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Abstract

A novel theory for the propagation of a spherical detonation

wave is presented. The model is that of a point spherical blast in a

detonating medium. The reaction rates are assumed to be finite but

the coupling between the shock motion and the chemical reactions is mo-

delled by a global function which leads to an effective chemical energy

release at the detonation front which depends on the local shock strength

and the shock radius. The important result obtained is the demonstration

of the existence of finite steady-state velocities which are below the

theoretical planar Chapman-Jouguet value. The magnitude of these final

steady-state velocities depends on the value of the ignition energy

used to initiate the detonation wave itself. A quantitative comparison

with the recent .,elocity measurements inade by Brossard in stoichiometric

and equi-molar C2 H2 -0 2 mixtures at .1 - < .28 bar showed good agree-

ment, lending support to the present proposed theory. Using the experi-

mental data of White for the induction time, the present theory can be

used to predict the critical energy for direct initiation as well as tne

transverse wave spacing, and both are found to be in good agreement with

the experimental data.
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1. Introduction

From thetheoretical point of view, the existence of Chap-

man-Jouguet (C-J) spherical detonation waves depends on the existence

of a physically acceptable solution to the unsteady gasdynamic equations

that satisfies the C-J boundary conditions at the detonation front. The

early studies by Jouguet (). Taylor (2) and Zeldovich (3) (J-T-Z) were

based on the idealized model of a discontinuous C-J front originating

at the center r = 0 at time t = 0 and subsequently expanding outwards

at a constant velocity. The similarity solution they obtained possesses

a singularity in the form of an infinite expansion gradient immediately

behind the detonation front. The presence of this singularity tarows

some doubts as to the validity of the J-T-Z solution on a physical basis,

hence the existence of spherical C-J detonations is not established by

the J-T-Z model.

Recognizing the experimental fact that the direct initiation

of a spherical detonation wave invariably demands the explosive release

of a finite quantity of energy, the reacting blast wave model (R-B-W)

was subsequently proposed and analysed by Lee (4). The detonation front

is still treated as a gasdynamic discontinuity but with the inclusion

of a finite initiation energy F,., no "teady wave solution is possible.

.The detonation front is initially highly overdrivcn and propagates

essentially as a strong point blast wave (i.e., ,ý . t' ). As

the wave expands, the effect of chemical energy release at the front

progressively influences the wave motion until a C-J wave is approached

asymptotically as 0 0 . A later study of the R-B-W model by

Korobeinikov (5) using a perturbation method demonstrated a similar

Sa. -- - -" . . . . .



-3-

behaviour. Hence according to the R-B-W model, no steady state

"spherical C-J detonation waves are possible.

In a recent study by Levin and Chernyi (6) on the asymp-

totic motion of a decaying cierdriven spherical detonation, it is

found that unlike the decay of a non-reacting blast, the final steady

state C-J condition can be achieved at a finite radius. A more care-

ful subsequent analysis by the Authors (7) indicates that although

Levin and Chernyi's solution is possiblo, there are no convincing

arguments on a physical basis in the assumption of the particular

asymptotic behaviour of the flow structure which is necessary to ar-

rive at their result. Also, Levin and Chernyi's analysis assumes the

J-T-Z similarity solution when the 0-J condition is reached. From

the solution for the R-B-W model there seems to be no indication that

it would approach the J-T-Z similarity solution as the decaying over-

driven wave becomes a C-J wave. An attempt to verify Levin and Chern-

yi's asymptotic solution by carrying out a numerical characteristic

analysis of the R-B-W model to the asymptotic regime is inconclusive

(8)as instability of the type obtained by Fickett and Wood and Streh-

low and lHartung (9) occurs when the C-J conditions are approached.

Hence no definite conclusions can be drawn at this stage. However,

even if the --win and Chernyi solution does provide the asymptotic mo-

tion of the detonation wave in the R-B-W model, the physically quest-

ionable J-T-Z similarity solution is still retained.

