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Abstract

The irreducible representations of the scale-Euclidean group in three dimen-
sious are introduced, and the general tensor is expanded in terms of these repre-
suentations. The cases of zero-rank tensor (scalar), rank-1 tensor {vector), and
rank-2 tensor, are studied in detail. The expansion is shown to be a generalization
of the Helmholtz expansion of a vector inte rotational and irrotational parts.

Asg in Part 1 of this work (Concepts: One-Dimensional Problems), the correl-
ations that are Introduced are invariant under changes of frames of reference. Cor-
relations are set up between tensors of different ranks and dimensions. A correla-

tion that measures a degree of isotropy is defined.
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The Expansion of Physical Quantities in Terms
of the Irreducible Representations of the
Scale-Euclidean Group and Applications

to the Construction of Scale-Invariant

Correlation Functions

Part Il: Three-Dimensional Problems; Generalizations
of the Helmholtz Vector Decomposition Theorem

1. INTRODUCTION. THE THREE-DIMENSIONAL SCALE-EUCLIDEAN GROUP

In Part I (Moses and Quesada), we introduced the scale-Euclidean group in one
dimension and expanded physical quantities in terms of the irreducible represen-
tations of the group. The expansion was a kind of separation of variables which
makes it easier to solve lirear differential equations, which are invariant under
the group, and to define correlations between physical quantities in such a way that
they are independent of the frame of reference and units of measurement. The mo-
tivation for introducing the scale-Euclidean group is also valid for the three-dimen-
sional scale-Euclidean group.

This paper, Part II, a direct extension of Part I, deals with the three~-dimen-~
sional group., The three~-dimensional group is considerably ricner than the one-
dimensional group. Because of its greater mathematical comprexity, we give our
results in the body of the paper, and present the proofs in the appendixes.

We shall be led very naturally into generalizations of Fourier transformations
of physical quantities, In particular, we shall expand scalars, vectors, and tengors
of rank 2, in terms of the irreducible representations of the group. We shall also
give the relations between the representations that appear in the expansion of sca-
lars, vectors, and rank-2 tensors that are obtained from one another by taking

{Received for publication 25 April 1972)
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gradients or divergences. It will be shown that the cxpansion in terms of the scale-
Euclidean group is a generalization of the Helmholtz decomposition of vectors into
rotational and irrotational parts.

The rotation group is a subgroup of the scale-Euclidean group. Since it plays
such an important role, we shall discuss the rotation group and its irreducible rep-
resentations briefly before defining the scale~Euclidean group.

1.1 The Rotation Group and lts Irreducible Representations;
Generalized Surfuce Harmonics

In a three~dimensional space, rotations can be parametrized by a vector@,
where 8 = 18! gives the angle of r:tation and the unit vector §/6 gives the direction
of the axis of rotation, If the frame of reference undergoes a rotation described by
8, then the components of a vector x given by x; (i = 1,2, 3) in the original frame
are given by x{ in the new frame, with

x} = ‘{:Rij(g)xj s (1)
N
where Rij(,é’) are the elements of the rotation matrix Ry, (6)
= 1-cos 8 sin 8

In Eq, (2), €3ik is the usual antisymmetric tensor, that is,

ik T fikg T TCyke €123 7 1 (2a)

It will often be convenient to regard the components x; of the vector x in the
rotated frame as the components of another vector x' in the original frame and
write Eq. (1) as a transformation in vector space:

x' = Ry, (8)x, (1a)

Tt e product of two rotation matrices B,,(§) and R;(8') is another rotation
matrix Ry (6"):

- 1]
Thus, the matrices form a matrix group, The rotavion group i the group with the

same multiplication properties as the matrix group, We shall denote the abstract
group element by R(8).




The irreducible representations of the rotation grouy have been studied exhaus-
tively. (Sez, for example, Wigner; Edmonds). The matrix RM(Q) can be written:

B0 = i€, (4)
where
3
‘ 8K = 12'1 8:Kq» (4a)

and the Hermitian matrices Ki (called the infinitesimral generators of the rotation
matrix group) are

c 0 0 0 0 i 0-i o
Kl'— 0 0 -], K2= 0 0 0], K3=i 0 o0}, (5)
i o0 -i 0 0 0 00
{see, for example, Moses, 1965a).
These inatrices satisfy tha commutation rules:
[Kl ,Kz] = iKs (Cyc) . (6)

The irreducible sets of Hermitian matrice= 'Si 1hat satisfy the commutation rela-
tions (6) can be used to construct the irredveihle unitary representations of the
rotation group.,

As is well known, each of the irreducible representations of the infinitesimal
generators is labeled j, which can take on any of the values 0, 1/2,1,3/2,2, ...
Let S?) be the matrices that give the irreducible representations, Then

s?) = {s?’(m,m')}, )

where the quantities in braces are the matrix elements. Iere the labels m, m' take
on the values j,j-1,j-2, «0o, ~j*+1,-j. On defining S(:]) by
s = 01 35, @)

b3

with a corresponding notation fur the matrix elemnents, we have

Sg)(m,m') = rn‘o‘m'm, s




ng)(m,m') = [GGzm") Gtm® + 1)] llzsm.m.:l . 9)
? The irreducible representations are unique within a unitary transformation,

The matrices that give the irreducible unitary representations of the rotaticn

4 group element R(§) are denoted by R(j)(g ), with

5 kg = (RYg) (m,mn}, (10)
o

- and

; Rg) = exp[ig:s] " (11)
’; The matrix elements R(j)(g) (m,m"') have been given explicitly by Moses(1965a;

"' 1966), For the sake of completeness, they are also given here in Appendix A (Sec. A2},
. The multiplication law for the matrices R(j)(,Q) corresponding to the multipli-
'3' cation iaw for the rotation matrices (Moses, 1965a) is

? rRWig1rWgr = R (32)
R
t for j an integer (the case in which we are interested); but for j = 1/2, 3/2, 5/2, ...,
5 the mutiplication law is

3 rRO(gIRPgn = £ W™, (3b)
13

where the sign used in (3b) depends on § and §' ., In this latter case the represen-
b tation is said to be a ray representation,

‘ We find it convenient to introduce generalized surface harmonics, which are

' closely related to the matrices that represent the rotation group in its irreducible
i representations, Let8 ,¢ be angular variablsas 0¢8 (7 , 0{¢$< 27, 'The generalized
surface itarmonics of ithese variables Y;n,m (9, ¢) were intreduced by Moses in

3 1967; in this paper their properties are summarized in Appendix A. The numbers
i,m,m' take on the same values as in the irreducible representations of the rota-

i‘ tion group. They arecalled generalized surface harmonics because Y;n’ 0(8,¢>) s

b Y.m(6,4>) for integer j, where ij(9,¢>', are the usual surface harmonics in, say,
g Edmonds' (1957) notation.

A‘> 1.2 The Three-Dimensionad Seale-Euclidean Group

3 The transformations of the three-dimensional scale-uclidean group are rota-
* tions, translations, and dilations, The rotations have already been discussed. The

%

43 group element is denoted, as before, by R(§}, The translation 'I‘j {a) along the jth

:
b
J

2
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axis is defined by
1 = o

x!=x, -as..

X T X aSu .

The dilation transformation S(\) is defined by

x! = e>‘x-.
1 1

The multiplication laws for the group are:
T;(0) = §(0) = R(0) = 1
(where I is the identiiy transformation),

T; @) T, (b) = 'ri(a+b); SINYS(p) = S(Avpu),

R(QIR(g" = R(E".
In particular,

R(GIR(-8) = 1.
Also,

T, @ 0) = T, O T @),
SOIR(G) = R(G)SO).

“inally,

S(x)'l‘i(a) 'I‘i(e)‘a)S()\),

~

R(§)T ()= T@IRE),

where

T@) =T (a))Ty(ayg)Ty(a,),

a=(ap,ay,a,4),

a{ = ERy (@ay.

(12)

(13)

(14)

(15)

(16)

(16a)

(17)

(17a)

(18)

(19)

(192a)
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In a representation, the group elements 'I'i(a), R(8), S()\) are represented by
operators acting in a Hilbert space. These cperators we also denote by Ti (a),
R (,Q ), and S()\), respectively. They should not be confused with the abstract group
elements, When the representation is unilary and acts on a separable IHilbert
space, we may introduce the Hermitian infinitesimal generators of the represen-
tation P, J;» D by writing

~ o~

T;(a) = exp [ian]; R(§) = exp[i8:3]); S(\) =exp[irD]. (20)

In Eq. (20), 8:3 = 26,7,
1

The multiplication rules for the group lead to the following commutation rules
for the infinitesimal generators:

[Pi,Pj] = 0; [D,Ji] = 0; [PJ.,D] = iP;; (P,3] = 0;

[5,,3,] =105 eyes  [PLa,] = [3,,P,] =iP, (eye). (21)

2 TRANSFORMATIONS OF TENSOR FIELD QUANTITIES

The physical quantities that we wish to expand are r-rank tensor functions of
the spacce variables x and, generally, functions of the time t, The x-dependence
interests us primarily and will be indicated explicitly, whereas the time-dependence
will be suppressed in the notation,

Let a tensor G (,}:) have ti e components

Glx)={G, : : . (0. (22)
D= {% 11,01 3}
Since the tensor is a physical quantity it will have dimensions of length to some
dimension, say, N:
\j

i @R (23)

1°2°3*"r
In Sec. 5 we go into great detail for cases where the tensor is of rank zero (the
scalar case), of rank 1 (the vector case), and of rank 2, Examples of scalars and
vectors are fluid densities and fluid velocities, respectively. An example of a phys-
ical quantity that is of a rank 2 tensor is a stress tensor,

We now show how tensors transform under the three-dimensional scale-

Fuclidean group, Under the various transformations of the group the components
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G, . . (x) in the original frame go into the components G'; . . {(x) in
i, 0,01 '~ iigines.i <
17273 r 1°2°5 r
the new frame,
Under the transformations T (a) and S(X), we have
ool . (x)=G. , . . {xta) (24)
ijigige.ed '~ L igige. i 2%
and
\) -
il { (5)'—'0‘\)\01,-. i ; {e >‘§), (25)
12°3°*° " 1°27°3°***"p
respectively. Under the rotation R(§),
G'. . . L (x)= ¥ R, . (8)R, . (8) x
fjigigeaed, '~ Bypeeed PR P At PR PR
r
x R, . (8)...R, . (8)G; (-8)x (26)
igjg ~ L4, ™ Tipdglgeeedn [® M ]

For general discussions it is convenient to construct a column vector C x)

from the tcensor components (*l i 1 (\), in which the rows are labeled by
1 RN I

taking the set of indices 11 ’ 1,, , i3 .. .i through their entire range in an obvious way,
We can also introduce the matrix @ (9) {acting on the column vector G (\:)] which
is the rth direct product of the matrices RM (,Q) appearing in Eq, (26) compatlble
with construction of the column vector from the tensor components., Then under

the transformations T (g) » S(\), and R(§) the column vector tranforms thus:

Gl (x) =G (x+a),

(24a)
GL g = e ra ey, (252)
aL(x = Regra, [ry, (-9)x], (262)

respectively,

Just as in the one-dimensional case, it is clear that the space of tensors of
rank r is the carrier space of a linear representation of the group.
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3. IRREDUCIBLE REPRESENTATIONS OF THE THREE-
DIMENSIONAL SCALE-EUVCLIDEAN GROUP

We now give the irreducible unitary representations of the three-dimensional
scale-Iuclidean group. The first two representations are representations in the
usual separable Hilbert space. The third representation uses a nonseparable flil-
bert space and is derived from the second through replacement of the inner prod-
uct. Using ihe three representations enables us to make very general expansions.

