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Abscrggg

A novel theory for the propagation of a spherical detonation
wave is presented., The model is that of a point spherical blast in a
detonating medium., The reaction rates are assumed to be finite but
the coupling between the shock motion and the chemical reactions is mo-
delled by a global function which leads to an effective chemical energy
release at the detonation front which depends on the local shock strength
and the shock radius. The important result obtained is the demonstration
of the existence of finite steady-state velocities which are below the
theoretical plarar Chapman-Jouguet value. The magnitude of these final
steady-state velocities depends on the value of the ignition energy
used to initiate the detonation wave itself., A quantitative comparison
with the recent relocity measurements wade by Brossard in stoichiometric
and equi-molar CZHZ--O2 mixtures at .l .{A < .28 bar showed good agree-
ment, lending support to the present proposed theory. Using the experi-
mental data of White for the induction time, the present theory can be
used to predict the critical energy for direct initiation as well as the
transverse wave spacing, and both are found to be in good agreement with

the experimental data.
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1. Introduction

From the theoretical point of view, the existence of Chap-
man-Jouguet (C-J) spherical detonation waves depeuds on the existence
of a physically acceptable solution to the unsteady gasdynamic equations
that satisfies the C~J boundary conditions at the detonation front. The

(1>, Taylor 2 and Zeldovich 3 (J-T-2Z) were

early studies by Jouguet
based cn the idealized model of a discontinuous C-J front originating
at the center ! = ¢ at time f‘: © and subsequently expanding outwards
at a constant velocity. The similarity solution they obtained possesses
a singularity in the form of an infinite expansion gradient immediately
bebind the detonation front. The presence of this singularity tarows
some doubts as to the validity of the J-T-Z solution on o physical basis,
hence the existence of spherical C+J detonations is not established by
the J-T-Z model.

Recognizing the expergmental fact that the direct initiation
of a spherical detonation wave invariably demands the explosive release
of a finite quantity of energy, the reacting blast wave model (R-B-W)

(h). The detonation front

was subsequently proposed and analysed by Lee
is still treated as a gasdynamic discontinuity but with the iunclusion

of a finite initiation energy éip, no ~teady wave soluti~n is possible.

 The detonation front is initially highly overdriven and propagates

essentially as a strong point blast wave (i.e., /g; ~ fié— Yo As
the wave expands, the effect of chemical energy release at the front
progressively influences the wave mction until a C-J wave 1is approached
asymptotically as ﬁ% = 00 ., A later study of the R-B-W model by

()

Korobeinikev using a perturbation method demonstrated a similar

et JATATTA S
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behaviour. Hence according to the R-B-W model, no steady state

spherical C-J detonation waves are possible.

In a recent study by Levin and Chernyi (®) on the asymp-
totic motion of a decaying cverdriven spherical detonation, it is
found that unlike the decay of a non~-reacting blast, the final steady
state C~J condition can be achieved at a finite radius. A more care-
ful subsequent analysis by the Authors ™ indicates that although
Levin and Chernyi's solution is possible, there are no convincing
arguments on a physical basis in the assumption of the particular
asymptotic behaviour of the flow structure which is necessary to ar-

rive at their result. Also, Levin and Chernyi's analysis assumes the

J-T-Z similarity solution when the C-J condition is reached. From

the solution for the R-B-W model there seems to be no indication that

it would apprecach the J-T-Z similarity solution as the decaying over-

driven wave becomes a C-J wave, An attempt to verify Levin and Chern-

yi's asymptotic solution by carrying out a numerical characteristic

analysis of the R-B-W model to the asymptotic regime is inconclusive

as instability of the type obtained by Fickett and Wood ) and Streh-
(9)

low and Hartung occurs when the C-J conditions are approached.

Hence no definite conclusions can be drawn at this stage, However,

even if the * .vin and Chernyi solution does provide the asymptotic mo-
tion of the detonation wave in the R-B-W model, the physically quest-
ionable J-1-2 similarity solution is still retained.

In the J-T-Z and R-B-¥ models, the chemical reaction rates
have been assumed to be sufficiently fast so that the detcnation front

can be considered as a gasdynamic discontinuity. In the recent studies
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by the Authors ° ) and Lundstrom and Oppenheim (12), it is demonstra-
ted that the rapid gasdynamic expansion immediately behind a spherical
blast wave can result in a significant increase in the reaction zone
thickness. Hence it is quite evident that the discontinuity assumptisn
for the detonation front would have to be abandoned in a realistic thec-
retical model. Unfortunately, a finite kinetic rate model where strong
coupling exists between the hydrodynamics and the chemical reactions

is extremely complew mathematically. The numerical studies thus far i)
Rajan (12) and Taki and Fujiwara (13) provide only a partial description
of the problem in the overdriven regime of the shock motion. Instability
prcblems near the C~J regime of the shock motion would be the major dif-
ficulty in any numerical solution of the exact model. It is also doubt-