In the J-T-Z and R-B-W models, the chemical reaction rates

have been assumed to be sufficie-.tly fast so that the detcation EronL

can be considered as a gasdynamic discontinuity. In the recent studies
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('10)(V
by the Authors and Lundstrom and Oppenheim , it is demonstra-

ted that the rapid gasdynamic expansion immediately behind a spherical

blast wave can result in a significant increase in the reaction zone

thickness, Hlence it is quite evident that the discontinuity assumption

for the detonation front would have to be abandoned in a realistic thee-

retical model. Unfortunately, a finite kinetic rate model where strong

coupling exists between the hydrodynamics and the chemical reactions

,2, is extremely comple-.: mathematically. The numerical studies thus far h/
Raan(12) (3

RajnRajah and Taki and Fujiwara provide only a partial description

of the problem in the overdriven regime of the shock motion. Instability

problems near the C-J regime of the shock motion would be the major dif-

ficu'.ty in any numerical solution of the exact model. It is also doubt-

ful that shock tube kinetic data can be used in these exact models for

spherical detonations since the molecular energy transfer processes occur

(14)
under highly non-equilibrium conditions . In an attempt to reproduce

qualitatively the experimental observations for the propagation of a

spherical detonation wave, a simple phenomenological model was proposed

(15)
by th? Authors in a recent paper . There the coupling between the

chemical energy release in the flow structure and the motion of the

expanding detonation front is assumed to depend on the local induction

zone thickness. The dupendence of the induction zone thickness on the

local shock strength and the flow gradient is modelled globally by an

appropriate mathematical functions. The results of that preliminary

study are extreniely encouraging in that almost all the essential features

of the propagation of a spherical detonation wave observed experimentally

are reproduced on a qualitative basis. The present paper describes our



' -5-

subsequent work on this phenomenological theory. Adopting essentially

the same approach, the previous model has been completely reformulated

and analysed in the present paper. The results of tile present model

can now be compared with experiments on a quantitative basis.

2. Formulation

As in the R-B-W model, we consider the propagation of a point

spherical blast wave in a detonating gas. The blast is generated by

the instantaneous deposition of a finite quantity of energy • at the

origin at time i .0 • However, unlike the .3,-T-Z or the R-B-W model

the chemical kinetic rates are now considered to be finite so that at

any instant of time t when the shock is at a radius P5 e) , the

reaction front is at RS4Z,) --d'6) lagging behind the shock by

a distance dC'/) The present model does not assume a weak coupling

between the hydrodynamic and the chemical reactions. Therefore the des-

cription of the shock motion and the reaction kinetics in the flow behind

the shock cannot be determined independently as in the previous studies

of the finite kinetic rate blast model (10, 11) . towever, instead of

seeking a complete solution to the problem, which would require the

simultaneous solution of the non-linear hydrodynamic equations and the

appropriate kinetic rate equations, we are interested in thle motion of

tile detonation wave only. In other words, we are not concerned with

the determination of the detailed hydrodynamnic flow structure and the

distributions of the various chemical species in the wake of the sph( -

rical detonation front, but only in the shock trajectory Ri9' ') and

the variation of the strength of the dcetonation wave with radius. Within
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the context of this modest aim. certain s implifying assumptions can

be made, resulting in a consieerable reduction in mathematical dif-

ficulties.

First of all, we note from the well-known blast wave theory

that the shock trajectory RS() is rather insensitive to the

manner in which the flow properties (i.e., pressure , density

and particle velocity U, ) are distributed behind the shock provided

that the global conservation laws are satisfied. By global conserva-

tion laws, we mean the integral relationships for the conservation of

mass, i..e.,

fo

and the conservation of energy

(2.2)

0 "

where e and •denote the internal thermal energy and the chemical

energy per uoit mass respectively, and the subscript " .o " represents

the initial unJisturbed rondition. Since the flow is spherically sym-

metric, the toftal momentum is always zero and is conscrved automatically.

For blast waves, the most important relaticnship is the energy in!egral.

The insensitivity oi. the shieck trajectory R 'ýsc ) to the flow st~ruc-

ture is noticed from the fact that - though the flow dist,.ilbutions diilfer

!ignificantly in the various, non-similar solutions for the blast wave
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problem , the results for tho shock trajectory are almost identi-

cal (16, 17, 18) It should be noted that in the ncn-similar so-
(17)

lution of Oshima , the mass integral is not even satisfied.

