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This thesis presents a comprehensive set of hierarchically 
organized modular analytical models developed for tne performance 
evaluation of roultiprogrammed virtual-memory time-shared computer 
systems using demand paging.  The hierarchy of models contains a user 
behavior model, a secondary memory model, a program behavior model a 
processor model, and a total system model.  This thesis is particularly 
concerned with the last three models.  The program behavior model 
developed in this thesis allows us to estimate the frequency of paging 
expected on a given processing system.  The processor model allows us to 
evaluate the throughput of a given multi-processor multi-memory 
processing system under multiprogramming.  Finally, the totaJ system 
model allow* us to derive the response time distribution of an entire 
computer system under study. 
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models guides human intuition in understanding the actual performance 
problems and provides us with reliable answers to most of the basic 
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CHAPTER 1 

THE PERFORMANCE EVALUATION PROBLEM 

1.1. Motivation 

Almost ten years have passed since the appearance of the first 

general-purpose time-sharing computer system marked by the CTSS system 

(09J.  This system is still in operation at M.I.T. although it is being 

replaced by later time-sharing computer systems because of its limi- 

tations on supporting sophisticated users.  Many other systems Lave 

been developed in the effort to correct the deficiencies of earlier 

systems.  Notably, the Multics sysr-m [010,012], the successor of CTSS, 

and ehe IBM 360 model 67 system (A3,LI) incorporated many elaborate 

ideas into their design to efficiently provide sophisticated users with 

their own virtual computers.  These large-scMe systems have stimulated 

the development of a number of smaller systems such as GE 235, RCA 

Spectra mode1 46, CDC 3300, DEC PDP-10. and XDS 940 and Sigma 7. 

As pointed out by Rosen [R2]. especially large-scale time-sharing 

w 
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systems (the Mutlics system and the 360/67 system) have fallen far 

short of the performance anticipated in the initial design sta^e.  The 

elaborate ideas incorporated into these systems, such as paging, segmen- 

tation, multiprogramming, multi-processing, and memory hierarchy, 

combine to create an enormously complex system and therefore it was 

hard to estimate how efficient such an ambitious sy^irem would be. 

Moreover, it was difficult to estimate the impact of :he behavior of 

sophisticated user programs in this environment upon the system.  In 

fact, it is not easy even now to predict the performance (e.g.,through- 

put, responre time, etc) of such complex time-shared computer systems; 

it is generally believed that the most accurate prediction of the 

performance of a system in question is obtained by extrapolating the 

observed performance of "similar" existing systems.  But *» little 

investigation often reveals that each system is very different in hard- 

ware, software, and user characteristics from others.  Therefore, othei 

existing systems do not directly provide us with a reliable performance 

projection of a system, although an examination of performance differ- 

ences of similar systems may be very interesting. Some examples of 

difficult questions on the performance of these modern large-scale 

time-shared computer systems are listed for reference in Table 1-1. 

It is obvious that we need some sort of comprehensive theory of 

performance evaluation that is capable of answering these quantitative 

performance questions concerning hardware, software, and user character- 

istics of these computer systems. 
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Table 1-1  Some Difficult Performance Questions 

• What is the best configuration to provide time-sharing s rvice for 

200 sophisticated users at a place such as M.I.T.? 

• What is the maximum number of users that can be supported by a certain 

system of a given configuration, without discouraging them with ex- 

cessively slow responses? 

• What are the future procurement plans to improve the throughput of a 

certain system if that system must evolve?  Should we purchase another 

processor, another unit of primary memory, or a faster secondary 

memory device? 

• How sensitive is the system performance to the changing user charac- 

teristics? 

• Does sharing affect the cost/performance of a given system very much? 

• How much does multiprogramming improve the performance of a certain 

system? 

• How can we keep the system performing optimally by tuning system 

parameters when a certain system overhead is halved? 

• What is the optimum page size for a proposed system? How sensitive 

is the performance to the page size? 

-<-_ 
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1.2.   Computer Systems  to be  Studied 

This thesis will be concerned with performance evaluation of these 

complex systems,   i.e.,  multiprogrammed vircual-memory time-shared 

computer  systems using demand paging.     Before beginning a diacussion of 

the performance evaluation problems,  a brief description of such comput- 

er  systems to be  studied  is given  in  this  section,   in order  to avoid 

ambiguities associated with  the conplex structure of  these  systems. 

A typical  system is  schematically depicted  in Figure  1-1.     The 

entire system is composed of a processing system and a  finite population 

of interactive users at their terminals.   Each  interactive user of the 

computer system thinks  for a while and  then  requests a computation 

(hereafter called a ^ob)   to be performed by  the processing  system,  by 

typing a command  line at his  terminal.     The job  thus requested  is re- 

ceived and first ^acad in  the memory queue (^ by the processing system. 

The processing system is assumed to have more than one processor, 

and a two-level virtual-memory consisting of multi-unit primary memory 

(usually,  core)  as the first  level and large secondary memory as the 

second,  as  shown  in Figure  1-2.     This multi-processor multi-memory 

processing  system is assumed  to have a  two-dimensional address  trans- 

lation mechanism using both  segmentation and ju^ina  (D2].     When this 

processing system finds  some  space  in primary memory  that  can be allo- 

cated  to a new user job.   one of  the jobs  in (^is moved,   under  the 

First-Come First-Served   (FCFS)  discipline,   to  the processor queue ^ 

The  jobs  in 0    are  scheduled one by one,   (usually) under  the FCFS 

discipline,   for a processor's  service when one of  the processors becomes 

available,  and  then each  job  is execute.!  (in  the runninB  state of 
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Figure 1-1) by the proces-or until it encounters a part (page), of its 

program, that is missing in primary memory ( a missing page fault is 

said to have occurred).  Control of the processor is  transferred from 

the user job to a supervisor module, named the page fault handler, which 

then requests the missing page to be brought from secondary memory for 

that user job, under a demand paging strategy. At this point, the 

processor becomes available for another job in Q .  On the other hand 
P 

the page-faulted user job enters the page-wait state, waiting for the 

requested page.  When it is eventually transferred from secondary memory 

to primary memory, the user job reenters the processor queue Q (or the 
P 

page-ready state), becoming ready for another service by a processor. 

Because there usually exist several jobs competing for service by 

processors, each job is executed in an interleaved fashion, cycling 

through the above three states many times.  When the job is eventually 

completed, the result is returned, as a system response, to the terminal 

user who requested this job, and he then starts thinking about which 

job to request next. 

A series of jobs being requested by a user is generally called a 

process.  It is assumed that a user can request a job only after he 

receives the system's response to his preceeding job request.  If s 

user's job is located within the section of Figure 1-1 surrounded by a 

broken line, his process is raid to be eligible because it is eligible 

for a processor's service; otherwise it is said to be ineligible. 

The number of eligible processes existing at any instant should be 

determined by considering, at least, their demand for primary memory 

available to eligible user processes, tn order to avoid thrashing. 

ia^Ma 
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I.e., excessive competition for primary memory space leading to a less 

than optimum use of system resources.  The computer system to be con- 

sidered is actually assumed to have a simple (static) mechanism to 

avoid thrashing, called multiprogramming of degree q. which allows a 

maximum of q (a constant) processes to be simultaneously eligible. 

Sunming up, the computer system to be studied is characterized by 

the parameters shown in Table 1-2. This table lists only major system 

parameters which are believed to be important in performance evaluation. 

The precise definition of these system parameters will be given as they 

are introduced in the thesis. 



20 

Table 1-2  Major System Parameters 

System Hardware: 

number of processors 

size of primary memory 

number of primary memory units 

size of secondary memory* 

speed of processors and primary memory 

speed of secondary memory 

channel organization and capacity* 

memory cycle interference 

System Software: 

scheduling algorithm* 

multiprogramming algorithm  (degree of multiprogramming) 

page replacement algorithm 

page size 

paging overhead 

miscellaneous overheads 

data-base lockout 

Users and Their Programs: 

number of interactive users 

».ypes of interactive users* 

user's think time 

execution time required by each user internction (job) 

program size 

reference pattern of programs 

decree of sharing among user processes 

* Comments will be given in Section 1.6, 
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1.3. Nature of the Problem 

As the complexity of time-shared omputer systems grew, the perfo-in- 

ance evaluation ->f  these costly systems became vital.  Therefore, many 

performance evaluation techniques have been developed.  Lucas [L4] 

recently classified thess techniques, according to their purposes of 

performance evaluation, into the following three categories. 

(A) System selection techniques 

(B) Performance projection techniques 

(C) Performance monitoring techniques 

The first category of techniques is intended to select a particu- 

lar system from various systems available from many manufacturers when 

system performance is a major criterion to make a purchase order.  Lucas 

suggests that synthetic programs (a comprehensive set of benchmark 

programs, so to speak) are most appropriate in this category.  The 

second category of techniques are intended to estimate the performance 

of a system that does not yet exist or only partially exists. Within 

this category, Lucas claims that simulation is most powerful because of 

its relative flexibility in modeling complex systems.  The last category 

of techniques is intended to collect data on the actual performance of 

an existing system.  These data are used to identify the operating 

condition of the system so as to forecast the impact of changes in the 

system, possibly with the help of the techniques of the second category. 

Monitoring uses both hardware and software methods. 

According to this classification, the performance evaluation 

techniques to be presented in this thesis belong to the second category 

   ,        _.__ 
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and are especially concerned with the following ^hree general performance 

problems of modern large-scale time shared computer systems. 

(1) performance prediction for a given configuration 

(2) performance optimization for given (hardware) configuration 

(3) configuration selection for a given budget 

Performance prediction means a functional expression of system 

performance (e.g., throughput, response time, etc.) in terms of various 

system parameters concerning hardware, software, and user characteristics 

of the system; a performance prediction technique estimates the perform- 

ance of a given (hardware-software-user) configuration. Performance 

optimization deals with the problem of how to improve the performance 

of a given system without changing its hardware: the system performance 

is optimized with respect to certain adjustable parau.wters of the 

operating  stem such as the degree of multiprogramming, the page size, 

and various resource allocation algorithms, without changing the 

hardware cost. Lastly, configuration selection is the problem of 

deriving the optimum system configuration which attains the best 

performance, constrained by a given purchase budget; this involves 

an optimization o" hardware configuration as well as that of the operat- 

ing system. 

The configuration selection problem is simpler than the system selection 

problem because we need not be concerned with various differences of 

different systems in machine structure such as word length, width of 

data transfer paths, machine instruction repertory, etc. 
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Unfortunately, simulation approaches, recommended for this category 

of fiobl^ms by Lucas, require enormous amount of development effort 

and operating cost.  This becomes especially apparent if a simulation 

model includes many micro and macro operations in evaluating the per- 

formance of various possible configurations of a certain system.  More- 

over, simulation approaches tend to lack the capability of yielding a 

general insight into the cause-and-effeet relationship of performance 

problems.  To compensate these weaknesses of simulation approaches, this 

thesis explores the possibility of using analytical models in tackling 

the above three general problems of computer system performance. 
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I.A. Review )f Analytical Computer Models 

Because analytical models will be developed In this thesis to 

project the performance of large-scale time-shared com^ot^r systems, 

this section briefly reviews and examines the analytical computer models 

developed as performance projection techniques until now. 

These models are stochastic in nature and their analysis usually 

.nvolves queuing theory.  Because It la generally difficult to include 

nany mutually related system parameters (see Table 1-2) in a mathemati- 

cally tractable model, most of these analytical models are concerned 

with subsystem behaviors.  They may be classified Into: 

(a) processor scheduling models 

(b) secondary me-uory models 

(c) multiprogransnlng models 

(d) program behavior models 

Processor scheduling models usually include a single processor, an 

infinite (sometimes, finite) user population, and a scheduling algorithm 

(e.g.. First-Come First-Served, Round-Robin, Processor Sharing, Feed- 

Back), and aim to study the effect of a scheduling parameter (e.g., 

quantum length) upon response time of a us«r Job (conditioned upon its 

execution time).  These models are most abundant among the above four 

classes and were extensively surveyed by McKinney [M2I.  For example, 

general analyses by RR, PS, ant FB algorithms were presented respective- 

ly by Chang [C2], Baskett [B2j, and Schräge |S5|. 

Secondary memory models are intended to estimate the (average) time 

to fetch a block of information from a secondary memory device (e.g.. 
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disk. drum, bulk core, etc.) u.ed a. part of virtual memory.  Fewer 

paper, have h.en publl.hed In thi. area.  Coffman'. work |C5.C61 I., 

however, worthy of a .pecial note.  He derived the average time required 

to fetch a page of Information Iron, a sector drum under demand paging, 

using ai embedded Markov chain technique (CS). 

Multlprograanlng model, are relatively newer cla.. of model, and 

„•re analyted by Smith (S71. Wallace and M...on [«], ü.gen (Bb). Moore 

IH31, Rice [111, «t al-  TT,e8e modeU  co'nblne proces.or .chedullng 

model, (with a FCFS dl.clpllne) and .econdary memory model., making a 

.Ignlflcant .teP toward a ".ystem model".  THey Include .everal (a fixed 

number) job. under multiProgra«nlng. each of which i. .ervlced by a 

proce.eor and then by one of the .econdary memory device. In a cyclic 

faahlon, a. .chematlcally .hown In Figure 1-3.  Service time of each 

..rv.r(proce..or, i/o devices) li u.ually a..umed to be exponentially 

dl.trlbuted and branchings are .pecified by constant (uncondltonal) 

probabllltle. (e.g.. P,  of Figure 1-3).  Thl. cla.. of models aim. to 

.v.luate the effect, upon the server utilizations, of the hardware con- 

figuration a. well a. of the number of job. under multiprogramming. 

I.e.. the degree of multiprogramming.  Smith and Wallace et al formulated 

their problem, a. a Markov proce.. and numerically obtained the perfom- 

ance of the.e model, u.lng a powerful queue analy.i. program called RQA 

[Mil. On the other hand. Buzen, Moore. Rice, and other, explicitly 

analyzed the perfonnance of their multiprogramming model, u.lng Gordon 

and Newell's method 102) or Jack.on'. decompo.ltIon thorem concerning 

queuing network. IC7.J1,.  The effect of non-exponential .ervlce time. 
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q circulating Jobs 

secondary memory 

I/O device   1   —       *• 

I/O device 2 

Figure  1-3      Typical Multiprogramming Model 
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was examined by Gaver [Gl].  The problem of optimizing the degree of 

multiprogramming under a simple assumption was studied by Wallace and 

Mason.  The effect of system overhead was carefully analyzed by Lewis 

and Schedler [L2]. 

Finally, there exists another class of analytical models, i.e.. 

program behavior models. These models are intended to study the paging 

behavior of programs being executed by a processor within u  limited 

amount of primary memory.  There seem to be at least two different 

popular approaches in modeling program behavior, Markovian program 

models [Kl] and Dennlng's working-set program models [Dl, 03).  The 

paging behavior of programs is modeled by a Markov chain in the first 

approach, while the paging behavior is measured by the number of dis- 

tinct pages referenced during a given time interval in the second 

approach.  Both of these attempt to derive a success function, i.e., 

the probability that a reference is made to a page already in primary 

memory expressed as a function of the primary memory size, for a certain 

page replacement algorithm.  However, no practically useful results have 

been obtained about the dynamic paging behavior of programs. 

Although many analytical models have been developed and analyzed, 

there still exists a general consensus especially among system desien.« 

that these models are not good enough to answer the performance questions 

that they face (see Table 1-1).  This is probably due not only the 

system designers' insufficient efforts to try to use studi.-d models in 

understanding the behavior of an actual system, but also to certain 

Important detects of these analytical models; most of t'.e analytical 

models developed until now have serious weaknesses In at least some of 



28 

the following aspects. 

(1)  System behavior versus subsystem behavior; almost all analyti- 

cal models attempt to represent only a subsystem1, and this 

is the very '.ason why many system analysts abandon an analyti- 

cal approach and choose a costly simulation approach.  Perhaps, 

we need another model which is capable of combining all sub- 

sysuem models meaningfully so as to estimate the performance 

of the entire system. 

(2) Paging activities and multiprogramming capability; this aspect 

of the modern large-scale time-shared co/nputer system is not 

considered in the processor scheduling models, but is usually 

considered in the multiprogramming models.  Therefore, we 

should favor the latter models.  The program behavior models 

developed until now arc not good enough to consider a multi- 

programmed situation. 

(3) Space-domain considerations; the size of primary memory is not 

considered In the multiprogramming models.  Moreover, these 

models consider only a single-processor system, in spite of 

the increasing inteisst in multi-processor multi-memory systems. 

(4) Overhead considerations; almost all models do not consider 

the overhead of system programs, although a major implication 

1 
There are some analytical models of an entire system [S4,Tl).  However, 

these models are apparently too simple to reasonably represent multi- 

programmed time-shared computer systems using demand paging. 
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of modern time-shared computer systems with paged memory is 

considered to be system overheid. 

(5) Good choice of performance measure; the improvement of utili- 

zation factors of system resources is not an ultimate goal. 

Better performance measures are the system throughput, namely, 

the amount of user computation accomplished by the entire 

system per unit time, and the system response time experienced 

by interactive terminal users. 

We will attempt to correct these defects of the ex sting analytical 

models in this fhesis research sr that we can realistically attack per- 

formance prediction problems, performence optimization problems, and 

configuration selection problems. 
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_1.5.   Approach  to be Taken 

Haling „f n,ultIprogr,»ed vlrtua-.en.ory t!„».„„„„„ con,puter 

•T.«-. uSl„e de„an, pagin8 mu8t  iaclade naiiy ^^^ famttnB    ^ ^^ 

I. Tab.e 1-1.     It  u a = tu.uy thls „uuipUcity ., lnteractlng 8v8tem 

P««.»» that „.. prevented analytIcal computer ^^ ^ being i 

»..onabU rep„aentati„n „ theSe systms a8 thelr „^^  . 8tralght_ 

forw.rd  indusion of .„  ln,p<,rt6nt 8ystem ^^^  ^ ^ ^^^^^ 

«Ode! would «,. aUo. «tb-ttd tractabUit), i„ ltl analy.u.     „,.„. 

"tlngly,   1, ha. bean observei al8o in 8imulatlon apI>i.oache8 ^ a 

Simulation .„del „hlch ..t-»t. to accouut for both "nacro-oparatlou." 

(e.g.,   user., thluk tlM, B„d .■™l„„.operatlo„8.. (o.g.,   8tate tranaltlon» 

of .Uglble proceaaea,  dynamic program behavior) can be prohltItlvely 

expenalve to run  [B^l.    On the contrary,   the reaulta obtained fro. the 

oueral^Ufled analytical „odela cannot convince the ayate« de.lgnera ,f 

their practical value as a desien aiH      Th»^^ a aesign aid.     Therefore,  we are in • dilemma of 

mathematical  tractability and multiplicity of   intsr*,^ F  xtityor   interacting system parameters. 

However,   a solution  to  this dilemma may be  found by noting  that  all 

•y.tem parameters do not necessarily  interact and  that  the system 

behavior  involves vario. . activities of different  time scales.    For 

example,   user behavior   (e.g.,   think  time,   jobs  to be requested,   etc.) 

tends  to be  logically  independent of dynamic program behavior unless 

the user  is encouraged  to be particulary careful  about  the program 

behavior.    We  find  that  the activities of  the entire  system may be 

categorized  into "macro-activities"  (e.g..   .emory queuing of user  jobs, 

terminal  user behavior-activities  on  the order of seconds),   "micro-   ' 

activities"  (..,  ,   state transit,ons of eligible processeg...millisecond 

— .  
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activities).  Thus, we can obtain several semi-independent activities 

of the entire system which interact only through their prime inter- 

relationships. When all the semi-independent activities are connected 

according to their prime inter-relationships, we generally obtain hier- 

archically organized system activities.  One such result is shown in 

Figure 1-4.  The approach to be taken in analyzing the behavior of the 

entire computer system in this thesis is  to develop a separate model 

for each semi-independent activity of this hierarchy in such a way that 

any model has, as its input parameters, at least one system parameter 

produced (as an output) by each immediate lower-level model, if such 

models exist, as well as its own set of system parameters.  A system 

parameter produced as an output of a model can be regarded as a perform- 

ance index of that model.  If such a performance index is not the output 

of the top-level model, it is called an intermediate performance measure. 

Now it is clear that the entire computer system is represenced by a set 

of hierarchically organized modular models. 

We will usr a particular hierarchy of modular models depicted by 

Figure 1-4.  It includes the following five modular models. 

(1) program behavior model(8) 

(2) secondary memory model 

(3) user behavior model 

(4) processor model 

(5) total systei-i model 

The program behavior model(s), to be developed for the behavior of 

 ,  
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response  time 

number of processors 
number of users 

number of processors 
number of primary memory units 
system overhead 
degree of multiprogramming 

user's  think tine 
job's  execution time 

program characteristics 
primary memory size 
page  replacement  algorithm 
page  size 
degree of sharing 
degree of multiprogranmlng 
etc. 

device characteristics 
channel organization 
input/out put traffic 
etc. 

Figure 1-4»  Hierarchical Organization of Modular Models 
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programs being executed on the processing system, aim(s) to derive the 

mean length of program execution before a page fault (that is, the mean 

time between page faults denoted as "mtbpf") as a function of various 

system parameters such as program characteristics, the primary memory 

size, the page replacement algorithm being used, the page size, the 

degree of sharing among eligible processes, the degree of multipro- 

gramming, etc.  The secondary memory model aims to derive the mean 

length of time required to fetch a page of information from the second- 

ary memory system (that is, the mean page fetch time denoted as "mpft") 

as a function of memory device characteristics, the channel v -«^anization. 

the input/output traffic intensity, etc.  Because the performance of the 

secondary memory system (disk, drum, bulk core, or a combination of 

these) can be reasonably predicted by a simple queuing model like an 

M/G/l queue [C8], or by the fairly complex drum model of Coffman [C5, 

C6], the thesis will not develop a new mudel in this area.  The user 

behavior model exists for a user's function to think and request a 

computation called a user job.  In this thesis, we simply dssume that 

think time, which a user needs to decide and request a job, and exe- 

cution time required by such a ^»er job are both exponentially distrib- 

uted because they are known to be roughly exponential [S4]; we will not 

be concerned with any internal mechanism of these interactive users 

(e.g., under which condition a user's think time tends to be exponential). 

Immediately above the program behavior model and the secondary 

memory model, there exists the processor model.  This is a multipro- 

gramming model improved in such a way that the performance of a multi- 
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programming mechanism implemented on a multi-processor multi-memory 

processing system (see Section 1.2.) can be measured in percentile 

throughput, i.e., the percentage of the system's computational capacity 

utilized for users' useful work.  This means that the objective of the 

processor model is to derive the percenti.e throughput of the system as 

a function of the number of processors and primary memory units, their 

operating speed, the speed of secondary memory, various overheads of the 

operating system, the degree of multiprogramming, user process behavior, 

multi-processor interferences (such as memory cycle interference and 

data-base lockout), and so on.  Particularly as for the user process 

behavior and the .peed of secondary memory, it will be assumed that the 

time between page faults and the page fetch time are both exponentially 

distributed with m.ans predicted by the analyses of the program behavior 

model and the secondary memory model respectively.  Becaus. percentile 

throughput turns out to be linearly proportional to the throughput of 

the processing system, i.e., the average number of user jobs completed 

per unit time (this relation will be shown later in Chapter 3), the der. 

ivation of percentile throughput using the processor model is called a 

throughput analysis.  The throughput analysis using the above multi- 

programming model aims to overcome the defects of the existing multi- 

programming models concerning the space-domain considerations, the 

overhead considerations, and the performance measure. 

At the top level, there exists the total system model.  This model 

combines all other models in the hierarchy, and aims to derive a distri- 

bution of the system's response time as an explicit function of the 
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number of processors, the number of interactive users, the percentile 

throughput predicted by the processor model, and the user characteris- 

tics such a, user think time and execution time of a user job both of 

which are assume«! to be exponentially distributed.  This means that it 

will be possible to derive the percentile response time, i.e., the time 

limit which guarantees that a certain proportion (e.g., 90 percent) of 

response times is shorter than that limit, as a function of various 

system parameters describing the configuration of the computer system. 

Therefore, the result to be presented is much more informative than the 

result of the average response time, because the fluctuations of re- 

sponse times around the average can be accurately predicted.  It seems 

that this is the first derivation of the distribution of response time 

of a multiprogrammed time-shared computer system using demand paging. 

It should be pointed out that the response time and the system 

throughput predicted in this approach reflect not only processor hard- 

ware characteristics, system software (operating system) characteristics, 

and user behavior characteristics, but also secondary memory character- 

istics and program behavior characteristics.  This was made possible by 

-he use of a set of hierarchically organized modular models each of 

which involves only a few system parameters, while the entire computer 

system includes more than twenty important system parameters.  This 

thesis will consider all the system parameters of Table 1-2 except those 

starred, in evaluating the performance of multiprogrammed virtual-memory 

time-shared computer systems using demand paging, explained in Section 

1.2. 



36 

Aside from the fact that this hierarchical organization permits 

mathematical tractability and the existence of such a multiplicity of 

interacting system parameters, it has the following equally important 

aspects. 

(1) This organization allows human understanding of the very 

complicated behavior of modern complex computer systems and 

therefore provides us with an insight into the cause-and- 

effect relationships existing in such systems. 

(2) If the behavior of a subsystem becomes known through the 

experimental or monitoring studies of a partially existing 

system, the behavior of the corresponding model can be re- 

placed by the actual behavior of that subsystem.  Therefore, 

available information abo.it subsystems can be usefully util- 

ized in predicting the performance of the entire system with 

an increased accuracy. 

(3) Change in subsystem configuration (e.g., secondary memory 

configuration), expected especially on evolving computer 

systems, does not require an overall change of the entire 

analysis; only the parameters of that subsystem need to be 

modified. 
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1.6. Some Comnents about the Models 

Comments may be in order as to why some of the system parameters 

of Table 1-2 are out of consideration In this thesis.  In studying the 

paging activities under multiprogramming, this thesis «s&umes a two- 

level virtual memory consisting of primary and secondary memories.  In 

this context, the key parameter of secondary memory is not its sire but 

its speed, and therefore it is simply assumtd in the thesis that the 

secondary memory system is large enough to store all the system and 

user programs; we do not explicitly consider the sire of secondary 

memory.  As for the channel considerations. It will be assumed for 

simplicity of the analysis that the processing system Is not channel- 

limited.  Therefore, the dynamic queuing delay associated with channel 

service will noc be expllcl:ly conslderea, but some fixed service time 

by channel may be Included as part of the page ;»tch '•ime of secondary 

memory. 

Scheduling algorithms of the system described In Section 1.2 are 

all FCFS and any alternative algorithm will not be considered.  But, as 

Is well known, actual systems usually employ more sophisticated algo- 

rithms.  For example, the Multlcs system uses a refined variation of FB 

scheduling algorithm (01) with a pre-paglng and post-purglr.g technique 

(rather than strict demand paging) for Jobs in the memory queue.  It 

should be reallred that what we want to accomplish in this thesis Is to 

develop a performance evaluation methodology which Is capable of de- 

riving percentlle throughput (or system throughput) and response time 

of a "reasonably basic" system like the one described as a typical 

system In Section 1.2. as a function of various Important system parame- 



ters.  Then, it becomes clear that Inclusion of «n alcernative sched- 

uling algorithm like a RR or FB algorithm (for Jobs In the memory 

queue) In the proposed framework of the performance evaluation theory 

Is not very attractive, because It is known In queuing theory [B2,C7] 

that (overheadless) scheduling algorithms cannot affect percentle 

throughput or average response time if the execution time of user Jobs 

Is only probablllaclcally known and follows an exponential distribution, 

as assumed In Section 1.2 and as observed on the Multlcs system, for 

example: scheduling algorithms however van affect the variance of 

response time because of their intended favoritism for certain (e.g., 

short) jobs at the expense of others (C?).  Percent lie throughput and 

average response time only deteriorate if the process (Job) twitching 

overhead associated with quantum run-out of the alternative scheduling 

algorithm Is not negligible.  (Note that the Introduction of pre-paglng 

and post-purging aainly almj to reduce this overhead.) Therefore, in 

making a hard effort to include as many "Important" system parameters 

(those which affect percentile throughput c* average response time) 

lUnder a RR algorithm, for example, a fixed amount of time, called a 

quantum, in given to each process becoming eligible. The process Is 

allowed to remain eligible until it uses up this amount of processor 

time.  If this process needs more processor time to complete Its Job, 

It becomes inelijible and Joins the end of the memory queue. This state 

transition path Is not Included in Figure l-l, because we assume a FCFS 

algorithm. I.e., the RR algorithm with a Infinitely large quantum. 



as possible in the fraaevurk of this approach, . Iternative scheduling 

algorithms will not be considered; such a refinement may be applied 

after the computer system undet study is optimised with respect to 

percentile throughput. 

For Job« in the processor queue, the Hultics system uses a pre- 

emptive scheduling algorithm (to accomplish a biased primary memory 

allocation |B3|) with a dynamic eligibility control mechanism based on 

a working-set estimate of user processes (01 | (rather than the static 

eligibility control mechanism of Section 1.2).  This elaboration does 

improve percentile throughput, but we consider it as a refinement of 

the FCFS scheduling (i.e., an unbiased primary memory allocation) with 

the static eligibility control mechanism.  Therefore, these details will 

not be considered in this thesis. 

Finally, it should be mentioned that many random variables are 

assumed to be exponentially distributed not simply because of mathemati- 

cal amenability but, more importantly, because of experimental evidence. 

The user's think time measured by Scherr (54) Is roughly exponential, 

and the execution time of user Jobs being monitored by a built-in meter 

of the Multlcs system Is almost exponential.  Page fetch time tends to 

be close to an exponential distribution especially If secondary memory 

consists of a cumbi   mn of a frequently-used high-speed device (e.g., 

drum) and a less-frequently-used low-speed device (e.g., disk).  The 

distribution of time between page faults has not been measured on the 

Multlcs system, but it is very probable that this distribution appears 

like an exponential distribution.  These observations of MIT systems. 

of course, do not necessarily "«ssen the Importance of extending the 
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exponential assumptions  to more general ones.     In fact,   the execution 

time of uaar Jobt of some other systems  is reported to be more like a 

hyper-exponential distribution or a Weibull distribution,   possessing a 

large coefficient of variation  1A2). 
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1.7. Thesis Organization 

This thesis cakes a bottom-up approach in describing the models 

developed for hierarchically organized subsystems.  Each chapter of this 

thesis presents results obtained for a different subsystem. 

Chapter 2 is devoted to the studies of dynamic program behavior, 

and presents several program behavior models evaluating mtbpf as a lunc- 

tion of various system parameters.  Chapter 3 is dedicated to th'; 

studies of the processing system, and presents a result of the through- 

put analysis using the processor model, i.e., a ii.odel of the multi- 

programming mechanism implemented on the multi-processor multi-memory 

processing system.  Chapter A is devoted to the studies of the response 

time characteristics of the entire computer system, and presents the 

result of the response rime analysis using the total system model 

formulated as a queuing process.  Thus, Chapter 2 through Chapter 4 

collectively consider the performance prediction problems, i.e., the 

problems of expressing computer system performance as a function of 

various system parameters de '■ribing its configuration 

Chapter 5 presents many numerical results obtained by these 

analytical models as well as the actual performance data collected from 

the Multics system of M.I.T.  The validity of these models is first 

examined and then the effect of various system parameters upon the over- 

all system performance (i.e., the system throughput and the system 

response time) is numerically evaluated using these models.  The problem 

of optimizing a given computer system with respect to certain operating 

system parameters (the degree of multiprogramming and the page size) and 

the problem of deriving the best performance system for a given budget 
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are realistically considered. This chapter tackles all the performance 

evaluation problems mentioned in Table 1-1 numerically. 

