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THE INTERACTION OF A SHOCK WAVE IN
A PLASTIC MEDIUM WITH AN EDIFICE

G. M. Lyakhov

(Moscow)

The interaction of a plane shock wave in a plastic medium
with a boundary (a plate) made from a nondeformed material was
examined in works [1-3]. The dependence of the stress on the
deformation ¢ = o(e) under a load was approximated by pilecewise
linear [1, 2] or by power [3] functions, while the unlcading was
assumed to be originating according to a linear law, different
from the loading law [1], or with a constant volume [2, 3].

In work [4] a solution was given for the problem of the
interaction of a plane shock wave in an elastic medium with an
edifice, which 1s viewed as a system with three degrees of freedom,
which allows us to take into consideration simultaneously the
shifting of the edifice on thewhole and the deflection of its
covering and base. In works [2, 4] a solution is given for the
problem of the interaction of a wave with an ediflce as with a
system with three degrees of freedom in a plastic medium. The
dependence ¢ = d(g) with a load is nonlinear, and unloading occurs

with a constant volume. The effect of the free surface ls taken
into account.

FTD-HT-23-T48-72 1

sm s T & Trry e o L S a7 5 " 2

¢k i M b e ARSI

e e e Nl A AR e
PTG oo DL

,:;
4
2
]
3
4
%

1

ar

Cler, T Bhd i DGR LU M et [ D L L acdfa

s 5 e o s g N IR £




The results of the calculation are represented in the form of
a system of equations, the integration of which is carried out
using elecironic digital computers. Particular cases are examined,
when integration can be done without using computers. A comparison
of the movement of the boundary in plastic and in elastic media is
made. .

1. Let us examine a plastic medium, in which the stress o
and deformation ¢ during loading are related by the linear law:

o = ag(e), where i€ > 0, = > 0. (1.1)

The unlcading and the secondary locding up to a value of the
previously achieved stress occurs at constant deformation (Fig. 1).
Similar properties are possessed by nonwater-
saturated ground with fair-sized stresses.
With the compression of the medium in the
plane wave, which corresponds to the uniaxial
deformed state, pvessure p and specific volume
V are determined by expressions:

V - V0

VO ?

& g = -p, € = (1.2)

Fig. 1.
KEY: (1) Loading; o0 1s the stress in the direction of movement

(2) Unloading. of the wave.

Transferring to a system of units of p, V, we obtain
equation (1.1) with the loading of the medium in the form

2
p = p(V), %% <0, d—g—‘> 03 (1.3)
av
and with unloading
=0, (1.4)

FTD=-HT-23-748-72 2
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3 " Let us carry out the solution in Lagrange coordinates; mass h, § E
313 time t. § 4
13 i é
. B In the initial section of the medium let h = 0, which we will i “
- i E
3 o combine with the free surface; when t = 0 let the pressure lncrease i 3
? zi suddenly from 0 to Pp? and then fall according to the given law: 3
2 p = £(t). (1.5) £
S Under the effect of thls load there is formed in the medium a : ;
ii; plane shock wave. ; ]
. ! 4
?é . ;
k- Let there be an edifice in the form of a rectangular 4
3 }5 parallelepiped in section h*. 1Its covering and base are viewed :
g ié as girders, resting freely on a framework f(the walls of the §
F Ko ) 4
E: »g edifice). Let us represent the edifice as a system with three 3
;% degrees of freedom in conformance with the scheme in Fig. 2. E
o Let us designate by m, and m, the K|
1 m, 1 2 g
3 &-; masses of the covering and of the base 3

. reduced to the middle of the span, by

P
m DRI PN

g 5 &

m3 - the mass of the framework, by Vi

- ;b Yo and y3 - the shifts of these masses
Fig. 2. respectively in a fixed system of
coordinates, and by Ky and Hy = the
rigidities of the covering and of the base. The reduction of the
masses 1s carried out in conformance with work [4].

i B W SR L 30 T 8 S

o P

Let us examine the interaction of a plane shock wave with the
1 edifice. The scheme of the reglons of various solutions in plane
g h, t 1s represented in Fig. 3. Behind the edifice there 1s a

E second plastic medium, for which the dependence p = p*(V) is

3 % given. During loading d2p/dV2 > 0, and during unloading

4 é aV/3t = 0. We can disregard the deformation of the framework of
; the edifice, as well as the edge effects, connected with the

flow of the wave around the edifice. 1In Fig. 3 the edifice in
section h = h* is not resresented. The movement of the medium
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: * |2 in Lagrange coordinates in plane h, t 1is )
3 d
3 \\\\\ é}/,/’ determined by equations:
i du/at + ap/dh = 0,
; (1.6)
' du/oh - 3V/3t = 0.
— = .
Fig. 3 In regions where unloading or secondary

loading c¢f the medium occurs when 3V/3t = 0,
the goli tion of equations (1.6) has the form:

u = @(t), p =~ nb(t) + (), (1.7)

RN AL OIS RN L b bt e I M A

where ~.. che velocity of the particles, and i1 is the membevr of
the regicn in plane h, t.