However, by requiring that the tot.al energy is conserved, Oshima's

solution for the shock trajectory is quite accurate when compared

to the more rigorous solution of Sakurai (16) whore both the mass

an(' energy are conserved.

Based on the insensitivity of the shock trajectory on the

flow distributions, we therefore ignore the influence of the chemical

reactions on the hydrc ,am.ic flow structure and assume the density,

particle velocity ;ae pressure profilcs behind the spherical wave

as

# ,,,(2.3)

4

(75

CO /I

where R;., • denote the first and second derivative of withl

respect to time. The above forms for the NlOW, distributions are

essentiallly those for a non-reacting blast wave, (18) and they satisfy
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the conservation integrals. The exponent for the density

profile given by Eq. 2.3 call be evaluated from the mass integral

(i.e., Eq. 2.1) as

4 c -/ (2.6)

where the subscript " / " denotes the condition at tile sL-3ck front.

By assuming the flow structure to be as specified by Eqs. 2.3 to 2.5,

we no longer havc to concern ourselves with the hydrodynamdic conmerva-

tion equations.

With the induction zone thicknolss d1•) finite, the total

chemical energy released in the flow at any instant will be given by

the integral

The second approximation used in the present model is to consider the

shock as reactive, but with chemical energy Q r'e.) per unit mass

released instantaneously at the front r = ?61) instead of the

total chemical energy per unit mass of the mixture CD in the J-T-Z

and R-B-W models. This effective chemical energy •66-" depends

on the local induction zone thicknessz and the dependence can be obtained

by considering the conservation of chemical energy at any instant of

time, i.e.,

Using 4rcr,, C (6ee )dr

Using Eq.2.3 and 2.6, the effective chemiicald energy Q0 c Cal
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be obtained as

) - (2.7)

If the induction zone thickness C/)6 0 then --

and the present model reduces to the R-B-W model ior a discontinuity

detonation front. The coupling betwecn the sh.ck motion and chemical

reactions is essentially described by the rci tionship Eq. 2.7. The

degiee of coupling depends on the induction zone thickness

With the effective chemical energy o-&(.) released at

thr shock front in::tantaneously, the boundary conditions can be written

as

(2.8)

, _ __ -l <(2.9)

,__ _ (2.10)

Where ?
wi e-v-e,,,
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(2.12)

and

~ __ -~ 4*-~(2.13)
Note that there are two roots for e from Eq. 2.11 with the positive

root representing the overdriven detonation solution and the negative

root for the weak detonation solution. The unique solution for S = 0

corresponds to the C-J solution. The positive roc* for ' is used in

the preseut analysis since we are concerned with the decay of an ini-

' tially overdriven wave to its final steady state velocity when 0 .

Since is a function of the shock r:adius, the final steady

state velocity depends on the solution AS (') and the magnitude of

is de'ermined when 0 = .

*, The third approximation in the formulation of the present

model is the specification of the functional form for the induction

zone thickl'.n;s s 6,) • From the results of the previous study of

S10) uS)
the finite kinetic rate blast model and experimental observa-

tions, the following form is chosen

/ (2. li)

where

---- (2.15)
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and Rois the characteristic explosion length commonly used in

blast wave scaling definedr as

(2.17)

Writing the exponent:X2? in Eq. 2.14 in terms of the fundamental

parameters, we see that

?which is simply the ratio of the total chemical energy to the

initiation at any instant of time. When . 4. / , the

shock motion is dominated by the initiation energy £E and the front

is essentially a strong shock and C/ -- 0 . When 2ej' >)/

the chemical energy dominates the shock motion and d1) ->- A

which is some constant depending on the part icular magnitud•e of final

steady state s;hock ,trength of the solution. Both these limiting be-

haviours as we1.l as the exponential nature of d(•e) given by Eq.