That the operators acting on the carrier spaces do indeed constitute irreduc-
ible unitary representations of the group is easily verified by direct computation,
That the representations in the separable Hilbert spaces are the only represen-
tations in the separable spaces will be proved in Appendix B when we construct the
representations from the multiplication rules of the group.

3.1 The lrredueible Rotation Group Representations

Each of these representations is characterized by an irreducible represen-
tation of the rotation group corresponding to the representation labeled j and any
other real number d. Fach element or vector of the carrier space consists of com-
plex numbers f(m), where m takes on the values -j,-j+1,...,j-1,j. The inner
product of the two vectors f( D and f is given by

j sk
Moo= s ). (27)
m=-j

\We denote the operators representing the elements of the group by T (g), R (g),
S{\). The representations ave then:

’I‘(g)f(m)=f(m),

R(8)f(m) = j‘{ R(j)(g) (m,m"f(m?"),
m'=-j

S(A)f(m)=ei>‘di‘(m). (28)

&

The rotation R (8) is represented by the matrix R(J)(G) , which explains the
name given the representation, The translation T (a) is represented by the identity,
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3.2 The Continuous Helicity Representations

These representations are characterized by a single real number o, which can
take on any positive or negative integer value or zero., The Hilbert space on which
the operators of the representation act is a set of complex functions {f(p)} defined
over the entire three-dimensional p-space such that the inner product is~given by

dp
(f(l),f)=th‘(”*(p)f(p)-—"’-, (o =|p|) (20)
~ ~ p ~

The representation is then given by
T(a)i(p) = e22R1(p),
R(8)f(p) = exp [21a®(8 ,7)] f(RM(-g)g),

f(e)‘ p), (30)

~

S()\)f(g)
where Cb(g ,2) is the principal branch of

(82m 4 d5)tan( 6/2)
tan®(8.7)* GlTvn,) + Gxq),tan (672 *

n=plp. (302)
The quantity « is called the helicity of the representation. The representation
of the rotation R{§) is calied the helicity representation of the rotation group. Such
rcepresentations are discussed in detail in Moses (1967, 1970).
It is to be noted that this Hilbert space is separable.

3.3 The Discrete Helicity Representations

The Hilbert space upon which the onerators act is the set of complex functions
{f(p)} defined over the entire three-dimensional p~space such that £(0) = 0 and the
functions f(p) vanish at all but a denumerable set of p, The inner product of two

vectors in the space is defined by

B =2t prp), (31)
P




Bk AT 4

£ ol BT

Enad T g

e e Gl o N,

PR

Gzl

i b IR O
Sk oS it

WA

s

ARAT e

. P
s 25 o b e SRS
B kg fe I3 e

s

2 EeS

10

where the summation is taken over ali values of p for which the summand does not
vanish. This Ililbert space is thus a nonseparable space.

The operators representing the group elements act ou the vectors of the Hil-
bert space as in Eq. (30).

4 REDUVCTION OF PIINSICAL QUANTITIES IN TERMS OF THE IRREDUCIBLE UNITARY
REPRESENTATIONS OF THE SCALE-EUCLIDEAN GROUP

4.1 ‘The General Case

We now discuss the general case in which the field quantity is the column vec-
tor G (x) as in Eqgs. (24a) to (26a). It is convenient to introduce the index y to
label the rows for G (x) and the rows and columns of the matrices R (8):

G, (¥ = {G(x.0)}

R(g) = {R@) (r.}.

(32)
In terms of components, Eq, (26a) then becomes:
G (1,7) = £ R(QN 51y GIR(-) 2,y 1. (26D)
Y

The matrices R (9 [the rth direct product of the matrices Ry, (8 )] constitute
a reducible unitary representation of the rotation group., Accordingly, there exists
a unitary matrix W that reduces R (§) to the irreducible representations R(j)(g).
Let W be written in terms of its matrix elements:

W= {W(y| j,m,n)}, (33)

where j labels the irreducible representations, m= -j,~j+1,.,.,j-1,j,andn is

used as an additional label if the irreducible representation j occurs more than
once, Then

RO WG T amm = T Wiyl jm,mrY (g)my,m),
Y j.m',n
3¢

YWy |ljmnW(ylj,m',n')s= 8j . S s
Y

;' "m,m' “n,n'?

S W lipmnW (yt]jmn) =8 (34)
j,m,n Yoy




11
It is useful to define the column vector W (j, m,n) in terms of its components:
W(j,m,n) = {W(ylj,m,n)}. (34a)

Let us also define the column vectors Q(p,j,n,a) with components:
Q(p,isn, @) = {Qly]p,i,n,0)}, (35)

Qlp.don,a) = £ [an/ 12+ 0] 2w (o, ¥ 2% (6,9, (36)
~ m

In Eq. (36), 8 and ¢ are the polar angles of p. It is to be noted that m and a take
on the values of -j,-j+1,...,j~1,j. In consequence of the orthogonality relations
between the last two lines of Eq. (34) and Eq, Al4 (Appendix A), the following or-
thogonality and compieteness relations hold:

8

a, a'’

;:Q ()’l goJon.Q)Q()’l B:J'on': a') = Sj.j' sn’nl

z Q()’!..-j:noa)Q*()"|g:jonaa)= 8),,

' .
jomsa y (37)

We first write a general Fourier expansion of G c(5) and show thet by addition-
ally expanding the ¥ourier amplitudes in terms of the column vectors Q(p,j,n, a)
we obtain an expansion in terms of the irreducible representations of the scale-
Euclidean group.

A very general Fourier expansion of the column vector Gc (;5) , which is bounded
for | x|, is

] - -3/2 ipex, . o[

G (1) = C+ @m3/2 fg_(prelBiZap +3 a0 [ty ], (38)
where C is a constant column vector, ge (g) is a column vector that is a function of
P, An is a column vector for each n, and }gn are discrete propagation vectors; Eq. (38)
thus decomposes the column vector into Fourier transformed modes, The con-
stant column vector C is the mean, the integral is the portion of the column vector
that decays as |x|~®, and the sum is the sum of oscillatory terms in x.

It is convenient to define the column vector g (p) by

gd('lén) : An‘

gd(g) =0, ifg# any k. (39)




2
bt
R
i
b
%
A
bl
3
d

ErFrron A

Ry dF

A

AR AT R 7

£33

RN oo,

e

>
s
V'
Py

12
Then Eq. {38) becomes

—3 2 i . : .
G (x) = C+ (2m) /fgc(g)e‘.*3~i‘dp+%gd(£)e12~5, (382)

~

The column vectors C, 8o» 8gr CAN be found from Gc<?5) in the following way.
We note that

g X X X L 1.
lim (2X) 3f [ [ e IPrXelk Xay=s . (40)
X~ X Jx dx ~ Rk
Thus,
o X X X L,
lim (2x)7° 7 | [ REG (ax = gy(p) . (41)
X~ x dx dx ¢ TE
Also,
im [G,(x) -Tg,(pe'RX]=C. (42)
3|~ N
Finally,
-3/2 | ip. ik x
(2m)3/ f[c;c(g)-ggd(g)e‘&i‘-c] e tKi¥gy - g, (k) . (43)

~ We now introduce the functions fi’n (p,a)and fg’n(p, a) and the numbers
i,n = ~
¢’ (m)

g = N T Qepina) i (pa),
© Jon,a - -

gd(g) = (p)"N‘ D Q(p,j,n,a)fg’n(p,a),
J.Nn,a ~ -

c= % W@mneh™(m), (44)
J.Mm,n

Denoting the components of g (p), g4 (p), and C, by g (par)s g4(p,y), and C(y),
respectively, we then have, from Eqgs. (34) and (37),

(3" (p,a) = p(ms)EQ*(rl p,iamsa)g, (p,r),
L4 7 R R
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R Ne ¥ :
chl Npa)=p 9Q (y] Poisnmialgy(p,y),
Y
I (m) =W (y|j,mmCiy). (44a)
Y
In Eqs. (44) and (44a) it is often convenient to regard fj'n(p a) and fj‘ n(p_. o)
as defined for « any positive or negative integer ox zero but to require that
fJ’n(p. a)= fJ‘ (p,a )=0for |a|>j. Similarly, ¢ PR (m) m conqzdered to be
defined for all integer or zero m with the requirement that ¢3'® () = 0 when
[m]> j . The expansion Eq, (38) now becomes
= Z 3 J n
Gc(g) i m'nW(J.m,n)c *M(m) +
-3/2 ipex,j,n dp
+(27)” > fQ(o,J,n,a)e Aty (p,a)——-’-“-:-+
N+3
j.n,e p
+ X ZQ(g.J.n,a)elR~~fJ'"(g.aip N, {45)

j,n,a p

When G undergoes transformations (24a), (252), (26a) of the scale-Fuclidean
group, the functxons fJ' (p @) and f-“ (p, @) tranzform under the irreducible
representations co"respondmg to the contmuo 19 and discrete helicity representa-
tions, where a Is the helicity. The congtants ¢¥* " (m) transform under the irreduc-
ible rotation group representation corresponding to j. The quantity d of Eq, (28) is
given by d = -iN, however. Hence, the rotation group representations, although ir-
reducible, are not unitary because the scale transformation is not unitary. Expres-
sion (45) is thus the expansion of a physical quantity in terms of the irreducible
representations of the scale~Euclidean group.

The irreducible representations are unitary if the rotation group representa-
tions are absent, For application in differential equations that are invariant under
the scale~Euclidean group, it is useful to retain the rotation group representations
as a constent contribution. For use in congtructing invariant corraiations, however,
we need cnly unitary representations.

Since the constaunt (that is, gg-independem) term corresponds to a mean value,
we can eliminate it fcom the expansion by measuring G as a deviation from the
mean value, Thus, correlations of velocities, for examx;le, will be made for veloc-
ities from which the mean valuc has besn subtracted go that the correlations will
be invariant under the transformations of the scale~-Euclidean group, Similarly,
correlations can be constructed for density fluctuations, and so on.

;/.« 45%« ,_"
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That the expansion (45) is indeed an expansion in terms of the irreducible rep-
resentations, and that it is the only such expansion ( within unitarity), is the subject
of Appendix C.

