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ABSTRACT 

The transport porperties of a dilute gas are determined by binary 

collision integrals.   In order to predict the first density corrections to 

the transport properties, it is necessary to consider collision integrals 

that account for the effects of collisions among three molecules.   In 

this technical report we derive and formulate such three-particle col- 

lision integrals for the coefficients of thermal conductivity, viscosity 

and self-diffus ion of a gas of hard spherical molecules.   An evaluation 

of these three-particle collision integrals will be presented in a subse- 

quent technical report. 

in 
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I. Introduction 

The theory for the transport properties of dilute gases 

consisting of spherically symmetric molecules is well estab- 

lished.  This theory is based on the Boltzmann equation, 

which can be solved using a procedure introduced by Chapman 

and Enskog.  The transport properties are thereby expressed 

in terms of binary collision integrals.  Calculation of 

these binary collision integrals has become a routine pro- 

cedure, and tabulated values are available for many forms 

of the intermolecular potential [1,2]. 

The validity of the Boltzmann equation is restricted 

to the low density limit.  In order to evaluate the trans- 

port properties of a moderately dense gas we consider an 

expansion in terms of the density.  Originally, it was 

envisaged that the transport properties could be represented 

by a power  series in the density, in obvious analogy to the 

virial expansion for the compressibility factor.  Subsequent 

developments, to some extent discussed in AEDC-TR-69-68 [3], 

have revealed that the density dependence of the transport 

properties is more complicated, and that terms logarithmic 
+ 

in the density appear also.    That xs, the density expan- 

sions for the thermal conductivity A, the shear viscosity r\ 

and self-diffusion coefficient D are of the form 

t 
For a bibliography on the subject see Ref. [4]. 
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5 
X = X0+X.n+X2n log n+«•• 

2 
n = Tio+flin+n,11 lo9 n+«-« (l.l) 

2 
nD = D0+D.n+D2n log n+*" 

where n is the number density.  The lowest order terms X0, 

n0 and D0 are given by the Chapman-Enskog theory-  In this 

report we focus our attention on the coefficients X-, n, 

and D. of the contributions linear in the density.  Empiri- 

cal values for the coefficients X, and n, of a number of gases 

were reported in AEDC-TR-69-68 and AEDC-TR-71-190 [3,5,6]. 

In order to calculate these coefficients from the theory, 

it is necessary to evaluate collision integrals that are 

related to sequences of collisions among three  molecules [3]. 

Prior to the systematic developments, Enskog made an 

intuitive attempt to generalize the Boltzmann equation to 

a dense gas of hard spheres [7].  The Boltzmann equation 

is akin to the perfect gas law in that it neglects 

any correlations in the positions of the molecules; 

furthermore, the velocities of two molecules which are about 

to collide are also assumed to be uncorrelated (assumption of 

molecular chaos).  In the theory of Enskog for dense gases 

an estimate was made to account for the effect of correlations 

in configuration space; they were assumed to be the same as 

those for a gas in equilibrium.  The assumption of molecular 

chaos was retained for the probability distribution in 
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velocity space. 

In a previous report estimates for the complete triple 

collision integrals were presented for a gas of hard spheri- 

cal molecules [3,8].  It turned out that their contribution 

differed by less than ten percent from the value predicted 

by the theory of Enskog.  This conclusion was recently 

confirmed by Henline and Condiff [9]. 

In this report we shall show that for a gas of hard 

spheres the theory of Enskog is recovered as the first 

approximation, when the collision integrals are expanded 

in terms of the number of successive binary collisions 

between the molecules.  For this purpose it.is important to 

make a distinction between the effects of statistical   versus 

dynamical  correlations.  In the equilibrium case the first 

density correction to the radial distribution function of 

particles 1 and 2 is determined by those configurations 

for which a third particle is overlapping with both particles 

1 and 2.  That is, the configurations which determine the 

excluded volume are those for which the center of the third 

particle would lie inside the action spheres of both particles 

1 and 2.  If in the non-equilibrium case  the integration in 

the triple collision integral is restricted to the same 

configurations, the triple collision integral yields for 

the first density correction the equilibrium radial distri- 

bution function multiplied with the Boltzmann collision 
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integral [3].  This is precisely the contribution given 

by the Enskog theory and it contains, effectively, the 

dynamics of only one binary collision among the three parti- 

cles.  Deviations from molecular chaos can then be incorpor- 

ated in successive higher approximations by considering 

correlations brought about by two, three and four successive 

collisions among the particles.  The details of this expan- 

sion will become more clear in Sections IV and V. 