2.14 correspond to experimental observations.
V

As a final step in the fonrul.ation of tlhe mode], a lower

1limiting shock strength where chemuical reactions are completely do-

coupled frLom the shock motion has to be specified. This is based on

the existence of a temperature limit below which autio-ignition of the

gas behind the shock is no longer po.ssible. This limit is Ui-
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defined experinentally, but for most practical gaseous expiosivqOs.

of interest, the limiting temperature it. of the order of 1000 0 K.,

In thc present study we shall take a critical shock strength .. =3

for the lower limit. In other words, if the shock decays below.

in any particular solution, we will completely decouple any chemical

reactions from the shock motion. Hence we set the limiting condit'iols

for Eq. 2.7 as

S-- F(,)
__ [ y7'7,

,(2.18)

0 >7

It should be noted that the "cut-off" specified in Eq. 2.18 is an

abrupt step-function type of behaviour while in reality it is a

Ssmooth function. However, due to the sharp exponential increase of

d60 near the auto-ignition limit, the assumed step function

behaviour is quite justified. The essential steps in the formulation

of the present model have now been specified.

3. Ana I ysis

For convenience In the analysis and numerical computations,

we shall recas.l the basic equations in the previous section in the

(a8)familiar hila. t wave' parameters' . Re pJac i g the independentI
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variables rt by ( 7 )where

(3.1)

and the dependent variablecs ( , , )by 3 ,

where

"1P"
Wf/ (3.2)

44'

The density, particle velocity and the pressure profiles behind the

spherical wave as given previoulsly by Eqs. 2.3 to 2.5 becomie

(3.4)

(P.5
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where

"(3.6)

The parameter G denotes whether the shock is decelerating •OZ

or accelerating •? . The exponent of the density

profile in Eq. 3.3 can be written in terms of the blast wave parameters

3 0 (3. 7)

The subscript / in Eq'n. 3.3 to 3.5 denotes the conditions immediately

behind the shock front and ' , , are given previously by Eqs.

I, 2.8 to 2.10.

Substituting the profiles for , and into the energy

integral, we obtain the following equation

34

3(X- -)

-___ (3.8)

_r ,_/_ _( J • _

where $ -I and Rp are defined previously by Eqs. 2.15 to 2.17

respectively. From the definition of 1.given by Eq. 3.6, we obtain

the relationship
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d7. =(3.9)

so that the term C4/d7  in Eq. 3.8 may be written as

&- ý(ý Q,=,2 P-, - -24ý?f (3.10)

d ac7 d 7' OR0 .20~d

Evaluating d /a and 04/ from the boundary condition

at the front fo (i.e., Eq. 2.9), we obtain

4 /Jf 2 c 9 /(3.11)

where

;4,k (3.12)

and

- (o~ k i~ri--XPG (3.13)

5 ,-i 7 8 S ' ( •'-

S an~d A are defined previously by Eqs. 2.11 and 2.12 respectively

whe'le and C are defined as
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dW j? (3.14)

Using Eq. 3'.10, we can solve for 1 from Eq. 3.8 as

- (3.15)

Substituting the above equation into Eq. 3.8, we obtain a differential

equation for the change of the shock strength 7 with the radius 2?,

i.e.,

67 (3.16)
Cli

which may be integrated numerically using, for example, the standard

Runge-Kutta method.

To start the numerical intergration we must obtain the value

of 7at some small initial value of - . From Eq. 3.8, we note that

as 24-0 , 7 * Z since the left hand side of the equation

is finite. Hence the form of the expansion 7(-%) for small values
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of • should be of the form

7 ~/i2#-"(3.17)

and from Eq. 3.9, 9() for small values of . is

o2 (3.18)

Substituting the perturbation expressions into Eq. 3.18, the coeffi-

cient A can be evaluated as

A A (3.19)

For some chosen initial value of • , Eqs. 3.17 and 3.18 provide the

starting conditions for the numerical integration of Eq. 3.17.

To obtain on expression for the shock trajectory, we note

that = and in terms of and ?we can write

d = f 7(3.20)

For small values of 2,• we use the perturbation expression for

(i.e., Eq. 3.17) and Eq. 3.20 yields

and since the = ws we note from tie iabove that

* iHence the shock behaves like a strong point bbast wave.
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For very large initiation energy, 4 • or

and hence from Eqs. 2.14 and 2.7, so that

'Qe -- ."In other words, the full chemical energy per unit

mass is released instantaneously at the front and the present solution

recovers the reacting blast wave model (4, 5) 7). Alternatively, we

can assume the front to be discontinuous by simply taking 4 = O

and again the reacting blast wave model is recovered. However, in this

case, the initiation energy 4can be arbitrary and in the limit 4r-•Vo

we recover the J-T-Z model.

