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Abstract 

We present a procedure for finding the  shortest route between all pairs of 

nodes  in a network.     Oar approach is quite  simple,  but is highly efficient for a 

special class of network problems.     In particular,  this class of networks subsumes 

a number of networks which appear in real world application.    For instance,  the 

Polish government has developed a network model for water resource analysis which 

is in this class of networks. 
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1 Introduction 

One of the primary types of shortest route problems is the determination 

of the shortest route between all pairs of nodes in a network.    Although others 

(e.g., Floyd [k], Dantzig [l], Hu and Torres [8], Land and Stairs [9],  and Yen 

[10]) have proposed very efficient procedures for solving such problems we present 

a different approach.       Our approach is quite simply,  but is highly efficient for 

a special class c.  networks.     In particular,  this class of networks seems to sub- 

sume a number of networks which appear in real world applications.    For instance, 

the Polish government has developed a network model for water resource analysis 

which is in this class of networks.    Also,  the Texas Water Development Board has 

2 
a network model for water resource simulations which is in this class.      Still 

other members of this class  include product distribution problems for large in- 

dustries such as the automobile industry. 

2 Background and Mathematical Development 

Hu and Torres [8] developed a decomposition algorithm, which is a modifica- 

tion of Hu's algorithm [6], for obtaining the shortest path between all pairs of 

nodes in a sparse network. Yen [10] has modified their procedure to enhance its 

computational efficiency. The algorithms developed by Hu and Torres, and Yen assume 

a network N that contains no negative cycles and that has been decomposed into m 

linear overlapping node  sets A,   B,   ..., H or N = A U x    U B U x    U • • •  G U x    U H 

where x  , x ,   ...,   are the minimum cut sets for A,  A U x.  U B,   •••>  respectively. AB A 

(See Figure 1.)    Furthermore,  as indicated by Figure 1,   a path of finite distance 

can exist from a node   in A to a node in H via nodes  in x.,  B,   ..., xn.    Thus,  these 
A u 

models are designed to reflect the situation in which it is likely that a path exists 

from any node to any other node in the network, and the methods of [6, 8, 10] expend 
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'r'irripütaii(ina.l effort to exploit this i'at.-t.  It Ic our experience, however, thaH 

r.wli  paths wi J1 not exist for a lar^e number of node pairs and further that such 

paths only exist for node pairs in the same "region" of the network. 

Consequently, it seems more appropriate, at least in certain applications, to 

consider a decomposition of the network that arises by Identifying node sets such 

that every node in a given set lies on a directed path from one or more "origin" 

nodes in this set. For a collection of node sets so determined, we may associate 

with each one a unique arc set which contains a given arc of the network if and only 

if that arc lies on a directed path from an origin node to one of the other nodes in 

the node set.  In particular, it is easy to see that the arc set will consist pre- 

cisely of every arc which has two nodes of the node set as its endpoints.  (This 

allows a directed path from an origin node back to itself.) Moreover, it is possible 

to determine the node sets (e.g., by an appropriate specification of "origins") so 

that the associated arc sets are disjoint and, in fact, create a natural partition 

of all of the arcs of the network.  (The node sets, on the other hand, are not disjoint.) 

We can further, if desired, identify a decomposition of the network so that each 

node set has precisely one origin. However, this will not be essential to the task 

of specifying an efficient shortest path algorithm for the network. Our goal rather, 

will be to constructively identify a decomposition of the form indicated (if one is 

not given a priori) and then to prescribe a simple extension of a known shortest 

path calculation which exploits this decomposition in a computationally advanta- 

geous manner. 

By the way of an overview, the strategy underlying the constructuve creation 

of the desired deccmpositi n may be loosely described as follows. Our construction 

proceeds by "dividing" each of the previously indicated node sets (other than the 

first and the last) into three 



components x.   ,,  A.,  x.   such that for i even the origin nodes of the sets aU   lie 
i-l      11 

in A.   and there are no directed paths from nodes  in x.   n   to nodes in A.   and no 
i r i-l i 

directed paths from nodes in x. to nodes in A. and the origin nodes of A. , lie in r i i ^ i+l 

x.. This refinement of the basic decomposition occurs in a completely natural man- 

ner and permits further improvement of the shortest path calculation for the total 

network. Moreover, the origin nodes are implicitly generated as a byproduct of the 

construction, and the method explicitly identifies sets of nodes which comprise 

minimal cut sets for cumulatively generated subnetworks.  in particular, x. is the 

minimal cut set for the subnetwork An 1) xn U A0 U • • • x. n U A,. 1   1   2 i-l   i 

To begin, we construct the first node set A by selecting an arbitrary node 

to be its (unique) origin and then fanning out from successor to successor to find 

all nodes to which this node connects by a directed path. Assuming that A., does 

not include all nodf»" of the network, there will remain some nodes that are not yet 

':reached" at this point. Since the network is connected some of the unreached nodes 

must hr.ve directed paths to some of the reached nodes. We next construct the sets A , 

x. , md A^ as follows. First find all nodes in An which have arcs incident into them 
it: 1 

fvom some node not in A... Let x.. denote this set of nodes in A , and let A = A - 

x . Next let A initially consist of all nodes not in A  which have arcs leading 

into x . Now add to A all nodes that have arcs leading into nodes currently in A?. 