The last chapter, i.e.. Chapter 6, summarizes the problems solved 

in this thesis and those that still remain to be solved. Throughout the 

thesis, a stochastic modeling approach is used. This thesis therefore 

represent an application of some known techniques (or their slight 

variations) in Markov process theory and queuing theory to performance 

evaluation problems of computer systems. The enphasis, however, is on 

the identification of the actual performance problems and the develop- 

ment of a framework of performance evaluation methodology. 

A reader who is intere ted simply in finding out the application of 

the framework of performance evaluation developed in this thesis to the 

performance problems of actual computer systems is suggested to read 

Chapter S immediately after this chapter.  If a reader is interested in 

understanding modeling techniques for computer systems, he should read 

Chapter 2 through Chapter 4 carefully. Each of these three chapters can 

be read individually without much trouble.  If he decides to read in 

this way, the notation and glossary included at the end of this thesis 

may be helpful.  Chapter 6 is useful to those vho are searching for 

research topics in the area of computer system performance evaluation. 
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CHAPTER 2 

PROGRAM BEHAVIOR ANALYSIS 

2.1. Introduction 

Virtual memory computer sy.r.Lems have enabled the memory system to 

appear to their users (programmers) as If It is virtually infinite in 

size.  Therefore, the nasty problem of carefully overlaying programs 

within a relatively limited primary memory space has been removed from 

the user's programming considerations.  Virtual memory is assumed, 

throughout this thesis, to be implemented by "segmentation" and "paging" 

[02], on a two-level physical memory system consisting of primary memory 

and secondary memory. 

These computer systems have a mechanism for translating program- 

generatel addresses into the correct physical memory addresses (02). 

The set ef program-generated addresses is called the virtual address 

space (virtual memory) and the set of physical memory addressee the 

physical address space (physical memory).  Segmentation organizes the 
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Virtual address space into blocks, called segments, cf arbitrary size. 

By allocating each program to its own segment, programs can have their 

own "linear" virtual address space within themselves.  This means that 

a processor accesses each word of a program residing at a certain  loca- 

tion of the virtual address space, using a two-component address (two- 

dimensional address) consisting of a segment name (segment number) and 

a word name (word number).  Paging further organizes each segment into 

blocks, called pages, of a fixed size (usually 1,024 or 512 words). 

This means that a word name is represented by a page number and an 

offset.  Each segment usually has several pages of information ( proce- 

dure and data). 

Correspondingly, the physical memory is organized into equal-size 

blocks of locations, known as page-framos. which serve as sites of 

residence for pages of segments.  Because a processor can execute only 

that portion of a program (segment) which resides within primary memory 

which is relatively limited in size, the operating system must exercise 

a special algorithm, called a paging algorithm, to keep only the pages 

being needed for a progress of program execution in primary memory at 

all times, by transferring pages of the program back and forth between 

primary and secondary memories.  The paging algorithm decides when to 

fetch a page from secondary memory and which page to be removed from 

primary memory when one of the pages in there must be replaced by the 

page to be fetched.  If a page is fetched only on demand, i.e., only 

after that page is found "missing" in primary memory in the course of 

program execution (a page fault is said to have occurred), then the 
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fetch rule is said to  be demand paging; otherwise, it is said to be pre- 

paging.  The rule used to select a page for removal is called a page 

replacement algorithm.  These two functions (page replacement and fetch- 

ing) of the paging algoriJ-hm aro carried out by a supervisor program, 

named a page fault handler, which is a part of the "resident" supervisor. 

In fact, the processing of a page fault requires some other things 

such as the bookeeping of the page table, the initiation of a channel 

program, the handling of a paging interrupt, etc.  [Cll].  These super- 

visory operations required to process a page fault are collectively 

called the paging overhead.  From the above explanation, it should be 

clear that each burst of continuous program execution, i.e., the running 

state of each elegible process (see Section 1.2.), consists of (at least) 

user program execution and paging overhead execution.  The length of 

thi: continuous program execution in  the running state is called a time 

between page faults (abbreviated as tbpf) and the length of user program 

execution within tbpf is called a headway between page faults (abbrevi- 

ated as hbpf). The means of these variables are respectively called the 

mean time between page faults (mtbpf) and the mean headway between page 

faults (mhbpf). 

As explained in Section 1.2., the computer system to be studied is 

under multiprogramming of degree q.  This means that q eligible (user) 

processes compete for service by a processor and for the use of page- 

frames of primary memory.  Because segmentation enables any segment to 

b» shared (a single copy of a segment in virtual memory can be simulta- 

neously used by different users), some of these page-frames are physi- 

cally shared by these eligible processes.  Therefore, the efficiency of 

._    
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primary memory is heightened by segmentation.  However, some part of the 

primary memory space is not available to no.i-resident oro.r^ (programs 

whcih are not always resident in primary memory) invoked by eligible 

processes, because resident Supervisor nro.rams stay at certain physical 

memory addresses at all times.  This situation is schematically depicted 

in Figure 2-1.  The total primary memory space with M page-frames is 

divided into two areas, i.e., the area with mr pa^e-frames for resident 

supervisor programs and the area with mn page-frames for non-resident 

programs (user profirams and non-resident supervisor programs).  Eligible 

user processes execute not only non-resident programs but also resident 

(supervisor) programs, and therefore they can potentially utilize any 

part of the primary memory space. 

Dynamic paging behavior of user processes in this environment is 

known to have a great impact on the system's overall performance [K2] 

and therefore it has been extensively studied by many researchers.  It 

is believed that at least the following system parameters are significant 

in determining the performance of programs, which is usually measured by 

the mhbpf of user processes, 

(1) program characteristics  (size, reference pattern) 

(2) primary memory size  (m , m , M) 
r'  n 

(3) paging algorithm 

(4) page size 

(5) degree of sharing among user processes 

(6) degree of multiprogramming  (q) 

Belady [B3], Brawn and Gustavson [B5], Coffman and Varian [C4], Hatfield 
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m. 

resident 

supervisor 

V 

non-resident programs 

invoked by q user processes 

M = m + m 
r   n 

Figure 2-1  Allocution of Primary Memory Space 

mmmm 
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and Gerald [Hl], Tsao, Coraeau, and Margolin [T2], and Baer and Sager 

[Bl], among others, have experimentally investigated the effect of 

various syscem parameters upon the mhbpf (or its equivalent) of user 

processes.  On the other hand. Denning [Dl,D3], Mattson, Gecsei, Slutz 

and Traiger [Ml], Chang [Cl], Aho, Panning and Ullman [Al], King [Kl], 

Woolf [W3], and others have carried out analytical studies of the dynamic 

behavior of user processes. 

Research performed by Denning, Woolf, and King represents three 

different analytical (probabilistic) approaches to the problem consider- 

ed in this chapter, and therefore some comments about their results are 

in order.  Deiining defined the working set, W(t,T), of a user process at 

time t to be the set of pages that the process has referenced during the 

time interval (t-T,t), and he has demonstrated the usefulness of his 

model using the working set as an aid for guiding one's intuition in 

understanding program behavior and possibly as a has .B  for further 

program behavior analysis. Wool' considered prograa behavior to be an 

execution of a series of loops and successfully evaluated the effects of 

program characteristic^, primary memory size, and page sise.  However, 

this elaborate model has not been validated against actual program 

behavior.  On the other hand, King formulated program behavior as a 

Markov process in evaluating the effect of paging algorithms as well as 

those of program characteristics and primary memory size.  These analyti- 

cal studies do explain various behaviors of programs experimentally 

observed, but none of these has proved to serve as a practical design 

aid to predict a program's quantitative performance (e.g., mhbpf) as a 

function of the system parameters mentioned above.  In particular, the 
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effects of sharing and multiprogramming have never been fully studied. 

In the following sections of this chapter, four program behavior 

models mostly using a Markov process approach will be developed to study 

the effects of those six system parameters mentioned above upon the 

mhbpf (or its equivalent) of a program (a user process,).  All of these 

four models consider at least the effect of program characteristics and 

of primary memory size, but each of them concentrates on the evaluation 

of the effect of a particular system parameter.  The models to be 

presented in Sections 2.2, 2.3, and 2.4 are especially concerned with 

the effect of the paging algorithm in use, the effect of the primary 

memory size, and the effect of the page size, respectively.  The model 

to be presented in Section 2.5 considers a multiprogramming environment 

and is particularly concerned with the effect of the decree of multi- 

programming and that of sharing among user processes under multi- 

programming. 

Readers who are only peripherally interested in the analysis of 

program behavior may skip Sections 2.2, 2.3, and 2.4,and directly mov« 

to Section 2.5, which describes a macroscopic paging performance model 

for multiprogramming. The result of this section will be extensively 

used in the succeeding chapters.  Sections 2.2. 2.3, and 2.4 present 

detailed analyses of dynamic program behavior and can be read 

individually without difficulty.  However, a reader can grasp the basic 

approach used in this chapter more thoroughlv by reading ther. in the 

order of these sections. 
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2.2.   Flrsr-order Markov Model Applied to the PRA Studies 

In Section 2.2., we present a program behavior model developed to 

study the effect of £age replacement algorithms (abbreviated as PRAs) 

as well as those of program characteristics and primary memory size. 

upon the mhbpf of a user process operating on a multiprogrammed virtual 

memory time-shared computer system using demand paging .  To simplify 

the analysis, we assume that the primary memory space (m ) is partition- 
n 

ed  into q equal-size areas, one for each eligible process, and that the 

PRA under study Is exercised within the area reserved for each user 

process (this kind of PRA is called a local PRA as opposed to a global 

PRA [D2]).  Then, the analyst of program behavior under multiprogranming 

reduces to that of program benavior under uniprogramming. 

2.2.1. Program Behavior Model and Pa^inp. Algori'hms 

Consider a program consisting of a set ?={?.,?»,...,p } of n pages. 

As the program is executed by a processor, it generates a sequence r r 
1 2 

...rt... of references to pages, where if rt=Pi we say that the progrfm 

references page pi at the t-th reference (or at time t). We assume 

that such a sequence, known as a page reference string, is generated by 

a probabilistic law associated with the program.  In particular, if r 

depends only on r
t.k+1 J-• • .r,. »  then the probabilistic behavior of the 

The result described in Section 2.2. can be regarded as an extension 

of King's work [Kl], although this was independently derived.  He used 

a zeroth-order Markov model for exactly the same purpose. 
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program forms a k-th order Markov chain.  This Markov chain actually 

can be reduced to a first-order Markov chain of n states by considering 

a direct product (P )  of the set P, I.«., a state augmentation rechenlque 

(H2).  Therefore, we will consider, without loss of genernllty. only 

programs that are modeled by a fli^t-order Markov chain. 

The probabilistic behavior of these programs Is characterized by a 

transition matrix P of the following form IH2]. where an element of the 

matrix p11  represents a condltonal probability of a reference to a 

page p. at time t+1, given that a page pi  was referenced at time t. 

tX+1 pi 

p 

'll P12 •'• Pln 

'21 P22 •'• P2n 

Pnl Pn2 nn 

(1.2 I) 

We assume that the elements of this matrix do not depend on time t, I.«., 

the program behavior Is stationary .  Hereafter, we call this type of 

program a (stationary first-order) Markovlan program. 

Suppose that primary memory consists of a set M=(f .f^ ^J of 

m page-frimcs where m<:n.  Although the most general paging algorithm 

may be the one which fetches (replaces) an arbitrary number of pages at 

an arbitrary Instant of time, we will consider the algorithms which 

lLewls and Yue [L3] have pointed out that program behavior represented 

In (LRU stack) distance reference strings rather than page reference 

strings tends to be more stationary. 
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fetch (replace) only one page at an Instant of a page fault, i.e.. 

demand paging alRorithms.  In this case, the studies of paging algorithms 

reduce to those of PRAs, 

With this much of background, we can formally describe a PRA for M 

and P. as foil )ws. 

Definition     A page replacement algorithm for M amd P Is a five-tuple 

system 1= (S,I,0,f,g) where 

(1) S is a finite set of system states and is represented by a direct 

product of finite sets (S .S S ) of PRA control states, roemoiy amp * 

states, and program states, i.e., 

B ■ S s S x I . •    m    p' 

where 

(a) S is a finite set of PRA control states, S ■ {• }, which 

is defined separately for each PRA later, 

(b) Sn  Is a finite set if mcnory states, indicating a set of pages 

resident in primary memory, such that 

S - {■ | * C P, I • I s ■} , 

(c) S    Is a  finite set of program states, 

V{,p|gPcp*|8P|-=1}- 

such that If s = {p^ then page p of the program Is being 

referenced. 

This definition Is similar to that of Aho et al (Al) or King [JO.]. 
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(2) I Is a finite input alphabet which contains all the elements of 

page reference strings, i.e., 

I - {pj Ip^ P } = P. 

(3) 0 is a finite output alphabet 

0 - {0.11 

whose meaning is defined below, 

(4) f is a next state function of the mapping 

S x I - S   such that 

., ,, t  t  t   .  , t+1  t+1  t+1, 
lf f<8.' V8p;Pi)= (na     '\    '»p  > 

then p.€ s   and s  = [p. t. r i  m       p   i r £ *» 

(5) g is an output function of the mapping 

S x I - 0   such that 

►  ,.  .^      (0     lf P^ •t , t  t  t   . ri  m 
g(8a' 9m- 8p;pi)= \ 

[I    otherwise (i.e., page fault). 

(6) Initial states of S , S . and S are empty sets (;). i.e., am      p 

0   0   0 
8  = S  =8  s CD. 
amp 

It should be noted th*«: a PRA for M and P is a (deterministic) 

transition-assigned finite-state automaton (FSA) with states S x S x S . —     —    — amp 

inputs P, and outputs 0, as shown in Figure 2-2.  The triple, (s .s .s ). 
amp 

The superscript t means "at time t".  For example, s means that the 

PRA control state at time t is s . 
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rlr2 01   ...  0 

0={0,1} 

f  :  S x I - S 

g  :  S x  I - 0 

Figure 2-2      FSA  Representation of PRA System 
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represents a state of this FSA and is called a confiRuration of the 

PRA system Z  [Al,Kll.  As the system I receives a page reference string 

r r ...r , the configuration of this system changes like 

„ «f n<o anrf I's  The output sequence, generating an output sequence of 0 s and i s.  ine   w 

which indicates when a page fault takes place, depends only on a page 

reference string, the PRA in use, and primary memory size (m).  This 

i.plies that once a PRA is chosen for a computer system under study 

with a fixed amount (m) of primary memory, the probabilistic property of 

the occurence of "1" in the output sequence, i.e., the occurrence of 

page faults, is completely determined by the probabilistic property of 

the corresponding input sequence, i.e., the probabilistic law given by 

the P matrix. 

2.2.2. Behavior of the PRA System 

We will proceed to determine the PRA control states left unspecifi- 

ed in the previous section and enumerate the number of distinct states 

that the PRA system I can assume for each of various PRAs.  Then, noting 

that the probability associated with the transition from a certain 

current state to another is completely determined by that pair of state 

and the P matrix, we will see that the probabilistic behavior of the 

system Z  can be viewed as a Markov chain defined over these states. 

First of all, note that for any demand paging PRA 

s 
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r(s;'V{pi})        if p^ 
f(Sa'VSp;Pi) =' (s;'Sm+fPi}'fpi]>    if p^v M^ 

l(8I'Sm+{pi}-{pj}'{pi}) lf Pl*V 1^1^ Pj^m 
(2.2.2) 

where p  is the page replaced by page p, and s' is a state which is 
J la 

generally different from s .  Observing that the PRA is exercised only 

When ^m'11111 and that the Pro8ran> is assumed to operate indefinitely 

within primary memory of m page-frames, we will neglect all the system 

states for which |s |<m ; we will now enumerate the number (N ) of 
m s 

distinct states that the system E can assume, for each of the following 

several PRAs, assuming that |s | =m. 

Random PRA    The page to be replaced is chosen randomly from the 

pages currently contained in primary memory.  Therefore, the PRA itself 

need not remember any kind of priorities associated with resident pages 

i.e., the PRA is "memoryless", and N  is determined by the number of 
s 

different combinations of only s and s .  That is to say 
p     m " 

N (Random) =m(n) (2.2.3) 

LRU PRA       This well-known algorithm chooses the least-recently- 

used page (i.e., the page with the longest time since the last refer- 

ence) and removes it from primary memory.  This algorithm must maintain 

an ordered list (called a LRU stack [Ml]) of resident pages to remember 

how recently each resident page was referenced in the past.  Noting 

that there exist m! different ordered lists and that each ordered list 

 ,    
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automatically determines s , N  is obtained as 
p  s 

N (LRU) = m!(n) (2.2.4) 
s m 

FIFO PRA      This easy-to-implement algorithm chooses the page which 

stayed in primary memory for the longest time for removal.  This 

algorithm must maintain an ordered list of resident pages to remember 

in which order each resident page was fetched into primary memory. 

Noting that there exist m! different ordered lists and that s cannot 

be implied by each of those lists in any way, Ng is obtained as 

N (FIFO) = m!m(n) (2.2.5) 
s m 

LET PRA       This algorithm removes the page with the gongest expected 

_time (LET) until next reference [M1,A1,D2].  Because the expected time 

until next reference to each page can be analytically calculated only 

from s and the P matrix (as will be shown below), the PRA itself is 
P 

memoryless.  Therefore, N is obtained as 

N (LET) = m(n) (2.2.6) 
s m 

Another similar PRA removes the page with the longest expected 

time since the last reference.  Because this PRA uses information 

about the backward distance (into the past) from the faulted page to 

each resident page, we call this PRA the backward LET PRA (B-LET ) . 

N  is given by Eq.(2.2.6). We call the former LET PRA the forward 
s 

LET PRA (F-LET ) .  It should be noted that the LRU PRA, an approximation 

to the B-LET PRA, is often used on an actual computer system in the 

hope that the B-LET PRA is fairly close to the F-LET PRA for typical 

(actual) programs. 
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Now we are ready to consider a Markov chain model of the behavicr 

of the system E for each of these PRAs.  For this purpose, we borrow 

an example of a Markovian program which was used by Chang [Cl] in 

proving that the F-LET PRA does not necessarily minimize the number of 

P'ge faults for a general Markovian program.  Chang's example1 is re- 

produced in the form of a P matrix. 

tV+1 Pl P2 P3 

(2.2.7) 

We assume that our primary memory has  only two page-frames, i.e., M = 

{fvf2}. 

Random PRA    Let [Q,  j } denote a state of E where s = [p. p } and 
m i'    j 

sp=  [Pi} .     Then,   there exist  the  following  six states   in S,   for  this 

PRA. 

S =  ( [ (Ö, 2 } , [ 1 , g| } , f 0, 3 } , { 2 , @ ] , { C», 3 } , { 1 , ©} } 

Noting the P matrix of Eq. (2.2.7) and the random nature of this PRA, 

we obtain the transition matrix 5 specifying the probabilities of tran- 

sitions among these states. 

This example happens to have zero diagonal elements in the P matrix, 

but probably most actual programs tend to have fairly large diagonal 

elements corresponding to locality of memory references. 

. ,. . . 
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{(P,2}  {!£)}  f@,3}  {2,©}  {(5,3}   [im 

fi      = 

©,2}   I    0 

(1,(2)} ' 

{^3} 

(2,0)} 

dJ}  \  o 

c 

0 

0 

0 

£ 
2 
1 
2 

0 

0 

0 

1 

£ 
2 
J. 
2 

1-c 
2 

0 1-c 
2 

1-d 
2 

0 
1-d 

2 

1-d 
d 
2 

0 

0 0 0 

0 0 1-c 

0 0 0 

1 

LRU PRA Let f (P, j } similarly denote a state of E where s   = m 

{PJ}  P. 3 and s = { p. 3 ; page p is least recently used. Then, there 

exist the same six states in S as above, and the (£ matrix is obtained 

as 

[0,2] {1,(23 ftf),3} {2,(2)3 {&33 {ij} 

m23 
/0 

c 0 0 0 1-c 

{i,@3 h 0 0 1-d 0 0 

{gui d 0 0 1-d 0 0 

s. (2^3 0 0 1 0 0 0 

{(£133 1: c 0 0 0 1-c 

[I,® 0 1 0 0 0 

FIFO PTIA Let  {(f). A3 enote a state of T, where s   ■ 

{ p, 3, and page p. stayed in primary memory for the longest time. 

Then, there exist the following twelve states: 
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[4 2 M l^i.} , C1,(J ] , { 1 ^} , {^, 3 } , { 2 , .3,} 

iA,G] ,(2,A), {iö, 3i,{41,i}, {l,ä}, fl,ffi}) 

The state transitions are specified by the following ^ matrix. 

t42] {(fAl Cd«) (lyÄ} As] ®M ÄÖ) {2A^3} {(Tij ci6^} 
1^2} /o 0 c 0 0 0 1-c 0 0 0 0 

mi 0 0 0 c 0 0 0 0 0 0 1-c 

fil®) d 0 0 0 0 0 1-d 0 0 0 0 

(lA) 0 d 0 0 0 0 0 0 0 0 1-d 

1^3} 0 0 0 0 0 0 1-d 0 0 d 0 

fftAl 0 d 0 0 0 0 0 1-d 0 0 0 

14®} 0 0 0 0 1 0 0 0 0 0 0 

(2A} i 0 0 0 0 0 1 0 0 0 0 0 

143} 0 0 0 0 0 c 0 0 0 0 1-c 

{®/i} 0 0 c 0 0 0 0 0 0 0 0 

l^®} 
\0 

0 0 0 0 1 0 0 0 0 0 

dA \o 0 1 0 0 0 0 0 0 0 0 

0\ 
0 

0 

0   I 

0 

0 

0 

0 

0 

1-c 

0 

0 

LET PRA      First of all, we must derive the expected time, E(t ), 

to elapse until the first reference to a page p, starting from a page 

p. (1 ^i, j £n) in order to establish the decision rule of this PRA. 

Let P. be the matrix obtained from P by setting p., -6  , (Kronecker's -j _ ^      e r.^  jk 

delta) for all k, i.e., making page p. an artificial trapping state 
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^J 

Pl P2 
Pl/Pll Pl2 

P21 P22 

0  0 

Pnl Pn2 *'• Pnj 

P  I 

2n 

. 0 
(2.2.8) 

nn/ 

Observing that the j-th column of (P )  gives the probabilities that 

page p. is referenced at the k-th reference starting from each page [112]^ 

we see that the probabilities that page p  is referenced for the first 

time at the k-th reference starting from each page is given by the j-th 

column of the difference matrix, (P,) - (P, 

the artificial trapping state.)  Therefore, 

k     k-1 
column of the difference matrix, (P,) - (P.).    (Note that page p  is 

—-J J 

00 

EkUp.^P,)1^1} = 
k=l -r -j 

P2 

• pj • 
E(tlj) 

E(t  ) 

E(t .) 

(2.2.9) 

where (P.) s (0 ) 
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Repeating a simlilar calculation for each j (Uj^n), we can obtain the 

matrix E(t) which contains E(tij) as its i-j element. 

E(t) = 

1   E(t12) 

E(t21)  1 

lE(tnl)E(tn2) 

E(tln) 

E(t2n) 

(2.2.10) 

We call E(t)  the distance matrix and EU^)  the distance from a page pi 

to a page py    It should be noted that this matrix is not necessarily 

symmetric. 

Now we can describe the LET PRAs more clearly using the concept of 

distances.    Suppose that a page pi was found to be missing  in primary 

memory when   \sj~m   in the course of program execution.    Then, 

f(VVVV = ^V^iHPjUp.}) 

where | E(t. ) = max E(t ) if F-LET is used, 

Pke8m 

E(t  ) = max E(t  ) if B-LET is used, 
rk m 

* sa = Sa = ^ (memoryless algorithm). 

(2.2.11) 

This means that the F-LET and the B-LET PRAs coincide if the ordering of 

row elements of the distance matrix, with respect to the magnitude of 

their values, is the same as that of the corresponding column elements 

(or more strongly, if the distance matrix is symmetric). For this 

reason, the LRU PRA presumably performs well if the distance matrix of 

real programs tends to be symmetric. 

''■--'w-a"--'-^--'-' ... 
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For the P matrix of Eq. (2.2.7), with c.0.1 and d-0.5, we obtain 

the following distance matrix. 

E(t) = 

1  1.9 1.16^ 

3 1  1.58 '' 

4 1   1 

Therelore, as is clear from Eq. (2.2.11), the decision rule of the 

F-LET PRA can be stated as follows: 

s 
m 

r      page to be removed m 

{PpP23 P3 Pi fP2'P3} 

{p2,P3} Pi P2 CP1,P3} 

[?v?3] P2 Pi {p2'P3} 

Similarly,   the decision rule of the B-LET PRA can be stated as  follows: 

t+1 
m g*- r      page to be removed 

m t 

Ep^Pj) P3 P2 {PPP3} 

{p2,P3} Pi P3 ivvV2) 

(PpPj) P2 ?! {P2'P3} 

Now,  let [$, j } denote a state of Z   where s^ {p., P^ and spE. [p^. 

Then,   for each of LET PRAs,  we have the same set cf six states a» 

obtained for the Random PRA.     ihe transition matrix for the F-LET PRA 

is given by 
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{©,2}  {1,@} {^3} [2,33  f&3}  [1,^] 
85.2) 10 

d 

c 0 1-c 0 0 

{i,®} 0 0 1-d c 0 
©,3} 0 0 0 1-d d 0 

[2,<2>] 0 0 1 0 0 0 

^,3} 0 0 c 0 0 1-c 0=0.1 

us 1 o 0 1 0 0 o d=:0.5 

The corresponding matrix for thi B-LET PRA is given by 

[0,2]  {1,0}  {0,3}  [2,0)}  [(9,3}  [1,0] 

1°. {(5,2} 

[1,0} 
{0,3} 

{2,0} 
{(D,3} 

fi,® 

d 

d 

0 

0 

0 

c 

0 

0 

0 

0 

0 

0 

0 

0 

1 

c 

1 

0 

0 

1-d 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1-c 

1-d 

0 

0 

1-c 

0  i 

c=0.1 

d=.0.5 

Thus, we have obtained the transition matrix 2 which characterizes 

the Markovian behavior of the PRA system E   for each PRA. 
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2.2.3. Evaluation of Paging Behavior üf Markovtan Programs 

Now that we have enumerated the number of system states, each of 

which satisfies the Markov Ian property, and have shown how the state 

transitions can be determined when a PRA is chosen for a given program, 

the next natural step Is to evaluate the program behavior in this 

environment. Therefore, this section is concerned with how often a 

page fault occurs as a given Markov Ian program Is executed in a given 

amount of primary memory under the dynamic memory managemant of a given 

paging algorithm. 

We will use the missing-page probability p defined below to measure 

the frequency of page faults. 

expected number of page faults observed during the period [0,t] 
p . Iln, _  

(2.2.12) 

It should be noted that the missing-page probability Is the inverse of 

mhbpf, as is clear from this definition. 

As a Markovian program is executed under a given PRA the PRA 

system I operates over a set of N Markovian system states making two 

kinds of state transitions, i.e., those each accompanied by a page 

lault and those not accompanied by a page fault. We call them page- 

fault transitions and non-page-fault transitions respectively. Then, 

the missing-page probability can be expressed as 
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P - Um  Prob{occurr.nce of a P«ge-i«ult tr.n.itlonat time tj 

5*/ /•.»/ 8Um 0f the a11 conditi«>n«l probabllltl, 
*w i r(k) 0f Pa8e-fault transitions from state k 
K=i L   \ given that the system is now in state k 

where K(k) is the steady-state probability of the k-th state of the 

system Z  .  The value of n(k) (k-I,2,...,Ng) can be determined by solv- 

ing the balance equations [H2I 

- = -Sfi (2.2.14) 

where n is a row vector whose elements are n(k) (k-l,2,...,N ).  Thus, 

we have presented a method to evaluate the missing-page probability 

(or mhbpf) of a given Markovian program operating in a given amount of 

primary memory under the dynamic memory management of a given demand 

paging algorithm. 

Next, we will give some numerical results using the example of the 

previous section.  Let us first evaluate the performance of the three 

page program, operating in the two page-frame primary memory under the 

LRU PRA, that we discussed in Section 2.2.2.  Solving Eq. (2.2.14) with 

the 5 matrix (c = 0.1, d = 0.5) obtained before, we get 

£ = (*@'2),na,Q),n<&,3),n(2>0),n(S>,3),n(l,0)) 
=  (0.204, 0.020, 0.388, 0.204, 0   , 0.184 ) 

Then,  we can calculate  the missing-page probability,   using Eq.   (2.2.13) 

as  follows: 



  ^ -. 

67 

p = 0.204 ( l-c )+0.020 ( 1-d ) +0. 388 p+0.184 

» 0.184+0.010-»-0.194 + 0.184 

- 0.572 

The missing-page probabilities were similarly evaluated for other 

PRAs considered in the previous sections.  The result is summarized in 

Table 2-1.  It should be pointed out that the result of Table 2-1 

depends heavily on a particular choice of the P matrix.  However, it is 

reasonable to expect that the B-LET and the LRU PRAs, which use the 

"backward" Information about the program behavior, generally do not 

perform well for a Markovian program whose P matrix is rather asymmet- 

ric; in fact, their performance shown in Table 2-1 Is significantly 

worse than that of others.  Similarly, the FIFO PRA does not perform 

well. On the other hand, the F-LET PRA, which uses the "forward" 

Information about the program behavior, outperformed other PRAs.  It 

Is however known that the F-LET PRA does not necessarily minimize the 

missing-page probability of a first-order Markovian program.  Chang [Cl] 

actually gave a better PRA, for this Markovian program, which has the 

same decision rule as that of the F-LET PRA described In Section 2.2.2. 

except that If a page fault occurs when s = { P-,p03 then page p, is 
m    Z  3 3 

removed.  For this PRA. the missing-page probability is found to be 

0.388 by the above evaluation method. 

Thus, It has been shown that the paging behavior of any Markovian 

program can be analytically evaluated as a function of (1) program 

characteristics, (2) the paging algorithm, and (3) primary memory size. 

However, the method which has been described In Section 2.2. has a 
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Table 2-1  Comparison of PRA Performances 

PRA Miss ing-Page Probability 

Random 0.475 

LRU 0.572 

FIFO 0.565 

F-LET 0.408 

B-LET 0.673 
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serious drawback concerning the amount of required computation. To 

examine this problem, let us assume that the computer system uses a 

memoryless PRA (such as the Random or the LET PRA).  The number of 

system states was found to be 

N = m (  ) = 
s "    m  ' (m-1) ! (n-m)! 

and we must  solve  the  simultaneous equations  in N    variables,  given by 
s 

Eq. (2.2.14), in evaluating the missing-page probability.  Although 

sparsity of non-zero elements in a 2 matrix m^.y help, solving such simul- 

taneous equations in, say, three hundred variables requires much compu- 

tation time.  For example, if we have n=10 and m=8, then we get N =360. 

