
I...-

FTD-HT-23-748-72

FOREIGN TECHNOLOGY DIVISION.

THE INTERACTION OF A SHOCK WAVE IN

A PLASTIC MEDIUM WITH AN EDIFICE

by

G. M. Lyakhov

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 22151

Approved for public release;
Distribution unlimited.

$

L42



UNCLASSIFIED
"5s.u.it•y Cis•ce, t.tio,

DOCUME4T CONTROL DATA • R & 0
(s..swlty Classifict.ion of fitlm, 6*0~ of abstact find Indexini annoaeaII'n must be en tered when the overall report to classi~llc

I. OnIGIn 7TING AC-TiVITY (C omefs A4UUte) 23a. RZPORlT SECJIiYY CLASSIFICATION

Foreign Technology Division UNCLASSIFIED
Air Force Systems Command 26. GROUP
U. S. Air Force

3. REPORT TITL,

THE INTERACTION OF A SHOCK WAVE IN A PLASTIC MEDIUM WITH AN EDIFICE

A. 0I[I" •TyiVI NOTES (7)rpe at rest and inelueove dates)

Translation
a. AUTHOMISI (First name. 1~ .Initil leat P8ea)

G. M. Lyakhov

6. REPORT DATE 70. TOTAL NO. OF PAGES 17b. NO. Or *cps

6liooo 16 4 k
Ge. CONT•ACT OR *RANT NO. ft. ORIGINATORS REPORT NUMSERISI 4

,. PIOJCT NO. .FTD-HT- 23"78-72

9. ft. OTHER1 REPORT NOIMI (Any o•etr numbers Met 01ay be *setdnad

ST7O-Oi-03, T70-02-OID
IC1. OISTRIGlUTION STYATEMiENT

Approved for public release; distribution unlimited.

It. SUPPL91EMENTARY NOrE$ It SPONSORING MILITARY ACTIVITY

Foreign Technology Division
Wright-Patterson AFB, Ohio

IS. ASSTRACT

S{Thts report discusses the relationships between shock waves in
plastic and elastic media with a barrier made from a non-defor-

mable material.

g4

. i
D .1

SecuniW classificlltiada



r ~UNCLASSFIB

K o"oLINK A LINK a LINK

Uswty simRL6 WT *RoLE WY **Le WT

Plone, Shook i
Linear Lawi
Elastic tMedia

V. Loading
Unloading
Pl astic. di:
Edi f iCE!
Lagrange Coord*-,*m1,-
Pa nzme Lc -!%i
Veloc L y

P I
Seurt j 4 -fiato



-T- 23-748-72

EDITED TRANSLATION
FTD-HT-23-748-72

THE INTERACTION OF A SHOCK WAVE IN A PLASTIC

MEDIUM WITH AN EDIFICE

By: G. M. Lyakhov

English pages: 16

Source: Vsesoyuznogo Simpoziuma po Raspro-
straneniyu Uprugo-Plasticheskikh Voln v
Sploshnykh Sredakh. Materialy (All-
Union Symposium on the Propagation of
Elastic-Plastic Waves in Continuous
Media. Materials), Izd-vo AN AzerSSR,
Baku, 1966, pp. 245-257.

Requester: FTD/PDTN

Translated by: John Sechovicz

Approved for public release;
distribution unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGI.
NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR
EDITORIAL COMMENT. STATEMENTS OR THEORIES PREPARED BY:
ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE
ANDOO NOT NECESSARILY REFLECT THE POSITION TRANSLATION DIVISION
OR OPINION OF THE FOREIGN TECHNOLOGY DI* FOREIGN TECHNOLOGY DIVISION
VISION. WP.AFB, OHIO.

FTD-HT .23-74C-72 Date . June 19 72 3

Al-



U. S. BOARD ON GEOGRAPHIJ% NAMES TRANSLITEPRATION SYSTEM

Block Italic Transliteration Block Italic Transliteration
A a Aa A,a P p P P R, r

Bu Be V, v T T m T, t
r r r 0 G, g Y y Y y U, u
fA D.0 Dd 0 4 0# F, f
E E # Ye, ye;E, e* X x X X Kh, kh
XC *W Zh, zki UM U I ' Ts, ts
S 3 Z Z "iq y V Ch, ch
H4 of I, i UW W 1W Sh, sh

0 a '!, y Wn ll LU Shch, shch
Ku IK K, k b

315 X J L, 1I bi u u Y, y
M M M'm b I b ,

H Hu Nn • 3 E, e
0 0 0, o 0 1 0 A* Yu, y
r n thyf P, p Xn Y a, ya

• y initially, after vowels, and after b, b; e eLtsewh-re.
When written as 4 in Russian, transliterate 19s yt c'i.%.
The use of diacritical marks is preferred, but s:uch marks
may be omitted when expediency dictates.

