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Abstract

The irreducible representations of the scale-Euclidean group in three dimien-
slot,s are Introduced, and the general tensor is expanded in terms of these repre-
sentations. The cases of zero-rank tensor (scalar), rank-1 tensor (vector), and
rank-2 tensor, are studied in detail. The expansion is shown to be a generalization
of the IHelmholtz expansion of a vector into rotational and irrotational parts.

As in Part I of this work (Concepts: One-Dimensional Problems), the correl-
ations that are introduced are invariant under changes of frames of reference. Cor-
relations are set up between tensors of different ranks and dimensions. A correla-
tion that measures a degree of isotropy is defined.
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The Expansion of Physical Quantities in Terms

of the Irreducible Representations of the
Scale-Euclidean Group and Applications

to the Construction of Scale-Invariant

Correlation Functions

Part II: Three-Dimensional Problems; Generalizations
of the Helmholtz Vector Decomposition Theorem

1. INTRODUCTION. TilE TIIREE-I)IMENSIONAL SCALE-EUCLIDEAN GROUP

In Part I (Moses and Quesada), we introduced the scale-Euclidean group in one

dimension and expanded physical quantities in terms of the irreducible represen-

tations of the group. The expansion was a kind of separation of variables which

makes it easier to solve linear differential equations, which are invariant under

the group, and to define correlations between physical quantities in such a way that

they are independent of the frame of reference and units of measurement. The mo-

tivation for introducing the scale-Euclidean group is also valid for the three-dimen-

sional scale-Euclidean group.

This papee, Part II, a direct extension of Part I, deals with the three-dimen-

sional group. The three-dimensional group is considerably ricner than the one-

dimensional group. Because of its greater mathematical compiaxity, we give our

results in the body of the paper, and present the proofs in the appendixes.

We shall be led very naturally into generalizations of Fourier transformations

of physical quantities, In particular, we shall expand scalars, vectors, and tensors

of rank 2, in terms of the irreducible representations of the group. We shall also

give the relations between the representations that appear in the expansion of sca-

lars, vectors, and rank-2 tensors that are obtained from one another by taking

(Received for publication 25 April 1972)
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gradients or divergences. It will be shown that the expansion in terms of the scale-

Euclidean group is a generalization of the Helmholtz decomposition of vectors into

rotational and irrotational parts.

The rotation group is a subgroup of the scale-Euclidean group. Since it plays

such an important role, we shall discuss the rotation group and its irreducible rep-

resentations briefly before defining the scale-Euclidean group.

1. 1 The Rotation Group and Its Irreducible Representations;
Generalized Surface Ilazmonics

In a three-dimensional space, rotations can be parametrized by a vector8,

where 8 = 181 gives the angle of r:tation and the unit vector 81/ givws the direction

of the axis of rotation. If the frame of reference undergoes a rotation described by

8, then the components of a vector x given by xi (i = 1, 2, 3) in the original frame

are given by x! in the new frame, with

x! R..(e)xj (1)

where R.j(8) are the elements of the rotation matrix RM(g)

R..(8) = a.cos8 + 1-cos. . +8 8 8 sine (2)
ii ii 2 i k Z ijk _7_

In Eq. (2), c ijk is the usual antisymmetric tensor, that is,

Cjik = "ilj = -'ijk' '1 2 3 = 1. (2 a)

It will often be convenient to regard the components x! 3'f the vector x in the

rotated frame as the components of another vector x' in the original frame and

write Eq. (1) as a transformation in vector space:

2S, = R M(8)x. (1A)

Ti e product of two rotation matrices R (•8) and R M(8') is another rotation

matrix R(O") :

R M(8)RM (') = R 8(3)

Thus, the matrices form a matrix group. The rotai ion group i3 the group with the

same multiplication properties as the matrix group. We shall den:ote the abstract

group element by R(@).
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The irreducible representations of the rotation group have been studied exhaus-

tively. (Se..1 for example, Wigner; Edmonds). The matrix RM(8) can be written:

.M1,0) = ei' (4)

where

3
8. KI 2 81Ki, (4a)

1=1

and the Hermitian niatrices Ki (called the infiniteshral generators of the rotation

matrix group) are

0i 0 0

(see, for example, Moses, 1965a).

These matrices satisfy the commutation rules:

[K1 ,K 2] =iK 3 (cyc). (6)

The irreducible sets of Hermitian matrices Si 9'Oat satisfy the commutation rela-

tions (6) can be used to construct the irredtciP1e unitary representations of the

rotation group.

As is well known, each of the irreducible representations of the infinitesimal

generators is labeled j, which can take on any of the values 0, 1/2, 1, 3/2, 2,

Let S(j) be the matrices that give the irreducible representations. Then
I

SID = {sP)(m, m,)I, (7)

where the quantities in braces are the matrix elements. Here the labels m,m' take

on the values j,j-l,j-2,...,-j+l,-j. On defining SOj) byit
•; so) S s). iSo),

with a corresponding notation for the matrix elements, we have

s• (m,m,) = rnSmm

3 .'
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s(J)(m,m') = [(j;m')(j±m' + 1)]l/2 , (9)

The irreducible representations are unique within a unitary transformation.

The matrices that give the irreducible unitary representations of the rotation

group element R(e) are denoted by R(J)(e), with

R(J)(e) = {R(Je) (m,m')}, (10)

and

ROj)(9) = exp [Q-ýS (j)].(1

The matrix elements R(j)(e) (m, m') have been given explicitly by Moses(1965a;

1966). For the sake of completeness, they are also given here in Appendix A (Sec. A2).

The multiplication law for the matrices R(J)(R) corresponding to the multipli-

cation Law for the rotation matrices (Moses, 1965a) is

R (j)(O)R(j) (81) =- R (J)(1) (3a)

for j an integer (the case in which we are interested); but for j = 1/2, 3/2, 5/2,...,

the mutiplication law is

R(j)(9)Rj)( ) = -R(j)(e"), (3b)

where tile sign used in (3b) depends oneQ and 8' . In this latter case the represen-

tation is said to be a ray representation.

We find it convenient to introduce generalized surface harmonics, which are

closely related to the matrices that represent the rotation group in its irreducible

representations. L"t0 ,O be angular variables 0(0 (T , 0N ( 2 7. The generalized

surface harmonics of ihese variables Y m, nI(e. o) were introduced by Moses in3
1967; in this paper their properties are summarized in Appendix A. 'The numbers

j,m,m' take on the same values as in the irreducible representations of the rota-

tion group. They arecalled generalized surface harmonics because Y.P 0(e,)
Yjm (0,) for integer j, where Y im(0,k;• are the usual surface harmonics in, say,

Edmonds' (1957) notation.

1.2 l',Th e- im n Si ead e:,i -l-':,tilidhaji Gr; tili

Tile transformations of the three-dim ensional scale- Euclidean group are rota-

tions, translations, and dilations. The rotations have already been discussed. The

group element is denoted, as before, by R(R). The translation T. (a) along the jth
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axis is defined by

x! = x "(12)

. I x 13-aSi

The dilation transformation S(X) is defined by

x exx. (13)

The multiplication laws for the group are:

Ti(0) = S(0) = R(0) = I (14)

(where I is the identity transformation),

T i(a)T i(b) = T.(a+b); F'x)S(,•) S(X +,), (15)

H (Q)R (1 Q9 R (8"). (16)

In particular,

|z (8R -) =1 1. (16_a)

Adso,

Ti WT (b) T. (b)Ti(a), (17)

SS(X) R (8) it (a) S( ) 0(07a)

"inally,

S (X) T'i 6a0 Tri (ex a) S (X), (18)

R Q8) - (a) T (a1') 11 (), (19)

where

1Ta) * 1 (a 1 ) 2 (a2)T3 ( a 3),

a (a,,a2 1a 3 ),

a! It.. (O)a.. (l9a)1. 1 ~



In a representation, the group elements Ti (a), n (e), S () are represented by

operators acting in a Hilbert space. These operators we also denote by Ti (a),

R (0). and S(x), respectively. They should not be confused with the abstract group

elements. When the representation is unitary and acts on a separable IHilbert

space, we may introduce the Hlermitian infinitesimal generators of the represen-

tation PP, ihi D by writing

T (a) = exp [iaPj] ; R(0) exp[iOJ]; S,(X) = exp [iXD] . (20)

In Eq. (20), 8J - 8. iJi.
1.

Tile multiplication rules for the group lead to tile following commutation rules

for the infinitesimal generators:

[pip Pj] 0; [D, Jil 0; [Pj,D] = iP.j [Pi, Ji] =0;

[J 1 ,J2] = iJ 3 (cyc); [P 1 1 j 2 ] [J 1 ,P 2] iP 3 (rye), (21)

2. 'ITIANSFOIIMAI IONS OF 'IENSOII -EMI.9 QANTITIES

'rhe physical quantities that we wish to expand are r-rank tensor functions of

the spacL variables Z and, generally, functions of the time t. The x-dependence

interests us primarily and will be indicated explicitly, whereas the time-dependence

will be suppressed in the notation.

Let a tensor G (x) hi've tU e components

G(x) W GiIi 2 i3 " i r W19l (22)

Since the tensor is a physical quantity it will have dimensions of length to some

dimension, say, N:

G i2 . .ir (x) - L (23)

In Sec. 5 we go into great detail for cases where the tensor is of rank zero (the

scalar case), of rank 1 (the vector case), and of rank 2. Examples of scalars and

vectors are fluid densities and fluid velocities, respectively. An example of a phys-

ical quantity that is of a rank 2 tensor is a stress tensor.

We now show how tensors transform under the three-dimensional scale-

tI:ucli'*dlan group. Under the various transformations of the group the components
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Gl 2 (x) in the original frame go into tile components G'I. (x) in

the new frame.

Under the transformations T (a) and S (X), we have

G (x) = C. (xi a) (24)S1Ii2i3•...ir 1li 2i3 ..•• r ~

and

tN
" G. (x) = e NXGi i .t(e- X), (25)

respectively. Under the rotation R (8),

G'Ii.i it(x) R. (8)R. (8) x1 2 . jl .. . r llil )R2j2

S1i33 ()...Rirjr (0)G0 JlJ2 j3"....jr([l]..- ] (26)

For general discussions it is convenient to construct a columnn vector G cX

from tile tensor components G. . . (x), in which tile rows are labeled by

taking the set of indices 1 , 19 , 3 .V I through their entire range in an obvious way.
We can also introduce tile matrix R1 (9 ) [acting on tile column vector G0 (A)] which
is the rth direct product of the matrices R (8) appearing in Eq. (26) compatible

Swith construction of the column vector from the tensor components. Then tunder

the transformations T (a), S (M), and R (8) the colunmn vector tranforms thus:

G'(x)= G (x+ a), (24a)
c- C

Ge (x) = eN CGc (e- x), (25a)

Cie ( x)/=R()G PJ 8 (26a)

respectively.