If we have a pair of more reasonable numbers, like n=50 and m=40, for a 

typical situation of the Multics system, then N becomes a tremendously 
s 

large number.  Therefore, if we want to study the behavior of more 

realistic programs, it seems that we must somehow simplify our model. 

King [Kl] used a simplified model, for which p..= ß. for all i in 

the P matrix, in specifying a program's reference pattern.  This means 

that the page to be referenced at time t+1 no longer depends on the 

page being referenced at time t. Therefore, the program behavior is 

completely memoryless and the third component of a state of the PRA 

system £ , s , can be reduced to an empty set, i.e., 8=9. This type 

of program behavior model is called a zeroth-order Markovian program 

(or a multinomial process model).  The number of system states N> de- 

creases in this simplified model by a factor of m, but the evaluation 

of this method still requires a large amount of computation. 
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2.3. Zeroth-order Markov Model Applied to the Page Size Problem 

In Section 2.3, we will consider the effect of another system 

parameter, i.e., the page size, upon the paging behavio:: of programs. 

Because the page size must be changed to examine its effect, we must be 

concerned with a program's reference pattern not only over its pages but 

within each of those pages.  We must be concerned also with how a compiler 

forms a program's pages by combining smaller pieces of that program, i.e., 

the pagination process of the compiler.  The effect of page size upon a 

program's paging behavior has been experimentally studied by Hatfield et 

al [HI], Informatics, Inc. [II], and Baer et al [Bl].  This aspect of 

the page size problem , i.e., this aspect of the problem of determining 

the optimum page size, has rarely been studied in an analytical approach. 

So far as known to the author of this thesis, only Woolf [W3] has examined 

the effect of page size upon the frequency of paging analytically.  The 

approach to be taken in this section is completely different from that of 

Woolf because of the way in which programs are modeled.  Other aspects 

of the page size problem will be discussed later in Chapter 5. 

2.3.1. Program Behavior Model for the Page Size Studies 

A program usually possesses a fundamental property known as locality 

of information references [Dl-3], i.e., a program's tendency to reference 

a subspace of its address space during any interval of its execution. 

We call a set of pages in such a favored subspace of its address space 
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a set of favored pa^es or a favored se': in this section.  Control of a 

program usually stays in a favored set for some time and then enters 

another favored set.  Therefore, we can evaluate the program behavior 

by analyzing the behavior of each successive favored set using a Markov 

model described in Section 2.2. 

If we take a close look at each page of a favored set, we find 

that there are portions which are referenced frequently (e.g., loops) 

and protions which are not (e.g., program code following a loop, rarely 

used data, etc.) We roughly call each of these logically identifiable 

portions a program block.  Thus, each page of a favored set is composed 

of (several) program blocks combined together by a compiler. 

Now we are concerned with a program's reference pattern on the 

level of program blocks.  In view of the computational drawback of 

first-order Markovian programs discussed in Section 2.2.3, we use a 

zeroth-order Markovian program model for the behavior of a favored set. 

Let b (j=l,2,...) and p(b ) be the j-th program block and its probabil- 

ity of reference in the favored set respectively.  For the sake of sim- 

plicity, we assume that all the program blocks have the same size, s(b), 

and that only one page size, s(p), is used on the computer system. 

Furthermore, we assume that the block size s(b) divides the page size 

s(p).  Denoting the i-th page of the favored set and its probability 

Roughly speaking, a "favored set" corresponds to a program's module 

being referenced by a process.  This loosely defined concept should be 

distinguished from the more strictly defined "working set" of Denning 

[D1,D3]. 



72 

of reference by p.(1=1,2,.,.,n)  and p(p.)  respectively,  we have 

p(pj    =    2   P(b.) (2.3.1) 
b. e p.      •* 

n n 
Ep(p ) a    E     I   p(b )    =    1 (2.3.2) 

i=l i=lb.ep.      J 

J    i 

Because these program blocks generally have different probabilities 

of reference, the program pages of the favored set have different 

probabilities of reference. One of the very interesting problems in 

this area of study is that of determing a set of program blocks to be 

contained in each page of the favored set so as to minimize the expected 

number of page faults during its execution. This problem is called the 

pagination problem. The paging behavior of program is known to depend 

heavily on the quality of pagination [HI]. 

2.3.2. Pagination. Page Size, and Missing-Page Probability 

We proceed to evaluate the performance of programs under paging in 

terms of missing-page probability, for different paginations and differ- 

ent page sizes.  It is known that the F-LET PRA is optimum for zeroth- 

order Markovian programs in the sense tnat it minimizes the expected 

number of page faults [Al].  Therefore, we assume that this PRA is in 

use for the computer system under study. 

We now consider three different paginations for the program (the 

favored se > described in Section 2.3.1, i.e., a zeroth-order Markovian 

program. Without loss of generality, we can assume that b. and p. are 

. 
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both numbered in the order of monotonically decreasing probability; 

that is to say, 

P(b1) a p(b2) ^ p(b3) & ... > p(bk) (2.3.3) 

PC?!) ä P(P2) " P(P3) ^ ... ^ P(pn) (2.3.4) 

Best Paginanion    The best pagination must have the property that the 

missing-page probability p is minimum for any size ta  ((KmSn pages) of 

primary memory available to the program. Noting that the F-LET PRA 

retains m-1 most-frequently-used pages and the page which caused a page 

fault for a zeroth-order Markovian program, we get 

m 

P ^ 1- 2 P(p.) (2.3.5) 
1=1   1 

Let r be the number of program blocks that can be contained in a page, 

i.e., r=s(p)/s(b).  Then, the best pagination is the one for which the 

most-frequently-used page p contains the r most-frequently-used program 

blocks b1,b2,...,b , the second most-fi^quently-used page p contains 

the second r most-frequently-used program blocks b ,. b       b 
r+P  r+2   '     2T' 

and so on.  In other words, 

P. = { b,. 1N .,. \>,.   ,N ,„, ... , b.  } Isisn    (2.3.6) vi.       ^     (i-Ur+l'  (i-l)r+2'    '  ir ^ 

It is easy to prove that this pagination has the property that the 

missing-page probability is minimum for any m, under the F-LET PRA. 

Furthermore, page references are best localized by this pagination. 

Worst Pagination   It seems that any one pagination generally cannot 

guarantee that the missing-page probability given by Eq. (2.3.5) is 

maximum for every size m of primary memory.  To see this, assume that 
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there exists a worst pagination with page reference probabilities p*(p.) 

(1=1,2,...^).  Then, for an arbitrarily chosen pagination with page 

reference probabilities pCp.)  (i=l,2,...,n), the following inequalities 

must be simultaneously satisfied; 

?*(?!>  * ?(?!> for m=l  ^ 

P*(P1)  +  P*(p2) s p^) + p(p2)  for „^2 

£ P*(P1)  s E p(p.) 
1-1    L *  i=l   I 

for m=k 

n 
S P*(pi) s E p(p ) 

i=l    i    i-1   1 
for m=n  / 

(2.3.7) 

where p*(pi) and pipj  are both numbered in the non-increasing order, as 

given by Eq. (2.3.4).  The first inequality of Eq. (2.3.7) means that 

the largest page reference probability is minimized by the worst pagina- 

tion.  There generally exists just one pagination which satisfies this 

inequality, but tms pagination does not guarantee the rest of the in- 

equalities of Eq. (2.3.7), in general.  Therefore, we must give up 

searching for the "universal" worst pagination that is independent of m. 

Instead, we say that a given pagination is near-worst if the resulting 

page reference pattern is reasonably close to a uniform distribution. 

In fact, it can be shown that as r = s(p)/s(b) approaches infinity the 

missing-page probabilicy of such a near-worst pagination for a given 

size (m) of primary memory becomes 

(2.3.8) 

m 
p -1 - Ep(p.) „s^.i.; 

1=1  i    n       n 

The following simple algorithm seems to be a practical one to derive a 
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near-worst pagination. 

Algorithm to derive a near-worst paRination    Assume that the reference 

probabilities of program blocks of a given program (a favored set) are 

arranged in the non-increasing order and that we 'Aant to derive a near- 

worst pagination for page size 2s(b).  The derivation algorithm consists 

of successive mergers of program blocks; merge the most-and the least- 

frequently-used blocks (b.. and b ), merge the second most-and the second 

least-frequently-used blocks (b and b  .), merge the third mosf- and 

the third least-frequently-used blocks, and so on, in order to form the 

pages which tend to have the same magnitude of reference probabilities. 

If the number (nr) of the program blocks is not even, an appropriate 

modification is necessary (e.g., adding a dummy block).  If we want a 

near-worst pagination for page size 4s(b) , then arrange the above 

newly created pages of size 2 3(b) in the order of non-increasing proba- 

bility and repeat the above pair-wise successive mergers. 

Random Pagination    The program blocks are randomly selected and merged 

into pages.  The missing-page probability of a random pagination is 

bounded by those of the best and the worst paginations.  Perhaps, a 

random pagination is fairly close to a casual pagination found in most 

actual user programs. The analytical evaluation of the missing-page 

probability of this pagination for a given program is not as easy as it 

seems, but the performance of this pagination could be easily evaluated 

by a similation.  (We will not consider this pagination any further in 

this thesis.) 
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Next, we present an illustrative example of the program behavior 

under paging, to show 

• the effect of pagination (due to a compiler's code optimization, 

loading order of program modules, programming style, etc.) 

• the effect of page size 

upon the missing-page probability (the inverse of mhbpf) as a function 

of the size of available primary memory. 

Example We must specify the reference pattern of a program to be 

studied.  Let us assume that s(b) is 256 words and that the distribution 

of p(b ) is given by Figure 2-3.  Then, we can numerically evaluate the 

lower and the upper bounds of the missing-page probability of an arbi- 

trary pagination for a given page size, by examining the performance of 

die best an-^ the worst paginations. 

Let us consider the case of s(p)=512 ■ rds, first of all. Then, we 

obtain, for the best pagination, 

p(p1)=l/16+l/i6, p(p;))=l/16+l/16, p(p3)=l/32+l/32 

. p(p30)=l/128+l/128 

and for a near-worst pagination. 

p(p1)=l/16+l/128, p(p2)=l/16+l/128. p(p )=l/i6+l/128 

. p(p30)=l/128+l/128 

Noting that memory management is under the demand paging F-LET PRA, we 

obtain the result shown in Figure 2-4.  It is seen that the region bounded 
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Figure 2-4      Effect  of Pagination on Missing-Page Probability 
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by the two curves1, which represents the variation of program perform- 

ance due to pagination, is rather narrow for this choice of page size, 

i.e., s(p)=512 words.  Similarly, the Sounding curves were derived for 

each choice of page size (256, 512, 1024, and 2048 words) using the 

algorithms described above, in order to examine the effect of page size 

upon the missing-page probability p.  This result is shown In Figure 2-5. 

It is clear that the bounded region becomes wider, having a common lower 

bound -urve, as the page size Increases.  It should be noted that the 

upper bound curve for s(p)=2048 words is very close to the straight 

line given by Eq. (2.3.8).  In summary, the following observations may 

be made: 

(1) If a given program is optimally paginated (like the best 

pagination), a choice of page size does not affect the missing- 

page probability (or mhbpf). 

(2) The choice of smaller page size tends to attain the smaller 

missing-page probability (or the longer mhbpf) if a given 

program is casually paginated. 

We assumed in the above analysis that program blocks are relocatable 

within a program's address space.  However, it is apparent that a 

program will behave as poorly as the one with a near-worst pagination 

^he bound given by a near-worst pagination is not exactly an upper 

bound because it is not the worst possible pagination for each memory 

size m, but it is believed to be fairly close to the tightest upper 

bound.  For this reason, it Is treated as if it is the exact upper bound 
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•ven if the program blocks are not relocatable, if that progran happens 

to posses» such a bad loading order of machine instructions as the one 

gen*rated by the near-worst pagination.  Therefore, program behavior 

like that seen in this section should be universally found on any virtual 

memory computer system. 

Finally, some conments may be in order about the drawbacks of the 

model which has been used in Section 2.3.  First of all. it should be 

remembered that the model Is based on the stationary zeroth-order 

Markov property of program behavior.  This Is perhaps the least accurate 

assumption of this model.  Second, the model assumes a single program 

block .1« which divide, the page size.  In order to be more realistic, 

we must consider the probability distribution of block ilM and page- 

boundary crossover of program blocks.  Third, we have noi derived the 

exact performance of actual (casual) paginations.  The lower bound of 

the mis.lng-page probability given by the best pagination may be loose 

If a non-optimal PRA (like the LRU PRA) Is In use.  However. In spite of 

that« drawbacks of this simplified model. It has successfully demonstrated 

th* basic relationship between pagination, page size, and the steady- 

state paging behavior of programs. While the smaller page size was 

found to yield a longer mhbpf In the steady-state program behavior, it is 

clear that the larger page size yields a longer mhbpf In Its transient- 

state behavior (e.g.. when the primary memory is not yet filled with 

pages).  This aspect will be further considered In the next section and 

later in Chapter 5 when the page size problem will ho discussed tron  an 

overall viewpoint. 



b2 

2.4. Random Behavior Model Applied to the Memory Size Problem 

In Section 2.4., we will consider a simplified zeroth-order Markovian 

program, called a random behavior model, to study primaily the effect of 

primary memory size upon its paging behavior.  We will consider both the 

transient-state program behavior, i.e.. the initial stage of program 

execution generating a number of page faults, and the steady-state 

program behavior, i.e., the following stage of program execution where 

the rate of page faults is smaller kecause available primary memory space 

is fully utilized.  It has been experimentally observed (B5,Hl,T2) that 

paging behavior of programs Is more sensitive to the available primary 

memory «lae-than to any other parameters (e.g., a page replacement algorithm), 

while primary memory is usually the most expensive element of a computer 

system. Therefore, an evaluation of program behavior within a limited 

amount of primary memory Is very Important from a cost-performance view- 

point. We will express the mhbpf of a random behavior model of programs, 

as a function of program size, primary memory size, and a parameter 

which determines the total length of program execution time.  It will be 

clearly seen how thrashing (I.e., excessive competition for primary memory 

page-frames leading to a less than optimal use of system resources) starts 

to occur as the primary memory size Is gradually reduced. 

2.4.1. Random Behavior Model 

We will again acr-ime partitioned primary memory under the management 

of a demand-paging local page replacement algorithm, as In Sections 2.2 

and 2.3.  A general zeroth-order Markovian program, used in Section 2.3, 
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is further simplified by requiring that all pages (except a special 

page) be equally probable in its page reference pattern. 

This program behavior model is assumed to have, besides ordinary 

pages, two special pages, i.e., a starting page which contains an ertry 

point of the program and an ending page which contains an exit point of 

the program; it is assumed that program execution begins from the start- 

ing page p1 and ends iranediately upon entrance to the ending page pn 

where n is the size of the program under study. Transfer of processor 

control among n pages may occur only at the multiples of a unit time t0, 

i.e., t=kt where k = 1,2,3, ....  It is furthermore assumed that the 

ending page can be referenced with a constant probability e at any stage 

of program execution. Therefore, the page reference pattern of this 

program behavior model, which we call ■ random behavior model or a random, 

program hereaft.r, U characterized by the following transition matrix. 

I l~e  l'e 

pl    p2       •■ •         Pn.lpn 
1-e  1-e      .. 
n-1 n-1 n-1 
1-e  l-e 
n-1 n-1       * 

1-e 
'       n-i    e 

• • 
• • 
• • 

• • 
• • 
• • 

1-e  1-e 
n-1 n-1       • 

1-e 
pn-ll n-1 n-1 

pn \ 0  0 

(2.4.1) 

In other wnrds. 
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1 

(2.4.2) 

Thus, a random behavior model has three independent parameters, i.e., 

program size (n), the reference probability (e) of the ending page, and 

the unit time (tg) of this discrete-time Markovian model.  The program 

being modeled references the starting page, then some number of pages at 

random, and finally the ending page.  The number of pages referenced 

during the execution of this program is a random variable.  This may be 

interpreted in such a way that the number of pages to be referenced during 

a program execution depends on the arguments given to that program, but 

a random program represents nevertheless a very special class of programs. 

The essense of this artificial program consists In its capability to 

yield some insights into the memory size problem, i.e., the problem of 

evaluating the effect of primary memory size upon the dynamic paging 

behavior of programs.  Because of the uniformness of its page reference 

characteristics, the paging perforrsance of a random progiam does not 

depend on a particular demand-paging page replacement algorithm in use. 

2.4.2. Evaluation of PaginR Behavior of Random Programs 

We will analytically evaluate the mhbpf of a random program 
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operating in a limited amount of primary memory under demand paging, as 

an explicit function of the sire (m) of primary memory and the three 

independent parameters (n,e,and t0) of a random program, in thii section. 

First of all. we should briefly consider mhbpf because there seem 

to exist at least two reasonabk definitions of mhbpf for our problem. 

Suppose that we make K experiments to run a random program.  Let T-(
T
tl) 

and n (n ) be the execution time of the random program and the number 
P Pi 

of page faults generated by this program, in the (l-th) experiment. 

Then, the following two definitions of mhbpf seem to be reasonable: 

K  T . T 

mhbpf, =  I C-—)^ = E ("TT") 
1    i-1  "pi "p 

K (2.4.3) 

.^ Tei     E (T ) 
. . ,    i=l      e^ mhbpf2 = -j  = j-^y 

i-l  Pl 

In deriving mhbpf, all experiments are equally weighted In the fonner 

definition, while all page faults are equally weighted in the latter 

definition. Because we usually use the latter definitior in calculating 

mhbpf from on-line monitoring results of an actual computer system, we 

use the latter definition of mhbpf in evaluating the paging performance 

of a random program in this section. 

Now we proceed to derive the mhbpf of a raadom program, characteriz- 

ed by n, e. and tn, operating in primary memory of m page-frames.  Let 

S and S (1=0,1,2,...) respectively denote a state of the random program 

where it is still running after causing exactly i page faults and a stare 
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of the random program where it has referenced the ending page .ifter 

causing exactly i page faults.  There exist nnly three possible state 

transitions from S^ i.e., a transition to itself, a transition to S. 

and a transiton to S.^.  Now we want to derive the probabilities associ- 

«ted with these three state transitions,i.e., p     „     and - 
i, i ' •'iji+l'    pi,i+r 

Because each page of the program is assumed to be equally probable in a 

page reference string at any stage of the program execution, all that 

matters is the number of pages which exist in primary memory.  If we 

assume that no page of the program was initially in primary memory, then 

there must be min(i,m) pages in primary memory when the program is in 

state S1.  Therefore, noting Eq. (2.4.1) or Eq. (2.4.2), the probabil- 

ities associated with these state transitions are found as follows: 

Pi,i  -"^i,-^ 

pi,i+l = (n-l-«ii»(l,»)>jf} (2.4.4) 

pi,i+l 
= e 

Thus, the entire paging behavior of the random program is described by 

the state transition diagram of Figure 2-6.  It should be noted that the 

behavior of this random program Is now formulated as a discrete-time 

Markov process.  It is seen that if the program fits into the available 

memory space (nsm+1) the number of page faults to be generated is at 

most n, but if the program does not fit Into the memory space (n>ni + I) 

an infinite number of page faults can occur at least theoretically.  A 

comparison of Figure 2-6 (a) and Figure 2-6 (b) reveals that the Figure 

2-6 (b) with n=m+l reduces to the Figure 2-6 (a).  This means that it 
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suffices to analyze only the latter case, i.e., n^m + l. because the 

result of rhe former case (n^m+l) can be obtained simply by setting 

n=m + l in .he analysis of the latter case (n^m+l).  Therefore, we 

assume hereafter that n^m + l,i.e., the program does not (necessarily) 

fit into the prinary memory space. 

Let p(n ) be the probability that n (2Sn ) page faults result 
P 

during the execution of this random program.     This probability can be 

obtained by multiplying all  the probabilities given on the branches 

leading to the state Sn    of Figu.e 2-6  (b),  with an extra consideration 

on looping at each  intermediate state  [H21.     If 2«np<m+l,  we obtain 

p<v ■ i-(7TT-)'[(-n^(l-e)),(Tjikir)] 

!— n-1 

•K^f(l-e))'(-17br)] K^^a-eW^np-JKLe) 
l" n-1 n-1 

^^Z   [    n+2e-3     1   l    n+3e-4     ' n+^p-De-np 

_e_ "P      (n-i)^l-e)   ) 2Sn SnH.1 (2.4.5.) 
"    1-e    ^    n+ie-(i+l); P 

)]•• 

If n   ^m + 1.   then p(n  )   is  similarly obtained as 
P P 

P^p^      ITT  li=Pn+ie-(i+l)   '   ln+me-(m+l) 

n  -m-1 

r^Un (2.4.5b) 
P 

Now let w be the ratio of the reference probability of the ending page 

ard that of an ordinary page. i.e.. 
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W = /lie. (2.4.6) 

We call w the ending-page weight-.  if the ending-page weight is one, 

that is, if the reference probabities of all the n pages of the random 

program are equal, Eq. (2.4,5) reduces to 

PCnp) 

—[ 2snpsiiH-l (2.4.7a) 

1 .n-m-^P-"1-1 

n-l("^r)        m+1SnP (2.4.7b) 

From these results, we can readily obtain the average number, E(n ) of 
P ' 

page faults to be caused by this program.  To illustrate the shape of 

P(np), some examples are given in Figure 2-7.  Figure 2-7 (a) shows the 

effect of w on p(np), for a random program which fits into the memory 

space, and therefore the value of np ranges from 2 to n.  On the other 

hand, Figure 2-7 (b) shows an example of a random program which does 

not fit into the memory space and therefore the value of n ranges from 
P 

2 to infinity. 

Next, we proceed to derive the average program execution time E(T ) 

Noting that the program execution time is the sum of the holding times of 

all the intermediate states leading to the end state, we first derive the 

expected holding time, E(t1), of a state S^  The holding time in S 

follows a geometric distribution with a parameter 1-p   , and therefore, 

noting Eq, (2,4.4), 
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J-l E(ti) = tojfoJ,(Pi'i)  ^^^ 
S 

l-%i 

n-1 
n-ie-(i+l) iSm                                        (2.4.8a) 

n-1 
n-me-(nH-l) m ^                 (2.4.8b) 

The general shape of E(ti) is shown in Figure 2-8.  It is seen that as 

the number of pages in primary memor- increases the expected holding 

time (or the mean headway between page faults) increases.   From 

Eq. (2.4.8), we obtain the average program execution time with exactly 

n page faults. E(T (n )). 
P * P 

E(Te(np)) = 1: E (t^ (2#4<9) 

The general shapes of the curves which show the growth of the number of 

pages in primary memory and that of the number of pages faults are given 

in Figure 2-9. Averaging E(T (n )) obtained above, with respect to n , 
e P p 

we can obtain the desired average execution time. E(T ), of the program, 

as follows. 

E ^ = n^ P(nP) ^W* (2.^.10) 
P 
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Figure 2-8  Mean Headway Between Page Faults 
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Figure 2-9  Growth of the Number of Primary Memory 

Pages and the Number of Page Faults 
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However, E(T ) may be obtained by a more direct method.  Let S , 
c s 

S , and S denote respectively a starting state where the random program 

is about to start its execution with no page in primary memory, a running 

state where the program is running without ever referencing the ending 

page, and an ending state where the program has rei renced the ending 

page.  Noting that the reference probability of the ending page is 

assumed to be e (a constant) in any stage of the program execution, we 

find that these three stites form a simple Markov chain shown in Figure 

2-10  Therefore, the average execution time, E(T ), of this program Is 

given by the first passage time to  state S .  Thus, 

OB 

E (T ) = ( 1+ E I'd-«)1"»« )tn 
1=0 

-(i+i)t0 

= (~ + 2 )t0 (2.4.11) 

It is seen that the reference probability of the ending page completely 

determines the average execution time of the program and that the average 

execution time is roughly proportional 'o the ratio of the program size 

and the ending-page weight. 

Finally, we can obtain the mhbpf of this random program by combining 

the results of Eq. (2.4,5) and Eq. (2.4.11), ss follows: 

i i « »■ i   
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Figure 2-10  Simpler Derivation of the Average 

Execution Time of a Random Program 
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mhbpf 

E(Te) 

E(np) 

n-1 
v    w + 2) 'o 

n       en^ 
np-l 

n A(i )] 
IU-2    

1-e i=i 

n <:m+l (2.4.12a> 

n-1 
( — + 2 ) t0 w 

E  {JV 7TA(I))+   I   J-^ TT A(i)M^VlnM        [ 
=2  i-6 i=l        n=m+2^-

eli=l    Mn4ine-(nH-l) ;     J 

m+1 

I 

where   A(i) 

"P 

(n-i)(l-e) 

n+ie-(i+l) 

nZm+2 (2.4.12b) 

In particular, if the reference probabilities of the ending page and an 

ordinary page are equal, i.e., w=l, then Eq. (2.4.12) reduces to 

mhbpf 

,2in±lit 
n+2       C0 

2(n-l)(n-H) 

2n2-2mn+(nri-2)(m-l) 0 

n ^m+1 

n5nri-2 

(2.4.13a) 

(2.4.13b) 

It can be easily verified that as m/n approaches zero, i.e., as the 

available memory size becomes much smaller than the program size, the 

mhbpf of the program approaches t , the unit time of this discrete-time 
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Markov process model. 

2.4.3. Numerical Examples of Random Proaram Behavior 

In the previous section, the average execution time, the average 

number of page faults, and the mhbpf of a random program were explicitly 

obtained as a function of the primary memory size (m), the program size 

(n), the ending-page weight (w), and the unit time of the discrete-time 

Markov process model (t0).  In this section, the effects of these para- 

meters on the program's performance will be nuKerlcally evaluated. 

As is clear from Figure 2-7 (a) and Eq. (2,4.11), the ending-page 

weight w has a major effect on both the average number of page faults 

and the program's average execution time.  Therefore, the effect of w 

upon the program's mhbpf, which is the ratio of these two averages, was 

numerically evaluated in Figure 2-11.  It is seen that the smaller the 

value of w becomes the longer mhbpf becomes.  The other point to be 

noted is that mhbpf is almost independent of the program size so long 

as the program fits into the available primary memory space. 

Next, we move on to the central theme of this section, that is, a 

numerical evaluation of the effect of primary memory size m, using 

Eq. (2.4.12).  This result is summarized in Figure 2-12.  It is observed 

that the curve rpp>-esenting the length of mhbpf branches into several 

downward curves each corresponding to a particular primary memory size 

as the program size increases.  In particualr, it should be noted that 

as the program size exceeds the memory size the downward branch curve 

representing mhbpf abruptly decreases and from then on it continues to 
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decrease only gradually, approaching the unit time t of the model 

asymptotically.  This kind of abrupt decrease of mhbpf was called thrash- 

ing by Denning [D2].  However, this abruptness shown in Figure 2-12 is 

somewhat exaggerated by the uniform page reference probabilities assumed 

in the random behavior model; if this taodel could include some less- 

frequently-used pages also this abrupt decita&e of mhbpf would be moder- 

ated.  The other way to interpret this figure is to fix the program size 

instead of the primary memory size.  Then, mhbpfs of a given random 

program operating in the primary memory of various sizes can be obtained. 

For example, the mhbpf of a random program, with n = 100 pages, w = 0.3, 

^nd t =4 millisecond, operating in the primary memory of 80 page-frames 

is found to be about twice as long as that of the same program operating 

in the primary memory of 40 page-frames.  The ratio of mhbpfs correspond- 

ing to two arbitrarily chosen primary memory sizes, however, depends on 

the chosen values of m and n. 

Finall'y, the effect of primary size m upon the program's average 

total execution time was numerically evaluated, assuming that the average 

total execution time of a random program is given by the sum of the 

program's average execution time and the average total time to be spent 

for handling page faults.  In other words, denoting the expected paging 

overhead time necessary for handling a page fault by t 
P 

E(total execution time) = E(T ) + E(n )•! (2.4.14) 
e      p  p 

The result is shown in Figure 2-13.  It is seen that the average total 

execution time of each random program gradually increases as the available 

primary memory size becomes smaller than the program size.  This increase 
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in total execution time is due entirely to the increase in the number of 

page faults encountered during the program execution.  Brawn and 

Gustavson [B4] measured tne paging behavior of several actual programs 

on the IBM M44/44X system and plotted the curves corresponding to those 

shown in Figure 2-13.  Their measurement result of actual computer 

programs is very similar to that of Figure 2-13, except in the following 

two respects.  First, the increase of program execution time was observed 

by them when the available primary memory size became smaller than a 

certain fraction (typically, 60 percent rather than 100 percent seen in 

Figure 2-13) of the program size.  This probably means that at most 60 

percent of the entire program pages were referenced at one time because 

of locality of information references.  Second, the slope of their 

curves representing increasing program execution time is steeper than 

that of those shown in Figure 2-13.  This probably means that the 

(expected) paging overhead time of their system is larger than the values 

(4 and 8 msec.) that we assumed in Figure 2-13. 
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2.5. Macroscopic Paginsj Performance Model for Multiprogrammins 

In the previous sections, we assumed a partitioned primary memory 

with a local page replacement algorithm, and therefore we did not consid- 

er sharing of segments among eligible user processes.  However, on 

actual computer systems like the one described in Section 1.2, any non- 

resident program as well as any resident supervisor program is sharable 

among eligible user processes.  Therefore, we will now proceed to consid- 

er the effect of sharing of resident and non-resident programs upon the 

paging behavior of these user processes.  First, we will develop a 

simple model of sharing in estimating the number of page-frames 

effectively available to each user process under multiprogramming.  Then, 

in deriving the mhbpf of these user processes, we will use a linear model 

of pagiig performance discussed by Saltzer [S3] as a babis. By combining 

the results of thesa two models, it will be possible to express the mtbpf 

of an eligible user process as a function of the size ( mr,mn,and M) of 

primary memory, the degree (q) of multiprogramming, and the degree of 

shar ing. 

2.5.1. Model of Sharing among Eligible User Processes 

As we have seen in Section 2.5, the number of primary memory page- 

frames available to a user process plays a major role in dertermining 

the paging behavior of programs.  In this section, we will develop a 

simple model of sharing and then use it to estimate the number of primary 

memory page-frames, including those being shared, available to each user 

process under multiprogramming. 
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We assume that the paging behavior of all user processes under multi- 

programming, i.e., all eligible user processes, is probabilistically 

identical; we will consider only one class of user processes whose 

paging behavior is probabilistically specified. We assume that each 

eligible user process is scheduled for service by a processor under the 

FCFS discipline and therefore the processors are equally accessible to 

the processes.  Thus, it is fairly reasonable to expect that each of q 

existing eligible user processes uses approximately the same amount of 

primary memory under the management of a demand-paging global page re- 

placement algorithm.  It is assumed that the entire primary memory space 

is fully utilized by these q eligible user procejses under the memory 

allocation depicted in Figure 2-1. 