ful that shock tube kinetic data can be used in these exact models for

spherical detonations since the melecular energy transfer processes occur

(14)

under highly non-equilibrium conditions . In an attempt to reproduce

qualitatively the experimental obscrvations for the propagation of a
spherical detonation wave, a simple phenomenological model was proposed
by the Authors in a recent paper (15). There the coupling betweeu the
chemical energy release in the flow structure and the motion of the
expanding detonation front is assumed to depend on the local induction
zone thickness, The dependence of the induction zone thickness on the
local shock strength and the flow gradient is modelled globally by an
appropriate mathematical functions., The results of that preliminary
study are extrewely encouraging in that almost all the essential features

of the propagatiocn of a spherical detonation wave observed experimentally

are reproduced on a qualitative basis. The present paper describes our
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subsequent work on this phenomenological theory. Adopting essentially
the same approach, the previous model has been completely reformulated
and analysed in the present paper. The results of the present model

can now be compared with experiments on a quantitative basis.

2, Formulation

As in the R-B-W model, we consider the propagaticn of a point
spherical blast wave in a detonating gas. The blast is generated by
the instantaneous deposition of a finite quantity of energy é; at the
origin at time f = o . However, unlike the J-T-Z or the R-B-W model
the chemical kinetic cates are now considered to be finite so that at
any instant of time ¢ when the shock is at a radius %%(Qf) , the
reaction front is at Rs(zf)"'d{é) lagging behind the shock by
a distance c%ﬁ@] . The present model does not assume a weak coupling
between the hydrodynamic and the chemical reactions. Therefore the des-
cription of the shock moticon and the reaction kinetics in the flow behind
the shock canrot be determined independently as in the previous studies
of the finite kinetic rate blast model ae, 11). However, instead of
secking a complete solution to the problem, which would require the
simultancous solution of the non-linear hydrodynamic equations and the
appropriate kinetic rate equations, we are interested in the motion of
the detonation wave only. 1In other words, we arc not concerned with
the determination of the detailed hydrodynamic {low structure and the
distributions of the various chemical species in the wake of the sphe-

rical detonation front, but only in the shock trajectory /Qg(;f) and

the variation of the strengtbh of the detonation wave with radius. Within
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the context of this modest aim, certain s implifying assumptions can
be made, resulting in a consicerable reduction in mathematical dif-
ficulties.

First of all, we note from the well-known blast wave theory
that the shock trajectory /E}(Q?) is rather insensitive to the
manner in which the flow properties (i.e., pressure /6 , density /0
and particle velocity (L ) are distributed behind the shock provided
that the global conscrvation laws are satisfied. By global conserva-
tion laws, we mean the integral relationships for the conservation of

mass, i.e.,

R(é) Rt€)

3
475)’/04’” 4761%057’ = % Rstt) (2.1)
(2}

(7

and the conservation of energy
#slé)
Eo = | azr (&% Y par
P Rite)-clte) @.2
s ¢¢)
L
- 4/2'/’/3 G2V ﬁﬁfﬁQW”
o
where € and szdenotc the internal thermal energy and the chemical
energy per unit mass respectively, and the subscript " @ ¥ represents
the initial undisturbed coudition. Since the flow is spherically sym-
metric, the total mumentum is always zero and 15 conscrved automaticaily.
For blast waves, the most important relaticnship is the energy integral.
The insensitivity of the sheck trajectory /Q%(%:) to the fiuw struc-
ture is noticed from the fact that » though the flow distributions ditfer

rignificantly in the various non-similar solutions for the blast wave
]
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problem , the resuits for the shock trajectory are almost identi-

7
1 (16, 17, 18) It should be noted that ip the ncn-similar so-

Qa7

lution of Oshima , the mass integral is not even satisf{ied,

.

However, by requiring that the total energy is conserved, Oshima's
solution for the shock trajectory is quite accurate when cowpaved

(16)

to the more rigorous solution of Sakurai where both the mass
anc en2rgy are conserved.

Based on thu insensitivity of the shock trajectory on the
flow distributions, we therefore ignore the influence of the chemical
reactions on the hydrc ,aamic flow structure and assume the density,

particle velocity . iue pressure profiles behind the spherical wave

as

)
k,/? (2.3)

wlhe! = ’QS@L;) | (2.4)

() = PR, &)/

)
Pl = por R A 1E )
g{{)v’-z.
(.3)

/?S,QSMJ 4&___,{)) L([Pé)(/ lf(f;{) @g)
& ,

[ 4

(13
where /2., /?S denote the first and sccond derivative of Az with

respect to time., The above forms for the fiow distributions are

(18)

essentally those for a non-reacting blast wave and they satis{y
y g y y




the conservation integrals. The exponent 2&4?) for the density
profile given by Eq. 2.3 can be evaluated from the mas: integral