FTD-HT-23-748-72 iV'



'-7"?T'---V"- -- W

2

THE INTERACTION OF A SHOCK WAVE IN
A PLASTIC MEDIUM WITH AN EDIFICE

G. M. Lyakhov

(Moscow)

The interaction of a plane shock wave in a plastic medium

with a boundary (a plate) made from a nondeformed material was

examined in works [1-3]. The dependence of the stress on the

deformation a = a(s) under a load was approximated by piecewise

linear [1, 2) or by power [3] functions, while the unloading was
assumed to be originating according to a linear law, different

from the loading law [1], or with a constant volume [2, 3].

In work [4] a solution was given for the problem of the

interaction of a plane shock wave in an elastic medium with an

edifice, which is viewed as a system with three degrees of freedom,

which allows us to take into consideration simultaneously the

shifting of the edifice on the whole and the deflection of its

covering and base. In works [2, 4] a solution is given for the

problem of the interaction of a wave with an edifice as with a

system with three degrees of freedom in a plastic medium. The

dependence a = o(s) with a load is nonlinear, and unloading occurs

with a constant volume. The effect of the free surface is taken

into account.

FTD-HT-23-748-72 1
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The results of the calculation are represented In the form of

a system of equations, the integration of which is carried out

using electronic digital computers. Particular cases are examined,

when integration can be done without using computers. A comparison

of the movement of the boundary in plastic and in elastic media is

made.

1. Let us examine a plastic medium, in which the stress a

and deformation c during loading are related by the linear law:

d a, d 2.

a = a(e), where > 0, > 0. (1.1)
de 2de

The unloading and the secondary loading up to a value of the

previously achieved stress occurs at constant deformation- (Fig. 1).

Similar properties are possessed by nonwater-

saturated ground with fair-sized stresses.

With the compression of the medium in the

I l) KGntD plane wave, which corresponds to the uniaxial

deformed state, p7Lssure p and specific volume

(2) V are determined by expressions:

•i V - Vo
S(1-.-p, E: (1.2)

Fig. 1. 0

KEY: (1) Loading; a is the stress in the direction of movement
(2) Unloading. of the wave.

Transferring to a system of units of p, V, we obtain

equation (1.1) with the loading of the medium in the form

p(V), V 0, > 0; (1.3)dV2

and with unloading
3V

-0.

F-- = 0. (1.14)

FTD-HT-23-7148-722



Let "us carry out the solution in Lagrange coordinates; mass h,

time t.

In the initial section of the medium let h = 0, which we will

combine with the free surface; when t = 0 let the pressure increase

suddenly from 0 to pm' and then fall according to the given law:

p = f(t). (1.5)

Under the effect of this load there is formed in the medium a

plane shock wave.

Let there be an edifice in the form of a rectangular

parallelepiped in section h*. Its covering and base are viewed

as girders, resting freely on a framework (the walls of the

edifice). Let us represent the edifice as a system with three

degrees of freedom in conformance with the scheme in Fig. 2.

Let us designate by raI and m2 the

masses of the covering and of the base

Sreduced to the middle of the span, by

m3I- the mass of the framework, by yl,

Y2 and Y3 - the shifts of these masses
Fig. 2. respectively in a fixed s-ystem of

coordinates, and by Kl and K2 - the

rigidities of the covering and of the base. The reduction of the

masses is carried out in conformance with work [4].

Let us examine the interaction of a plane shock wave with the

edifice. The scheme of the regions of various solutions in plane

h, t is represented in Fig. 3. Behind the edifice there is a

second plastic medium, for which the dependence p = p*(V) is
2 V2given. During loading d p/dV > 0, and during unloading

aV/3t = 0. We can disregard the deformation of the framework of

the edifice, as well as the edge effects, connected with the

flow of the wave around the edifice. In Fig. 3 the edifice in

section h = h* is not represented. The movement of the medium

FTD-HT-23-748-72 3
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in Lagrange coordinates in plane h, t is

determined by equations:

'•u/9t + a./3h = 0,

au/Dh - 3V/3t = 0.