Now we are ready to present a model of (segment) sharing among the 

eligible user processes. 

Model of Sharing 

2 
(1) Sharing of resident programs:  ax10 percent of m page-frames 

occupied by the resident programs is actually used by each eligible 

user process, on the average. 

2 
(2) Sharing of non-resident programs: b x 10 percent of the memory 

space (m page-frames in size) of each eligible user process, taken 

out of m page-frames reserved for non-resident programs, overlaps 
n 

with the memory space (m. page-frames in size) of another eligible 

user process, on the average.  Any auch overlapping of memory spaces 

is independent of any other overlapping of memory spaces. 

, 
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We will first invest igate Che properties of sharing of non-resident 

programs.  For this purpose, let P^l-1,2,... ,q) be the 1-th eligible 

user process, m (P^P ,... ,P.) be the average size of overlapping of 1 

(non-resident program) memory spaces used by processes P. through P^. 

and m (P 4P +,..+P ) be the average site of (non-resident program) joint 

memory space of processes P  through P .  Then, under the assumptions of 

our model of sharing, we have 

W  P2) " btm0 

Vl' V  P3>-kS (2.5.1) 

mo(pr p2' ••• » pi) = b ' ,mo 

Therefore, as Illustrated In Figure 2-14, we get 

m0(Pl+ V = (2"b)m0 

m0(P1+ P2+ P3)  =  f3-3b+b2)m0 

In general   [Fl],  we obtain 

m0(P1+ P2+ ... + Pq) 

^VV"      Em0(Pi'Pm)+      E V^'  V   V   " 
all  singles    all pairs all triples 

...  + (-l)<'_1Iin0(P1,  Pr   ...   ,  Pq) 
all q-tuples 

=  [<J)-1 + ty'l-b) + (^'(-b)2* ... ♦ (J)«(-b)q'll«m0 

= C (^'C-b)1'1^ 
1=1 

. (ilu^ilj^ (2.5.2) 
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•o( V P2) - (2-b> »0 

(a)  two processes 

W P2+ P3) " (3-3b+b ^»o 

(b)  three processes 

Figure 2-14  Overlapping of Non-Resident Program Memory Spaces 
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Thus, ve have obtained the average size of total memory space which Is 

required by the non-resident programs Invoked by a set of q eligible user 

processes. 

This average t.ize of primary memory space associated with the q 

eligible user processes ran be easily proved to have the following prop- 

erties: 

Property 1 

11m m^P^ P2+...+ P ) = qm0 (2.5.3a) 
b-* 0 

!lm m (PJ+P2+...+ P ) - m0 (2.5.3b) 
b-» 1 

Property 2 

A«0(q) -  »0(W-
+ Vl)'m0(Pl+P2+--+Pq) 

= (l-b)q»m (2.5.4) 

Property 3 

m 
Um rart(P,+ P,-»-...+ P ) - — (2.5.5) 

0  12      q    D 
q-- 

the dependency ot ««(^1+ P.*...* P ) "pwn the degree(b) of sharing 

Is seen in Property 1; Eq. (2.5.3a) means that If there is not any 

sharing at all the total memory space required by the q user processes 

under multiprogramming Is simply q times as large as the memory space 

required by each process, and Eq. (2.5.3b) means that If non-resident 

programs ar» completely shared by the q user processes under multl- 

programning (consider a special-purpose computer system) the total 
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memory space required is equal to the space of only one process. 

Property 2 indicates that m-(P.+ ?„+...+ P ) is a non-decreasing 
U  1   2      <) 

function of the degree of multiprogramming and that if one more user 

process must be made eligible without changing the effectively available 

memory space (m ) of each process then the additional primary memory 

space to be required is given by a geometric probaLUity distribution. 

Property 3 means that an infinite number of eligible user processes can 

coexist using a finite primary memory space because we assumed 

"independent" sharing (overlapping of memory spaces) of the processes' 

non-resident program. 

Finally, we will evaluate the average number of page-frames which 

are available to each of these q user processes under multiprogramming, 

assuming that a given primary memoiy of M page-frames is divided into 

two areas, i.e., the area with m page-frames for resident programs and 

the area with m (=M-m ) page-frames for non-resident programs (see 

Figure 2-1). 

From the first assumption concerning our model of sharing, the 

average number of page-frames storing the pages of resident programs 

used by an eligible process is am .  On the other hand, the average 

number (m ) of page-frames available to the eligible process for storing 

non-resident programs is found from Eq. (2.5.2) to be 

mn = V  ä (2.5.6) 
0   n  l(lb)q 

Therefrre,   the average  total number  (m)  of page-frames available  to 

each of  chese q user processes under multiprogramming  (using  the primary 
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memory depicteu by Figure 2-1) is obtained as follows: 

b m 
m = am + ^-r (2.5.7) 

r  l-(l-b)q 

The overall percentile saving of primary memory due to sharing of 

segments is given by 1 - (M/qm). 

2.5.2. Evaluation of mtbpf in Multiprogramming Environment 

In this section, we will present a simple macroscopic model of 

paging behavior which relates the average number (m) of page-frames 

effectively available to a user process under multiprogramming to the 

mtbpf of the user process. 

Before getting into the development of this model, we must briefly 

consider tbpf (time between page faults) and mtbpf (mean time between 

page faults).  It was previously stated that each burst of continuous 

program execution, i.e., tbpf, consists of at least user program exe- 

cution ann paging overhead execution.  To be more realistic, tbpf 

includes a proportion of time (t ) spent as miscellaneous overhead of 

the supervisor1, as well as a proportion of time (tu) spent as a user's 

useful work and a proportion of time (t ) spent as paging overhead of 

the supervisor  That is to say, 

tbpf = tu+ tp+ tm (2.5.8) 

^his complication is now necessary as a step to evaluate the amount of 

user-oriented computation in Chapter 3. 
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The first component, t^ of the tbpf includes the execution of both user 

programs and non-overhead-type (user-oriented) supervisor programs (..g., 

input/output control programs), and is generally called a headway between 

pa8e faUltS (hb'f)-  The second sonant, tp, of the tbpf includes several 

.uper.isory functions required to handle a page f. alt, as roughly 

explained in Section 2.1, and is generally called a pagin. overhead tin«. 

The third component, t^ of the tbpf includes several supervisory 

functions required to handle miscellaneous faults, such as segment 

faults, protection faults, various non-paging interrupts, etc., which 

occur during the duration of the tbpf, and is generally called a 

miscellaneous overhead MmP.  Denoting average valueB by barred symbols, 

the mean time between page faults (mtbpf) is expressed as 

mtbpf - t + t + t . /Orox 
u  p  m' (2.5.9) 

where tu, tp, and ^ respectively represents the mean headway betw^n 

^fi^faults.(mhbpf), the mean paein. svgrhgadj^ and the mean_ 

miscellaneous overhead time. 

We assume that the mhbpf (or tj  of a user process under multi- 

programming ran  be determined by the average number (m) of page-frames 

that are effectively available to the user process and, in particular, 

that the mhbpf is generally expressed a* 

"t = "t (m) 
u   u 

= c0+c1m+ c2m
2+ c3m

3+... (2.5.10) 

where c^i^O, 1,2,...) are constant coefficients.  On the other hand, the 

miscellaneous faults (segment faults, protection faults, non-paging 
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interrupts,   etc.)  are  likely  to occur uniformly  at  any  instant during 

the execution of a user's useful  work.     Therefore,   it  is reasonable  to 

assume  that  the miscellaneous overhead  time  is  linearly proportional  to 

the mhbpf.     That  is  to  say, 

t     =61 (2.5.11) 
m u 

where 6 (a constant) is called the miscellaneous overhead coefficient. 

It has been experimentally observed on the Multics system that the 

paging overhead time is roughly independent of the primary memory size, 

although the execution times of certain supervisory functions included 

in the paging overhead (e.g., the execution of a page replacement 

algorithm) may depend on the primary memory size.  Therefore, we assume 

that the paging overhead time, t , does not depend on the primary memory 

size.  Thus, the mtbpf of an eligible user process which effectively 

uses m page-frames of the primary memory is given by 

mtbpf * mtbpf(m) 

= (T +1 ) +T v u  m    p 

= ( 1+6 )«t (m) + E (2.5.12) v       u      p 

On the other hand , Saltzer [S3] describes a linear model of 

paging performance , which was developed from performance measure- 

mer.ts of the Multics system .  He observed that the mhbtf of an eligi- 

ble user process is approximately linearly proportional to the size  of 

ttMmi ^^_. 
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primary memory , for a wide range of the primary memory size.  This 

observation justifies (at least partially) the approximation of I with 

only the second term of Eq. (2.5.10). Thus, 

t (m) = c • m u I   m (2.5.13) 

We call this simple model of mhbpf a linear paging model and we expect 

it to serve as a macroscopic model of paging behavior of user processes 

Therefore, combining this linear paging model and the model of 

sharing developed in the previous section, we obtain the following 

expression for the mtbpf of an eligible user process. 

mtbpf = ( 1+6 )• t (m) + t 
u      p 

= ( 1+6 )• c. m + t 1     P 
b m 

= (l+ö).c • (am + Q—) + t (2.5.14) 
1    r l-(l-b)q     P 

The behavior of the above three components (t , t , and t )  of t-hp 
u  m     p7 

mtbpf is explained as a function of the primary memory space (m ) avail- 
n 

able to non-resident programs in Figure 2-15. The gross behavior of the 

mtbpf as a function of mn and the degree (q) of multiprogramming is 

This observation was made about the averaged behavior of an aggregate 

of programs invoked by an eligible user process.  It does not necessarily 

represent the behavior of a particular program. 
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t   ; mean headway between page faults made in resident programs 
ur 

t  ; mean miscellaneous overhead time spent in resident programs 
mr 

t  ; mean headway between page faults made in non-resident programs 
un 

t  : mean miscellaneous overhead time spent in non-resident programs 
mn 

t = t  +t   ,t=t  +t  , mtbpf = t + t + t 
u    ur   un '  m   mr   mn ' u   m   p 

Figure 2-15  Behavior of Various Components of mtbpf 
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similarly shown in Figure 2-16.  It should be noted that the mtbpf of an 

eligible user process under multiprogramming of a given degree increases 

linearly with the available primary memory size.  Finally, to evaluate 

the effect of sharing upon the mtbpf of eligible user processes under 

multiprogramming, three cases concerning sharing (no sharing, ten percent 

sharing twenty percent sharing of non-resident programs) were considered. 

This result is given in Table 2-2.  It is observed that the effect of 

sharing upon mtbpf becomes more evident as the number of user  processes 

that must compete with each other within a fixed amount of primary memory 

increases.  Later in Chapter 5, the gain in overall system performance 

(i.e., the system throughput and the system response time) due to sharing 

of programs will be numerically evaluated. 

^.---^.. ■■..^^-■inMiaMaaaiV.ti».!--.^, i,-1.4.,.-.■.■:...-.- —r- riti jj«!^- ■ II • i 
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mtbpf 

100 

msec 

50 

M = 384 page-frames 
mT- 84 page-frames 
(1+Ö)»ci= 0.3 

100 200 
m 

300 

page-frames 

Figure 2-16  Effect of Primary Memory Size and Degree of Sharing 

upon mtbpf 
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Table 2-2  Effect of Multiprogramming and Sharing upon mtbpf 

Degree of 
Multiprogramming 

Degree of 
of Non-Res 

Sharing 
ident Programs 

o hmO b.0. 1 b«0.2 

1 99.5 msec 99.5 msec 99.5  msec 

2 54.5 56.9 59.5 

3 39.5 42.7 46.4 

4 32.0 35.7 40.0 

5 27.5 31.5 36.3 

6 24.5 28.7 33.9 

7 22.3 26.8 32.3 

8 20.7 25.3 31.1 

9.5 18.5 27.5 

M=384 page-frames, m = 84 page-frames, m =300 page-frames, 

(l+6)«c =0.3, a» 0.1, t =7 msec. 
1 P 
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2.6. Summary 

Because program behavior is so complex that we have developed 

several models each of which studies only a particular aspect ol  program 

behavior, rather than attempting to develop a single "universai" program 

behavior model. The first three models respectively attack the PRA 

(page replacement algorithm) studies, the page size problem, and the 

memory size problem. The analyses of these models respectively allows 

us to evaluate numerically the possible differences in program perfor- 

mance (the mean time between page faults) due to the PRA (page replace- 

ment algirithm) in use, the page size being used, and the size of 

primary memory available to a user process. The macroscopic paging 

performance model described in Section 2.5 is based on a model of 

sharing and Saltzer's linear paging model, and allows us to evaluate 

the mtbpf (mean time between page faults) of user processes under multi- 

programming of a given degree. 
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CHAPTER 3 

THROUGHPUT ANALYSIS 

3.1. Introduction 

Having studied program behavior within a limited amount of primary 

memory, we shall proceed to evaluate the performance of a processing 

system consisting of processors, primary and seconday memories and 

user  nd supervisor programs (see Figure 1-4).  The hardware is, in 

general, assumed to possess multiple processors and multiple primary 

memory units, with secondary memory system as part of the virtual 

memory (see Fig. 1-2).  The operating system is assumed to allow multi- 

ple jobs to possess some of their pages in primary memory using a multi- 

programming mechanism. 

Our ultlmpce goal of this thesis is to develop a methodology to 

optimize such multl-processer multi-memory imiltiprogrammed virtual- 

memory computer system in cost-performance.  As the first step towards 

this goal. Chapter 3 presents a method to evaluate the performance of 

>.«..»r...,.^-,.^.^«,K.^,..,.■■>   ,., -»■,>> Th-nr     ,    .m*mm.„~. 
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a processing system of a given hardware configuration (number of 

procesc.i«, number of primary memory units, speed of processors, speed 

of memory system, size of memory system, etc.), a given software 

configuration (size of resident supervisor, various overhead times, 

degree of multiprogramming, etc.) and given user program characteristics 

(mhbpf, etc.). 

We choose system thro^hput. I.e.. the average numbet of Jobs that 

can be completed within a unit time, as our performance measure of the 

processing system.  In e aluating the throughput of the processing 

system of a given configuration, various wastages of the system's 

computational capacity (various Idle times and system overhead times to 

be defined) will be considered.  Therefore, the system's effective 

computational power can be evaluated accurately. The result of this 

analysis then allows us to optimise the degree of multlprogranining 

realistically In such a way that throughput of the system Is maximized. 

Tt will be seen In Chapter 4 that this optimization approach leads to 

the minimization of the average response time experienced by each 

Interactive user of the computer system. 

  



i:o 

3.2. Preliminary Considerations 

Before getting into a mathematical anaysis of th« system through- 

put of a multi-processor multi-memory multi-progra""««*! virtual-memory 

computer, some preliminary considerations will bs given in this section 

m order to put the foll'wing analysis in proper perspective. 

We have seen in Chapter 2 how the three components (t . t , T) of 
u  m  p 

mtbpf depend on the primary memory size.  We now consider how each of 

these can be affected by a multi-processor multi-memory configuration 

üf the processing system.  A program's execution time is generally 

prolonged on a multi-processor computer system because of mu11i- 

processor interference  such as memory cycle interference and data-base 

lockout.  The former is the Interference caused by the occasional 

conflict of multiple processors for a memory cycle of a particular 

primary memory unit and the latter is the Interference caused by the 

occasional conflict of multiple processors for the use of a particular 

shared, writable dafa-base which cannot allow simultaneous accesses of 

multiple processors.  Because a  memroy cycle of a primary memory unit 

or a shared writable database can be used only serially, only one of 

the conflicting processors can use it immediately and others must wait 

for their turn to use it. Therefore, -ntbpf is prolonged on the multi- 

processor computer system. 

Table 3-1 summarizes the way in which the dependency of the three 

components of mt.bpf, i.e.. 

t  (mean headway between page faults), 

t  (mean miscellaneous overhead time), and 

t  (mean paging overhead time), 
P 
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upon the multi-processor interference as well as upon the primär) memory 

size will be considered in later mathematical analyses.  It la  assumed 

that all fault handlers (page fault handler, segment fault handler, 

protection fault handler, etc.) of the supervisor arc either permanently 

resident or almost always resident in primary memory by virtue of the 

fact that these most-frequently-used programs are likely to be shared by 

many user processes. On the other hand, non-resident programs such as 

user programs are assumed to be initially in the secondary memory system 

and to be brought into primary memory under demand paging, as stated in 

Chapter 2.  Under these assumptions, we will use the macroscopic paging 

performance model described in Section 2.5; t  is independent of primary 

memory size but t and t depend on (are roughly linearly proportional 
u     m 

to) the size of primary memory effectively available to each user 

process under multiprogramning, as shown in the first row of Table 3-1. 

It is well-known that the execution of a page fault handler 

involves some shared, writable data-bases (i.e.. resource tables and 

resource queues [SI)) which may significantly delay the execution of the 

page fault handler on the multi-processor computer system, while the 

execution of users' useful work or of miscellaneous fault handlers 

normally dees not Involve such frequentIv-used shared writable data-bases. 

Therefore, only t  is assumed to be significantly affected by data-base 
P 

lockout, as shown in Table 3-1. On the other hand, the execution of any 

program is subject to memory cycle Interference on the multi-processor 

computer aystera. Thrrefore, all three components of mtbpf are assumed 

to be affected by memory cycle Interference, as shown in Table 3-1.  It 

has been actually found on the Multlcs system (to be rtported in 



■ 

122 

e 
oo -^ 

;   c *J 
•«4 
oo 'a      a 

a « 
o 
c a «1 

C   P 
a)   a< 

1 ^ 
€>■• 
M 
kl 
0 

u 
ni 
u. 

(A 
oc 3 
c o 

■w « 
3c 

c 
(0   «I 

—< -   B 
P4 «-H    ■-< 

w 4J     e a ?! 
o 
c 

M E   V U ■c 
c u 

e <a « 
0 it 

"O 
c 
« 
a 
Al 5 

J c 
i 

H 2 
V 0) 

j 

h
e
a
d
w
a
y
 
b 

f
a
u
l
t
s
 

r
u a a o a 

1 c n 

2 S. 
| 
Q 

/ 
e e A IM                   / 

o 
o            / u 4J 

J5 w              / 
*         / 2 u u •s *         / (- C   3 3 S pi/ .5 «   00 

U  -H 
00 

Wi -3 / u W  «H 1M   «M a u / Q. 
Wi   o 

0    g j VM V   '• 4J     U 1 o u 
c u 

3 
O   U 

I 4< -•   0 * o i N at u   « j —< at   m O    CO 

/ « 
u o u / 01 >> o « o / > u u M    U 

/          <" -H a eg   a. /          u 
iJ     >, >^ i x   i /         o u   u. t. — ■   —• 

/                 ^ 0»   O o >-• «   u 
i f            u <M      £ 

5   3 
U   —i i «9 U-*     ty a  3 

f M 0)   E E   E T3    E 



123 

Section 5.2.1)that a noticeable amount of processor time is lost due to 

the multi-processor interference. 

In order to consider quantitatively the effect of this multi- 

processor interference, let t ,, t ., and t . denote the t , t , and t K ui  mi      pi u  m      p 

of an i-processor (i=l,2) computer system.  Letting K  (1SK ^2) be 

the slow-down factor due to memory cycle interference on a dual proces- 

sor system, we have the following relationship between the t  of a 

single processor system and that of a dual processor system with the 

same configuration. 

Srt = 'S/ul (3.2.1) 

where the value of K will be determined in a later analysis.  Assuming 
m 

the same degree of memory cycle interierence for the handling of mis- 

cellaneous faults, we have 

"t 7 = K T . (3.2.2) 
m2   m ml  . 

On the other hand, the relation befeen the paging overhead time of a 

single processor system and that of a dual processor system is more 

complex because oi the additional interference caused by data-base lockout. 

We assume that the execution time of the page fault handler on a dual 

processor system Is stretched by a factor of K. (1SICS2) because of 

data-base lockout and is further prolonged by a factor of K because 

of memory cycle interference.  That is to say, 

T 0 = K .K. «T . (3.2.3) 
p2   m  i  pi 

Under these conditions, the linear relation between t , and t . 
mi     ui 

of Eq. (2.5.11) is now generalized to 
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(3.2.4) 

It should be noted that the miscellaneous overhead coefficient 6 is 

t . = 6t . i = l,2 
mi     ui 

independent of the number (i) of processors. Thus, mtbpf of the single 

and dual procesi r systems can be expressed as: 

mtbpf(l CPU) = t .+ t .+ t . r ul  ml  pi 

= (1-^)1 ,+ t . 
ul  pi 

■ mtbpf (3.2.5) 

mtbpf(2 CPUs)= tu2+ tm2+ tp2 

= K I .+ K t .+ K K.!  . 
m ul  m ml  m £ pi 

= V((l4*)Tul+K£rpl) (3-2-6) 

£Km.(mtbpf2) 

Finally, we are ready to give an expression for the percentage of 

the system's computational capacity spent as users* useful work (to 

be called the percentile throughput of the system), taking into con- 

sideration all of the above system overheads and the possible processor 

idle time.  Let u be a .'tilization factor, of the processors of the 

processing system, which will be analytically obtained by the through- 

put analysis of this chapter as a function of various system parameters 

such as 

(1) the number of processors, 

(2) the number of primary vaemory units, 

(3) the degree of multiprogramming. 
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(4) various  system overheads, 

(5) mtbpfi     (1=1,2) 

(6) mpft  (the mean page fetch time) of the secondary memory 

system. 

Then, the desired percentile throughput G of the multi-processor 

computer system can be expressed as: 

t , 
a  ui b = u»— 

mtbpf(i CPUs) (3.2.7) 

Now let T be an arbitrary length of time.  Then, the total time that 

can be spent as users' useful work by the i processors during T is 

i6T. Let Tel, T  ,..., T  be the execution times of k user jobs 

(excluding all the system overhead times) which were completed during 

T.  Then, assuming that the computer system was under a full load, the 

system throughput Q_  can be obtained as follows: 

9 ■ lla-J- —       T X-»oo 

" lim[  T * T .+T ,+ ••• +T . ) T—oo      el e2       ek 

-11.    ie 

T—»oo 
(ST )/k 
J-l J 

ie_ 
(3.2.8) 

where T is the average execution time required for a job's useful work. 

Therefore, it has been shown that the percentile throughput is linearly 

proportional to the system throughput. 



126 

3.3. Single Processor System 

In this section, we will be concerned with the performance of a 

single processor processing system under multiprogramming of a fixed 

degree (q).  It is assumed that the time between page faults rcbpf; of 

each user process follows a certain stationary probability distribution 

with a (constant) mean determined by the size of primary memory avail- 

able to the job.  (In detailed reality, tbpf or hbpf depends on the 

size of primary memory actually being used at the moment rather than 

the amount of memory that can be used, as seen in Chapter 2, but this 

initial macroscopic transient behavior of programs is only macroscopi- 

cally consiaered hereafter.)  It is also assumed that the computer 

system under study is fully loaded with user jobs; there always exist 

at least q executable user jobs on the computer system.  This means 

that q user processes are being multiprogrammed at all times. Therefore, 

in modeling the behavior of the multiprogramming mechanism described 

in the section surrounded by a broken line of Figure 1-i, we need not 

explicitly consider the completions of job executions or the entries 

of new eligible user processes.  Furthermore, because the processing 

system has only one processor we need not consider any multi-processor 

interference in this section. 

3.3.1. Single Processor Multiprogramming Model 

A model of multiprogramming described here involves the following 

resources of the computer system. 
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(1) a processor queue (0 ) which contains page-ready processes, 

i.o., the eligible user processes waiting for a service by a 

processor of the processing system 

(2) a processor (CPU) which can service one eligible user process 

at a time 

(3) a secondary memory system (SM) from which a missing-page is 

brought into primary memory on demand for the eligible user 

process that ^las requested the page. 

As explained in Section 1.2, if an eligible user process is waiting 

for a processor's service in the processor queue Q . the process is 

said to be in the page-ready state.  If the process is being serviced 

by the processor, it is said to be in the running state.  If the 

process is waiting for a missing-page, it is said to be in the page- 

wait state.  The (mean) length of time in the running state exactly 

corresponds to the (mean) time between page fau .s and the (mean) 

length of time in the page-wait state exactly corresponds to the 

(mean) page fetch time.  All the eligible user processes simultaneously 

cycle around these three states in our conceptual model of multi- 

programming, as shown in Figure 3-1. 

We usually assume that the jobs in Q are scheduled under the 

FCFS discipline for the processor's service when the processor is 

available.  A preemptive priority scheduling discipline is also 

considered briefly. We assume that a service by the secondary memory 

svstem to locate and transfer a missing-page of a process into primary 

memory is always immediately initiated and carried out in parallel 



:-'■:.■ ..       _      . 

128 

? 
00 
TO 
a 

X 
CO 

a 
ö 
G 

Cfl 

tn 
ui 
(U o 
o a 
(X 

cr 
II 

+ 

'S 
■5 
c 
c a 

m 
(U 
tn 

(U 
u 
o u 
a 

o 
o 
ii 

'-N 

^ 
^ D CO 

(U 
CO 

(U t CO 

1 

8. 
a 

D o 
o a u 

a 
•H 

K 
1) 
CO 

en 
« 
o 

2 

H 
14-1 
O 

s 
•2 
4J 
CD 

2 

I 



129 

with services by the .ame secondary memory system for other page-wait 

processes; the input/output channel is assumed not to limit the rate of 

page transfers between primary and secondary memories. 

Finally, we must specify the probabilistic property of both the 

time between page faults (tbpf) and the page fetch tim  (pft).  We 

assume that tbpf independently follows an exponential distribution with 

a mean of 1/a which is determined by the macroscopic paging performance 

model of Section 2.5. That is to say. 

f(t) = ae 

where 

-at 
t ^ 0 

1     - 
mtbpfl " ¥■ Sal* ^ %! -  <1+Ö)tul

+ t 

(3.3.1) 

Similarly, we assume that pft independently follows an exponential 

distribution with a mean of 1/ß.  That is to say. 

8(t) = ße'ß,: 

t^o (3.3.2) 

where mpft = 1/ß should be determined by a separate analysis using a 
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secondary memory model (see Figure 1-4)^  This assumption would be 

reasonable especially if secondary memory consists of a combination of 

frequently-used high-speed devices and less-frequently-used low-speed 

devices. 

3.3.2. Multiprogramming with FCFS Scheduling 

We will proceed to evaluate the system throughput of the single 

processor processing system described in the previous section, assuming 

that the FCFS discipline is used in scheduling page-ready eligible pro- 

cesses fC3]. We assume that tbpf of each eligible user prrcess follo'-s 

the identical probability distribution of Eq. (3.3.1). 

Then, a state of our model of the processing system is characterized 

by the number (i) of page-ready processes (waiting in Q ), the number (j) 

Coffman's result concerning a paging drum [C5,C6] or the well-known 

result of M/G/l queues [C8] may be used in this area.  In particular, 

the built-in meters of the Multics system show that Coffman's result, 

reproduced below, is accurate enough to predict the mpft of a paging 

drum(in practice.  Letting T,N, and p respectively be the drum revolution 

time, the number of sectors, and the sector utilization factor, 

mpft - Ü^i + 2- 
1 - P     N  , 

where the first and the second terms respectively represent the mean 

access time, which is subiect to a queuing delay, and the constant page 

transfer time. 
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of running processes (using the CPU), and the number (k) of page-wait 

processes (associated with the SM), where i + j+k = q and j^l, as shown 

in Figure 3-1.  Therefore, each (i,j,k) tuple defines a state of the 

model, as given in Table 3-2, Noting that the holding time of each 

state is exponentially distributed, we see that the behavior of this 

model can be regarded as a continuous time Markov process, in fact, a 

simple birth and death process known as the machine repairman model 

(or the machine interference problem) [F1,J2], defined over these q + 1 

states of Table 3-2. All possible state transitions and the correspond- 

ing transition rates are shown in the state transition diagram of 

Figure 3-2. 

The probability n.   (i=0,1,...,q) that one finds the system in S 

at a randomly chosen instant after the system has been in operation for 

a long time, i.e., the steady-state probability n of a state S , can 

be obtained by solving the balance equation [F1,H2] 

a«.- (q-i+1) ß «, -       IsiSq      (3.3.3) 

under the condition E n. = 1 . Thus, 
1=0 

If the transition rate associated with an S.-* S . transition is a, 
i   j 

then this means that the conditional probability that this transition 

will occur in the next At, given that the present state is S., is given 

by a A4- for j^i and suitably small At. 
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Table 3-2  State Table of the FCFS Single 

Processor Multiprogramming Model 

State 
Name 

i 

CPU 

J 

SM 

k 

so 0 0 q 

Sl 0 q-l 

S2 1 q-2 

S3 
• • • 

2 q-3 

Vi q-2 1 

s q-l 0 

(q-i)ß 

<q-2)ß 

<q-3)ß 

Figure 3-2  State Transition Diagram of the FCFS 

Single Processor Multiprogramming Model 
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Z (aJ/j!) 
J-0 

wherea=a/p.     In particular,   the processor  Idle probability «    Is 

given by 

aq/a'. ,, , ,, 
v^i — <3,3-5) 

E (aJ/j:) 
j-o 

Therefore, the percent lie throughput of this system I« obtained 

from Eq. (3.2.7) as 

6 - ^-V'CH^T^T, '  ^VcTul        (3-3-6) x
    ul  pi 

The corresponding sysfm throughput can be readily obtained fri/m 

Ea. (3.2.8). 

3.3.3. MultlproRrammlng with Preemptive Priority Scheduling 

We i-'lll briefly consider the system throughput of the same single 

processor computer system, assuming that a preemptive priority (PP) 

discipline like that of the Multlcs system (01) Is used In scheduling 

page-ready eligible user processes. When this discipline Is used, a'I 

the eligible user processes have their own distinct priorities upon 

which preemption decisions are solely based.  Suppose that the super- 
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visor decides to allow a  ready process to become eligible at a certain 

instant when there exist q* eligible user processes (see Figure l-l). 

This entering process is ionediatcly awarded a priority q* +1 ("q). 

the lowest priority (i.e., largest in value) among existing q'-fl 

eligible user processes. Whenever a process becomes ineligible by 

completing the execution of the requested user Job, the process loses 

its priority and accordingly changes of  priority of othar eligible user 

processes take place.  Suppose that the leaving process has a priority 

q".  Then, if the priority of a remaining process is lower than that of 

the leaving process (i.e., larger than q'). then the priority is 

heightened by one (I.e., decreasec1 y one in value); otherwise, the 

priority is left unchanged. Thus, this algorithm gives a higher 

priority tsä  An older eligible user process, maintaining a set of 

distinct priorities for the existing eligible user processes.  The page- 

ready processes in Q are always ordered according to their distinct 

priorities and the process with the highest priority is scheduled for 

the processor's service when the processor is aviilable. What is more, 

if the priority of this process is higher than that of the running 

process, this process is allowed to preempt the processor by suspending 

the progress of the running process as soon as possible.  Therefore, an 

eligible process with a higher priority has a greater chance to use both 

the processor and the primary memory.  Thus, an older eligible user 

process tends to own more pages In primary memory than newer eligible 

user processes, under a global page replacement algorichm.  We assume 

again that the cotrputer system is under a full load. 
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Instead of using the tbpf distribution of Eq. (3.3.1), we assume 

the following set of equations for the tbpf distributions of user 

processes under the PP discipline. 

