)

O 4->
1-1

5^
«
£ C

«!•

>

V

0

8

M
■
>

-:

i

E

t- - _^^

176

given In Chapter 5, It was observed that 6 converges within several

iterations when e was chosen to be about 0.2 percent of e(N). If the

number of users (N) is large enough to impose a heavy load upon the

N

•yte«, then^n^ 1 and l-«^. Therefore, the above procedure

converges without need for iterations. It was furthermore observed

that the use of ei (rather than 9^) as the initial estimate for e(N)

In step 1 leads to the convergence to the same value of G. Therefore,

it Is felt that this iterative procedure uniquely determines the value

of e(N).

4.3.3. Derivation of Response Time Distribution

The system response time is generally defined as the time elapsed

between the receipt by the system of a user's specified Job request and

th« satisfaction of that request at the terminal. For our total system

model, we define the (system) response lime (T^) to be the total length

of time which is spent on the processing system by each user Job.

Therefore, the system response time consists of both the waiting cine

and the execution time of the Job.

Let p(Tr-t} and P(s) be the probability density of the system

response time and the corresponding Laplace transform. Then.

■ Ml ü -.,■■ ■

177

P(s) -\
J 0

P f T = t J e -st di

EP p{T -t| I jobs }e"8t]dt
J 0 U=0 >

iff")
= ^ pi 1 pfV'li Job8 le"8t dt (^.3.5)

where pfTr=t|i Jobs} denotes a conditional probability density of the

system response time given that 1 Jobs were found ahead of an arriving

Job on the processing system. Noting that the m-processor (Isms-)

processing system schedules arriving Jobs (whose execution times are

exponentially distributed) according to the FCFS discipline, we see that

Pf Tr-t| 1 Jobsje'^dt

\

1+1-m
f-»M ./-Li
\ s+mX/ V s+X /

Osi sm-l

ms 1 SN

(A.3.6)

where the first component. (^)l+l"m of the latter case represent,

the Laplace transform of the waiting time and the following second

component, (-^-). represents the Laplace transform of a Job's execu-

tion time. Substifuting Eq. (4.3.6) into Eq. (4.3.5), we get

1+1-m m-1/ . * f , s .i+l-m , x

(4.3.7a)

N-Q s+X

m-1 N-l
+ r / mX \

i . -m,

(4.3.7)

I

178

We can thus derive the k-th moment, E((Tr)
k), of the system response

time, using a well-known technique of differentiating P(s) and then

setting s to zero [H2I.

E((Tr)
k) = (.l)kiL±ÜÜL

ds |s=0
k = l, 2, 3,... (4.3.8)

In particular, the average response time is obtained as follows,

E(T) r

dP(s]
ds I 8=0

Nfiu /m-1
-4lt—*—]..
N-Q V i=0 i»(N-i-l)! / (8+X) 18=0

Nfn« /N-l

N-QU=mlmf(N-i.l)!mi"mls-hnx) }}

N!itn \ N-l/
+ ^ Z

i-m N-Q s+X i=mlm?(N-i-l)!m

I N-l

• (i+l-m)

(s+X)* Is-O

U-hnX/ (s+mX)' 8=0

N..0 / 1 fm-l
+ E i+l

N-Q V X /U=0 i!(N-i-l)! i=m(m!(N-x-r,! m
i-m+l

m-1
Z iL N

+ z ia:
i=0 i?(N-i)» i-m m!(N-i)!m i-m

m-1
Z

N-l
+ E

(4.3.9)

1=0 i!(N-i-l)f i^ m!(N-i-l)? i-m m 1 SmsN

Ttiis result agrees with Scherr's result [S4] if e(N) Hi . some

special cases of Eq. (4.3.9) may be worth mentioning.

179

E (Tr)

N

E
1=0

ipi

(N-l)t

N-l
E

i

1=0 (N-i-1)!

9

(m=l)

(4.3.10)

(n. = N)

Obviously, the result for ntN means that If a processor can always

start Its service for a user's job as soon as the job Is submitted by

an interactive user the average response time Is given by the average

execution time of the job.

Now we proceed to Invert P(8) to obtain the probability density

of the system response time p{ T « t }. Let

.l+l-m

V>-^ V>-3j V S-HHA I (4.3.11)

Then, we must Invert P^s) and P2(8) In order to Invert P(8) given by

Eq, (4.3.7). Denoting the inverse Laplace transform operator by X. ,

-fllV>I-rl(^]-X.-At t*0 (4.3.12)

Next, we perform a partial fraction expansion for P2(8) as the first

step to Invert P-U). assuming temporarily that m^l.

2y ' ' a+\ \s-hnXJ

s+\ s+mX (s+mX)' (s+mX) m/1

where ck (0*:k^i+l-m) are the unknown constants to be determined.

These constants are easily foand to be

180

=o "^»'j^L-x-^Ä)
i+l-m

i+1 (8-hnX)l+l-n,p2(8) II

-L<-i)J—"^rw)1*1-!
I 8=-mX JI (8+X)i+

. ..i+l-m

(m-l)■1",■ * Osjs i-m, m/i

Now, noting chat

L -1

(s+a) i

,k-l -at
t e

(k-1)! ■WS 1^ ^j Jf«,,

]

*

s

(4.3.14)

(4.3.15)

P2(8) specified by Eqs. (4.3.13) and (4.3.14) can be inverted.

= X
i+l-m l-m , ..i+l-m ^i-m-j -mXt

e-Xt_ E W .1 ^e (43 W)

J=0 (m-l)■,■,■1 XJ (i-m-j)» m^l

Using the results of Eqs. (4.3.12) and (4.3.16), the probability

density of the response time of the m-processor system (m ^ 1) is

obtained as follows:

— — -

181

p{Vt]

N'JT- /m-1
 2 E
N-Q I 1=0 1!(N-1-1)'

\e
•Xt

"'«a '•'(ti i.' - r1-.-^-1?fis^ir tl2^±j]

n.' 1 (4.3.17)

For the single proce.sor .y-te» (..X), Eq. (4.3.7) reduce, to

> (x \i+i i uo(''-1:
7 !-■ '-<— P L (N-l-D!

(4.3.18)

J-0
(N-T)

Therefore, the probability density of the response time of the single

processor system Is obtained, using Eq. (4.3.15), as follows:

-^ — - MMHfidiHiUMiiiikne—.-.. . — -„^i'iaätäiam • ---'--

182

P{Tr-t]

X-'1 [P(S)J

N-Q

j=o
(N-J)?

1=0 (N-i-D?

(4.3.19)

The probability distribution function. Pfl^t], of the system

response time can be obtained by integrating the probability den.ity

given by Eq. (4.3.17) or Eq. (4.3.19) fro. 0 to t. For ^1. notin8

first that

tJe-mUdt
J 0

-mXt J .. j-k ^
 l -AU
^ k=:0 (j-k)? (m\)

k

j! •mXt J J!t

■A (mX)J »^ k=0 k»(ni))J'k

the integration of Eq. (4.3.17) gives

j = l,2< (4.3.20)

 ■'^.«MMMMMi

mM—rnm

I
P{ T st } r

N-Q ' i=0 U '

183

■ /N!\ ra W-In P^l-e"^)

0 (N-m-l-i)! (m-1)
>R

mX/N!\ m ^'^ N-m-l

0 (N-m-l-i)»(m-l)

 1 J.]fm-l\j/. -mXt i .mXtik

Then, noting that

i„((-)" r (mAt)

k=0 k'

k \

JÜÜLZ
k=0 '

(4.3.21)

1
T. i

j=0

.1+l-J

\ m / \ . m «•
m-1 V

= m
fj ((m-l)u}J1
J=0 J' -(^l1

M

fi
(m-1)

(n\t)-

lH J' J,
(4.3.22)

the third (last) term of Eq. (4.3.21) becomes

N-m-l

N-QU'J
U
 i=< 1=0 ^(N-m-l-i)!(m-l)l+1 (N-m-l-i)!ml+1

i -mXt
P e i{(m-l)\t}J i -mXt

P e iönXt^

(N-m-l-i) •^m-?)i+1J=0 J! (N-m-l-i)!mi+1j=0 j!

(4.3.23)

.. m - .

184

Therefore, the probability distribution function of the syst

time for m/l is obtained as

system response

Pf T St }
r ■'

1-e •Xt
-— "0 N-Q

N'QV ' l=0l(N-m-l.i).m
i+1l j=0 J? /]

m /N»\ m N"m-V
Ä(5rJp n*0 -Q

where

P e

^(N-m-li)>(m-l) i+1
fl.#-<»-l)Xt ^{(m-l)Xt}->\]

^ J-0 J! //

(4.3.24)

'-<■ 1
N-Q fra-l ^T

N! E —
N-l

+ E
^UO i!(N-l-l)} i-mmKN-i-Dlm1"^

Form-l, the integration of Eq. (4.3.19) similarly gives

Pf Trs t }

m^l

 i ü /_M -Xt 1 n^-J \

(4.3.25)

i^ w-1-*)«

185

Thus, we have ucrived the expressions for the probability density

and the probability distribution function of tht response time of a

multiprogr^Timed multi-processor time-shared virtual-memory computer

system. The result of the probability distribution function of the

system response time enables us to evaluate the percentile response

time numerically, as will be carried out in Chapter 5.

Finally, the last part of this section presents two somewhat periph-

eral but relied results; a result of the response time distribution

:onditioned on « job's execution time and a result of the first-time

response time distribution (to be defined). Each of these results can

be obtained by a slight modification of the analysis of this section.

We have assumed un.il now that execution times of all user jobs are

only probabilistically (exponentially) known. Now we assume that the

execution time of a particular arriving job is completely known, but the

execution time of other user jobs already on the processing system are

only probabilistically known as above. Then, tie response time (T) to

be experienced by a user who has requested a job requiring an execution

time of T seconds (excluding all the overhead times to be added) Is

given by the sum of the waiting time (T) In the job queue Q and Its ovn

execution time T . Letting the Laplace transform of the waiting time T
• w

be Pw(8). we have (see Eqs. (4.3.5),(4.3.6),and (4.3.7)) therefore the

following expression.

■-—' ■--

186

■):
VS) :: 1. PfTw=t}e-8tdt

N
= E

i=0 ■J>v t|i Jobs }e'8tdt

■2(?J,"4<t)'*,td'j+ i^l/1 V'U ^.j.-'dtj
m-1 N

= Z P. + E p f-2L\
1=0 i !=„, iU-hnX;

i-m+1

(4.3.26)

where 6(t) Is a delta function at t=0. Using Eq. (4.3.15), this can

be readily inverted as follows:

p{Vt}

m-1 N
(E P)6(t) + E P (m\)

1=0 l=m

l-m+l t e
(l-m)!

N-Q lito l!<N-i-l>!/ N-Q In.!/ 0^0 (N-m-t-DH!

(4.3.27)

Therefore, the probability density of the system response time

conditioned on a job's execution time, p{T =t |T }, Is given by

187

p{ T =t| T } rv r ' e

= p{T =t-T }

N-Q luo1'^-1-0'/ e N-Q [m- 3^ (N-m-l-i)! i!

(4.3.28)

Thus, if the execution time of a job is known in advance, the results

given by Eqs. (4.3.17) and (4.3.19) must be modified, as given by

Eq. (4.3.28). The corresponding probability distribution function and

its moments can be easily obtained from the above result.

We have be<m concerned with the response time to he experienced by

each of N interactive terminal users who are currently using the time-

shared computer system. One may ask a question about the system

response time to be experienced by a new user who is about to Join the

existing N user population by typing the "login" comnand at his terminal.

This first-time response time should be slightly different from the one

with which we have been concerned because such a new user Joins the

system independently of the system state (e.g., the number of queuing

users). Let T . (i.e., T =T J be the execution time (excluding all
el ' e el

the overhead times to be added) of the "login" command. Then, noting

this new user's random arrival to the system, we see that the Laplace

transform P (s) of the probability density of the waiting time Tw

experienced by this user is given by Eq. (4.3.26) with P1 replaced by,^.

188

Therefore, the probability density of the response time to be experienced

by the login mmmand, p{T (login) = 11 T .], is obtained as follows:

p[Tr(login) = t |TeX}

p{Tw(login) = t-Teje]

(4.3.29)

Thus, the probability density of the first-time response time has been

obtained. The corresponding probability distribution function and its

moments can be readily derived from the above result.

4.3.4. Relationship with an Infinite Population Model

In developing queuing models for time-shared computer systems,

one must make a fundamental choir« between the use of an infinite or

finite population model. It is clearly stated in [M3] that the finite

population model is much more appropriate as a model of time-shared

computer systems. The basic difference resulting from the size of the

population consists in the fact that the arrival rate of the finite

population model is dependent on the state of the system (e.g., the

number of queuing users) while the arrival rate of the infinite

population model is not; the arrival rate of the finite population model

increases (decreases) if the number of queuing users decreases

189

(Increases), showing the existence of a negative feedback mechanism to

stabilize the number of queuing users, but the arrival rate of the

infinite population model is always constant. In view of the fact that

the infinite population model is however oftt used in modeling computer

systems, we will make a brief remark about the relationship of these

two kinds of models in this section.

We will particularly discuss the relationship between the M/M/m

queue with N users with which we have been concerned and the M/M/m queue

with an infinite population [C8,F1] whose arrival rate is ^(a constant),

For such an infinite populstion model, the steady-state probability P(i)

of finding i jobs on the system at the instant that a new job joins the

waiting queue is obtained [C8,Fl] as

P(i) =

where

— P(0)

»■ m» m!m
i-m

P(0)

1 s i ^m

m s i < oo

p = ^0/X, P(0) =
/m-1 p V mp

I iJo TT '+ m!(m-p)

(4.3.30)

It can be easily shown [Fl] that as N-oo and n-»O in our finite

population model in such a way that N^i remains a constant ^ IU given

by Eq. (4.3.2) approaches P(i) given by Eq. (4.3.30). But for the series

I(P(i)/P(0)) to converge we must have

-JL = "utilization"< 1
m\

(4.3.31)

Noting that Q is finite under this condition.

190

N-l
lim P = lim——ni a iim jt a p(i) (4.3.32)
^-00 N-,,» N-Q N ,„
^i - 0 M-0 M-o

Therefore, both P. and n. approaches P(i) as N-« and ^-0 under the

constraint N^^. This implies that the system response time obtained

for the finite population model approaches the system response time of

the infinite population model, under this limit. For example, the

probability density of the system response time given by Eq. (4.3.19)

approaches the corresponding solution of the infinite population model,

i.e.,

p[Tr=t } = U-^e-^O^ t>o (4.3.33)

In the case of the infinite population model, the system response time

is exponentially distributed, as above. In contrast, the probability

density of the system response time obtained using the finite population

model of this section (see Eqs. (4.3.17) and (4.3.19) will be numerically

found in Chapter 5 to be much closer to a normal distribution density

if the number (N) of interactive users is large. This tendency, usually

observed on actual computer systems [S6], is a result of the finiteness

of the user population.

191

4.4. Some Remarks on Modeling Errors

We will finish the response time analysis of the multiprogramned

time-shared computer system by examining the modeling errors which may

be introduced to this analysis. Looking back at what we have been

doing, we have developed a queuing theoretic model of the Cümp'ster

system whose characteristics were specified in Section 4.2 and have

analyzed the behavior of such a model to investigate the system response

time of the computer system under study. We will not consider what

happens if a given (actual) system is slightly different from the one

considered in Section 4.2 (the reader who is interested in this subject

should read D'Avanzo [D4]), but will be concerned with the errors

possibly introduced in approximating such an actual computer system

with our queuing model called the total system model.

We will particularly discuss three approximations being used in the

analysis. The first one is the approximation to use the hypothetical

system, of Figure 4-2, whose execution speed is traded for the percentile

2
throughput. As stated in the previous chapter, (1-6) x10 percent of

the computational capacity of the actual computer system cannot be

utilized for users' useful computation; this proportion cf the system's

capacity is wasted either by the system overhead operations or by

processor idle time. If the length of each burst of these wastages is

comparable to the length of the execution time G£ each job, then the

speed-capacity tradeoff will not give a good approximation. (Consider

the variance of the system response time, for example.) But fortunately.

on actual computer systems, these wastages (e.g.. paging overhead)

usually have much shorter lengths than the job execution times and

192

moreover tend to occur uniformly in time. Therefore, this approximation

doeo not seem to introduce a significant error in the analysis.

The second approximation consists in the use of the effective

psrcentile throughput 8(H). Basically, the variable 6 system (actual

system) is approximated by the constant 6 system. This implies that if

6' of the actual system (N= fixed) varies very much in time this approx-

imation tends to underestimate, for example, the 90 percentile response

time. If that is the case, the use of ei for 8(N), i.e., the use of the

largest lower bound for 6(10, will give a good upper bound estimate of

the 90 percmtile response time. This kind of underestimation may be

significant especially in the medium load range of N because of relative-

ly frequent fluctuations of 8' (see Figure 4-1); the estimated 90

percentile response time of the heavy load or the light load range of

N tends to be accurate.