Taking 0= 0 , the boundary conditions (i.e., Eqs. 2.8 to

2.10) reduce to the ordinary Rankine-ILkgoniot equations for a normal

shock in a *perfect gas. The present solution then becomes the solution

for a non-reacting blast wave (18). With the non-reacting hydrodynamic

flow structure deternmined, the chemistry of the reactions between the

shock cnn be computed. This in essence is the finite kinetic rate

model studied by the Authors and Lundstrom and Oppenhein, (11).

Therefore we see that the present model is consistent with and unifies

all the previous theoretical models.

a'

'a
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4. Results and Discussions

For an explosive mixture at given initial conditions we

shall specify the following parameters: the specif,[:; heat ratio

the initial pressure A and sound speed 4 , the planar C-J Mach No.

M•- (hence the chemical energy per unit mass and the critical

shock Mach No. Al. corresponding to the auto-ignition limit of the
mixture. For the system C 2 studied in this paper, we

choose • =5 which corresponds to an auto-ignition temperature limit

•C 1 I0000 K.

For any chosen value of the initiation energy parameter =

Swe can obtain the solutions for the shock trajectory -*2e)

and the variation of shock strength with radius 7(3) by integrating

Eqs. 3.16 and 3.20. To start the numerical integration, the perturbation

expressions given by Eqs. 3.17 and 3.18 are used to evaluate the starting

values for 7 and ( for some small chosen value of -2 = o. . ',i the

present work 0. was chosen to be 0.05 and the integration was found to

proceed smoothly for increasing values of z without oscillation..

It is important to consider first the general properties of

the solutions for L(O) , and S(e) for various values

of the initiation energy parameter E . A typical example for the case

of stoichiometric C7 //Z - 0.. undiluted mixture at an initial presure

=100 torr and temperature 7 = 3000K is shown in Fig. 1. The

solutions for 9 ) jr various values of 6 all start out at the

limiting strong shock value of O) = -3/2 and increase towards zero

as the shock expands and the influence of f'he chemical energy release

becomes progressively important with lcrger hliock radius ,-• . The
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solutions of 5 ) all start out at its initial value 5(o. = / ,

which corresponds to the strong shock limit 0= (i.e., A4 - )

and decrease monotomically to zero as the shock expands and decelerates.

From Eq. 3.15, we fee that when 5= Q , the parameter • =Q , which

implies that the shock acceleration d ,d( = = R. Hence as

5-.. 0 , the shock ceases to decelerate and will propagate there-

after at a final steady state velocity / Since Al corresponds

to .= 0 , we see Lrom the boundary condi'.ions (i.e., Eqs. 2.8 to

2.10) that this solution is one where the rayleigh line is tangent to

the equtilibrium ttugoniot curve for the particular value of •eobtained.

Hence this final steady state velocity /. can be interpreted as the

local C-J velocity. As /l3. is a function of " , a different final

steady ;tate velocity is obtained for different values of the initiation

energy parameter C . This implies that for spherical detonations, the

final steady state C-J velocity depends on the magnItude of the initiation

energy E. The present.conclusion is then contradictory to the classi-

cal theory where, for a given explosive, the steady state C-J velocity

depends only on the properLies of the explosive itself.

From Fig. 1, it is seen that for small values of 6 (i.e.,

large initiation energy) the solutl.ons for 062) and S(';) indicate

that & ) - 0 simultaneously as S'2) 0 . However,

for larger values of • , we note that . when .S-?)

is still finite and 9(2) hence becomes positive and continues to

increase as 67Ž2) monotomically decreases to zero. Mien 5 = 6,

the value of 06') becomes multi-value since from Eq. 3.15, 6 must

vanish when 0 . Physically this implies that the shock over-dece-
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lerates at first to a minimum velocity and( as is still

f.inite, the shock accelerates again until S6?) = • when the

acceleration must suddenly cease (i.e., • = ) for the shock to

propagate subsequently at a steady state velocity /4 " The dis-

continuous jump in the shock acceleration is illustrated in the large

abrupt change in the solution for' 0() for the case of • = 0.13

shown in Fig. 1. This sudden transition demonstrates a type of in-

stability which occurs when the hydrodynamic flow structure is not

coupled smoothly to the chemical reactions. It should be noted that

-in the numerical studies of the deceleration of an initially planar

overdriven detonation wave (8, 9) the onset of instability is also

observed as the shock approaches its final steady state C-J condition.