We now consider the expansion of scalars, vectors, and tensors of rank 2,

4.2 The Scalar Case

For scalars, the index y takes on only one value. Hence, it need not be indicated.
The rotation matrix R ( 8) is just unity since the representation of the rotation group
for the scalar is, by definition, the scalar representation. Thus,

Reg)=

w=1,

Q(B,j,n,a) =1,

jsm=a=0, (46)

The expansion corresponding to Eq. (45) is

_dp

G(ic) =c+ (21r)'3lzfeig.'.5f (P33 +
p

+¥ ! ~~~.d(p)(p) (47)
p

The quantity ¢ and the amplitudes f _(p) and f ;{p) are found as follows:

f (p)- hm(2X) 3f f f qf..f,(‘-(x)dz, (472)
¢ = lim {G(x) Ze ipe fd(p)p“N} , (47b)
X ~

ftp) = (2m) 32N+ S forlp X (G - e -

-3 ei.?'..,..f (p')(p') N1 (Ix. (47¢)
pl

~
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5% In Egs. (47), all superfluous labels have been omitted. It is noted that the expansion
is jusl a generalized Fourier transformation, weighted so that the amplitudes trans-

form properly under the scale transforinations.

: We can give requirements on the amplitudes that are necessary and sufficient

e

; to make G(x) real. It is readily seen that

5

3 x _ ok Lk

3 c=c, f (-pl=f_(p), f,4(-pl=1f,(p). (48)
X When (48) is tsed in (47),

b . d

E . -3/2 ipex L

b G(})-2R€' [C+(27r) '_[e~~~fc(g)pN+3+

+3, e X (], (49)
P

X where the plus sabscript on the integrat and on the swm means that only the half of
‘f the p-space for which p _>0 is to be used. Any other half of the p-space may be

o used in the integration, however,

ARSI

1.3 The Vector Case

In the vector case, the index y takes on three values 1,2, 3, which are identi-
fied with the x,y, z components of the vector. The matrix R(8) is just the matrix

whose components are given by Eq. (2), and is unitarily equivalent to the irreducible

-y
¢
2

-5

representation of the rotation group of Eq. (10) for which j = 1,

At this point it ia convenient to introduce the unitary matrix V, which transforms
the representation of Fq. (2) into that of Eq. (10). Let the components of V be denoted
by vim' as

AR A

3- V= {Vin} - o0

where the row index i goes through the values 1, 2, 3, and the column vector index

R

goc s through the values 1,0, -1, Explicitly,

LA=sin by

' /1 0 -1
v (22 0 i 51)
0 NIV
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Then
vt =y!
and
K, = vs(i”v'f , (52)

where the dagger means Hermitian adjoint. Clearly,

Wiy |fmn) =V

where j = 1, with n taking on only one value and hence disregzrded,
Let us now introduce the vectors Vm, which are the coluinn vectors of the ma-

~

trix V written in vector notation:

:(v

Ym lm'v2m'V3m) . (54)

We also introduce the vectors Q(p,a) for a = 0, 1, which in vector form are the
column vectors Q{p,j,n,a). From Eq. (36),

Qlp,a) = (an/DP Ty ¥ (gg), 5)
T m

Let us denote the components of Q(p,a) by Q;(p,a ) where i=1,2,3:
Qlp,a) = {Q; (p.a)} . (552)

Then the vectors Q(p, a) satisfy the following completeness and orthogonality
relations:

Q7 (pa):Q(pat) = 8

a,a

*
2Q; (R a)Qulp) =8y 4 (55b)
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Another useful property of the veciors g(p,a) is

PXQ(B.a) z -ipaq Q(P,a)

~ o~ o~

peQ(p,a)=(laj-1)p . (55¢)

The generalized surface harmonics len,a (8, ¢) are given in Appendix D. 1t is
seen that Q(p, a) can be given explicitly in terms of p in the following way.

. -1/2 pl(p1+iap2, p2(p1+1ap ) p1+ip2_]
lpea)s el [‘Wﬁ—@ IR e

fora = £1., (56)

When G (3) is written as a vector G(x), the expansion (45) for the vector

ficld becomes

. dp
- -3/2 ipsx ~
g(i) -E}ch(m)+(27r) );fg(g,a)e “"‘""fc(B'a)pN+3 +

+2 3 Qlp,ade'RiXr (padp™N . (57)
ap

The amplitudes ¢ (m), fc (g,a ), and fd(p,a) can be obtained from G(x) as

follows:
+X X X
tytpee) =pNtim (278 [ [T [ e ‘l’;bQ (pa)+G(xldx,  (57a)
~ X—O(D 'X 'X 'X it di
g . ipex (570)
etm) =¥ ¥ 1im { G0 -T TQpa)e Bl (p,a)p N} b

m
IXl~00 ap~~
"o

~

Po(pea) = (2m3I2pN*S forip e X (pa) o

.{G(x)-}:V C(“‘)‘ZZQ(B» ')e‘,g,:,ifd(p‘,a')(p')'N}(l§ . (57¢)

"~
ap
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We now discuss the necessary and sufficient conditions on the irreducible rep-
resentations for G (x) to be real. We note :

- (o1 v
V= C07Y_
% _ by -iap
Q (-g,a)--m'g(g.a). (58)

Squations (58) lead to the following necessary and sufficient conditions for the
reality of G(x):

c(-m) = (- c*(m),

B Pl'iapz %
fc('B,a) z 'bmfc(g,a) s

) p; - iapy ]
fd(-g,a) = - W (p,a) (59)

Then

Gx) = ¥ ycl0+2re [y e~ (2m 2 x

dp
xZ [Qp.are'L¥r (pa) gy
o P
o\
122, QUp,a)e X (pa) (V] . (6¢)

We now return to the general expansion (57). We want to show that the decom-
position of the x-dependent part into a sum over the helicity variable a is a general-

ization of the well-known Helmholtz decomposition of a vector into a rotational and
irrotational part.

After defining 9(3:, a) by

-3/2 dp
G(x,a) = (27)7" fQ(p a)e'PlXy (p,a)th:—:?+
lp , -N
) Qlp, a)e I3 {p, a)(p) ©1)

p
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so thut

~ o~ a

Gix) =% Vmc(m)+2 G(x,a), (61a)
m”~ ~

we ugs- (55(_:) and have, by explicit calculation,

YxGlx0=0,
VeG(x,a)=0,for a= %1, (62)

Except for a constant term, Eq. (61a) is an expansion of a vector field into rotational
and irrotational fields as in the Helmhottz theorem. The theorem is sharpened,
however, it that there are two rotational fields corresponding to a = *1, Thus
the expansion of the vector field into the irreducible representations of the scale-
“uclidean group leads to a generalization of the Helmholiz Theorem. Moses (1971)
.« proached the generalized Helmholtz theorem primarily from the rofation point
o view, and appiied it to a variety of physical problems. In that paper (1971) he
introduced spherical coordinates but did not use the dilation operator.

The general expension of a physical quantity [Cq. (45)] may be regarded as a
still further generalization of the Helmholtz decumposition theorem for vectors.

dob The Case of Tensors of Rank 2

The quantities W {y|j, m,n) of Eq. (34) will now be written W, (j,m). The
variable n takes on only one value for each j and need not be ipaicated. . rom the
discussion of the general case, it is scen that

Wi (om) = Y v,

v, (1,q,1,q'| 1,1,3,m), (63)
@ q' kq

q

where V, are the matrix clements of the mateix V [ . (50) and (.')l)] and
(1,9,1,q I 1,1,),m) is a Clebsch-Gordan coefficient in a standard notation for the
rotation group.

We lind it convenient to regard the quantitics W ik(j,m) as matrix clements of
a matrix Wy, (j,m):

Wy, Gomd = {w,, Gom)} (64)

and to regard the components Gik (5) of the tensor of rank 2 as components of
matrix G, ( x):
MR
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Gy = {6} (65)
From Eq. {63),

= n-1/2

where [ is the 3 X 3 identity matrix ;

W, (1,0 = - (272

hY I = 3

W (Lm) = JHK, +imK,), form = £l, ©7)
where K j ave the matrices of Eq. (5).

Finally,

-1 0 0
; . - -1/2
W, (2,0) = (6) 0 -1 0 ,
0 0 ?./
0 0 1
WM(2,m)=-~l-72—‘- 0 0 im , form=%1,
1 im 0
1 i 0
, oy . e oy - 1 B .
W M(z,z) = \W M(2.-3.) * 5 i -1 0 , (68)
0 0 0

We note that W, (0, 0) is proportional to the identity matrix, W M (1, m)are
antisymmetric matrices, and W M (2,m) are symmetric matrices. Thus,

’t T -
\ \l(l,m) WM(l,m) ,

t . . .
W .\1(2"“) < W M(a,m) , (69)

where the superseript t means transpose. Furthermore, the traces of the matrices

are
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trWM(O,O)--(3) >

3
tx'WM(j,m)=0, forj=1,2. (70)

The matrices W M (j,m) satisfy the orthogonality and completeness relations :

1Y . f 3 it 1] -
, ty WM(J,m)WM(J,m ) = Sj,j'sm,m' )
3§ _z wik(j,m)wi,k,n,mhsi,i,sk'k,. (71)
j,m
In the first of Eqs. (71) matrix multiplication is meant and the dagger means

E Hermitian adjoint.
Tae quantity Q(y | p,j,n, a) of the general case is now denoted by Qik(E’j’ a).

3 The matrix Q,;(p,}, @) is defined as having the components @) (p,j, @) :

Qypdia) = {Q (pisa)}

-3 [an/(2j+ 1) 1/2\\/M(j,m)\';“"‘(a,¢) :
o .

“ The matrices Qm(p,j,a ) satisfy the orthogonality and compleieness relations :

ks
; b, .
tr QI\AI(B,J;G)QM(R,J';G') = Bj'j. 80 ot

ﬁ Jza Qik(BIJIG)QiIkI(R:J)a) = Si,i' Sk,k' . (13)

Also,
Q (‘00):_(?)'1/21
MBS i M

te @y (p,0,0) = - (/2

<
: tr (Q\I(p‘l’a):u‘ QM(Pngaa):O;

: Q'\‘[(p’llq);-Q.‘\I(pllla)l

Q‘\tl(p,'z,c) - QM(;),'.Z,Q) . (N
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The expansion of the matrix Gy, (x) is

Gy (x) = £ Wy (j,med(m)s (zn)"‘”jza Sy (prdsa)e Y x

»

; dp . y
J D e s Ipe J
X fc(g,tx)!)N+3 +jza % QM(.E'J'“)O Poxy L (p, a)p™™. 75)

The amplitudes in the expansion are obtained as follows :

: #X pEX X
f‘l,(p,a)-' )‘\ hm (2x)°3 f f f e 1BLX x
~ ~X “-X

X tp Ql\rl(p,j,a)GM(x)dx, (752)
\m) = tr wr (j,m) lim G, {x)-
M 5l {ag tx
- X Qyuip are2Xed (p,a)p7N}, (75b)

ia P

ri(b.a)r(h)"/o N"‘f TR Xy, Q\I\D j,a) x

X {GM(,:,‘:) Z Wy, G ,med (m) - lz

j'tym j',a

z
P

X oliD's \fJ (p', ')(p')—N} dx . (78¢)

~ o~ e

The cexpansion (75) may be written

(76)

G

=5l (e

where

i . . i i -3/2 . Jipex
G, (x) = £ Wy (j,mled(m) + (2m) ?;“ fQI\.,(B»J."‘)( e X

. dp
——tm 3 ipex
x £ p, e) T3 %% Q (P i a)e LX) (p,a)p™ (76a)
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It is well known that a tensor of arbitrary rank 2 can be written as the sum of
a tensor that is proportional to the unit tensor, an antisymmetric tensor, and a
symmetric tensor of zero trace. In t« »ms of the matrix notation for the rank-2

tensor we have, in fact,

where the matrices G“,, GA' and GS are given by

G (0= [trG (073 1,

t
G () =% [Gy (3 - Gy ()]

el

=L . t L . . .
Gg(x) =3 (Gm‘b”cm(ﬁ) : [tx GM(-:\')] IM) . (76¢)

It is seen that Eqgs. (76) and (763) represent generalizations of the decompositions
(76b) and (76¢). Furthermore,

0= . Loy = ! 204 = .
Gy (x) =G (x), Gplx)=Gy(x), Gy(x)=Ggl(x). (764)
From FEgs. (76) and (76a) it follows that

0,0y, _ (ay-1/2 , .
Gy (%) = - (3) I,,G(x), (77)

wher -
. 1p
> 1312 “L ipex -N
G(x)-ct(2m) ! foll3~..\.fc(g);;\7¢~:-+%o‘BNQFU(B)p‘ . (77a)

~

N _ .0 _ 0
In Eq. (77a), ¢ = ¢ " (0), fC(B)_fc(B,O), fd('l:)_fd(g,()).