The third approximation consists in the fact that uier jobs are

executed up to completion under the FCFS discipline on the hypothetical

system while the jobs are not executed strictly in this way on an actual

multiprogrammed system using demand paging even if all the scheduling

disciplines (the ones associated with the memory queue and the processor

queue) are FCFS. To see this, consider a situation where a large job

and a small job enter the processor queue respectively at time t and

t+At. It is very likely that the small job which arrived at the process-

ing system later than the large one will be completed earlier than the

large one, because the small one is likely to demand a smaller number

of missing-pages than the other. This means that a job which arrives

at the system later than another can be completed earlier or the actual

193

«.ltlProgr«md system under study. Therefore, we must consider the

effect of this kind of favoritism for short jobs upon the system

response time. The average response time is not affected because the

execution time is assumed to follow the (memoryless) exponential distri-

bution, but its variance or 90 percentile response time is. The

variance of the system response time 5s basically proportional to the

sum of the variances of job execution times because execution times are

assumed to be independent of each other. Considering that if the system

is under a heavy load the number of multiprogrammed jobs is constant (q*)

but the number of jobs waiting in the memory queue varies in time, we

see that the variance of the response time of the system under a heavy

load is determined mainly by the varying number of the jobs in theFCFS

memory queue. Therefore, this argument suggests that the 90 percentile

system response time tends to be accurate as the number of jobs queuing

on the processing system increases, on the contrary, if there are only

^derate number of jobs on the processing system , the variance of the

response time would be affected by the favoritism for short jobs; the

variance (or 90 percentile response time) predicted by the total system

model is somewhat smaller (shorter) than that of the corresponding

actual system because the genuine FCFS scheduling discipline, used in

the model, is kno^ to attain the smallest variance of response times

[C7]

1

7^

CHAPTER

MODEL VALIDATION, PERFORMANCE PREDICTION AND

OPTIMIZATION, AND CONFIGURATION SELECTION

5.1. Introduction

We have finished the development and analyses of all the hier.rchi.

cally organized modular models shown in Figure 1-4 that we intended to

describe in this the.is. It is time to examine the validity of these

models and to consider if the performance questions raised in Table 1.1

of Chapter 1 can be answered by a series of these analyses given in

Chapters 2, 3, and 4.

We will first examine the validity of the processor model and the

total system model by comparing the system performance predicted by

these .two models and the available statistics of an actual computer

system, the Multics system of M.I.T. This validity examination of the

models is intended to present a rough idea about the accuracy of the

system performance that can be predicted by these models. Then, noting

that the performance questions of Table 1.1 can be classified into

195

performance prediction problems (the second through the fifth questions),

performance optimization problems (the sixth through the eighth

questions), and a configuration selection problem (the first queF'cion),

we shall proceed to consider each class of problems quantitatively one

by one.

195

5.2. Model Validation

In this section, the validity of the models developed in the

preceeding chapters will be examined by comparing the performance of an

actual large-scale time-shared computer system, the Multics system of

M.I.T. [C10,C121, with the performance result that can be obtained

using these models. The instrumentation used in the development of

the Multics system and the performance statistics obtained from this

running system \tfll hr first described and then the details of the

statistical results will be presented.

5.2.1. Instrumentation and Multics Performance

The Multics system is a large-scale time-shared computer system

developed as a cooperative effort involving the Bell Telephone

Laboratories (from 1965 to 1969), the computer department of the

General Electric Company (subsequently acquired by Honeywell Information

Systems Inc.), and Project MAC of M.I.T. The system has all the

features of modern large-scale time-shared computer systems such as

paging, segmentation, multiprogramming, multi-processing, memory

hierarchy, and so on.

The current standard configuration of the Multics processing

system at M.I.T. includes two processors, three primary memory units

(128 k thirty-six bit words per unit) and the secondary memory system

consisting of drum and disk memories, with five or six eligible user

processes under multiprogramming (see Figure 5-1). Occasionally, a

processor, a primary memory unit, and/or some part of secondary memory

197

c
o

3
oo

eg 0)
F 0

0) "^. >
4-1 M 0)
X Q

M

§

00
c

•I-l

to
to
(U
u
o
u

PH

to
u

ID
U

•H

u
01

^-1
o
M

G 4J
3 c
^ o o u

>> rH
u 1

m
3 £
M 0) v
n £ 3

00

l-i M 0)
10 O t^
E E O

•H 0) U

TO >-,
•O U
q Q
O E
u (U
0) je

CO

198

is reiroved from the servicing system, for maintenance or to create

another system for debugging a new version of the operating system [C12].

Therefore, the Multics system has been runninS with one of the following

hardware configurations during the past year.

(1) large-scale configuration ... standard configuration1

(two-processor three-primary-memory-unit system)

(2) medium-scale configuration

(one-processor three-primary-memory-unit system)

(3) small-scale configuration

(one-processor two-primary-memory-unit system)

In this way, every effort has been made to support the continued opera-

tion of ihe system.

Early in the design stage of this system, it was felt that the

cost of maintaining well-organ^d instrumentation can be made low and

the payoff in being able to "look at the meters" any time a performance

problem is suspected is very high. This initial conviction resulted in

a comprehensive set of system metering commands that can be used from

any terminal [S2] and the use of a DEC PDP-8 system as a peripheral

computer to test and monitor the operation of the Multics system [03,04].

The metering commands have proved to be extremely useful in measuring

the paging performance of programs, the secondary memory performance,

the processor time usage (among various system overhead times, idle

Whenever there was not a need to reduce the configuration, this

standard configuration of the Multics system has been used.

199

times, and users' useful computation time), and user behavior character-

istics. The use of the PDP-8 computer as a simulator of interactive

users [G3] has provided system developers with a convenient tool to

test the performance of a newly installed version of the operating

system; a standard benchmark (or a series of commands interspersed by

think times representing a typical debugging user process) has been run

from time to time during the past four years to measure the execution

time, the paging performance, and the response time of each command

included in the benchmark. Thus, these tools have enabled system

analysts to obtain the operational statistics of the Multics performance

which are essential in improving the succeeding versions of the operating

system.

Many performance statistics concerning the Multics system have

been accumulated using these measurement tools. Three sample results

each representing the performance of a different hardware configuration

were randomly chosen from these performance statistics to show the

typical performance of each of these three hardware configurations.

These sample results are given in Table 5-1. toch sample result was

collected from the system during a thirty-minute session eitho.r in the

morning or afternoon of a normal working day when the system was

operating normally and was fully loaded with interactive terminal users.

Although the numbers given in Table 5-1 are subject to statistical

fluctuations, it is felt that they are representative f typical

performance of the Multics system and that they can be used for the

purpose of examining the validity of the models developed in this theels.

200

Table 5-1 Typical Performance of the Multlcs System

under a Full Load

Configuration

average number of
eligible processes

mtbpf

mpf L

(msec)

(msec)

Small

1 CPU
2 PM units

Medium

•1 CPU
3 PM units

Large

2 CPUs
3 PM units

mean paging overhead
time (msec)

• processor tTmeTreäkdöwiT,
multiprogramming idle

memory interference idle

paging overhead

miscellaneous overhead

users' useful computation

number of users

tresponse time characteiTticsi
average queue length

average response time to
the PDP8 user simulator

(sec)

5.7

16.5

32.4

5.4

2.9 1

0

28.7

16.6

51.8

5.3

29.7

33.2

6.1

1.8 X

0

18.4

15.9

63.9

5.6

31.9

30.9

9.0

8.8 X

5.7

2?.9

12.6

49.9

41

16.7

not measured

43

14.9

7.9

48

14.9

6.0

July 1971

201

Using • tec of metering CO——to, the mean paging overhead times

(all the supervisory operations necessitated by * page fault are includ-

ed) of a single processor system and a dual processor system are

respectively found to be approximuely 6 and 9 milliseconds long. On

the other h.nd, the value of the miscellaneous overhead coefficient (Ö)

is found to be between 0.2 and 0.35, with a typical value of 0.23. The

average think time of interactive users Is found to vary from session

to session (e.g., 12 to 35 seconds), but it is typically 15 to 25

seconds long. These numbers represent shorter think times than observed

for the CTSS system by Scherr (S4). The average execution time required

by an interactive Job (excluding all the overhead tiroes to be added) is

roughly 400 milliseconds long.

In a special measurement of multi-processor interference, it was

found that if two processors direct their accesses to a particular

primary memory unit at all times the execution time of a typical

program is stretched by about twenty percent. This means tnat the

value of the memory interference coefficient of the Multics system is

approximately 1.2, i.e., Val.2. On the other hand, it has been

generilly observed on the large-scale configuration (with three primary

memory units) under a heavy load that the system typically loses 5 to 6

percent of each processor's processing tine because of memory cycle

Host of the increase of the paging overhead time on a dual processor

system is due to the data-base lockout. As described in Table 3-1 of

Chapter 3, the data-base lockout is frequent enough to prolong signifi-

cantly program execution time only in the pa^e fault processing.

202

interference and another 5 to 6 percent of each processor's processing

time because of data base lockout. Most of the loss due to data-base

lockout is being caused by the lockout of the page table.

5.2.2. Validation of Processor Mode'

In this section, we examine the vilidity of the processor model of

Chapter 3 by comparing the performance of the above three configurations

of the Multics system to be predicted by the processor model and the

actual performance of the same system summarized in Table 5-i.

For this purpose, a program was written in PL/I to derive the

performance of the processing system under investigation using the

processor model. We call this progran the throughput analysis program

and it is included in Appendix A together with an explanation about

how to use it and a sample console session using thf program. This

program derives the processor time bn-akdown into various system over-

head times, idle times, and users' useful computation time (i.e.,

percentile throughput), upon specificition of the configuration of the

processing system under study.

In predicting the performance of each of the above three hardware

configuration of the Multics system, all the input parameters (except

the degree of multiprogramming) were set fairly close to the cDrrespond-

ing measured values given in Table 5-1. The degree of multiprogramming

This observation will be found consistent with the above measurement

result, '¥=1.2, numerically in Section 5.2.2.

203

was then changed to see the effect on the resulting processor time

breakdown. The result is shown in Table 5-2 (a), (b) and (c). It is

clearly seen that as the degree of multiprogramming approaches the

measured value of the average number of eligible processes of Table 5-1

the resulting processor time breakdown becomes very similar to the

measured processor time breakdown of Table 5-1. The closest result

analytically obtained for each configuration is enclosed by a broken

line in Table 5-2. For example, it is seen that the processor time

breakdown of the small-scale configuration predicted by the processor

model becomes very close to the measured performance of this configura-

tion given in Table 5-1 when the degree of multiprogramming is fixed

at either 5 or 6. The performance of the two-processor configuration

(i.e., the large-s:;ale configuration) is also predicted fairly accurate-

ly by the processor model, as seen in Table 5-2 (c).

As a result of comparing the predicted performance of Table 5-2

and the actually measured performance of the Multics system, we conclude

that the processor model can be used as a practical tool of performince

prediction despite its simplified abstraction of complex structure of

actual computer systems (see Section 1.6).

5.2.3. Validation of Total System Model

In this section, we examine the validity of the total system

model developed in Chapter 4 by comparing the performance of the three

configurations of the. Multics system to be predicted by the total

system model and the actual performance of the corresponding configura-

204

Table 5-2 Validation of the Processor Model

(a) one-processor two-primary-memory-unit configuration, i.e.,
small-scale configuration

degree of multiprogramming 2 3 4 "5 6

multiprogramming idle 39.4 20.5 9.2 3.5 i.i :
memory interference idle 0 0 0 0 o ;
paging overhead 19.8 26.0 2V.7 31.6 32.4
miscellaneous overhead 9.9 13.0 14.8 15.7 16,1
users' useful computation 30.9 40.5 46.3 49.2 50.4 :

mtbpf = 16.5 msec, mpft = 32 .4 msec, t =5.4 msec, 6=0.32

(b) one-processor three-primary-memory-unit configuration, i.e.,
medium-scale configuration

degree of multiprogramming

multiprogramming idle
memory interference idle
paging overhead
miscellaneous overhead
users' useful computation

53.8
0

9.4
7.4

29.4

23.9
0

15.5
12.1
48.5

8.5
0

18.6
14.6
58.3

2.4
0

19.8
15.5
62.2

0.6
0

20.2
15.8
63.4

mtbpf = 30 msec, mpft = 35 msec, t .=6.1 msec, 6=0.25

(c) two-processor three-primary-memory-unit configuration, i.e.,
large-scale configuration

degree of multiprogramming

multiprogramming idle
memory interference idle
paging overhead
miscellaneous overhead
users' useful computation

74.6
0

7.2
3.6

14.6

48.4
1.7

14.1
7.2

28.7

27.2
3.5

19.6
10.0
39.8

' 4 5

: i3.o 5.2
: 4.9 5.7
; 23.2 25.1
11.8 12.8
47.2 51.2

mtbpf = 31.9 msec, mpft = 30.9 msec, K,t , = 9 msec, 6 = 0.25, Y=1.2.
p = 0.1* ^ P1

It has been numerically found that the resulting performance is rather
insensitive to a particular set of values of t and p if t /p=mtbpf
is constan' (see Faction 3.4.1). Therefore, tfte value of p^as arbitrar-
ily chosen to be 0.1. (An explanation of these input variables can 'ce
found, for example, in Appendix A.)

205

tions summarized in Table 5-1.

For this purpose, a program was written in PL/I to evaluate the

response time characteristics of the entire computer system under

investigation using the total system model. We call this prDgram the

response time analysis program and it is induced in Appendix B together

with an explanation about how to use it and a sample console session

using the program. The program has two phases: the first phase which

determines the effective percentile throughput and the second phase

which derives the resulting response time distribution.

Unfortunately, all of the data required to validate the entire

total system model is not available on the Multics system. For instance,

a response time distribution is not measured on the Multics system; one

of the metering commands is capable of measuring only the average queue

length as an indicator of the average system response time experienced

by a population of interactive users. On the other hand, the PDP-8

user sirairlator can measure the response time distribution for a

particular benchmark. Therefore, the average response time measured by

the user simulator represents the average response time experienced by

a population of all users only roughly. As for the input parameters

needed by the response time analysis program, the values of 6 (percen-

tile throughput of the system under ^iltiprogramming of degree q(leqfiq*))

are not all measured; only the value of 6(N) can be measured by a meter-

ing command (note that 6(10^9 * under a heavy user load). Therefore,

we can at best examine the validity of the latter phase of the total

system model partially.

In predicting the response time characteristics of each of those

206

three hardware configurations of the Multics system, the actual values

of the percentile throughput and the number of users were supplied as

input parameters to the response time analysis program. The average

execution time needed for useful computation of a user's job was chosen

to be 400 milliseconds long. The average think time of users was

changed to see the effect upon the resulting average queue length (of

user jobs) and average response time, for each of the above hardware

configurations. The result is shown in Table 5-3 (a), (b), and (c).

The predicted performance which is closest to the actual performance

given in Table 5-1 is enclosed by a broken line for each configuration.

It is observed that a close match between the predicted performance and

the actual performance is obtained when the average think time of users

is chosen to be 14 to 20 seconds long. This result of user think time

is consistent with a general observation that the typical think time of

the Multics system is approximately 15 to 25 seconds long. However,

unavailability of a metering command for the measurement of users' think

time for each experiment prevents us from examining more details of the

validity of the total system model.

207

Table 5-3 Validation of the Total System Model

(a) one-prncersor two-primary-memory-unit configuration, i.e.,

small-scale configuration.

average think time
(sec)

16 ! 18 20 ; 22

average queue length

average response time
(sec)

20.3 I 17.7 15.1 ; 12.7

15.7 1 13.7 11.7 ; 9.8

percentile throughput=51.8 % , average execution time of a job =0.4 sec,

number of users =41.

(b) one-processor three-primary-memory-unit configuration, i.e.,

medium-scale configuration.

average think time
 (sec)

average queue length

average response time
 (sec)

16

17.5

10.9

22

8.9

5.7

percentile throughput=63.9 % , average execution time of a job =0.4 sec,

number of users = 43.

(c) two-processor irhree-primarv memory-unit configuration, i.e.,

large-scale configuration.

average think time
 (sec)

average queue length

average response time
 (sec)

14 16

13.3 i

5.4 !

9.4

3.9

18 20

6.6

2.f>

4.8

2.2

percentile throughput=49.9 % , average execution time of a job =0.4 sec,

number of users = 48.

208

5.3. Performance Prediction

It is now fairly reasonable to expect that the models developed in

this thesis »an serve as a practical tool to predict the performance of

a system in question whose configuration is specified. Therefore^

we shall proceed to use these models in evaluating the effect of several

important system parameters upon the processor time breakdown and the

system response time.