The purposes of this report are: 

a) to present a simple, self-contained derivation of the 

three-particle collision integrals that bypasses the 

somewhat intricate surface integration method proposed 

by Green [10] and further developed in previous 

technical reports [3,11]. 

b) to elucidate how an analysis of the statistical and 

dynamical correlations, caused by the interactions of 

three molecules, leads to a decomposition of the collision 

integrals associated with the number of successive 

collisions among three particles. 

c) to express the three-particle collision integrals in a 

form suitable for a quantitative evaluation of these 

integrals. 

The treatment is restricted to a gas of hard spherical 

molecules.  In this case the molecular dynamics reduces to 

sequences of successive binary collisions among the molecules. 
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The analysis is simplified by the fact that we do not need 

to consider more than four collisions as demonstrated by 

Hoegy and Sengers [12] and reported in AEDC-TR-71-51 [11]. 

We shall proceed as follows.  Non-equilibrium statisti- 

cal mechanics relates the transport properties to time 

correlation functions of the corresponding fluxes [13]. 

Starting from these time correlation functions we show in 

Section II how the first density corrections to the transport 

properties are determined by matrix elements involving a 

triple collision operator. This triple collision operator 

can be represented by a binary collision expansion.  The 

properties of the binary collision operators are summarized 

in Section III.  In that section we also develop a diagrammatic 

notation to elucidate the meaning of the various terms in 

the binary collision expansion.  In Section IV we use the 

binary collision expansion to decompose the triple collision 

operator into a series of terms accounting for increasingly 

higher order dynamical correlations.  In Section V we specify 

the corresponding three-particle collision integrals.  The 

first density corrections A. , r)., D. to the transport coeffi- 

cients are thus determined by a set of collision integrals 

involving the dynamics of one, two, three and four successive 

collisions among three molecules.  The results are discussed 

in Section VI. 
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II. Transport coefficients in terms of collision operators. 

The transport coefficients for a system of particles at 

temperature T and number density n can be expressed as 

integrals of time correlation functions of the corresponding 

fluxes [13] 

00 

X = -i-_- lim lim /dt e^V"1^. -J, (t) >   , 
3kT^ e+0 V-*-» J A 

0 

n - TjLp lim lim /dt e"etV_1<J : J (t) >    , (2.1) 
■LUK1 e->0 V-»-00 J 

0 
N 

0 i=l 

1 , •  , ■   / ..  -et„-l^ V-* lim lim     " 
E-+-0 V-»-00 

nD = ■=■ lim lim  dt e  V </v.«v.(t)> 

where k is Boltzmann's constant and n = <N>/V.  The average < > 

is taken over an equilibrium ensemble, for which we choose 

a grand canonical ensemble with temperature T = (kß)   and 

chemical potential y.  Thus for any phase function X(x. ,x«.. .x.,) 

= X(12...N) 

r-,  N   p N 

<X> = ^ jftzj  dxNTT<l>(v:L)W(12...N)X(12...N). (2.2) 

N  "       i=1 

The grand partition function Z is defined such that <1> = 1; 

2 3/2 
the activity z = (2irm/ßh )   exp(ßji)   where h is Planck's 

N 
constant and m the mass of a particle; dx = dx,...dx is 

a volume element in phase space and the phase x. = (v.,r.) 

represents the velocity v. and the position r. of particle 

i (i = 1, 2,... ,N) . The Maxwell-Boltzmann factor <J> (v.) is 
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defined as 

<j>(v) = (m|3/27r)3/2exp(-^mv2) . (2.3) 

The function W(12...N) represents the statistical correlations 

between the positions of the particles and is given by 

_H_ N 

W(12...N) = expU V) U(r  ) I = ][  (1+f ) , (2>4) 
i<-i    * 

i<j 
where U(r. .) is the pair potential as a function of the 

relative distance r.. = |r. - r.I and f.. the Mayer function. 
13   ■ 1   :'     ID      * 

For a system of hard spheres with diameter o  the statistical 

correlations reduce to overlap" exclusions and the Mayer 

function reads 

f±j = W(ij)-1 = -e(a-ri;.) , (2.5) 

where 6 (x) =1 for x > 0 and 6 (x) =0 for x < 0. 

The expressions (2.1) involve correlation functions 

between the current J at time t and at time t = 0.  For 

thermal conductivity and viscosity the current consists of 

K U a kinetic term J and a potential energy term J 

J=JK+J
U  , (2-6) 

with 

i=l        1=1 
JJ N (2.7) 

i=l        i=l 

and 
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N N 

JJ4)T[U(r..)i-l .3U(r..)/3?..].^.-huy^.   , *  2 £,/,  i]  ij  IJ" i3J i L*  i 
i£j i=l 

The symbol { }  indicates a traceless symmetrized tensor, I 
5 

is the unit tensor and h = ykT + h the enthalpy per particle. 