Just as in the one-dinensional case, it is clear that the space of tensors of

rank r is the carrier space of a linear representation of the group.
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I ~ ~3. II{IEID1CII|IE 1IFIVEP fSENTA'I IONS 01 Il'IIE THRiEE-

SI)I\II.:DIM NSIONAL. S('ALi:-TCID(I.IEAN (;IMOIP

We now give the irreducible unitary representations of the three-dimensional

scale-E'uclidean group. The first two representations are repre.sentations in the

usual separable Iilbert space. 'Tie third representation uses a nonseparable flil-

bert space and is derived from the second through replacement of the inner prod-

uct. Using ihe three representations enables us to make very general expansions.

That the operators acting on the carrier spaces do indeed constitute irreduc-

ible unitary representations of the group is easily verified by direct computation.

That the represenfations in the separable iHilbert spaces are the only represen-

tations in the separable spaces will be proved in Appendix B when we construct the

representations from the multiplication rules of the group.

:3.1 Tile Irr thwill Ilotatwio (;rouIu Ilcjre..eiit tion..u

Each of these reprcsentations is characterized by an irreducible represen-

tation of the rotation group corresponding to the representation labeled j and any

other real number d. Fach element or vector of the carrier space consists of com-

plex numbers f (m), where m takes on the values -j, -j + 1, ... j - 1, j . The inner

product of the two vectors f(1) and f is given by

(f(l) f) = • f( )*(m)f(m). (27)
in -j

We denote the operators representing the elements of the group by T (a), R (8),

S(X). The representations are then:

T(a)f(m) f(i),

R(2)f(m)1 (m, ni')f (m

S(X)f(m) e i Xd f(m). (28)

The rotation R (0) is represented by the matrix R(j) (8), which explains the

name given the rpresentation. The translation T (a) is represented by the identity.
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3.2 TIe (ContinuouuS lid kit • itpre.,eitiattions

These representations are characterized by a single real number a, which can

take on any positive or negative integer value or zero. The IHilbert space on which

the operators of the representation act is a set of complex functions {f(p)} defined

over the entire three-dimensional p-space such that the inner product is given by

(( ) f) = *( )f P d,

(f' , )f( ff ( 3p )-"- 0(P =Il) (29)

The representation is then given by

*T(a)f(p) = eia-pf(p),

()f(p) = exp 2i( f(RM-O)p)

S(M)f(p) = f(ek p), (30)

where cD(8,!) is the principal branch of

tan 4 (8.Q,: i a 3 )tan( 0/2)StadP0,• •~+,q3) + (Ox•,)3 tan( 8/2),

9 / P. (30a)

The quantity a is called thle hIelicity of the representation. The reptresentation

of the rotation It(,Q ) is called the helicity representation of the rotation group. Such

representations are discussed in detail in Moses ( 1967, 1970).

It is to be noted that this Hilbert space is separable.

:1.3 ''h liCteretv Ih lieeity Ihelnreent tt ioti,

The Hilbert space upon which the onerators act is the set of complex functions

f(p)I defined over the entire three-dimensional p-space such that f(0) = 0 and the

functions f (p) vanish at all but a denumerable set of p. The inner product of two

vectors in the space is defined by

7f1) f) = (1)* (P) f (p), (31)

P
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where the summation is taken over all values of E for which the summand does not

vanish. This [filbert space is thus a nonseparable space.
The operators representLng the group elements act on the vectors of the Ilil-

a bert space as in Eq. (30).

.4. HEI)UC'IIION OF PHYSICAL. QUIAN'TI'lIES IN 'lTEiIS OF TMile IU111UWItIYE UNI'TAIRY
IIEPi*ISiEN'rATIONS OIF TIlE SCAI,:-EUCI,IIIEAN GIIOUP

4. 1 '1 ie (t'etiead a&Lse

We now discuss the general case in which the field quantity is the column vec-

tor Gc (x) as in Eqs. (24a) to (26a). It is convenient to introduce the index y to

label the rows for Gc ix) and the rows and columns of the matrices R (0):

G C(x) {G(x, y)j

R -R (32)

In terms of components, Eq. (26a) then becomes:

SG, (x,Y) 1^1 (8) (Y,,Y,) 0( W-9) ,y,). (26_b)

The matrices R (8) [the rth direct product of the matrices RM (M)J constitute

a reducible unitary representation of the rotation group. Accordingly, there exists

a unitary matrix W that reduces R (8) to the irreducible representations R(j) (0).

Let W be written in terms of its matrix elements:

W = fW(yj j,m,n)} , (33)

where j labels the irreducible representations, m -j , -j + ,.. j- I , j, and n is

used as an additional label if the irreducible representation j occuis more than

once. Then
j, . n) (j)

R(A) (y,y )W (y [jmn . W(y.j j,m',n) ()(ml,m),
yj,m ni n

• W*(y [ j,mn)W(yy j',m',n') a 8 M, 8 no"

X W(yI j, m.n) W*( j, im,n) = (34)
j. in, n ray

i



* It is useful to define the column vector W (j,m,n) in terms of its components:

; W(j, m,n1) = fW(" j, m,n) . (34a)

Let us also define the column vectors Q (p, j, n, a) with components:

Q(p,j,n,a) = {Q(yjp,j,n,a)} , (35)

SQ(p,j~n,a) = Z [4,r/ (2j+ 1)] 112W Q, m, n) Ym , a* (e,(o. (36)
m I m

In Eq. (36), 8 and 4 are the polar angles of p. It is to be noted that m and a take

on the values of -j, -j + 1, .... ,j - 1,j. In consequence of the orthogonality relations

between the last two lines of Eq. (34) and Eq. A14 (Appendix A), the following or-

thogonality and completeness relations hold:

ZQ* (yI p,j,n,a)Q(yI p,jl,nl,a') ijj, 8n, n, 8a, a"

Q(, ~ ~ ~ ~ nn 0a, na)Q''y Ipj a

a Q~y! p~jna)Q (y'I p,j,n,a) , • (37)

We first write a general Fourier expansion of Gc (x) and show that by addition-

ally expanding the Fourier amplitudes in terms of the column vectors Q(p,j, n, a)

we obtain an expansion in terms of the irreducible representations of the scale-

Euclidean group.

A very general Fourier expansion of the column vector G (x), which is bounded

for IxI-coo. is

Gc (x) = C + (2 )"3/2/gc (p) eiP•*dp +ZAnexp[Int x ]0 (38)
n

where C is a constant column vector, gc (p) is a column vector that is a function of
p, An is a column vector for each n, and kn are discrete propagation vectors; Eq. (38)

thus decomposes the column vector into Fourier transformed modes. The con-
stant column vector C is the mean, the integral is the portion of the column vector

that decays as IxI-O-, and the sum is the sum of oscillatory terms in x.

It is convenient to define the column vector gd (p) by

gd (k~n) = An,

gd(p) = 0 ifpj any h. (39)



12

Then Eq. (38) becomes

GC(x) = C + (27r0 3 2 fgc (p)eOP'*dp +2g. (p)cep.x (38a)
p

The column vectors C, gc' gd' can be found from Gc (x) in the following way.

We note that

lim (2X)- 3 f X 0x ei,,dx-p (40)

X--OD -x I -X p

Thus,

+rn (2X)- f e'. x d (x)dx gd(•). (41)X--CO x -X - c ,- (P-

Also,

"mr ]C~ (2 9 (42)x_

Finally,

3/2f ik x(2r) [Gc (x) (p)e'x-c]e (Ikdx g (k) . (43)

We now introduce the functions n (p, a) and fJ n(p, a) and the numbers
jne nu b

cJ' (M)

g(p)= (p)-l(N+3) Z Q(p,j n,a )fJ, n(p,a),

jn, agd(p) =(p)-N " Q(p,j,n,a)fdsnpa),

C Z W(j,m,n)cjn(m). (44)
j, m, n

Denoting the components of ge (p) gd (p)0 and C, by gc (py), gd (p, y), and C (y),

respectively, we then have, from Eqs. (34) and (37),

fJ"In(p, a) P p(N 3) j. Q( pna )gc(p,Y),
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~),

cJin(m) -W*(YI j,m,n)C(Y). (44a)
Y

In Eqs. (44) and (44a) it is often convenient to regard fj' n(p, a) and f, n(pa
C - d

as defined for a any positive or negative integer or zero but to require that
fjn,(p a)= fjn(p a )0 for Ia I > j. Similarly, C3 m n (m) is considered to be

defined for all integer or zero m with the requirement that c'n (m) 0 when

Mia > j . The expansion Eq. (38) now becomes

Cý (x W (j,m~n)cj,n (m) +

j, n, - amp

+ (2r)-3/2 QQ(p,j,n,a)eip j,n a) d(')pJc

jna p

When G undergoes transformations (24a), (25a), {26a) of the scale-Euclidean
group, the functions fj' n(p, a) and f0' n(p, a) transform under the irreducible

representations corresponding to the continuo is and discrete helicity representa-

tions, where a Is the helicity. The constants c3i" (m) transform under the irreduc-

ible rotation group representation corresponding to j. The quantity d of Eq. (28) is

given by d -iN, however. Hence, the rotation group representations, although ir-

reducible, are not unitary because the scale transformation is not unitary. Expres-

sion (45) is thus the expansion of a physical quantity in terms of the irreducible

representations of the scale-Euclidean group.

T'he irreducible representations are unitary if the rotation group representa-

tions are absent. For application in differential equations that are invariant under

"the scale-Euclidean group, it is useful to retain the rotation group representations

as a constant contribution. For use in constructing invariant correlations, however,

we need cnly unitary representations.

Since the constant (that is, x-independent) term corresponds to a mean value,

we can eliminate it from the expansion by measuring Gc as a deviation from the
mean value. Thus, correlations of velocities, for example, will be made for veloc-

ities from which the mean value has been subtracted so that the correlations will

be invariant under the transformatione of the scale-Euclidean group. Similarly,

correlations can be coistructed for density fluctuations, and so on.
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That the expansion (45) is indeed an expansion in terms of the irreducible rep-

resentations, and that it is the only such expansion (within unitarity), is tile subject

of Appendix C.

We now consider the expansion of scalars, vectors, and tensors of rank 2.

.1.2 '[he Scalar Case

For scalars, the index y takes on only one value. Hence, it need not be indicated.