5.3.1. Effect of System Parameters upon ThrouRhput

In this section, we consider the probelm of improving the percen-

tile throughput of the large-scale (standard) config' ration of the

Multics system, i.e., the two-processor three-primary-memory-unit

configuration, as an example of investigating the effects of several

important system parameters upon its percentile throughput. We assume,

as our starting point, that the percentile throughput of this configura-

tion (under multiprogramming of degree 4) is 47.2 percent, as shown in

Table 5-2 (c). For the sake of simplicity, we do not change the degree

of multiprogramming in this section.

There are several possible approaches to improve the percentile

throughput of this configuration. For example,

(a) Addition of one more 128 kword primary memory unit

(b) Enhancement of secondary memory speed

(c) Reduction of system overhead time

Approach (a) aims to increase the mtbpf of user processes under multi-

209

progrannning by increasing the amount of primary memory available to

each eligible user process. The resident Multics supervisor programs

(including the I/O buffer, the memory space required by the page table,

etc.) occupy approximately 90 kwords of primary memory space. Then,

using the linear paging model of Section 2.5.2., we can roughly expect

the m.'.bpf to become about 45 milliseconds long if 128 k words are added

to the current 384 kword primary memory. The longer mtbpf naturally

decreases the percentage of both multiprogramming idle time and paging

overhead time, and therefore increases the percentile throughput.

Approach (b) also aims to reduce the mu1tiprogramming idle time, by

having a shorter mpft. It is similarly possible to improve the percen-

tile throughput of the system. The shorter mpft is usually attained by

replacing the existing secondary memory device by a faster device.

Another way which is applicable to a rotating device like a drum is to

create multiple copies of each file on the device; the first copy access-

ed by the device head is read and transferred to primary memory, saving

some part of the device's access time. We assume that the current mpft

can be somehow halved.

On the other hand, approach (c) aims to increase the percentile

throughput not by decreasing the multiprogramming idle time as in the

above two approaches but by reducing the system overhead time; the

multiprogramming idle time will not be affected in this approach. We

1By creating multiple copies on the device we decrease the memory space

of the device. This time-space tradeoff approach is being tested on the

Multics drum for the purpose of reducing the mpft of the secondary memory system.

210

assume that the slow-down factor (K) due to data-base lockout can be

reduced frcn (the current value of) 1,5 to 1.2 by shortening each lock-

ing period of shared writable data-bases; this means that the mean

paging overhead time (K.t .) would be approximately 7 (^1.2x6) milli-

seconds long. The shorter mean paging overhead time may also be attain-

ed by reprogramming the page fault handler. Furthermore, we assume that

the miscellaneous overhead coefficient (Ä) can be reduced from the

current value (0.25) to 0.2 by reprogramming the miscellaneous fault

handlers.

The system performance resulting f.-om each of these three approaches

was then evaluated using the throughput analysis program. The result is

summarized in Table 5-4. The expected change in processor time usage is

clearly seen in each approach. It should be noted that approach (r.) attains

a nearly 10 percent improvement in percentile throughput (really a relative

improvement of about 20 percent), while other approaches attain a 5 to

6 percent improvement. Howe'er, approach (a) may involve the highest

cost; the decision of choofing the right approach must be made in

consideration of the cost-performance. This aspect of configuration

selection will be discussed later in Section 5.5.

Finally, it should be mentioned that there are other approaches to

improve the system throughput. One could divide the primary memory into

smaller memory units in order to decrease the percentage of memory

interference idle time; the effect of having more memory units is seen

even in approach (a) where the number of memory units is increased only

by one. Another approach may be to add another processor to the exist-

ing processing system. The more attractive approach which does not

211

Table 5-4 Alternative Approaches to Improve System Throughput

Configuration Current
System

Approach

(a)

Approach

(b)

Approach

(c)

No. of Processors 2 2 2 2

No. of PM units 3 4 3 3

Degree of Multiprogramming 4 4 4 4

mtbpf (msec) 31.9 45.0 31.9 31.9

mpft (msec) 30.9 30.9 15.5 30.9

Mean Paging Overhead Time
(msec)

Misc. Overhead Coeff.

9

0.25

9

0.25

9

0.25

7

0.20

Memory Interference Coeff. 1.2 1.2 1.2 1.2

* processor time usage *

Multiprogramming Tdle 13.0 % 7.0 % 3.2 % 13.0 %

Memory Interference Idle 4.9 4.2 5.9 4.9

Paging Overhead 23.2 17.8 25.7 18.0

Miscellaneous Overhead 11.8 14.2 13.1 10.7

Users' Useful Computation 47.2 56.9 52.2 53.4

212

involve any increase of system cost is to optimize the degree of multi-

programming. This will be studied in detail in Section 5.4.1.

5.3.2. Effect of Percentile Throughput upon Response TimP

In this section, we examine the quantitative effect" of the percen-

tile throughput upon the response time characteristics of a systen so

that we can determine the number of interactive users that can be

supported by the system with a given configuration.

First, in order to present a rough idea about the response time

characteristics, we evaluate only the average response times of the

three configurations of the Multics system., for the range of the number

of users that impose a heavy load upon the system. For this purpose, we

need to specify only the value of the optimized percentile throughput

<eq*>
of each configuration. We assume therefore that the small-scale,

the medium-scale, and the large-scale configurations of the Multics

system have respectively the optimized percentile throughputs of 50, 65,

and 50 percent. Then, noting that e(N) - 6^ in the above range of the

number of users (see Section 4.3.2.), the average response, time can be

obtained by Eq. (4.3.9). As shown in Figure 5-7. the result shows that

the average response time (T^ increases almost linearly with the

number (N) of users. In fact, the asymptote for the average response

time can be directly obtained from the result derived by Scherr [S4] for

his simpler model, as follows:

T
T - JL . -1.. f r m eq* t

213

average
response
time

medium-scale
configuration

large-scale
configuration

N
70 80

number of users

Figure 5-2 Effect of Percentile Throughput upon Average Response Time

The broken line part of each curve represents a lower-bound estimate of

the average response time. Without specifying the values of eq for all

q (l*q*q*). the average reponse time cannot be accurately determined

for the medium or light load range of N.

214

where m, Te> and f^ are respectively the number of processors, the

average execution time of each user's job (excluding all the system

overhead times), and the average think time of each terminal user. It

must be noted that the slope of the asymptote Is inversely proportional

to the optimized percentlle throuEhput. This means that maximization

of optimized percentlle throughput leads to minimization of ihe average

response time.

Next, we proceed to evaluate the distribution of response time for

the entire range of the number of users. For this purpose, we need to

specify all the values of eq ;! Sqsq*) of the system under study. As

an example, we consider the medium-scale configuration ->{ the Multlcs

system, assuming that

q* = 4

(ei' V S' V = (0-55' 0'63' 0-65' 0-65)
T = 0.4 seconds. T = 20 seconds. e t

Then, using the first phase of the response time analysis program, the

effective percentlle throughput e(N) was calculated, as shown In Table

5-5. It is seen ü at GCN)3^ under a light load, but as interactive

users begin to impose a heavier load upon the system e(N) gradually

ayptoaches 6^. in Figure 5-3, the average. 10, and 90 pticentlle

response times obtalnei using the second phase of the response analysis

program are shown as a function of the number of Interactive users. It

Is observed In this example that the 90 percentlle response time Is

about twice as long as the corresponding average response time. If 90

percentlle response time most be kept under ten seconds, the medium-

215

Table 5-5 Predicted Effective Percent 11« Throughput

Number of Users
N

I 10 20 30 40 50

Effective
Percent lie
Throughput e(N)

.550 .576 .604 .629 .645 .650

LS
sec

Response Time

medluin-»C8ie
configuration

to

10
-L

20
-U. N

30 40 50

Number of l'«»er8

Figure 5-3 Average, 10, 90 Percent lie Respcnse Times

216

scale Multics configuration can supoort at most 39 Interactive users1.

Finally, the probability density and the probability distribution

function obtained by the response time analysis program are shown re-

spectively in Figures 5-4 and 5-5. Figure 5-4 clearly shows that the

probability density gradually flattens out as the number of interactive

users increases; if the number of users; is very small (e.g., ten users)

the response time distribution is similar to the distribution of a job's

execution time (i.e., an exponential distribution) in shape, but if the

number of users is large enough to impose a heavy loac' upon the system

(e.g., fifty users) the response time distribution is more like a normal

distribution. This tendency of the response time distribution of the

Multics system has been actually measured by the PDP-8 user simulator

also. Figure 5-5 gives the percentile response times for each value of

the number (N) of ustrs. For example, it is seen that if the system

has 40 interactive users 80 percent of the response times fall between

1.4 seconds and 10.2 seconds (or below 8.5 seconds) with 5.1 seconds as

a median. These results predicted by the response time analysis are

generally consistent with the casually observed performance of the

Multics system.

The actual system of th configuration currently (1971-72) supports up

to 45 users. But these numbers may change with time as the system

characteristics change.

21/

ii
H

e

tn
C

<U

n

i
in

•r-l

vß in CM

i.

(0

E

0)
m
c
o
Cu
en

lä!
IM
O

OJ

C
o

o
c
3

fa
C
o

•H
4J
3

JB
•H
u

4-1
10

•H
Q

•H

.a
o

i
m

v
u
3
00

•H
fa

219

5.3.3. Effect of User Characteristics upon Response Time

An Interaction cycle of a terminal user consists of the user's

think time (T), a waiting time experienced by the user's job in the job

queue of the computer system (W^), and an execution time re-

quired by the aser's job (y. Therefore, the user's need for processor

time per unit real time is given by T^ + y. The system response

time T is a complicated function of various system parameters (in-

cluding T and T) as seen in Chapter 4, but Tj. and Te are (purely) user

characteristics and are both prime factors determining a user's need

for processor time per unit real time.

We will therefore examine the effect of these two parameters

concerning user characteristics upon the average response time, for the

range of the number of users that impose a heavy load upon the system.

In particular, we will consider the medium-scale and large-scale configu-

rations of the Multics system, assuming that these configurations have

65 and 50 percent as their optimized percentile throughput respectively.

The result obtained by the response time analysis program is graph-

ically summarized in Figures 5-6 and 5-7. From these figures, it becomes

clear that a twenty-five percent change in the value of each of these

isee parameters produces more than several .sees as a change ii the

number ot interactive users that can be supported by the system (use

£ive-secoad average response tUe «s a cclterton, for example). Further-

more, it should be noted that in this heavy load range of N the response

time is very sensitive to these two parameters (T^ T^ and the number

of upers. This indicates the importance of a dynamic load controller

on time-shared computer system with interactive users.

I

220

20
sec.

15 ■

average
response
time

10

Te= 0.4 sec

medium-scale
configuration

e_* = 0.65

large-scale
configuration

6 *= 0.50

10 20
N

30 40 50 60 70 80

number of users

Figure 5-6 Effect of User's Think Time upon

Average Response Time

I

221

20
sec,

15

average
response
time

10

Tj.» 20 sec

medium-scale
configuration

e„*=0-65
q*

large-scale
configuration

eqft=o.5o

» N

10 20 JO 40 50 60 70 80

number of users

Figure 5-7 Effect of Execution Time of User's Job upon

Average Response Time

222

5.4. Performance Optimization

Now we oball proceed to consider the performance optimization

problems, i.e., the problems of optimizing the throughput of a given

configuration with respect to certain adjustable parameters of the

operatirg system, without changing the hardware configuration of the

system (the system cost is held constant). In particular, this section

presents the result of performance optimization of the degree of multi-

programming and then projoses a promising approach to the page size

problem (the problem o: determining the optimum page size).

5.4.1. Optimization of Multiprogramming Algorithm

Assuming that a hardware configuration of the system under study is

given, this section is concerned with the problem of optimizing the

degree of multiprogramming in such a way that the throu0ftput of this

configuration is maximized under a heavy load. Because the system

throughput is linearly proportional to the percentile throughput, the

above problem is equivalent to that of maximizing the percentile through-

put by choosing the optimum degree of multiprogramming.

As suggested in Section 3.5., it is reasonable to expect that the

percentile throughput as a function of the degree of multiprogramming

shows a uni-model curve Like the one shown in Figure 3-6; if the degree

of muUiprogramming is too small the multiprogramming idle time would

dominate the processor time breakdown and if it is too large the paging

overhead operations could dominate the processor time breakdown. We

will investigate the performance of a particular configuration, i.e..

m

223

a two-procc&sor three-primary-memory-unit configuration with the follow-

ing characteristics.

mean page fetch time (mpft) ■ 35 msec

mean paging overhead time (K-t ,) = 7 msec
.v p 1

miscellaneous overhead coefficient (6) = 0.25

memory interference coefficient (y) =1.2

missing-page probability (p) =0.1

We assume a particular linear paging behavior of programs obtained in

Table 2-2 of Chapter 2. All of the three cases concerning sharing

included in Table 2-2 are considered. Those three cases are:

Case 1: no sharing of non-resident programs

(a -0.1, b = 0)

Case II: 10 percent sharing of non-resident programs

(a = 0.1, b = 0.1)

Cast III: 20 percent sharing of non-resident programs

(a = 0.1, b = 0.2)

Changing the degree (q) of multiprogramming, the processor time break-

down of the above configuration was repeatedly computed using the

throughput analysis program, for each of these three cases concerning

sharing.

The result is summarized in Table 5-6. It is clearly seen in each

case that the percentile throughput as a function of q shows a uni-model

curve. The multiprogramming idle time and the paging overhead time are

the two major components determining this uni-modal tendency of the

percentile throughput. For case I, the optimum degree of multi-

224

Table 5-6 Optimization of Percentile Throughput of a Lual

Processor Configuration

Case I: No Sharing of Non-Resident Programs

degree (q) of
multiorogranming 2 3 4 © 6 7 8

(1)
(2)
(3)
(4)
(5)

Percer

7.6
10.3
38.1
2.4

41.4

12.6
11.7
24.6
3.7

47.1

17.3
12.4
15.9
4.6

49.6

21.5
12.6
10.0
5.2

|50.5]

25.2
12.6
6.0
5.6

50.4

28.4
12.4
3.5
5.8

49.7

31.1
12.1
1.9
6.0

48.7

Case II: 10 t Sharing of Non-Resident Programs

degree (q) of
multiprogramming 2 3 4 5 ® 7 8

(1)
(2)
(3)
(4)
(5)

7.4
10.5
37.1
2.4

42.3

12.0
12.2
22.6
3.9

49.1

16.0
13.1
13.2
4.8

52.6

19.3
13.5
7.3
5.4

54.2

22.0
13.6
3.7

L54.6

24.0
13.6
1.7
6.0

54.4

25.7
13.4
0.7
6.1

53.8

Case 111:20 Percen t Sharing of Non-Resident Programs

degree (q) of
mult iprogramming 2 3 4 5 6 0 8

(1)
(2)
(3)
(4)

7.2
10.8
36.0
2.5

43.3

11.3
12.8
20.5
4.1

51.2

14.7
13.8
10.8
5.1

55.4

17.1
14.3
5.1
5.6

57.5

18.9
14.5
2.2
6.0

58.2

20.1
14.5
0.8
6.1

21.0
14.4
0.2
6.2

(5) 58.J(57.9

-npft = 35 msec, mean paging overhead Lime (K.t 1) = 7 msec, 6 = 0.25 v-l 2

p=0.1.

processor time breakdown: (1) Paging Overhead, (2) Miscellaneous Over-

head, (3) Multiprogramming Idle, (4) Memory Interference Idle, (5) Users'

Useful Computation (all in percent).

225

progrannninf» is obtained to be five (q* = 5) with the maximized percentile

throughput amounting tc 50.5 percent (6 ^=0.505). It is seen that the

percentile throughput can be improved by nearly 10 percent (="50.5-41.4)

by using the optimum multiprogrammitig mechanism instead of the uni-

programming mechanism (i.e., q = 2). By comparing the results of

the above three cases concerning sharing, the effect of sharing upon

the optimized percentile throughput is clearly seen; the gain due to

twenty-percent sharing is approximately 8 percent in absolute percentile

throughput. It is also observed that as the degree of sharing increases

the optimum degree of multiprogramming tends to increase. This tendency

is due to the fact that the larger degree of multiprogramming will not

shorter the mtbpf of the eligible user processes too much if there

exists a considerable amount of sharing among these processes. Thus,

the optimum degree of multiprogramming for the above two-processor

configuration was found to be five to seven, for the assumed program

behavior. This result is surprisingly cons stent with the fact th^t

the Multics system with the same hardware configuration is tuned to

cllow five to six user processes to be eligible with its dynamic multi-

programming algorithm.