' (3.3.7) 

fj^t) ■ o^e    for the highest priority process N 

-a2t 
f2(t) ■ a.e    for the priority 2 process 

• • • 
-Q   t 

f  (t) ■ a e    s    for the  lowest priority process 

where     a.« a,s ...  sa       and      t * 0. 
il q 

The t ict that an older process, i.e., a higher priority process, owns a 

greater number of  get in primary memory Is reflected by a longer mtbpf, 

1/a., of a higher prWlty process. As for the pft distribution, we 

still assume Eq. (3.3.7). 

What characterizes a state of this modified model is not Just the 

number of processes In each of those three states of eligible user 

processes but the combination of priorities of processes In each of 

those three states. Then, It Is again possible to model the behavior 

of this model by a continuous time Markov process.  Let an (i,).k) tuple 

represent a state of this model, where I Is a (particular) combination 

of priorities of the page-ready processes, J is a priority of the 

running pmcess. and k is a combination of priorities of the page-wait 

processes.  Then, It can be easily proved that the total number (N ) of 

these (Markovlan) states or this model Is given by 

q 
Ns- *  (k) - ^ (3-3.8) 8 k=0 
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Unfortunately, a  general expression for n , like Eq. (3.3.4) of the 

FCFS scheduling model. Is too complicated to write out (although it can 

be easily evaluated numerically) and therefore we will simply give an 

illustrative example. 

Example Case of q = 2 

Because the supervisor allows only two eligible processes In primary 

memory there exist only priority 1 and 2 processes. Defining four 

possible states as shown below, we obtain a state transition diagram 

shown also below. 

% 
CPU SM 

so (1,2) 

sl (I) (2) 

S2 (2) (1) 

S3 (2) (1) 

Letting «=(n0, n., it-, JT_) be the steady-state probabilities of 

states  (s  S., S  S ), these steady-state probabilities can be 

obtained by solving the balance equation 

it • A » 0 

under the condition E n = 1, where A Is the transition rate matrix [H2 
1=0 

and takes the following form for this example. 
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-2ß ß ü ß \ 

Ql -VP ß 0 

0 0 ^l al 

\a2 
0 ß ■«2-N 

The solutions are: 

^tal)ala2 
n0 "" 2ß3+3p2 .j+ß^^^ßQ^^jQ, 

ßa1a2 

ni " 2ß3+3ß2a1+ß
2a2+ßa

2+2ßa1a24a1a2 

P2 (2^40.40^) 

n2 " 2ß3+3ß2a1+ß
2a2+ßQ

2+2ßala24aia2 

(2ß-Kr1)ßa1  

^ = 2ß3+3ß2a1+ß
2a2-^a

2+2ßa1a2-K)(1a2 

The processor idle probability is given by n^    Therefore, the 

percentile throughput can be obtained by inserting «0 into Eq. (3.3.6) 

of the previous section.  The priority 1 (higher priority) process uses 

the processor < ith a prob*: mty n^^ and the priority 2 (lower 

priority) process with a probability Ky     If O^-Oj-a, then we see 

Chat the X obtained from the above equation agrees with the n0 given 

by Eq. (3.3.5) of the previous model.  This corresponds to the fact 
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that a preemption scheme does not improve the processor utilization If 

CX^^a^" • • . = Cx   ,  under the assumption of exponential distributions. 

Finally, a numerical example of processor time breakdown is shown in 

Table 3-3, assuming that a. =a =a.  It is clearly seen that the 

priority 1 process uses the processor much more than-the priority 2 

process because of the preemptive priority scheduling discipline. 

Table 3-3  Processor Tine Breakdown for 

the PP Scheduling Model 

Processor Time Breakdown 

Priority 1 Process 

Priority 2 Process 

Idle Time 
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3.4. Dual Processor System 

The model of a single processor processing system under multi- 

programming of Section 3.3 is now generalized to a dual processor mul::i. 

memory processing system under multiprogramming.  To specify the gross 

configuration of the system, we use a notation (q; m, n) where 

(1) q is the degree of multiprogramming, 

(2) m is the number of processors (mSq) 

(3) n is the number of primary memory units, each of which can 

be accessed through its own memory controller, 

as schematicallyshown in Figure 3-3.  We will be concerned with the 

system throughput of the (q;2, n) configuration system in Section 3.4. 

Although the system of this configuration is generally expected to 

have a much larger computational capacity than a single processor 

system, this system will encounter new problems which may seriously 

limit its computational power. These problems are caused by multi- 

processor interference such as memory cycle interference and data-base 

lockout.  These interference sources effectively reduce the speed of 

the processing system. We will therefore develop a model of the 

(q; 2, n) configuration processing system and evaluate the throughput 

of this system.  The effective loss of the system's computational 

capacity due to multi-processor interference, various system overheads, 

aid the multiprogramming (processor) idle time (to be defined) will 

also be evaluated. 
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3.4.1 Dual Processor Multiprogranming Model 

A model of multiprograraming on the (q; 2, rO configuration systtn 

is based on the following assumptions: 

(1) The virtual memory is paged.  A given page of the prirary 

memory system is found in a memory unit i (ISl^nj with & proba- 

bility 1/n (uniformness assumption). 

(2) The length of in-page operation of a program (the Itngth of 

time during which processor control remains within a particular 

page without making any reference to other pages) follows an 

exponential distribution with a mean of t.^l/S'.Q. 

f0(t)=V
V t^o (3.^.1; 

(3) A page fault occurs with a probability p (missing-page 

probability) when processor control is transferred to another F^- 

The missing-page probability Is  common to all user programs. 

(4) A missing-?age will be fetched from the secondary memory 

system.  The length of time required to complete a page fetch. :r. 

the page fetch time (pft). follows an exponential distributicr. vlth 

a mean of 1/ß. 

-ßt .>n (3.4.2) 
g(t) = ße ^0 

(5)  The processor queue (0) is common to two processors.  Xcre- 

over, the processing system is assumed to have nei-e than c >-rs a: 

all times to ensure the existence ?i  q eligible processes ur.i*r 

multiprogramming of degree q (full load assur.p:ior.V 
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(6)  If both processors direct their accesses to the same unit of 

primary memory at all tines, the execution time of a program on 

each processor would be stretched by a factor of V (l^Y-2), on 

the average . Y is called the memory (cycle) interference 

coefficient. We say that a memory unit has no interference if 

Y = l and that a memory unit has a complete interference if Y = 2. 

First,  we will prove that tbpf aoproximately follows an exponen- 

tial distribution under these assumtions.  Noting that hbpf consists 

of successive in-page operations (see Section 2.4.2), we see that 

f^t) = Prob{ hbpf = t ] 

= S 
i=l 

(i  successive in-  \     Atotal length of 
\ »Prob- i Probjpage operations 

[.before a page faultj 
in-page operations^ 

(3.4.3) 

The probability that i in-page operations take place before a page 

fault occurs is given by a geometric distribution with a parameter of 

p, as is clear from the assumption (3).  The sum of i exponentially 

distributed (identical) variables is known to follow an Erlang distri- 

bution of phase i, i.e., the i-fold convolution of identical exponential 

distributions [Fl].  Therefore, Eq. (3.4.3) becomes 

The value of the effective slow-down factor due to memory cycle inter- 

ference (K ) for a given configuration will be calculated using the value 
m 

of Y. 
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I 

,  i i-1 -aot.> fa t  e 0 )1 

1    i=lk l  (l-l): v 

= OUP e 

-a0t » ia0t(l-p)j 
>i 

i=0 

-a0t  a0t(l-p) 
a0P e   • e 

= a0p e 
-a0Pt (3.4.4) 

Thus, hbpf has been proved to follow an exponential distribution of a 

mean of l/cy..  This means that the sum of hbpf (tu) and the miscella- 

neous overhead time (tj approximately follows an exponential distri- 

bution with a mean of (l+5)/a0p. Noting that the paging overhead time 

is considerably shorter than the sum of hbpf and t^ we can expect 

that tbpf roughly follows 

-at 
f(t)  = a e 

where 

t^O 

1+6 _   1 
mtbP£2 '^= (1+6)tul+KAtpl"a0p "a p 

(3.4.5) 

Thus, we have seen that the model analyzed in Section 3. 3 can be regard- 

ed as a special case of the model developed in this section (see 

Eq. (3.3.1)); the previous model actually corresponds to a (q; 1, n) 

configuration system with the above formulation. 

Under these assumptions, each eligible user process cycles around 

the three states, i.e., the page-ready state, the running state, and 
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the page-wait state, as shown in Figure 3-4.  It should be noted that 

if two processors happen to use the same primary memory unit for which 

Y/l then the rate 0^=0^/(1+6) of Figure 3-4 must be replaced by a fy. 

It is important to note that non-resident programs (e.g., user programs) 

and resident programs (e.g., fault handlers) are treated as if they are 

equally susceptible of rage faults in this formulation. This formula- 

tion was adopted for the sake of simplicity of the analysis. Finally, 

we will finish this section by defining some terminology to be used in 

the following analysis. 

Multiprogramming idle time: the processor time lost when process- 

ors do not have executable eligible user jobs, i.e., when at least 

q - 1 jobs are simultaneously in the page-wait state. 

Memory interference idle time: the processor time lost due to the 

unavailability of memory cycles when two processors simultaneously 

access the same unit of primary memory (memory cycle interference). 

Data-base lockout idle time:  the rocessor time lost due to the 

unavailability of certain shared writable data-bases (data-base 

lockout). 

Besides these various idle times,we lose a non-negligible fraction of 

the system's computational capacity because of paging overhead and 

miscellaneous overhead of the supervisor. 

'•--^- - -    ■'--^-— 
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3.4.2. Multiprogramming with FCFS Scheduling 

We will now evaluate the system throughput of the (q; 2. n) con- 

figuration system as well as the multiprogramming idle time, the memory 

interference idle time, the date-oase lockout idle time, and other 

capacities wasted as various system overheads, under the assumptions 

stated in the previous section. 

In analyzing the behavior of the (q; 2, n) configuration system, we 

should first note that a state of the system is characterized by the 

number (i) of page-ready processes (waitin", in Q ), the number (j) of 

running processes (using the CPUs) the number (k) of page-wait proce^aes 

(associated with the SM), and a variable (s) which indicates the existence 

of memory cycle interference (s = 1 if interference exists and s=0 

otherwise).  Then^ it follows that each (i,j,k,s) tuple defines a 

l    k » state(s
S
jJ
of the  astern,  as shown in Table 3-4.   The number of 

states thus defined is found to be 2q. We see that these states are 

mutually related by the transitions with transition rates indicated in 

Figure 3-5, and therefore the behavior of the system can be modeled by 

a continuous time Markov process defined over these states. 

k k 
Let sit be the steady-state probability of S   Then, the steady- 

s J 

state probabilities n can be obtained by solving the balance equation 

£«A = 0, i.e., the following set of simultaneous equations given by 

Eq. (3.4.6) through Eq. (3.4.14). 
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Table 3-4  State Table of the FCFS Dual Processor 

Multiprogramming Model 

state 
name 

sq oso 

obi 

0 2 

s<-2 
12 

sq-3 
0S2 

1 2 

i 

0 

0 

0 

0 

1 

1 

CPU 

j 

0 

1 

2 

2 

2 

SM 
Memory 
Interference 

k 

q 

q-l 

q-2 

q-2 

q-3 

q-3 

s 

0 

0 

0 

0^ 
q-3 

q-3 

q-2 

q-2 

2 

2 

2 

2 

1 

1 

0 

0 

0 

1 

0 

1 
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—■—^J  
H—^—(in2  )+-—^ i^HWm^  ) 

20.(1-?)      top             p(n-l) . 
(kß+—i-jj  +-~-'   —~ )(on2) 1<k5:<I-3 (3.4.6) 

^A'1^ <0«2"1>+^r:^ (Off2>+ ^M>P V2+l) 

to.d-pXn-l)     aa.pdi-l)     to.p       . 
(kß+-L--  + _L__ + _l_)(i^)      ^^3 (3.4.7) 

Left Boundary Conditions 

^■PX"-1*, o,xfl, u .zji(1-?).2aip fV<^)w o, 
 ^ <ln2)+P(On2)n(--S +"r--r n )(0,t2) 

(3.4.8) 

 Ö (o"2)+Mln2)-( ^ + —1^ +-—)(ln2) 
(3.4.9) 

Right Boundary Conditions 

toup(B-l)      n ,   2a p(n-l) «    to (l-p)(n-l) (q-l)(n-0ß     _, 

-((q-2)ß+-~;  + tojp) (0n^) (3.4.10) 

2aiP       C-l     2aiP        q-1     2ai(1-p) q.2     (q"1)ß q-l 

2a.(l-p)(n-l)    20^ n _ 
((q.2)ß »     l     ^ +-J-) (lirJ *) (3.4.11) 

^vr^ <i«r2>^P(0^0). (Xa=mi=m+ii^i+aiP)(oÄrt) 
(3.4.12) 

C^P^J"1)    ■    qß(0n3) (3.4.13) 
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Normalization Conditon 

ifV+ vr1)+ £<o*\>+l^A* ■i (3.4.14) 

Because there are 2q independent equ .ions in 2q unknown variables, the 

k ,    . 
gitj  s can be uniquely determinef

1. 

Now we are ready to exprf .s several interesti .g performance measures 

of the system's computation .1 capacity in terms of the steady-state 

probabilities obtained ab.ve.  It is assumed that the system's computa- 

tional capacity (2C), treasured in the total number of instructions that 

can be performed by t ,e system's two processors under the ideal condi- 

tion, breaks down IT to the capacity (C^) wasted as multiprogramming 

idle time, the capicity (C^) wasted as memory interference idle time, 

the capacity (Cp wasted as the paging overhead including the capacity 

(Cdi) wasted as data-base lockout idle time, the -apacity <C ) wasted 
m 

as the miscellaneous overhead, and the rest, i.e., the capacity (C ) 

used as users useful work.  These capacities are evaluated as follows: 

Capacity wast, d as multiprogramming idle time 

cmi -2c v*+ c vr1) 
■ ^VQ) +<onl'1)],C (3.4.15) 
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Capacity wasted a8 memory interference idle time 

q-2 

cli = { K^Hi--^*20 
k=0 

-^•(^(^»•w 
k=0 

(3.4.16) 

Capacity wasted as the paging overhead 

kp2        
C
p   =  <2C ■ C

mi" Cii),mtbpf (2CPrs ) 

- <2C • c«i-Cii>,s5?7: 

= (2C - C .- c..)*aK.t , v     mi   ii   I  pi 
(3.4.17) 

where ^ =n>tbPf2 = (1+6) tul+ Kxtpl = — 

cdi = (Kx-1),cP 
(3.4.18) 

Capacity wasted as  the miscellaneous overhead 

wm2 
Cm   =  (2C  '  Cmi'  Cii),mtbpf (2CPUs) 

ml 
- <2C -cmr ^'SSF? 

= (2C - c .- c..)»aö t , v mi       ii ui 
(3.4.19) 
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Capacity used as users' useful work 

t 
C  = (2C - C .- C )• ü2___ u        mi  ii'' mtbpf ( 2 CPUs ) 

= (2C - C .- C..)-  tul mi  ii'' mtbpf2 

■ (2C " C.r Cil)^ul (3.4.20) 

Memory interference slow-down fan-nr- 

■ " q-2 ,    k      T        ;        ~ (3.4.21) 

Percentile throughput: 

e    = u -        tu2 

mtbpf ( 2 CPUs ) 

2C - C .- C.   t ,  mi  ii   ul 
2C     'mtbpf 

C 
u 

2C (3.4.22) 

It is seen from Eq. (3.4.22) that the percentile throughput of the 

(q;2,n) configuration system is expressed as a function of user 

program characteristics (I^p), the system overhead structure (I ^Ö^K ), 

and hardware characteristics (n,ß,Y).  The system throughput 6 o/this 

configuration can be obtained by substituting Eq. (3.4.22) into 

Eq. (3.2.8). 

An expression for /.   u generally too complicated to write out 

and therefore the expressions given by Eq. (3.4.15) through Eq. (3.4.22) 

can only be numerically evaluated (this will be done in Chapter 5), 
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excep t for some simple cases. However, one of those simple cases for 

which nk is not too complicated may be worth being explicitly analyzed 
s j 

as an illustrative example. 

Example A (2;2,n) Configuration System 

The state transition diagram of Figure 3-5 now reduces to the four 

state transition diagram given below. 

The equations given by Eq. (3.4.6) through Eq. (3.4.14) correspondingly 

reduce to: 

-4—(0"°'+f ^J' = {-^ +—1(1"2> 

2a p      n 9 i 2aip v^ +^r (i^^+2ß w =(ß+aip) (orti) 

«I? ^ ■2ß ^ 

(/2) + ^ + (0«i) + (o^^ -1 



■i —— 

154 

Solving these equations, we get 

2 

0^0 

0^1 

0rt2 

0 
1*2 

na 
n(l-Hj)+y-l 

7.n<J 

n(l+a)+Y-l 

n-1 

n(l+a) +Y- 1 

n(l+CT) +Y- 1 

where a =a1p/ß =a/ß. 

Thus, from Eqs. (3.4.15) and (3.4.16), we obtain the following 

result concerning the capacities wasted as multiprogramming idle time 

and as memory interference idle time. 

C  =  
ng (1+g)  .2c =  2 (^ 

n(l+CT)+Y-l      (1+CT)
2
+(U:) 

•2C 

C . = 
ii 

Y-l 
■•2C = 

(^) n 

n(l+a) +Y-1    (l+a)2+(^) 
■•2C 

The system's computational capacities used as various overheads (C ,C ) 
p m 

and as users' useful work (C ) respectively follow from Eqs, (3.4.17), 

(3.4.19), and (3.4,20).  The memory interference stow-down factor is 

obtained from Eq. (3.4.21). 

= (n-l)+Y
2+ng 

m  (n-l)+Y + na 

Finally, the percentile throughput is obtained from Eq. (3.4,22) as 
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6 -IZTf^'^ 
It should be noted that as (Y-l)/n approaches zero (either n-", i.e., 

an infinite number of memory units, or Y "*!, i.e.,   no memory cycle 

interference) the effect .of memory cycle interference disappears. 

Furthermore, the multiprogramming (processor) idle probability of this 

dual processor system under this limit is C^/ZC = cr/(l-KT).  Although 

the multiprogramming (processor) idle probability of a (1; 1, n) con- 

figuration system was also found to be CT/(1-K7) from Eq. (3.3.5) of the 

previous section, the split system (q; 1, n) generally gives a larger 

multiprogramming idle probability than Lae (combined) dual processor 

(2q; 2, n) configuration system, under the no memory interference 

condition mentioned above.  Needless to say, this does not necessarily 

mean that the (2q; 2, n) system is morr efficient than the (q; 2, n) 

system; the comparison must be made in terms of perientile throughput 

rather than multiprogramming idle probability. 
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3.5. Some Extensions 

We have been concerned with the throughput of the multi-processor 

multi-memory processing system under multiprogramming.  In particular, 

we have presented an analytical method to evaluate the throughput of a 

single processor and a dual processor systems under multiprogramming. 

In this section, we will give brief remarks on some extensions of the 

results obtained in this chapter. 

The : tudy of the system throughput of this chapter has been mainly 

confined to the FCFS scheduling model; a brief investigation of the PP 

(preemptive priority) scheduling model for a single processor system 

left the value of the mtbpf of each process with a distinct priority 

unspecified.  It is perhaps possible to determine the values of these 

mtbpfs and then evaluate the throughput of such a model, by assuming 

that the processor time breakdown among eligible user processes is 

proportional to the primary memory space usage breakdown among them. 

Then, it would be possible to evaluate r.he performance gain of the PP 

scheduling model over the FCFS scheduling model quantitatively, using 

the macroscopic paging performance model of Section 2.5.  As for the 

dual processor system, even the analysis of the FCFS discipline model 

was rather complicated.  Inclusion of the PP scheduling would increase 

the number of Markovian states of this model and necessarily complicate 

its analysis.  Therefore, no attempt to study the dual processor PP 

scheduling model is made in this thesis. 

Processing systems involving more than three processors have not 

been considered.  In order to examine the complexity of such systems, 
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let us consider a general (q;ra,n) configuration system.  Speaking of 

memory cycle interference alone, there exist many kinds of memory cycle 

interferences on this system, such as interference between two process- 

ors, that among three processors,..., that among m processors. 

Therefore, we must define a different Y (memory interference coefficient) 

for each kind of memory cycle interference.  Such a complicated formula- 

tion of the problem, however, tends to reduce the mathematical tractabil- 

ity, and therefore it seems necessary to consider the effect of meincry 

cycle interference indirectly much like the effect of data-base lockout 

on the (q; 2, n) configuration system was considered in this chapter. 

Finally, let us briefly consider the optimization of the multi- 

processor multi-memory processing system under multiprogramming, with 

respect to the degree of multiprogramming.  The method of evaluating the 

system throughput developed in this chapter enables us to investigate 

the effect of the degree (q) of multiprogramming upon the system through- 

put of a given hardware configuration.  If the system allows only a few 

eligible user processes die percentile thtoughput would be small because 

of relatively large multiprogramming idle time. On the contrary, if the 

system allows too many eligible user processes the percentile throughput 

would be again small because of relatively frequent paging overhead 

execution.  Therefore, we expect a modal curve for the percentile 

throughput like the one shown in Figure 3-6; the percentile throughput 

is maximized when the degree of multiprogramming has a certain value 

(q*). This optimization will be carried out numerically in Chapter 5, 

and therefore detailes will not be given in this section. 
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CHAPTER 4 

RESPONSE TIME ANALYSIS 

4.1. Introduction 

Now that a method to evaluate the throughput (or the percentile 

throughput) of a multiprogrammed virtual-memory computer system of a 

given multi-processor multi-memory configuration has bee*1 developed, we 

shall proceed in this chapter to evaluate the response time experienced 

by interactive users of such a time-shared computer system.  From a 

system manager's viewpoint efficient utilization of system resoirces, 

or, more concretely, the maximization of the system throughput is most 

Important. On the other hand, service of good quality such as fast 

system response or high system reliability is most desirable from a 

user's viewpoint. As will be described in this chapter, the system 

response time and the system throughput are closely related.  In fact, 

the response time analysis of this chapter is firmly based on the 

system's percentile throughput that was evaluated by the throughput 
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analysis of Chancer 3. 

It will be seen that the maximization of the system throughput 

generally leads to the minimization of the system response time. 

Therefore, the computer system under study is assumed to be optimized 

with respect to the degree (q) of multiprogramming; i.e.. the system is 

under multiprogramming of degree q* (q= q*), where the percentile 

throughput (or system throughput) of the system of a given configuration 

is maximized by the throughput analysis of Chapter 3 when q is equal to 

1*  (see Figure 3-6).  It is clear that if interactive users impoBe a 

full load on the system the percentile throughput of the system (or 

system throughput) is independent of the actual number of users (because 

of the load leveling of the multiprograrani-g mechanism). 

On the other hand, the response time is clearly an increasing 

function of the number of users.  Therefore, one may ask how many 

interactive users can be supported by such an optimized computer system 

without discouraging them with excessively slow system resnonses. 

Scherr [S4] considered the problem of analyzing the oerformance of 

a CTSS-like computer system and proposed a simple queuing model to 

predict the average response time.  Because the computer system under 

study in this thesis is much more sophisticated, the modtl must reflect 

those sophisticated features of the system such as paging, multi- 

programming, etc.  Therefore, we will extend the queuing model used in 

Scherr's analysis in the following two directions.  First, his model 

(developed for uniprogramraed non-paging computer systems like the CTSS 

system [C9]) will be generalized to multiprogrammed paging computer 
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systems.  Second, In view of the fact that Interactive terminal uaers 

are more concerned with something like the worst response time out of 

ten trials rather than the average response time, the analysis to be 

given In this chapter will derive a probability distribution of response 

times.  (Scherr derived only the average response time of a simpler 

system.) Thas, we can evaluate the moment of any order (average. 

variance, etc) of response times, and, perhaps more Importantly, we can 

derive the percentile system response time. I.e., the time limit which 

guarantees that a certain proportion of response tines Is shorter than 

this limit (e.g., the 90 percentile system response time). 

The analysis of this chapter makes It possible to express the 

distribution of the response time of a multlprogranmed time-shared 

virtual-memory computer system of a given configuration, as a function 

of various system parameters such as 

(1) the number of processors 

(2) the percentile throughput 6 of the processing system 

(3) the number of (Interactive) users 

(4) think time of each user 

(5) execution time required by each user's job 

This Implies that It now becomes possible to determine the number of 

interactive terminal users that can be supported by the optimized 

computer system of a given hardware configuration with the assurance 

that, for example, the 90 percentile system response time Is shorter 

than five seconds. 

I 
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4.2. Total System Model 

Let us consider an m (isms») processor multlprogrammed virtual- 

memory computer system optimized with respect to the degree of multi- 

programming, with N Interactive terminal users. When this system Is in 

operation, the existence of N Interactive users however does not assure 

the existence of q* (q*=optlnum degree of multiprogramming) jobs that 

can be multlprogrammed on the system.  The actual number (q') ot jobs 

(user processes) under multiprogramming may become smaller than q* from 

time to time If the total number (N) ol Interactive users Is not large 

enough to Impose a full load upon the system, as shown in Figure 4-1 (a) 

Correspondingly, the actual percent lie throughput (0') should become 

smaller than 6  (9 =optimized percent ile throughput) at least from 

time to time, under the same loading condition.  However, we do not 

know exactly how 8' reacts to a sudden change of q1.  If G' can almost 

instantaneously react to a change of q* (the case of fast throughput 

reaction), then 6' as a function of time appears like a step-wise 

function for which the height of each step Is simply given by the steady- 

state solution for 6 (the percent lie throughput when there exist q 

eligible user processes) obtained In Chapter 3, as shown by the solid 

line In Figure 4-1 (b); otherwise, 6' should show a humping curve as 

shown by the broken line beside the step-wise solid line In the same 

figure.  If the reaction of 9* Is very slow (the case of slow through- 

put reaction), 9' may be reasonably approximated by a constant function 

(S6J, as shown by the horizontal line In Figure 4-1 (b); the value (height) 

of this function may be given by the average of the percentlle through- 
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(a)      Number of User Pr >cesses  under Multiprogramming 
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fa: t throughput reaction 
  moc arate throughput reaction 
 sic 7 throughput reaction 

(b)   Percentile Throug put 

Figure 4-1  Sample Behavior of a Typical Computer System 
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put of the system in operation, which we call the effective percentile 

throughput 9(N).  That is to say, 

where ni is th • probability that i user jobs are either waiting or being 

serviced on the tctual processing system, T:Q  is the probability that no 

jobs are being serv.ced (i.e., the system is completely idle), and 6. 

(1=1,2,...,q*, ...) is the percentile throughput of the system under 

multiprogramming uf degree q =i .  It should be noted that it. is a 

function of N (the number of users) as veil as of other system parameters. 

This means that the effective percentile throughput of the system under 

multiprogramming is dependent on the number of users unlike that of the 

system under uniprogramming.  (9(N) will be often denoted simply as 6 

hereafter.) 

We shall approximate the behavior of a multi-processor processing 

system of such an actual computer system with that of a hypothetical 

multi-processor processing system of Figure 4-2, for which the system's 

computational capacity can be fully utilized for users' useful work, 

but its execution speed is 9 (O^Ssl) times as slow as the actual 

processing system. We assume that each processor of the hypothetical 

system services user jobs one by one up to completion, under the FCFS 

scheduling discipline. A discussion on the possible modeling errors 

will be collectively given later in this chapter and therefore that 

is not our current concern. 

Finally, in order to characterize the behavior of interactive 
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CPU m 
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CPU 1 
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i 
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_. 

throughput    6 x 10    $ 
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e 

Figure 4-2  Tradeoff of Execution Speed and 

Percentile Throughput 
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terminal users, we assume the following : 

(1) A user's think time (Tj,   i.e.,   the length of time required by 

an interactive user to decide and request the next job from a 

terminal, independently follows an exponential distribution with a 

mean of T = 1/p.. 

-lit 
f (t) = M e t^Q (4.2.2) 

(2) The execution time (Te) of each user's job (excluding all the 

system overhead times to be added) independently follows an expo- 

nential distribution with a mean of T =1A , on the actual multi- 

processor computer system. 

"V 
80(t) = X0e ts?0 (4.2.3) 

Available measurement results of actual computer systems[e.g., S4] 

indicate that both of these distributions are roughly exponential1. 

Therefore, these two assumptions seem to be fairly reasonable.  The 

second assumption obviously implies that the execution time of each 

user's job, when executed on the hypothetical system, follows an expo- 

nential distribution with a mean of T /B= I/QXQ s 1/X.    That is to say. 

g (t) = Xe t ^0 

where  X = 9 \o '* (4.2.4) } 

The effect of non-exponential distributions upon the response time 

characteristics of a similar model is considered by Jaiswal[J2] and 
D'Avanzo[D4]. 
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Thus, the behavior of an actual multlprogratmned virtual-memory 

computer system depicted in Figure 1-1 is now approximated with that of 

the hypothetical system, called the total system model, like the one 

shown in Figure 4-3. 
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4.3. Analysis of the Model Behavior 

It should be noted that the total system model developed in the 

previous section is basically the multi-server machine repairman model 

or an M/M/S1 queue with a finite population [C8,Fl,J2]. We shall 

proceed to derive a response time distribution of the computer system 

under study using the total system model, step by step, in this section. 

4.3.1. Derivation of Queue Length Distribution 

As the first step in deriving a response time distribution, this 

section is concerned with the derivation of a distribution of the ^ueue 

length, i.e., the number of user jobs either waiting or being serviced 

(executed) on the processing system. 

Noting, as before, that a state of the model is characterized by 

the number of interactive users currently thinking, the number of inter- 

active users (jobs) queuing in front of the hypothetical processing 

system, and the number of interactive users (jobs) being serviced by 

the processors (see Figure 4-3), let Si (O^N) denote a state of the 

model where i user jobs requested by the corresponding i interactive 

users are either being serviced or waiting for their turn to be serviced 

^he first, second, and third components of this notation specify 

respectively the type of the arrival process, the type of the service 

process, and the number of servers of the queuing system.  In this case, 

both the arrival and service processes are Markovian (i.e., exponential) 

and the queuing system has S servers. 
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on the processing system, i.e., the queue length is i.  (We assume N to 

be constant and that the service for one of the waiting user jobs starts 

as soon as a processor becomes available.) Then, the behavior of this 

stochastic process can be schematically described by a state transition 

diagram shown in Figure 4-4.  Because the effective execution speed of 

the processors depends on the value of 9' (the "actual" percentile 

throughput) at that moment, the rates \.   (the rate with which one of the 

user processes on  the processing system completes its execution when 

there exist i (l^i^N) user processes on the processing system) depends 

on how 6' reacts to the changes of the actual number (q1) of user 

processes under multiprogramming.  Therefore, the rates X.  are specified 

for two cases, i.e., the case of fast throughput reaction and that of 

slow throughput reaction, in Figure 4-4. 