FFrom Eq. (77) it is readily seen that when Gi(\)l (:.:) transforms under the rank-2
representation of the scale-Fuelidean group, G (5) transforms under the sealar
cepresentation of the group, The converse is also true, Morcover, Eq. (77a) is
just the expansion (47) of a scalar in the irreducible representations of the group.
Henee, the discussion of Gil (5) for j = J is equivalent to the discussion of the




scalar case.
It should be noted that

Glx = - (9 P (0 (17)

We now show that the decomposition of the antisymmetric tensor GI:I (x) into
the irreducible representations of the group is entirely equivalent to the decompo-
sition of the vector representation. By explicit computation,

Wy, (1,m) = - (2 2y

Im?’
W, (L,m) =-i(2 2y
317 = 2m’
crov-1/2
Y= o
W4 (1,m) i(2) Vam (78)

In Eq. (78), Vim is the matrix element of Eq. {(61), Since the matrices WM( 1,m)
are antisymmetric matrices, the components of the matrices that appear in
Eq. (78) are the only nonzero ones.

From Eqs. (72) and (55) it follows that

1/2

Qya(pLia)=-i(27'%Q, (p,a),

Qg (p L) = - i(272q,(p, 0,

Q,imbLa)=- i 2q, (p,a). (79)

Again, because of the antisymmetry of the matrices Q (p, 1, @), the only nonzero
independent components ure those that appear in Eq. (79).

Now, a necessary and sufficient condition that G\,l (':5) be antisymmetric is that
4
there exist functions G i (_:5) such that

0 G.(x) -Gy(x)
N .
Gy (%)= -i(2) -G ,(x) 0 Gz |, (80)

62(5) 'Gl(.’i) 0
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Let us define G (x) by

Gy = {6,006, Gy}

(81)
From Egs. (76a), (78), and (79),
. 1 -3/2 ipex.1 P
G =T v e+ 2m 323 faip,a)eiBiXrl(p, o)+
m a p
+3% Qpa)e'BiEct(p,a)p™™ (82)
< 5 @ B, ~ o~ d E, p . &

A necessary and sufficient condition that the antisymmetric tensor G\l,] (x)
transform under the rank-2 representation of the scale-Euclidean group is that
G (,3) transform under the vector representation, The expansion (82) is just
Iq. (57), that is, the expansion of a vector in the irreducible representations
of the group, Thus, the expansion of the general rank-2 tensor includes as
special cases the expansion of scalar and vector functions,

The remaining tensor G;‘\)‘,] (25) of the expansion (76) is symmetric and has zervo
trace. The matrices QM (g, 2, @) can be obtained from Eq. (72) using the explicit
forms of an,a (8, ¢) as given in Appendix D.

For convenience we define

o= ggn q,
7 =plp,
n_ Faytiong. (83)
- 2
w2 .
1-3my “Smymg 3y
~1/2 . 2
QM(B.2,0) = - (6) / =37, 7 1- 37, =377 . (84)
2

Smmg dwgmy 13wy




2,a) = "o
Ql\](B, ,a "1_1)3
2
o Mo 1 M2y
’71(’71'1+n3) Moy % "1“'2’73)*_1’?-’173
2
L. L 1 . M3
X 772 10 T\ Yoy, ) Y "2(1'3”3)""“173
1 ‘ 73 Mg 1 ) . My
'2[’71“'“’7’3”“1;3 B R S T B
fora = %1 . (85)
The independent elements of QM {p,2,a) fora = %2 are the following :
9
n_" 7 -
1 o o
Q,,(p2,a)s5 ——5 |7 -—.—)
112 3(1_03)2 17 Ton,
7 2 " 2
Q‘,.,(p,2,0)=l,"_¢ 5 (1;2+icr1+ \ ,
R '(1-173) 3/
2
Q-{n(p'?':u)=-é_ : 2(1'1)3)2,
[Y IV B ) (l- 77';)
2
n N i
1 4 o (2
Q,,(p2,8) 5 —— |7 Myt iC )
128 2(1-n )2 \"1 THag 2 1+n,
Y]
2
7
1 a o4
Q,.,(p2,a) -5 —=3 ('q )(l 7.,)
13 3(1-7)3)3 17T, 3’
n 2 n
Qz-g(pngna):'_}f'ma 7] ("79‘“’ T:'g— (1'773)- (86)
Sllad "(1-71.‘)“ \ 3
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We now discuss the case where the tensor is real. Since GM (») and Gm(x)

are equivalent to the scalar and vector repr escntatlons, which already have been
discussed, we need concern ourselves only with GI\I (x). From Eq. (68),

2,m) = (-0 W, (2,-m). (87)

w”
W ¢ Vi

Furthermore, from Egs. (87), {(72), and (A16),

P ‘lup9

x
QM(-3,2,0) m—p— Q“(p,Z al. 188)

For G.;a(x) to be real, we have
4 b3
c¢“(-m) = (-1™ [cz(m)] ,

2 Pyt iaPy oo x
fc('B,a) 'p1+iap2 [fc(g:“)} »

2 py-iapgy g "
fd(-g,a) _Ml)l+ Tap, [fd(g,a)] . {89)

2]
For real Gi'\f‘(.\i) we can then write

3, . W2y 2,y
G2 (x) = Wy, (2,00 (0)12Re [Wy,(2,De” (1) +

Wy (2.2)c Z(a)+ (2m) “”ZfQ\,(p,2 a)elPlX x

2 4 2 -N
X fc(g.a>-;m—§+§§+ Qy (p, 2,015 (poa ) (p) ]. (90)
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RELATIONSHIP OF THE IRREDUCIBLE REPRESENTATIONS IN THE EXPANSIONS OF SCALARS,
VECTORS, AND RANK-2 TENSORS, OBTAINED FROM ONE ANO'THER THROUGH
DIFFERENTIATION: SOLUTION OF ‘THE FUNDAMENTAL EQUATIONS

3.1 Introduction

The gradient of a scalar yields a vector, and it is useful to know the relation-
ship between the irreducible representations of the scale-Euclidean group that ap-
pear in the expansion of the scalar and those that appear in the expansion of the
vector. The divergence of a rank-2 tensor with respect to one of its indices also
leads to a vector, and it is also useful {o relate the irreducible representations ap-
pearing in the expansion of the tensor and those of the vector.

More generally, divergences and gradients of physical quantities lead to quan-
tities that have different transformation properties, and it is useful to know the rel-
ationship between the expansions of the original quantities and these obtained
through the use of the derivative operators. The usefulness is particularly apparent
when it becomes necessary to solve invariant linear partial differential equations
such as occur in electrodynamics or linearized fluid mechanics, where gradient,
divergence, and curl operators appear. When the expansions for the physical quan-
tities are introduced, the differential operators modify the amplitudes in what is
seen to be a simple way. The differential equation then becomes a relatively simple
equation for the amplitudes.

To obtain the vector whose divergence is a given scalar, we obfain a relation-
ship between the amplitudes of the vector and the scalar. We may in fact soive for
the amplitudes occurring in the expansion of the vector in terms of those for the
scalar. Effectively, this is to solve a differential equation for the veclor in terms
of its divergence. Similarly, differential relationships between tensors and vectors
can be considered as differential equations which are solved by means of the expan-
sions in terms of the irreducible representations.

IFor simplicity, we assume that the x-independent term (that is, the mean) is
zero and also that there are no periodic terms. In terms of the general expansion
(45) we tuke

cj‘n(m)=0, f‘gl‘n(p,a)=0 {91)

We then have the condition I"l‘ilmw G, (’i) = 0, This case is of particular interest
when it is 1« cessary to solve differential equations in which the solutions have
finite 'energy.' ‘The more general case is also treatable and uses a straight-
forward cxtension of the techniques that follow,
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5.2 Vector-Sealir Relations; Sealar Potentials

Let u(x) be a vector of dimensions LN, Under the conditions discussed in

Sec. 5.1, it will have the expansion

- ipe dp
u( =2 ¥2F [Qp,a)eiBLEs(p,a)—¢3r . 92)
a B

Let us define the scalar p(x) by
p(x) = Veoulx). (93)
The scalar p(x) will have the dimension LN -1 , and its expansion is thus

. P dp
plx) = (21732 IR Xy (i (94)
p

Our objective is to find the relaticnship between the amplitudes g (p) and f(p,a ).
From Eqgs. (92) and (93) and the second of Eqs. (55¢),

- S dp

Veul = 2n) ¥ S [ [prqipa)] o RiZr(p o) gy
a p
-3/2 ipex dp
= (2m) (-i)fe ~mn (P, 0) T (95)
P
From Egs. (93), (84), and (95) we obtain

g(g)=-it(g.0). (96)

Equation (96) is the result we were seeking, It should be noted that the two ampli-
tudes are proportional, the constant of proportionality being independent of p and
hence a pure number. The simplicity of the result is due to our being caref;l to
use the proper expansion for the vector and the scalar., It is also to be observed
that Eq. (96) can be used to solve the differential Eq. (93) for u(x) when p(x) is
given; however, ,\3,(5) is not unique cince “B’ 1) are arbitrary.

L.et us now consider the case where the vector g(g) is obtained as the gradient

of a scalar ¢ (x), that is,

ulx) = Vo(x). (97
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As before, we take u(x) to have the dimensions LN and the expansion (92). But now
+
¢ (x) has the dimensions LN*! and its expansion is

_al R dp
$lx) = (27) 312 f‘e‘BN:h(g)—l\]—;—. (98)
P

From the first of Eqs. (56),

- ine dp
Uo(x) = (2m) 32 [ pelRXn(p—y
p

- iDe dp
=- (27) 3/2ifQ(B,0)elB~:}.h(g) N3 (99)
p

Hence, the desired relation between the amplitudes is

f(g,a) =0, forq =121

f(p,0) = -ih(p). (100)
From the first of Eqgs. (55¢) it is clear that

Ixu(x) =0, (101)
because generally

dp

;i\‘_*i-S_ . (102)

~ "~

gxu(y) = (2#)-3/22_[[)0 Q(E,a)eigi‘sf(g,o)
a

The converse is also clearly true : If u is irrotational, that is, satisfies (101),
then the first of Lqs. (100) holds. So a necessary and sufficieni condition for a vec-
tor to be irrotational is that the first of Eqs. (100) helds.