Finally, in order co examine the effect of the number of processors

upon the optimization of the multiprogramming algorithm, the performance

of a single processor configuration was evaluated. The system charac-

teristics were similarly specified as mpft = 35 msec, 6=0.25, Y = 1.2,

and K. t -= t .. = 6 msec . The same linear paging behavior of programs,

wifh a=b=0.1 (ten-percent sharing), wrs assumed. The result is

226

summarized in Table 5-7. It is seen that the optimized percentile

throughput amounting to 65.5 percent is attained when the degree of

multiprogramming is chos.n to be three. Comparing this result with the

perform nee of the dual processor configuration that we have considered,

we find that an addition of a processor to this single processor con-

figuration would make the system throughput 1.67 (=2x0.546/0.655)

times as large as that of the original single processor configuration;

apparently, the system throughput cannot be doubled because there exists

multi-processor interference (note that the size of primary memory is

384 kwords for both configurations.). All of these observations are

again surprisingly consistent with the actual measurement results of the

Multics system both qualitatively and quantitatively.

However, a comment is in order about the optimum degree of multi-

programming. A considerable difference is seen between the optimum

degrees of multiprogramming of the two corresponding (single processor

and dual processor) configurations. This means that the number of

processors plays an important role in optimizing the multiprogramming

algorithm. On the other hand, the current Multics operating system

determines the degree of multiprogramming using only a (crude) working-

set estimate cf user processes against the available size of primary

memory; the Mulcics system is currently tuned to allow as many as five

or six user processes under multiprogramming on both the large-scale and

the medium-scale configurations. (Note that both configurations have

the same amount of primary memory.) Therefore, our observation about

the role of the number of processors in optimizing the system throughput

227

Table 5- Optimization of Percentile Throughput of a Single

Processor Configuration

degree (q) of
multiproEramming 1 2 ® 4 5 6 7 8

mtbpf (msec) 98.5 55.9 41.7 34.7 30.5 27.7 25.8 24.3

(1) 4.4 9.5 13.7 17.0 19.5 21.6 23.2 24.6
(2) 13.8 15.9 16.3 16.2 15.9 15.6 15.3 15.0
(3) 26.2 10.7 4.3 1.5 0.5 0.1 0.0 0.0
(4) 0 0 0 0 0 0 0 0
(5) 55.4 63.7 65.5) 65.1 63.9 62.5 61.3 60.2

mpft = 35 msec, mean paging overhead time (t)=6 msec, 6 = 0.25

processor time breakdown: (1) Paging Overhead, (2) Miscellaneous Over-

head, (3) Multiprogramming Idle, (4, Memory Interference Idle, (5) Users'

Useful Computation (all in percent).

228

suggests a possible change of the Multlcs multlprogrararlng algorithm

such that the number of processors, I.e., a source of raw computing

power. Is also considered In Its working-set strategy In determining the

degree of multlprogramnlng.

Thus, we have evaluated the percentlle throughput of a given hard-

ware configuration, for each degree of multlprogramning, In this section.

This result makes It possible to derive the respo.ise time distribution

of this configuration, as the next step. In fact, we have already

evaluated the response time distribution of the optimized single

processor configuration that we have just analyzed, earKer In

Section 5.3.2. (See Figures 5-3, 5-4, and 5-5.)

5.4.2. Optimization of Page Size

In this section, we wi" consider the page size problem. I.e. the

problem of determining the optimum page size. This problem Is well

discussed In Denning's tutorial paper on virtual memory [D2J. Tha

author claims that a choice of page size should be made considering

memory fragmentation and efficiency of page-transfer operations between

primary and secondary memories. Consideration of memory fragmentation

suggests the use of small page slzw (e.g., 45 words) and that of page-

transfer efficiency suggests the use of large page size (e.g., 10-10

words). The author however does not present any method to find a trade-

off between these two conflicting factors which may give the optimum

page size. It Is apparant that there existed no vehicle to accomodate

229

these two conflicting factora In a unifying framework which allows ,) e

determination of the optimum page size. However, the framework of

perforaarce evaluation developed In this thesis fortunately provides is

with such a vehicle.

We assume that the configuration of the system Is completely

specified except the page size, and attempt to evaluate the effect of

page sice upon the percent lie throughput of this system so that we can

derive the page size which maximize* the throughput of the system under

study.

Two types oi memory fragm .ation exist on a virtual memory comput-

er system using paging: Internal fragmentation and table fragmentation.

The for? sr represents the wasted space in the last page of each segment

(the awmory requirement of each segment must be rounded up to an

integral number of pages) and the latter represents the space required

by storing the page table In the area of primary memory reserved for

the reslcent supervisor. Memory fragmentation reduces the size of

primary memory available to non-resident programs (see Figure 2-1), and

therefore paging activities of user processes may be Intensified. Given

the page size. It Is straightforward to estimate the total wastage of

primary memory space due to both types of memory fragmentation.

The effect of page size upon page-transfer operations can be

measured In the page fetch time associated with each secondary memory

device. For rotating devices like drums and disks t.he effect of page

size upon the page fetch time Is rather slight because of their relative-

ly long access time, but for a bulk core memory used as secondary memory

the page fetch time is linearly proportional to the page size [D2].

230

On Che other hand. It is clear from the result of Section 2.3 of

Chapter 2 that programs' paging behavior is also affected by the page

size. Therefore, we must consider the effect of page size upon the

mhbpf (or mtbpf) of user processes, besides those two factors mentioned

by Denning. It was seen in Section 2.3 that the smaller page size

yields a longer mhbpf in a program's steady-state behavior. However, in

its transient-state, i.e., while the program has not yet fetched pagis

that are necessary for a sound progress of its computation into ,primary

memory, the smaller page size would yield a shorter mhbpf. For example,

if we measure the mhbpf of a process during the period which terminates

at the moment when all the page-frames available to the process become

occupied by its pages in a partitioned primary memory, then the mhbpf on

the system with the halved page size would be roughly half of the mhbpf

on the original computer system. This argument suggests that the larger

page size would be favorable to programs with relatively short execution

times which can operate comfortably in a relatively large primary memory

space; on the other hand, the smaller page size would be favorable to

programs with relatively long execution times which must operate within

a relatively small primary memory space.

Unfortunatelv, none of the program models developed in this thesis

can quantitatively evaluate the effect of page size upon the overall

mhbpf of user processes. The experimental result obtained by Baer [Bl]

indicates that mhbpf is maximum « len the page size is 128 to 256 words.

However, interpretation of "numbers" obtained in experimental studies is

(at best) very tricky because all the conditions of these studies are

not explicit; i*: is much more difficult to derive a parameterized

231

expression of rahbpf (which can be applied to any other system) as a

function of page size, memory size, and program characteristics, froir

the experimental studies. Therefore, a comprehensive analytical model

is much desired in this field. In this respect, a program behavior

model of Woolf [W3] is worthy of attention, but the validity of this

moiel has not been examined.

Thus, if the overall mhbpf (or mtbpf) can be properly evaluated as

a function of those system parameters, we can evaluate the effect of

page size upon the percentile throughput of the processing system,

using the analysis results of mpft (of secondary memory) and memory

fragmentation as well as that of the overall mhbpf of user processes.

Therefore, it would be possible to determine the page size which maxi-

mizes the throughput of the computer system under study.

232

5.5. Confipinrafjon Seleri-irm

Configuration selection is the problen, of selecting the configura-

tion which attains the best performance for a given (PurchaSe or rental)

budget. By now, a solution to this problem may be clear.

The process of selecting the best performanc, configuration within

a given budget is schematically depicted in Figure 5-8. This process

essentially contains the following three stages:

(1) Choice of a hardware configuration

(2) Performance optimization for this configuration

(3) Application >f a decision rule to the cost-performance of

each configuration

In the first stage, a particular hardware configuration is chosen from

a finite set of possible hardware configurations of the processing

system, as a candidate for the best configuration. Different hardware

configurations represent different number of hardware components

(processors and primary memory units), different size of primary memory,

different speed of hardware components (processors, primary memory, and

secondary memory) and so on. In the second stage, the percentile

throughput of the chosen hardware configuration is optimized with

respect to certain adjustable parameters of the operating system (e.g.,

the degree of multiprogramming, the page size, etc.). The optimized

(hardware-software) configuration as well as its performance is recorded

as the best performance which can be obtained from that hardware con-

figuration. Repeating these two stages for each hardware configuration

whose cost is within the budget, we can obtain the maximized performance

233

(stage 3)

Apply the decision rule to
the recorded performance of
each configuration to select
the best configuration

C E"d)

no more
configurations

Figure 5-8 Configuration Selection Process

234

for each candidate hardware configuration of the processing system.

When all the candidate configurations of the processing system are

evaluated in the above cptimization stage, the result is passed over to

the third and last stage, of the configuration selection process. In

this stage, the best configuration is selected according to a decision

maker's formula concerning the cost-performance of the system; the

decision maker may use a simple ratio of cost and performance or his own

complicated formula concerning cost and performance. This decision

process is entirely up to the decision maker. When he has selected a

particular configuration in this way, he obtains the best configuration

of the system under study which is within a given budget.

j?a6'

CHAPTER 6

CONCLUSIONS

Modern large-scale time-shared computer systems have become so

complicated in their structure and performance that human intuition

often cannot foresee the impact of a small change in their structure

upon their performance. This thesis has focused its attention on the

statistical performance of these systems; the system throughput and the

system response time have been selected as the performance measures of

these systems. Architects and designers of these computer systems have

encountered many performance questions that they found very difficult to

answer quantitatively (some examries are shown in Table 1-1). They did

not have a useful tool to tackle these performance questions; they

definitely needed a comprehensive structured framework of performance

evaluation which serves as an aid to guide their intuition in understand-

ing variety of performance evaluacion problems; they wanted a methodology

of performance evaluation which can quantitatively answer performance

236

questions such as those given in Table 1-1.

For variety of good reasons, we have decided to explore the possi-

bility of using analytical models in attacking these performance evalua-

tion problems earlier in this thesis. Because these modern large-scale

time-shared computer systems involve many important features which are

believed to influence their statistical performance significantly, we

faced a dilemma of two basically conflicting factors concerning analyti-

cal models of these computer systems: a multiplicity of important system

parameters and the mathematical tractability of these models. As a

solution to this dilemma, we have presented an approach using a set of

hierarchically organized modular models (see Figure 1-4); by developing

a model for each subsystem of the entire computer system and then

combining these models together through their inter-relationships, we

can realistically model actual modern computer systems. In this

approach, we can evaluate the effect of a small change in one subsystem

(e.g., secondary memory) upon the overall performance measures of these

systems (throughput and response time distribution); we can consider all

the major features of these modern computer systems such as paging,

segmentation, multiprogramming, multi-processing, memory hierarchy, etc.;

we can consider several kinds of system overhead times and idle times

which reduce the computational capacity of these computer systems. In

modeling these modem computer systems, we have however abstracted the

actual structure of these systems in a certain way; because this thesis

is concerned with how a system configuration (concerning hardware,

system programs, user programs, and users) affects its overall perfor-

mance, only the system parameters which are believed to influence the

237

system throughput and the average response; time were considered in

tackling performance projection problems (the problems of estimating the

performance of a system which does not yet exist) of these computer

systems.

Performance projection problems were classified into (1) perfor-

mance prediction problems, (2) performance optimization problems, and

(3) configuration selection problems, in this thesis. In attacking the

performance prediction problems of these computer systems with an

approach using a set of hierarchically organized modular models, the

thesis has proposed a particular hierarchy of modular models depicted in

Figure 1-4. The hierarchy contains (1) a user behavior model, (2) a

secondary memory model, (3) a program behavior model, (4) a processor

model, and (5) a total system model. Because the last three models were

particularly felt to be underdeveloped, this thesis developed stochastic

models in these three areas. Chapter 2 described several program

behavior models which evaluate the effect of various important system

parameters affecting a program's paging behavior (measured in the mean

time between page faults). In praticular, the macroscopic paging

performance model of Section 2.5 turned out to be useful in the sense

that the analysis result of this model can be easily combined into the

analyses of other subsystems. Chapter 3 presented the throughput

analysis of the multi-processor multi-memory processing system, i.e.,

the derivation of the processor time breakdown for a processing system

of a given configuration; because the system throughput is linearly

proportional to the percentile throughput of the system (the percentage

of the system's computational capacity used for users' useful work), as

238

shown in Section 3.2, the system throughput can be directly obtained

from the result of the processor time breakdown. Chapter 4 then proceed-

ed to evaluate the response time characteristics of the entire computer

system, -ising the results obtained by the analyses of all other models

in the hierarchy of models. The analysis presented in this chapter has

explicitly derived the probability distribution of response time of

these computer systems; from this result, we can determine the number of

interactive users that can be supported by the system of a given configu-

ration with an assurance that the 90 percentile response time is less

than ten seconds, for example.

Finally in Chapter 5, the validity of the processor model and the

total system model was examined by comparing their behavior with the

behavior of an actual system, i.e., the Multics system of M.I.T. This

comparison has shown that the performance predicted by these analytical

models is consistent with the actual performance of three configurations

of the Kaltics system. Then, various performance prediction problems

and performance optimization problems such as those mentioned in Table

1-1 were numerically studied. The predicted results look very reason-

able and the result of optimization concerning the degree of multi-

programming suggests a possible change of the current Multics multi-

programming algorithm. At the end of Chapter 5, the configuration

selection problem (the problem of selecting the best configuration |or

a given budget) was finally considered.

The structured framework of performance evaluation presented in

this thesis» gives system analysts a vehicle to tackle their performance

problems. When investiga'-ing the effect of a certain system parameter

239

upon the performance of the system under study, a general approach

suggested by this thesis research is to examine its effect on all the

input parameters and intermediate performance neasures included in the

hierarchy of models shown in Figure 1-4; system analysts can then make

their intuition work in the right direction in figuring out the effect

of that system parameter upon the overall system performance, A good

example was presented in Section 5.4.2, when we considered how the

effect of page size upon the throughput of the system under investigation

can be possibly evaluated in an effort to determine the optimum page

size for that system.

Many numerical results concerning processor time breakdown and

response time characteristics of the computer system of various configu-

rations presented in Chapter 5 have shown that a set of analytical models

developed in this thesis is capable of providing reasonably accurate

answers to the quantitative performance questions with which computer

architects and designers must cope; theae models can answer most of the

basic questions concerning the throughput and the response time of multi-

prograimed virtual-memory time-shared computer systems using demand

paging, for a wide range of system configurations. Therefore, the

author of this thesis believes that analytical models are extremely

useful especially in tackling the performance projection problems which

computer architects and designers must resolve in early design stages.

Many modern large-scale computer systems continue to evolve both in

performance and in supporting hardware-software structure. For these

systems, analytical models may be valuable in all stages of their life.

However, in studying some of the detailed problems like a comparison of

240

several specific resource allocation strategies or paging performance of

computer programs of acutal systems, simulation approaches would be more

useful in practice. Most of these detailed problems usually arise later

in the design stage, it is known that the studies of these detailed problems

in simulation approaches tend to be very expensive. If this is the case

with a particular problem, an analytical approach like that presented in

this thesis should be used in deriving some sub-optimal solutions to the

problem under investigation which are to be studied by a detailed

simulation approach, in order to reduce the operating cost of the

simulation studies. Measurement of actual systems is almost indispens-

able to any problem as a source of information verifying the expected

performance or as a source of information indicating a need for a design

change of the computer system under study.

In short, the approach using a set of hierarchically organized

modular models is usable for actual performance evaluation problems.

This approach guides one's inLuition to understand the cause-and-effeet

relationship existing in a complicated structure of modern large-scale

computer systems. When the analyses using these models are applied, a

quantitative solution with a reasonably accurate approximation to the

performance problem concerning system configuration can be obtained.

Furthermore, this modular modeling approach allows one to use partially

available information (obtained by actual measurement) about system

performance effectively in estimating the overall performance of the

system.

Finally, we would like to turn our attention to the specific

performance problems considered in this thesis to find the problems

241

which require further research. In the area of program behavior

analysis, it is generally felt that more measurements of paging behavior

of actual programs are needed. Since the primary memory size is the

single most influential paramete. detenrining the paging behavior of

programs, more measurement examining the validity of the linear paging

model is absolutely necessary. Measurement of sharing is virtually

unexplored and needs to be carried out. To study the page size problem

(the problem of deriving the optimum page size) fully, we need a

comprehensive analytical model to evaluate the effect of page size upon

the mean time between page faults, as dis«ussed in Section 5.4.2. Ir

the area of throughput analysis, it was observed in Chapter 3 that the

analysis of a dual processor system is fairly complicated and that of a

many-processor system (e.g., a ten-processor system) would be of

staggering complexity; it is felt ta«t we must somehow develop a model

of many-nrocessor processing systems which can realistically predict

the processor time breakdown with a reasonably amount of computation,

because we see the current trend of computer design moving towards many-

processor large-scale computer systems. Finally, in the area of

response time analysis, the accuracy of percentile response time should

be examined more throughly against actual response time characteristics

of real computer systems. For this purpose, more data concerning

response time characteristics ol actual time-shared computer systems

must be collected.

Although the class of computer system configurations (see Figures

1-1 and 1-2) considered in this thesis is fairly general in structure.