The rotation matrix' (9 ) is just unity since the representation of the rotation group

for the scalar is, by definition, the scalar representation. Thu3,

R(8) 1,

W~l,

Q(p,j,n,c) a ,

j - M = a = 0 (46)

The expansion corresponding to Eq. (45) is

di p

G (x) = c + (2e)'3/2feiP'Xfc p) +
f.~ N+3

Spp

Tile quantity c and the amplitudes f (p) and f (1() are found as follows:

fd(p)= pN lim(2X)"f f e .~G(x)dx, (47a)d X-co O - X f- X

c = lim {G(x) -zei).:Zfd(p)p)N} , (471b)
X- OD pd I

fc (p) = (27-3/2 PN+3 f -i pLýf x )

-Z Cei-P'--ýfd(P') (PI)'-NI (x. (47c)
pl d
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In Eqs. (47), all superfluous labels have been omitted. It is noted that the expansion

is just a generalized Fourier transformation, weighted so that the amplitudes trans-

form properly under the scale transformnations.

We can give requirements on the amplitudes that are necessary and sufficient

to make G (x) real. It is readily seen that

* *c =c *' f f C (48)

When (48) is Used in (47),

G(x) 2Re [c + (2T)-32 fe xf(

p

where the plus sdbscript on the integral and on the sum means that only the half of

the p-space for which p Z > 0 is to be used. Any other half of the p-space may be

used in the integration, however.

.1.3 The Vector Case

In the vector case, the index y takes on three values 1, 2, 3, which are identi-

fied with tile x, y, z components of the vector. The matrix R (8) is just the matrix

whose components are given by Eq. (2), and is unitarily equivalent to the irreducible

representation of the rotation group of Eq. (10) for which j = 1.

At this point it in convenient to introduce the unitary matrix V, which transforms

the representation of Eq. (2) into that of Eq. (10). Let the components of V be denoted

by Vim, as

V =I Vim) (50)

where the row index i goe& through the values 1, 2, 3, and the column vector index

goe s through the values 1,0, -1. Explicitly,

l/2(1 0 -1

V (2) 1(/)1/2 (51)

0 -(2 1/2 0
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Then

Svt = V- I

and

Ki = VS1)v , (52)

where the dagger means IHermitian adjoint. Clearly,

W(yi j,m,n) = V ym, (53)

where j = 1, with n taking on only one value and hence disregcrded.

Let us now introduce the vectors VmS which are the column vectors of the ma-

trix V written in vector notation:

Vi = (Vn 1 ,V 2 m'V 3 m) (54)

We also introduce the vectors Q(p,a) for a 0, +1, which in vector form are the

column vectors Q',p,j,n,a ). From Eq. (36),

Q(p,a ) (47r/3)1/2 z V m () (55)
1/2 m i 1 (50)

Let us denote the components of Q(p, a ) by Q i(p,a ) where i = 1,2, 3:

S(p, a) Qi (p,a)}. (55a)

Then the vectors Q(p, a) satisfy the following completeness and orthogonality

relations:

Q (p,a )-Q(p,a ') •a, a,,

7--Q i (P , a) Q it (P' ) - i, it (55b)
a
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Another useful property of the vectors Q(p, a) is

pxQ(p,a)= -ipa Q(p,a),

p - Q(p, a)-- (jai -I)p .(55_c)

The generalized surface harmonies Y 1 (8, j) are given in Appendix D. It is

seen that Q(p, a) can be given explicitly in terms of p in the following way.

p
Q(pI0) --

p

Q(p, a) -a(2)-1/2 [P I(Pi + ia + 1, P I + 'a P2 - ia, p
L pFp + P3 ) - p2 (p +Ti3Y) P +~)

for a = ±1 (56)

When Gc (x) is written as a vector G(x), the expansion (45) for the vector

field becomes

.3/2 dpG~x W V c (m) +(2 7T)- ,2 f Q(p, a) e'-P'Xf (p a) -+-•
:•"~ m"ma c PN3

+ Q Q(pa)e i..... fd(p,a)(p)"N . (57)
ap

The amplitudes e (m), f (p, a ), and f (p, a) can be obtained from G (x) as

follows:

f (Pc(A) = 1) N l (2X) 3 f Ci,, 2 Q*(p,a ) .G(x)dx, (5701X--00 -X -X X . . .

-c ( M) V *., lim G(x) - Q(p, a) 0 ' a )p P' (5ab)
xI,.•CO a p)

^1-

f (), ) ( r-3/2 N +3-3 ipx a
fc -~(ir p fe'~( ~)

.{G(x) - V I Vc (m) - 2(laIetl'x ~l '('-~ (57c)
Ifl a p
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We now discuss the necessary and sufficient conditions on tile irreducible rep-

resentations for G (x) to be real. We note:

V -(-1)1m _ V
Q-.- l - m :

Q= - Pl i-' p Q(p ,a). (58)

Equations (58) lead to the following necessary and sufficient conditions for the

reality of G(x)

c(-ni) c (in)

f(-Pa - ia 2 f(1),a)

f (-_P, a.) = f - iaP2 p a)1) 'a +l P2 f(1 ' )"(9

Then

G(x) z V c(0)+ 2Re [Vlc(l)- (27)3/2 x

-~0

xf I f(I p

ZZ, Q(pa) o --- xi(p,a )(p)-N] (OG)
a p,

We now return to the general expansion (537). We want to show that the (lecom -

position of the x-dependent part into a sum over the helicity variable a is a general-
ization of the w•ell-known lHelmholtz decomposition of a vector into a rotational and

irrotational part.
After defining G (x, a) by

-9 9 ip.' a)
G x, a) --(270)31 f Q(), a)¢ e ~ ' f 1) ) +

a ,(,.,61)

PX~- (~1
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so that

GW(x) = (Vm(m)+ G(x,a), (61a)
in a

we u-- (55c) and have, by explicit calculation,

xG(x, O) 0

V-. G(x,a) 0, for a = t . (62)

Except for a constant term, Eq. (61a) is an expansion of a vector field into rotational
and irrotational fields as in the Ilelmholtz theorem. The theorem is sharpened,

however, i: that there are two rotational fields corresponding to a = ±i. Thus

the expansion of the vector field into thei irreducible representations of the scale-
Euclidean group leads to a generalization of the Hlelmholtz Theorem. Moses (1971)

proached the generalized Hlelmholtz theorem primarily from the rotation point

view, and applied it to a variety of physical problems. In that paper (1971) he

introduced spherical coordinates but did not use the dilation operator.

The general expansion of a physical quantity [Eq. (45)] may be regarded as a

still further generalization of the Hlelmholtz decomposition theorem for vectors.

1.4 The Oise n f l'rnso I r,4 o Iaink 2

The quantities W (y Ij I m, n) of Eq. (34) will now be written W (j, (j,m). rhe
variable n takes on only one value for each j and need not be iroicated.. moml the

discussion of the general case, it is seen that

Wik(J,11) Vi V k,( l,q, 1,q' , l,j,m) , (63)
q, (1 i

where V iq are the matrix elements of the matrix V [Eq. (50) and (51)] and

( I, q' 1, 1q' 1 1, l,j, m) is a Clebsch-Gorc'an coefficient in a standard notation for the

rotation group.

Wc find it convenient to regard the quantities W ik (j, m) as matrix elements of

a matrix W 1 (j,m) :

WM'(J, n) {Wik(J,m)} , (64)

and to regard the components G ik (x) of the tensor of rank 2 as components of

matrix G M W
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G~ 1 (X)= (Ak)} (65)

From Eq. (63),

W Al(0,0) -- -
1 / 2  ! , (66)

where I A is the 3 X 3 identity matrix

WA(1,0) _ (2)-1/2K3,

W i(!,m) 1 .(K 1 + im K2), form ± t-1, (67)

where K are the matrices of Eq. (5).

Finally, 0- o
W 1(2,0) (6)01 / 2  /-1

0 0 2.

w--2,n) - 0 0 im form =±1,

I im 0

w )(2, 2)- W •i2,-2) = • -1 o ,(m

(0 0 0
i We not, that W Ai (0,O) is proportional to the identity matrix, W m(1,m) are

antisymmetvic matrices, and W (2 m) are symmetric matrices. Thuos,

SW .i~llm) W 1, W Im),

(,Xl(" m) %V h 2, m) (6;9)

where tilt, Superscript t mneans transpose. Furthermore, the traces of the matrices
* arte
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tr W M(0,0) (- 3)I/2

tr W M (j,m) 0, forj = 1,2. (70)

The matrices W M (j, m) satisfy the orthogonality and completeness relations

tr WV,(j, m) W 0(J',m') = 8 8

NX Wk(jm)W ik'(J0,M) = 8 i, i,k,(k, (71)
j, m i.kk

hi the first of Eqs. (71) matrix multiplication is meant and the dagger means

IHermitian adjoint.

The quantity Q( y 1L,j,n, a) of the general case is now denoted by Qik(p,j, a).

The matrix ( p, j, a ) is defined as having the components Q k (1, j, a)

Q11(Pj,J a)= {Qik (|p,J,a)

"- 7 [iTrI(2j + 1)] 1/2VW (jm)yl)Y i, a0( ) (72)
m

The matrices (M Ip, j, a ) satisfy the orthogonality and completeness relations

tr Q (p,j,a)Q (Pjj,) =a, 0 ,

X Qik(PJ,a)Qiik,(P,j,a) = 5 i, V k,k' (73)
j,a

Also,

pQ (0 O,0 ) 1/2

tr Q 1(p,,O) 0 - (3)1/2

tr Q N(p, 1, ) tr Qj 1(P 2,a ) 0

Qt 1(, la ) a - Q (1 , 1, a),

-Qt 2, a Q.|(p,2,a) (7-1)



22

The expansion of the matrix GM (x) is

Si ,
SGax) E WA I(j,m"0cJ (m)"-f(2 0" 3/2 zAl /Q(P, j,a)c ... x
Sj,m nj,a

fJ(p,, • Z X ~ (P,j, a c t" f J(), a)P-) • (75)
pc ~ +3 j,a p d

The amplitudes in the expansion are obtained as follows

fJ (p,3) fN ui(2X)-'f+X f+X fXe-ipx
X--OD X _ -X -X

XrQx tv, Q t (p,j,a )GM (:)IX, (7 5 ,)

cJ( In) tr %VW (j,II) lin {GM C x -

jQ1(Pj,a)e2,f(p,a )p N (75b)
ja p

-f J (), a) (27)-31 pN f c- -ii,x~ ti.Q 1(1, j.a

{C;(X) 7 0V1 0,e(11) f ,,(pe1,jl,a 1) Xj ),n j',a p

SOil'. xf -(p',al)( dx. (7c)..