(i.e., Eq. 2.1) as

f({) = 3 /?j(_g'f} —/) 2.6)

vhere the subscript " / " denotes the condition at the stock {ront.
By assuming the f{low structure to be as specified by Eqs. 2.3 to 2.5,
we no longer have to concern ourselves with the hydrodynamic conserva-
tion equations,

With the induction zone thickness cﬁ?Q?) finite, the total

chemical encrgy released in the flow at any instant will be given by

the integral

Rsle)-dlit)
47‘5‘/’2"]9620/"
o

The second approximation used in the prescnt model is to consider the
shock as reactive, but with chemical ecnergy szngé) per unit mass
released instantancously at the front [ = /;%éé} instead of the
total chemical energy per unit mass of the mixture sz in the J-T-2
and R-B-W models. This effeztive chemical energy (z%?(¥?) depends
on the local induction zone thickness and the dependence can be obtained
by considering the conservation of chemical energy at any instant of

time, i.e.,

Res-clté) ~R t¢)
g 2‘ g "~ ?.
/ A p joci?a’// = ArrR Guc)dr
(o) o

Using Iqs. 2.3 and 2.6, the effective chemical encrgy C;%a({) can




be obtained as

W = - <:7/_.(.‘.'Z’) )
(o (¢) @(/ ./%4)/ @.7)

If the induction zone thickness C/é,/) el , then Q@ - Q

: and the present model reduces to the R-B-W model ior a discontinuity
detonation front, The coupling between the shock motion and chemical
-8
2 reactions is essentially described by the rei tienship Eq. 2.7. The
k. /7

5 degree of coupling depends on the induction zone thickness 0(“,’) .
With the effective chemical encrgy QU('(’) released at
- the shock front inctantancously, the boundary conditions can be written
L
k

3 as

'- /)IO_[,@/{) = 't/

_— (2.8)

| 5 r=s+7

v

IR

iz

X
i Ay

K Ry () r+/

(2.9)

3

.§

ey

bR _ Y +YS Y
gﬁ';‘?{/ )// '/’/]

(2.10)

wheve

2 Z//Z*
S = 2(/-7) —-K“WJ 2.11)
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/< = ’?[9/32.%[{) (2.12)

and

/(%2‘ (2.13)

Note that there are two roots for & from Eq., 2.1l with the positive
root representing the overdriven detonation solution aud the negative
root for the weak detonation solution. The unique solution for S = O
corresponds to the C-J solution, The positive roc* for S is used in
the present analysis since we are concerned with the decay of an ini-
tially overdriven wave to its final steady state velocity when § = O .
Since CP.{%) is a function of the shock radius, the final steady
state velocity depends on the solution Rg[(’) and the magnitude of
Qé"é‘\é) is dezermined when S = © .

The third approximation in the formulation of the present
model is the specification of the functional form for the induction
zone thickpuss cfzzf) . From the results of the previous study of

€10, 13

the finite kinetic rate blast model and experimental observa-

tions, the following form is chosen

- 3
dG) = Al -e ?\2) (2.14)

where

(2.15
. (2.15)

2= &
3
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Z = A?)T/é?o

(2.16)

and /§%>is the characteristic explosion length commonly used in

blast wave scaling defined as

R = & )7
o ‘7‘73.(‘.92@ (2.17)

Writing the exponent;ff in Eq. 2,14 in texms of the fundamental

parameters, we sce that

2
SRR
£

x2’*

which is simply the ratio of the total chemical enexgy to the
initiation at any instant of time. When ?C£3 L<L/ , the
shock motion is dominated by the initiation energy Zfbenm the front
is essentially a strong shock and (/({) e . When €2 3}">‘/
the chemical energy dominates the shock motion and oY) = /
vhich is some constant depending on the particular magnitude of final
steady state shock ~trength of the solution. Both these limiting be-
haviours as well as the exponential nature of Cﬂ(f} given by Eq.
2,14 correspond to experimental observations,

As a final step in the formulation of the wmodel, a lover
Limiting shock strength where chemical reactions are completely de-
coupled from the shock motion has to be specified. This is based on
the existence of a temperature liwmit below which auto-ignition of the

gas behind the shock is no longer possible., This limit is ill-




P

e

DEAES Y

e

.
Fer L

A

LR

s

detioaesly b et

A
AN FAA pe 2

TE et e

"

SN

o
RS

N o S e
ER AP 4 g o e
o

st R

j;
Fie
;
<}
it
L,
=
2

12

defined experimentally, but for most practical gaseous explosivegs
of interest, the limiting temperature it of the order of lOOOOg}
In the present study we shall take a critical shock strength 72% =3
e
for the lower timit. In other words, if the shock decays below.
in any particular solution, we will completely decouple any chemical
.

reactions from the shock motion., Hence we set the limiting conditiogs
~

for Fq. 2,7 as A

Qe = Q/:(%Z')

AL+ 3

. . dtt) .
/‘//,7,/-—[/ 2 )7S7c .

o ) 7270

It should be noted that the "cut-off'" specified in Eq., 2,18 is an
abrupt step-function type of behaviour while in reality it is a
smooth function. However, due to the sharp exponential increase of
C/éé) near the auto-ignition limit, the assumed step function
behaviour is quite justified. The essential steps in the formulation

of the present model have now been specified.