242

It is almost certain that w« must consHer other classes of configura-

tions also which will attract more attention in the future. For example,

distributed (geographically separated) computers may become more attrac-

tive in near future to allow reliability and scaling up of size (on the

order of more than ten). A constant effort must be made to develop

modeling techniques which cm realistically evaluate the performance of

Computer systems of today and the future.

r*

APPENDIX A THROUGHPUT ANALYSIS PROGRAM

This appendix gives an explanation of the throughput analysis

l-iOgram which was extensively used in deriving the processor tiae

breakdown for various multi-processor multl-nemory processing systemp

under multlprograinning in Chapter 5. The program is entirely based on

the processor model of Chapter 3 and uses particularly Eqs. (3,3.4)

through (3.3.6) and Eqs. (3.4.6) through (3.4.22). The source program

w'l-tten In PL/I and a sample console session involving analyses of a

single processor configuration and a dual processor configuration are

also included in this appendix.

In using the throughput analysis program, the configuration of a

processing system under investigation must be interactively specified

from a terminal of a time-shared computer system on which this program

Is executed. Thlr program needs the following input parameters1 which

pecify the system configuration.

1. number of proccssers (m ; m=l or 2)

2. number of primary memory units (n)

3. degree of multiprogramming (q)

4. mean page fetch time (ropft)

5. mean length of in-page operation (T.)
in

6. missing-page probability (p)

7. mean paging overhead time (K.t .)
Z pi

1
Performance evaluation of a single processor processing system does not

require all of these input data.

244

8. miscellaneous overhead coefficient (6)

9. memory cycle interference coefficient (Y)

A few comments may be in order about some of these inputs. In specify-

ing the values of the mean length of in-page operation (t.) and the

missing-page probability (p), it should be rememberec •"hat these

variables automatically determines the mean time between page faults,

mtbpf (1 CPU), as follows.

ratbpf (1 CPU) - tin

P

It has been found through the experience of using this program that the

resulting performance is rather insensitive to a particular set of

values of t. and p if their ratio, i.e., mtbpf (1 CPU), is constant.

Therefore, after the value of mtbpf (1 CPU) is carefully selected,

these two particular values can be fairly arbitrarily determined. The

input representing the mean paging overhead time reflects a slow-down

factor concerning data-base lockout. Therefore, K. should be selected

in such a way that

-c: = 1 for a single processor system (m=l),

for a dual processor system (m = 2).

On the Multics system, the value of K. is approximately 1.5 for m = 2.

The typical value of the memory cycle interference coefficient of the

Multics system is found to be 7^1.20. The value of the miscellaneous

overhead coefficient of the same system is typically b^O.lS.

Upon receipt of these parameters, the program proceeds to derive

and print out the processor time breakdown (into various system over-

head times, idle times, and users' useful computation) and the relative

245

processor speed (the value of the effective slow-down factor due to

memory cycle Interference, K , for a particular configuration under

study). The program also prints out the steady-state probabilities of

the states of the model (for the definition of these states, see Table

3-2 or Table 3-4), as an additional information. The sample console

session given in Section A.II. more concretely demonstrates how the

throughput analysis program should be used. The lines typed by a user

of the throughput analysis program are underlined and the lined typed

by the system are not.

The throughput analysis program is written in PL/I, as shown in

Section A.I. Therefore, this program can be transferred to other

systems after only a few slight modifications; if the program is to be

transferred to an IBM system, "call ioa_M (or "call ioa_$nnl") and "call

read_list_" statements contained in the program must be replaced

respectively by "put list" and "get list" statements. An external

routine, "mlsq", invoked by the program solves a system of linear

simultaneous equations, and is documented in "System/360 Scientific

Subroutine Package (PL/I) Program Description and Operations Manual"

(H20-0586-0) published by IBM.

246

« « « «

u
M
O
u

OH

0)
U
U
3
O
m

c o z.
4-1
■c
0)

E
N-> V) 0)

« •<- *J
IT» in tn
o > >
KN — to
CM ra

C bO
<,^ c

CM o —
r«. *J (fl
^^ 3 W
J- a (u
«SI 3 O
~v. »- 0
r>. ^: v.
o i- a.

3
a
3

* * * *

« * «
* «
* *
* *
« *
* *
* «
* *
* *
* *
* *
* *
* *
« *
* «
« *
* to «
* — *
* CO *
* >- *
* -J *
« < *

* * ^
* * :
* H *
« =: « ii
« o. «
* x * *"

s * * CJ * *-
> > * 3 * o •»
u u * O * W ^«
4J AJ « c: « v)z
cc-s *x* «ur
aiaic «i-* o^

— * * o |
4-i ^ .Q * * ^- (D
x | * * a o •»■ •*
ai4J-o * * .— t-ies

(rt(U * * «*- ** *•
^.- X * * 0.-33
CM^.. « * —aa
4-1 in- « * »-0*^3
3 -o * * 0) o »- '-
am * * ^ '*■£■ -C
Z3 9) * * E'-'*J*J

»_ l_ * « 3 E
JZ % * * t ■*'-'-
^ * * = '«« H oj •* * « '»^ 4J ro (0 •*
MO «^ « *'^— moo^
4j._ : « « «: c •- =
3^E== = == C -, C C S

3 I I I I I l"o-55 J
<ux: OOOOOOO) o
r j. ._._ —._.— — i-i-tCM —
3 w MM

-a ^^-i— — ^'—>—EE —
(y,-. ^_ .« i— ,— ,— p» i— r—
ou (tj1onjroiTJ'om,*-,+-(0'*
OT3 OOÜOÜÜÜ— — UW

- I • • "*

| 1
^ 0)

247

* * * *

c

XI

re
O

c 3
o a »- 3

4-1 JZ
■o «4-1
(U

C "C
UD tn E — «3

• •— <u X) QJ
O in *-> x:
o > w *+J i-
K"> r- > > »0 «u
CVJ ra m u 0 > %

c 4-» — O C
< =5 c M- a —

CM Q- 4) w S.Q

r^ *-> O f—

>^ 3 ^^ «/).- 4-
jf ar-t | C 4J (0
CN 3 4-) i. 3 O
^^ u U U) 3 %«—
r» -C 0 — 4-t E >♦-
o ,. 1-

i-l

""^
CM

>4- -. tt) 3

•c a E
ra > * o
O; u E *
1- 4J 3 CM

K C trt 3
F- fl) % I.
C OX

■-• -^ C —X 4J
r— to W (0 1- x
Q. | C *r-t
• «0 t E 3

r-l o a; 4-* u
4-» — 4-» HX

3 x c a 4J
Q. |— 4J %
3 «■ *<-

I. o E ro «
JZ ._ -a 4-1 T3
■M

•N
(U
L.
3

-o

Ü
o

^-^ E ^-^ ^^

u
k- "O
a
••

rH
•M
3
a
3
U

* « « * sz

u =
a n

•s IT, ||

= 0 4-1
C (b c

• \ II — in OJ
*-N S-^ E ""
s ^ u

u w c —
II 01 4-> — 4-

t/1 •— «^ *4-
w E 3 a;
c ft OJ c

— c u- E u
E -

io bo re
i- a; (o T a) •»
bf £ •* Ö. "> (0 •* X '> •*
C, •% •— ^-N ^> d) ^^ ^-" »^ £
»-'-> 4Jr cz x: er E 3

C .-^^^'O^-'O)«—-Ol l/l "v
._ 4J v-/ u | 2 | > | (0 *> <S

*x«»— l^'O^'DOrowc + O^
c c3ro<i;cc!C o3— x —

— -O — E C «4- — X — W — C ^ Ws-»
XttJX— CO)— o *o.

X M- OJ-— 0)'-— •— C«— X •—
T3— 4JO— M^-E'-W)>-IC(D I- 1 +

CD ^t- rtl ■— (D(D"— (0<0(0'— O x O"
X oö'f0Q.U4-iOQ.Ü— -H — ^ E
.-^-s^- a o «N •<> •■>. aj^* »-» E 3
v«_fni4-^">C'^C'^c^>0'— E 'Dt/»

4-1 M'-^ f0E(T3<D(0O.<'»<U "O E^

.-CMO-D-', Ev-E^ E-' E-- II "
*4JCM: 1= 1= 1= 1= I "
E%.. w4J^4-iw4Jv^4-»w4-» '-E

%IH o,~W'— w-— in— tn— i/i E — 3
Q- ^j »^ C — C — C •— C — C — «H »s 3 .* w (fl
wv^ac—cr-c — c— c— «o am ccia

<^ |v> |v> |v> |w |4->
|-0 IXI |T3 |T3 |T3^ O 0

raa)ro(Dm'0'0(0ft)roE«s4-» 4-»
oajoai04)oa)0<ü4->o •*

— I- — l i. .- I. — i- O o o
II II II II II

^-, r.r.~~^~ ._ .s E-
^-^r-^^-— — — — — OE "03 "O
fD(TJfUa3(D<TJro(tja3(UX30 C l/l O C
UUUUUOCJUUOi-mTJ 0) a 13 0)

248

n

L. CM ^ r-i
a; 3 -^ •» 3
> U O "« u

C. J-J Q J 4->

r r r r r
it ii n i ii

o.

■u

«
-O *
(0 0) «
OJ —
£ -o
U •— 4-1 C
01 0) 3 O
> no— a

X/ O C TJ 3 •«
(XJ •- •— 1- ID •%
a; t/i E .c E o
x: s E 0) 4-i i- n
U O <D«— O rH
0) (U u (j 0) U- 4J

•» > c « > — c
*"» •xOIDOU"— ■" c

• x HJ 4-» r- L. -Ul 0)
nj4J.%3«>0>-Q>C ^ •* £
♦j^-uacai— i-o) to »^ 4J
*>.a33— U4-»Oü c r
cn-> a \- to & ~- E i- o Z o
*ji3x:rD— 30)0) •— to II
4lr-lk.4JaEEECl 4J •-
^w £ * — Z>
^ # *J »-» XJ Q. U-
O '^ 41 '^ "O Ü —
N-* ^% ^^ I— ^ •%

do »^0) a IH
i ^ — xj or i

rH Q. 0J + •%•*♦•» •—
v^l'OrH »^*-»#^^ ||

i-4+w» Z Z * - 'sr-i
II »^ iH «>.r = == = == = == O^

■a II X«jw|^|wMw|wMw|wM0
iq rHX}(0(Tjn3(oio(an)n)iT}n}4J
aj4Jv^wo ooooooooo
X 3 II n — — — — — — — — — — o

• \ 1. Q. 1-4 CM II
O 0)3 3 3—«-,-.-.-.-,-.-.-.-.-
|| >|. LU—.-.--.-.-.- — .-.- —
E O-c .c -c aj (orommiDiDreiDioo
ua*J4J*JU(jj(joooüuu-o

c •%
11

--> XI ^
c

^■\ E ex
X) 3 W.- • ^ • ^
r I/I (D.C 4-> rH p.

• % a o (U 4J ^.
o % * —XJ c l/> i.

11 XI = U- aj >— 0) XJ
CM r V4_ v^ K <4- X3 4i
4J r 1«

% •* l/>>4- ^^ C C •H
C XI II ^ C in 4-> TO r-\
0) r = ^- '-> c in
x ^= 3 — no O II c
4-> ^■^ • ■>-' 4-i « V to TO — • \ V — 1- • % in *^
o Q. • ID ^.-O TJ c — c C
II 3 ^y O s^ N-^ OJ XJ TO I.

14-
1

HJ — -a •»
X
4J O

3
4-*
0)

HM •^ o
O IZ —

1-4 o
II rH

1.
• •

•N i O X3 II — II 1-4
rH a F— E »»^^ X3 — • \ 4-»
II II •— 3^ OJ^ in ■o in

CM rn (0 tn= >- u Ci*- 0 c 0)
•w 4-1 Ü = = 3X» (D — "O flj TJ

V«'^-^ ^

1 la>
m to u
o o o

.—.— u
a

• % F— ^— ••

•a < E
c m «o "o
0) o o E

■a •*.
C r4
0J 4-J

3
a
3
l.
X

XJ
c
0)

249

« « « «

O

c

>
0
M
C

C--J
c 3
C •■v k.
2: ^> X

4->

II

4-1

0)
^■x

3

ro Ul E u •^ r X • •— <U <b ^^ «v 4->
0 V) *-> • N in r '^ 11 *
t-i > V) *-> E CM
1^. ^ > (D 11 4-1 •« a
CM (D IO O •N •N c rt c ^ E

C >■" ^N ^-\ ^-> dj tr\ 0) < 3 M- 5 5 >m^ (J 4-1 — ID 4-*
OJ O- OJ c u Vrf s

3
CJ

1.
II •X II C

O
Ul C —
E — «-

iH
4-1 a

-a- a CM <U in " ^\ • s U U- »0 E
CM 3 c 4-1 U 4-* ^N c •- OJ 0 OJ "^ u 1. • >B .~ II a; fD s — «t- 0 r- 4-»

O
x:
l-

r-.

0

U (D

C *
a» E

c
3

>
O
E
0)

c

'i
E

E

c

i.
a;
c.
c

OJ
be

s^ 14- U
It 0)

(U 0 0)
> E O U
4J — C
— 4J T 01
^- (0 »-

•> b
i
n
a
r
y

f

t
h
r
u
p
u
t
/

y
f
i
x
e
d
;

tn '^ % E • % hfi E -^ a^ X ^N (D^ X ^«4- *~\ % t.
CM 1- ^\ O • s •— ^^\ 1 Z (0= a;= i- = «- • *-« "D ro

rH ^ 4-1 (U > J v. /-N 4-1 z cr xr x= a) r OJ j "> V c ^— tr\ (/> "U • \ L. ■ a 5 ^ •— v-* O ^^ U «»^ > *-> 4-i %^ c <u — a — *T3 <D ^-^ — ^ X ^ 1 ^ la; jo |c 1 % ax • ^» •— 0) E 1 4J v-» u 1 *- (0 Q. (0 > (0 HJ — 10 E «/>
CM I CTX •— (t) l» 4J ro 0 0 O O O tfl O O ^^ **■>
•M ■O » — i_ 0 3 ra OJ 0 <U ._ ._ 3 ._ 4) X OJ 4->
a «J Eu- a •— E O« X M W) O — * UJ^
Q. <U 4-) •— *J r— ro r- c -- 0) — O p^ »^ * *
3 l_ « >>♦- — <4- 0) — bO — a — — — c — > *m c E 4-<

v.
(0

0
(0

O ZI Mr- c ra
0 0

1 ro bO 10 (0 (0 U
M O 10 O '- O u

* u c
Es*

4-) c * c u 0 01 0) a u ^ «^ C •* O. «x»— «s >> • s w .- 4-<
C J3 — 0) • s a: u •s ^■s • — ^^ .^ QJ ^ l. *^N ro U E

• v «* C^3 J3 <»■> '- •s C ^ c to w a c a 0 — 0 tmm N-^ S^ S^

0) 1 " E xi to *-\ <B E (0 *J in r m JJ in <ü E x
i. (Q Q. '-N 3 c 0) a OJ 4J 0) w .— ^^ a) ^^ — "O 0) N^r» (U (Ü 0)
3 0 4-< CT C s^» ■D s-^ E^ E E E E ^ E •S V. i. L.