The expansion (75) may be written

C,V (X:) Cj W G• , (76)
J

where
G•,I~~x) "-X WM~(j, m) cJ (m)+ 2r)3/2z ~ ,|,~~ ~

m

X fI (p, a) - Q ),ja ) Xj i 1)* -N
fc N.
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It is well known that a tensor of arlbitrary vank 2 can be written as tile sum of

a tensor that is proportional to tile unit tensor, an antisymmet'ic tensor, and a

symmetric tensor of zero trace. In to -'-ms of the matrix notation for tile rank-2

tensor we have, itn fact,

GCl(x) C; (x) ) + GS(X) (761b)

AI tr ~, 4~A x+Sx)

where the matrices G tr' GA' and GS are given by

G thx [tr GM (x)] / II

GAW -I (.x)- [G t (x)oA 2Io [A,(l) M A

,s( X) L- (G + , x) G(X) - v Ctr l G~(z)] IM (76 c)

It is seen that Eqs. (76) and (76a) represent generalizations of the decompositions

(76b) and (76c). Furthermore,

0 1 G 2 W G X) (76d)

4 From Eqs. (76) and (76a) it follows that

. 0(x) - 3) G 1/2 L x , (77)

wvier

~~~- / ix 1) (,. (I- , fp,'' ¢< ) •• x2 2
C c ( 2-- - + v (_ f r(pf) l)" (77a)

e - pN+ 3 () 0

In Eq. (77a), c c 0 (0), fcp) f f0 (0(,0), f (p) = f0 0)

Fronm Eq. (77) it is veadily seen that when ( W) transforms under the rank-2

r(i)p(sentation of t h, scale- E,:uclidean group, 0 (x) transforms under the scalar

r(eprese1ntation of thilt group. 'Ihe( converse is also true. Moz'eover, Eq. (77n) is

just th( expansioin (07) of a scala r in the irreducible representations of th(e group.

IHeneC, the( dis(ussionl of CI () for j = 0 is equivalent to the discussion of theIM
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scalar case.
It should be noted that

CG (3).'(/2 tr G 1 (x) (77a)

We flow show that the decomposition of the antisymmetric tensor G 1 I x) into
N1 I

the irreducible rep"esentations of the group is entirely equivalent to the decompo-

sition of the vector representation. By explicit computation,

W 23 (l,m) = - i(2)=1/2Vl1,

W 31(1,m)-- - i(2)-1 / 2 V2m'

Wl2(I'm)=-- i(2)- /2V3mr. (78)

In Eq. (78), Vim is the matrix element of Eq. (51). Since the matrices WM( 1,m)

are antisymmetric matrices, the components of the matrices that appear in

Eq. (78) are the only nonzero ones.

From E qs. (72) and (55) it follows that

Q2 3 (p,l,a .i(2)' 11 2 Q 1 (,a),

S2)-1/2 (3Q 3 1 (plG i( Q2 (p a)

Q 1 2QI l,a ) - i(2 1 / 2 Q 3 (p,a) a (79)

Again, because of the antisymmetry of the matrices QM (p, 1, a ), the only nonzero

independent components are those that appear in Eq. (79).

Now, a necessary and sufficient condition that G I (x) be antisymmetric is that

there exist functions G i (x) such that

0 G. 3(x) -G, (x)

GlI(x) - i(2)"1 / 2  -G 3 (x) 0 G (x) (80)

G,2 (x) -G(X)
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Let us define G(x) by

(--y= {G((x-) G2 (x) . (81)

From Eqs. (76a), (78), and (79),

Gx) z V' Vm c I (m) + (2 rT)-3/2 f Q(p,a) e i-p-x,,, fI (p', ""p +

m c p

+• Q(pa)c.,Zifý ,(p, a)p-N (82)

A necessary and sufficient condition that the antisymmetric tensor O I W

transform under the rank-2 representation of the scale-Euclidean group is that

G (x) transform under the vector representation. The expansion (82) is just

Eq. (57), that is, the expansion of a vector in the irreducible representations

of the group. Thus, the expansion of the general rank-2 tensor includes as

special cases the expansion of scalar and vector functions.
The remaining tensor (x) of the expansion (76) is symmetric and has zero

trace. The matrices QM (p, 2, a ) can be obtained from Eq. (72) using the explicit

forms of , ) as given in Appendix D.
For convenience we define

a" = sgn a,

q = P/P ,

• 7 7 1 4 1 ioq 2 (83)

2 -3a- 2 3(

QI(p, 2,0) 6- ( 1/2 -3-917) 1-3 22 '723

-3 71, '93 -3 '72"73 1-3"73 2
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Ql 1(p,2,a)-- 0_ 7a X

•1 7? 17 r ?3 TI / '7 2 (1 T 73) - ( -2 )+V--'"--

2 2q
77 7, + ao

2 20 + 71 3) 172 7+ 3 1 71311
[X 713 71, 11.11 401 1 1+ 7

( I - 271) 1+113] - 2 11 a 1 (1 1

for a j± (85)

Trhe ind(ependet cel ents of p, 2, a for a 2 are the following

1 Z 2, a) - 1 0. 2 1-3 2,

9

(F.-

2 )1 2 1+n3

~1( ,2 a 1 . (- , k- i '1- -• 11 j 3. (11)

2 7(1 3)2 1+ 9
Q3 1 )(, 2, a) 1 2 2 (1 711- 43) 21 1 )

2(11

Q 1)(, 2, a)-(1 )2 17 9 j0- TF 1-13) (86)

2 327
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We now discuss the case where the tensor is real. Since G° (0) and G 1 (X)

are equivalent to the scalar avd vector representations, which already have been

discussed, we need concern ourselves only with ON, (s). From Eq. (68),

W 2, (,) 0 m W ( , -i) 
(87)

Furthermore, from Eqs. (87), (72), and (A16),

Pl "(•P 
88)

Q AlI(-.p,2,a) = -- ,+ p QIM (pp'2)a)

For G 2 (x) to be real, we have

c 2(_m) -p c 2 0[0 )

2 p 1 iG 9  2
P i P2 [fe(P,a)3 *+ .

(8)

2 ~ 1)+1- 1 2 p -fd('P')a) f Pi + laP2

For real Gg (x) we can then write

2() ',oe (X)zW(, o) ., 2 l~ (0 [121cWM(2-,10c 1) +

+ W 2, 2)c 2 (2) + (27r) 3[/2+fQ(p,2,a)e!pox

f() pa) (P,2,a)f (p'a)(p)N (90)
, i +3A+ (~ (I



28

5. ItELATIONSIIIP OF TIiE IfIllEEDUC1IILE ItEPIlESENTATIONS IN THE EXPANSIONS OF SCALAIHS,
VECTORS. AND HANK-2 TENSORS. OIBTAINEDI FROM ONE ANO'IllEIl THRIOUGII
DIIFFERENTIATION: SOLU'I(JN OF 'ilTE FIUNDAMENT'AL, EQUATIONS

;. I I ntrodueiicini

Trhe gradient of a scalar yields a vector, and it is useful to know tile relation-

ship between the irreducible representations of the scale-Euclidean group that ap-

pear in the expansion of the scalar and those that appear in the expansion of the

vector. The divergence of a rank-2 tensor with respect to one of its indices also

leads to a vector, and it is also useful to relate the irreducible representations ap-

pearing in the expansion of the tensor and those of the vector.

More generally, divergences and gradients of physical quantities lead to quan-

tities that have different transformation properties, and it is useful to know the rel-

ationship between the expansions of the original quantities and these obtained

through the use of the derivative operators. The usefulness is particularly apparent

when it becomes necessary to solve invariant linear partial differential equations

such as occur in electrodynamics or linearized fluid mechanics, where gradient,

divergence, and curl operators appear. When the expansions for the physical quan-

tities are introduced, the differential operators modify the amplitudes in what is

seen to be a simple way. The differential equation then becomes a relatively simple

equation for the amplitudes.

To obtain the vector whose divergence is a given scalar, we obtain a relation-

ship between the amplitudes of the vector and the scalar. We may in fact solve for

the amplitudes occurring in the expansion of the vector in terms of those for the

scalar. Effectively, this is to solve a differential equation for the vector in terms

of its divergence. Similarly, differential relationships between tensors and vectors

can be considered as differential equations which are solved by means of the expan-

sions in terms of the irreducible representations.

For simplicity, we assume that the x-independent term (that is, the mean) is

zero and also that there are no periodic terms. In terms of the general expansion

('15) we take

c j, n(m) = 0, f J'l ,n a
0 (I 'a) 0 (9l)

Ve then have the condition lir G (x) = 0. This case is of particular interest

when it is ji cessary to solve differential equations in which the solutions have

finite 'energy.' The more general case is also troatable and uses a straight-

forward extension of the techniques that follow.
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U.2 Vector-Scalar Relations; SScalar Potentiads

Let u(x) be a vector of dimensions LN. Under the conditions discussed in

See. 5.1, it will have the expansion

d pu(x) = (2rr) .3/2Z fQ(E, a ) cip-xl' ) N+3 "~ 092)

a p+

Let us define the scalar p(x) by
p(x) = V-11(x) .(93)

The scalar p (x) will have the dimension LN- , and its expansion is thus

p(x) = (2r)-3/2 eiPdxg P) "(4

p

Our objective is to find the relationship between the amplitudes g (p) and f (p, a
From Eqs. (92) and (93) and the second of Eqs. (55c),

-3/2 ipx(P, de
ap

dp
-- (270-3/2 (-i) fei-p'Xf(pP0) N+2 " (95)

From Eqs. (93), (94), and (95) we obtain

g(p) - if(p,0). (96)

Equation (96) is the result we were seeking. It should be noted that the two ampli-

tudes are proportional, the constant of proportionality being independent of p and

hence a pure nun)ber. The simplicity of the result is due to our being careful to

use the proper expansion for the vector and the scalar. It is also to be observed

that Eq. (96) can be used to solve the differential Eq. (93) for u(:-) when p(x) is

given; however, u (x) is not unique -ince f (p, ±- 1) are arbitrary.

Let us now consider the case where the vector u (x) is obtained as the gradient

of a scalar ý (x), that is,

u(x) = V(ý(x) .(97)
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As before, we take u (x) to have the dimensions LN and the expansion (92). But now

(x)s the dimensions L and its expansion is

¢ ( x ( 2 r) 3 /2 f ip . x h d p

~sw = (0flf) e -feiQ *h(p) Np (98)

From the first of Eqs. (56),

- 3/2i f h) e ~~~n(p ) N+ 3(99)

pN3

Hence, the desired relation between the amplitudes is

f(p,a) =0, forct :±I

f(p,0) -ill(p) . (100)

From the first of Eqs. (55c) it is clear that

Vxu(x) = 0 , (101)

because generally

312 d p

ufpa Q(p,a)eiJ2*zf(I, N+3 (

The converse is also clearly true : If u is irrotational, that is, satisfies (101),

then the first of Eqs. (100) holds. So a necessary and sufficient condition for a vec-

tor to be irrotational is that the first of Eqs. (100) holds.

If the vector u is irrotational, the second of Eqs. (100) can be used to find a

scalar potential h (x) such that Eq. (97) holds. 'Thus, for a scalar potential S (x)

to be found such that Eq. (97) holds, a necessary and sufficient condition is that

u(x) be an irrotational vector. This statement is of course part of tile Hlelmholtz

theorem.
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5.3 Vector-Vector itelations; Vector Potentials

Let u(x) be the general vector expanded as in (92). We wish to relate the rep-

resentations of u(x) to those of v(x), where

v(x) = VXu(x). (103)

Since v(x) is of dimension L , its expansion has the form

-2r3/21 d p
v(x) e 12 7 r)'3/ ý Q(pa)N (104)

P

Using Eqs. (102) and (103) we obtain the relationship between the representations,

which is:

k(p,a) a f(p,a), (105)

and in particular

k (p, 0) - 0. (105a)

From Eqs. (104), (105a), and (95), with N replaced by N - 1, it follows that

SV. v(x) = 0, (106)

that is, v (x) is solenoidal. Conversely, if we wish to solve Eq. (103) for u (x) when

v(x) is given, we must have (105a), or equivalently, (106). We may consider u(x)

as a vector potential from which v(x) is obtained.
S* We have thus proved the following portion of the Helmholtz theorem: A neces-

"sary and sufficient condition that u(x) be a vector potential for y(X) is that Eq. (106)

hold.

( We note, however, that in constructing u(x) from v.(x), eO) is arbitrary if

Eq. (106)or, equivalently, (105a) is satisfied. The contribution to u(x) - u(x..a)

[see Eq. (57a) for notation] , a

u(x,) Q(PO)e f(pO) (107)

is thus also arbitrary.
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The term u (x, 0) is the gauge of the vector potential, which is usually chosen