This type of instabi].ity is inherent in all detonation problems and

within the context of the present model, wore detailed -.nformation

on this instability mechanism cannot be obtainec. However, for small

values of the initiation energy parameter 6 , che amp. ,udes of the

jumps in L'/) are sufficiently sma 1 and are within the round off

errors of the finite step sizes of the numerical integration scheme.

Hence we shall assume that for small values of C (i.e., 0 2. :05

for the particular case shown in Fig. I) the deceleration of the sphe-

rical detonation wave to its final steady state velocity 1 " is

smooth.

The stable behaviour of the solutions for small. valh.es of 6

can best be illustrated by the solutions fcr 72). we note th~at

Coy thc, ra1'o of < W ,. the shock strength decays smooth-

ly from its initial value 7o) = ) to some final steady state value
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//..a) = '77. Outside this range O - .05, the shock

decays to a minimum and, accelerates again. The transition to its

final steady state value * when 5 = 0 is discontinuous. This

is illustrated clearly for the case 6 = 0.13. Since for each shock

radius • the local value ofoe can be evaluated from Eqs. 2.7 and

2.14, we can determine the local C-J velocity by taking C> = • and

solving for from Eq. 2.11. The variations of this local C-J value

of with radius for the various values of 5 are also shown

in Fig. 1. We note that the corresponding 7Yo) is always less than

the local C-J value of I /?) during the decay (the shock speed is

always greater than its lccal C-J velocity). Hence the detonation

wave is overdriven at all times until , ) = when = i)t= ) =

and the final steady state velocity is-obtained.

In Fig. 2, the variation of the detonation Mach No. 2•g'<?)

with radius . = R5 is shown. For- small shock radii (i.e.,

S/ ) where the initiation energy dominates the shock motion,

all the curves coalesce and the decay is essent:ially that of a strong

blast (i.e., A, , ). For exn, ple, all the solutions for

"/75 are indiscernible from each other for - , 0.2, which

corresponds to the energy ratio

3 3

In other words, the total chemical energy enclosed by the wave is

about 8(% of the initiation energy E0 only. Significant departures

from the blast wave solution shou'ld occur when the energy ratio ,

which, for the particular case shown, is at a shock radius Z S' .46
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where the differences between the various solutions are quite pro-

nounced. The final steady state conditions (i.e., /V • * )

correspcnd to a shock radius 2 • 0.6. This yields an energy

ratio X 2? - ,2.. . In other words, when the chemical energy fi-

nally dominates the shock motion,

Although the so-called smooth stable regime - 4 0.5

for the decay to the final steady state velocity is arbitrarily set

based on the vanishingly small abrupt change of slope as

it is interesting to note that this stable limit is in accord with the

stability criterion of Shchelkin Using the final steady state

velocity (]< 5.7 for the limiting value of 6 0.5, the induction

(20)
time computed using White 's .data for this mixture (i.e.),

L'' / j •' r -- I#-•/ '/. / . * / • • 7 -) i s "'C ' = . 0 5 6 x 1 0 - 6

Sec.) wi)ich is about twice the value t- .029 x 10 sec. for the

planar C-J velocity of j¢" = 7.015. According to Shchelkin, if a

random disturbance rnsults in an increase in the induction time by an

order of magnitude equal to or greater than the initial delay time it-

self, then the detonation front loses its stability. For spherical

detonations, the increase in tHe induction time is due to the lateral

expansion associated with the three-diuaensional geometry.

For • • .05 the detonation wave decays to a minimum

and then aLc('l(-ra.e! again. The transition to its final steady, state

vClocitLy /7fM_ when 5 0 is discontinuous. This corresponds to the

experilo,,chtal observations of the propagation of a spherical detonation

'5, : •
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(10)
wave in the critical initiation energy regime ( The detonation

decays continuously to a velocity corr'esponding to the auto-ignition

limit of nl !2ý- S . The shock-reaction zone complex then pro-

pagates at this minimum velocity for a short period of the order of

10 jisec. Tile onset of instability is observed in the form of the

appearance of local ignition center.;. The rapid development of these

local hot spots leads to a sudden transition to a highly asymmetrical

multi-headed wave. From the experimental. record of our previous pa-

per (10), which was for stoichiometric O211 2 at 100 torr, the ini-

tiatiqn energy E,,= 0.3 joules and the value of 6 C 2 inm yielding

a value of 6 ý_ .18. From Fig. 2 we note that this corresponds

closely to the critical value of C- - 0.15 for direct initiation to

be possible.