T3 •— % % s t 1 = 1 = 1 = 1= 1= 1= 1 c ro ro ro
(Ü «. aj*. N-^ 4-1 s-^ 4J v^ 4J >^ 4-» ^w ±J s«^ 4-> »»^ 4-* •*-* 4-» • » »■B •— r— ^—
U 1 E % >— I/» — I/) r- \n •— Ifl r- u) •— in — in — m rH to 0 O O
O ro * C c •— c — c — c — c — c — c — c .— II <ü 0) 0) 01
i- O ro ^ c •— c f— c — c »- C -' ^ -- C — C r— ^X T3 T3T3
Q. — 4-» E «* 1 <*■. 1 «* | <A 1 «> lo* |(ä Ivy 1 •N • • %^ v^ *** 1 ■0 ! ■a l-O l-o l-O IT) I-X3 l-O E

CM tz (U PJ (0 f0 (D • % (T3 (0 •> ro 10 ro 10 ro ro 10 10 11
4-> 0) 0) (U 0 <u 0 (U O OJ E O 0) (D 0 0) 0 0) O 0) 0 a) c
3 L. U L. •— u amm L. — 1. 4-1 — i. 4-1 .- i_ .- 1. .- 1 u • s
a <D (D (0 •^ X. • % CT
3 ^- »~ 1— »~ >— i-~ >— t— »— rH 1— r— 1-1 >— CT *
u U O 0 (M« F— «■M ^ ^— ^■- II r~ w— II PM II CM * « * * J: V <u 1) (D <T3 0) m 0) (0 E n to (0 ro ro ro ro ro ro ro ro — II

^^^v ^^. ■IJ-O T3-Ü u U u 0 u u u 0 u V U u U u O O ü U CT E

250

XI

X3 "D
c c

T3 XI
C C

•s •%
O O

II II

c .y
> s %

»0 E E
c w ^^

— (B ^J
X3 'S '\

c J«: i *■*
*■% JD i-l
in •* O O C 1
4-> > 4-1 *J s-* J3

X k- * C
-3- 4-1 iH r-t C.W-
4-1 C II II E «

X IU 4-* 4-> « a
KS C .* ro F
*-> 4-1 t- *

% X 0 o •v « (0
CM «"O TS 1^ CM k.
*-> •» .% | II *

^ o- E E rr ^N {M
rH (/> r-i H
4-< — 0 0 o 1 *->
«^ E •W 4J 4-> 4-t 4->

0) OJ f-l rH
»- »- II II
(t! f0 4-» 4-1

— — E E
U Ü
<U (U O O

■u "o -a TJ

rH
I

^3
C

^-^
*
Q
E
«

«

+
X)
c

•^v
a
E
ft

•«. ro

— «
X) CM
ft +
J3 XI

•* c c

• \ .Q '■N Q.
^J « iH E
C X) I I
^ CXI rH
^^ ■w» c ^^
tH '»^«-^ «

* (D
'^ I.
a. •% ft
E ECM
* »- +

•H * E
w^ *-% L.
« rH *
10 ♦ 4J
»- 4-. E
* E '-'

CM v^ I
ii n n

**% f\ ^*

CM K"> fH
+ + +
4^ 4-1 4-)

E E E E E
>-t # « * # «

11 CM CM CM CM CM
4-< % S .. » %
E 4-t 4-1 4J 4-« 4-1 •%

E E E E E O
O ^-' ^^ >-<>-'«-» c
"O 10 ID (Q TO IQ (U

X
*
X
c

I
X
c

a
E
i

Q
E
*
ID
I.
*

CM
+
X
c

•* X
^ c
X
ft
X
c

a
E
«
ID
I.
ft

CM
•* II

N^ ^^
I *J
«T E

«
O CM

x a
c E
^ i
QiH
E^
ft ft
«D ID
k- u
ft ft

CM CM
II II

t-l i-H

E E
ft ft

CM CM

ft ^
(D '^
l_ •—

•H ft X
E CM ft
»- + X
«EC

»"^ i. ^^
r-» ft >>.
+ ♦J a
t; E E
E^ ft

N^1 I ID
II II u

*-^ ^^ 41
J- CM CM
+ + +
4J 4J ^^
E E-
ft ft X

CM CM ft
»X

4-1 4-< 4-1 4-1 4-t C
'-' E E E E E^ II + + + + + ^
4-» l^> N^ r<> N^ fA '^
El I I I I rH •«

CT O" O" O" O1 I T3
O •w •>-'^-'»-'^-<'J3 c

■OlDIDIDIOfOCd)

* a
E
«
ID

X
ft
X
c

I
X
c

a
E
i

«
ID
1- •«,
ft E

CM U
II II

I
o
c

o.
E
+
I
X

«•* c
ft w

I *
+ «s ^>

i-H X —
^ C X
ft ^ ft

<•> ^% J3
x a c
c E ^

^. i -^
ID rH (D
k. v- L.
ft ft ft

CM ID CM

«-> ft E ^
I CM i. I
II II II II

X
ft

•\X
X c
c ^

I I
X X
c c
ft ft
a a
E E
ft ft
ID ID
1. L.
ft ft

CM CM
II II

X
» ft
> X

c
^sX
'■» c
fH ^
I •->

X rH
C I

<— X
ft c
a ft
E E
I i-
fi ft
»^ *■%

ft rH
ID I
i. •—
ft C7

CM •*■*
II II

C
E
i

ft
ID

ft
CM
+
E

CM
I

CM rO rH rH ^ CM

LP» IT» IA ^ J- J-
I I I I I I
= c c c c c

IT» J- CM rH I«"»
I I I I I
c c c c c * * * * *

t*, f\ tr\ H>i tr>
I I I I I
c c c c c

to to re nj iQ ia to io to <o io

*
rsi
+

251

« « « * * * *

c.
E
*
(0

+
c

E
k.

*

to x
c —

.— I.
4-> «4- 4^

core
— E
t.
a <

c

03

!
C

I

S3
I

+
JD
c

^«
/-%
l-H

1
X
c

^-^
*

• s E •— w.
.3 «

• % ">» ^^
a a iH •*
E E 1 «s^^
« « - a E
ro (Q •H (J E »-
i. t. E»-» * *
* « v. w ro •— • %

CM CM * 1 ^ o- C

II II — II II «^
^^ ^N cr^^ '^ i o • x
rn CM II r-l rH 11 4-) r-l

1 1 <-. | I ««% II

C C c c c c l-l ^S

* X % * s % II *->
CM CM CM CM rH iH *-> C

1 1 1 1 i 1 c % •*
c c C C C c C T3
w w S^ \^ *^ S-^ o «^ C

(0 dJ (Q (0 ID ID "D ro <u

c

*->
E

•*rH

•s-D
c r

v i
*J 4-1
E E

v.- W

1 4J
C «H 3
w 4-» a
^i •* 3 3

o-o
4J r

^. XI XI v^ ^> a »-
^-\ + + + a 3x:

• % s-s r-l CM CM 4-» l- 4->

1—1 v^ /—s r-l •» a a a « ^ «
II t -y » «M E E •H E a*"-«
" 1
4J 10 % «-I 0) 0) •— v E * ^
c o c 1 > 4-1 4-1 XI *J « 'O— •»

% C •>-Q II II ^^ + ro-"» v o.
o* E ^ O l-l CM *-% iH »-—-O 4J

X J2 II CM a a iH a i a» + «
.D + CM 1 E E 1 E rH-O-H a

QJ w/ + ^^ E ES x '■sac <D 0) •—
ro rH E 4-» 4-» J3 ■ % 4-» « rH>-* «

o s-^ s 0) O s-^ — « tt)»^ - ro
O- C 4-» 4-i * o ._ y ■«., QJ ».

«X V) ^» »s 1-1 i J3 II rH-O *

1—I -o J3 O CM a •— v^, 4_> V-« s_/ O

II
1 •

c E * II II E o II 3 M II O
(U CM rH 4-> 0) i •o a r-i CM ii

E • % ^_ w a E • % 4-» rH OJ 3 3 3 >
•Q ii E ■o II II 0) v. i. i. 0

O
T3

c ro — <u o c E IV a .cx:.c t>o
a; u (J +J"0 <u ü o yl 4-1 4-» 4J a

* * * 4t *

252

'■N CVi I-H X
> 3 .H •» 3 0)
O *- ^.^^ i. 01
60 .c —Ex: a
a 4-i u u 4-i w

«4- «4- U-4- M- <4-
r r r r r r
ii ii ii ii n ii

•s
iH

^> II

o o *-•
0) 4J c = c
— Ü 0) * ()

XI T3 ID »- * J:
(0 a.— I*. a « J
a* • •«-

-C T> 0) C »- 4-»
•- .- u 4-» 2 OJ C "> E
0) C 3 O 4~> O O II
> M OJ a T3 C — II "»CM

•OOC^-3 I— 4-i in o 4i
It) - 0) l- 2 H) 4^11^^
twE^xC^ E iAO
X 3 E »- +-• -— »- I- «v c 4-» •»
i-OiD<U (/>0 0 ^^air^»
ttj 0) i- 4-» (U E "4- oxc«
> c uo c — »- a» c •» v 4-> a» csi
O(0O,— ,— OE "— '"» fH ^%

— t. 4-) l/l r *lH 4-* 4-»
M— a > c «c — — CMI E
coj—uw a» 4J (o z % E E ^

— u 4-i o u u c m n ii 0)
hOin— E^- 00) O S +4-»*JT3
ro — 3 0> 0» i-3 — to 4-» E E —
">■ E E E CL Ü.-0 4J E >

— 3 s^ >4- It- •—
xi CL a» — — xi
■o o x «^
< ._ r-l «4-

a > 4-i •-
cr — i -s

.% •» •» * X CT O
r* ">*-»« «s -x II II II
r rz* «^ Er-iinj-

QfDfonitDfonjiQio'oio mio
OOOOOOCOOOO OOtH
» .- ._.- .- .- .- .- — .- — — •- II

4J
_-.-.--, P- —. E

njiQioroigroraiDiDnjio IUIDO
UUUUUUUUUUU O U XI

J-
4-1

4-1

CM

4->

in

*4-

r

•»X
rH r
I

rH %
• s 4-1 X

rH * r
• H II »xK»
O CM OV *
II 4-1 II X
j- CM c r
4-1 C 4-> «

c x c ♦•x
OJ 4J (u r
x xg
4-1 l-l 4J H w

I ♦» —
E E E E Cl
II II II :
4_l 4J *J>4- v_»

E E E- I
l|_ 14. 14-Ol O
._ .-..- I —

II
CM

II r-

4J U

o

u
•V

o

X — •*
t; (o CN
Q) U 4-1

3
a
3
i.
X

X
c

253

A.H. A Sample Console Session

thru put

* THROUGHPUT ANALYSIS *

number of processors ■ 1

degree of multiprogramming = k

mean page fetch time (In msec) = 55

mean time between page faults (In msec) = 30_

mean paging overhead t'me (In msec) ■ 6.1

miscellaneous overhead coefficient = 0,25

paging overhead ».IsSUllSSO
miscellaneous overhead =. 1551*76615
multiprogramming idle a.02i*2053359
memory cycle idle =0.
percentile thruput =.621906^59

*** Additional Information ***

Qp CPU SM
pi(0, 0, it) = .0242053359
pi(0, 1, 3) = .082980721+1+
pi(1, 1, 2) = .213U0215it
pi(2, 1, 1) = .365832269
pi(3, 1, 0) = .313570518
sum of pl(...) = .993999993

r 22U3 2.796 58+29

254

thruput

* THROUGHPUT ANALYSIS *

number of processors = 2

number of primary memory units ■ 3

degree of multiprogramming ■ 5

mean page fetch time (in msec) = 30.9

mean length of in-page operation (in msec) = 3.19

missing-page probability = 0.1

mean poging overhead time (in msec) = 9.0

miscellaneous overhead coefficient ■ 0.25
.'V-v-v-.-,-

memory cycle interference coefficient = 1.20

paging overhead =.251299866
miscellaneous overhead =.127883710
multiprogramming Idle =.052U190i»6'»
memory interference idle -.0568625187
percentile thruput =. 51153i*8lt0

processor slow-down factor
due to memory interference =1.07200967

*** Additional Information ***

Qp CPU SM Ml
Pi
pi
pi
pi
pi
pi
pi
pi
pi
pi

5, 1, 0, 0) = .103385237
3, 1, 0, 1) = .0532515U93
1, 2, 1, 0) = .188U67521
2, 2, 1, 1) = .113935GIU
1, 2, 2, 0) = .171850t*22
1, 2, 2, 1) = .102678935
0, 2, 3, 0) = .104922063
0, 2, 3, 1) = .0613090J48U
0, 1, I*, 0) = .0755611220
0, 0, 5, 0) = .01t»633U857

r 22U5 7.683 171+171

APPENDIX B RESPONSE TIME ANALYSIS PROGRAM

This appendix gives an explanation of the response time analysis

program which was extensively used in evaluating the response time

characteristics for various systems in Chapter 5. The program is

entirely based on the total system model of Chapter A and uses partic

ularly Eqs. (4.1.2) through (4.3.4) and Eqs. (4.3.9), (4.3.19), and

(4.3.25). The source program written in PL/I and a sample console

session involving an analysis of a single processor configuration are

also included in this appendix.

The response time analysis program has two phases; the first phase

which estimates the effective percentile throughput and the second

phase which predicts the response time distribution. In using this

program, the configuration of the system under study must be specified

from a terminal of a time-shared computer system on which this program

is executed. In particular, the first phase of this program requires

the following input parameters which specify the system configuration.

1. number of processors (m)

2. optimum degree of multiprogramming (q*)

3. percentile throughput (9^ for each degree (isqSq*) of

multiprogramming

4. number of users (N)

5. average execution time of a user job (T^)

6. average think time of a user (Tt)

Upon specification of the system configuration, the program proceeds to

256

derive the effective percentile throughput of this configuration. The

computed result ot the effective percentile throughput Is printed nvt

as a console output. The estimated steady-state probabilities of the

states of the model (see Figure 4-4, for the definition of these states)

are also printed out, as an additional Information.

The second phase of this program requests the following Input

parameters.

1. number of processors (m)

2. effective percentile throughput (6(N))

3. number of users (N)

4. average execution time ol a user Job (T)

5. average think Mrae of a user (T)

Upon supply of these Inputs, the program proceeds to evaluate the

response time distribution. It prints out both the evaluated probability

density and the evaluated probability distrlbuti«'.! function (i.e.,

cumulative function) of the system response time. The sample console

sessirn given in Section B.II. more concretely demonstrates hnw the

response time analysis program should be used. The linei typed by a

user of i:his program are underlined and the lines typed by the system

are not.

The comment on program i.ransferability of the throughput analysis

program is appropriate also for this program.

257

« « « •

v
>
- E
<o c
C w
< M

~ >
•2 I-" H

— 0
fcj t-

§
T fHi

0) a> <o
u a» «-•
■J. u^ c o o • 0 ►-

KN a
!■* ifl

u O ti
u O (X
-
3
0

v-, CM

1A
t-H <M

m
o

a
M

L

>

c
o

c
c

k
*->
c

> *J

4-J —

c —
ft» I

K «
01 k.

Ut C •«
^ C"»

I I-
u m i.
* o <B

U v u
01)

>*- q i/i
<*- O i/i
« •- 0>

•»«^ •-» E
U
i. —
3 U

•a -o
o

a

to

<■

in

c a

C

c
a.
u
L
C
a

t:
>

u

B

i C
4)
«->
C

Or
c
L
C

tn
S
>
0>
c

C 4->
H) 3
J a
3 M
O 3
> o

•« >-
« O £
raw

I I I I I I I
It) TJ (D (Q 19 TJ <0
OOOOOOO

— 1/»
c —
c —
•*. •

O 0)
— v.

3

T3

ZZ
— I
M I

I
Al •«
ifl ^
C OS

Rc
«A i.
c O
w

M
0) Q,
£ >

•% 01
u o; a
u > >
O' •- •-'

<*- i.
<4- 0»
«1 -o I

I
— O I
•— *■>

c
C (0
0) s
£
- 3

O
: >
H
o O

M C
1^. 01

1=
*J (A

— >.:
«^«■^ ^ I *->

• I
IA O
I/» •—
O

I I
o o

T5
(Q
U *
W </)

01
- E

fgiOiTi«QfQ(qiüio<Q,«-<Q<Q'0 ro>*-
OÜÜUOUOUO— ÜÜUÜ —

• « <
a
(A

« 0>

a

b

■o
c

258

« « « « «

"C
•I

XI

«
« »4-

c « o

i
•fcj 4-1

«-> 3 « D v-^

-c a v. a
« 01

0)
K\ ^ D 1.

• 0 C M
c> L. i- U
.-1 x: •X X •o
K> h- 4-1 t-
CM

a» o 0)
x:
u
TO

rvi — >4- .— 0)
r»« ♦-i 4->

x» c > c l-

j- 91 1. o C
CM V TO u 14-
>. L C L. •s

r» 0) « ^^ o\o

o

E
f
f
e
c
t
i
v
e

P

M
o
d
i
f
i
e
d

M
o
d
i
f
i
e
d

>
i.