The self-diffusion contains only a kinetic term, as shown 

in (2.1). 

The separation of the currents in two parts (2.6) implies 

that X and n can be considered as the sum of a number of 

distinct contributions 

A  =  A    TA    TA    TA f j <2  Q\ 

KK, KIT UK, ÜU 
n = n +n +n +n    , 

with obvious definitions for the individual terms. 

The main text of this report is devoted to a study of 

the effect of triple collisions on the first density correction 

to the transport coefficients.  For this purpose it is 

KK      KK sufficient to consider only the kinetic terms X  and n 

The remaining terms are sometimes referred to as collisional 

transfer contributions.  This terminology is slightly ambiguous, 

since in the original work of Enskog [7] collisional transfer 

refers only to X  +X  and n +n  .  The lowest order contri- 

u .. •    r    , KU, , UK   ,  KIT UK .. ^      .. butions from X  +X  and n  +n  are proportional to the 
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density n.  They involve the dynamics of two particles 

only and are fully accounted for by the theory of Enskog. 

In Appendix A we show how these terms can be derived from 

a systematic density expansion of the time correlation 

functions (2.1).  The terms X  and n  account for correla- 

tions between two pairs of molecules; their leading contribu- 
2 

tions are proportional to n and are not considered here. 

In order to discuss the time dependence of the current 

J(t) in (2.1) we need to consider the dynamics of N hard 

spheres.  The dynamics of N interacting particles can be 
tLN represented formally by streaming operators e   , which 

generate the solutions of the Hamiltonian equations of motion, 
tL 

i.e. J(t) = e  J(0). However, for hard spheres the streaming 

operators are not defined when the particles are overlapping. 

On the other hand the streaming operators are always preceded 

by the function W(12...N) giving zero weight to initially 

overlapping configurations. One, therefore, has the freedom 

to extend the definition domains of the streaming operators 

to include initially overlapping configurations.' Pseudo 
tLN     tLN streaming operators e   and e   , defined for all configura- 

tions, which generate for non-overlapping configurations 

the actual trajectories of N interacting hard spheres, have 

been introduced by Ernst, Dorfman, Hoegy and Van Leeuwen [14] , 

and will be used in this report.  The operators LN and LN are 

given by 
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_N_ N 

LN = L-+llTij      ' EN " L-+II  Fij ' <2'10> 
i<j i<j 

where L0 is the Liouville operator associated with the free 

streaming of the particles 

N 

L0 = L0(12...N) - V vi*3/3ri   , (2.11) 

i-1 

and where the operators T.. and f.. are associated with a 

binary collision between particles i and j.  The operators 

T.. and T.. contain an interacting and a non-interacting term 

T.. = T^.+T1?.   ;   T. . = T^.+f?.  , (2.12) 
ID   in  ID       ID   3-D  ID 

such that 

Tij -"'J^iAj^iJ^WV, <2-12a> 
ID 

v. . -a. . < 0 
ID  ID 

describes an interacting collision, 

T". = -o2 / da. . |v..*a. .|6(r. .-a. .) (2.12b) 
ID      J        ID ' ID  ID '   ID  ID 

v. ,'B, .   < 0 
ID  ID 

describes a non-interacting penetrating collision, and 

Tn. = -a2   / da..|v..-a..|«(r..-a..) (2.12c) i]     J       ij' ij ij'  ij ij 

v..-a.. > 0 
ID  ID 

describes a non-interacting separating collision.  The symbol 

10 
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a. . = o../o represents a unit vector (perihelion vector of 

the collision) and the" operator R   transforms the velocities 

v. and v. before  the collision into the velocities vJ and v* 

after  the collisiont 

-+   ■*■   -»■   ■*•   A   ä 

R  v. =v'!r=v.-(v..*a..)a..  , 
^j i    i    11]  ID  iD 

\fl  = *5  " V(V$iJ)SiJ     ' {2'13) 

R
a.^k = ^k       (i^j) 

where v..=v.-v..  Equations (2.13) describe the "hard sphere 

interaction" in which molecules i and j exdhange velocity 

components along the perihelion vector a. .. 