Fig. 3. In regions where unloading or secondary
loading of the medium occurs when aV/3t = 0,

the soJ:'tion of equations (1.6) has the form:

u = (i(t), p = - h41 (t) + Yi(t), (1.7)

where .. che velocity of the particles, and i is the member of
the regiGn in plane h, t.

In regions where primary unloading of the medium takes place,

and the wave is not a shock wave, the Riemannian solution is

valid:

Jr dp

Functions qP., ni, and Fi and the constant value i are found from

the initial and boundary conditions.

Region 1 in Fig. 3 corresponds to a shock wave propagating

through the medium, and the solution has the form of (1.7). The

sought-for functions are Pl(t), t 1(t); the line of the front is

hl(t) (Fig. 3). From the condition in the initial section we

will find

, 1(t) = f(t). (1.9)

The conditions at the front of the shock wave at coordinates h, t

have the form

P h (t)(V V), u h-(t)(V V). (1.10)
!01
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F *The subscript 0 refers to the medium before the wave front.

Taking into account (1.7), in conformance with (1.10) we

obtain a system of two equations with two unknown functions Pl(t)

"-nd hl(t):

.()h;" (t) V,- --- V [-- h, (t) it, (t) + f (M).(l.l

The initial conditi.ns "&re: hi(0) = 0, f(0) = pm' whence

(-V-m), Vm = V(Pm).

Integrating system (1.11), we wll find the solution in

region 1. The concrete form of the sought-for functions depends

on the form of the given functions p = p(V) and p = f(t).

Regions 2 and 3 correspond to elastic and plastic waves,

It formed during the interaction of the incident wave with the

covering of the edifice. In these regions unloading or a secondary

loading of the medium occurs. An elastic wave, as a consequence
of the assumption DV/Dt = 0 during unloading, propagates with an

infinitely large velocity. Simultaneously during the interaction

shifting of the edifice occurs as a single unit, and deflections

of the covering and of the base appear as well. As a resu.lt of
the movement of mass m. behind the edifice the gradual loading of

the medium begins and a compression wave is formed (region 1* in

Fig. 3), the course in which is determined by the equations in

(1.8). The solutions in regions 2 3 and 1*, as well as the laws
of movement of the elements of the edifice are found simultaneously.

Let us examine the corresponding initial and boundary conditions.

In section h = 0 the change in pressure is given by function

(1.9). Hence we obtain

•ý YX (•-,f (t). (1. 12 ) ;

Boundary h 2 (t) of regions 2, 3 was previously unknown. In it from

5 4



the side of region 2 at moment in time t the pressure in each

particle reaches a value, which existed previously on the front

of incident wave h 1 (t) at moment in time X(t). Hence in

conformance with (1.7)

d9 2 .
h2 W + ft (t) - ft (k)). f 1

On the front of plastic wave h 2 (t) the pressure increases

abruptly, and then behind the friont changes when aV/3t = 0. On

line h2 (t) the following relationships are fulfilled:

p3 ,-p2 =/rIV(p) - V(p 3 )j; &,a-I=V

= 2 (t) I V (P2) - V (P)1;

A - p -2 W(t (3 -- g).

Hence we obtain two more equations for inclusion into the overall

system:
d•k, (1•) ".- (7 ,?)--h, (.) (iý-.)= +i (--f (t);

dt
dft,() d~(1.1)4)Ah, (-) A) .1

53. 7-2 -T. = I (P) -V (p3 )],

where

P3= -t (t) h .a- - , A =-h 2 (t) i,+ (t).

The values with the subscripts 2 and 3 refer to regions 2

and 3.

The front of the wave in the second medium corresponds to

a weak separation, and it moves with a constant velocity, equal

in coordinates h, t to the acoustic resistance of the medium.

Hence we find that in equation (1.8) the constant 0 = 0. The

pressure and velocity of particles in region 1* are related by the

relationship

"J-•d= ". (1.15)

!6



"Dependence p = p*k(V) for the second medium is known, hence

we find the function

p = g(u). (1.16)

The velocities of masses mI and m2 are equal to the velocities

of the particles adjoining them of the first and, correspondingly,

of the second media:

l(t)= 3 (t), &2 (t) = u(t).