In regions where primary unloading of the medium takes place,
and the wave is not a shock wave, the Rliemannian solution is

valid:
u=F (h-— ..dV ¢ )
‘/ ! (1.8)

”‘fl/ dR fe

{ Functions ¢i’ wi’ and Fi and the constant value B, are found from
] the initial and boundary conditions.

Region 1 in Fig. 3 corresposnds to a shock wave propagating
through the medium, and the solution has the form of (1.7). The
: scughte- for functions are ¢l(t), wl(t); the line of the front is
'3 h,(t) (Fig. 3). From the condivion in the initial section we

; will find
' ¥ (8) = 2(t). (1.9)
3 The conditions at the front of the shock wave at coordinates h, €
3 have the form
p = h2(t)(Vy = V), u = hy(£)(Vy = V). (1.10)
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‘The suﬁgbriit 0 refers to the medium before the wave front.

Taking into account (1.7), in conformance with (1.10) we
obtain a system of two equations with two unknown functions Ql(t)
~nd hl(t):

() 5 OO =k (Do ()

= @) Vi~ V[-h ()6 O+ F @) (1.11)

The initial conditic.ns are: hl(O) = 0, £(0) = Pps Whence

®,(0) = Lo Vg = VoY, V= Vipp).

Integrating system (1.11), we will find the solution in
region 1. The concrete form of the sought-for functions depends
on the form of the given functions p = p(V) and p = f(t).

Regions 2 and 3 correspond to elastic and plastic waves,
formed during the interaction of the incident wave with the
covering of the edifice. In these regions unloading or a secondary
loading of the medium occurs. An elastic wave, as a consequence
of the assumption 3V/3t = 0 during unloading, propagates with an
infinitely large velocity. Simultaneously during the interaction
shifting of the edifice occurs as a single unit, and deflections
of the covering and of the base appear as well. As a reswuit of
the movement of mass m. behind the edifice the gradual ioading of
the medium begins and ; compression wave is formed (region 1% in
Fig. 3), the course in which is determined by the equations in
(1.8). The solutions in regions 2 3 and 1%, as well as the laws
of movement of the elements of the edlfice are found simultaneously.
Let us examine the corresponding initial and boundary conditions.

In section h = 0 the change in pressure is given by function
(1.9). Hence we obtain

22 ()= £ (2). (1.12)

Boundary h,(t) of regions 2, 3 was previously unknown. In it from
2
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the side of region 2 at moment in time t the pressure in each
particle reaches a value, which existed previously on the front
of incident wave hl(t) at moment in time A(t). Hence in
conformance with (1.7)

dv
h, 2 ?l
hy (t) =, (1)~
On the front of plastic wave hz(t} the pressure increases ;

abruptly, and then behind the front changes when 3V/3t = 0. On
line h2(t) the following relationshlps are fulfilled:

Pr— D= 3 (Vp)) ~V(p)l: wg—uy=
=k (8) [V(p) =V (pp)];
Ps—pr=h, (t) (43— u,).

Hence we obtain two more equations for inclusion into the overall

system: -
B o= ) — 1y ) Gy ) = 4 ) — £ (O
dh, (+) di (1.14)
BB — {V (p2) — V (py)), .
where

Ps=—hy () 33+ Y Pr= — hy (t) 93+ 1 (£).

3

e

The values with the subscripts 2 and 3 refer to regions 2
and 3.

The front of the wave In the second medium corresponds to
a weak separation, and it moves with a constant velocity, equal
in coordinates h, t to the acoustlc resistance of the medium.
Hence we find that in equation (1.8) the constant B = 0. The
pressure and velocity of particles in region 1% are related by the

b A L R 5 A S YA L S S o £ M,

relationship

u—h/ ‘“’dp. (1.15)
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bepeﬁdence p = p*¥{V) for the second medium is known, hence
find the function

= g(u). (1.16)

The velocities of masses my and m, are equal to the velocities
of the particles adjoining them of the first and, correspohdingly,
of the second media:

y1(8) = 95(8), J,(t) = u(t).