To illustrate the meaning of these different types of 

binary collisions we consider in Fig. 1 the motion of particle 

1 relative to particle 2. At a given time T = 0 particle 

1 is approaching particle 2 with a relative velocity v,2 

and an impact parameter b _ < a. After a time T = T,2 the 

center of 1 will touch the interaction sphere of 2 at 

A (v1~.olo<0).  If the collision is an interacting one, 

particle 1 will proceed along its deflected path in the 

direction of v* .  If the collision is non-interacting 

penetrating, particle 1 will continue to move in the direction 

of v12.  In the latter case the particles will experience a 
+ 
12 non-interacting separating collision after a time T = T19, 

In this report we use forward streaming operators in contrast 
to a previous publication on this subject [12]. 

11 
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Fig. 1.  Geometry of a collision between two hard spheres. 
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when particle 1 touches the interaction sphere of 2 at 

B (v12-o12>0). 

Since the transport coefficients (2.1) are Laplace 

transforms of the time correlation functions, it is convenient 

to take the Laplace transform of the pseudo-streaming 

operators (resolvent operators) 

s - ["-yT1.     s - [e-h}~1 .   G
« = [e-L-]_1 •   (2*i4) 

We shall not indicate explicitly that L0 and G0 are N-particle 

operators.  Both streaming operators e N and e N or G„ and 

ÖL describe the hard sphere dynamics correctly, provided 

they are used in the appropriate combination with the overlap 

exclusion.  That is, the operator e N represents the dynamics 

correctly when written behind  the overlap exclusion W(12-...N) 

and the operator e N when written in front  of  W(12....N). 

Thus, the allowed combinations are 

tLN    t!7N W(12...N)e   = e ™W(12...N)  , (2.15a) 

or 

W(12...N)GN = GNW(12...N)      . (2.15b) 

After this review of hard sphere dynamics, the kinetic 

contributions to the transport coefficients will be related 

to one-particle fluxes J(v) by integrating the time correla- 

tion functions (2.1) over the positions of N particles and 

13 
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the velocities of N-l particles [4] 

XKK - -2-2 J  dv4.(v)Jx(v) 4x(v;0) 
3kT' 

nKK = j^ J>dv<f)(v)Jri(v):¥n(v;0)    , (2.16) 

nD = in / dv*(v)v-yD(v;0) 

We represent the functions ¥(v;0) = lira Y(v;e) as the result 

of an operator T(v;e) operating on the appropriate flux J(v) 

$x(v;e> = r(v;e)5x(v) ,   fn(v;e) = r (v; E) *n (v)  .       (2.17) 

Then it follows from (2.1) that 

nTCv^e) = 11m^ (N_i) ,z J dx
1*"1 ft <J> (v±)W(12 .. .N) GN £ ?      -(2.18) 

V
^°°"N       °     i=2 J-l 

The operator P.. in (2.18) is a permutation operator 

which interchanges the labels of particles 1 and j.  The 

corresponding relation for the self-diffusion reads 

.-*■     _ .-*■ 

*D(v;e) = r(v;e)v    , (2.17c) 

where T(v;e) is obtained from (2.18) by deleting the sum of 

the permutation operators. 

In order to obtain an integral equation for the functions 

¥ in (2.17) we follow a method proposed by Zwanzig [15].  A 

cluster expansion of the resolvent operators leads to a formal 

14 
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density expansion for the operator r(v;e).  Next, we 

determine the density expansion of r  , and multiply (2.17) 

with the inverse operator r  to obtain the desired integral 

equation. 

For this purpose we introduce a set of N-particle resol- 

vent operators 
n 

GN(12...n) = G(12...n) = I e-Lc (12 .. .N) - ))  T.. (2.19) 

i J 

in which collisions (T-operators) between only the first n 

particles (n < N) are taken into account.  Cluster operators 

are then defined by the recursion relation 

_N      __, 

G(12...n) =)       )      U(12...A). (2.20) 

JL=1 lCU7c[n] 

The second summation is taken over all sets [I]  of Jl particles 

which contain particle 1 and are themselves contained in [n] = 

(l...n). For example, 

G(l) = G0 = {e-L0(12...N}"
1 = U(l), 

G(12) = U(l)+U(12) , (2.20a) 

G(123) = U(l)+U(12)+U(13)+U(123) . 

Inversion of the recursion relation (2.20) yields 

U(12...Ä) = V (-l)Ä"k   ) 6(12...k) 

k=l       lC[k]C[Ä] 

(2.21) 

15 
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In particular, the first few terms read 

U(l) = G(l) = Ge  , 

U(12) = G(12)-G0  , (2.21a) 

U(123) = G(123)-G(12)-G{13)+G0. 

We note that all operators in (2.20) and (2.21) operate on 

the phases of N particles. 