Mass mI moves under the effect of the difference in forces,

acting from the side of the first medium and mass m3 ; mass m2 -

under., the effect of the difference in forces, applied from the

side of mass m3 and from the side of the second medium; mass m3 -

under the effect of the difference in forces, applied from the

side of masses mI and m2 .

A system of equations, determining the course in three

regions: 2, 3, 1 and the movement of masses m 1, m2 , m 3, includes

seven equations with seven unknown functions: p 2 (t), W3 (t),

h2(t), X(t), yl(t), y 2 (t), Y3 (t). These equations correspond to

the above considered conditions:

k2 (t) + f (t) =/h, (W, +f, W/•;
h2 (t) d5(+))

dt
dik' W• 0.3 (t) -- ?2 (t))] = 3 (t) -- f (t);dr.

,(t)- ,(t) +f' • -, ),+(o]-
-V [-'&I M i3+, It) 1

(1.17)

The system is solved with the initial values:

7



P.()= ~Y (P*) =,(P), Y2 (P*) =0, Y& (t) 0-0
y, (e)=, 0i()=o, =i(t)-O, yt M-0,

where t* is the moment of approach of the wave to the covering

of the edifice.

2. Depending on the parame t ers of the problem - the form of

function p = f(t), the properties of both media, the values of

masses ml, m 2 , m 3 , and the value h* the system of equations

(1.17) can cease to be fulfilled as a result of the fact that
the rarefaction wave from the free surface arrives at mass mI1 or

in region 1* thc compression wave becomes a shock wave and the

Riemannian solution will not be valid.

Let us consider the first case. When t = t** as a consequence

of the effect of the free surface regions 4 and 2* arise (Fig. 3).
In region 4 unloading of the medium takes place and the solution

has the form of (1.7). From the condition on the free surface we

find one function in region 4:

•4,(t) = f(t). (2.1)

Depending on the parameters of the problem when t > t** in

region 2* both loading and unloading are possible. Let us consider

the case of unloading. Then the boundary h 3 (t) of regions 1*, 2*

is nonrectilinear, previously unknown and must be determined in the

course of the solution of the problem. In region 2* the solution

has the form of (1.7).

The system of equations determining the flow in two regions -

4 and 2* - and the movement of masses ml, i 2 , m3 , includes five

equations with five unknown functions: @4(t), Y3 (t), Y2 (t), h3 (t),

ý*(t) (function * 4 (t) is found, when yl(t) =I2
This system corresponds to the equations of motion of masses

imn, m2 , m3 and the continuity conditions of the pressure and

velocity of the particles on line h 3 (t) in the second medium:

8



[(min + h*)y, (t) =f(t) --K j, y, (t) -v,,(t)l; ,.

m 3 i( - K •1 (W) -Ya (0)]- K2 lYS (t) - Y2 (t)]'

(mV-I ) *(t) = K2 Y, M(t) - YS (t) -0; (t); (2.2)
-'h3 Mt i2 Mt = Mt +P JOSl (t), th;

.Y2 Mt U IN[ (0. tl. i,

If in region 2* the load is continued, then the boundary of

region 2* and 1* is rectilinear and parallel to boundary 1*, 0.

The system of equations determining movement of the elements of the

edifice and the flow in regions 4 and 2* assume the form:

(mI + h) i, (t) =f (t) - , [y, (t) - y, (t)0;
m3 3(t)= •t()(t) - Y. l(t)-K2 3(t) -yS (t)l; (2.3)

m2 ; (t) M=C [YP (t) -Y2 M I - (Y6 (t));

is a known function, determining the connection of p and u

in regions 1* and 2*. The integration of the obtained systems of

equations must be carried out using electronic digital computers.

3. Let us make an analysis of the obtained regularities for

the simplest case, when the deflection of the girders in the

covering and base can be disregarded and when the edifice is

represented in the form of a boundary (a plate) with mass m. The

loading of the media above the plate and below it is determined

by the linear dependences:

p=-A 2 V+B, A1Bmcond; (3.1)
p =--A*2 V + B*, A*, B* - conht.

Unloading takes place when DV/Dt = 0.

In section h = 0 when t = ' the pressure increases abruptly

from 0 to pm and henceforth maintains this value. In this case

boundary 1, 0 is rectilinear, its equation is h = At, and the

solution in regions l and 2 has the form:

AP (3.2)

The pressure and velocity of the particles are constant.