Mass m, moves under the effect of the difference in forces,
acting from the side of the first medium and mass m3; mass m, -
under. the effect of the difference in forces, applied from the
side of mass m3 and from the side of the second medium; mass m3 -
under the effect of the difference in forces, applied from the
side of masses my and My

A system of equations, determining the course in three
regions: 2, 3, 1* and the movement of masses my, My m3, includes
seven equatlions with seven unknown functions: ¢2(t), w3(t),
h2(t), A(t), yl(t), ya(t), y3(t). These equations correspond to
the above considered conditions:

n() 22O g =i o) 228 4 p oy,
b (1) = By ()

2 O EO=-nOl=6O-10:
o= 5= LLEL LV [~ 1 4, +7 0] =
~VI=h M+ () 1):
(ml‘f"‘*));; (£) = 93 () = 5, [y, ) =+ ¥5 ()] (1.17)
My ()= I3 () = 34 ()] = %3 I3 ) — s OO
mys () =#: [y )=y O] —g [ya ().

The system is solved with the initial values:
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=1
3

A(i*)=t*, ¢ (t'.) = ¢, (£°), Ys "= 0.. R(] (¢°*) =0,
() =0, 9 (t*)=0, y, (¢)=0, y; (£) =0,
where t#* is the moment of approach of the wave to the covering
of the edifice.

2. Depending on the parame“ers of the problem - the form of
function p = f(t), the properties of both media, the values of
masses m,, m,, m3, and the value h* the system of equations
(1.17) can cease to be fulfilled as a result of the fact that
the rarefaction wave from the free surface arrives at mass m; or
in region 1* thc compression wave becomes a shock wave and the
Riemannian solution will not be valid.

Let us consider the first case., When t = t** a5 a consequence
of the effect of the free surface regions 4 and 2* arise (Fig. 3).
In region 4 unloading of the medium takes place and the solution
has the form of (1.7). From the condition on the free surface we
find one function in region U4:

by (t) = £(t). (2.1)

Depending on the parameters of the problem when t > t¥##% in
region 2% both loading and unloading are possible. Let us consider
the case of unloading. Then the boundary h3(t) of regions 1%, 2#
is nonrectilinear, previously unknown and must be determined in the
course of thé solution of the problem. In region 2* the solution
has the form of (1.7).

The system of equations determining the flow in two reglons -
4 and 2% - and the movement of masses My, My, m3, includes five
equations with five unknown functions: ¢u(t), y3(t), y2(t), h3(t),
wg(t) (function wu(t) is found, when yl(t) = ¢h(t)).

This system corresponds to the equations of motion of masses

mys My, m3 and the continuity conditions of the pressure and
velocity of the particles on line h3(t) in the second medium:

Lo ] S0 S0 W ) Bl

E
¥
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(my+ )y, ) =F ()&, Iy, @) =2 (O); +
m; 5;: ) =&, [ () —y; () = Ky [ys (2) — y2 (D))}
(my=1%) y, (£) = &, [y5 () — vy ()] — 92 (8); (2.2)
= hy (£) Y3 () = — %2 () +p [y (1), £):
Y2 (¢) = [y (), 8]

It in region 2% the load is continued, then the boundary of
region 2% and 1* is rectilinear and parallel to boundary 1%, 0.
The system of equations determining movement of the elements of the
edifice and the flow in regions 4 and 2% assume the form:

(my 4 %) 3, () =1 ) — +1 s () = 33 O:
my s (€)= % (9, () — s () — % Iy () =3 O3 (2.3)
my 53 (8) = K93 () — 2 ()| — & (5 (D);

g(yz(t)) is a known function, determining the connection of p and u
in regions 1* and 2%, The integration of the obtained systems of
equations must be carried out using electronic digital computers.

3. Let us make an analysis of the obtalned regularities for
the simplest case, when the deflection of the girders in the
covering and base can be disregarded and when the edifice is
represented in the form of a boundary (a plate) with mass m. The
loading of the medlia above the plate and below it is determined
by the linear dependences:

p==—A'V4+B, AB=const; (3.1)
p=—A%V 4 B* A* B*=const.

Unloading takes place when 3aV/3t = 0.

In section h = 0 when t = ™ the pressure increases abruptly
from 0 to Py and henceforth maintains this value. In this case
boundary 1, 0 is rectlilinear, its equation is h = At, and the
solution in regions 1 and 2 has the form:

Y2 =% = Pa, ?x=%=£;-"."“ (3.2)

The pressure and veloclity of the particles are constant.