so that u(x) satisfies desired conditions in addition to Eq. (103). Our procedure

enables us to explicitly separate the gauge portion of the vector potential from

the part that is essential for obtaining v(x).

If, as in electromagnetic theory, we identify v(x) with the magnetic tield [ for

which (106) always holds ] , u(x) is called the electromagnetic vector potential and

the choice of the gauge is of some importance in simplifying problems.

5.4 Vector-Tensor R1clationis

Let us consider the tensor G(. {Gij (x)} . The quantities ui (x) and

v i (x), defined by

-7 G.. (x) OG.()(x)~x Gij()
uti - . dx . ' v i~ -- dx . (108)

V 3 3 3

are components of vectors u(x) {u i(x), z (x) {v 1(0)} . The relationships

between the irreducible representations contained in the expansion of G 1 (Q) and

those contained in the expansions of u(x) and v(x) will now be given. The results

can also be used to solve Eq. (108) for GM (Z) when either u(:) or v (x) zre given,

although G M (x) will not be unique.

Actually, we obtain a better result. We decoml , :e the tensor into its unit, anti-

symmetric and symmetric parts, as in Eq. (76b) or, equivalently, Eq. (76), and

find the vector expansion corresponding to the use of (108) for each part of the ten-

sor. Let us take GM (x) to have the dimensions LN, and write

G(x) ( 2
7r)' 3 JQ(pja)epg* (pa) N+3 (109)

p

We define the vectors u3 (x) and vj (x) by

S.... k k

K 
(vZ = (v(SJv aC 1k(110)S~~ l i ~ k ax k
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SThe vectors uj (x) and vj (x) will have expansions

312 fedpuJ• 2r'/ a ]'~i2xjpa N+2'

P

-3/2 d_
vJ(x) (27r)' Q(P,)eip's(P, (111)

a N+2p

Then it can be shrwn that

r 0(p,a) s 0(p,a) (3)' 1/2i 8 g 0 (112)

1 1 -1/2r1 (p,a ) -s (p,a) (2)" a g (pa), (113)

2 (pO) s 2 (p,0) = -(2/3)' 2ig2(1,O) 2 (114)

r2(~a 2 L)a) (2/)-1g/(.,2

r ~2 (pa 2 (1,a) -(2r 1/2 ig 2(p,a), for a = ±1 (115)

In Eq. (112), g 0 (p) . 0 (LQ,0). Equation (112) is proved trivially.
- :-To prove Eq. (113) we write G W(x) as in Eq. (80), with

~ 1 dpG W)= '2 ir)'3/2 z• Q(P'a )ei-p 'xgl(p'a ) N3(116)

a f P

[set, Eq. (82)]. Then for j = 1, The first of Eqs. (110) becomes

u (x)= -v (x) =(2) 1 2 1VxG(x) . (117)

Equation (113) follows from Eq. (117) in the same way that Eq. (105) follows from

Eq. (103).

Equations (114) and (115) are proved as follows. From the first ot Eqs. (110),

(1! 1), and (109) , together with Eq. (72), we have, after taking Fourier transforms,

EQ .p, .2 i(4( - /2 ,(pm)€ m'a 8,)g 2 (p,a ) , (18)
a a m
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where a p, m) = {o 1 (Pm)} is a vector whose components are defined by

T i(Pm)=Z (pk/p)Wki(2, m). (l18a)
k

By explici' computation, we can show that

•(p, 0) - a(p, m) = (2/3) 1/2(01 7r /5)l1/2y m,0 (8,0)
2

1" -/2 )1/2 m'a

(pa). O(p'm) - (1/2)2 (4 /5) ' (8,0), (a ±). (119)

In Eqs. (119), V,9S are the polar angles of p, as usual.
The relationship between r (p,a ) and g (p, a) follows from the first of

Eqs. (55b) and (119) and the orthiogonality relation (All). The other relationships
of (114) and (115) are s imilarly obtained.

Let us now consider the casp where a tensor is formed by differentiating a vec-
tor. Let tile components of the tensor G 1 (x) { Gik (x)} be obtained from the
components of the vector w(x) 1w (x)}W as follows:

Gik(X) = aw (120)

Let us assume that GM (W) has the dimensions LN and therefore that the expansion
(109) is valid. The vector w (x) will have the dimensions LN+ 1 and hence tile ex-
pansion

WW•' -- (2f7rQ-3/2 (pQa)eC-I'Xk(p, a) N+ (121)
.. ' N+4(1)a p

We shall show th-it the expansions of G, (x) and w (x) are related by

0 1-1/2g (p) (3) ik(p,O) (122)

(1,a) 2)- 1/2iak(p,a) for a ± 1, (123)

g (1),0) =0 , (124)

(1),0) - (2/3 1/2ik(1, 0), (125)
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g (p,a) -(2)-/2ik(pa) for- a=-t,+ (126)

g 2 (p,a) 0 , for a = t2 (12')

To prove the above results we first note from Eqs. (76c), (76d), and (120) that

G 0(x) I (l3) 1mV-w(x) , (128)

[6%1 i(x) awk(x) 1
G W () -2 (129)2• a 2 Xk axi

G 2 W i=xZ) + x) 2 ik-LW(X (130)ik- xk + .0xi "3 " k Y(x

To prove Eq. (122) we use Eq. (77), with

0 dp
G(Z) =(27r)-32 eip' g 0(p) N+3 (131)

p

Then Eq. (128) leads to

G(x) -(3) 1 / 2 ,.W(X) (132)

Equation (122) then follows from IEqs. (132) and (121) just as Eq. (96) follows from

Eq. (93).
To prove Eqs. (123) and (124) we use Eq. (80), with

f z J&' 1 d EG W) = (2 7r)-/a f9(),'a )eiP*- -g (/E~) N.3 (133)

a p1 +

It is easy to see that Eq. (129) is the same as

e (x) -Eqs (2)- i a Vx w((2 ) (134)

Then Eqs. (123) and (12,4) follow fr~om (13,4) just as Eq. (105) follows from l"q. (103).
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To prove Eqs. (125), (126), and (127) we introduce the matrix CAl (p),a)

={Cik(pQla)}:

Cik(,) • 2 lkQi(-Pla)+ -'00k1", )"3 Bik Sa,01 I - -12p 5

Equation (130) is equivalent (after taking an obvious Fourier transform) to

('fr /5)12 ZT WM (2,m)Ym' 8( ,0)g 2 (p,a

=i Z' C 1 (p, a) k (1), a) (136)

a

But by explicit caiculazion we can show that

trw;f (2,m) C (p, a) (2) 1/2( (l4/5)1/25) 1/.( ) am±I.11 - Y 2 , ) - " ,

trW 1 ( 2,m)C> (p,0) (2/3)1/2 (ff/5)1/2 Y0 M '2 (0,0) (137)

Equations (125) to (127) then follow directly from Eq. (71).

6. IN I:IA I'lloIl (:'I'S. (:COlt II .l Al'iONS. Al\"'OC:OIIIIEII IAO\S,
%I1A(ANITIt IS Oi' PII1 SIC(AI. QI r'ANIIIIES

6. I torrel t in.n Ihitv.en 'lenw . (if the Same fluk

Let us consider two tensors of the same rank, which we write as column vec-

tors ( c(x) and 1 (x) . Let Gc(x) be of dimension 1, and II C( x) be of dimensiom

1M. The quantity Gc W will be taken to have the expansion (0l5) Ie (~x) will be

taken to have a simiJar expansion but with cjn (In), f'u ( p, a), fJ'd (p,a ), and N

replaced by d(' n (m), kJ' n (1p, a ), kJ n (1, a ), and M 'respectively.

We wish to introduce an invariant inner product between G (x) and 11 (x). It

was see.n that c'n1 (m), and thus d3 'n(i), transform as nonunitary rel)re.,entations

of the scale- Euclidean group. I Ionce we me-'i-ire Gc (x) and II (x) from the mean

and set c' (in) Z(I n(i) n) 0 . An obvious inner product that is invariant under

all transformations of the group-including the scale transformation- and satisfies
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the usual requirementsof an inner product in Hlilbert space is

if- , Ij 1 d

(11, G) =*Z Z Ij!.x ' 1 pa ) f3  a n

k 1, kd 1 (1), a ) fjd 1 p,a) (138)

In particular', ( G, G)1/2 Mi (G) will be called the magnitude of G ( x) and used as

a measure of this quantity, which is independent of the frame of reference and the

units of length used.

We take over the arguments of Part I for using the inner product (I1,G) as a

corrk.lation. A\ccordingly, we define the correlation K (11, G) between 1I c (xý) and

CG (,) as

K(If,G) (11,G) (139)

Further, we define the correlation coefficient C (II, C) as

C('11,0) = K(iI, G) / [M(II)M (G) (140)

Ilor each transformation of the group we introduce an autocorrelation and an

autocorrelation coefficient. The translation autocorrelation (TAC), written A (G, a),

and the translation autocorr(Ildtion coefficient (TACC), ritten a e defined

like their one-dimensional analogs:

A(G,a) K (G,T(a)G)

Ac (G,a) C(G, 'r(a)G) . (1')

"These quantit'os compare a tensor wvith itself when it is neiasured in a coordinate

system r hose origin with respect to the original coordinat(e system is shifted by

the vector distance a.

Again, as in Part 1, the scale autocorrelation (SAC), written 13(0,X), and the

scale autocorrelation coefficient (SACC), written 13 c (, X ), are (lefined by

13(C,,,X)• K< (,S(X)G,) I

1 C(C.,x) c ( G, S(X)(} . (1,12)
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These quantities compare a tensor with itself when it is 'stretched.'

The third autocorrelation, which we call the isotropy autocorrelation (IAC), is

denoted by I ( G,8 ), and the cot, responding isotropy autocorrelation coefficient

(IACC) by Ic (G, e). These are defined by:

I(C, 8) K (G, (1) )G

Ic ( ,8) C ( ,,(i e) ,). (1,3)

These quantities compare a tensor with itself when it is measured in a rotated

frame of reference. If the tensor is isotropic, then IACC is unity for all 8.

(Although it can be shown that such tensors have trivial properties, we do not go

into this in detail in tile present paper.) More generally, the range of 0 for vOdch

the IACC is near unity gives a measure of the isotropy of the tensor- the larger

the range, the greater the isotropy.

We believe that the IAC and IACC will be very useful in defining a degree of

isotropy of tensors and we hope to make use of them in later papers. The one-

"dimensional analog of the IAC and IACC is the comparatively simple autocorrel-

ation and autocorrelation coefficient denoted by D and Dc respectively.

6.2 Dhetail'd (:orrt* Lioii,, (:oirrelations Bh,|t% ni| " 4)eor, uf IDifftreiii IlNAL-,

In Sec. 6.1 we introduced correlations between tensors of the same rank. We

used an invariant inner product (138) that resembles Parseval's theorem for

Fourier series or integrals. There is, however, a more fundamental inner product

that is invariant, namely, the inner' product (29) or (31) for the irreducible rep-

resentations. This inner product is, in an obvious sense, the minimal invariant

inner product.

We now introduce the notion of sets of detailed correlations and detailed cor-

relation coefficients for two tensors. Let G(x) and If (x) be column vectors cor-

responding to two tensors, with the same expansion as before. Instead of requiring

the two tensors to be of the same rank, however, we now allow them to be of differ-

ent ranks, and therefore have different values, for the variable n. We fotrm pairs of

irreducible representations, one member of each pair being taken from the expan-

sion of G (x) and the other from II (x). To each pair we assign a correlation, as

follows. The correlation is zero if the value of the helicity variable a of one mem-

bev is different from that of the second menmber, or if one metalmber is a discrete

rel)prCsentation and the other is a continuous representation. Otherwise, the correl-

.1tion between thle pair kd, " ( p,a ) and fJJ 1)( ,a ), denloted by K (k,j, ni; f,j',ni':G ) is:SC C
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K (k, jn. ;f, it, n' _ j , ''c (P ,a( a) d . (144)

Likewise, the correlation between the pair kcJn (IP, a ) and f (I , a )is given by
J" P f Jnp, a)(4a

dk,i, n ; f, P, n':a)-- k ('nQp0a) 4a)

P

The set of detailed correlations for the tensors G c (x) and 11 0 (x) is the set of
correlations thus constructed. We can now ask for the set of detailed correlations

between a scalar and a tensor of rank 2, for example, or for the set of correlations

between a vector Lad a tensor.

A special case is that for which I1c (x) =_ Gc (x). Among the correlations for

a tensor of rank 2, for example, will be j = 2, a = 1, and j = 1, a = 1. Correlations

of this type are clearly significant.

We can also introduce magnitudes of the irreducible representations in the

following obvious way :

I cl (f,j,n:a ) = Kc(f,j,n; f,jn:a )] 112

f (I(f,j,n:a) = [Kd(f,j,n', fj,n:a )] 1/2 (1,)

We now also introduce sets of detailed correlation coefficients between IIf (x) and

C (x). The correlation coefficients are zero if the correlations are zero. Otherwise,

K (k,j,n; f,j',n':a
C(k,j,n; f,jI,nt:a) = ie(k,j,n:a )\Ief, j,,n,:a) ,