*J
C
4)

^^
1

*->
in 4->

•X

a;
X

K

E
x:
*-»

to

CL

01
>

4->

u
0)

*4-
U-
UJ

II

in

II

M
c

'i
E
to

C

^^
X
4-1
s^

4-1

3

•^ •% «^
^-% *-*» ^^

ii ii ii

r-l — G *-> h. 60 a • % £ £ £
mm .— 0 «- • s V 1+- O o -C ^-N 4J 4J *J
a 1 pa 4J in 0 in l_ kd J
• t i CM ■D U- > (ü x: i/i a 3 hO c c c

w t~. v» f«. aj u O 4-1 c (U — o c Q) 0) V
o "^r» ^ <u >. 03 H o u 4-1 k. .— x -v .c «vx:
0) m '»•. I-« u 1- c M- -^• o r- -C ! *J c>4 *J K> *J

>4- rH on «-• % (D -C 4-1 u =3 4-1
=

E E
<*- •^»^■v» ^- C ^3 > 4-> (X3 Q E TO rH 3 CM 3 f-l

0) (M N-V ^ C ■ M i. ^ E 0) u ii •* c n •* c II •*
C -Q ^ 13 rA >4- >4- pa hfl CT «-<> U*"* V**
v^ a C JZ 4-J o o .— O r-l o «^ O rn

1 ̂ ^ o ■M 4J (^ 4-» L. u-x: -wy-xi+ju-x:
• V fox: C7JD x LU v. 01 c a — 4-» — 4-» — *J
OJ c «-« % CM OJ CJ OJ •— g ^^Or ^'Oz w
v. % •u ^ JZ -Q L •N o 4-) v^ | ho—. IbO*-' 1
D X a E JQ *-> * E 60 ^N L. ^- 4J 4J 4-1

T) 1 ♦J % a X « a • % <U a o 3 — «c— wc— in
ID 03 % C * i-t « c ^^ -o o a E C— 0) c — « c —
U c tj % V- .c 5 E 5 C7 5 c —x c—.x: c —.
0 ■u e 4-1 *-> •^ %^ ss N^ s-^ *-• "W V> 4J V» *-• «A
4- %-*■ v-^ s-^ s-» V^ • ^ •% • \ •s •N i 1 •X l-o |-o IT?'
Ü. a 4-1 a a 4-< 4-1 a w 4-> a fD TO a TO TO CM TO TOm TO TO
• • a QJ OJ 0) <J — tf) _ .— IP IP — w m .— o 0 — O Q; -v O «v O 0)
4-1 u I. k i- V. ^ .— .* ^ .— — ^ — — js^ .— .— -^ — ». a — u a — »-
U 03 (Z nj fC 13 in .— !^ </) — — m .— _ in in 0 o
0) >— — — — — ^ CT — — CT— —

>*- U o o u U 4-1 4-1 4-1 4-< 4-1 4-1 4-1 4-> 4-1 4-) p" »^ 4-)

• « « « « >*- u V 0) il o 3 3 3 3 3 <D 3 D (U 3 03 TO 3 TO TO **- TO TO«*- TO TO
^.'«»^.^^ Qj-O T3 T3 T3 T3 a a a a a hfl a a bo a U O a U U— U ü— Ü o

259

c c
•S.C »x-C
& U \J\ *■>
E E
3 J- 3 in
c it •% c n

C

lO 4-*
E
3 U>

• N C II
a-

o iß
W 4- -C

Or wo: ^.O: ■<-'.
bfis^ I bo«-' I W)^-' I

^j JJ «J

C— tflC— IflC— w
a» c — 4) c •— fli c —
-c c *- .c c - x: c —

l-o l-o |-o
\/o<uvoaj^ott)
Q — u a — k. Q. — ^
o o o o
a^-^CT— -CT— — <-•
u- m iTj**- (D nj»*- ro "J o
.- U o — U U — U U bfl

r-4 f>< ^ J1 LT»
^: J: x: x; JC ■*

• s 4J M iJ -M ■!-» -O
II 11 II II it sz >%

CN4 to J- Lft U3 4J Q.
£ J: JC J: £ it —
4J 4J 4J J-» •!-• C ^
• ■ .c •• •• »• 4-f {/)

CM hri ■* m to ••
E E E E E E w
3 3 3 3 3 3 3
c c c c c c a

•% o O
*-N o ^

l-H •4-

II in
X

>
(/) 4-) (D

•o H C

c •H irt •—
o ^N X XI

o " 4->

<u •N ^>
Irt II o

o 4->

c tfl i-H x

■o
c

CO

• « 4-1

^3 o X TJ •* »
O u 4J «u 4-» r«.

•-^ II x ro •«.4-t
.— O 4-1 x

ro
c

X M- ^- .% (D tO
I4_ 4J O 4->

11. •«■ •N > ra— »
o

0)
o
o

i. > OM- in
(0 »- <— 4-»

01 E iH C (0 «4- > *

E
4-1

X
4-»

.Q — > (0 4-»
J3 U C *

II c
o

c II 1- ^ CXJ 4-»
4J tA — »

I/) X X O ^ ^l^ OJ
i_ 4-> 4-J 4-» K H O 4-1

0) 3 •X .* CM '■xi-l X

o 1. O %^ C •• tH

3

(4-

0)
X
01

a;

3

o
r-t •X

c

—, % ««O 4J

._ ^ ^^3 k.

O OJ .— ^ N* Cl Q. "^

<ü ai X M
l_ to bO 4-< 0) 0) D (U QJ 0)

(D TO II -D W V k w w
u 1. OJ • • (Ü (0 TO TO TO

E
3

u •N V • s X rH P- >— p— i— ^-

• N > *~S > *-^ 4-1 .— U O O U O
c ^-N (C a (0 4-1 •V • s n U D ü; OJ 0)

c 4-* *-> o O U -O TJ "O-O "O
■w w **** ■w o

•NlH
o

4-) 4J a *-> i~ a +-» 4-1 O JC ^ \
in I/) .— m IA •— ^ (rt r-l 4-t iH td

^i — ^: — ^~ II X X

— - </) — — w — '-
4-1

•J

m ii
4-1

4-> 4-t 4J 4-» 4-> 4-) 4-> 4-1 II i»H -3

3 01 3 3 0) 3 3 OJ -C .C X X

a ho a a bO Q. Q. bO 4-i 4-< 4-1 4->

c.

bC

C

x:

260

u

IT3
O

> >
4-1 (U
C C
<u._

x>

0)

> r
— «4-

•M r
o
0J
4-

E +
— i.

4-1 4-»

V) u
<U II

c •».

o
ii

CD

"D oo
r 4J

c

o

c
OJ

d} *
»- JZ
<U 4-J

Ü
i

CD 0) .-

IU ro o in

U U U «J
0) O 4-1 3

T3-0 Ü a

O 4-> •%
— *r-t

^ 4J E
— % II
(C iH 4-»
O 4-1 E

o
II

E —

O

c c -x
II *.' (J3

■W r-l *
• x ii m

rH •-> 4-1

II II
in O in
■w "a +J

o
n

o
■a

CM
x>
c
OJ •»

4-1 •% ^« «H

l-l l-t l-l
O II j^ ^ .«

•«. 4J LO x-v. «v rH
lH 4-1 ._ tn rH ^

I O •• w 4-»^ -v,
ID bflr-t +J * ^, m
*-» •K'V O '^ in 4-i
II "O C (D — 4J •* *

4-> a; 4-i « ^-x .— ._
— i-._ w *
•— v-» « Q. #
IQ « « « U
U — l. .— •^
.. + w + +

«M "H II a» r>.
"O 4-l'~. 4-» +J .x »— —
C II — II II -o ,-
a>rHx^cTir«xC(DO
4-)4-)Q.4->4->a) U"D

• x
•N E

— ■*«.

CO«
II 4-> U) •%

lO 4-1 lH
•x 4-> rH * I

"^ -x II LT» O
rH i-H •-) 4-1 4-i »x
-^ II II II "D

% »xin o in io c
E C 4-< TJ 4-> 4-> 0)

4-' O
Ü 4-1
10

**- E
II

I II

o ••
.- <u

bC

~- C
— 03
(TJ -C
u u

^v -x
ini-H

«"H in

* *

E E
« *
— E
+ x-.

CNi II
4-<<^
II —

fM v^ .

4-» a

in

•x «

E
*
*
E

+
oo
4-> .x

ii -a
oo c
4-1 0)

261

S.
4-1

«

ID
^^
C.
+ .
in
.c
*

in <

Q.
+ '

.C ■
4->
«

to

a

a
i

+

c o
II 4-»

*J o
t» II

• « II
*-»in O
E *-• "O

l£> *%

* I
in us
4-1 4-> •«
II II TJ

u-\ U3 C
4-1 4J (Ü

•^ lf>

C
II

II
•sin
C 4-»

•»E
— "»«.

u
o «
4->lO

4-*
O *

. ii in
I —i4J

n
O m

T3 4J

«

m

*
i

ID
4-1 •«

II "D
U3 C
4-> 0)

a
i

o.
I

CD

II
cn

o
II

O
"a

*-> «
4J «
o »-
nj ^^

>4- ♦

t— 4J

•— II

O 4J

4-» O
U 4-1
to

E
II

■o —
c m
0) o

o
■o

+
E
« ^
« 4J
E + •»

»-^ tn <-s
■t- 4-1 oo
J- v^ JJ
*J -v^ +
H 13 4J r^
J- C 4J •%. 4-»
4-> 0) « C w

»"N ^.
CM O ^»
4-1 4-> —

+ ^
i-t o a
4-) II II

+

4-1

«
t^l ^^

+ O
CM I
X '"»
4-» f-t
* w

«-. Q
CM 1

QO
+ «--
rH Q
s: i
4J l-t
* «^
^s
r-t ♦

a
II

bo

>
c
o
u

c
M

c
QJ

JC

I

o \/

r-H4-

i

•HO
V II «s

• x bfirH C
C

0)
JZ
4-» J: >♦- (o

4J (u x: a* 4-j
it >— x: ü bo

(/) 4-) U. O

O —

s*s tmm *** »x M—
II — T5
1_ O «-' C
*J T3 a 0)

0)

<+- XJ
«4- (0 II
0)

JZ 14- "

O 0) n
4J > —

c
o o o

a
+
rH
4-1 >%

II T3
•H C
4-1 Q)

Irt

262

4-1 w
> t/i "O

= X)
0

c
0

•V

II •-> u
0) "*

•M w * •X
o 2 * ^-x
a. n X S~\

Si % l- .—
M c~> 4-J c **-*
3 4-1 X o a o X * X
k. 2 4-" ._

JC II P3 X •X
*i II

0) E 14- r-l
(U -C E o r 4-1

,—
4-1

M 4-1
>4-

c it
X

•t-J C — 14-
c a (U ^-s r
01 •— (fl r— X!
u c 03 r i/i
1- ü o C o—«• ._
« 3 a o MM

a 0)
3 0) 4-»

a ^^

a; C7 u — ■^ X-*

> ■o i a •— (1) 0) -o (D •X
■M M 00 < o M- Q.
(J m (D o —
(U l- k. ^

u- <u (U * _ E w n- > > « ,— 3
(U IT] (0 * •X 03 W *J

; — — 5 C U r 3 **^ »-» ^-^ ^ "-'. a
• s •s •s •X •x •X 1 •X •X o 1 •*
a+j a 4-1 Q. 4-1 a a a 03 a 0.4-» m Q.

— i/» — in .— in .— — — O — — o —
^ — ^ — ^. — ^^ .* •— .* .* o — J^
tn — w '" in ^~ w i/) ifl _ in V\ II

•X
in

4-* 4-) 4J *J 4-< 4-1 *-• 4-1 4-» r— 4-> 4J T3 — 4J
3 3 3 3 3 3 3 3 3 a 3 3 0 C OJ 3 c a a C. a a a a a u a a-u 0) o a -x

w
o
(Ü

OJ

■o
c
u

■

■

263

* * *
* * * *

o

o

to

CM

CSI

o

o
•M
Co

J

(T3
O

TO

l_
O
■M
u
ID

U.

■v.

(J
10

* «

• •s. (0
T: o
QJ ^-

x u-
•— »s
>♦- >!-!

»-T3
> fD C
V. c 0) •%
(0 — •—
C ^3 0 u-
._ 4J *
J3 «-> • ^ i-H

— O — ^
^ M- bO II II

^ % • s .— rH

•-» vr-t C ^ U- J^
^>.- J^ (U • % «s
r-t ^^ «-• X o ■O rH
^ *J 4-* C II

x OJ 0) OlrH
^ U k. iH rH J^
*-> ra (0 v •N II o ••

QJ ^ ^- J^ i-t .— • s ■W r-t
*. o o II T3 TJ •»
r oj <u^ rH 0 C 0 C -M

-O TJ T3 — ^ -o <u hfl <y U
01 (0

^
M-

«- -o
a c
•• 0)

■M • •
u ■a

c
0)

c
o

■G
<U

O

CM

csi

CSI

o

-o

c M-

o •^ ^N

*-> CO

■D 4->

Si N

mm» r^
\~ ■M

*-> H
in UD

•^ 4-1

Q %
LA

ai 4-1
£ %
._ J"

t- ■M
H

IU N-l

w 4-1

c s

0 CM

a 4-»

w ^
0) rH

a: 4-1

CM
CM

Ol

m * * *

rH >
4-1 u

H *->
V c
> OJ
ro
* <^N

u 1 o 4-*

(U (/)
V S'—

a c—.
^ - 1

■M jat)
K (D

4-» TJ CU
i. 0) >-

^ X *
a •— r—

L. <+• c
H c

L. -.**
% -^ 1

SI NOJ
4-» •-^O

K %•—
.% a •— %
(U *J * 1
\- % C (0
3 4J %. o

T3 4J E-
(D v-» »^»^
u
o
w
a a)
•• u
l/) (0 •» ^—
13 Ü

1«
4J-0

264

*
*
*

c
o

3
XI

L.
4-»
(/I

o

<u
E

0)

c
o
a
<u

en

c
o

>

ai
Q

i.
o
in

(U
o
o

air
u *
v *
(D *

C
ro-.
o >>

i.
E i-
(D O
l- W
60
O •
>- E
a <u

4-1

— >.

>-
o
i/i

o
o
1-
a
0)

M
c

(fl
c
0)
L
L

•» O
«-o >
= 0) --
Z JZ c «H o

(TJ
O «

— «
— <4- «
4J O —r r

c

3
Q
x:
M
3
O
I.

0)

•X

-c
c
o
u
01

XI
o

(D

C
o
u
0)

>

03

E

u
o

0)
OJ E
E —

ro .—

•Mr II -N c:
c
u u
0)
Q.

(/) ig
3 O

ai

E
3
C

«3 |
U ID

O

>
■a *->
c u
0) a;

— o— ^

c: cr >
O r — r 4J

— v^ x: *-* •—
M |4J | w
3 ro nj •* c
O O »- O ^ tt>
<u — <U — Z "O
x w =
0) — 3 ^- ^

*-»•-•- U- £

z * z

fQ (TJ ro
O O O

■4-» (0 to
woo

10) 0)
TJX X

OJ
I- rH iH

- E E

0«4-
4-1 0)

O^

c
c c
VIA

-C I
4J (0

a
r-i—
/\
E- ■

i- to

X •%
E^

-» 3 C

1= I
•— (/)
c~-
c »-
«i I |XI
to 19
O 0)

•— L.

IA

01 10 0) to to
bO O bO O O
10 '^ to ** •—

<u a. <u <M _
> 4.J > 4J —
to *^ 10 "^ to

= t I o
^-s 4-* *^ 4J »s 4J

c — c — =
C —, C — = Z

l-o i-o' I I
to to to 10
O OJ O 0)
.- UM. L.

E

I I |0 .v «
tO 10 10 O Q. •% X
CO O <-• 4-* 4-> 4-)

•X

4-)
*
4-» •%
V. CM

•* « XI
iH «-^ c
"O «s •» N^ (U
C iH — *J .% 4-1
<U II ^ V.
4J J- O CM * o

4-1 4-» *J OJ .v •* 4-1
• » O •«> •-' 4Jl-t ■H
O 4J .- r-l « « | i O
H II II r-t d- CM N-i bO

00 .% O 1^ •-> 4J 4-> 4J 4J •%
4J1-I bfl+J II II II II -o
•* 1 •* O »H J-CM r^ C
O C C rH-O 4J 4-»*J *j Q)
II OJ 1

r*« o x c
4-* 4-t 4J II
•s CM
OO O 4->
II II II •*

tD — .- t-H
4-1 II
•v a »4- t-t

O^O — 4J
II

Lrt

to 10 10
o o o o —

(0
o

10 10
o o

XX -^^ c

— —'———^-— II II II 4-ihOo
toioiototototoxa.4-)ii tun
OOOO OOOiJUi. U^J*J

c
X
o

265

CM

II
•3-

ft J-
4-1 4-"

+ +
.m ID

II II

a
o
4-i
in

O
l« 4-*
c
o o
ü M

0 C
*-> JJ

O 4J
M

o
C I«
0))

J= «u

a
o •%

WD
c

o <u

o o
b0+->

c o
X.
4-) C

at
o £
K> ••-•
i
0) o
O II

.-, o
II 4-1

CM
4J r~i
•\ II i
i-t ^
II

.— *J "O

• %
rH

I
cvi
4-« •*
ii -a

CM c
4-1 (1)

a
c
4-"

o

o
M

c

o • s
u ^>»
.T) <U

% >
a 10

^ ^
4-1 m

H X
X

l|_ c
cn o

* u
i-t a;
lH U)

o
a
o
4-1

in

E
u

ai

.o

01
•* E

• * 4J •—

o
XI

X
c
0)

CM
X
c

O rH i-t
II V \/ »4-
i-l pH J- — •*
4-1 4-1 4-) •• rH

C II
I4_ 14- (4- O CO
»• .— — U 4.1

• s r-l
• \ lO r-l

4JI-I i^> 4-» r
+ SS O 4-> >^
K^ iH 60 * •* LA •«. II
4-) 4-) 'V -3- -3- 4-1 U3
|| X) 4-14-1 ♦ 4J Q.

r^\>4- C + * «^ ^>.

fH 4J l-t 4J 4-» >4-
M II + * « i-l
i^ r». — Q. ^> •

■• •* 41 i4-i r
rA r-t 00 N^ « •*
x Q. 4-* -s a Q. U3 II
C O II X X I- 4J
OJ 4-1 00 C tt> • ■*«.*•
4J «4-» (u»-'y-'*J:

« CS. 4J »^ •»
ax« |o
k V W <0 «
II w « o m
Q I 00 — •
• • l-l 4-1 O
a ii n <- ♦
o o tt) — w
4J u > (0 II
m (TJ ra o 4J

c
o
o

O 4J

o
M
c

«nr
cs
a I
m to
o o
L. —

0» —
ho-
rn m
k- u

■« 4) •»
*^ > »^
: (0 =

in

111^
to ID nj
o o o x

. .- C
0)

— — — x x
(V 10 (0 c c
O U O 0) <u

266

B«!!. A Sample Console fession

resp

* RESPONSE TIME ANALYSIS

Do you want to determine the effective percentlle
throughput? --- type yes or no ---

yes

*** Estimation of Effective Percentlle Throughput ***

number of processors ■ 1

degree of multiprogramming = k

SueurSfii^t^ghput <th, in * for each de»r" «" ■"
If q=l then th = 55
if q=2 then th = 63
If q=3 then th = 65
if q3'* then th = 65^

number of users = 30

average execution time of a job in seconds = O.k

average user think time In seconds = 20

iteration estimate of effective % throughput
1 .61*9999999
2 .62C669958
3 .629028954

effective percentlle throughput = 6.2902895Ue-01

average queue length = 3.52031380P+00 jobs

average response time = 2.65887877e*00 seconds

267

*** Additional Information ***

Pl(0)
Pl(l)
Pl(2)
pl(3)
pl(U)
Pl(5)
pl(6)
Pl(7)
Pl(8)
Pl(9)
pl(10)
Pldl)
Pl(12)
pl(13)
pldl»)
Pl(15)
pldb)
pl(17)
pi(18)
pl(19)
pl(20)
p}(21)
pl(22)
Pl(23)
pi(2l*)
pl(25)
pl(26)
pl(27)
pl(28)
pl(29)
pl(3ü)
sum of P(

.158077382

.15Ü782293

.13902973'*

.123772760

.1062511710

.0878376858

.069820061»!