0% = T
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Let us introduce a new variable T = t - h*/A., The boundary
of regions 2 and 3 is rectilinear. From the conditions on this
boundary we obtain

13=20a=A%+hoy=2pn— Agy+ (* = Av)y, (3.3)

In region 1* loading of the medium occurs. With a linear dependence
of the pressure on volume (3.1) the solution of the equations of
(1.6) in the region of loading (see, for example, [4])has the form:
p=Fy(h—AQ)+F, (h+ Av), Au=F, (h— A) - (3.5
—Fy(h 4 Av). v
Functlons F., and F2 we will find from the initial and boundary
conditions, From the conditions of the front of the wave 1%, 0
we find that in region 1* the pressure is connected with the
velocity of the particles by the relationship

p(t) = A*u(x). (3.5)

Taking into account (3.3) and (3.5), we get the equations of
motion of the boundary:
m’i.’a"":"h*?.a'*"?a"'"%' (3.6)
(m+Ax) g + (A+ A% 9= 2p,.
Integrating and taking into account that when 1 = 0 we have
Q3 = 0, we find the velocity of the boundary and the velocity of
the particles in region 3:

Aat
2pm m \ A
4= %) == ) (3'7)
% ) A+A*[ (m+A~:) ]
Hence the pressure in reglon 3
p=—h=3+¢,=2pm{(ﬁ‘_u_
-y m+A’C (3.8)

Asae
Ae m A Ae
A+A*)(m+m) +A+A‘ )

On the boundary of regions 2, 3 with the approach through section
h = 0 the pressure falls. It 1s determined by expression
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R AsA® . ,
A+ A |\ mrao—s Al (3.9, i
Depending on the parameters of the problem the pressure on, §
line 2, 3 can become exhausted and become equal to the prgssurg‘in r §
region 2, (i.e., p_) or remain greater than p, along the entire i
path up to h = 0., If the pressure does not fall to P then the : :
boundary reaches the initial section when t# = h*/A. If the jumb~ - %
~ :
is exhausted, then this takes place when N §
* T T < :
A
— A+i 01'0 :
wherezc./"_.‘.‘l) . (3 ).'
\ 2
In the first case when © = t**%, and in the second when 1 = 1% ° T ;
regions 4 and 2% are formed (Fig. 4). Let us designate the momept )
of their formation (in both cases) by T##,
In region 4 unloading of the medium takes place,
while in region 2% both loading and unloading’
are possible, In the case of loading in region
2%, by integrating the equation of motion of
the boundary
—A.’do - )
Fig. 4. we will find the velocity of the boundary in
region 4:
Atf=v90)
p -
h-ﬁ[%(t")-% e "7, (3.12) ’
where ¢3(t**) is determined from equation (3.7). %
Let us consider the case of A > A%, The velocity of the %
bcundary increases and when Tt + « strives to the limit u ~» pm/A*." %
Without taking into account the effect of the free surface §
3
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u -+ 2pm/A + A%, The pressure on the boundary Py and pg from the
slde of the first and second media, respectively, is equal to:

Pi= =R g & Pa= gy - .
. -
TmnlemARC e T (3.13)
! . "”“552‘ .
1 Pr= Ay =pn— [pn— Agy (1%} & "% (3.14)

Witn the course of time the pressure tends toward Pp» and
without consideration of the effect of the surface toward
3 @A%/A + A')pm-

Let us consider the case of A < A%; then the velocity of the
boundary falls, while in reglon 2% unloading of the medium occurs.

The boundary of regions 1%, 2% is unknown. Let us designate it
by h = h(t). In region 1* from the relationships on the front of
the wave we will find

pi(r) = A*u{(r).

Hence because of (3.4) we obtain F2 = 0. On the boundary
Fl(h* - AtH) = A*¢3(T). Let us designate
Then

R o=an(5)-

Hence we will find the first function in region 1* in the form

h*—h +A’s)

F, (h-A‘t)=A‘?.( = (3.15)

The system of equations determining the movement in region 4

has the form

—h(2)y () + 42 (g)=4.?‘(h-_a53+,4.,)=
y'(=)=;,("'-k(=)+4-:)

A® L (3.16)

my (z) = pa = & (v).
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and velocity of the particles on line h(t), dividing regions 1%
and 2%, while the third corresponds to the equation of motion of

The first two equations express the continuity of the pressure E
the boundary. Solving the system relative to h(t), we obtain H

[m + h(t)] il A"P3, (2.17)

Asae
o _2Pa - Am
*lt 6= + A.{' [A'm+A(k-+At-k (*)I ] '

The integration may be carried out numerically.

where

In conclusion, let us consider in more detail a case where
the properties of the media on both sides of the boundary are
identical, A* = A, Then regions 4 and 2% are formed when
T* = h*/A, When 1T < t* in region 3 the pressure on the boundary
in conformance with (3.8) is determined by the expressiocn