3. Analysis
For convenience in the analysis and numerical computatlions,
we shall recast the basic equations in the previous section in the

(18)

familiar blast wave parameters . Replacing the independent
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variables ( [, r ) by ( §,7 ) wvhere

&= TRe)

G.D
/

= e = ..(..oeL = Y‘éa '/(;!2
?7 g ﬁﬁz /C?. 3
and the dcpcncient variables ( /b s /3 s W) by ( 7‘0: 3& P % )

)
¥E7)

(1]

i
SR
hie)
/O/’%' (3.2)

wlhdi
R

il

#(7)

The density, particle velocity and the pressure profiles behind the

spherical wave as given previonsly by Eqs, 2.3 to 2.5 become

Yf = %(/,7])§f_ (3.3)

?ﬁ - 5?{(/’ 7)§ (3.4)

£- 6/47)_;4__(@?34@2;«?5{.4(/-%-7 |
OWL 7 (3.5)
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where

a2 /2
é R /4“3//93 (3.6)
The parameter é? denotes whether the shock is decelerating 594(6)

or accelerating /£ 2@ . The exponent Z[f) of the density

profile in Eq. 3.3 can be written in terms of the blast wave parameters

3/7)"' 3[5[/(’;7) "’) (3.7)

The subscript / in Eqs. 3.3 to 3.5 denotes the conditions immediately
behind the shock frout and ;é , dé s ﬁ? are given previously by Eqs.
2.8 to 2.10. '

Substituting the profiles for 75 , ff and }linto the energy

integral, we obtain the following equation

/= _2..3 -’-—f’-— - 76‘775,_{{:¢) + 94__4,!7'
7L3001) 3/%’/[;*5—) ets )

- -_é? CZ% é)@-] (3.8)
3(y-1) //S')

-7 A
-2, 3&‘(2’*') e A’;z«/) ‘/

where 2€, 2 and o are defined previously by Egs. 2,15 to 2.17

respectively., From the definition of é?-given by Eq. 3.6, we obtain

the relationship
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dy. = -287

. 3.9
dz 2
so that the term CM/d? in Eq. 3.8 may be written as
c{f,_@éf -fd_z'% =8_¥ -2 2% (3.10)

d7 “a7 d792 a7 .2@792-

Evaluating 94,‘;’7 and 2¢:/22' from the boundary condition

at the front for (i.e., Eq. 2.9), we obtain

-/ - -2/ 3.11
‘C’% ] 955:4/)/°M 7’ %/”7/(7 HER) ew

where

b &

- Gtk (o ipea)lyt-gy O
H0t) S+ 9kt L(1-%)
| 2 f41)
. 2k
4 oz
(3.13)

L _oep?
= G19ESk (1-Lir3x23E “*)
2*0-%:) s+ PGIEY, Lul1-85 )
20 }#1)

S and k are defined previously by Eqs. 2,11 and 2,12 respectively

whede 5 and & are defined as
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€= Y.
c; = C72Q5&4F% (3.14)

Using Eq. 3.10, we can solve for & from Eq. 3.8 as

5 = 3[,)'3,)6?%3)5 Z{-"Z (/*%[/’25)?3)
% Gr0daey) t7%,) 2°

~ & YRS -4
309~ Gy Igt3)
#4274
bl x=)grs)>

Substituting the above equation into Eq, 3.8, we obtain a differential

(3.15)

-

equation for the change of the shock strength 7with the radius & ,

i.e,

)

gg : G(72) 3.16)

which may be integrated nurmerically using, for example, the standard
Runge~Kutta method.

To start the numerical intergration we must obtain the value
of at some small initial value of 2. From Eg. 3.8, we note that
as Z->0O , 7 - 23 since the left hand side of the equation

is finite. Hence the form of the expansion 37(%?) for small values
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of 2 should be of the form

3
7 = A2+ (3.17)
and from Eq. 3.9, é?(ﬁ?) for small values of 2 is

9: "% oo (3.18)

Substituting the perturbation expressions into Eq. 3,18, the coeffi-

cient /4 can be evaluated as

/4 2 A73/°:§‘
3y*)esy+)

(3.19)

For some chosen initial value of Z*, Eqs. 3,17 and 3.18 provide the
starting cenditions for the numerical integration of Eq. 3.17.