Now let it (O^i^N) be the steady-state probability of S..  Then, 

the steady-state probabilities can be obtained [Fl] by solving 

(N-i) ujt. = X. ,,« 
i+1 i+1 

OsiSN-1 (4.3.1) 

N 
under the condition En. »I.  Thus, « is obtained by recursion, for the 

i=0 1 

case of slow throughput reaction, as follows: 

*i    *   (i) P «0 
Uism 

where 

m:(N-i)!       i-m,Jl0 m 

x ~ exo " er 

V.N.    1      *         N!       .     P1    " Jlo = 
/■n(i)P   +,r mJCN-l)!'    i-m .i=0                i=m                      m 

-1 

*    (4.3.2) 
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(N-mfl)|i 

s v^ß-^v 

nH-1 

( Fast Throughput Reaction ) 

xrV(r V^V x3=3e3xo'     •••     ' Sa^^O' 

( Slow Throughput Reaction ) 

X^QWXQ, \2=2e(N)?i0. x3= 3e(#N) \0, 

m  m+1 -  \-  '» " --q-O- = ^ = me_\. 

Figure 4-4  State Transition Diagram of the 

Behavior of the Total System Model 
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Note that IK is the probability that one finds i user jobs either wait- 

ing or being serviced on the processing system at a randomly chosen 

instant after the system has operated for a long time.  Therefore it 
*  i 

gives a steady-state probability distribution of ths. queue length found 

at a randomly chosen instant. 

The analysis of the cese of fast throughput reaction is exactly 

analogous to that of the above case, and therefore we will consider 

only the case of slow throughput reaction hereafter. 

"-W let Pi (O^isN) be the steady-state probability that an 

arriving user job (one of the N users) finds i jobs either waiting or 

being serviced on the processing system at the instant it joined the 

job queue Q.  In other words, Pi is the distribution of the queue length 

at an arriving instant of a user job.  Then, noting that the expected 

number of arriving users who find exactly i user jobs ahead of themselves, 

during a duration of time T, is given by (N - i)^«  • T, we find that P 

is expressed as 

(N-i)|iit, T    N-i 
P = •«. 
i   N M n 

E(N-J)nrt4T  
N"Q 

j=0      J 

N 
where Q = E j it. 

j=0 2 

(4.3.3) 

It should be emphasized that P^^ is different from JT    in nature;   for 

example,  PN is zero because no user can request a new job when jobs of 

all  interactive users are either waiting or being serviced on the 

processing system,  while IT     If   obviously non-zero. 
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4.3.2. Derivation of Effective Percentile Throughput 

Now it should be noted that the queue length distril atlons, it and 

p., of the previous section involve e(N), as clear from Eq. (4.3.2), 

whose value is still unknown because re. is not known (see Eq. (4.2.1)). 

Therefore, we proceed to determine the value of G(N) in this section. 

It is reasonable to expect that n  (of the hypothetical system) 

gives a fair estimate of n.   (of the actual system) if 9(N) can be 

accurately estimated.  This argument suggests that one solve Eq. (4.3.2) 

and 

e(N) =|(Vtiei)+(^^i)
e

q*}/(1-V (4-3-4) 

simultaneously.  (K. of Eq. (4.2.1) was replaced by n ,   in Eq. (4.3.4).) 

Therefore, we must solve these non-linear simultaneous equations. 

However, if we note that any distribution of re. obtained from Eq. (4.3.2), 

assuming a certain value fo - 9(N), gives an estimate of Ö(N) which is 

bounded by 6, and 6 ., then we find that the value of 9(N) may be 
     I.     q* 

iteratively determined, as flollows. 

The analysis of this section is required only for the case of slow 

throughput reaction. 
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Procedure to determine the value of 6(N) 

Step 1  Set the variable B to 6 it,   i.e.,   6=6 *. 

Step 2  Assuming that 9(N) = 6, evaluate n. using Eq. (4.3.2). 

A  / q*.l       N      . / 
Step 3  Compute 6=.( I ntQt\+(   Z n A 6 1/(1 - nn). 

lVi=l  l i;  Vi=q* i; 'I/    0 

Step 4  If |6(N) - 9| •£ e. then go to the next step. Otherwise, 

return to Step 2.  (The value of e should be small enough 

to assure the desired accuracy of the estimation.) 

Step 3  6 thus obtained is an estimate of 6(N). 

The initial overestlmatlon of e(N) in step 1 leads to the under- 
N 

estimation of T.   JT. in step 2, which in turn leads to the underestimation 
i=q* 1 

of 6(N) in step 3.  (See Figure 4-5)  The condition of step 4 is usually 

not satisfied and therefore we must return to step 2.  The underestiraa- 
N 

tion of e(N) then leads to the overestimation of T.    it  in step 2 this 
i=q* 

time, which in turn leads to the overestimation of 6(N) in step 3.  But 

the overestimated value of e(N) is certainly smaller (closer to the e(N) 

being estimated) than the initially overestimated value of 9(N), i.«., 

ö_#'  Repeating this kind of oscillation around the value being estimated, 

as shown in Figure 4-5, the value of e(N) can be determined by the 

above iterative procedure.  In deriving a  numerical example to be 
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given In Chapter 5, It was observed that 6 converges within several 

iterations when e was chosen to be about 0.2 percent of e(N).  If the 

number of users (N) is large enough to impose a heavy load upon the 

N 

•yte«, then^n^ 1 and l-«^.  Therefore, the above procedure 

converges without need for iterations.  It was furthermore observed 

that the use of ei (rather than 9^) as the initial estimate for e(N) 

In step 1 leads to the convergence to the same value of G.  Therefore, 

it Is felt that this iterative procedure uniquely determines the value 

of e(N). 

4.3.3. Derivation of Response Time Distribution 

The system response time is generally defined as the time elapsed 

between the receipt by the system of a user's specified Job request and 

th« satisfaction of that request at the terminal.  For our total system 

model, we define the (system) response lime  (T^)   to be the total length 

of time which is spent on the processing system by each user Job. 

Therefore, the system response time consists of both the waiting cine 

and the execution time of the Job. 

Let p(Tr-t} and P(s) be the probability density of the system 

response time and the corresponding Laplace transform.  Then. 

■ Ml ü     .  ....-.,■■  ■  
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P(s) -\ 
J 0 

P f T = t J e -st di 

EP p{T -t| I jobs }e"8t]dt 
J 0 U=0 > 

iff" ) 
=  ^   pi 1 pfV'li Job8 le"8t dt (^.3.5) 

where pfTr=t|i Jobs} denotes a conditional probability density of the 

system response time given that 1 Jobs were found ahead of an arriving 

Job on the processing system.  Noting that the m-processor (Isms-) 

processing system schedules arriving Jobs (whose execution times are 

exponentially distributed) according to the FCFS discipline, we see that 

Pf Tr-t| 1 Jobsje'^dt 

\ 

1+1-m 
f-»M ./-Li 
\ s+mX/    V s+X / 

Osi sm-l 

ms 1 SN 

(A.3.6) 

where the first component. (^)l+l"m of the latter case represent, 

the Laplace transform of the waiting time and the following second 

component, (-^-). represents the Laplace transform of a Job's execu- 

tion time.  Substifuting Eq. (4.3.6) into Eq. (4.3.5), we get 

1+1-m m-1/     .   *  f    ,     s   .i+l-m ,  x 

(4.3.7a) 

N-Q  s+X 

m-1 N-l 
+ r / mX \ 

i . -m, 

(4.3.7) 

I 
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We can thus derive the k-th moment, E((Tr)
k), of the system response 

time, using a well-known technique of differentiating P(s) and then 

setting s to zero [H2I. 

E((Tr)
k)  =  (.l)kiL±ÜÜL 

ds   |s=0 
k = l, 2, 3,...  (4.3.8) 

In particular,   the average response time  is obtained as  follows, 

E(T  ) r 

dP(s] 
ds I 8=0 

Nfiu /m-1 
-4lt—*—].. 
N-Q V i=0  i»(N-i-l)! /     ( 8+X)     18=0 

Nfn« /N-l 

N-QU=mlmf(N-i.l)!mi"mls-hnx) }} 

N!itn     \    N-l/ 
+ ^       Z 

i-m N-Q   s+X  i=mlm?(N-i-l)!m 

I N-l 

• (i+l-m) 

(s+X)*   Is-O 

U-hnX/        (s+mX)' 8=0 

N..0 / 1 fm-l 
+    E i+l 

N-Q V X /U=0  i!(N-i-l)!       i=m(m!(N-x-r,!     m 
i-m+l 

m-1 
Z iL N 

+    z ia: 
i=0  i?(N-i)» i-m m!(N-i)!m i-m 

m-1 
Z 

N-l 
+    E 

(4.3.9) 

1=0  i!(N-i-l)f       i^ m!(N-i-l)? i-m m 1 SmsN 

Ttiis result agrees with Scherr's result   [S4]     if   e(N) Hi .     some 

special  cases of Eq.   (4.3.9) may be worth mentioning. 
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E ( Tr) 

N 

E 
1=0 

ipi 

(N-l)t 

N-l 
E 

i 

1=0 (N-i-1)! 

9 

(m=l) 

(4.3.10) 

(n. = N) 

Obviously, the result for ntN means that If a processor can always 

start Its service for a user's job as soon as the job Is submitted by 

an interactive user the average response time Is given by the average 

execution time of the job. 

Now we proceed to Invert P(8) to obtain the probability density 

of the system response time p{ T « t }.  Let 

.l+l-m 

V>-^ V>-3j V S-HHA I (4.3.11) 

Then, we must Invert P^s) and P2(8) In order to Invert P(8) given by 

Eq, (4.3.7).  Denoting the inverse Laplace transform operator by X. , 

-fllV>I-rl(^]-X.-At       t*0 (4.3.12) 

Next, we perform a partial fraction expansion for P2(8) as the first 

step to Invert P-U). assuming temporarily that m^l. 

2y   '   '  a+\ \s-hnXJ 

s+\  s+mX  (s+mX)' (s+mX)       m/1 

where ck (0*:k^i+l-m) are the unknown constants to be determined. 

These constants are easily foand to be 
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=o        "^»'j^L-x-^Ä) 
i+l-m 

i+1 (8-hnX)l+l-n,p2(8) II 

-L<-i)J—"^rw)1*1-! 
I 8=-mX JI (8+X)i+ 

.  ..i+l-m 

(m-l)■1",■   \* Osjs i-m, m/i 

Now,  noting  chat 

L -1 

(s+a)     i 

,k-l   -at 
t       e 

(k-1)! ■WS      1^     ^j     Jf«,, 

] 

* 

s 

(4.3.14) 

(4.3.15) 

P2(8)  specified by Eqs.   (4.3.13) and  (4.3.14) can be  inverted. 

= X 
i+l-m l-m     ,  ..i+l-m      ^i-m-j    -mXt 

e-Xt_       E      W .1 ^e  (43 W) 

J=0  (m-l)■,■,■1 XJ (i-m-j)» m^l 

Using the results of Eqs. (4.3.12) and (4.3.16),  the probability 

density of the response time of the m-processor system  ( m ^ 1 ) is 

obtained as follows: 

— — - 
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p{Vt] 

N'JT- /m-1 
 2       E 
N-Q I 1=0  1!(N-1-1)' 

\e 
•Xt 

"'«a '•'(     ti       i.' - r1-.-^-1?fis^ir tl2^±j] 

n.' 1 (4.3.17) 

For the single proce.sor .y-te» (..X), Eq. (4.3.7) reduce, to 

>  (x \i+i i uo(''-1: 
7   !-■ '-<— P L (N-l-D! 

(4.3.18) 

J-0 
(N-T) 

Therefore, the probability density of the response time of the single 

processor system Is obtained, using Eq. (4.3.15), as follows: 

-^  — -   MMHfidiHiUMiiiikne—.-..   .   —        -„^i'iaätäiam •   ---'-- 
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P{Tr-t] 

X-'1 [P(S)J 

N-Q 

j=o 
(N-J)? 

1=0  (N-i-D? 

(4.3.19) 

The probability distribution function. Pfl^t], of the system 

response time can be obtained by integrating the probability den.ity 

given by Eq. (4.3.17) or Eq. (4.3.19) fro. 0 to t.  For ^1. notin8 

first that 

tJe-mUdt 
J 0 

-mXt J   .. j-k   ^ 
     l   -AU  
^ k=:0  (j-k)? (m\)

k 

j! •mXt J J!t 

■A (mX)J   »^  k=0 k»(ni))J'k 

the integration of Eq. (4.3.17) gives 

j = l,2< (4.3.20) 

   ■'^.«MMMMMi 
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I 
P{ T st } r 

N-Q ' i=0 U ' 
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■   /N!\   ra      W-In P^l-e"^) 

0  (N-m-l-i)! (m-1) 
>R 

mX/N!\  m        ^'^ N-m-l 

0 (N-m-l-i)»(m-l) 

     1     J.]fm-l\j/.      -mXt i .mXtik 

Then,   noting  that 

i„((-)" r (mAt) 

k=0    k' 

k \ 

JÜÜLZ 
k=0 ' 

(4.3.21) 

1 
T. i 

j=0 

.1+l-J 

\ m  /    \   .        m «• 
m-1 V 

= m 
fj   ((m-l)u}J1 
J=0        J' -(^l1 

M 

fi 
(m-1) 

(n\t)- 

lH J'   J, 
(4.3.22) 

the third (last) term of Eq. (4.3.21) becomes 

N-m-l 

N-QU'J  
U
 i=< 1=0 ^(N-m-l-i)!(m-l)l+1  (N-m-l-i)!ml+1 

i -mXt 
P e i{(m-l)\t}J i -mXt 

P e iönXt^ 

(N-m-l-i) •^m-?)i+1J=0  J!      (N-m-l-i)!mi+1j=0 j! 

(4.3.23) 

.. m - . 
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Therefore, the probability distribution function of the syst 

time for m/l is obtained as 

system response 

Pf T St } 
r       ■' 

1-e •Xt 
-— "0 N-Q 

N'QV    ' l=0l(N-m-l.i).m
i+1l j=0    J?     /] 

m /N»\  m    N"m-V 
Ä(5rJp n\*0 -Q 

where 

P   e 

^(N-m-li)>(m-l) i+1 
fl.#-<»-l)Xt  ^{(m-l)Xt}->\] 

^ J-0      J!        // 

(4.3.24) 

'-<■ 1 
N-Q fra-l        ^T 

N!     E    — 
N-l 

+    E 
^UO i!(N-l-l)}       i-mmKN-i-Dlm1"^ 

Form-l,   the  integration of Eq.   (4.3.19)  similarly gives 

Pf Trs t } 

m^l 

  i ü /_M        -Xt   1       n^-J   \ 

(4.3.25) 

i^ w-1-*)« 
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Thus, we have ucrived the expressions for the probability density 

and the probability distribution function of tht response time of a 

multiprogr^Timed multi-processor time-shared virtual-memory computer 

system. The result of the probability distribution function of the 

system response time enables us to evaluate the percentile response 

time numerically, as will be carried out in Chapter 5. 

Finally, the last part of this section presents two somewhat periph- 

eral but relied results; a result of the response time distribution 

:onditioned on « job's execution time and a result of the first-time 

response time distribution (to be defined).  Each of these results can 

be obtained by a slight modification of the analysis of this section. 

We have assumed un.il now that execution times of all user jobs are 

only probabilistically (exponentially) known.  Now we assume that the 

execution time of a particular arriving job is completely known, but the 

execution time of other user jobs already on the processing system are 

only probabilistically known as above.  Then, tie response time (T ) to 

be experienced by a user who has requested a job requiring an execution 

time of T seconds (excluding all the overhead times to be added) Is 

given by the sum of the waiting time (T ) In the job queue Q and Its ovn 

execution time T .  Letting the Laplace transform of the waiting time T 
• w 

be Pw(8). we have (see Eqs. (4.3.5),(4.3.6),and (4.3.7)) therefore the 

following expression. 

■-—' ■-- 
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■): 
VS)  :: 1.  PfTw=t}e-8tdt 

N 
=  E 

i=0 ■J>v t|i Jobs }e'8tdt 

■2(?J,"4<t)'*,td'j+ i^l/1 V'U ^.j.-'dtj 
m-1 N 

= Z   P.    +      E   p  f-2L\ 
1=0    i !=„,    iU-hnX; 

i-m+1 

(4.3.26) 

where 6(t) Is a delta function at t=0.  Using Eq. (4.3.15), this can 

be readily inverted as follows: 

p{Vt} 

m-1 N 
(  E  P   )6(t)   +      E  P   (m\) 

1=0 l=m 

l-m+l  t       e 
(l-m)! 

N-Q lito l!<N-i-l>!/ N-Q       In.!/      0^0   (N-m-t-DH! 

(4.3.27) 

Therefore, the probability density of the system response time 

conditioned on a job's execution time, p{T =t |T }, Is given by 
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p{ T =t| T } rv r  ' e 

= p{T =t-T } 

N-Q luo1'^-1-0'/   e   N-Q    [m- 3^ (N-m-l-i)! i! 

(4.3.28) 

Thus, if the execution time of a job is known in advance, the results 

given by Eqs. (4.3.17) and (4.3.19) must be modified, as given by 

Eq. (4.3.28). The corresponding probability distribution function and 

its moments can be easily obtained from the above result. 

We have be<m concerned with the response time to he experienced by 

each of N interactive terminal users who are currently using the time- 

shared computer system.  One may ask a question about the system 

response time to be experienced by a new user who is about to Join the 

existing N user population by typing the "login" comnand at his terminal. 

This first-time response time should be slightly different from the one 

with which we have been concerned because such a new user Joins the 

system independently of the system state (e.g., the number of queuing 

users).  Let T . (i.e., T =T J be the execution time (excluding all 
el '     e      el 

the overhead times to be added) of the "login" command.  Then, noting 

this new user's random arrival to the system, we see that the Laplace 

transform P (s) of the probability density of the waiting time Tw 

experienced by this user is given by Eq. (4.3.26) with P1 replaced by,^. 
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Therefore,   the probability density of  the response  time  to be experienced 

by the  login mmmand,   p{T   (login) = 11 T    .],   is obtained as  follows: 

p[Tr(login) = t |TeX} 

p{Tw(login) = t-Teje] 

(4.3.29) 

Thus, the probability density of the first-time response time has been 

obtained. The corresponding probability distribution function and its 

moments can be readily derived from the above result. 

4.3.4. Relationship with an Infinite Population Model 

In developing queuing models for time-shared computer systems, 

one must make a fundamental choir« between the use of an infinite or 

finite population model.  It is clearly stated in [M3] that the finite 

population model is much more appropriate as a model of time-shared 

computer systems.  The basic difference resulting from the size of the 

population consists in the fact that the arrival rate of the finite 

population model is dependent on the state of the system (e.g., the 

number of queuing users) while the arrival rate of the infinite 

population model is not; the arrival rate of the finite population model 

increases (decreases) if the number of queuing users decreases 
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(Increases), showing the existence of a negative feedback mechanism to 

stabilize the number of queuing users, but the arrival rate of the 

infinite population model is always constant.  In view of the fact that 

the infinite population model is however oftt  used in modeling computer 

systems, we will make a brief remark about the relationship of these 

two kinds of models in this section. 

We will particularly discuss the relationship between the M/M/m 

queue with N users with which we have been concerned and the M/M/m queue 

with an infinite population [C8,F1] whose arrival rate is ^(a constant), 

For such an infinite populstion model, the steady-state probability P(i) 

of finding i jobs on the system at the instant that a new job joins the 

waiting queue is obtained [C8,Fl] as 

P(i) = 

where 

— P(0) 

»■ m» m!m 
i-m 

P(0) 

1 s i ^m 

m s i < oo 

p = ^0/X, P(0) = 
/m-1 p V   mp 

I iJo TT '+ m!(m-p) 

(4.3.30) 

It can be easily shown [Fl] that as N-oo and n-»O in our finite 

population model in such a way that N^i remains a constant ^     IU given 

by Eq. (4.3.2) approaches P(i) given by Eq. (4.3.30).  But for the series 

I(P(i)/P(0)) to converge we must have 

-JL   = "utilization"< 1 
m\ 

(4.3.31) 

Noting that Q is finite under this condition. 
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N-l 
lim P  = lim——ni    a    iim jt  a p(i) (4.3.32) 
^-00       N-,,» N-Q       N ,„ 
^i - 0     M-0        M-o 

Therefore, both P. and n. approaches P(i) as N-« and ^-0 under the 

constraint N^^.  This implies that the system response time obtained 

for the finite population model approaches the system response time of 

the infinite population model, under this limit.  For example, the 

probability density of the system response time given by Eq. (4.3.19) 

approaches the corresponding solution of the infinite population model, 

i.e., 

p[Tr=t } = U-^e-^O^        t>o (4.3.33) 

In the case of the infinite population model, the system response time 

is exponentially distributed, as above.  In contrast, the probability 

density of the system response time obtained using the finite population 

model of this section (see Eqs. (4.3.17) and (4.3.19) will be numerically 

found in Chapter 5 to be much closer to a normal distribution density 

if the number (N) of interactive users is large.  This tendency, usually 

observed on actual computer systems [S6], is a result of the finiteness 

of the user population. 
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4.4. Some Remarks on Modeling Errors 

We will finish the response time analysis of the multiprogramned 

time-shared computer system by examining the modeling errors which may 

be introduced to this analysis.  Looking back at what we have been 

doing, we have developed a queuing theoretic model of the Cümp'ster 

system whose characteristics were specified in Section 4.2 and have 

analyzed the behavior of such a model to investigate the system response 

time of the computer system under study. We will not consider what 

happens if a given (actual) system is slightly different from the one 

considered in Section 4.2 (the reader who is interested in this subject 

should read D'Avanzo [D4]), but will be concerned with the errors 

possibly introduced in approximating such an actual computer system 

with our queuing model called the total system model. 

We will particularly discuss three approximations being used in the 

analysis. The first one is the approximation to use the hypothetical 

system, of Figure 4-2, whose execution speed is traded for the percentile 

2 
throughput.  As stated in the previous chapter, (1-6) x10 percent of 

the computational capacity of the actual computer system cannot be 

utilized for users' useful computation; this proportion cf the system's 

capacity is wasted either by the system overhead operations or by 

processor idle time.  If the length of each burst of these wastages is 

comparable to the length of the execution time G£ each job, then the 

speed-capacity tradeoff will not give a good approximation.  (Consider 

the variance of the system response time, for example.)  But fortunately. 

on actual computer systems, these wastages (e.g.. paging overhead) 

usually have much shorter lengths than the job execution times and 
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moreover tend to occur uniformly in time.  Therefore, this approximation 

doeo not seem to introduce a significant error in the analysis. 

The second approximation consists in the use of the effective 

psrcentile throughput 8(H).  Basically, the variable 6 system (actual 

system) is approximated by the constant 6 system.  This implies that if 

6' of the actual system (N= fixed) varies very much in time this approx- 

imation tends to underestimate, for example, the 90 percentile response 

time.  If that is the case, the use of ei for 8(N), i.e., the use of the 

largest lower bound for 6(10, will give a good upper bound estimate of 

the 90 percmtile response time.  This kind of underestimation may be 

significant especially in the medium load range of N because of relative- 

ly frequent fluctuations of 8' (see Figure 4-1); the estimated 90 

percentile response time of the heavy load or the light load range of 

N tends to be accurate. 

The third approximation consists in the fact that uier jobs are 

executed up to completion under the FCFS discipline on the hypothetical 

system while the jobs are not executed strictly in this way on an actual 

multiprogrammed system using demand paging even if all the scheduling 

disciplines (the ones associated with the memory queue and the processor 

queue) are FCFS. To see this, consider a situation where a large job 

and a small job enter the processor queue respectively at time t and 

t+At.  It is very likely that the small job which arrived at the process- 

ing system later than the large one will be completed earlier than the 

large one, because the small one is likely to demand a smaller number 

of missing-pages than the other.  This means that a job which arrives 

at the system later than another can be completed earlier or the actual 
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«.ltlProgr«md system under study. Therefore, we must consider the 

effect of this kind of favoritism for short jobs upon the system 

response time. The average response time is not affected because the 

execution time is assumed to follow the (memoryless) exponential distri- 

bution, but its variance or 90 percentile response time is. The 

variance of the system response time 5s basically proportional to the 

sum of the variances of job execution times because execution times are 

assumed to be independent of each other.  Considering that if the system 

is under a heavy load the number of multiprogrammed jobs is constant (q*) 

but the number of jobs waiting in the memory queue varies in time, we 

see that the variance of the response time of the system under a heavy 

load is determined mainly by the varying number of the jobs in theFCFS 

memory queue. Therefore, this argument suggests that the 90 percentile 

system response time tends to be accurate as the number of jobs queuing 

on the processing system increases, on the contrary, if there are only 

^derate number of jobs on the processing system , the variance of the 

response time would be affected by the favoritism for short jobs; the 

variance (or 90 percentile response time) predicted by the total system 

model is somewhat smaller (shorter) than that of the corresponding 

actual system because the genuine FCFS scheduling discipline, used in 

the model, is kno^ to attain the smallest variance of response times 

[C7] 

1 
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CHAPTER 

MODEL VALIDATION, PERFORMANCE PREDICTION AND 

OPTIMIZATION, AND CONFIGURATION SELECTION 

5.1. Introduction 

We have finished the development and analyses of all the hier.rchi. 

cally organized modular models shown in Figure 1-4 that we intended to 

describe in this the.is.  It is time to examine the validity of these 

models and to consider if the performance questions raised in Table 1.1 

of Chapter 1 can be answered by a series of these analyses given in 

Chapters 2, 3, and 4. 

We will first examine the validity of the processor model and the 

total system model by comparing the system performance predicted by 

these .two models and the available statistics of an actual computer 

system, the Multics system of M.I.T.  This validity examination of the 

models is intended to present a rough idea about the accuracy of the 

system performance that can be predicted by these models.  Then, noting 

that the performance questions of Table 1.1 can be classified into 
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performance prediction problems (the second through the fifth questions), 

performance optimization problems (the sixth through the eighth 

questions), and a configuration selection problem (the first queF'cion), 

we shall proceed to consider each class of problems quantitatively one 

by one. 
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5.2. Model Validation 

In this section, the validity of the models developed in the 

preceeding chapters will be examined by comparing the performance of an 

actual large-scale time-shared computer system, the Multics system of 

M.I.T. [C10,C121, with the performance result that can be obtained 

using these models.  The instrumentation used in the development of 

the Multics system and  the performance statistics obtained from this 

running system \tfll hr  first described and then the details of the 

statistical results will be presented. 

5.2.1. Instrumentation and Multics Performance 

The Multics system is a large-scale time-shared computer system 

developed as a cooperative effort involving the Bell Telephone 

Laboratories (from 1965 to 1969), the computer department of the 

General Electric Company (subsequently acquired by Honeywell Information 

Systems Inc.), and Project MAC of M.I.T.  The system has all the 

features of modern large-scale time-shared computer systems such as 

paging, segmentation, multiprogramming, multi-processing, memory 

hierarchy, and so on. 

The current standard configuration of the Multics processing 

system at M.I.T. includes two processors, three primary memory units 

(128 k thirty-six bit words per unit)  and the secondary memory system 

consisting of drum and disk memories, with five or six eligible user 

processes under multiprogramming (see Figure 5-1).  Occasionally, a 

processor, a primary memory unit, and/or some part of secondary memory 
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is reiroved from the servicing system, for maintenance or to create 

another system for debugging a new version of the operating system [C12]. 

Therefore, the Multics system has been runninS with one of the following 

hardware configurations during the past year. 

(1) large-scale configuration ... standard configuration1 

(two-processor three-primary-memory-unit system) 

(2) medium-scale configuration 

(one-processor three-primary-memory-unit system) 

(3) small-scale configuration 

(one-processor two-primary-memory-unit system) 

In this way, every effort has been made to support the continued opera- 

tion of ihe system. 

Early in the design stage of this system, it was felt that the 

cost of maintaining well-organ^d instrumentation can be made low and 

the payoff in being able to "look at the meters" any time a performance 

problem is suspected is very high.  This initial conviction resulted in 

a comprehensive set of system metering commands that can be used from 

any terminal [S2] and the use of a DEC PDP-8 system as a peripheral 

computer to test and monitor the operation of the Multics system [03,04]. 

The metering commands have proved to be extremely useful in measuring 

the paging performance of programs, the secondary memory performance, 

the processor time usage (among various system overhead times, idle 

Whenever there was not a need to reduce the configuration, this 

standard configuration of the Multics system has been used. 
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times, and users' useful computation time), and user behavior character- 

istics.  The use of the PDP-8 computer as a simulator of interactive 

users [G3] has provided system developers with a convenient tool to 

test the performance of a newly installed version of the operating 

system; a standard benchmark (or a series of commands interspersed by 

think times representing a typical debugging user process) has been run 

from time to time during the past four years to measure the execution 

time, the paging performance, and the response time of each command 

included in the benchmark.  Thus, these tools have enabled system 

analysts to obtain the operational statistics of the Multics performance 

which are essential in improving the succeeding versions of the operating 

system. 

Many performance statistics concerning the Multics system have 

been accumulated using these measurement tools. Three sample results 

each representing the performance of a different hardware configuration 

were randomly chosen from these performance statistics to show the 

typical performance of each of these three hardware configurations. 

These sample results are given in Table 5-1.  toch sample result was 

collected from the system during a thirty-minute session eitho.r in the 

morning or afternoon of a normal working day when the system was 

operating normally and was fully loaded with interactive terminal users. 

Although the numbers given in Table 5-1 are subject to statistical 

fluctuations, it is felt that they are representative  f typical 

performance of the Multics system and that they can be used for the 

purpose of examining the validity of the models developed in this theels. 
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Table 5-1  Typical Performance of the Multlcs System 

under a Full Load 

Configuration 

average number of 
eligible processes 

mtbpf 

mpf L 

(msec) 

(msec) 

Small 

1 CPU 
2 PM units 

Medium 

•1 CPU 
3 PM units 

Large 

2 CPUs 
3 PM units 

mean paging overhead 
time      (msec) 

• processor tTmeTreäkdöwiT, 
multiprogramming idle 

memory interference idle 

paging overhead 

miscellaneous overhead 

users' useful computation 

number of users 

tresponse time characteiTticsi 
average queue length 

average response time to 
the PDP8 user simulator 

(sec) 

5.7 

16.5 

32.4 

5.4 

2.9 1 

0 

28.7 

16.6 

51.8 

5.3 

29.7 

33.2 

6.1 

1.8 X 

0 

18.4 

15.9 

63.9 

5.6 

31.9 

30.9 

9.0 

8.8 X 

5.7 

2?.9 

12.6 

49.9 

41 

16.7 

not measured 

43 

14.9 

7.9 

48 

14.9 

6.0 

July 1971 
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Using • tec of metering CO——to, the mean paging overhead times 

(all the supervisory operations necessitated by * page fault are includ- 

ed) of a single processor system and a dual processor system are 

respectively found to be approximuely 6 and 9 milliseconds long.  On 

the other h.nd, the value of the miscellaneous overhead coefficient (Ö) 

is found to be between 0.2 and 0.35, with a typical value of 0.23.  The 

average think time of interactive users Is found to vary from session 

to session (e.g., 12 to 35 seconds), but it is typically 15 to 25 

seconds long.  These numbers represent shorter think times than observed 

for the CTSS system by Scherr (S4).  The average execution time required 

by an interactive Job (excluding all the overhead tiroes to be added) is 

roughly 400 milliseconds long. 