=po [ Mm—AY)
P-P-[l T AP }. (3.15')
dp _2Am (A:—2m)pa
dx  (m+A7). (3.16")
From (3.15') and (3.16') it follows that the pressure drops, g

while when At(l) = m it 1s reduced to Ppe When 1(2) = 21(1) it
reaches a minimum, then lncreases and tends toward Ppe The
pressure on the boundary on the side of the second medium 1is

p* = A*¢3(r). (3.17")

U

As the calculations show, irrespective of the dependence
of the value of the mass '

p(*"’)-gp-. r* (t‘")-=%p-. P (t"’)=%h

e 1 0 AN U A e T o

Henceforth p* -+ Pp? remaining less than the pressure from
the boundary on the side of the first medium. The acceleration
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of the boundary 1s continually positive:

. 2Pa m \ :
”(')'T(m-ym)' (3.18) :

In region 3 the acceleration with the passage of time tends towards

zero. Here .

%3 ()= .i!é?.).., ' (@)=—'§'Lé (© .

where 63(0) = 2pm/m is the acceleration of the boundary at the
moment of the approach of the incident wave to it, i.e., when

T = 0.

Let us assume that h* = L m, i.,e., that the rarefaction wave,
proceeding from the free surface and regions U4 and 2%, is- formed
when T# = h¥*/p = hr(l). In region 2% when A = A the load is
continued and the pressure on the boundary on the side of the
first and of the second media is determined by expressions (3.13)
and (3.14). Calculations show that when T = t* the acceleration
of the boundary falls abruptly from (1/125)¢3(0) to (1/250)¢3(0), _
while the pressure falls from (122/125)p  to (121/125)p, . Here .
p* = a20/125)pm. Henceforth in region 4 we have p -+ Pps

p* »p., @ » O.

In Fig. 5 curves 1, 2, and 3 correspond to the acceleration

of the boundary (1), and to the

pressures p(t), p*¥(t). It can be seen

from the graphs that the boundary up - .
to the arrival of the rarefaction wave

is set in motion together with the

medium and the arrival of the rarefac-

tion wav~ has virtually no effect on

the movement of the boundary and the

value of the loads experilenced by 1it. ;
The jumps @ and p when T = t* are so
small, that they are not rep}esented
Fig. 5. in this figure.
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In Fig. 6 curves 1, 2, and 3
correspond to ¢(1), p(1), and p*(t).

In contrast to the graphs in Fig. 5 it
is assumed that h* = m/2, i.e., the
rarefaction wave arises eight times
earlier, than when h* = Um, The arrival
of the rarefaction wave leads to an
abrupt drop in the acceleration and
pressure p. Henceforth with the rise in

time ¢ ~ 0, p > py, B¥* * pj.

et Lttt S 3
SRR

Fig. 6.

From a comparison of the graphs in Figs. 5 and 6 it folliows
that with the reduction in distance h¥* from the free surface to

the boundary the effect of the rarefaction wave on the movement

of the boundary increases. However, in the second case also this

effect 1s not great.

With the passage of time, irrespective of the dependence of

. the distance h* from the free surface to the boundary, the
. pressure on the boundary on both sides tends toward Py and the :
’ acceleration toward zero. The lower the mass of the boundary i

and the greater the acoustic resistance of medium A, the sooner

stationary conditions set in.

o

Figure 5 shows curves 4, 5, and 6, corresponding to the
acceleration and pressures p and p*, calculated from the formulas
) of work [4] for the case of interaction of a stationary wave with
a boundary of mass m in a linearly elastic medium. A comparison
of curves 1, 2, 3 and U4, 5, 6 shows that the differences,
correspondingly, between accelerations ¢ and pressures p and p#*
on the boundary in plastic and elastic media up till the arrival
of the rarefaction wave from the free surface are not great. The
effect of the free surface in an elastic medium is exerted twlce
as long afterward as in a plastic, and gives rise to an abrupt
drop in pressure to a negative value. The difference 1in values
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$, p and p* in the region, where the influence of the free surface
i1s exerted, and in elastic and plastic media 1s substantial.

Experiments show that in soils the effect of the free
surface does not lead to pressure drops to a negative value. This
indicates that nonwater-saturated solls behave as plastic nmedia.

Thus, the application of models of elastiec and plastic
media In the solution of problems of the 1nteraction of waves with
the elements of edifices produces close results. However, this 1is
true only in the reglon where the influence of the free surface
is not exerted. In a region formed after the arrival of the
rarefaction wave from the free surface, it 1s essential to take
into consideration the plastic properties of the medium.

In concluding the report, the author expresses hls graditude
to N. I. Polyakova for her discussion of the work.
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