To obtain an expression for the shock trajectory, vwe note

that RS = O'/Q‘i/ﬂ‘t and in terms of 7 and Z¥we can write

2
(é.{ = /7&‘/2' (3.20)
(~]

(<]

For small values of ;E', wa use the perturbation expression for ?7/%{)

(i.e., Eq. 3.17) and Eq. 3.20 yields

1

-

Ko
R 2. 3@’
and since 2 = S//?o we note from the above that (Yad If .

Hence the shock behaves like a strong point biast wave,

A
Gt LAZ 4.
s
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For very large initiation energy, &g =" @ or
)?a,—*' oo and hence from Eqs. 2.14 aund 2.7, c/[é)-bo so that
Q@ —p- Q . In other words, the full chemical energy per unit
mass is released instantaneously at the front and the present solution
recovers the reacting blast wave model @, 3, 7). Alternatively, we
can assume the front to be discontinuous by simply taking zj = O
and again the reacting blast wave model is recovereé. However, in this
case, the initiation energy E;can be arbitrary and in the limit 5;-9-0,
we recover the J-T-Z model,
Taking Q: © , the boundary condition.s (i.e., Egqs. 2.8 to
2.10) reduce to the ordinary Rankine-Hvgoniot equations for a normal
shock in a perfect gas. The present solution then becomes the solution
for a non-reacting blast wave (18). With the non-veacting hydrodynamic
flow structure dctermined, the chemistry of the reactions between the
shock can be computed, This in essence is the finite kinetic rate
model studied by the Authors (10) and Lundstrom and Oppenbheim (11).
Therefore we see that the present model is consistent with and unifies

all the previous theoretical models.
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4, Results and Discussions

For an explosive mixture at given initial conditions we
shall specify the following parameters: the specifi: heat ratio 2/,
the initial pressure /g and sound speed ¢, the planar C-J Mach No.
Mey (hence the chemical energy per unit mass Q), and the critical
shock Mach ‘No. Mc corresponding to the auto-ignition limit of the
mixture. For the system Q//g - 02_ studied in this paper, we
choose Mc =3 which corresponds to an auto-ignition temperaturc limit
T. > 1000k,

. For any chosen value of the initiation energy parameter € =
A/,Qo , Wwe can obtain the solutions for the shock trajectory Z%)
and the variation of shock strength with radius 7(2) by integrating
Eqs. 3.16 and 3.20. To start the numerical integration, the parturbation
expressions given by Eqs. 3.17 and 3,18 are used to evaluate the starting

values for '7 and @ for some small chosen value of 2 = £, . 1. the

present work 2, was chosen to be 0,05 and the integration was found to

proceed smoothly for increasing values of 2 without oscillation.. »

It is important to consider first the general properties of
the solutions for &(2) 7[2) and S(z2) for various values
of the initiation encrgy parameter &€ . A typical example for the case
of stoichiometric G Ap - . undiluted mixture at an initial pre:suve
/g = 100 torr and temperature 7, = 30001( is shown in Fig. 1. Tae
solutions for 9(2) .or various values of € all start out at the
limiting strong shock value of 9(0) = =3/2 and increase towards zero
as the shock expands and the influence of fie chemical energy release

becomes progressively important with lorger shock radius &2 . The




'_
4
3
3
]
%‘i
&

solutions of S'@) all start out at its initial value .S'[o) = / R

which corresponds to t:he strong shock limit 7 = O (i.e., MS = 00 )
and decrease monotomically to zero as the shock expands and decelerates,
From Eq. 3.15, we see that when S = ¢ , the parvameter £ =¢ , which
implies that the shock acceleration 0'/\"_-;/0’{ = é = ¢ . Hence as
S0 , the shock ceases to decelerate and will propagate there-
after at a final steady state velocity /‘75# . Since /‘75# corresponds
to 5= 0 , we sec-: rrom the boundary condi’ions (i.e., Eqs. 2.8 to
2.10) that this solution is one where t{he lrayleigh line is tangent to
the equilibrium Hugoniot curve for the particular value of Qe obtained.
Hence tais final steady state velocity ﬁ//?;*' can be interpreted as the
local C-J velocity. As /’?s* is a function of & , a different final
steady state.velocity is obtained for different values of the initiation
enerpy parameter € ., This implies that for spherical detonations, the
final steady state C-J velocity depends on the magnitude of the initiation
energy £, . The present .conclusion is then contradictory to the classi-
cal theory where, for a given explosive, the steady state C-J velocity
depends only on the properties of the explosive itself,