If the vector u is irrotational, the second of Egs. (100) can be used to find a
scalar potential ¢ (3} such that Eq. (97) holds. Thus, for a scalar potential ¢ (x)
to be found such that #q. (97) holds, a necessary and sufficient condition is that
u(x) be an irrotational vector. This statement is of course part of the lielmholtz
theorem.
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5.3 Vector-Vector Relations; Vector Potentials

Let u(x) be the general vector expanded as in (92). We wish to relate the rep-
resentations of u(x) to those of v (x), where

vix) = ¥Xulx). (108)

~ A

Since g(g) is of dimension LN' 1, its expansion has the form

dp
vix)=(2m) S/ZZIQ(p a)el ~~~k(p,a) N+o (104)
P

Using Eqs. (102) and (103) we obtain the relationship between the representations,
which is ¢

k(p,a)=aflp,a), (105)
and in particular

k(p,0) =0. (105a)
From Egs. (104), (105a), and (95), with N replaced by N - 1, it follows that

Veylx)=0, (106)
that is, y (%) is solenoidal. Conversely, if we wish to solve Eq. (103) for u{x) when
v(x) is given, we must have (105a), or equivalently, (106). We may consider u{x)
as a vector potential from which y (x) is obtained.

We have thus proved the following portion of the ITelmholtz theorem: A neces-
sary and sufficient condition that u{x) be a vector potential for 7(x) is that Eq. (106)
hold.

We note, however, that in constructing u(x) from v(x), .p,0) is arbitrary if
Eq. (106)or, equivalently, (105a) is satisfied. The contribution to u(x) -Y u(x.a)
[see Eq. (57a) for notatlon]

. d
u(x,0) = IQ(R,O)elgiﬁf(g,O)—-N—fé' , (107)
p

is thus also arbitrary.
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The term u(x, 0) is the gauge of the vector votential, which is usually chosen
so that 5(35) satisfies desired conditions in addition to Eq. (103)., Our procedure
enables us to explicitly separate the guuge portion of the vector potential from
the part that is essential for obtaining v (x).

If, as in electromagnetic theory, we identify v (x) with the magnetic tield [ for
which (106) always holds ] , u(x) is called the electromagnetic vector potential and
the choice of the gauge is of some importance in simplifying problems.

3.1 Vector-Tensor Relations

Let us consider the tensor Gy, (, s = {G i (gg)} - The quantities u, (x) and
vi(g), defined by

3G, (x) 9G . (%)
ui(5)=JZ —d{‘T— vi(§)=JZ__ali_5_, (108)

are components of vectors u(x) = {ui(,g)} , vix) = {vl(;‘g)} . The relationships
between the irreducible representations contained in the expansion of GM (x) and
those contained in the expansions of u(x) and v (x) will now be given. The results
can also be used to solve Eq. (108) for Gy, (x) when either u(x) or y(x) are given,
although Gy, (x) will not be unique.

Actually, we obtain a better result. We decomj . :2 the tensor into its unit, anti-
symmetric and symmetric paris, as in Eq. (76b) or, equivalently, Eq. (76), and
find the vector expansion corresponding to the use of (108) for each part of the ten-
sor, Let us take Gy, (x) to have the dimensions LN, and write

) =3 G
Gy (%) %Gm(y,

R ' . . dp
- -312 . ipex Ly
Gﬁ,,(;‘s) = (27) azfQM(g.J.a)e R~~g3(g.a);ﬁ+—3—. (109)
We define the vectors gj (x) and ,y,j (x) by
i i ; L 3G (¥
u (X)"' {Ul('{\:)} N ul(\ %_—T;C—k— .
aGd, (x)
3 S J(y) = ik .
vi(x) = {\ (x)} , vl(,}) % %y (110)
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The vectors uJ (x) and v (x) will have expansions :
dp

J(")’(2 "3/ ZIQ( p,ale ~~~rJ(p,°‘ “NFe
%

d
‘](x)‘(27f) 3I?'ZfQ(p,a)e ~~~s"(p,0) 2-2—. (111)
P

Then it can be sheown that

%(pa)=s%(pe)= (37215, 6%(p, (112)
Hpoa) = -stip,a) = (27210 g (p,a), (113)
2(p,0) = s%(p,0) = - (2/9* 2 ig? (p,0) , (114)
xz(g,a)»‘ 2(g,o)=-(2)’”2ig2(g,a), for a = £1 (115)

In Bq. (112), ¢ (p) ¢ (L 0). I‘quatton(ll2) is proved trivially.

To prove Eq. (113) we write G.\] (x) as in Eq. (80}, with

gw = 2n Y [awpare'LiZe! (no)Fy \,d:s (116)

[see Eq. (82)]. Then for j = 1, The first of Egs. (110) becomes
(1i7)

wlix = -vt (=2 uxe(x.

Equation (113) follows from Eq. (117) in the same way that Eq. (105) follows from

Eq. (103).
Fquations (114) and (115) are proved as follows, ¥rom the first ot Fqs. (110),

(111), and (109), together with Eq. (72), we have, after taking Fourier transforms,

(118)

TQpa)e(pad =3 Y itan /52 o(pm s (8,615 (pa),
a ™" am ~
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where o (p,m) = {ai(p,m)} is a vector whose components are defined by

. (p,m) g (py/PIW, . (2,m) . (1183)

By explici* computation, we can show that

Q7 (p.0)s glpm) = - (2/81/2 (4 7 /5) 2y ™0 g gy

Q" (padsotpm = - (/Y204 n ) 2y ™0 (0 4y (asin).  19)
PO ~ o R 2

In Fgs. (119), §,¢ are the polar angles of p, as usual,

The relationship between r 2(p,a ) anngz(p, a) follows from the first of
Bqgs. (55b) and (119) and the orthog;r;anality relation (A11), The other relationships
of (114) and (115) are similarly obtained.

Let us now consider the case where a tensor is formed by differentiating a vec-
tor. Let the components of the tensor Gy (x) = {Gik (5)} be obtained from the
componen:s of the veetor w (x) {w1 (5)} as follows :

dw (%)

G, (x)z —— .,
ik'~ axk

(120)

Let us assume that GM (x) has the dimensions Li\' and therefore that the expansion
. - ~ . . . v +
(109) 1s valid. The vector v (_.5) will have the dimensions Lr\ 1 and hence the ex-

pansion
P . dp
gg(;gh(er\"i/zzfQ(p,a)e'E.:.fk(p,a)*m!’q—. (121)
a ~ ~ ~ p

We shall show that the expansions of G\I (x) and w (x) are related by

%o = (37 2k (p,0 (122)
gl(p,a)'--(2)-1/2iak(p,a), for a = %], (123)
) -
g (p,0)=0, (124)

g% (p,0 - - (2197 2 ik, 00, (125)
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g%(p.a) = (272K (p,a) for a= 21, (126)
2 _ o
g (p,a) =0, for a=%£2. (127)

To prove the above results we first note from Eqs. (76¢), (76d), and (120) that

0 _
Gy (¥ = (/31 Ve wix) (128)
dw . (x) ow, (x)

Iy L is K \X

Gig(x) =3 [ 3%, dx. ] ) (129)
1
dw.(x) ow, (x)

~2 . it~ k'R 2 .
Gik(®) = ax, | T ox; - g Y wix) . (130)

To prove Eq. (122) we use Eq. (77), with

- . dp
Glx) = (27) 3’2fe‘2~5g°(£) 5 (131)
P
Then Eq. (128) leads to
Gy =-(3" 27, wiw . (132)

Fquation (122) then follows from Egs. (132) and (121) just as Eq. (96) follows from
Fq. (93).

To nrove Eqs. (123) and (124) we use Fq. (80), with

. N d
G(x)=(2m) 3/22 fQ(R,a)elE~§gl(E,a i3 - (133)
a p
It is easy to see that Fq. (129) is the same as
G(x) = - (272 yxw(x) . (134)

Then Eqs, (123) and (124) follow from (134) just as IXq. (105) follows from Eq. (103),
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To prove Eqs. (125), (126), and (1277) we introduce the matrix Ty (p,a)
- {cppall
- L 2 -
Cixlped=3 [”in(R"’“ 7;Q (P a)+ 5 8y 80,0] » m=plp. (135)

Equation (130) is equivalent (after taking an obvious Fourier transform) to

ety s Wy, 2,m) YT (8,¢)g% (p,a)
am -

=i}:CM(g,a)k(g.a). {136)
a
But by explicit zalculation we can show that

wwl (2,mc (pe) = (272 (a2 yMa¥(a4),

"
I+
—_

W (2,mCy (p,0) = - (2/3 2 (an ) By 0% (g, (137)

Equations (125) to (127) then lollow directly from Eq, (71).

0. INNER PRODUCTS, CORRELATIONS, AUTOCORRELATIONS,
MAGNITUDES G PINSICAL QUANTITIES

6.1 Lorrelations Between Tensors of the Same Rank
l.el us consider two tensors of the same rank, which we write as column vec-
. . N R .
tors Gc (x) and 11 o (x). Let Gc (%) be of dimension L. and lIC (x) be of dimension
" . R . . : .
LM The quantity G . (x) will be taken to have the expansion (45) ; H . (3) will be
. . . jn b Jin
taken to have a similar expansion but with ¢?’7 (m), l'c {p,a), 3 (p,a), and N
i,n i,n i,n .
replaced by ad’ M (m), ki’ (p,a), k‘('l' (p,2), and M respectively.
We wish to introduce an invariant inner product between G | (x) and n, (x). It

i, N j . .
was seen that c"’ (m), and thus rlJ'n(m), transform as nonunitary representations

of the scale-Iuclidean group, Hence we meacure GC (5) and ”c (;\5) from the neean

j,n = bt - : . . .
and set ¢’ (m) = a¥ ‘(m) = 0 , An obvious inner product that is invariant under

all trunsformations of the group=including the scale transformation— and satisfies
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the usual requirements-of an inner product in Ililbert space is

~

{ » u: . dp
(L& = T Xy jx M p,a e M p,o)—5+
j.n a I_ ~ ~ p
i, n in
) kd ('[\)‘,a)i'd (B,a) . (138)

4]
~

In particular, (G, G)ll?‘ = M(G) will be called the magnitude of Gc(ﬁ) and used as
a measurce of this quantity, which is independent of the frame of reference and the
units of length used.

We take over the arguments of Part I for using the inner product (1, G) as a
correlation. Accordingly, we define the correlation K (I, G) between 11 o (x) and
G_(x)as

K(H,G)=(H,G). (139)
Further, we define the correlation coefficient C (11, G) as
CaLG) = KL/ (M ] . (140)

For each transformation of the group we introduce an autocorrelation and an
autocorrelation coefficient. The translation autocorrelation (TAC), written A (G, a),
and the translation autocorrelation coefficient (TACC), written A ( G, a), are defined
like their one-dimensional analogs:

A(G,a) = K (G, T(a)G) ,

Ac(G.g)=c(G,'r(a)G} . (141)
These quantit’es compare a tensor with itself when it is measured in a coordinate
system whose origin with respect to the original coordinate system is shifted by
the vector distance a.