-A



Let us introduce a new variable T = t - h*/A. The boundary

of regions 2 and 3 is rectilinear. From the conditions on this

boundary we obtain

a-2  -A ,+k p-- =--A + -- A t) . (3.3)

In region 1* loading of the medium occurs. With a linear dependence

of the pressure on volume (3.1) the solution of the equations of

(1.6) in the region of loading (see, for example, [4])has the form:

P = F, (h - A-) + I- (h + At), Au = F, (I -- A) --

-F 2 (+ •h).

Functions F 1 and F2 we will find from the initial and boundary

conditions. From the conditions of the front of the wave 1*, 0

we find that in region 1* the pressure is connected with the

velocity of the particles by the relationship

p(T) = A*u(x). (3.5)

Taking into account (3.3) and (3.5), we get the equations of

motion of the boundary:

m .= -, + . ,(3.6)
(m + At) 48 (A + A*) 1?3 = 2p(3.

Integrating and taking into account that when T = 0 we have

1P3 = 0, we find the velocity of the boundary and the velocity of

the particles in region 3:

2 I_( m (3-7)
A+A" m+A) "

Hence the pressure in region 3

P= h- 1* 3= 2p 4 ( M+h*-hP •=+' A=LA -'m±' (3.3)

AA* m+At +A+A*]~

On the boundary of regions 2, 3 with the approach through section

h 0 the pressure falls. It is determined by expression

10



A+A#
Sp =I-_"_ _ _ _

2 A÷AN1

.A + A* L+••-, j (39.,).

Depending on the parameters of the problem the pressure On,

line 2, 3 can become exhausted and become equal to the pressur!e in

region 2, (i.e., pm) or remain greater than pm along the entire

path up to h = 0. If the pressure does not fall to pr' then the
boundary reaches the initial section when T* h*/A. If the jum• -

is exhausted, then this takes place when

II A s '

where - (310).
2 2

In the first case when T = T**, and in the second when t =-r* "

regions 4 and 2* are formed (Fig. 4). Let us designate the momept

of their formation (in both cases) by T**.
tAv' In region 4 unloading of the medium takes place,

while in region 2* both loading and unloading'

are possible. In the case of loading in region

2*, by integrating the equation of motion of

-" the boundary
(3.11)

Fig. 14. we will find the velocity of the boundary in

region 44:

where IP3 ('**) is determined from equation (3.7).

Let us consider the case of A > A*. The velocity of the
boundary increases and when T -o strives to the limit u - p "/A*.

Without taking into account the effect of the free surface '

11



u7p

u sd mA + A'. The pressure on the boundary P4 and p* from the
side of the first and second media, respectively, is equal to:

-- +----1p--A* a(•s)J ; (3.13)

j2 A94 = RM [. Al (-t,)j# - .(1)

Wit: the course of time the pressure tends toward pm' and

without consideration of the effect of the surface toward
2A*/A + A*)pm.

Let us consider the case of A < A*; then the velocity of the
boundary falls, while in region 2* unloading of the medium occurs.
The boundary of rewions 1*, 2* is unknown. Let us designate it
by h = h(T). In region 1' from the relationships on the front of
the wave we will find

p*(T) = A*U*(T).

Hence because of (3.4) we obtain F2 = 0. On the boundary
F(h*- AT*) - A*' 3 (T). Let us designate

h* - A*T =

Then

Hence we will find the first function in region i* in the form

F, (•--A*,t) A*= ;3 (h-h+*) (3.15)

The system of equations determining the movement in region 4

has the form

'( -\ . A * I
-h (~)y ~ h +-k ( Q)=A.8 (h )+

("Y A* , (3.16)

12
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The first two equations express the continuity of the pressure

and velocity of the particles on line h(t), dividing regions 1*

and 2*, while the third corresponds to the equation of motion of

the boundary. Solving the system relative to h(r), we obtain

[m + h(T)] 3 = pm- A*3' (3.17)

where

A+* 1A'M+Alk.+'A,-t-j (, "

The integration may be carried out numerically.

In conclusion, let us consider in more detail a case where

the properties of the media on both sides of the boundary are

identical, A* = A. Then regions 4 and 2* are formed when

T* = h*/A. When T < T* in region 3 the pressure on the boundary

in conformance with (3.8) is determined by the expression

(3.15')
dp 2Am 2(A---2m)p. (3.16')

•(3+A16.