From Fig., 1, it is scen that for small values of & (i.e.,
large initiation energy) the solutions for 9[2) and S(;?) indicate
that G2) > © simultancously as S(2) =0 . However,
for larger values of & , we note that b2) o when S¢2)
is still finite and @’f) hence becomes positive and continues to
increase as 5[2) monotomically decreases to zero. When 5(12) = 0,
the value of G(2) becomes multi-value since from Eq. 3.15, & must

vanish when S = . Physically this implies that the shock over-dece-
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lerates at first to a minimum velocity and as :5(?2) is still
finite, the shock accelerates again until JS(@:) = O when tbe
acceleration must suddenly cease (i.e., @ = ¢ ) for the shock to
propagate subsequently at a steady state velocity /%&?L . The dis-
continuous jump in the shock acceleration is illustrated in the large
abrupt change ir the solution for '6?(22) for the casc of &€ = 0,13
shown in Fig.’l. This sudden transition demonstratés a type of in~
stability which occurs when the hydrodynamic f£low structure is not
coupled smoothly to the chemical reactions. It should be noted that
in the numerical studies of the deceleration of an initially planar
overdriven detonation wave 8, 9 ic onset of instability is also
observed as the shock approaches its final steady state C-J condition.
This type of instability is inherent in all detonation proﬁloms and
within the context of the present model, worc detailed Information
on this instability mechanism c;nnot be obtainec. However, for small
values of the initiation energy parameter ¢, the ampl.cudes of the
jumps in é?(; are sufficiently sma 1 and are within the round off
errors of the finite step sizes of the numerical integration scheme,
Hence we shall assume that for small values of & (i.e., O .<.€5 .05
for the particular case shown in Fig. 1) the dcceleration of the sphe-
rical detonation wave to its final steady state velocity ﬁZ;F is
smooth.

The stable behaviour of the solutions for small valies of €
can best be illustrated by the solutions fer 7(.2) . We note that
for the rvange of CDf'éF N 0%, the shock streagth 7/@9 decays smooth-

ly from its initial value 7(5) = ¢ te some’ {inal stcady state value
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?(':Z) = 7’\{' Qutside this range OLE I{ .05, the shock
decays to a minimum and accelerates again. The transition to its
final steady state value 7*when S = © is discontinuous. This
is illustrated clearly for the case & = 0.13. Since for each shock
H radius 2 the local value of Qe can be evaluated from Eqs. 2.7 and

2.14, we can deterwine the local C-J velocity by taking & = € and
solving for 7 from Eq. 2.11, The variations of this local C-J value
of 7’(:3') with radius for the various valuez of & are also shown
in Fig. 1. We note that the corresponding 7_/-2) is always less than
the lozal C-J value of 9/’/:?) during the decay (the shock speed is
always greater than its lecal C-J velocity). Hence the detonation
wave is overdriven at all times x;ntil S = @ when 7({2) = 7’/:2) =
7* and the final steady state velocity is-obtained.
In Fig. 2, the variation of the detonation Mach No, /)75@)
with radius 2 = Rs Y/ is shown. TFor-small shock radii (i.e.,
g{(/ ) vhere the initiation energy dominates the shock motion,
all the curves coalesce and the decay is essentially that of a strong
- .
‘ blast (i.e., ﬁ‘?, ~ ’/—2 ). For example, all the solutions for

/775[,8-) are indiscernible from each other for # ~~ 0.2, which

corresponds to the energy ratio
3_ 47RQR5 o
¥z = 3TLNS o 08
£o
In other words, the total chemical energy enclosed by the wave is
about 8% of the initiation encrgy &£, oniy. Signifi.c;ant departures
from the blast wave solution should occur when the energy ratio ;L’z?sf_\_a/

which, for the particular case shown, is at a shock radius Z @ .46
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wvhere the differcnces between the various solutions are quite pro-
npunccd. The fina% steady state conditions (i.e., /%g ~ Aﬂk*‘ )
correspend to a shock radius 2 2 0.6, This yields an energy
ratio KZ'SQJ o, - In other words, when the chemical energy fi-

nally dominates the shock motion,

FreR = 24

Although the so-called smooth stable regime Ofé ,.{ 0.5

for the decay to the final steady state velocity is arbitrarily set

W
b

based on the vanishingly swall abrupt change of slope as ﬁﬁ%(}&)«*»/??

it is interesting to note that this stable limit is in accord with the

stability criterion of Shchelkin (19). Using the final steady state

B
velocity ﬂzg‘ = 5.7 for the limiting value of & = 0.5, the induction
, . . 20
time computed using ¥White's ( ?

K Y 3 -
/?1[@//,, j [ o.] "'( = ~0.G/+ (7Fee/sE)™) is T = .056 x 10

scc., which is about twice the value Ty = .029 x 10-6 sec. for the

data for this mixture (i.e.,
6

planar C~J velocity of Aﬁ%a‘ = 7.015. According to Shchelkin, if a
random disturbance rogults in an increase in the induction time by an
order of magnitude equal to or greater than the initial delay time it-
self, then the detonation front loses its stability., TFor spherical
detonations, the increase in the induction time is due to the lateral
expansion associated with the three-dimensional geometry.