K(k,j,n; f,j',n':a )

C (k,j,n; f,j',n':a = d(k,j,n:a)Md(f,j,,n':a . (146)

Sets of detailed autocorrelations and autocorrelation coefficients associated

with the transformations of the group can be defL~ed iin an obvious way. For the

sake of brevity we om1it the details.
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Appendix A

Irreducible Representations of the Rotation Group; Generalized Surface Harmonics

A I. JACOBI PIOLYNOMIALS

The Jacobi polynomials P (a R) ()x) are defined and their properties givenn
elsewhere (see, for example, Szego, 1959). For convenience, we define the closely

related polynomials S (j, m, mi', x) as:

S(j,m,m', x) =P(m ,mm+n')(x) , (A1)j-m

where j is any nonnegative integer or half-odd integer, and m and m' each take on

the values of - j, - j + 1, .... ,j - 1, j . From Rodrigues' formula for the Jacobi poly-

nomials (Szego, 1959):

S(j,m,m',x) ()j - m 2 m J - (m - in) (l+X)'(m 4-n)
(j-m)!

X I [(1- x)j-M ( I+x)j]+ (A2)

ddxj 
m
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An alternative expression, given in Moses (1965b), is:

S(j,m,m',x) ( 1 )j- 2 m -j I [- X)]m (A3)

\2. THIE IIIIIICIITI.IE REPIIESENTI'ATIONS OF TiIlHE R0('%'IION GHIOI P

The expression for the matrix elements R (j) (0) (m, m') is

R ( j ) ( 0(!m ,0 [ j m ) ( + m ) , ] / 2 ( n i) m vm

/-(m')n(j+m')! x

m -min

x M e cosi + i "- sin S(j,m,mz) , (A,)

where

e ~ V 818)12 cos e 8318) (M;)

.%3. C;l1"I'ElMR\,IZEI SIFII: CIE IIAllIM NICS -%\IITIIHI{ IqII PROPE TIES

Generalized surface harmonies are defined by

.m, m,(8, € 1m - m'(,/2) m t(2 j.,.- ) /7]-/ x
J~~~~~y i •]" ' " . m

X [ +Cos o &].•..S(j,nr.m.,cosO) , (A5)

"where 0 <O8< r andO' 40 < 27r

Let e be a vector:

8 8(cosk,sin ,O) . (AM6

-- -------
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Then

S(J) (R) ( MiM')nm [404/ (2j +1)] 1/2y-n, m'*( 8 ,4)• (A6a)

That the surface harmonics reduce the infinitesimal generators of the rotation

group in the helicity representation is perhaps their most interesting property. Let

e and € be the polar angles of a vector x = r (sin e cos (k, sine sin o, cosO) . The

operators J i are defined by

J 3= [-i(x XV) 3+m')]

X (x ) k + m for k = 1,2 (A7)

IL3

The operators J i satisfy the commutation rules Eq. (6) for the infinitesimal gener-

ators of the rotation group.

In terms of polar coordinates,

J, [i(siný a +cot~coso)- )+mlcosotan ,

J2 [i(coso-2-cotOsinOn )+m'sin~tan-

3 -184) (Aa)

Then

SY M M( )n,m( j)
JiY''j (8' n= .jY -,)I(nm.A8

The integrated form of (A8) can also be given. Let - be the unit vector, which

in polar coordinates is

7= (sin cos), sinOsin t ,cos0) (A9)

Let 77' be the unit vector obtained from 7) through the rotation

7' (-=) it (A9a)= M
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and let 8 ' and ' be the polar angles obtained from i) ' through Eq. (A9). Then the

integrated form of (A8) is
ym,m 8,'=x[2 im'db)f(02)]? Y n'm' (0, 0)R (J) V(n, m), (A9b)

whe'e 4(R0,77) is given by Eq. (31a) .

Further properties of the generalized surfpze harmonics are

ym$0(8, SO =jm (8,0), j an integer, (AWO)

where Y.m (8,0) are the usual surface harmonics in the notation of, for example,

Edmonds (1957),

f72 Yd fowdOsin .ey n(, 0) ym', n(,' ( 8 j,,)=m8 8 (All)

m n m, n*

Y Y (9.n(V )Yrn ,( sin0' = 8(=)8 (- -)') (A12)

j-IIn m=-j

m yn )y m,n'* ](A3
Y. (0, n(0,•) [(2j+l)/4]B ,n'

.yT,n(o ,q)yT',n*(8,O•) = [(2j~l)/4,r] 8or" (AM4

n=-j

y mn (8, ý) . (_l)n'm yn m*(0,) WO(15
3 3

Y nj( 4 )~+ne 2 i yjm'n (O,cj). (A16)

3 3
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Appendix B

Derivation of the Irreducible Representations of the Scale-Euclidean Group

We now obtain all irreducible unitary representations of the scale-Euclidean

group in the usual separable Hilbert space. These are the irreducible rotation

group representations of Sec. 3.1 and the continuous helicity representations of

Sec. 3.2. The discrete helicity representations (Sec. 3.3) are obtained from the

continuous helicity representations by going to a nonseparable H|ilbert space. The

irreducible unitary representations in the separable Hilbert space are tile only ones

in such spaces. There may, howevee, be other representations in nonseparable

ilUbert spaces. In tile nonseparable IHilbert spaces, tile particular representations

that we have chosen allow us to include functions that have periodicities among the

physical quantities we have been studying.

II. I PIHLIIMINAIUlES

We shall be using the infinitesimal generators of the representations of Eq. (20).

From Eqs. ( 1 7a) and (18) it follows that

[S(X),Ji] = 0, S(x)P i e" P S(x) . (Bi)
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Furthermore, from the multiplication rule for the rotation group q. (16)],

R(I) R (8) = R (8) R (S1), (132)

where

at= RM (-8)n. (B2a)

Thus,

R (-J)(s-.J) R (8) = -"~~J , (SMb)

which finally leads to :

R(-8)JR(8) = Rr (e)j (132_c)

From Eq. (19), we have

R(-Q)ERQ() =R (8)P (B3)

112. TilE IRREDUCIBILE RIOTATION GROUP i0EPItIEISI"N'I'ATIiNS

Since the HIermitian infinitesimal generators ?i commute, they can be diagon-

alized simultaneously. We consider two mutually exclusive cases. In the first

case, the simultaneous eigenvalues of P , which we denote by p = (p 1' p 2, p 3 )1

have the value p = 0 in the spectrum. In the second case, they have the value p 1 0
in the spectrum. The first case leads to the irreducil-,e roution group representa-

tions, and the second leads to the continuous helicity representations.

We consider the first case and designate by I y) all linearly independent si-

multaneous eigenkets of Pi having the simultaneous eigenvalue p= 0. This variable

y should not be confused with the variable y that was used to label the rows of

G as in Eq. (32). Then

Pily) = 0 (B4)

or, equivalently,

Pl Y) 0. (14a)
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Lemma
The ket I Q) is also a simultaneous eigenket of P that has the eigenvalue

p = 0. Likewise, S(X)IY) is such an cigenket.

Proof

From (B4a) and (B3),

R(8) i Y) =R(Q) R 1(ý)EJi Y) 0. (135)

L.kewise, from (B1),

S (X) e e' S(X ,Z ) P 0, (B6)

which completes the proof.

Thus, the Hilbert space is an invariant space corresponding to the eigenvalueS0 of P. This is the carrier space for the rotation group and for the scale operator
S(M). Since the oae-dimensional scale operator commutes with the elements of the
rotation group, we can diagonalize it and simultaneously reduce the rotation group.
Clearly, if there is more than one representation of the scale group and one of the ro-
tation group, the rel.resentation of the direot product of the representations of the
rotation and scale groups-and hence the representation of the corresponding scale-
Euclidean group-is reducible. Thus, the only irreducible r'epresent~tions are those
for which the rotation group has an irreducible representation characterized by the
number j anC for which the scale group has an irreducible representation such that
the infinitesimal generator D has the single real value (I in its spectrum.

11:1. 'lHIP (.ON'I'INI 01 S III,:II(:'IT I PIEIIESI TAVi'IN.S

In this case the opet ators P i have a simultaneous eigenvalue q 1 0. We denote
tlhe simultaneous cigenket by I q) . Then

Pi i > :q, I q (137)

Lemma
The point q 0  (0, 0, 1) is in the simajltaneous spectrum of P1

*1I
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Proof

Let the ket I W) be defined by

IW) R•(-A)S(r)Iq) (138)

where A is given by

A o, A= IAI, q=-(q- -- sinA, q2  q---sinA

q 3 qcosA, q I (139)

and

r = logq (1310)

Then from (131) and (133),

Vr Pi I w > Re - -A) (-A)S(r) IP3~

jj j( l

Then from Eq. (2), (139), and (1310) it follows that

P 1 jw): P2 \Vw -, P31w) -- x\) . (1312)

Hence, W is an eigenstate of the operators P P with the simultaneous eigen-

values given by (I and the lemma is proved.

WVe now let Iy ) be all the linearly independent simultaneous eigenkets of P
having the simultaneous eigenvalue q(1" The variable ), is used to label the linearly
independent kets, as before. We then define the kets L, ),:

It, S(-m > (1313)

A . '
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where w and p are given in terms of p as a one-to-one correspondence by

30 w , p1 - 2-sinw, P2 =p-'sinfl ,

P3 pcos w, /- logp. (B134)

Theorem

The kets .p, X) are simultaneous eigenkets of P i, having the eigenvalues p,

that is,

P ip pi PP' " Y(B15)

Proof

The proof is very similar to the proof of the preceding theorem.

The following theorem is obvious for separable Hilbert spaces.

Theorem

The spectrum of the operators P i is continuous. The simultaneous eigenvalue

p ranges over the entire three-dimensional p-space. Any eigenvector 11) that

satisfies P iI p) = p ip) is a linear combination in y of the kets 1I), Y-)

Strictly speaking, p = 0 is not in the spectrum of the operators P i; however,

one point in the continuous spectrum is of zero measure and of no importance.

From Eqs. (B15), (19a), and (20),

T (a) YP)' = ei a pp, Y). (BI6)

Equation (Bl6) shows us how the group element T (a) is represented in this basis.

We now find the representations of the remaining elements of the group in the same

basis. We first find the representation of S(X). From the commutation rules (17a)

and Eq. (B13),

where, from Eq. (131t),

, 1..,' : o- t

p e
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or finally,

S( ) , y)[p y • e"X p, 7> (1317)

To tind R(8) in this representation for arbitrary . is much more difficult. We

first find the infinitesimal generators J i and then integrate.

Lemma

The ket J 31 Y) is a simultaneous eigenvector of the operators P i' with the

eigenw.lues given by q 0  (0, 0, 1).

Proof

We have P i I) + . The lemma then follows
from the commutation rules of Eq, (21).

Since the kets Y " ) are all linearly independent kets having the eigenvalue qo,

it follows from the lemma that J 31 Y> is a linear combination of the kets I Y

Hence, we write

J31r> ZY g (Y'•) " ' Y)s

In Eq. (BI8) we have assumed that y is a discrete variable. Actually, we can

use any measure function for y that is compatible with the separable Ililbert space.

Definition

Let us define the operator rVl acting on the kcts p I)

ii

It ik to be noted that M commutes with P and SW(). To find J Fq. (132) is

used to obtain

exp fiaj .3] 1), Y exp [iPJ 3]I1 W) exp[- iAJ3 JS(-z.exp i;h'j J >

I ,(W'):;(-X)exp [iPa,] I p Y

1,



5]

or,

exp [i/j3J3 ]1 -P,' exp [1Pem] E' "Y )(1320)

where

wl = WlCOS3 + w2 sinGf,

w2 = w2-Cos w, sin/3

w' = 3 (B20a)

and p' is related to w' as p is to W Esee Eq. (B14)] . Ience, by Eq. (B20a),

PI = P 1 cos/G+p 2 sinf',

P' 2  P 2 csG - plsinG,

P P3 (B20b)

Now, from Eq. (B20),

J 3IPY- {-i exp[ii 3  Y1,8 0

- {-Y-I •"'~,) 0 =o+ xMIp,>

Finally,

J 3 !p•,y):{(px V) + A1} P, Y (1321)

since

{OI'.)}fa•l:o I 0 ='o. (1322)
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w.J~~~~py)' f{iR~w~()y} 1 *{ (1323)

where

w t2 Wa

P' = "P-.---sin , -p--•-nw P' Pcosew . (B23a)

SFilally, from Eq. (B14),

( p 1 JI P z J )u ' ' " i [ ' p 2 +-- "( P * ) p , . (P2 ,1)"01) 3 Pf 3 (-P (B24

Having obtairtod (pt1 J 2 - p 2 Jd) 1p, y), we now find (p1 J1 + P 2 J 2 )Ip~r)
We shall then have two equations in f ) I > ) a p, r) which we can then
solve simultaneously.

From Eq. (B2c),

exp (iw.JJ (wxj) exp &JJ)
3 =tý-J 3CosC -wi :J.in w

