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Abstract

We present a procedure for finding the shortest route between all pairs of
nodes in a network. Our approach is guite simple, but is highly efficient for a
special class of network problems. In particular, this class of networks subsumes
e number of networxs which appear in real world application. For instance, the
Polish government has developed a network model for water resource analysis which

is in this class of networks.




1l Introduction

One of the primary types of shortest route problems is the determination

of the shortest route between all pairs of nodes in a networlk. Although others
(e.g., Floyd [4], Dantzig [1], Hu and Torres [8], Land and Stairs {9], and Yen
[10]) have proposed very efficient procedures for solving such problems we present
a different approach.l Our approach is quite simply, but is highly efficient for
a special class ~. networks. In particular, this class of networks seems to sub-
sume a number of networks which appear in real world applications. For instance,
the Polish government has developed a network model for water resource analysis
which is in this class of networks. Also, the Texas Water Development Board has
a network model for water resource simulations which is in this class.2 Still
other members of this class include product distribution problems for large in-

dustries such as the automobile industry.

2 Background and Mathematical Development

Hu and Torres {8) developed a decomposition algorithm, which is a modifica-
tion of Hu's algorithm [6], for obtaining the shortest path between all pairs of
nodes in a sparse network. Yen [10] has modified their procedure to enhence its
computational efficiency. The algorithms developed by Hu and Torres, and Yen assume
a network N that contains no negative cycles and that has been decompoused into m
linear overlapping node sets A, By, ..., Hor N = A U x, UBUx,U ... GUxX,UH

where x .+., are the minimum cut sets for A, A U Xy U B, ..., respectively.

A X
(cee Figure 1.) Furthermore, as indicated by Figure 1, a path of finite distance
can exist from a node in A to & node in H via nodes 1in xA, Bl XG- Thus, these

models are designed to reflect the situation in which it is likely that a path exists

from eny node to any other node in the network, and the methods of [6, 8, 10] expend




2
computational effort, to exploit thic fact. 11 iz our experience, however, tha
surh paths will not exist foir a large number of node pairs end further that such
paths only exist for node pairs in the same "region" of the network.

Consequently, it seems more appropriate, at least in certain applicationo., t
consider a decomposition of the network that arises by identifying node sets such
that every node in a given set lies on a directed path from one or more "origin"
nodes in this set. For a collection of node sets so determined, we may associate
with each one a unique arc set which contains a given arc of the network if and only
if that arc lies on a directed path from an origin node to one of the other nodes in
the node set. In particular, it is easy to see that the arc set will consist pre-
cisely of every arc which has two nodes of the node set as its endpoints. (This
allows a directed path from an origin node back to itself.) Moreover, it is possible
to determine the node sets (e.g., by an appropriate specification of "origins") so
that the associated arc sets are disjoint and, in fact, create a natural partition
of all of the arcs of the network. (The node sets, on the other hand, are not disjoint.)

We can further, if desired, identify a decomposition of the network so that each
node set has precisely one origin. However, this will not be essential to the task
of specifying an efficient shortest path algorithm for the network. Our goal rather,
will be to constructively identify a decomposition of the form indicated (if one is
not given a priori) and then to prescribe a simple extension of a known shortest
path calculation which exploits this decomposition in a computationally advanta-
geous manner.

By the way of an overview, the strategy underlyineg the constructuve creation
of the desired decompositi n mey be loosely described as follows. Our construction
proceeds by "dividing" each of the previously indicated node sets (other than the

first and the last) into threec
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components X 90 Ai’ X, such that for i even the origin nodes of the set: all lie

1
in Ai and there are no direc*ed paths from nodes in X1 to nodes in Ai and no
directed paths from nodes in Xy to nodes in Ai and the origin nodes of Ai+1 lie in

X, This refinement of the basic decomposition occurs in a completely natural man-

ner and permits further improvement of the shortest path caiculation for the total

network. Moreover, the origin nodes are implicitly generated as a byproduct of the

construction, and the method explicitly identifies sets of nodes which comprice 4

s

minimal cut sets for cumulatively generated subnetworks. In particular, X, is the

minimal cut set for the subnetwork Al U x1 ] A2 Wh ot 0 & Xi-l U Ai'

T T T

To begin, we construct the first node set Kl by selecting an arbitrary node

to be its (unique) origin and then fanning out from successor to successor to find

S aadas

all nodes to which this node connects by a directed path. Assuming that Kl doesg

not include all nodec of the network, there will remain some nodes that are not yet
"reached" at this point. Since the network is connected some of the unreached nodes
must hrve directed paths to some of the reached nodes. We next construct the sets Al’

X and A2 as follows. First find all nodes in A, which have arcs incident into them

1’ 1

from some node not in Ki. Let x, denote this set of nodes in Kl' and let £, = Kl -

Xy Next let A2 initially consist of all nodes not in Kl which have arcs leading

into Xy Now add to A2 all nodes that have arcs leading into nodes currently in A2.