.0532783591

.0389617118

.0272533605
.01819695UU
.011571U571
.00699038355
.001*00067121
.Ü021624251I0
.00110007037
.000521*651696
.0002335381*89
.965297l*8e-0i*
.36830001*6-01*
.12881125e-0l*
.1*09555876-05
.117196606-05
.298101636-06
.6631*70706-07
.1265701*66-07
.201215636-08
.25590631*6-09
.21*1*096566-10
.15522119e-ll
.1*93526366-13

•) is 1.00000000

268

Do you want to derive the response time distribution'
 type yes or no

yes

Derivation of Response Time Distribution ***

number of processors ■ 1

effective percentMo throughput In % =62.90

number of users = 30

average execution time of a job In seconds -Q.t,

average user think time In seconds =20

time density

= 0.0 p = .281582188
•5 p = .2625023Ü9
LO P ■ .21*0528617
1.5 p = .216799615
2.0 p = .192369802
2«5 p = .16815U361
3.0 p = .m896636
3.5 p = .1231558^5
'♦•O p = .103311582
'♦.S p = .085580618
5'0 P ■ .0700'*U58
5.5 p = .0566625U8
6.0 p = .0U5330858
6.5 p = .035873'*ü6
7.0 p = .028105280
7.5 p = .021798311
8.0 p = .0167U5327

cumulatIve

cum = 0.000000000
cum = .136165990
cum = .262020107
cum = .376U02U60
cum = .1*78703693
cum = .568808913
cum = .61*7018701
cum = .713959388
cum = .7701*91533
cum = .817623936
cum = .8561*3801*8
cum ■ .883025880
cum = .9131*1*2105
cum = .933670118
cum = .9l»9600l*66
cum = .96201971*9
cum = .971607707

average response time = 2.G5923250 seconds

r 2119 9.1*51 68 + 60

^f

NOTATION

Following is a partial list of the symbols used in this thesis.

Only those symbols which have a global meaning throughout the text are

listed here alphabetically.

a - degree of sharing of resident programs.

b - degree of sharing of non-resident programs.

b - j-th block of a program.

f, - j-th page-frame of primary memory.

m - size of primary memory space (Chapter 2).

number of processors (Chapters 3 -5).

m - size of primary memory space reserved for resident

supervisor programs.

m - size of primary memory space reserved for non-resident

programs.

a - size of a program (Chapter 2).

number of primary memory units (Chapters 3 -5).

n - number of page faults.
P

p - missing-page probability,

p. - i-th page of a program,

p. - conditional probability of a reference to a page p , given

that a page p was referenced,

q - degree of multiprogramming,

q* - optimum degree of multiprogramming,

r - page reference at time t.

270

t0 - unit rime of a discrete-time Markov process.

tm ' miscellaneou8 overhead time,

t - paging overhead time.

tu - headway between page faults (user's useful work within a

tbpf).

u - utilization factor of a processor.

Kj - effective slov down factor of the processor speed due to

data-base lockout.

Km " effective slow-down factor of the processor speed due to

memory cycle interference.

M - total size or primary memory.

N - number of interactive terminal users,

N - number of Markovian states. s

P - set of pages of a program.

Te - execution time of j user job.

T - response time.

I - user's think time.

Tw - waiting time in the job queue.

1/a - mtbpf

1/ß - mpft

Y - memory cycle interference coefficient.

6 - miscellaneous overhead coefficient.

6 - (effective) percentile throughput.

9(N) - effective percentile throughput,

6q - percentile throughput of the system under multiprogranming

of degree q .

/

271

6 - throughput.

X - e(N)x0

lAn - average execution time of a uaer Job (T)

l/\i - average think time of a user (Tt').

K - steady-state state probability.

p - uA

o - a/ß

Jll

GLOSSARY

This glossary is ■ partial list of terminology used in this thesis

and is intended to remind readers of the meaning of each term appearing

throughout this thesis.

data-baa« lockout: multi-processor interference caused by

unavailability of a shared writable data-base which cannot allow

simultaneous accesses of Multiple processors.

data-base lockout idle time: tht processor idle time caused by data-

base lockout.

effective percentile throughput: the average of percentile throughput

(see Eq. (4.2.1)).

fully loaded system (heavily loaded system): if the system under multi-

progranning of degree q has almost always q eligible job-, the

system is said to be fully (or heavily) loaded,

global PRA: a page replacement algorithm for which the page for removal

may be selected globally from any area of primary memory,

local PRA: a page replacement algorithm for which the page for remo/al

is selected from the pages of the user process which necessitated

that page replacement.

LRU PRA: the PRA which chooses the least-recently-used page for removal.

LET PRA: the PRA which chooses the page with the longest expected time

until next reference,

macroscopic paging performance model: the model of dynamic paging

performance of programs based on the model of sharing (see Section

273

2,5.1) and the linear paging model (see Section 2.5.2).

memory cycle interference: multi-processor interference caused by

unavailability of a memory cycle of a particular primary memory

unit,

memory cycle interference coefficient: see page 142.

memory interference idlle time: the processor time lost due to memory

cycle interference when two or more processors simultaneously

access the same unit of primary memory,

miscellaneous overhead time: the system overhead time required to

handle miscellaneous faults such as segment faults, protection

faults, various non-paging interrupts, etc.

miscellaneous overhead coefficient: see Eq. (2.5.11).

mpft: mean page fetch time, i.e., the mean length of time required to

fetch a missing page from the secondary memory system,

rotbpf: mean time between page faults, i.e., the mean length of time

during which program Is executed continuously without a page fault

(see Eq. (2.5.9) also),

multlprogranrilng Idle time: the processor time lost when processors

under a full load do not have executable eligible user jobs,

multlprogranmlng of degree q: a multiprogramming algorithm which allows

a maximum of q processes to be simultaneously eligible,

multi-processor Interlerence: Interference of multiple processors such

as memory cycle Interference and data-base lockout,

pagination: determination of a set of program blocks to be contained in

each page of a program,

paging overhead time: the collection of «11 the system overhead times

274

required to -»rocess a page fault,

partitioned memory: \ memory allocation of primary r.mory such that one

area of primary memo-y is solely reserved for each usor process,

percentile throughput: lie percentage of a system's computational

capacity utilized for users' u^ful work,

percentile response time: the time limit whic Guarantees that a

certain proportion (e.g., 90 percent) of response <mes is shorter

than that limit.

PP discipline: preemptive priority discipline (see Section 3.3.3).

(q;m, n) configuration: a hardware configuration of a processing

system which involves m processors and n primary memory units, with

q eligible user processes under multiprogramming,

response time: the time elasped between the receipt by a computer

system of a user's specified job request and the satisfaction of

that request at the terminal; for the total system model of this

thesis, it is defined to be the total length of time spent on the

processing system by each user job.

thrashing: excessive competition among user processes for primary

memory space leading to a less than optimum use of system resources,

throughput: the average number of user jobs than can be completed per

unit time.

y ii

BIBLIOGRAPHY

Al Aho, A. V.. Denning. P. J. and Ullman, J. D., "Principles of
Optimal Page Replacement,,l J. ACM, Vol. 18, No. 1, Jan. 1971, pp.

80-93.

A2 Anderson, H. A. and Sargent, R. G., "A Statistical Evaluation of
the Scheduler of an Experimental Interactive Computing System,"
Proc. Conf. on Statist. Methods for Evaluation of Computer System
P^Tfori^e. Brown Univ.. Nov. 1971. pp. 73-98. (Available from

Academic Press, New York. N.Y.)

A3 Arden, B. W., Caller, B. A., O'Brien, T. C, and Westervelt, F. H.,
"Program and Addressing Structure In a Time-Sharing Environment,"
J. ACM, Vol. 13, No. 1, Jan. 1966, pp. 1-16.

Bl Baer, J. L. and Sager, G. R.. "Measurement and Improvement of
Program Behavior under Paging Systems." Proc. Conf. on Statist.
Methods for Evaluation of Computer System Performance. Brown Unlv.,
Nov. 1971. pp. 241-264. (Available from Academic Press, New York,

N.Y.)

B2 Baskett, F., "The Dependence of Computer System Queues upon Process-
ing Time Distribution and Central Processor Scheduling," Proc.
Third Symposium on OperatinR Systems Principles. October 1971, pp.

109-113.

B3 Belady L. A., "A Study of Replacement Algorithms for Multi-
progratnnlng," IBM Systems J., Vol. 5. No. 2, 1966, pp. 78-101.

B4 Blum J. "Modeling, Simulation and Information System Design,"
Information System Science and Technology . Nov. 1966, pp. 301-306.

B5 Brawn b. S. and Gustavson, F. G., "Program Behavior In a Paging
Environment." Proc. AFIPS FJCC 33, 1968, pp. 1019-1032.

B6 Buzen, J., "Analysis of System Bottlenecks Using ■ Queuing Network
Model." Proc. ACM SIG0PS Workshop on System Performance Evaluation,

April 1971, pp. 82-103. (Available from ACM.)

Cl Chang, A.. "Some Probabilistic Models of Storage Systems," Report
RJ 781, IBM Research Lab., San Jose. Calif.. Nov. 1970.

C2 Chang W., "Queues with Feedback for Time-Sharing Computer System
ZaTysis? ^rations Research, Vol. 16. No. 3, May-June 1968, pp.

613-627.

276

C3 Chang, W., Paternot, Y. J. and Ray, J. A., "Throughput Analysis of
Computer Systems Multiprogramming versus Multiprocessing,"
Proc. ACM SIGOPS Workshop on System Performance Evaluation. April
1971, pp. 59-81.

C4 Coffman, E. G. and Varian, L. C, "Further Experimental Data on the
Behavior of Programs in a Paging Environment," Comm. ACM, Vol. 11,
No. 7, July 1968, pp. 471-474.

C5 Coffman. E. G., "Analysis of a Drum Input/Output Queue under
Scheduled Operation in a Paged Computer System," J. ACM. Vol. 16,
No. 1, Jan. 1969, pp. 73-90.

C6 Coffman, E. G., "Correction to "Analysis of a Drum Input/Output
Queue under Scheduled Operation in a Paged Computer System","
J. ACM, Vol 16, No. 4, Oct. 1969, p. 646.

C7 Conway, R. W., Maxwell, W. L. and Miller, L. W., Theory of
Scheduling. Addison-Wesley, Reading, Mass., 1967.

C8 Coope . R. B., Introduction t_o Queuing Theory, MacMillan Company,
New York, 1972.

C9 Corbatd, F. J., Daggett, M. M. and Daley, R. C., "An Experimental
Time Sharing System," Proc. AFIPS SJCC 21. 1962, pp. 335-344.

CIO Corbato, F. J. and Vyssotsky, V. A., "Introduction and Overview of
the Multlcs System," Proc. AFIPS FJCC 27, 1965, pp. 185-196.

CIl Corbato, F. J., "A Paging Experiment with the Multlcs System," In
Honor of P. M. Morse. MIT Press, Cambridge, Mass., 1969, pp. 217-228.

C12 Corbatd, F. J., Saltzer, J. H. and Cllngen, C. T., "Multlc8---The
First Seven Years." Proc. AFIPS SJCC 40, 1972, pp. 571-583.

Dl Denning, P. J., "Th? Working Set Model for Program Behavior," Coirnn.
ACM. Vol. 11, No. 5, May 1968, pp. 323-333.

D2 Denning, P. J., "Virtual Memory." Computing Surveys, Nol. 2, No. 3,
Sept. 1970, pp. 153-190.

D3 Denning, P. J., "On Modeling Program Behavior." Proc. AFIPS SJCC
40, 1972, pp. 937-944.

D4 D'Avanzo, W. C, Purdue University, Ph.D. Thesis, In preparation.

Fl Feller, W.. An Introduction to Probability Theory and Its
Applications, Vol. 1, Third Ed., Wiley. New York. 1968.

61 Gaver, D P. Jr., "Probability Models ior Multiprograrraning Computer
Systems," J. ACM, Vol. 14, No. 3, July 1967, pp. 423-438.

279

T2 Tsao, R. F., Comeau, L. W. and Margolin, B. H., "A Multi-Factor
Paging Experiment: I. The Experiment and the Conclusions," Proc.
Conf. on Statist. Methods for Evaluation of Computer System
Performance, Brown Univ., Nov. 1971, pp. 103-134. (Available from
Acadr-.tc Press, New York, N. Y.)

Wl Wallace, V. L. and Rosenberg, R. S., "RQA-1 The Recursive Queue
Analyzer," Systems Engineering Lab., Univ. of Michigan, Ann Arbor,
Mich., Feb. 1966.

W2 Wallace, V. L, and Mason, D. L., "Uegree of Multiprogramming in
Page-on-Demand Systems," Comm. ACM, Vol. 12, No. 6, June 1969, pp.
305-308.

W3 Woolf, A. M., "Analysis and Optimization of Multiprogrammed
Computer Systems Using Storage Hierarchies," Ph.D. Thesis, SEL
Technical Report No. 53, Dept. of Electrical Engineering, Univ. of
Michigan, Ann Arbcr, April 1971.

280

BIOGRAPHICAL NOTE

Akira Sekino was born in Nagasaki, Japan, on January 9, 1942, He

graduated from Asahigaoka Senior High School, Nagoya, Japan, in 1960.

He studied Electrical Engineering and Electronics Engineering at Nagoya

University, Nagoya, Japan, receiving the degrees of B. Eng. (Ko-Cakushi),

in 1964, and of M. Eng. (Kogaku-Shushi), in 1966.

Mr. Sekino worked for the Mitsubishi Electric Corporation, Tokyo,

Japan, froin 1966 to 1968, where he was engaged in the development of

prototype computer svstems. He Joined the staff of the M.I.T. Electrical

Engineering department ir. September, 1968, as a research assistant.

Since then, he has worked OT the research on performance evaluation of

time-shared computer systems at M.I.T. Project MAC.

Mr. Sekino is a memb«r of Sigma Xi and the Association for Comp-iting

Machinery.

Pubil'-aticns

1. "Distribution of Constituent Elements of Characters," Denshi Tsushin

Gakkai Zasshi (J. of Inst. of Elec. and Comm. Engrs. of Japan),

Vol. 47, No. 6, June 1964, pp. 933-934. (With K. Udagawa et «1.)

2. "Evaluation of Statistical Dependence among Quantized Meshes in

Character Recognition," Denshi Tsushin Gak j^ Zasshi. Vol. 49, No. 8,

August 1966 , pp. 1478-1485. (With K. Udagawa et al.)

3. "The CTSS Performance Measured from a Terminal," Project MAC

Technical Memo MAC-M-418, July 1969.

4. "Response Time Distribution of Multiprogrammed Time-Shared Computer

Systems," Sixth Annual Princeton Conference on Information Sciences

and System.,. Princeton University, Princeton, New Jersey, March

1972, pp. 613-619.