For & Z .05 the detonation wave decays to a minimum
and then accelerates again.,  The transition to its final steady state
velocity /}7;6».41(-“ S © is discontinuvous. This carresponds to the

experivencal observations of the propagation of a spherical detonation
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(10)

wave in the critical initiation encrgy regime . The detonation
decays continuously to a velocity corresponding to ic auto-ignition
limit of /722 o :? . The shock-reaction zone complex then pro-
pagates at this minimum velocity for a short period of the order of
10 pusec. ‘The onset of instability is observed in the form of the
appearance of local ignition centers. The rapid development of these
local hot spots leads to a sudden transition to a highly asymmetrvical
multi-headed wave. Frow the experimental record of cur previous pa-
per (10), which was for stoichiometric 0,-C,l1, at 100 torr, the ini-
tiation energy éi;: 0.3 joules and the value of A & 2 um yielding
a value of &, ™ .18, From Fig. 2 we note that this corresponds
closely to the critical value of & = C.15 for direct initiation to
be possible.

For very small initiation energics (i.e,, & = ZQ/O?L is
large), the wave decays ,below the specified limitiug strvength for
auto-ignition (i.e., ﬂ?& = 3). The shock completely decouples from
further chemical reacticns and decays asymptoticallv to an acoustic

~

wave/%é = 1, Thi; regime is the so-called sub-critical energy
regime defined in a previous paper (10).

From the present theory the critical energy for direct
initiation é;,cnn be determined since the critical value of the
initiation energy parameter éz - Aﬂc/4ézc is known. To cva-
luate f‘z , we [irst compute Aa(/??) using the formula of White

. d
e, St Z?;/A]é[(%]’{r = ~10.8) +/73e0/q 587 )
based on the final steady state velocity /)7( ~ 3., With [l:[/g}

known, the critical cnergy caa be determined as follows:
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E, = /dclgé;7 = ‘éligz%‘]

A, £
‘ (i)

g (,4)) AT

The dependence of E on S as well as Ac(é) from White's

hence

Ec ®

formula for the two cases of st01chlomctr1c and equi-molar 02 2" 2
mixtures are illustrated in Fig.3. The experimental points for the
S
narrow pressure range .04 < /5 < .15 atm, are taken from our
. (10) Co
previous paper where a laser spark of 20 Msec, duration is used
as the energy source. The agreement is quite reasonable in view of
the uncertainty in the use of the kinetic data near the low tempera-
ture limit. It should be noted that although more data are available
for the critical energy for direct initiation for these explosive
mixtures, they cannot be used to compare with the present theorctical
. , (10) f o
results., It was pointed out in a recent paper that the critical
energy can differ by a few orders of magnitude depending on the total
discharge time. In order to compare with the present theoretical
results based on a point blast model (i.e., 45’ = 0o ), these
existing data must be reduced to the limiting value corresponding to
an infinite power density of the ignition source. Unfortunately, the
details of the discharge characteristics for these experiments wvhere

the data arc reported have not been stated to permit the appropriate

data reduction. The laser spark is perhaps the most powerful point
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energy source available which approximates closest to the thooretical.
requirement of point blast theory,

To confirm the existence of a final steady state velocity
for spherical detonations that are below the classical value for the
explosive, a comparison between the present results and the recent
experimentél data of Brossard (21) and Struck (22) is made. 1In Bros-
sard's experiments, a 1 meter diameter spherical bomb is used and the
detonation velocity is measured by the wicrowave doppler technique to
an accuracy of 0.4%. Various mixtures (C3H8, HZ’ Cz“q’ 02H2 with 02)
at an initial temperature of 2930K and .1 S}é; 5: 2.8 bar have been
studied. In view of the large diameter chamber used to ensure steady
state conditions as well as the accuracy of the wave velocity measure-
ment by the doppler shift method, Brossard's results represent the
most reliable existing data on spherical detonation velocities. In
Struck's experiments, a much smaller chamber of 100,mm diameter was
used. The detonation wave velocity was measured using high speed mo-
vie schlieren, The present theoreticel results for /”g*? &, /é )
are shown in Fig. 4 for both stoichiometric and equi-molar CZHZ-O2
mixtures. In order to compare with jrow~ard and Struck's experimental

*>
data, the variations of /z% with initial pressure /é for constant
initiation eneryies 62; must be obtained. To derive these constant
energy velocity curves, we proceed as follows: Suppose we desire /)?S*%)
for a particular energy é? . We note first of all that this curve
nust originate at the critical condition where é;;:: éﬁ;. From Fig.

3, the value of /é and ZSC can be obtained for any value of éE; .