The process continues in this fashion until no new nodes can be added to A2. Thus

A2 consists of those nodes not in Kl which have directed paths leading into Xy At

this point either all nodes have been reached or the remain’ng unreached nodes have
no directed path to the nodes in Kl U A2. The set X, is then constructed to consist
of the nodes not in Ki U A2 which have arcs leading into them from nodes in A2. We
then let Ké = xl U A2 U x2.

Next KB is constructed to consist of 17des that can be reached via a directed
, A

, and x_ as follows. First find

3

path trom nodes in x Using K3 we construct A

2’ B
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x., denote this set of nodes and define A. =4, - x_ and & = X, UaA

3 3 3 3 3 3 3

Continuing in this manner the nodes of the network N will be decomposed into

all nodes in X which have arcs incident into them from nodes not in X, U 13. Let

Ux
-— - - m...

m linearly overlapping sets Al’ A2, oblg Am such that N = 'Sl Ai' At the same time

we identify m - 1 node cets X; where X, is the minimum cutlset for the subnetworks

Al U X U A2 U-.-eo X1 U Ar. Furthermore for odd i, there exists no directed paths

between nodes in oy and X1t However, for i even, there may exist such paths.

This decomposition is graphically depicted in Figure 2. In this type of decomposed

network, i a directed path exists from some node k in Ki’ where i is an odd number,

to another node j, then j is also in Ki' Furthermore, if i 1is an even number, then j

is either in Ki-l’ A, or Ki+1' Thus if a network decomposes into several sets Ki’

considerable efficiency can be gained in obtaining all shortest paths. Networks

which decompose into several sets have been termed by the authors regional networks.

While it is not obvicus that networks will decompose into several Ki sets, the
authors first observed that some randomly gcnerated networks which were being used
to test the computational efficiency of different minimum cost flow algorithms de-
composed into regional networks. This observation was occasioned by the fact that
the dual start method in [5] essentially performs this decomposition. Later the
authors observed this fact in the water resource models discussed in the introduc-
tion and in product distribution mrdels in the automobile and oil industries. 1In
general, the likelihood that a network will lend itself to such a decomposition
seems mcre transparent if one observes that in a large multi-source, multi-sink

network not every sink can be reacted (normally) by each source.

3 A Mathematical Procedure For Constructing the Decomposition

We snall now specify mathematically the procedure for decomposing a network N
into sets of nodes Ki’ Ai’ and xi such that if 1 is odd then a node in Ki can at most

reach other nodes in Ki and if 1 is even then a node in 1\i can at moel reach other




nodes in Ki_1’ Ai’ or Ki And Xr is the minimum cut set for the subnetwork /\J U x

+1° 1

U A2 U eoe xr-l U Ar. Tn addition, when 1 is odd, there exists no directed paths
between nodes in % and LAY However, for i even, such paths mey exist.
Using the [ollowing we define a decomposition procedure which accomplishes thin

segmentation of the network (or determines that the network is disconnected), we

let
U = set of nodes in N which have not yet been assigned to some Ki.
A = set of all admissible arcs in N.
n = number of nodes in N.

Initialization

Select an arbitrary starting node t. Initialize the sets V' = {t] and U =

{i: i =1,2, ..., n, 1 # t}. Set i =1, il(i = {t), and proceed to I.l.

T.1 If the set V.= {3: (h, j) ¢ A, hc V', jJ cy)} is empty, proceed to
I.2; otherwise set U =U - V and V' =V,

1.2 If V is not empty, set‘:Ki = Ki UV and return to I.1. If U is empty,

set A, = Ki end A, = x; 5 UA, (where Xq = @) and stop. If V is empty, set X,

{3: (&, 3) ¢ A, je Xi’ k € U}, Ay = Ki -x, end A, =x, o UA Ux, (where x

]
ASE

0

if X, = ¢ stop because the network is disconnected. Otherwise, set 1 =i + 1,

L= Ki = {k: (k, j) ¢ A, j € Xy 7 k € U} and proceed to Part II.

Part 1T

II.1 If the set V= {(h: (h, j) ¢ A, hec U, j e V'} i- empty, procecd to II1.2;
otherwise set U=U - V and V' = V.