The process continues in this fashion until no new nodes can be added to A?. Thus 

A0  consists of those nodes not in A which have directed paths leading into x, • At 

this point either all nodes have been reached or the remain !ng unreached nodes have 

no directed path to the nodes in A.. U A-. The set x is then constructed to consist 

of the nodes not in A.. U Ap which have arcs leading into them from nodes in Ap. We 

then let Ap = x U Ap U Xp. 

Next X- is constructed to consist of i.odes that can be reached via a directed 

path from nodes in x . Using TL we construct A , A_, and x as follows. First find 
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all nodes in X, which have arcs incident into them from nodes not in x9 U X. • Let 

x denote this set of nodes and define A = X- - x and A_ = xp U A U x . 

Continuing in this manner the nodes of the network N will be decomposed into 
m 

ra linearly overlapping sets A,, A , ..., A such that N = U A.. At the same time 
i=l 

v;e identify m - 1 node sets x. where x is the minimum cut set for the subnetworks 

A, U x, U Ap U ... x -, U A .  Furthermore for odd i, there exists no directed paths 

between nodes in ... and x  .  However, for i even, there may exist such paths. 

This decomposition is graphically depicted in Figure 2. In this type of decomposed 

network, if a directed path exists from some node k in A., where i is an odd number, 

to another node j, then J is also in A.. Furthermore, if i is an even number, then J 

is either in A. .,, A., or A. .. Thus if a network decomposes into several sets A., 
i-l  i     i+l r i' 

considerable efficiency can be gained in obtaining all shortest paths. Networks 

which decompose into several sets have been termed by the authors regional networks. 

While it is not obvious that networks will decompose into several A. sets, the 

authors first observed that some randomly generated networks which were being used 

to test the computational efficiency of different minimum cost flow algorithms de- 

composed into regional networks. This observation was occasioned by the fact that 

the dual start method in [5] essentially performs this decomposition. Later the 

authors observed this fact in the water resource models discussed in the introduc- 

tion and in product distribution models in the automobile and oil industries. In 

general, the likelihood that a network will lend Itself to such a decomposition 

seems mere transparent if one observes that in a large multi-source, multi-sink 

network not every sink can be reached (normally) by each source. 

"j A Mathematical Procedure For Constructing the Decomposition 

We shall now specify mathematically the procedure for decomposing a network N 

into sets of nodes A., A., and x. such that if i is odd then a node in A. can at most 
111 1 

reach other nodes in A. and if i is even then a node in A. can at most reach other 
1 .1 



nodes  in A.   ..,   A.,  ur A. ,,.     And x     is the minimum cut  set for the subnetwork A l  \J x. 
i-l      i i+l r .11 

U Ap U  ...  x        U A .     Tn addition, when i is odd,  there exists no directed paths 

between noden in x.   and x    ,.     However,  for i even,   such paths may exist. 
1 1+.L 

Using the follovfing we define a decomposition procedure which accomplishes this 

segmentation of the network(or determines that the network is disconnected), we 

let 

U = set of nodes in N which have not yet been assigned to some A.. 

A = set of all admissible arcs in N. 

n = number of nodes in N. 

Initialization 

Select an arbitrary starting node t.    Initialize the sets V'  = {t]  and U = 

{i:   i = 1, 2,   ..., n,  i / t}.    Set 1 = 1,^,  = {t},  and proceed to 1.1. 

Part I 

1.1 If the set V = {j:   (h,  j)   <; A, h c V, j r UJ  is empty, proceed to 

1.2;  otherwise set   u = U - V and V'  = V. 

1.2 If V is not empty,   set K.   = 'K. [} Y and return to 1.1.     If U is empty, 

set A.   = 'K.  and A.  = x.  . U A,   (where x    = 0)  and stop.     If V is empty,  set x.  = 

(j:   (k,  3)  r A,  o e X,  k e U},  A^^ = X  - x^^ and ^ = xi_1 U Ai U xi (where x0 = 0); 

if x.  =0 stop because the network is disconnected.    Otherwise,   set 1 = 1 + 1, 

V   = X   =  {k;   (k, J)   e A,  j  e x       ,  k e U)  and proceed to Part II. 

Part II 

II. 1 If the set V= {h: (h, j) 6 A, h c U, j c V} i- empty, proceed to II.2; 

otherwise set U = U - V and V = V. 

II.2 If  V is not empty, set %.  * %. [} V  and go back to II. 1. If U is empty, 

set A. = H.  and A. = A. U x. . and stop. If V is empty, set x. = {j: (k, j) e A, 

k € Tf., i  e U), A. =%.  and A. = x. .. 1) A. U x.; if x. = 0 stop because the network 
i' " i   i    i   i-l   ii     i  r 
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is disconnected. Otherwise set i = i + 1, V = ?L = {j: (k, j) G A, k e x. .., J e U) 

and proceed to Part I. 