For very small initiation energies (i.e., , = Z/k( is

large), the wave decays ,below the specified limitilrg strength for

auto-ignition (i.e., MC = 3). Tile shock completely decouples from

further chemical reactions and decays asymptotically to an acoustic

wave lVS = I., This regime is the so-called sub-critical energy

regime defined in a previous paper

From the present theory the critical energy for direct

initiation F'r can be determined since thle critical value of the

initiation energy parameter 1 -: c /w'•, is known. To eva.-

luate ,we first compute using the formula of Wlhite

(i.e., ro, - = I.1•lTc ST

ba sed on, Lte final Stady state v'e1vc ity 3. With

known, the critical energy c;n.l be determined as follows:
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hence

The dependence of Ecn /4as well as4~) foWht'

.4 
f White 's

formula for the two cases of stoichiometric and equi-molar C2H2 -0 2

mixtures are illustrated in Fig.3. The experimental points for the

narrow pressure range .04 6 .15 atm. are taken from our

previous paper (10) where a laser spark of 20 psec. duration is used

as the energy source. The agreement is quite reasonable in view of

the uncertainty in the use of the kinetic data near the low tempera-

ture limit. It should be noted that although more data are available

for the critical energy for direct initiation for these explosive

mixtures, they cannot be used to compare with the present theoretical

results. It was pointed out in a recent paper (10) that the critical

energy can differ by a few orders of magnitude depending on the total

discharge time. In order to compare with the present theoretical

results based on a point blast model (i.e., 4 p )) these

existing data must be reduced to the limiting value corresponding co

an infinite power density of the ignition source. Unfortunately, the

details of the discharge characteristics for these experiments where

the data are reported have not been stated to permit the appropriate

data reduction. The laser spark is perhaps the most powerful point
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energy source available which approximates closest to the theoretical

requirement of point blast theory.

To confirm the existence of a final steady state velocity

for spherical detonations that are below the classical value for the

explosive, a comparison between the present results and the recent
experimental data of Brossard (21)and Struck (22)is made. in Bro-

sard's experiments, a I meter diameter spherical bomb is used and the

detonation velocity is measured by the microwave doppler technique to

an accuracy of 0.4%. Various mixtures (C3H8 ) H2) C02114) C02H2 with 02)

at an initial temperature of 293°K and .I 0, , 2.8 bar have been

studied. In view of the large diameter chamber used to ensure steady

state conditions as well as the accuracy of the wave velocity measure-

ment by the doppler shift method, Brossard's results represent the

most reliable existing data on spherical detonation velocities. In

Struck's experiments, a much smaller chamber of 100.mm diameter was

used. The detonation wave velocity was measured using high speed mo-

vie schlieren. The present theoretical results for , A
are shown in Fig. 4 for both stoichiometric and equi-mular C 2 2-02

mixtures. In order to compare with ,,ro..-•ard and Struck's experimental
data, the variations of M.with initial pressure for constant

initiation energies Ev must be obtained. To derive these constant

energy velocity curves, we proceed as follows: Suppose we desire

for a particular energy . We note first of all that this curve

must originate at the critical condition where . = 6'. From Fig.

3, the value of A and 16 can be obtained for any value of

Hence at any pressure we may write
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hence

For stoichiometric C HI 0- 62 2H 2' 2 0.15 while for equi-molar mixtures,
0.13. Since /'g for various values of C- are determined from

the sol-ution, /J75S,=) of any particular value of E.can be derived.

From Fig. 4 we note that the agreement between the present theory with

the data of Brossard and Struck is quite good. It should be pointed

out that from the present theory the detonation velocity depends only

weakly on the initiation energy in the high pressure range .55 , 3.
Therefore although the initiation energy of both Bro'ssard and Struck

has not been properly reduced to the limiting value corresponding to

infinite power density as required by the point blast model, the agree-

ment is still very good.