II.2 If V is not empty, set Ki = Ki U V and go back to II.1l. If U is empty,

set A, =X, and A,
i i T

]
x>
C
b

io1 and stop. If V is empty, set X = {3: (x, 3) ¢ A,

Ki and Ai = xi-l U Ai U xi; if xi = ¢ stop because the network

k e Ki’ SERU s Ai
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is disconnected. Otherwise set i =i + 1, V' = Ki ={j: (k, j) € A, k ¢ X; 10 d € U)
and proceed to Part I.
Since the decomposition procedure is a coustructive process and is justified by

straightforward considerations, we shall omit its proof for brevity.

L A Shortest Path Calculation For the Decomposed Network

The problem of finding the shortest path between all pairs of nodes in a con-
nected network wiich has been decomposed by the foregoing procedure can be solved
quite simply by the following approach:

1. Using Hu's triple operation [T], determine the shortest distance between
all pairs of nodes in each subset Ki for i odd. Using the distances determined in
the preceding operation for nodes in the sets Xy5 apply the triple operation to de-
termine the shortest distance between all pairs of nodes in each subset Ki for i even.

2. Next determine the shortest distance from each node k in each even num-

bered set Ai to each node j in Ai-l y X, using the following:

p OF Ay g Uxyyy

e 3 - =] i +
a) if k « Ay end § € A, o U X, ,, set dkj 212 {dkp dpj]
i-1
b) if k ¢ Ay and j € Ai+l g X400 set dkj = ??2 {dkp + dpj]
il

where dij denotes the shortest distance from node i to node j and by convention if

no path exists from node i to node jJ, dij = + o,

The proof that the above procedure yields all shortest paths between any pair

of nodes in the network follows directly from the decomposition procedure.

Recall that if* i is odd, then any node k ¢ Ai can onlv reach other nodes in
Kj. Thus applying llu's triple operation [7] to Ki’ yields all shortest distances

from nodes in Ki to all nodes in N. If i is even, then any node k ¢ Ki can only reach

nodes in A g Ai’ and A,

141 Thus by using the shortest distances between nodes in

the sets Xj and applying Hu's triple operation to Ki yvields shortest distances




T

between every pair of nodes in Ki' Further, Step 2a will yield the shortest dis-

tance between any node k ¢ A, and j ¢ Ai-l ] xi_ This follows from the fact that

i 2’

d_. and 4, are already shortest path distances (since the nodes p and j are both in

PJ kp

Ki-l’ and the nodes k and p are both in Ki). Thus if the minimum is taken over all

P e X 9y then the shortest distance is obtained between k and j since any path from

k to j must use a node in x, A similar argument may be used to verify that Step

i-1°

2b will yield the chortest distance between any nodes k « Ai and j ¢ A Ux By

i+l i+1°

the decomposition of the network, Steps 1, 2a, and 2b account for all possible direct- ;

ed shortest paths, and the justification is complete. A

5

5  The Efficiency of the Shortest Path Algorithm

To examine the efficiency of the shortest path algorithm, we shall compare it

to the modified algorithm developed by Yen. Assume that the node sets A, B, ..., H
(m-sets) and Al’ A2, 0.0 Am each contain u nodes, and the subnetworks Xpr Xpr ooy X
and Xys KXoy veey X g each contain v nodes.

In Yen's algorithm, the total number of computations required is approximately
md 4 0 4 m - By + (2 + 10mpp)wE 4 (nF 4 6m - 1)V (D)
additions and comparisons. For the shortest path algorithm of this paper, Step 1

3

requires roughly m{u + 2v)~ additions and comparisons and Step 2 requires roughly
m(uf(u + v)v) additions and comparisons. The total number of computations is then
less than

mu> 4+ Ymuev a8 12muv2 + 8mv3 (2)
additions and comparisons. Clearly the amount of computation required in (2) is
significantly less than that required by (1). The number of comparisons required to
decompose the network are omitted in the count of (2) since Hu and Torres and Yen as-

sumed a priori the desired decomposition of their network. However, this number may

be identified as follows. If one assumes that for each node there is a 1list containing




8
all its immediate successors and a list containing all its immediate predecescors,
then the number of comparisons required to decompose the network is
2mu2 + Smuv + 3mv2 (3)
where these comparisons are simple logic comparisons (i.e., checking to see if sume-
thing is equal to zero). It is clear that the amount of the computation of (2) and

($) combined is still significantly smaller than the amount of computation required

inl (1
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. Pootnotesn

! I :
1. For an interesting survey of the types of' shortest problems and their solution
procedures see Dreyfus {2) and Elmaghraby [3].

. }
’ 2. Richard Barr, Fred flover, and Darwin Klingman worked with the 'Texas VWater

Develépment RBoard to develop more efficient procedures for solving minimum
cost flow netwqgrks and shortest path problems.
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