Hence at any pressure /6, we may write
o
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5%)=A¢) A[/é) ] A[/‘)
%
W/‘) (4757 ) A ('é)

eG) = & Lk $
~) 4(;9)(é)

For stoichiometric C,H,-0,, €. = 0.15 while for equi-molar mixtures,

hence

é;. = 0.13, Since Ms for various values of € are determined from
the solution, ﬁ%x(é,) of any particular value of Eocan be derived,
From Fig. 4 we note that the agreement betwcen the present theory with
the data of Brossard and Struck is quite good. 1t should be pointed
out that from the present theory the detonation velocity depends only
weakly on the initiation energy in the high pressure range .55 {éf
Thereforve although the initiation energy of both Brossard and Struck
has not been properly reduced to the limiting value corresponding to
infinite power density as required by the point blast model, the agrce-
ment is still very good.

Theoretical attempts (23, 24, 25) have been made to predict
the cellular dimension of a multiheaded detonation front. Using the
present theory, the longitudinal dimension of a "detonation cell" can
be evaluated if it is assumed that the motion of a "detonation wavelet"
in between collisions of transverse waves behaves like a decaying react-
ing blast as described by the present theory. Based on the experimental
evidence that the minimum strength of a “detonation wavelet" just prior

to the re-energization by the collision of a pair of transverse waves
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is about /’; g 33 which corresponds to the critical limiting
strength for auto-ignition, we shall take the shock radius zzc for
the case where & = ka as the longitudinal dimension of the detona-

tion c2ll. From FI9 2, we note that Z. % .6 and the value of

€, = .15. These values (i.e., &, 2. ) are almost the same

for a wide pressure range for stoichiometric CZHZ-O2 mixtures while
for equi-molar mixtures é;b > .13 and i& = .6. Using these

values, the longitudinal cell dimension AZJ can be obtained through

the relationship

Ry = % Ah)

[

Using White's formula to determine ch(;é.) , the variation of AZJ
with initial pressures /5 can bg obtained. To compare with the
experimental data of Strehlow (26), the longitudinal dimension must

be multiplied by a factor of about 0,62 based on the definition he

used for the tr.nsversc wave spacing. This comparison is shown in

Fig. 5 and, as can be observed, the agreement is reasonable, It shculd
be pointed out that there is no concrete experimental evidence to sup-
port the assumption that the motion of a detonation wavelet can be mo-
delled by a point blast wave. In fact, as Strehlow pointed out, the
center of curvature of the detonation wavelet does not corespond to the
point of collision of the transverse wave where the “decaying wavelet"
first originates. Also, the impulsive relcase of energy by the collision
of transverse waves is by no means instantancous. Hence the subscquent
decay of the "wavelet' does not correspond to that from the present model.

However, in view of the similarity in the gross features of the decay
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processcs between experiments and the present theory, it seems

rcasonable to adopt the blast wave model as a first approximation,

5. Conclusions

It should be emphasized that the most important results
of the present theory are that it predicts the existence of steady
state sub-Chapman-Jouguet velocities which depend on the details of
the initiation processes. In otﬁer words, the final steady motion
of the detonation front bears the memory of the initiation condition
through the hydrodynamic flow structure generated by the ignition
source, This is supported by the recent accurate experimental mea-
surements made by Brossard., If the present theory, together with
Brossard's as well as Struck's experimental results, are to be taken
as correct, then the classical Chapman-Jouguet theory of detonation
waves must be modified. The abundance of the experimental results
gathered in the past decade strongly indicates the inadequacy of the
Chapman-Jouguet theory. The recent verbal critique of the Chapman-
Jouguet theory by Professor Manson at the 13th Combustion Symposium
emphasizes the importance of the influence of the hydrodynamic flow
structure in the wake of the expanding detonation on its motion, The
present theory can be considered as a particular case where the hydro-
dynamic flow structure is peculiar to that of a point energy source.
It would be important to extend the present model to other types of
hydrodynamic {low structure in order to establish whether the predic-
tions from the present model are indeed universal, Equally important
will be more careful experiments on spherical detonations in the low
pressure, low initiation regime where the effects of the experiments

can be manifested in a wore pronounced fashion,

;
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Captions

Fig. 1

Fig. 2

Fig. &4

Fig. 5

The solutions of nl(z) » 9(1) , 52(2') and ’)Z,(Z)

for various values of é for stoichiometric CZHZ-O2 mixtures
at P, =100 torr, To = 300°K.

The variation of shock strength IWS with shock radius for
various values of € (stoichiometric C,H,-0,, ?o = 100 torr,
T, = 300K).

The variation of the critical encrgy Ec for direct initiation
and the critical induction zone thickness ZSC with initial
pressures for stoichiometric and equi-molar Czllz-o2 mixtures,
Comparison of the detonation velocities in stoichiometric and
equi-molar 02}12-02 mixtures with the experimental data of
Brossard (Ref. 21) and Struck (Ref, 22),

Comparison of the predicted transverse wave spacings with

the experimental data of Strehlow (Ref. 26).
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