~~~ "J i3 ~ 
3.... (1325)

From Eqs. (1313) and (B25),

Ss) ) 2 = "• s cos, , sinfo.M y w 
(B x -'

CO 2w(wxi IPIY> J OS0)1, y 4-() SilWA (1326)



53

We can now solve Eq. (B26) for (wxJ)31p,y) . Using Eq. (1321) for J 3 1 ],Y), and

Eq. (1314) to replace w by p, we have

(p 1 J1 + p 2 j 2)1p pr) = [-ip 3 (pxV)3 + (p.-P3)M] v ,r Y). (B27)

Solving Eqs. (B24) and (1327) for J 11 Py) and J 21 P'Y) , we finally get

-1: J2 L),' Y) (-PxV) 2 + Y(127

From Eqs. (B21) and (1327),

SY- ) p 'M (1328)

or,

AM (PJ)( P)-, (1328a)

where the operator P is defined by PP, pX p) jP,y . From (1328a) it is clear

that M is a Hlermitian operator. Simce M is independent of P il it is possible to find

a transformation in the y)-space such that AM is diagonal, that is, spectrally repre-

sented. With this choice,

NI Jp,) " a(y)Jp, Y) , (1329)

where a (y) is a real function of y. We are led to the following lemmas.

L.emma

For an irreducible representation the variable y can take on only one value.

lence, a (Y) =a is simply a real number.

Proof
If X took on more than one value the operators T (a), S (X), and J i would map

into themselves subspaces corresponding to two different values of y . By defini-

tion, then, the representction would be reducible.

Lein ma

The constant a can take on only integer values (positive, negative, or zero).
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Proof

For irreducible representations, Eq. (1320) now reads

e.p [i'J 3] e )I ' /1 (130)

where p' is given by Eq. (1320b). From the group multiplication laws, however,

exp [i 2 rJ 3] = I, where I is the identity operator. On setting . 2 7r, the lemma

follows immediately.

We finally give R(O) in this representation:

* R(0) 11) exp[- 2i2 (-,Fia )] ( 1-( )8,) (B31)

In Eq. (1331), ' (6,i) is given by Eq. (30a)

To verify Eq. (1331) we write

Ri1()jp), (B32)

where 8 as usual, and c = 9/8
A first-order differential equaiion for I p,ao) is, on using It () exp lie.j

• lpe i (0- -J:, ) I P,',8 > (1333)

It is readily shown that the only solution of Eq. (1333), subject to the condition that

), 0,c > p ) , is the righthand side of Eq. (1331)

Since the kets I p span the Ililbert space, the identity is given by

I= f I p>< 1) (1334)

M•rho, a (p) is a positive function of it.; arguments, determined by the requirement

that the representation be unitary.

Lemma

The function a (p) is given by

a(p) 1p ) (1335)



Proof

From Eqs. (1331) and (1334)

i di p

f exp [2 iaz4)(-6,A1 I it(___,) d (1336)

Hence,

dp
[it(e)= f exp2 i a 71,)] 1p it (O~q)p I- L (1337)

But

dd

or

R(e)R ) fjRM1 (e)p ()R ()p (p) (1338)

in Eq. (1338) we define the new variable integration k as

Nk = R,( 9 )p, dp = dk . (1339)

After substituting into Eq. (B38), we replace the dummy variable k by p). Then

Eq. (B38) becomes

fP (1340)

Comparing Eqs. (B-10) and (1331) shows

a ( p ) = a Pl M - )p( B )

for all Q. Let us pick 8 w of Eq. (131,I). Then

a(p) a(0,0,p) - c(p) , (13,12)
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that is, a (p) depends on p p P only. Thus, we now write

(I p
"f JP)( P I c-p) (B43)

Now, from Eq. (1317),

cd p
sM ) = s )-, I f s(X)l > p P,- d2

d p

fle" p) (p • (144)

Thus,

)JPx f e pI (345)

and

or,

-d p

,, ~ c(p) ' (1646)

In Eq. (B.16) let us define the new variables of integration k as

kZ e-x p, (1k = e 3X dp . (1347)

After using the new variable of integration in Eq. (1340) and after replacing the
dummy variable k by p, we have

I f I p < p ,l ,•
, c(exp)

Then, from Eq. (1343),

c(P) = e' 3X e xp). (B11 9)
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Equation (B49) is true for all X. Let us pick X -- , where /± is given by
Eq. (B14). Then

c (p) 3 3 C p3D (B50)

where D =- c (1) is a positive constant. On replacing the kets [p ) by D /2p the

lemma is proved.