In a special measurement of multi-processor interference, it was 

found that if two processors direct their accesses to a particular 

primary memory unit at all times the execution time of a typical 

program is stretched by about twenty percent.  This means tnat the 

value of the memory interference coefficient of the Multics system is 

approximately 1.2, i.e., Val.2. On the other hand, it has been 

generilly observed on the large-scale configuration (with three primary 

memory units) under a heavy load that the system typically loses 5 to 6 

percent of each processor's processing tine because of memory cycle 

Host of the increase of the paging overhead time on a dual processor 

system is due to the data-base lockout.  As described in Table 3-1 of 

Chapter 3, the data-base lockout is frequent enough to prolong signifi- 

cantly program execution time only in the pa^e fault processing. 
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interference and another 5 to 6 percent of each processor's processing 

time because of data base lockout.  Most of the loss due to data-base 

lockout is being caused by the lockout of the page table. 

5.2.2. Validation of Processor Mode' 

In this section, we examine the vilidity of the processor model of 

Chapter 3 by comparing the performance of the above three configurations 

of the Multics system to be predicted by the processor model and the 

actual performance of the same system summarized in Table 5-i. 

For this purpose, a program was written in PL/I to derive the 

performance of the processing system under investigation using the 

processor model.  We call this progran the throughput analysis program 

and it is included in Appendix A together with an explanation about 

how to use it and a sample console session using thf program.  This 

program derives the processor time bn-akdown into various system over- 

head times, idle times, and users' useful computation time (i.e., 

percentile throughput), upon specificition of the configuration of the 

processing system under study. 

In predicting the performance of each of the above three hardware 

configuration of the Multics system, all the input parameters (except 

the degree of multiprogramming) were set fairly close to the cDrrespond- 

ing measured values given in Table 5-1.  The degree of multiprogramming 

This observation will be found consistent with the above measurement 

result, '¥=1.2, numerically in Section 5.2.2. 
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was then changed to see the effect on the resulting processor time 

breakdown.  The result is shown in Table 5-2 (a), (b) and (c).  It is 

clearly seen that as the degree of multiprogramming approaches the 

measured value of the average number of eligible processes of Table 5-1 

the resulting processor time breakdown becomes very similar to the 

measured processor time breakdown of Table 5-1.  The closest result 

analytically obtained for each configuration is enclosed by a broken 

line in Table 5-2.  For example, it is seen that the processor time 

breakdown of the small-scale configuration predicted by the processor 

model becomes very close to the measured performance of this configura- 

tion given in Table 5-1 when the degree of multiprogramming is fixed 

at either 5 or 6.  The performance of the two-processor configuration 

(i.e., the large-s:;ale configuration) is also predicted fairly accurate- 

ly by the processor model, as seen in Table 5-2 (c). 

As a result of comparing the predicted performance of Table 5-2 

and the actually measured performance of the Multics system, we conclude 

that the processor model can be used as a practical tool of performince 

prediction despite its simplified abstraction of complex structure of 

actual computer systems (see Section 1.6). 

5.2.3. Validation of Total System Model 

In this section, we examine the validity of the total system 

model developed in Chapter 4 by comparing the performance of the three 

configurations of the.  Multics system to be predicted by the total 

system model and the actual performance of the corresponding configura- 
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Table 5-2  Validation of the Processor Model 

(a)  one-processor two-primary-memory-unit configuration, i.e., 
small-scale configuration 

degree of multiprogramming 2 3 4 "5 6 

multiprogramming idle 39.4 20.5 9.2 3.5 i.i : 
memory interference idle 0 0 0 0 o ; 
paging overhead 19.8 26.0 2V.7 31.6 32.4 
miscellaneous overhead 9.9 13.0 14.8 15.7 16,1 
users' useful computation 30.9 40.5 46.3 49.2 50.4 : 

mtbpf = 16.5 msec, mpft = 32 .4 msec, t  =5.4 msec, 6=0.32 

(b) one-processor three-primary-memory-unit configuration, i.e., 
medium-scale configuration 

degree of multiprogramming 

multiprogramming idle 
memory interference idle 
paging overhead 
miscellaneous overhead 
users' useful computation 

53.8 
0 

9.4 
7.4 

29.4 

23.9 
0 

15.5 
12.1 
48.5 

8.5 
0 

18.6 
14.6 
58.3 

2.4 
0 

19.8 
15.5 
62.2 

0.6 
0 

20.2 
15.8 
63.4 

mtbpf = 30 msec, mpft = 35 msec, t .=6.1 msec, 6=0.25 

(c)  two-processor three-primary-memory-unit configuration, i.e., 
large-scale configuration 

degree of multiprogramming 

multiprogramming idle 
memory interference idle 
paging overhead 
miscellaneous overhead 
users' useful computation 

74.6 
0 

7.2 
3.6 

14.6 

48.4 
1.7 

14.1 
7.2 

28.7 

27.2 
3.5 

19.6 
10.0 
39.8 

'  4 5 

: i3.o 5.2 
: 4.9 5.7 
; 23.2 25.1 
11.8 12.8 
47.2 51.2 

mtbpf = 31.9 msec, mpft = 30.9 msec, K,t , = 9 msec, 6 = 0.25, Y=1.2. 
p = 0.1* ^ P1 

It has been numerically found that the resulting performance is rather 
insensitive to a particular set of values of t  and p if t /p=mtbpf 
is constan' (see Faction 3.4.1). Therefore, tfte value of p^as arbitrar- 
ily chosen to be 0.1.  (An explanation of these input variables can 'ce 
found, for example, in Appendix A.) 
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tions summarized in Table 5-1. 

For this purpose, a program was written in PL/I to evaluate the 

response time characteristics of the entire computer system under 

investigation using the total system model. We call this prDgram the 

response time analysis program and it is induced in Appendix B together 

with an explanation about how to use it and a sample console session 

using the program.  The program has two phases: the first phase which 

determines the effective percentile throughput and the second phase 

which derives the resulting response time distribution. 

Unfortunately, all of the data required to validate the entire 

total system model is not available on the Multics system.  For instance, 

a response time distribution is not measured on the Multics system; one 

of the metering commands is capable of measuring only the average queue 

length as an indicator of the average system response time experienced 

by a population of interactive users.  On the other hand, the PDP-8 

user sirairlator can measure the response time distribution for a 

particular benchmark.  Therefore, the average response time measured by 

the user simulator represents the average response time experienced by 

a population of all users only roughly.  As for the input parameters 

needed by the response time analysis program, the values of 6 (percen- 

tile throughput of the system under ^iltiprogramming of degree q(leqfiq*)) 

are not all measured; only the value of 6(N) can be measured by a meter- 

ing command (note that 6(10^9 * under a heavy user load). Therefore, 

we can at best examine the validity of the latter phase of the total 

system model partially. 

In predicting the response time characteristics of each of those 
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three hardware configurations of the Multics system, the actual values 

of the percentile throughput and the number of users were supplied as 

input parameters to the response time analysis program.  The average 

execution time needed for useful computation of a user's job was chosen 

to be 400 milliseconds long.  The average think time of users was 

changed to see the effect upon the resulting average queue length (of 

user jobs) and average response time, for each of the above hardware 

configurations.  The result is shown in Table 5-3 (a), (b), and (c). 

The predicted performance which is closest to the actual performance 

given in Table 5-1 is enclosed by a broken line for each configuration. 

It is observed that a close match between the predicted performance and 

the actual performance is obtained when the average think time of users 

is chosen to be 14 to 20 seconds long.  This result of user think time 

is consistent with a general observation that the typical think time of 

the Multics system is approximately 15 to 25 seconds long.  However, 

unavailability of a metering command for the measurement of users' think 

time for each experiment prevents us from examining more details of the 

validity of the total system model. 
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Table 5-3  Validation of the Total System Model 

(a) one-prncersor two-primary-memory-unit configuration, i.e., 

small-scale configuration. 

average think time 
(sec) 

16     !  18       20  ;     22 

average queue length 

average response time 
(sec) 

20.3    I 17.7     15.1 ;    12.7 

15.7    1 13.7      11.7 ;    9.8 

percentile throughput=51.8 % , average execution time of a job =0.4 sec, 

number of users =41. 

(b) one-processor three-primary-memory-unit configuration, i.e., 

medium-scale configuration. 

average think time 
 (sec) 

average queue length 

average response time 
 (sec) 

16 

17.5 

10.9 

22 

8.9 

5.7 

percentile throughput=63.9 % , average execution time of a job =0.4 sec, 

number of users = 43. 

(c)  two-processor irhree-primarv memory-unit configuration, i.e., 

large-scale configuration. 

average think time 
 (sec) 

average queue length 

average response time 
 (sec) 

14 16 

13.3 i 

5.4 ! 

9.4 

3.9 

18 20 

6.6 

2.f> 

4.8 

2.2 

percentile throughput=49.9 % , average execution time of a job =0.4 sec, 

number of users = 48. 
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5.3. Performance Prediction 

It is now fairly reasonable to expect that the models developed in 

this thesis »an serve as a practical tool to predict the performance of 

a system in question whose configuration is specified.  Therefore^ 

we shall proceed to use these models in evaluating the effect of several 

important system parameters upon the processor time breakdown and the 

system response time. 

5.3.1. Effect of System Parameters upon ThrouRhput 

In this section, we consider the probelm of improving the percen- 

tile throughput of the large-scale (standard) config' ration of the 

Multics system, i.e., the two-processor three-primary-memory-unit 

configuration, as an example of investigating the effects of several 

important system parameters upon its percentile throughput. We assume, 

as our starting point, that the percentile throughput of this configura- 

tion (under multiprogramming of degree 4) is 47.2 percent, as shown in 

Table 5-2 (c).  For the sake of simplicity, we do not change the degree 

of multiprogramming in this section. 

There are several possible approaches to improve the percentile 

throughput of this configuration.  For example, 

(a) Addition of one more 128 kword primary memory unit 

(b) Enhancement of secondary memory speed 

(c) Reduction of system overhead time 

Approach (a) aims to increase the mtbpf of user processes under multi- 
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progrannning by increasing the amount of primary memory available to 

each eligible user process.  The resident Multics supervisor programs 

(including the I/O buffer, the memory space required by the page table, 

etc.) occupy approximately 90 kwords of primary memory space.  Then, 

using the linear paging model of Section 2.5.2., we can roughly expect 

the m.'.bpf to become about 45 milliseconds long if 128 k words are added 

to the current 384 kword primary memory.  The longer mtbpf naturally 

decreases the percentage of both multiprogramming idle time and paging 

overhead time, and therefore increases the percentile throughput. 

Approach (b) also aims to reduce the mu1tiprogramming idle time, by 

having a shorter mpft.  It is similarly possible to improve the percen- 

tile throughput of the system.  The shorter mpft is usually attained by 

replacing the existing secondary memory device by a faster device. 

Another way which is applicable to a rotating device like a drum is to 

create multiple copies of each file on the device; the first copy access- 

ed by the device head is read and transferred to primary memory, saving 

some part of the device's access time.  We assume that the current mpft 

can be somehow halved. 

On the other hand, approach (c) aims to increase the percentile 

throughput not by decreasing the multiprogramming idle time as in the 

above two approaches but by reducing the system overhead time; the 

multiprogramming idle time will not be affected in this approach. We 

1By creating multiple copies on the device we decrease the memory space 

of the device.  This time-space tradeoff approach is being tested on the 

Multics drum for the purpose of reducing the mpft of the secondary memory system. 
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assume that the slow-down factor (K ) due to data-base lockout can be 

reduced frcn (the current value of) 1,5 to 1.2 by shortening each lock- 

ing period of shared writable data-bases; this means that the mean 

paging overhead time (K.t .) would be approximately 7 (^1.2x6) milli- 

seconds long.  The shorter mean paging overhead time may also be attain- 

ed by reprogramming the page fault handler.  Furthermore, we assume that 

the miscellaneous overhead coefficient (Ä) can be reduced from the 

current value (0.25) to 0.2 by reprogramming the miscellaneous fault 

handlers. 

The system performance resulting f.-om each of these three approaches 

was then evaluated using the throughput analysis program.  The result is 

summarized in Table 5-4.  The expected change in processor time usage is 

clearly seen in each approach.  It should be noted that approach (r.) attains 

a nearly 10 percent improvement in percentile throughput (really a relative 

improvement of about 20 percent), while other approaches attain a 5 to 

6 percent improvement.  Howe'er, approach (a) may involve the highest 

cost; the decision of choofing the right approach must be made in 

consideration of the cost-performance. This aspect of configuration 

selection will be discussed later in Section 5.5. 

Finally, it should be mentioned that there are other approaches to 

improve the system throughput.  One could divide the primary memory into 

smaller memory units in order to decrease the percentage of memory 

interference idle time; the effect of having more memory units is seen 

even in approach (a) where the number of memory units is increased only 

by one.  Another approach may be to add another processor to the exist- 

ing processing system.  The more attractive approach which does not 
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Table 5-4  Alternative Approaches to Improve System Throughput 

Configuration Current 
System 

Approach 

(a) 

Approach 

(b) 

Approach 

(c) 

No. of Processors 2 2 2 2 

No. of PM units 3 4 3 3 

Degree of Multiprogramming 4 4 4 4 

mtbpf             (msec) 31.9 45.0 31.9 31.9 

mpft             (msec) 30.9 30.9 15.5 30.9 

Mean Paging Overhead Time 
(msec) 

Misc. Overhead Coeff. 

9 

0.25 

9 

0.25 

9 

0.25 

7 

0.20 

Memory Interference Coeff. 1.2 1.2 1.2 1.2 

* processor time usage * 

Multiprogramming Tdle 13.0 % 7.0 % 3.2 % 13.0 % 

Memory Interference Idle 4.9 4.2 5.9 4.9 

Paging Overhead 23.2 17.8 25.7 18.0 

Miscellaneous Overhead 11.8 14.2 13.1 10.7 

Users' Useful Computation 47.2 56.9 52.2 53.4 
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involve any increase of system cost is to optimize the degree of multi- 

programming.  This will be studied in detail in Section 5.4.1. 

5.3.2. Effect of Percentile Throughput upon Response TimP 

In this section, we examine the quantitative effect" of the percen- 

tile throughput upon the response time characteristics of a systen so 

that we can determine the number of interactive users that can be 

supported by the system with a given configuration. 

First, in order to present a rough idea about the response time 

characteristics, we evaluate only the average response times of the 

three configurations of the Multics system., for the range of the number 

of users that impose a heavy load upon the system.  For this purpose, we 

need to specify only the value of the optimized percentile throughput 

<eq*> 
of each configuration. We assume therefore that the small-scale, 

the medium-scale, and the large-scale configurations of the Multics 

system have respectively the optimized percentile throughputs of 50, 65, 

and 50 percent. Then, noting that e(N) - 6^ in the above range of the 

number of users (see Section 4.3.2.), the average response, time can be 

obtained by Eq. (4.3.9).  As shown in Figure 5-7. the result shows that 

the average response time (T^   increases almost linearly with the 

number (N) of users.  In fact, the asymptote for the average response 

time can be directly obtained from the result derived by Scherr [S4] for 

his simpler model, as follows: 

T 
T - JL . -1.. f r     m     eq*    t 
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average 
response 
time 

medium-scale 
configuration 

large-scale 
configuration 

N 
70     80 

number of users 

Figure 5-2  Effect of Percentile Throughput upon Average Response Time 

The broken line part of each curve represents a lower-bound estimate of 

the average response time. Without specifying the values of eq for all 

q (l*q*q*). the average reponse time cannot be accurately determined 

for the medium or light load range of N. 
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where m, Te> and f^ are respectively the number of processors, the 

average execution time of each user's job (excluding all the system 

overhead times), and the average think time of each terminal user.  It 

must be noted that the slope of the asymptote Is inversely proportional 

to the optimized percentlle throuEhput. This means that maximization 

of optimized percentlle throughput leads to minimization of ihe average 

response time. 

Next, we proceed to evaluate the distribution of response time for 

the entire range of the number of users.  For this purpose, we need to 

specify all the values of eq ;! Sqsq*) of the system under study.  As 

an example, we consider the medium-scale configuration ->{  the Multlcs 

system, assuming that 

q* = 4 

(ei' V S' V = (0-55' 0'63' 0-65' 0-65) 
T = 0.4 seconds.   T = 20 seconds. e t 

Then, using the first phase of the response time analysis program, the 

effective percentlle throughput e(N) was calculated, as shown In Table 

5-5.  It is seen ü at GCN)3^ under a light load, but as interactive 

users begin to impose a heavier load upon the system e(N) gradually 

ayptoaches 6^.  in Figure 5-3, the average. 10, and 90 pticentlle 

response times obtalnei using the second phase of the response analysis 

program are shown as a function of the number of Interactive users.  It 

Is observed In this example that the 90 percentlle response time Is 

about twice as long as the corresponding average response time.  If 90 

percentlle response time most be kept under ten seconds, the medium- 
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Table 5-5  Predicted Effective Percent 11« Throughput 

Number of Users 
N 

I 10 20 30 40 50 

Effective 
Percent lie 
Throughput e(N) 

.550 .576 .604 .629 .645 .650 

LS 
sec 

Response Time 

medluin-»C8ie 
configuration 

to 

10 
-L 

20 
-U.    N 

30 40 50 

Number of l'«»er8 

Figure 5-3      Average,   10,  90  Percent lie  Respcnse Times 
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scale Multics configuration can supoort at most 39 Interactive users1. 

Finally, the probability density and the probability distribution 

function obtained by the response time analysis program are shown re- 

spectively in Figures 5-4 and 5-5.  Figure 5-4 clearly shows that the 

probability density gradually flattens out as the number of interactive 

users increases; if the number of users; is very small (e.g., ten users) 

the response time distribution is similar to the distribution of a job's 

execution time (i.e., an exponential distribution) in shape, but if the 

number of users is large enough to impose a heavy loac' upon the system 

(e.g., fifty users) the response time distribution is more like a normal 

distribution.  This tendency of the response time distribution of the 

Multics system has been actually measured by the PDP-8 user simulator 

also.  Figure 5-5 gives the percentile response times for each value of 

the number (N) of ustrs.  For example, it is seen that if the system 

has 40 interactive users 80 percent of the response times fall between 

1.4 seconds and 10.2 seconds (or below 8.5 seconds) with 5.1 seconds as 

a median. These results predicted by the response time analysis are 

generally consistent with the casually observed performance of the 

Multics system. 

The actual system of th  configuration currently (1971-72) supports up 

to 45 users.  But these numbers may change with time as the system 

characteristics change. 
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5.3.3. Effect of User Characteristics upon Response Time 

An Interaction cycle of a terminal user consists of the user's 

think time (T ), a waiting time experienced by the user's job in the job 

queue of the computer system (W^), and an execution time re- 

quired by the aser's job (y.  Therefore, the user's need for processor 

time per unit real time is given by T^ + y.  The system response 

time T is a complicated function of various system parameters (in- 

cluding T and T ) as seen in Chapter 4, but Tj. and Te are (purely) user 

characteristics and are both prime factors determining a user's need 

for processor time per unit real time. 

We will therefore examine the effect of these two parameters 

concerning user characteristics upon the average response time, for the 

range of the number of users that impose a heavy load upon the system. 

In particular, we will consider the medium-scale and large-scale configu- 

rations of the Multics system, assuming that these configurations have 

65 and 50 percent as their optimized percentile throughput respectively. 

The result obtained by the response time analysis program is graph- 

ically summarized in Figures 5-6 and 5-7.  From these figures, it becomes 

clear that a twenty-five percent change in the value of each of these 

isee parameters produces more than several .sees as a change ii the 

number ot  interactive users that can be supported by the system (use 

£ive-secoad average response tUe «s a cclterton, for example). Further- 

more, it should be noted that in this heavy load range of N the response 

time is very sensitive to these two parameters (T^ T^ and the number 

of upers. This indicates the importance of a dynamic load controller 

on time-shared computer system with interactive users. 

I 
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20 
sec. 

15    ■ 

average 
response 
time 

10 

Te= 0.4 sec 

medium-scale 
configuration 

e_* = 0.65 

large-scale 
configuration 

6 *= 0.50 

10 20 
N 

30 40 50 60 70 80 

number of users 

Figure 5-6      Effect  of User's Think Time upon 

Average  Response Time 
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20 
sec, 

15 

average 
response 
time 

10 

Tj.» 20 sec 

medium-scale 
configuration 

e„*=0-65 
q* 

large-scale 
configuration 

eqft=o.5o 

» N 

10 20 JO 40 50 60 70 80 

number of users 

Figure  5-7      Effect  of Execution Time of User's Job upon 

Average  Response Time 
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5.4. Performance Optimization 

Now we oball proceed to consider the performance optimization 

problems, i.e., the problems of optimizing the throughput of a given 

configuration with respect to certain adjustable parameters of the 

operatirg system, without changing the hardware configuration of the 

system (the system cost is held constant).  In particular, this section 

presents the result of performance optimization of the degree of multi- 

programming and then projoses a promising approach to the page size 

problem (the problem o: determining the optimum page size). 

5.4.1. Optimization of Multiprogramming Algorithm 

Assuming that a hardware configuration of the system under study is 

given, this section is concerned with the problem of optimizing the 

degree of multiprogramming in such a way that the throu0ftput of this 

configuration is maximized under a heavy load.  Because the system 

throughput is linearly proportional to the percentile throughput, the 

above problem is equivalent to that of maximizing the percentile through- 

put by choosing the optimum degree of multiprogramming. 

As suggested in Section 3.5., it is reasonable to expect that the 

percentile throughput as a function of the degree of multiprogramming 

shows a uni-model curve Like the one shown in Figure 3-6; if the degree 

of muUiprogramming is too small the multiprogramming idle time would 

dominate the processor time breakdown and if it is too large the paging 

overhead operations could dominate the processor time breakdown. We 

will investigate the performance of a particular configuration, i.e.. 
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a two-procc&sor three-primary-memory-unit configuration with the follow- 

ing characteristics. 

mean page fetch time (mpft) ■ 35 msec 

mean paging overhead time (K-t ,) = 7 msec 
.v p 1 

miscellaneous overhead coefficient (6) = 0.25 

memory interference coefficient (y) =1.2 

missing-page probability (p) =0.1 

We assume a particular linear paging behavior of programs obtained in 

Table 2-2 of Chapter 2.  All of the three cases concerning sharing 

included in Table 2-2 are considered. Those three cases are: 

Case 1:  no sharing of non-resident programs 

(a -0.1, b = 0) 

Case II:  10 percent sharing of non-resident programs 

(a = 0.1, b = 0.1) 

Cast III: 20 percent sharing of non-resident programs 

(a = 0.1, b = 0.2) 

Changing the degree (q) of multiprogramming, the processor time break- 

down of the above configuration was repeatedly computed using the 

throughput analysis program, for each of these three cases concerning 

sharing. 

The result is summarized in Table 5-6.  It is clearly seen in each 

case that the percentile throughput as a function of q shows a uni-model 

curve.  The multiprogramming idle time and the paging overhead time are 

the two major components determining this uni-modal tendency of the 

percentile throughput.  For case I, the optimum degree of multi- 
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Table 5-6  Optimization of Percentile Throughput of a Lual 

Processor Configuration 

Case I:  No Sharing of Non-Resident Programs 

degree (q) of 
multiorogranming 2 3 4 © 6 7 8 

(1) 
(2) 
(3) 
(4) 
(5) 

Percer 

7.6 
10.3 
38.1 
2.4 

41.4 

12.6 
11.7 
24.6 
3.7 

47.1 

17.3 
12.4 
15.9 
4.6 

49.6 

21.5 
12.6 
10.0 
5.2 

|50.5] 

25.2 
12.6 
6.0 
5.6 

50.4 

28.4 
12.4 
3.5 
5.8 

49.7 

31.1 
12.1 
1.9 
6.0 

48.7 

Case II: 10 t Sharing of Non-Resident Programs 

degree (q) of 
multiprogramming 2 3 4 5 ® 7 8 

(1) 
(2) 
(3) 
(4) 
(5) 

7.4 
10.5 
37.1 
2.4 

42.3 

12.0 
12.2 
22.6 
3.9 

49.1 

16.0 
13.1 
13.2 
4.8 

52.6 

19.3 
13.5 
7.3 
5.4 

54.2 

22.0 
13.6 
3.7 

L54.6 

24.0 
13.6 
1.7 
6.0 

54.4 

25.7 
13.4 
0.7 
6.1 

53.8 

Case 111:20 Percen t Sharing of Non-Resident Programs 

degree (q) of 
mult iprogramming 2 3 4 5 6 0 8 

(1) 
(2) 
(3) 
(4) 

7.2 
10.8 
36.0 
2.5 

43.3 

11.3 
12.8 
20.5 
4.1 

51.2 

14.7 
13.8 
10.8 
5.1 

55.4 

17.1 
14.3 
5.1 
5.6 

57.5 

18.9 
14.5 
2.2 
6.0 

58.2 

20.1 
14.5 
0.8 
6.1 

21.0 
14.4 
0.2 
6.2 

(5) 58.J( 57.9 

-npft = 35 msec, mean paging overhead Lime (K.t 1) = 7 msec, 6 = 0.25 v-l 2 

p=0.1. 

processor time breakdown: (1) Paging Overhead, (2) Miscellaneous Over- 

head, (3) Multiprogramming Idle, (4) Memory Interference Idle, (5) Users' 

Useful Computation (all in percent). 
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progrannninf» is obtained to be five (q* = 5) with the maximized percentile 

throughput amounting tc 50.5 percent (6 ^=0.505).  It is seen that the 

percentile throughput can be improved by nearly 10 percent (="50.5-41.4) 

by using the optimum multiprogrammitig mechanism instead of the uni- 

programming mechanism (i.e., q = 2).  By comparing the results of 

the above three cases concerning sharing, the effect of sharing upon 

the optimized percentile throughput is clearly seen; the gain due to 

twenty-percent sharing is approximately 8 percent in absolute percentile 

throughput.  It is also observed that as the degree of sharing increases 

the optimum degree of multiprogramming tends to increase.  This tendency 

is due to the fact that the larger degree of multiprogramming will not 

shorter the mtbpf of the eligible user processes too much if there 

exists a considerable amount of sharing among these processes.  Thus, 

the optimum degree of multiprogramming for the above two-processor 

configuration was found to be five to seven, for the assumed program 

behavior. This result is surprisingly cons stent with the fact th^t 

the Multics system with the same hardware configuration is tuned to 

cllow five to six user processes to be eligible with its dynamic multi- 

programming algorithm. 

Finally, in order co examine the effect of the number of processors 

upon the optimization of the multiprogramming algorithm, the performance 

of a single processor configuration was evaluated. The system charac- 

teristics were similarly specified as mpft = 35 msec, 6=0.25, Y = 1.2, 

and K. t -= t .. = 6 msec .  The same linear paging behavior of programs, 

wifh a=b=0.1 (ten-percent sharing), wrs assumed.  The result  is 
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summarized in Table 5-7.  It is seen that the optimized percentile 

throughput amounting to 65.5 percent is attained when the degree of 

multiprogramming is chos.n to be three.  Comparing this result with the 

perform nee of the dual processor configuration that we have considered, 

we find that an addition of a processor to this single processor con- 

figuration would make the system throughput 1.67 (=2x0.546/0.655) 

times as large as that of the original single processor configuration; 

apparently, the system throughput cannot be doubled because there exists 

multi-processor interference (note that the size of primary memory is 

384 kwords for both configurations.).  All of these observations are 

again surprisingly consistent with the actual measurement results of the 

Multics system both qualitatively and quantitatively. 

However, a comment is in order about the optimum degree of multi- 

programming. A considerable difference is seen between the optimum 

degrees of multiprogramming of the two corresponding (single processor 

and dual processor) configurations.  This means that the number of 

processors plays an important role in optimizing the multiprogramming 

algorithm.  On the other hand, the current Multics operating system 

determines the degree of multiprogramming using only a (crude) working- 

set estimate cf user processes against the available size of primary 

memory; the Mulcics system is currently tuned to allow as many as five 

or six user processes under multiprogramming on both the large-scale and 

the medium-scale configurations.  (Note that both configurations have 

the same amount of primary memory.) Therefore, our observation about 

the role of the number of processors in optimizing the system throughput 
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Table 5- Optimization of Percentile Throughput of a Single 

Processor Configuration 

degree (q) of 
multiproEramming 1 2 ® 4 5 6 7 8 

mtbpf (msec) 98.5 55.9 41.7 34.7 30.5 27.7 25.8 24.3 

(1) 4.4 9.5 13.7 17.0 19.5 21.6 23.2 24.6 
(2) 13.8 15.9 16.3 16.2 15.9 15.6 15.3 15.0 
(3) 26.2 10.7 4.3 1.5 0.5 0.1 0.0 0.0 
(4) 0 0 0 0 0 0 0 0 
(5) 55.4 63.7 65.5) 65.1 63.9 62.5 61.3 60.2 

mpft = 35 msec, mean paging overhead time (t )=6 msec, 6 = 0.25 

processor time breakdown:  (1) Paging Overhead, (2) Miscellaneous Over- 

head, (3) Multiprogramming Idle, (4, Memory Interference Idle, (5) Users' 

Useful Computation (all in percent). 
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suggests a possible change of the Multlcs multlprogrararlng algorithm 

such that the number of processors, I.e., a source of raw computing 

power. Is also considered In Its working-set strategy In determining the 

degree of multlprogramnlng. 

Thus, we have evaluated the percentlle throughput of a given hard- 

ware configuration, for each degree of multlprogramning, In this section. 

This result makes It possible to derive the respo.ise time distribution 

of this configuration, as the next step.  In fact, we have already 

evaluated the response time distribution of the optimized single 

processor configuration that we have just analyzed, earKer In 

Section 5.3.2.  (See Figures 5-3, 5-4, and 5-5.) 

5.4.2.  Optimization of Page Size 

In this section, we wi" consider the page size problem. I.e.  the 

problem of determining the optimum page size. This problem Is well 

discussed In Denning's tutorial paper on virtual memory [D2J. Tha 

author claims that a choice of page size should be made considering 

memory fragmentation and efficiency of page-transfer operations between 

primary and secondary memories.  Consideration of memory fragmentation 

suggests the use of small page slzw (e.g., 45 words) and that of page- 

transfer efficiency suggests the use of large page size (e.g., 10-10 

words).  The author however does not present any method to find a trade- 

off between these two conflicting factors which may give the optimum 

page size.  It Is apparant that there existed no vehicle to accomodate 
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these two conflicting factora In a unifying framework which allows ,) e 

determination of the optimum page size.  However, the framework of 

perforaarce evaluation developed In this thesis fortunately provides is 

with such a vehicle. 

We assume that the configuration of the system Is completely 

specified except the page size, and attempt to evaluate the effect of 

page sice upon the percent lie throughput of this system so that we can 

derive the page size which maximize* the throughput of the system under 

study. 