Again, as in Part I, the scale autocorrelation (SAC), written B(G, ) ), and the
scale autocorrelation coetficient (SACC), written Bc (G,)), ave defined by :

B(G,\) = K (G,S(NG),

B (Gx) = C{G, 300G} . (142)
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These quantities compare a tensor with itself when it is 'stretched.!

The third autocorrelation, which we call the igsotropy autocorrelation (IAC), is
denoted by I(G,Q ), and the corresponding isotropy autocorrelation coefficient
(IACC) by I_(G,§). These are defined by:

1(G,8) =K (G,R(8)G) ,

c (G,R(§)G) . (143)

I (G,8)
c ~

These quantities compare a tensor with itself when it is measured in a rotated
frame of reference. If the tensor is isotropic, then IACC is unity for all § .

( Although it can be shown that such tensors have trivial properties, we do not go
into this in detail in the present paper.) More generally, the range of 8 for which
the IACC is near unity gives a measure of the isotropy of the tensor— the larger
the range, the greater the isotropy.

We believe that the IAC and IACC will be very useful in defining a degree of
isotropy of tensors and we hope to make use of them in later papers. The one-
dimensional analog of the IAC and IACC is the comparatively simple autocorrel-
ation and autocorrelation coefficient denoted by D and Dc respectively,

6.2 Detailed Correlations; Correlations Between Tensors of Diffeeent Ranks

In Sec. 6.1 we introduced correlations between tensors of the same rank. We
used an invariant inner product (138) that resembles Parseval's theorem for
Fourier series or integrals. There is, however, a more fundamental inner product
that is invariant, namely, the inner product (29) or (31) for the irreducible rep-
resentations. This inner product is, in an obvious sense, the minimal invariant
inner product.

We now introduce the notion of sets of detailed correlations and detailed cor-
relation coefficients for two tensors. Let G (x) and If (x) be column veetors cor-
responding to two tensors, with the same expansion as before. Instead of requiring
the two tensors to be of the same rank, however, we now allow them to be of differ-
ent ranks, and therefore have different values, for the variable n, We form pairs of
irreducible representations, one member of each pair being taken from the expan-
sion of C‘-c ('.}.:) and the other from H c (,.5). To each pair we agsign a correlation, as
follows. The correlation is zero if the value of the helicity variable a of one mem-
her is different from that of the second member, or if one member is a discrete
representation and the other is a continuous representation. Otherwise, the correl-

. . j, n i',n' . . .
ation between the pair ki’ {p,a) and f‘(" ' (B,a), dencted by Kc(k,J,II; f,j',n%a), is:
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i, n it pt dp ;
Kotk jomif jnt o) =/R§J () id"" (R'a)px\‘ﬂ;' (a4

. . . . j,n i',n' L.
Likewise, the correlation between the pair k;:l" {p,a) and f':l’n (p,a) is given by

%3 it !
Kk dm;6itnte) =Y kM (pa)td ™ (p,a) . (144a)
p

The set of detailed correlations for the tensors G _(x) and I (%) is the set of
correlations thus constructed. We can now ask for the set of detailed correlations
between a scalar and a tensor of rank 2, for example, or for the set of correlations

between a vector cad a {ensor.

X} = G _(x). Among the correlations for

A special case is that for which I c c

( X
a tensor of rank 2, for example, willbe j =2, a=1,andj=1, a = 1. Correlations
of this type are clearly significant.
We can also introduce magnitudes of the irreducible representations in the

following obvious way :
- . . 1/2
Mc(f,.],n:a)= [I(c(f,J,n;f,J.xlza)] / ,

. . . 1/2
A\.’l(l(f,J,n:a)= [I((l(f,J,ll;f,J,llza)] / . (145)

We now also introduce sets of detailed correlation coefficients between 11 ¢ (x) and
GC(;g). The corrclation coefficients are zero if the correlations are zero. Otherwise,

Kc(k,j,n; f,j'yn':a)
N T =
Cc(k'J’"‘ f,j’,n':a) M (k,j,n:a )Alc(f,j‘,x1‘:a)

Kd(k,j,n; f,j'yn':a)

C'd(k;j;n; f:j';n':a ) = ;\l(l(k,j,n:a )L\ld(r,j|,n|:(1) (146)

Sets of detailed autocorrelations and autocorrelation coefficients associated
with the transformations of the group can be defi..ed in an obvious way. IFor the

sake of brevity we omit the details.
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Appendix A

Irreducible Representations of the Rotation Group; Generalized Surface Harmonics

AL JACOBE POLYNOMIALS

The Jacobi polynomials Pf}a ' B)(x) arce defined and their properties given
elsewhere (see, for example, Szego, 1959). For convenience, we define the closely
related polynomials S(j,m,m',x) as:

(m-m',m+m')(x), (A1)

. \ .
S(j,m,m’, x) pj-m

where j is any nonnegative integer or half-odd integer, and m and m' each take on
the values of ~j, -j+1,...,j-1,j. From Rodrigues' formula for the Jacobi poly-
nomials (Szego, 1959):

. m-i .
S(G,m,mt,x) = (03T 2T Ly (memY) e (mem)
X

(j-m
j-m P : 1
x e -3 ™ (e 3t (A2)

dx‘]




=
Hide

P e

Tr A R AT < P PR 0

T S 5

‘]
1
18

S

PP iy o &
S S AR

o Ay i
e

g
e

42
An alternative expression, given in Moses (1965L), is:

el girm

S(j,m,m’,x) = (-1)37™ (GFm)1 | Fm [(1-x)j"m'(1+x)j'm'] . (A3)
ax”

A2 CTHE IRREDUCIBLE REPRESENTATIONS OF THE ROTATION GROULP

The expression for the matrix elements R(J)(f)(m,m') is

. . . 1/2 m-m'
R (g) (m,m) = [?(jj- ?-)f!(fji?r)! !] (Sin g) X

6 +19 m-m’ . n]*’lnl
X [ 2 = 1] (cosg‘+i%‘isin—g~) SG,m,m",z), (Ad)

where

6=16], z=[1-(6,06)%]cos8+(8,/6)° . (Ada)

A GENERALIZED SURFACE HARMONICS AND THEIR PROPERTIS
Generalized surface harmonics are defined by

Y0, 9 = 0™ ™ ™  (2ge 1) 1] P x

¥ ¥ 1/2 . q 1)
x [(j(f;n'%)w.!ff:rm :] e!m=mD6 [ g) M

1)
X [1+cos€]m S(j,m,m', cos8) , (AS)
where 0 <8<r and 0« d0< 24 ,
Letg be a vector:
(AB)

9= flcosd,sing,0) .
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Then
RO (@) (m,m" = 0™ ™ [4n/(25+D)] I/ZY?'m'*(e,w- (AGa)

That the surface harmonics reduce the infinitesimal generators of the rotation
group in the helicity representation is perhaps their most interesting property. Let
8 and ¢ be the polar angles of a vector x = r(sin 8 cos ¢, sin 8 sin ¢, cos8) . The
operators Ji are defined by

Ja= [ xWy+mn]

X
= | "k 1 -
Iy G [ 1(5§z)k+r+x3m:| , fork=1,2 . (A7)

The operators J, satisfy the commutation rules Eq. (6) for the infinitesimal gener-

ators of the rotation group.
In terms of polar coordinates,

Jy = [i(siné -5% +cot9¢os4>5% )+m'cos¢tan—g—] ,
Iy = [-i(coscb-g%- -cot9s1n¢3%)+m'sin¢tan—g-] s
J3= [-i_d%+m'] . (A7a)
Then
1 A .
3 Y™, 4= 3 Y;»m'<e.¢>sgs><n,m>. (A8)
J n=-j

The integrated form of (A8) can also be given, Let n be the unit vector, which

in polar coordinates is
n=(sin fcos¢, sinf sin ¢ ,cos8) . (A9)

~

Let 7! be the unit vector obtained from 1 through the rotation

7' =Ry (-7, (A9a)
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and let 8 ' and ¢ ' be the polar angles obtained from 7 ' through Eq. (A9). Then the
integrated form of (A8) is

1 J ! :
Y6 = exp[-2im'e@, )] T vPT 8, R (@ 0,m), (ash)
~ n‘:-j

whe~e ®(Q,7) is given by Eq. (31a) .

Further properties of the generalized surfrce harmonics are :
m,0 _ R .
Yj *7(8,9) = ij (8,9¢), jan integer, (A10)

where Y ‘m (9,¢>) are the usual surface harmonics in the notation of, for example,
Edmonds (1957),

[2Tag fo”desineyg“'“(e,¢)Y§'}':“*(e,¢> =8, 18 i (A11)
© ] m,n m,n¥ !
};l I L YRe,A YT (66)sing = 8(6-018 (-1 . (A12)
jsln)m=-j
3 YR e, Y 0,9 < [eyensan]e L (an)
ms=-j !
% Y?'“<9,¢)Y§“""’*(G,¢)= [(2j+1)/41r]8m e (AL4)
n=-j !

YITE,e = (0T Y Te, 9 (ars)

Y;n)XI (77-9,7T+¢) - (_1)j+m+2n e'2in¢ Yj'm.n* (0,¢). (AIG)
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Appendix B

Derivation of the lrreducible Representations of the Scale-Euclidean Group

We now obtain all irreducible unitary representations of the scale-Euclidean
group in the usual separable Hilbert space. These are the irreducible rotation
group representations of Sec. 3.1 and the continuous helicity representations of
Sec. 3.2. The discrete helicity representations (Sec. 3.3) are obtained from the
continuous helicitly representations by going to a nonseparable Iilbert space. The
irreducible unitary representations in the separable Hilbert space are the only ones
in such spaces. There may, howeve.', be other representations in nonseparable
Hilbert spaces. In the nonseparable Ililbert spaces, the particular representations
that we have chosen allow us to include functions that have periodicities among the

physical quantities we have been studying,

B.1 PRELIMINARIES

We shall be using the infinitesimal generators of the representations of Eq. (20),
From Eqs. (17a) and (18) it follows that

A

Boo,s =0, sop =t pson. (B1)
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Furthermore, from the multiplication rule for the rotation group @Eq. (16)],

R(CIR(8) = R(BIR(Q, (B2)
where

Q' =Ry (-6)0 . (B2z)
Thus,

R(-8)(Q:J)R(G)=Q'-J , (Bzb)

which finally leads to :

R(-8)JR(G) =R, (8)] . (B2g)

From Eq. (19), we have

R(-§)PR(E) =Ry (9P . (B3)

B2, THE IRREDUCIBLE ROTATION GROUP REPRESENTATIONS

Since the Hermitian infinitesimal generators Pi commute, they can be diagon-
alized simultaneously, We consider two mutually cxclusive cases. In the first
case, the simultaneous eigenvalues of P i’ which we denote by p* (p 17PasP 3),
have the value p= 0 in the spectrum. In the second case, they have the value p {0
in the spectrum. The first case leads to the irreducil.e rowtion group representa-
tions, and the second leads to the continuous helicity representations.