The adjoint relations of Eqs. (1316), (B17), and (B31) are

pIT ( ia p

(pIs( x) -- (eX( R ,

Let us denote an abstract vector in the Hilbert space by IX ) and its representative

in the basis by U(p), as

fp ~() ) px)X (1352)

Then, since

T(a)f(p) p - T(a) IX), S(X)f(p) p (p IS(X) I >)

1 () f (p) ( pIR() x

Eq. (3) follows immediately f,,om Eq. (1351).

Likewise, the invariant inner product of two vectors lX ) and X') is, from

Eqs. (B34) and (1335),

t (x'l x)( > 0'l1x)

dp

where f'N(p) (p X') is just the inner product Eq. (29).
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1.1. THIE I}ISC]ETE IIEIITII' III-IRESENT'IATIONS

The discrete helicity representations that we shall use are given in a nonsep-

arable Ililbert space. They are obtained from the continuous helicity representa-

tions by replacing the continuous variable p in the function f(p) by a discrete var-

iable and by requiring f (p) to vanish except for a denumerable set of values of 2 .

The group elements in these representations are required to have the same form

as in the continuous helicity representations but the inner product is changed to

correspond to Eq. (31) in order that the representations may be unitary.

Without going into detail, we remark that the infinitesimal generators P i exist

in these representations. They are IHermitian and have a discrete spectrum consist-

ing of the entire real axis.

I
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Appendix C

Derivation of the Expansion of Physical Quantities in the
Irreducible Representations of the Scole-Euclidean Group

We.shall now derive r-q. (45), which is the expansion of a physical quantity in

terms of the irreducible representations of the scale-Euclidean group. The expan-

sion is unique if we restrict ourselves to expansions in a separable Hilbert space,

that is, to those for which fd n a ) 0.

Let us first expand G (x) of Eq. (32), as follows:

G (x, y) = W ( y I j, m,n) 1, J' n(x, m) (C1)
j,m, n

We now expand 11.,n (x, m) in the irreducible representations of the scale-Euclidean

group and then substitute into (CO) to obtain the expansion of the physical quantity

0c (x). For simplicity, let us drop the superscripts j, n on ,j, n m).

We regard II (x,m) as the abstract vector IX ) given in a representation in a

space spanned by the kets x, m, Thus,

II(x,n) (x,mI X) (C2)
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From Eqs. (24a), (25a), (26a), and (34), the group acts on the bras K x,mI in

the following way:

<x,m IT (a) =Z.+a,ml

m x,mjS(X) = e NX e-X x,m

(x, m R( !) = X '(J)( 8)(m,m') (R M(-8)Xm' • (C3)
m

The expansion of If (x,m) is

d p
<x, rI i -- X x,-mk, m >k, m'jX +. f x, m p, a <p, a X)-- +

k, m a ~ 3

+Zmx, mjppa)(p,a] . (C4)
a p

In Eq. (C0) the kets Ik, m ) are the kets spanning the space for the irrcducible

rotation group representations of the scale-Euclidean group, where k denotes the

representation of the rotation group that is involved and m is the vartable m = -k,

-k+l ... , k-l, k. The representative (k, m x ) is c k(m) in the expansion (45).

We have suppressed the index n here and shall often suppress it in what foflows.

The kets I p, a) are the kets of the irreducible continuous helicity represen-

tations for helicity a . The kets I p, a) are the corresponding kets for the discrete

helicity representations. The representatives( p, a IX ) and (p, a IX )aare the func-

tions fJ, n (p,a) and fJ ,n (p, a), respectvel:y, in the expansion (45).

Our objective is to find the transformation kernels ( x, m I k, m') ; ( x, m 1, a);

(x,mI2, a) .

To find ( x, mI k, in') we note from the discussion in Allnendix 132 that [k, ')

can be so chosen that

T(a)Ik,rm> = Ik,m ), S(X)lk,m = e lk,m),

R(0) k,m ) . R(k)( )(m',m)lk, m'). (C5)
m'
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From Eqs. (C3) and (C5),

( ,m IIT"(a)l k, m'> = (x+a, i Ik,ml) =xmk,mn' > (M6

for all a. In the second of Eq. (C6) ,re take a -x. Then

( x,mlk,m') = G(k) (mm') , (C7)

and is independont of x.

Again, from Eqs. (C3) and (C5)

m x Im R() k, ni > -" it, (J) (8) (m, m") 11 ( xm" k, m'

it • (k) (8)(m",m%)x nil k,m", (C8)

m

On using Eq. (C7), we get

•, •(J)(8) m, m ") G(k) (ml",m 'l ) it • , (k)(Q)(G. ",n') G (k) (M m ")I (C 9)

m m

Bckause the matrices that represent the rotation group in different representations

are linearly independent, as are the t.us and columns of such matrices, it follows

that

G (K) ( m, m') = C mmj,, (CI0)

Wiere C is a cojistant that may depend on j and n. This constant can always be set

equal to unity by ab)sorbing it into (k, ml X ) in the expansion (C.I). Thus, our final

,xpression is

( xml Ik'm') - ni i' W((1)

Vi now aant to find l]th value of (I in IEq. (( 3), which will comlhplet, th( dIsc ripl-

ioln of fh: rvelrt svintalion of tihe scale- l'uclidean group. I ,on l'qvo . (('( ) and ((C'),

'~r ~)f ~iIlýx, ') i'I x, il k, m', 1 M in)" x, m vi') - e x m]k ' .(('12)
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On using IEq. ( we 1) we have, finally,

(I -iN . (c13)

We shall now find Kx, mIn p, a ) Lt us use [a) to denote the ket for which
1p (0, 0, 1) = q. Then, from Eqs. (Cl6) and (CO),

(x,nm I T(a)l ,> <+a,, a>-) e.,p :• , m. ., a (C1,,)

for all a. Now leta - x. Then

" x, mla e eitG(m,a) , (C5)

where G (II, a) 0( , m1 a) is '-"dependent of x
IVrom Elqs. (C30) and (C3),

X [• Iml exp [iJ J 3 a) e " Il, a> ) xŽ a n I ) > (C.16)

where

Sx -z, x N xCos8- x Sill x - Cos+ x sill W1 (;aI)3 32 1 2(2 2a)

Using (C15) and (C1161, we now have

exp [(Im -oa )O] .(m, a C01, a) (MI?)

for all 0. It follows that

G(m,a) ('(a) 8m,a

,and

•x, ni I a e C(a,) (CU1O•
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Now, from Eqs. (C13) and (C3),

(x,mjp, a x,m I R(w)S(-P)I a)

e--e"Z R• ) lJ o)(m,m')(x',m'[a) , (W19)

where

x'-- e iRM (-W)x. (ClI9a)

On using Eq. (C18) in Eq. (19), and also using Eqs. (C14), (A5), and (A6a), we get

N px()N .p -X• m,ak ,,, r ,• • ,• 1/2
m (x, Im ,a) p -N C(a)eiP X R( w)( )(m ,a) = p-N C~a) e,- 1 /2-]-'p

(C20)

where e, ý are the polar angles of p, as before. By zedefhing ( p, I IX) the

quantity C (a ) can be set equal to ( 2r)-

The transformation function ( x, in Ip, a) is found in the same way as (x, m 11), a)

and has the same functional form.

Finally, on substituting the expansion (C4) into Eq. (Cl) with the explicit forms

for the transformation functions, the expansion Eq. (45) is obtained.

'¢

---1
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Appendix D

A Table of Generalized Surfnce Harmonics for j =0, 1, 2

y 0,0 - /2
0

1 y) 1 1 3 1/2 o )

1,0 ( e, ) = -(8)1/2 (3/ 7)01/2e si n ý a

1'- yl,-l131tr)Ii e1l cs9

01 -(/, 1/2 -io

0,-1 1/2 2
YI (0re)- -(8)" (3/ page silan

Y-1,1 /2 11 2 e' i (- )

•=•o preceding page blank
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Y I1 0 (9,0) M( - (3/ ri) -
6 sinO

-1, -1 ( 1/2

1 1/

y 2,(0,) -L(5/,r) (1+cos 8)2

2 ' 8I
y'; Y22, 21 8,6) = __-( 5/,) 1/2( lc osin (I )2 s

24
i} ~ ~ ~ , Y•lc)-(/2 )I/2e 2inO 2eco8

Sy 0(e, = (3/32) 1 (5/r)1 e sin2

2 /

Y 2 ,-1(5,/) -T(5 /) ( sin8(1-cos )
?2

S2, 1 (5/.,r) /12 eti (1.Cos ) 2

1,2/2 /2

Y2  ( ,p) ,- ( 5/,) /e- C sine l+cos O)

2 1, 1 (8, _(5/.,) 1/2( 1 +cos )(1 - 2cos O)

1,0 •, ) (/1 1/9 3 ¢

Y2 (3/ )1/2(5/7T) 1/2 e sill 0 Cos

1, -1 1/2 1/2 -i
y: Y (6, ,0) = 1 (5/,) (1 cosOX I+2cos )

21 1/

y: tY 2 (8 0• ) = --- ( /r ) S/2 c i O i, 0(l -c os O )

y• y0,2(80, -) =(3/32) 1/2 (/ )1/2 0-.2 i(P il

2

y--,1Y2 ( (,A) -" (3/8) 1/2 5 /TO1/ e - i sill 8CosO

2 -),0(5/-) 1/2(1l-3co)s O)
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•0-,1/2 11'2 i€

2 0 , ) ( -(3/8) (5/7T) sin 8 cos

2

2 ,-y1(5/y,) 1 / 2 C-( 3 i4, sin 0 -cos8)

1/2 -3i
4
5O (..o

y 1 1(0,5) 0 co(58)) 1/2 + cos 8)

y 1, 0 (6, (3/8) 1/2(5/ 7)1/2e i- sin8cos4
2

Y2-1, 1 (8[Tr) ll 12 (1l1cos8)(1 - 2cos 8)

-1 -2

Y22,2(oo) L(5/7r)l1/2 C i(1-cos e)

1 1/2

Y-2,1 (e0 ) -L (5 / )Sil O S1eo

-2 11 /21/2

Y-2,0 0 0332 1/2 (57T 1/2 C- 2osiS22,_1

-2 ,- ) 1/ 2 sh- ( + CosO)

2-2 1/2 1 + o )2%• Y22''2 (e, 0) = (/7r)l/(+o

•22
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