Since the decomposition procedure is a constructive process and is Justified by- 

straightforward considerations, we shall omit its proof for brevity. 

k      A Shortest Path Calculation For the Decomposed Network 

The problem of finding the shortest path between all pairs of nodes in a con- 

nected network waich has been decomposed by the foregoing procedure can be solved 

quite simply by the following approach: 

1. Using Hu's triple operation [?]> determine the shortest distance between 

all pairs of nodes in each subset A. for i odd. Using the distances determined in 

the preceding operation for nodes in the sets x., apply the triple operation to de- 

termine the shortest distance between all pairs of nodes in each subset A. for i even. 

2. Next determine the shortest distance from each node k in each even num- 

bered set A. to each node j in A. n IJx. „or A.... Ux.., using the following: i 0 i-l   1-2    i+l   i+l    D 

a) if k r A. and j c A.  U x  , set d  = min    {d  + d .) 1        i--1-   1"c;     KJ Kp   pj 
1-1 

b) if k c A. and j  e A.,n U x.in, set d. . = min     {d,  + d .) 
i    0        i+l   i+l     kj kp   pj 

pex.      r        ^0 r
 i 

where  d. . denotes the shortest distance from node i to node j and by convention if 
ij 

no path exists from node i to node j, d. . = + ». 

The proof that the above procedure yields all shortest paths between any pair 

of nodes in the network follows directly from the decomposition procedure. 

Recall that if :i is odd, then any node k r A. can on]1, reach other nodes in 

Ä..  Thus applying Hu's triple operation [T] to A., yields all shortest distances 

from nodes in A. to all nodes in N.  If i is even, then any node k f A. can only reach 
i i 

nodes in A. ,, A,, and A. _.  Thus by using the shortest distances between nodes in 
i-l  i     i+l 

the sets x. and applying Hu's triple operation to A. yields shortest distances 
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between every pair of nodes in A..  Further, Step 2a will yield the shortest dis- 

tance between any node k c A. and J e A. 1 U x. _. This follows from the fact that. 

d . and d,  are already shortest path distances (since the nodes p and ,i are both in pj     kp v .f    o 

A. ,, and the nodes k and p are both in A.). Thus if the minimum is taken over all 
i-l r i 

p f x_.  , then the shortest distance is obtained between k and j since any path from 

k to j must use a node in x  .  A similar argument may be used to verify that Step 

&b will yield the shortest distance between any nodes k < A. and ,1 e AJ , U x, ,.  By J ' i    ^   i+l   i+1   J 

the decomposition of the network, Steps 1, 2a, and 2b account for all possible direct- 

ed shortest paths, and the justification is complete. 

j  The Efficiency of the Shortest Path Algorithm 

To examine the efficiency of the shortest path algorithm, we shall compare it 

to the modified algorithm developed by Yen. Assume that the node sets A, B, ..., H 

(m-sets) and A-, A0, ..., A each contain u nodes, and the subnetworks x., xT. ..., x^ x 1  2     m A  B     G 

and xn, x0. ..., x . each contain v nodes. 1  27     m-1 

In Yen's algorithm, the total number of computations required is approximately 

?    p 2      2 2    2 1 
rau + (m + 6m - 7)u v + (2m + 10m_20)uv + (m + 6m - l4)v    (1^ 

additions and comparisons. For the shortest path algorithm of this paper. Step 1 

requires roughly m(u + 2v)  additions and comparisons and Step 2 requires roughly 

m(u(u + v)v) additions and comparisons. The total number of computations is then 

less than 

op       2     3 
mu + Tmu v + l0,muv + 8mv (2) 

additions and comparisons.  Clearly the amount of computation required in (2) is 

significantly less than that required by (l). The number of comparisons required to 

decompose the network are omitted in the count of (2) since Hu and Torres and Yen as- 

sumed a priori the desired decomposition of their network.  However, this number may 

be identified as follows.  If one assuir.es that for each node there is a list containing 



8 

all  its immediate successors and a list containing all its  immediate predeeescors, 

then the number of comparisons required to decompose the network is 

2 2 
2mu    + 5muv + 3mv (3) 

where these comparisons are simple logic comparisons (i.e., checking to see if some- 

thing is equal to zero).  It is clear that the amount of the computation of (2) and 

(3) combined is still significantly smaller than the amount of computation required' 

in (1). 

I 
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i'ootnotes 

Fpr an Intercctihg survey of the types of shortest problems and their si>Iu1i"ri 
procedures see Dreyfus [2] and Elmaghraby [3]. 

Richard Barr, Fred Clover, and Daxwin Kllngman worked with the Texas Water 
Development Board to develop more efficient procedures for solving minimum 
cost flow networks' and shortest path problems. 
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