From (3.15') and (3.16') it follows that the pressure drops,

while when AT - m it is reduced to pm" When =T(2) 2 "t(l) it

reaches a minimum, then increases and tends toward pm" The

pressure on the boundary on the side of the second medium is

p* = A*' 3 (T). (3.17')

As the calculations show, irrespective of the dependence

of the value of the mass

p ~2)26 ns 5 *i
279 .9

Henceforth p* p Pm' remaining less than the pressure from

the boundary on the side of the first medium. The acceleration

13



of the boundary is continually positive:

2p, 1
M m+At(3.18)

In region 3 the acceleration with the passage of time tends towards
zero. Here.

where *3(0) = 2 Pm/m is the acceleration of the boundary at the

moment of the approach of the incident wave to it, i.e., when

Let us assume that h* = 4 m, i.e., that the rarefaction wave,

proceeding from the free surface and regions 4 and 2*, is-formed

when T* = h*/A = 4T(1). In region 2* when A* = A the load is

continued and the pressure on the boundary on the side of the

first and of the second media is determined by expressions (3.13)

and (3.14). Calculations show that when T = T* the acceleration

of the boundary falls abruptly from (1/125)03(0) to (1/250)0 3(0),
while the pressure falls from (122/125)p to (121/125)p Here

m M
p*= 120/1 2 5 )Pm. Henceforth in region 4 we have p - Pm'

P* Pm, q4 - 0.

In Fig. 5 curves 1, 2, and 3 correspond to the acceleration

of the boundary 4(T), and to the
"Vpressures P(T), p*(t). It can be seen

from the graphs that the boundary up

to the arrival of the rarefaction wave

<: is set in motion together with the

medium and the arrival of the rarefac-

tion wav- has virtually no effect on

the movement of the boundary and the

value of the loads experienced by it.

' ' ' The jumps $ and p when T= * are so

small, that they are not zepresented

Fig. 5. in this figure.

FTD-HT-23-748-72 14
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In Fig. 6 curves 1, 2, and 33
correspond to *(T), p(T), and p*(T).

VI01.% In contrast to the graphs in Fig. 5 it

is assumed that h* = m/2, i.e., the

rarefaction wave arises eight times

earlier, than when h* = 4m. The arrival
of the rarefaction wave leads to an

abrupt drop in the acceleration and

II! r .' * ., pressure p. Henceforth with the rise in

Fig. 6. time (P -) 0, p -) pm' P* -PM

From a comparison of the graphs in Figs. 5 and 6 it foliows

that with the reduction in distance h' from the free surface to

the boundary the effect of the rarefaction wave on the movement

of the boundary increases. However, in the second case also this

effect is not great.

With the passage of time, irrespective of the dependence of

* ,the distance h* from the free surface to the boundary, the

S" pressure on the boundary on both sides tends toward pm' and the

• " acceleration toward zero. The lower the mass of the boundary

and the greater the acoustic resistance of medium A, the sooner

stationary conditions set in.

Figure 5 shows curves 4, 5, and 6, corresponding to the

acceleration and pressures p and p*, calculated from the formulas

of work [4] for the case of interaction of a stationary wave with.

a boundary of mass m in a linearly elastic medium. A comparison

of curves 1, 2, 3 and 4, 5, 6 shows that the differences,

correspondingly, between accelerations 0 and pressures p and p*

on the boundary in plastic and elastic media up till the arrival

of the rarefaction wave from the free surface are not great. The

effect of the free surface in an elastic medium is exerted twice

as long afterward as in a plastic, and gives rise to an abrupt

drop in pressure to a negative value. The difference in values

FTD-HT-23-748-72 15
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*, p and p* in the region, where the influence of the free surface

is exerted, and in elastic and plastic media is substantial.

Experiments show that in soils the effect of the free

surface does not lead to pressure drops to a negative value. This

indicates that nonwater-saturated soils behave as plastic fiedia.

Thus, the application of models of elastic and plastic

media in the solution of problems of the interaction of waves with

the elements of edifices produces close results. However, this is

true only in the region where the influence of the free surface

is not exerted. In a region formed after the arrival of the

rarefaction wave from the free surface, it is essential to take

into consideration the plastic properties of the medium.

In concluding the report, the author expresses his graditude

to N. I. Polyakova for her discussion of the work.
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