Two types oi memory fragm  .ation exist on a virtual memory comput- 

er system using paging: Internal fragmentation and table fragmentation. 

The for? sr represents the wasted space in the last page of each segment 

(the awmory requirement of each segment must be rounded up to an 

integral number of pages) and the latter represents the space required 

by storing the page table In the area of primary memory reserved for 

the reslcent supervisor.  Memory fragmentation reduces the size of 

primary memory available to non-resident programs (see Figure 2-1), and 

therefore paging activities of user processes may be Intensified.  Given 

the page size. It Is straightforward to estimate the total wastage of 

primary memory space due to both types of memory fragmentation. 

The effect of page size upon page-transfer operations can be 

measured In the page fetch time associated with each secondary memory 

device.  For rotating devices like drums and disks t.he effect of page 

size upon the page fetch time Is rather slight because of their relative- 

ly long access time, but for a bulk core memory used as secondary memory 

the page fetch time is linearly proportional to the page size [D2]. 
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On Che other hand. It is clear from the result of Section 2.3 of 

Chapter 2 that programs' paging behavior is also affected by the page 

size.  Therefore, we must consider the effect of page size upon the 

mhbpf (or mtbpf) of user processes, besides those two factors mentioned 

by Denning.   It was seen in Section 2.3 that the smaller page size 

yields a longer mhbpf in a program's steady-state behavior.  However, in 

its transient-state, i.e., while the program has not yet fetched pagis 

that are necessary for a sound progress of its computation into ,primary 

memory, the smaller page size would yield a shorter mhbpf.  For example, 

if we measure the mhbpf of a process during the period which terminates 

at the moment when all the page-frames available to the process become 

occupied by its pages in a partitioned primary memory, then the mhbpf on 

the system with the halved page size would be roughly half of the mhbpf 

on the original computer system.  This argument suggests that the larger 

page size would be favorable to programs with relatively short execution 

times which can operate comfortably in a relatively large primary memory 

space; on the other hand, the smaller page size would be favorable to 

programs with relatively long execution times which must operate within 

a relatively small primary memory space. 

Unfortunatelv, none of the program models developed in this thesis 

can quantitatively evaluate the effect of page size upon the overall 

mhbpf of user processes.  The experimental result obtained by Baer [Bl] 

indicates that mhbpf is maximum « len the page size is 128 to 256 words. 

However, interpretation of "numbers" obtained in experimental studies is 

(at best) very tricky because all the conditions of these studies are 

not explicit; i*: is much more difficult to derive a parameterized 



231 

expression of rahbpf (which can be applied to any other system) as a 

function of page size, memory size, and program characteristics, froir 

the experimental studies.  Therefore, a comprehensive analytical model 

is much desired in this field.  In this respect, a program behavior 

model of Woolf [W3] is worthy of attention, but the validity of this 

moiel has not been examined. 

Thus, if the overall mhbpf (or mtbpf) can be properly evaluated as 

a function of those system parameters, we can evaluate the effect of 

page size upon the percentile throughput of the processing system, 

using the analysis results of mpft (of secondary memory) and memory 

fragmentation as well as that of the overall mhbpf of user processes. 

Therefore, it would be possible to determine the page size which maxi- 

mizes the throughput of the computer system under study. 
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5.5. Confipinrafjon Seleri-irm 

Configuration selection is the problen, of selecting the configura- 

tion which attains the best performance for a given (PurchaSe or rental) 

budget.  By now, a solution to this problem may be clear. 

The process of selecting the best performanc, configuration within 

a given budget is schematically depicted in Figure 5-8.  This process 

essentially contains the following three stages: 

(1) Choice of a hardware configuration 

(2) Performance optimization for this configuration 

(3) Application >f a decision rule to the cost-performance of 

each configuration 

In the first stage, a particular hardware configuration is chosen from 

a finite set of possible hardware configurations of the processing 

system, as a candidate for the best configuration.  Different hardware 

configurations represent different number of hardware components 

(processors and primary memory units), different size of primary memory, 

different speed of hardware components (processors, primary memory, and 

secondary memory) and so on.  In the second stage, the percentile 

throughput of the chosen hardware configuration is optimized with 

respect to certain adjustable parameters of the operating system (e.g., 

the degree of multiprogramming, the page size, etc.).  The optimized 

(hardware-software) configuration as well as its performance is recorded 

as the best performance which can be obtained from that hardware con- 

figuration.  Repeating these two stages for each hardware configuration 

whose cost is within the budget, we can obtain the maximized performance 
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(stage 3) 

Apply the decision rule to 
the recorded performance of 
each configuration to select 
the best configuration 

C E"d   ) 

no more 
configurations 

Figure 5-8   Configuration Selection Process 
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for each candidate hardware configuration of the processing system. 

When all the candidate configurations of the processing system are 

evaluated in the above cptimization stage, the result is passed over to 

the third and last stage, of the configuration selection process.  In 

this stage, the best configuration is selected according to a decision 

maker's formula concerning the cost-performance of the system; the 

decision maker may use a simple ratio of cost and performance or his own 

complicated formula concerning cost and performance.  This decision 

process is entirely up to the decision maker.  When he has selected a 

particular configuration in this way, he obtains the best configuration 

of the system under study which is within a given budget. 
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CHAPTER 6 

CONCLUSIONS 

Modern large-scale time-shared computer systems have become so 

complicated in their structure and performance that human intuition 

often cannot foresee the impact of a small change in their structure 

upon their performance.  This thesis has focused its attention on the 

statistical performance of these systems; the system throughput and the 

system response time have been selected as the performance measures of 

these systems. Architects and designers of these computer systems have 

encountered many performance questions that they found very difficult to 

answer quantitatively (some examries are shown in Table 1-1). They did 

not have a useful tool to tackle these performance questions; they 

definitely needed a comprehensive structured framework of performance 

evaluation which serves as an aid to guide their intuition in understand- 

ing variety of performance evaluacion problems; they wanted a methodology 

of performance evaluation which can quantitatively answer performance 
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questions such as those given in Table 1-1. 

For variety of good reasons, we have decided to explore the possi- 

bility of using analytical models in attacking these performance evalua- 

tion problems earlier in this thesis.  Because these modern large-scale 

time-shared computer systems involve many important features which are 

believed to influence their statistical performance significantly, we 

faced a dilemma of two basically conflicting factors concerning analyti- 

cal models of these computer systems: a multiplicity of important system 

parameters and the mathematical tractability of these models. As a 

solution to this dilemma, we have presented an approach using a set of 

hierarchically organized modular models (see Figure 1-4); by developing 

a model for each subsystem of the entire computer system and then 

combining these models together through their inter-relationships, we 

can realistically model actual modern computer systems.  In this 

approach, we can evaluate the effect of a small change in one subsystem 

(e.g., secondary memory) upon the overall performance measures of these 

systems (throughput and response time distribution); we can consider all 

the major features of these modern computer systems such as paging, 

segmentation, multiprogramming, multi-processing, memory hierarchy, etc.; 

we can consider several kinds of system overhead times and idle times 

which reduce the computational capacity of these computer systems.  In 

modeling these modem computer systems, we have however abstracted the 

actual structure of these systems in a certain way; because this thesis 

is concerned with how a system configuration (concerning hardware, 

system programs, user programs, and users) affects its overall perfor- 

mance, only the system parameters which are believed to influence the 
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system throughput and the average response; time were considered in 

tackling performance projection problems (the problems of estimating the 

performance of a system which does not yet exist) of these computer 

systems. 

Performance projection problems were classified into (1) perfor- 

mance prediction problems, (2) performance optimization problems, and 

(3) configuration selection problems, in this thesis.  In attacking the 

performance prediction problems of these computer systems with an 

approach using a set of hierarchically organized modular models, the 

thesis has proposed a particular hierarchy of modular models depicted in 

Figure 1-4.  The hierarchy contains (1) a user behavior model, (2) a 

secondary memory model, (3) a program behavior model, (4) a processor 

model, and (5) a total system model. Because the last three models were 

particularly felt to be underdeveloped, this thesis developed stochastic 

models in these three areas.  Chapter 2 described several program 

behavior models which evaluate the effect of various important system 

parameters affecting a program's paging behavior (measured in the mean 

time between page faults).  In praticular, the macroscopic paging 

performance model of Section 2.5 turned out to be useful in the sense 

that the analysis result of this model can be easily combined into the 

analyses of other subsystems.  Chapter 3 presented the throughput 

analysis of the multi-processor multi-memory processing system, i.e., 

the derivation of the processor time breakdown for a processing system 

of a given configuration; because the system throughput is linearly 

proportional to the percentile throughput of the system (the percentage 

of the system's computational capacity used for users' useful work), as 



238 

shown in Section 3.2, the system throughput can be directly obtained 

from the result of the processor time breakdown.  Chapter 4 then proceed- 

ed to evaluate the response time characteristics of the entire computer 

system, -ising the results obtained by the analyses of all other models 

in the hierarchy of models.  The analysis presented in this chapter has 

explicitly derived the probability distribution of response time of 

these computer systems; from this result, we can determine the number of 

interactive users that can be supported by the system of a given configu- 

ration with an assurance that the 90 percentile response time is less 

than ten seconds, for example. 

Finally in Chapter 5, the validity of the processor model and the 

total system model was examined by comparing their behavior with the 

behavior of an actual system, i.e., the Multics system of M.I.T.  This 

comparison has shown that the performance predicted by these analytical 

models is consistent with the actual performance of three configurations 

of the Kaltics system.  Then, various performance prediction problems 

and performance optimization problems such as those mentioned in Table 

1-1 were numerically studied.  The predicted results look very reason- 

able and the result of optimization concerning the degree of multi- 

programming suggests a possible change of the current Multics multi- 

programming algorithm.  At the end of Chapter 5, the configuration 

selection problem (the problem of selecting the best configuration |or 

a given budget) was finally considered. 

The structured framework of performance evaluation presented in 

this thesis» gives system analysts a vehicle to tackle their performance 

problems.  When investiga'-ing the effect of a certain system parameter 
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upon the performance of the system under study, a general approach 

suggested by this thesis research is to examine its effect on all the 

input parameters and intermediate performance neasures included in the 

hierarchy of models shown in Figure 1-4; system analysts can then make 

their intuition work in the right direction in figuring out the effect 

of that system parameter upon the overall system performance, A good 

example was presented in  Section 5.4.2, when we considered how the 

effect of page size upon the throughput of the system under investigation 

can be possibly evaluated in an effort to determine the optimum page 

size for that system. 

Many numerical results concerning processor time breakdown and 

response time characteristics of the computer system of various configu- 

rations presented in Chapter 5 have shown that a set of analytical models 

developed in this thesis is capable of providing reasonably accurate 

answers to the quantitative performance questions with which computer 

architects and designers must cope; theae  models can answer most of the 

basic questions concerning the throughput and the response time of multi- 

prograimed virtual-memory time-shared computer systems using demand 

paging, for a wide range of system configurations.  Therefore, the 

author of this thesis believes that analytical models are extremely 

useful especially in tackling the performance projection problems which 

computer architects and designers must resolve in early design stages. 

Many modern large-scale computer systems continue to evolve both in 

performance and in supporting hardware-software structure.  For these 

systems, analytical models may be valuable in all stages of their life. 

However, in studying some of the detailed problems like a comparison of 
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several specific resource allocation strategies or paging performance of 

computer programs of acutal systems, simulation approaches would be more 

useful in practice. Most of these detailed problems usually arise later 

in the design stage, it is known that the studies of these detailed problems 

in simulation approaches tend to be very expensive.  If this is the case 

with a particular problem, an analytical approach like that presented in 

this thesis should be used in deriving some sub-optimal solutions to the 

problem under investigation which are to be studied by a detailed 

simulation approach, in order to reduce the operating cost of the 

simulation studies.  Measurement of actual systems is almost indispens- 

able to any problem as a source of information verifying the expected 

performance or as a source of information indicating a need for a design 

change of the computer system under study. 

In short, the approach using a set of hierarchically organized 

modular models is usable for actual performance evaluation problems. 

This approach guides one's inLuition to understand the cause-and-effeet 

relationship existing in a complicated structure of modern large-scale 

computer systems.  When the analyses using these models are applied, a 

quantitative solution with a reasonably accurate approximation to the 

performance problem concerning system configuration can be obtained. 

Furthermore, this modular modeling approach allows one to use partially 

available information (obtained by actual measurement) about system 

performance effectively in estimating the overall performance of the 

system. 

Finally, we would like to turn our attention to the specific 

performance problems considered in this thesis to find the problems 
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which require further research.  In the area of program behavior 

analysis, it is generally felt that more measurements of paging behavior 

of actual programs are needed.  Since the primary memory size is the 

single most influential paramete. detenrining the paging behavior of 

programs, more measurement examining the validity of the linear paging 

model is absolutely necessary.  Measurement of sharing is virtually 

unexplored and needs to be carried out. To study the page size problem 

(the problem of deriving the optimum page size) fully, we need a 

comprehensive analytical model to evaluate the effect of page size upon 

the mean time between page faults, as  dis«ussed in Section 5.4.2.  Ir 

the area of throughput analysis, it was observed in Chapter 3 that the 

analysis of a dual processor system is fairly complicated and that of a 

many-processor system (e.g., a ten-processor system) would be of 

staggering complexity; it is felt ta«t we must somehow develop a model 

of many-nrocessor processing systems which can realistically predict 

the processor time breakdown with a reasonably amount of computation, 

because we see the current trend of computer design moving towards many- 

processor large-scale computer systems.  Finally, in the area of 

response time analysis, the accuracy of percentile response time should 

be examined more throughly against actual response time characteristics 

of real computer systems.  For this purpose, more data concerning 

response time characteristics ol actual time-shared computer systems 

must be collected. 

Although the class of computer system configurations (see Figures 

1-1 and 1-2) considered in this thesis is fairly general in structure. 
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It is almost certain that w« must consHer other classes of configura- 

tions also which will attract more attention in the future.  For example, 

distributed (geographically separated) computers may become more attrac- 

tive in near future to allow reliability and scaling up of size (on the 

order of more than ten). A constant effort must be made to develop 

modeling techniques which cm realistically evaluate the performance of 

Computer systems of today and the future. 
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APPENDIX A  THROUGHPUT ANALYSIS PROGRAM 

This appendix gives an explanation of the throughput analysis 

l-iOgram which was extensively used in deriving the processor tiae 

breakdown for various multi-processor multl-nemory processing systemp 

under multlprograinning in Chapter 5.  The program is entirely based on 

the processor model of Chapter 3 and uses particularly Eqs. (3,3.4) 

through (3.3.6) and Eqs. (3.4.6) through (3.4.22). The source program 

w'l-tten In PL/I and a sample console session involving analyses of a 

single processor configuration and a dual processor configuration are 

also included in this appendix. 

In using the throughput analysis program, the configuration of a 

processing system under investigation must be interactively specified 

from a terminal of a time-shared computer system on which this program 

Is executed. Thlr program needs the following input parameters1 which 

pecify the system configuration. 

1. number of proccssers (m ; m=l  or 2) 

2. number of primary memory units (n) 

3. degree of multiprogramming (q) 

4. mean page fetch time (ropft) 

5. mean length of in-page operation (T. ) 
in 

6. missing-page probability  (p) 

7. mean paging overhead time  (K.t  .) 
Z pi 

1 
Performance evaluation of a single processor processing system does not 

require all of these input data. 
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8. miscellaneous overhead coefficient (6) 

9. memory cycle interference coefficient (Y) 

A few comments may be in order about some of these inputs.  In specify- 

ing the values of the mean length of in-page operation (t. ) and the 

missing-page probability (p), it should be rememberec •"hat these 

variables automatically determines the mean time between page faults, 

mtbpf (1 CPU), as follows. 

ratbpf (1 CPU) - tin 

P 

It has been found through the experience of using this program that the 

resulting performance is rather insensitive to a particular set of 

values of t.  and p if their ratio, i.e., mtbpf (1 CPU), is constant. 

Therefore, after the value of mtbpf (1 CPU) is carefully selected, 

these two particular values can be fairly arbitrarily determined.  The 

input representing the mean paging overhead time reflects a slow-down 

factor concerning data-base lockout.  Therefore, K. should be selected 

in such a way that 

-c: = 1  for a single processor system (m=l), 

for a dual processor system  (m = 2). 

On the Multics system, the value of K. is approximately 1.5 for m = 2. 

The typical value of the memory cycle interference coefficient of the 

Multics system is found to be 7^1.20.  The value of the miscellaneous 

overhead coefficient of the same system is typically b^O.lS. 

Upon receipt of these parameters, the program proceeds to derive 

and print out the processor time breakdown (into various system over- 

head times, idle times, and users' useful computation) and the relative 
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processor speed (the value of the effective slow-down factor due to 

memory cycle Interference, K , for a particular configuration under 

study).  The program also prints out the steady-state probabilities of 

the states of the model (for the definition of these states, see Table 

3-2 or Table 3-4), as an additional information.  The sample console 

session given in Section A.II. more concretely demonstrates how the 

throughput analysis program should be used.  The lines typed by a user 

of the throughput analysis program are underlined and the lined typed 

by the system are not. 

The throughput analysis program is written in PL/I, as shown in 

Section A.I.  Therefore, this program can be transferred to other 

systems after only a few slight modifications; if the program is to be 

transferred to an IBM system, "call ioa_M (or "call ioa_$nnl") and "call 

read_list_" statements contained in the program must be replaced 

respectively by "put list" and "get list" statements. An external 

routine, "mlsq", invoked by the program solves a system of linear 

simultaneous equations, and is documented in "System/360 Scientific 

Subroutine Package (PL/I)  Program Description and Operations Manual" 

(H20-0586-0) published by IBM. 
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A.H.   A Sample Console Session 

thru put 

* THROUGHPUT  ANALYSIS * 
******************************************************* 

number of processors ■ 1 

degree of multiprogramming = k 

mean page fetch time (In msec) = 55 

mean time between page faults (In msec) = 30_ 

mean paging overhead t'me (In msec) ■ 6.1 

miscellaneous overhead coefficient = 0,25 

paging overhead ».IsSUllSSO 
miscellaneous overhead =. 1551*76615 
multiprogramming idle a.02i*2053359 
memory cycle idle =0. 
percentile thruput =.621906^59 

***  Additional Information  *** 

Qp CPU SM 
pi( 0, 0, it) = .0242053359 
pi( 0, 1,   3) = .082980721+1+ 
pi( 1, 1, 2) = .213U0215it 
pi( 2, 1, 1) = .365832269 
pi( 3, 1,   0) = .313570518 
sum of pl(...) = .993999993 

r 22U3  2.796  58+29 
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thruput 

* THROUGHPUT  ANALYSIS * 

number of processors = 2 

number of primary memory units ■ 3 

degree of multiprogramming ■ 5 

mean page fetch time (in msec) = 30.9 

mean length of in-page operation (in msec) = 3.19 

missing-page probability = 0.1 

mean poging overhead time (in msec) = 9.0 

miscellaneous overhead coefficient ■ 0.25 
.'V-v-v-.-,- 

memory cycle interference coefficient = 1.20 

paging overhead =.251299866 
miscellaneous overhead =.127883710 
multiprogramming Idle =.052U190i»6'» 
memory interference idle -.0568625187 
percentile thruput =. 51153i*8lt0 

processor slow-down factor 
due to memory interference   =1.07200967 

***  Additional Information  *** 

Qp CPU SM Ml 
Pi 
pi 
pi 
pi 
pi 
pi 
pi 
pi 
pi 
pi 

5, 1, 0, 0) = .103385237 
3, 1, 0, 1) = .0532515U93 
1, 2, 1,   0) = .188U67521 
2, 2, 1, 1) = .113935GIU 
1, 2, 2, 0) = .171850t*22 
1, 2, 2, 1) = .102678935 
0, 2, 3, 0) = .104922063 
0, 2, 3, 1) = .0613090J48U 
0, 1, I*, 0) = .0755611220 
0, 0, 5,   0) = .01t»633U857 

r   22U5     7.683     171+171 



APPENDIX B  RESPONSE TIME ANALYSIS PROGRAM 

This appendix gives an explanation of the response time analysis 

program which was extensively used in evaluating the response time 

characteristics for various systems in Chapter 5.  The program is 

entirely based on the total system model of Chapter A and uses partic 

ularly Eqs. (4.1.2) through (4.3.4) and Eqs. (4.3.9), (4.3.19), and 

(4.3.25).  The source program written in PL/I and a sample console 

session involving an analysis of a single processor configuration are 

also included in this appendix. 

The response time analysis program has two phases; the first phase 

which estimates the effective percentile throughput and the second 

phase which predicts the response time distribution.  In using this 

program, the configuration of the system under study must be specified 

from a terminal of a time-shared computer system on which this program 

is executed.  In particular, the first phase of this program requires 

the following input parameters which specify the system configuration. 

1. number of processors (m) 

2. optimum degree of multiprogramming (q*) 

3. percentile throughput (9^ for each degree (isqSq*) of 

multiprogramming 

4. number of users (N) 

5. average execution time of a user job ( T^) 

6. average think time of a user (Tt) 

Upon specification of the system configuration, the program proceeds to 
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derive the effective percentile throughput of this configuration.  The 

computed result ot the effective percentile throughput Is printed nvt 

as a console output. The estimated steady-state probabilities of the 

states of the model (see Figure 4-4, for the definition of these states) 

are also printed out, as an additional Information. 

The second phase of this program requests the following Input 

parameters. 

1. number of processors (m) 

2. effective percentile throughput (6(N)) 

3. number of users (N) 

4. average execution time ol a user Job (T ) 

5. average think Mrae of a user (T ) 

Upon supply of these Inputs, the program proceeds to evaluate the 

response time distribution.  It prints out both the evaluated probability 

density and the evaluated probability distrlbuti«'.! function (i.e., 

cumulative function) of the system response time.  The sample console 

sessirn given in Section B.II. more concretely demonstrates hnw the 

response time analysis program should be used.  The linei typed by a 

user of i:his program are underlined and the lines typed by the system 

are not. 

The comment on program i.ransferability of the throughput analysis 

program is appropriate also for this program. 
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B«!!.  A Sample Console fession 

resp 

* RESPONSE TIME ANALYSIS 

Do you want to determine the effective percentlle 
throughput?  ---  type yes or no  --- 

yes 

***  Estimation of Effective Percentlle Throughput  *** 

number of processors ■ 1 

degree of multiprogramming = k 

SueurSfii^t^ghput <th, in * for each de»r" «" ■" 
If q=l then th = 55 
if q=2 then th = 63 
If q=3 then th = 65 
if q3'* then th = 65^ 

number of users = 30 

average execution time of a job in seconds = O.k 

average user think time In seconds = 20 

iteration estimate of effective %   throughput 
1 .61*9999999 
2 .62C669958 
3 .629028954 

effective percentlle throughput =       6.2902895Ue-01 

average queue length =        3.52031380P+00       jobs 

average response time =       2.65887877e*00    seconds 
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*** Additional Information *** 

Pl(0) 
Pl(l) 
Pl(2) 
pl(3) 
pl(U) 
Pl(5) 
pl(6) 
Pl(7) 
Pl(8) 
Pl(9) 
pl(10) 
Pldl) 
Pl(12) 
pl(13) 
pldl») 
Pl(15) 
pldb) 
pl(17) 
pi(18) 
pl(19) 
pl(20) 
p}(21) 
pl(22) 
Pl(23) 
pi(2l*) 
pl(25) 
pl(26) 
pl(27) 
pl(28) 
pl(29) 
pl(3ü) 
sum of P( 

.158077382 

.15Ü782293 

.13902973'* 

.123772760 

.1062511710 

.0878376858 

.069820061»! 

.0532783591 

.0389617118 

.0272533605 
.01819695UU 
.011571U571 
.00699038355 
.001*00067121 
.Ü021624251I0 
.00110007037 
.000521*651696 
.0002335381*89 
.965297l*8e-0i* 
.36830001*6-01* 
.12881125e-0l* 
.1*09555876-05 
.117196606-05 
.298101636-06 
.6631*70706-07 
.1265701*66-07 
.201215636-08 
.25590631*6-09 
.21*1*096566-10 
.15522119e-ll 
.1*93526366-13 

•) is 1.00000000 
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Do you want to derive the response time distribution' 
   type yes or no   

yes 

*** 
Derivation of Response Time Distribution  *** 

number of processors ■ 1 

effective percentMo throughput In %  =62.90 

number of users = 30 

average execution time of a job In seconds -Q.t, 

average user think time In seconds =20 

time density 

=   0.0 p = .281582188 
•5 p = .2625023Ü9 
LO P ■ .21*0528617 
1.5 p = .216799615 
2.0 p = .192369802 
2«5 p = .16815U361 
3.0 p = .m896636 
3.5 p = .1231558^5 
'♦•O p = .103311582 
'♦.S p = .085580618 
5'0 P ■ .0700'*U58 
5.5 p = .0566625U8 
6.0 p = .0U5330858 
6.5 p = .035873'*ü6 
7.0 p = .028105280 
7.5 p = .021798311 
8.0 p = .0167U5327 

cumulatIve 

cum = 0.000000000 
cum = .136165990 
cum = .262020107 
cum = .376U02U60 
cum = .1*78703693 
cum = .568808913 
cum = .61*7018701 
cum = .713959388 
cum = .7701*91533 
cum = .817623936 
cum = .8561*3801*8 
cum ■ .883025880 
cum = .9131*1*2105 
cum = .933670118 
cum = .9l»9600l*66 
cum = .96201971*9 
cum = .971607707 

average response time = 2.G5923250   seconds 

r 2119  9.1*51  68 + 60 
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NOTATION 

Following is  a partial  list of the symbols  used  in this  thesis. 

Only those symbols which have a global meaning throughout  the text  are 

listed here alphabetically. 

a - degree of sharing of resident programs. 

b - degree of sharing of non-resident programs. 

b    -  j-th block of a program. 

f,  -  j-th page-frame of primary memory. 

m -  size of primary memory space  (Chapter 2). 

number of processors  (Chapters  3 -5). 

m    - size of primary memory space reserved  for resident 

supervisor programs. 

m    - size of primary memory space reserved  for non-resident 

programs. 

a -  size of a program (Chapter 2). 

number of primary memory units  (Chapters  3 -5). 

n    -  number of page  faults. 
P 

p - missing-page probability, 

p.  -   i-th page of a program, 

p.     -  conditional probability of a  reference  to a page p  ,  given 

that  a page p    was  referenced, 

q -  degree of multiprogramming, 

q* -  optimum degree of multiprogramming, 

r    -  page  reference at  time t. 
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t0 -  unit  rime of a discrete-time Markov process. 

tm ' miscellaneou8 overhead  time, 

t    -  paging overhead  time. 

tu - headway between page  faults  (user's useful work within a 

tbpf). 

u -  utilization  factor of a processor. 

Kj -  effective slov down  factor of the processor speed due to 

data-base   lockout. 

Km "  effective slow-down  factor of the processor speed due to 

memory cycle   interference. 

M -  total size or primary memory. 

N -  number of  interactive terminal users, 

N    -  number of Markovian states. s 

P -  set of pages  of a program. 

Te - execution time of j user job. 

T    -   response  time. 

I    -  user's  think time. 

Tw - waiting time   in  the  job queue. 

1/a - mtbpf 

1/ß - mpft 

Y - memory cycle  interference coefficient. 

6  - miscellaneous overhead coefficient. 

6 -   (effective)   percentile  throughput. 

9(N)  -  effective percentile throughput, 

6q - percentile throughput of the system under multiprogranming 

of degree q . 

/ 
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6 -  throughput. 

X - e(N)x0 

lAn - average execution time of a uaer Job (T ) 

l/\i - average think time of a user (Tt'). 

K -  steady-state state probability. 

p - uA 

o - a/ß 



Jll 

GLOSSARY 

This glossary is ■ partial list of terminology used in this thesis 

and is intended to remind readers of the meaning of each term appearing 

throughout this thesis. 

data-baa« lockout: multi-processor interference caused by 

unavailability of a shared writable data-base which cannot allow 

simultaneous accesses of Multiple processors. 

data-base lockout idle time:  tht processor idle time caused by data- 

base lockout. 

effective percentile throughput:  the average of percentile throughput 

(see Eq. (4.2.1)). 

fully loaded system (heavily loaded system):  if the system under multi- 

progranning of degree q has almost always q eligible job-, the 

system is said to be fully (or heavily) loaded, 

global PRA:  a page replacement algorithm for which the page for removal 

may be selected globally from any area of primary memory, 

local PRA: a page replacement algorithm for which the page for remo/al 

is selected from the pages of the user process which necessitated 

that page replacement. 

LRU PRA:  the PRA which chooses the least-recently-used page for removal. 

LET PRA:  the PRA which chooses the page with the longest expected time 

until next reference, 

macroscopic paging performance model:  the model of dynamic paging 

performance of programs based on the model of sharing (see Section 
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2,5.1) and the linear paging model (see Section 2.5.2). 

memory cycle interference:  multi-processor interference caused by 

unavailability of a memory cycle of a particular primary memory 

unit, 

memory cycle interference coefficient:  see page 142. 

memory interference idlle time:  the processor time lost due to memory 

cycle interference when two or more processors simultaneously 

access the same unit of primary memory, 

miscellaneous overhead time:  the system overhead time required to 

handle miscellaneous faults such as segment faults, protection 

faults, various non-paging interrupts, etc. 

miscellaneous overhead coefficient:  see Eq. (2.5.11). 

mpft: mean page fetch time, i.e., the mean length of time required to 

fetch a missing page from the secondary memory system, 

rotbpf:  mean time between page faults, i.e., the mean length of time 

during which program Is executed continuously without a page fault 

(see Eq. (2.5.9) also), 

multlprogranrilng Idle time:  the processor time lost when processors 

under a full load do not have executable eligible user jobs, 

multlprogranmlng of degree q:  a multiprogramming algorithm which allows 

a maximum of q processes to be simultaneously eligible, 

multi-processor Interlerence:  Interference of multiple processors such 

as memory cycle Interference and data-base lockout, 

pagination:  determination of a set of program blocks to be contained in 

each page of a program, 

paging overhead time:  the collection of «11 the system overhead times 
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required to -»rocess a page fault, 

partitioned memory: \  memory allocation of primary r.mory such that one 

area of primary memo-y is solely reserved for each usor process, 

percentile throughput:   lie percentage of a system's computational 

capacity utilized for users' u^ful work, 

percentile response time:  the time limit whic Guarantees that a 

certain proportion (e.g., 90 percent) of response  <mes is shorter 

than that limit. 

PP discipline:  preemptive priority discipline (see Section 3.3.3). 

(q;m, n) configuration:  a hardware configuration of a processing 

system which involves m processors and n primary memory units, with 

q eligible user processes under multiprogramming, 

response time:  the time elasped between the receipt by a computer 

system of a user's specified job request and the satisfaction of 

that request at the terminal; for the total system model of this 

thesis, it is defined to be the total length of time spent on the 

processing system by each user job. 

thrashing:  excessive competition among user processes for primary 

memory space leading to a less than optimum use of system resources, 

throughput:  the average number of user jobs than can be completed per 

unit time. 
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