Theoretical attempts (23, 24, 25) have been made to predict

the cellular dimension of a multiheaded detonation front. Using the

present theory, the longitudinal dimension of a "detonation cell" can

be evaluated if it is assumed that the motion of a "detonation wavelet"

in between collisions of transverse waves behaves like a decaying react-

ing blast as described by the present theory. Based on the experimental

evidence that the minimum strength of a "detonation wavelet" just prior

to the re-energization by the collision of a pair of transverse waves
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is about l/5 -) which corresponds to the critical limiting

strength for auto-ignition, we shall take the shock radius -C for

the case where F = 6. as the longitudinal dimension of the detona-

tion cell. From Fi9. 2, we note that C :-" .6 and the value of

" t- .15. These values (i.e., 6, ) are almost the same

for a wide pressure range for stoichiometric C2 112 -02 mixtures while

for equi-molar mixtures CC :!r .13 and i ': .6. Using these

values, the longitudinal cell dimension can be obtained through

the relationship

Usinii White's formula to determine AcA),the variation of R

with initial pressures can be obtained. To compare with the

experimental data of Strehlow (26), the longitudinal dimension must

be multiplied by a factor of about 0.62 based on the definition he

used for the tr~nsverse wave spacing. This comparison is shown in

Fig. 5 and, as can be observed, the agreement is reasonable. It should

be pointed out that there is no concrete experimental evidence to sup-

port the assumption that the motion of a detonation wavelet can be mo-

delled by a point blast wave; In fact, as Strehlow pointed out, the

center of curvature of the detonation wavelet does not corespond to the

point of collision of the transverse wave where the "decaying wavelet"

first originates!. Also, the impulsive release of energy by the colli.s ion

of transverse waves is by no means instantaneous. Hence the subsequent

decay of the "wavelet" does not correspond to that from the present model.

However, in view of the similarity in the gross features of the decay
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processes between experiments and the present theory, it seems

reasonable to adopt the blast wave model as a first approximation.

5. Conclusions

It shoul.d be emphasized that the most important results

of the present theory are that it predicts the existence of steady

state sub-Chapman-Jouguet velocities which depend on the details of

the initiation processes. In other words, the final steady motion

of the detonation front bears the memory of the initiation condition

through the hydrodynamic flow structure generated by the ignition

source. This is supported by the recent accurate experimental mea-

surements made by iBrossard. If the present theory, together with

Brossard's as, well as Struck's experimental results, are to be taken

as correct, then the classical Chapman-Jouguet theory of detonation

waves must be modified. The abundance of the experimental results

gathered in the past decade strongly indicates the inadequacy of the

Chapman-Jouguet theory. The recent verbal critique of the Chapman-

Jouguet theory by Professor Manson at the 13th Combustion Symposium

empbasizes the importance of the influence of the hydrodynamic flow

structure in the wake of the expanding detonation on its motion. The

present theory can be considered as a particular case where the hydro-

dynamic flow structure is peculiar to that of a point energy source.

It would be important to extend the present model to other types of

hydrodynamic flow structure in order to establish whether the predic-

tions from the present model are indeed universal. Equally important

will be more careful experiments on spherical detonations in the low

pressure, low initiation regime where the effects of the experiments

can be manifested in a more prono unced fashion.
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8. Figure Captions

Fig. I Tile solutions of , ,S and q (27)

for various values of for stoichiometric C2112 -02 mixtures

0
at TO =00 torr, TO 300K.

Fig. 2 The variation of shock strength Ms with shock radius for

various values of E (stoichiometric C21I2-02, 0 = 100 torr,

To  = 300OK).

Fig. 3 The variation of the critical energy Ec for direct initiation

and the critical, induction zone thickness A, with initial

pressures for stoichiometric and equi-molar C2 112 -0 2 mixtures.

Fig. 4 Comparison of the detonation velocities in stoichiornetric and

equi-molar C2 12 -0 2 mixtures with the experimental data of

JBrossard (Ref. 21) and Struck (Ref. 22).

Fig. 5 Comparison of the predicted transverse wave spacings with

the experimental data of Strehlow (Ref. 26).
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