We consider the first case and designate by |y ) all linearly independent si-
multaneous eigenkets of Pi having the simultaneous eigenvalue p =0. This variable
y should not be confused with the variable y that was used to label the rows of
G, as in Eq. {32). Then

P.r) =0 (B4)
or, equivalently,

Ply)=0. (Bda)
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Lemnma
The ket R(8)]¥) is also 2 simultaneous eigenket of P, that has the eigenvalue
p = 0. Likewise, S()«)Iy) is such an cigenket,

Proof
From {B4a) and (B3),

ER®)jy) =R [R, @P]|7) =0. (B5)

Lakewise, from (B1),
BEsM|y) =e™ st Pply) =0, (B6)
which completes the proof.

Thus, the Iilbert space is an invariant space corresponding to the eigenvalue
0 of P. This is the carrier space for the rotation group and for the scale aperator
S(X\). Since the oae-dimensional scale operator commutes with the elements of the
rowation group, we can diagonalize it and simultaneously reduce the rotation group.
Clearly, if there is more than one representation of the scale group and one of the ro-
tation group, the re.resentation of the direct product of the representations of the
rotation and scale groups—and hence the representation of the corresponding scale-
Euclidean group—is reducible. Thus, the only irreducible representutions are those
for which the rotation group has an irreducible representation characterized by the
number j anc for which the scale group has an irreducible representation such that
the infinitesimal generator D has the single real value d in its spectrum.

B3, THE CONTINCOUS HELICITY REPRESENTATIONS

In this case the opetafors Pi have a simultaneous eigenvalue q # 0. We denote
the simultaneous eigenket by lq) . Then

pi ’Q> =q

~

[a)- (B7)

Lemnma

The point q, * (0,0,1) is in the simultancous spectrum of Pi'
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Let the ket | W) be defined by

W) =R(-p)S(x)|q), (B8)

where 4 is given by

Ay Ay
A3=0, A=]4] , q1=-q—A—smA, q2=qT31x|A,
g=qcosh, q=|qf, (B9)
and
r =logq. (B10)
Then from (B1) and (B3),
-T
PW)=e % R, MREDSEIP,q)
i’ -
-T
= e ZRi.(-A)q.lw). (B11)
j J J
Then from Fq. (2), {B9), and (B10) it follows that
Py lw)=p,lw)-0, P, lw) = |w). (B12)

Hence, W is an eigenstate of the operators P v with the simultaneous eigen-
values given by U and the lemma is proved.

We now let |y ) be all the linearly independent simultaneous eigenkets of Pi
having the simultaneous cigenvalue Qoe The variable y is used to label the linearly
independent kets, as Lefore. \We then define the kets | p.y):

[Py 2= RGSGa)|y) (B13)
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where w and u are given in terms of p as a one-to-one correspondence by
-~

~
w

=0, wr|ol >, = -p—= sinw = p—Lsinw
Y3 ’ NP L | Py » PPy ’
Pg=pcosw, pu=logp. (Bi4)

Theorem
The kets !p,x) are simultaneous eigenkets of Pi, having the eigenvalues p,
that is,

P.lpyd=pipy)y. (B15)

Proof
The proof is very similar to the proof of the preceding theorem.

The following theorem is obvious for separable Hilbert spaces.
Theorem

The spectrum of the operators Pi is continuous. The simultaneous eigenvalue
p ranges over the entire three-dimensional p-space. Any eigenvector | p) that
‘satisfies Pil g) = pilf) is a linear combination in y of the kets 'B’ Y) -

Strictly speaking, p = 0 is not in the spectrum of the operators P i however,

one point in the continuous spectrum is of zero measure and of no importance.
From Egs. (B15), (192), and (20),

T(g)ig;)’)=elilglp,y). (B16)
Equation (B16) shows us how the group element T(a) is represented in this basis.
We now find the representations of the remaining elements of the group in the same

basis. We first find the representation of S(A). From the commutation rules (17a)
and Eq. (B13),

SMp,y Y= R@SO-m]y) = |pLy),

where, from Fq. (B14),
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or finally,

A

S(X)!g,y)‘— Je” | 24 Y. (B17)

To tind R(§) in this representation for arbitrary § is much more difficult. We
first find the infinitesimal generators Ji and then integrate.

Lemma
The ket J ,;I y) is a simultaneous eigenvector of the operators Pi, with the
eigenvelues given by q = (0,0,1).

Proof
We have P J 3]7 Yy = [pi'JS]I y) + J3Pi|7) . The lemma then follows

from the commutation rules of Eq. (21).

Since the kets |7' ) are all linearly independent kets having the eigenvalue Q.
it follows from the lemma that J 3l y) is a linear combination of the kets Iy) .

Hence, we write
Jol7y =% Mty |rt). (B18)
71

In Eq. (B18) we have assumed that y is a discrete variable. Actually, we can
use any measure function for y that is compatible with the separable Hilbert gpace.

Definition
Letl us define the operator M acting ou the kets [ pay) @

Mip,y 2= Z My, |py' ). (B19)
~ Y' ~

It is to be noted that M commuies with I’i and S{x). To find J p Ba. (B2) is

used to obtain

exp [1BI ) | poy 2 = exp [i87,]w (:l)exp[-iﬁ.ls] SCGurexp[183,]17)

R(g')!;(—k)exp [iBM]'Y ).




or,
exp [iBJ3] | p.y) = exp[iBM] ] p',y ), (1320)
where

wi =@, cosf + wzsmB ,

€
o
[

= w2cosB - wlsinB ,

1 = i
wp s Wy, (B20§)
and p' is related to w'as p isto w [see Eq. (1314)] - Hence, by Fq. (B20a),

P =P cosB+p,sinf,

p'2 = pzcosB - plsinB,

P3=Pg - (B20b)
Now, from Eq. (B20),

FU B {'i% ""p[ims] iE”')}B =0

3
- {-155 | R"7>}B= ot Mlpyy .
Finally,
J3|P.7)={i(pXV)3+M}|p,}'>, (321)

since

{B%m"y)}B:O:Z';T)—IB’Y).{'()_E'}B=0' (B22)




We now find J, and Jo« From Fgs. (B13) and (20),

2:2(py) = {135 RBASCW |0} 4.

*? R
e KNP A e M, AR SIS
(5]
[3]

oy (B23)

where

w9 Y1
P 'p—w—sinﬁw, 3 stian » P37 pcos Bu, (B23a)

Finally, from Eq. (B14),

»0
O S R,

. 2 3 \
(le2 'p2J1),R’7> = 1[-;) EF;'B'Y) +p3(‘;3’:g)“),7)]. {324)

>
St %
N ot P ki

Having obtained (le2 - szl) [p

»¥), we now find (p 1 Jl + szz)lp, ry .
We shall then have two equations in J

1P Y ) and .12' P, y) which we can then

et | et
PRI § LI e
——

. solve simultaneously.

‘ From Eq. (B2¢),

A

| o014 30050 [-:4] - wxgcone w3 uime

: exp[~igﬁ:g](2;£)qexp[iwd} = (wxJ) 3 COSw +wJ.3sinw . (1325)
} g LY Ay A ~ A AL D

From Fqs. (B13) and (B25),

i)yl ooy = ewfiw:g] {exp[-10:3] wxp), exnliw: 1] 50 i} 7
2 cos w {exp[ifgig} (9{55]‘)33(-#) ,)' >}+ wsinw M| p, y;

- cos 2w (wxJ) 3]1), y)- wl sinweos v (p,y) +w sinw Mip,y). (326)




WA St LR

RRET A DI S

Y

53

We can now solve Eq. (B26) for (1‘.’52)3l p,y) .- Using Eq. (B21) for Jsl p,Y) . and
Fq. (B14) to replace w by p, we have

(le1 + p2J2)|g.)’) = [-ip3(352)3 + (p--p3)M] |R' ). (B27)
Solving £qs. (B24) and (B27) for J ;| p,y) and J 4| p,y) , we finally get
M] IL)'y) ,

Py
Iy |py) = [i(pxV), v —or0
xl~ [ PP | p+p3

p
Tolprd = [ipx?), + +§3M]|E,7). (B27)

p

From Eqgs. (B21) and (B27),

(B2Dlp.y) =pM|p, 7y, (328)
or,

M= (PP, (B28a)

where the operator P is defined by Pl Py)s= pl p,y) . From (B28a) it is clear
that M is a Hermitian operator. Simce~1\'l is in(lgpendent of Pi, it is possible to find
3 transformation in the y-space such that M is diagonal, that is, spectrally repre-
sented. With this choice,

Mp,y) = al)|p, 7). (B29)
wherec a {y) is a real function of ¥. We are led to the following lemmas.

L.emma

For an irreducible representation the variable y can take on only one value,
llence, aly)=a is simply a real number.

Proof
If ¥ took on more than one value the operators 'l‘(g), S(\), and Ji would map
into themselves subspaces corresponding to twe different values of y. By defini-

tion, then, the representetion would be reducible.

Lemma
The constant a can teke on only integer values (positive, negative, or zero).
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Proof

For irreducible representations, Eq. (B20) now reads

exp[iBJs] |g) = eiﬂ‘z [p'y, (1330)

~

where p' is given by Eq. (B20b). From the group multiplication laws, however,
exp[i2nJ 3] = I, where I is the identity operator. On setting 8= 27, the lemma
follows immediately.

We finally give R(9) in this representation:
R(G)| p) = exp[-2ia¢(-f,2)] | Ry (8)p) . (B31)

In Eq. (B31), ®(8,7) is given by Eq. (30a) .
To verify Eq. (B31) we write

[p,8,2) = R(8)|p) , (B32)

where 8 =|2 | ,as usual, and c = 8/6
A first-order differential equation for | p,8,9) is, on using R (8) = exp I_lg:g] ,

a—ag‘lp‘,e,g>=i(g;£)|g,9,g> . (B33)

It is readily shown that the only solution of Eq. (B33), subject to the condition that
| p,0,7 )= | p) , is the righthand side of Eq. (B31)
Since the kets | p) span the Hilbert space, the identity is given by

dp

1=f|2>(g|5—(-;)“, (B34)

where a(p) is a pusitive function of its arguments, determined by the requirement
that the representation be unitary.

Lemma
The function a(p) is given by

a(p) = p3 . (B35)




Proof_
From Egs. (B31) and (B34)

dp
REG)=R(B:L= [R(O)]p)(p] )
dp
= fexp [-2ia¢(—g,3 )] | Ry (Q)B)(B|';'(p . (1B36)
Hence,
t dp
R (&)= [exp[2ia 0(-8,m] | p)(Ry (O] o3 - (B37)
But

dp
RIORT (@) = [exp[21a@¢-8,m] R(O) | )Ry E)p| 1y

or

dp
RO (9= [iry (@) YRy (@)p| gr=1 . (338)

~

In Eq. (B38) we define the new variable integration k as
k= Ry (8)p, dp=dk. (B39)

After substituting into Eq. (B38), we replace the dummy variable k by p. Then
Eq. (B38) becomes

dp
Nlp)el st - (B40)

Comparing Eqs. (B40) and (B34) shows

a(p) = a(Ry(-8)p) (B41)

for all §. Let us pick § = w of Fq. (B14). Then

a(g)=a(0,0,p)=’=c(p) , (B42)
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that is, a (p) depends on p = IP| only. Thus, we now write

dp
= f'p)(plc(;) . (B43)

Now, from Eq. (B17),

dp
SO0 = 500:1+ [ SOl iy
- dp
= Jle™ py¢pl oy - (B44)
Thus,
- dp
s*(x)=flg>(ekglc.(%). (B4s)
and
- dp
seust (0= fsofp) (e XB! ot L
or,
- . do
t le e el ey (B46)

In Eq. (B46) let us define the new variables of integration k as

-\ -3\

k=¢"p dkze dp. (B47)

After using the new variable of integration in Eq. (B46G) and after replacing the
dummy variable k by p, we have

dp I
cle’p)

{B48)

t=[]p)<pl
Then, from Eq. (B43),

clp)=e” 3 clet p). (1349)




57

Equation (1349) is true for all A\, Let us pick A = -u , wheve p is given by
Eq. {B14), Then

c(p)=p3c(1)=p3D, (B50)
where D = ¢ (1) is a positive constant. On replacing the kets | p )by D 1/2 [p) the
lemma is proved.

The adjoint relations of Eqs. (B16), (B17), and (B31) are

(plT(a) = eigil’(:f ,

{plst = (ekgl ,

(pIR() = exp[2ia ©(g, ] ( Ry -8)p] . (B51)

Let us denote an abstract vector in the Hilbert space by Ix ) and its representative
in the basis by {{(p), as

f(p)=(p | x (B52)
Then, since

’I‘(g_)f(g) =(B|’1‘(9_) fx), S(k)f(g) = <B IS(X)I X)),

R () ={ pIR(O | x),
Eq. (3) follows immediately from Eq. (B51),

Likewise, the invariant inner product of two vectlors |X » and lx') is, from
Eqs. (B34) and (B35),

x> =Cx T xD

dp
= [,

where f'(p) =( p|x') is just the inner product Fq. (29).
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B4 THE DISCRETE HELICETY REPRESENTATIONS

The discrete helicity representations that we shall use are given in a nonsep-
arable Iilbert space. They are obtained from the continuous helicity representa-
tions by replacing the continuous variable p in the function f(p) by a discrete var-
iable and by requiring f(g) to vanish excer;i for a denumerablz set of values of p.
The group elements in these representations are required to have the same form
as in the continuous helicity representations but the inner product is changed to
correspond to Eq. (31) in order that the representations may be unitary.

Without going into detail, we remark that the infinitesimal generators Pi exist
in these representations. They are Hermitian and have a discrete spectrum consist-
ing of the entire real axis,
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Appendix C

Derivation of the Expansion of Physical Quantities in the
lrreducible Representations of the Scole-Euclidean Group

We.shall now derive Fq. (45), which is the expansion of a physical quantity in
terms of the irreducible representations of the scale-Euclidean group. The expan-
sion is unique il we restrict oursclves to expansions in a separable Hilbert space,
that is, to those for which f‘zl' n (B, a) 0.

Let us first expand Gc(l‘) of Eq. (32), as follows:

Glxy)= L Wlr|jmnih (gm. (c1)

j»m,n

We now expand ”j,n (x,m) in the irreducible representations of the scale-Euclidean
group and then substitute into (C1) to obtain the expansion of the physical quantity
G, (x). For simplicity, let us drop the superscripts j,n on frds 0 (x,m).

We regard 1l (E,m) as the abstract vector | x ) given in a representation in «
space spanned by the kets | x,m} . Thus,

H(x,m)=(x,m[x) . (c2)

T e
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From Egs. (24a), (252), (25a), and (34), the group acts on the bras( x,m| in
the following way:

(xm|T(2) =(x+a,m],

1
(]

(x,m]|S()\) =

z R(j)(g)(m,m')(R

(x,m|R(8)

-8)x,m'| . (C3)

~

{
M:*

The expansion of IT (x, m) is

<§,rl|x ) = z

dp
N (xymlk,mD (k,m'lx) +E [ x,m|p,a)pa] x) 5+
’m ~ ~ p‘

a

~

+T 2 (x,m|p,a)lp,a|x) . (C4)
ap ~ ~

In Eq. (C4) the kets |k, m) are the kets spanning the space for the irreducible
rotation group representations of the scale-Fuclidean group, where k denotes the
representation of the rotation group that is involved and m is the variable m = -k,
-k+1,...,k-1,k. The representative (k,m|]x) is ¢X(m) in the expansion (45).

We have suppressed the index n here and shall often suppress it in what follows.

The kets IB’ a) are the kets of the irreducible continuous helicity represen-
tations for helicity a . The kets | p, a) are the corresponding kets for the discrete
helicity representations. The rep';esentatives( Da | x Y and (l.)’ alx ) ave the func-

tions f‘z;n(l),a) and f‘zl’n(p, a), respectively, in the expansion (45),

Our okjective is to find the transformation kernels { x,m |k, m'}); (x,m| p,a);
{(x,m|p,a).

To find (x,m| k,m'), we note from the discussion in Aprendix B2 that Ik,m’)
can be so chosen that

idx

T(a)|k,m) = |[k,m), SO)|km)=e ""|km),

RO [km)=T R¥ g)(m",mlk,m). (C5)

m




61
From Egs. (C3) and (C5),
( g,ml'l‘(g)l k,m') =¢( §+g,mlk,m') ={ 3:,m| k,m') (C5)
for all a. In the second of Eq. (C8) we take a = -x. Then
(f,mlk,m')=G(k)(m,m'), (C7)

and is indepencent of x.
Again, from Egs. (C3) and (C5)

{ xm|RE@) Nk m")

£, 290 (m,m"( Ry (-85, m"| k,m? )
m

£ R @ m" m g mlk,m", . (c8)
m

On using Iq. (C7), we get

z, R(j)(Q)(m,m")G(k)(m",m') =2, R(k)(Q)(u ",m"G (k) {(m,m'"), (C9)
m m

Beoause the matrices that represent the rotation group in different representations

are linearly independent, as are the rows and columns of such matrices, it follows
that

G (m,m)=(‘8m'm.8j'k. (C10)

where C is a constant that may depend on j and n. This constant can always be set
equal te unity by absorbing it into (k,m|x ) in the expansion (C4). Thus, our final
expression is

. (C11)

. 1 -
(xml|km')y -3

3,
.m' j,!

We now want to find the value of d in Eq. (€ 53), which will complete the descrip-

tion of the representation ot the seale-uelidean group. From Pq: . (C3) and (C3),

, ‘A, =A idA
Cx,m ] S50 k,m") :-\A\v v, mlk,m') 'o” {(x,m]k,m" ). (C12)




(=21
oo

On using Eq. (C11) we have, finally,
d=

-iN,

(C13)
We shall now find (5, mip,a). Let us use |<x> to denote the ket for which
p=(0,0,1) = q,- Then, from Eqgs. (C16) and (C3),
(x,m|T(a)|a) =¢ x+a,mla) - e.\:p[ia ,J( x,mla)

for all a. Now let a = -x. Then
~ v ~

(C14)
{x,mla} = ¢'*G(m,a), (C15)
where G{m, a) = (0, m]a) is ~dependent of x.
From FEgs. (C30) and (C3),
{ x.m| oxp[iGJ,;] fa) =o' 7 e ) s ¢l9cz< smla) (C16)
where
] ]
Xy " Ng T2z, X=X cos 8 - xgsing » Xy ® x2c059 *+x ) sin 8. (Cl6a)
; Using (C15) and (C16;, we now have
o.\'p[i(m-a)e] G(m,a) = G(m, a) (C17)
for all 6. It follows that
G(m,a) = C(a) bm

’

and

(x,mla) - e4Cla) s

m,

(C18)
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Now, from Eqs. (C13) and (C3),

<§:mlp;u> =( E:mlR(g)s('F)l a )

= o M Zl R(j)(g)(m,m')(x',m’la) , (C19)
m
where
5' = gk I{M(-g)i. (CIQE)

On using Eq. (C18) in Eq. (C19), and also using Egs. (C14), (A5), and (ASa), we get

«

e (s } . . 1/2
(x,m]| R"‘> = p-NC(u)elggR(J)(g)(m,u) =p NC(a)elE«va;n’a 2(9,4\)(5?-}1—) ,
(C20)

where 8, ¢ are the polar angles of p, as before. By redefiumg ( p,a|x) , the
quantity C (@) can be set equal to (2 7302, ~

The transformation function { x,mn| p, a) is found in the same way as ('gg,mIB, )
and has the same functional form.

Finally, on substituting the expansion (C4) into Eq. (C1) with the explicit forms
for the transformation funciions, the expansion Eq. (45) is obtained.




Appendix D

A Table of Generalized Surface Harmanics for j =0, 1, 2
v20(8, ¢ = (am™H/?
vile, 4= 2 (3m 2 (14c0s 0)

v10e, e = -2 3m P s 0

vite,¢) < dam) 2o ¢ (1-cos 0)

v218,4) = 07 231m 2 P sin 0

v%0(6,4) =% (3/m 205 8

v%18,¢) = -0 2 (31m 2 P sine

v

g, e =L aim 2P (1 cos )

Preceding page hlank
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vi100,8) = (87 2(3m 2 b gin g

1,

Y1 e ,9) s 2 aim 2 (14 cos 0)

v22(8,6) = 2(5/m) 2 (14.cos 9)?

v218,8) = -L(s/m 21 sind (1+c0s8)
v208, ¢ = (3132 /2 (5/m /2 21% cin %0
Yg’-l(e,q'ﬂ = -%(Slﬂ)llzeswsm@(1-0039)
(8,¢) =-}3-(.’)/71')1/204w’(l-cos@)2
Y,_l,"2(9,4>) =‘—11(5/7')1,20":‘#sin9(l+cose)
virle, ) - --}1—(5/"7)1/2(14-0059)(1-2cos@)
v208,4) = - (31 2 (5/m 2 1P sin 0 cos 8
vile,8) =L (5/m 2?1 (1-cos8) (142005 8)
vi 28,90 = -2 5/m 231 Gin 0(1- cos)
v$:2(8,4) = (3322 (5/m M2 7219 4in 2

v0: 18,6 = (312 (5/m 2 ¥ sin g cos 0

Y(z)'o(e,d’) < -%—(5/")1/2(l-3(‘()‘;20)




v f"“o“
Pre i

sl
il

vl 4 _Ge 2 (s/m i 2el? sing cos 8
v9 20,4 - (330 2 (s1m) 221 sin®0

v 2(8,¢) =—}T(5/n>”2e'3i4’ sin 6 (1 - cos 6)

v e, 9) - Lis/m 2P (1-cos8) (142005 )
v 0,9 = (are) 125 m 27 sin8 cos
v, -—(11-(5l7r)1/2(1%cose)(1-2cose)
vl 2o, 9 - ~Lisim2ei®sing(1+c0sd)
v;22(8,9) = -};(5/”)”20"”4’(1-0059)2
v;210,4) =%1—<s/:r)”20'3i¢sme(1-cose>
v;2000,4) = (a/30 M2 (s/m 2 e sin 0

v32 18,4 = Hesim B P sin 6t rcos®)

v 22,9 - Lim ! (cos
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