When we introduce this cluster expansion into expression 

(2.18) for T we can start from either W(12...N)G„ or 

GNW(12...N).  In the latter case we define tJ-operators by 

replacing G with G in (2.20).  Due to (2.15b) both procedures 

are equivalent, but the second representation is more 

convenient in view of the integrations over the phases of 

particles 2 and 3, to be carried out in the next section. 

Next, the cluster decomposition (2.20) is substituted in 

(2.18) to obtain an expansion for the operator 

r(v1?e)   = 2_,   U-l) 1 J dx&"1   II  *(vi)Ü(12,..£)g(12...Ä) ^ Pljf    (2.22) 

*=1 ' 1=2 j=l 

where we have  introduced the equilibrium distribution functions 

g(12...l)  [16]: 
00 N 
ZN        r 

(N-')'Z J ^"^      II     <t>(vi)WN, (2.23) 

with g(l) = 1.  The reduced distribution functions g(12...i) 

can be represented by a power series in the density.  Here we 

16 
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quote only those terms which we shall need explicitly [16] : 

g(12) = W(12)+n/dx3<j)(v3)W(12)f13f23+--- / 

(2.24) 

g(123) = W{123) + - ■• 

The form (2.22) for the operator V  is appropriate only when 

operating on functions J(v) of the velocity for which 

J dv>(v)J(v) = 0, (2.25) 

and this is precisely the case for the transport coefficients. 

We note that the operators U(12...&) in (2.22) now operate 

only on the phases of A particles.  The reason is that the 

terms operating on the remaining (N-Ä) particles give rise 

to vanishing surface terms. The operator r for the self- 

diffusion is also given by (2.22) provided that we delete 

again the permutation operators. 

We expand the operator r in a power series in the 

density 

r = r1+nr2+n
2r3+-•• , (2.26) 

with 

ri = Ga   , (2.26a) 

r = J dx2<j>(v2)U(12)W(12) Y,    Pli   ' (2.26b) 
i='l 3 

r3 = J  dx2dx3<J)(v2)(}.(v3){2^J(123)W(123)+Ü(12)W(12)f13f23}y ?l±. 

i=l 
(2.26c) 

17 
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In order to write T, in the form (2.26c) we have added a 

term Ü(12)W(12) f.. _f ^P. , which vanishes after integration 

over v. according to (2.25).  Again the corresponding terms 

for the expansion of r are obtained by deleting the permuta- 

tion operators. 

As pointed out by Zwanzig [15] the density expansion 

(2.26) is not suitable for a calculation of the functions 

¥(v;e) in (2.17), since the coefficients IV of the expansion 

—k 
diverge as e  in the limit £-»-0. However, Zwanzig has also 

shown that the inverse operator T  (e) has a finite limit as 

e->0, at least for the first three terms., in the density expan- 

sion of r~ (e).  This leads us, after inverting (2.26) and 

performing a density expansion, to the following integral 

equations for ¥(v;e): 

J(v) = limr"1(£;£)¥(£;£) = -{nl, (v) +n2I, (v)+.. . }¥ (v;0) ,    (2.27) 

with 

I,(v) = limG;1r7(v;e)Gr
1, (2.28a) 

* e+0   z 

I,(v) = lim{Gr1r,(v;e)Gr1-G;1r:>(v;e)GÖ1r,(v;e)G;1}.      (2.28b) 

The operator G0  can be replaced with e when acting on 

functions of the velocities alone.  In deriving (2.27) we 

-1 ■> -> 
have used the property that limG0 Y(v;e) = lime*(v;e) = 0. 

+     e+0 e-»-0 
The operator I2(

v) is tne Boltzmann collision operator 

which will be reduced to its familiar form in the next 

section; the operator I,(v) is a triple collision operator. 

In the integral equations (2.27) both operators act on a 

18 



AEDC-TR-72-142 

function of the velocity alone. For the self-diffusion 

we obtain similarly the integral equation 

v = -{ni2(v)+n
2i3(v) + -..}?D(v;0), (2.29) 

where the operators Ik(v) are given by (2.28) after replacing 

rk with rk. 

The solution ¥(v;0) of the integral equation (2.27) can 

be written in the form of a density expansion 

Y(v;0) = -n"1{l21-nl21I3l2
1+,"->J(v) , (2.30) 

and a similar result follows from (2.29). When the formal 

solution (2.30) is inserted into (2.16), we obtain a density 

expansion for the kinetic parts of the transport coefficients 

KK   , .,KK 
ll = A0+A, n+«•• t 

n  = Ho+n! n+'«' i (2.31) 

nD = D0+D1n+«■• 

The lowest density contributions are in general of the form 

- /dvHvJJtWl-^vJJtv), (2.32a) 

while the first order density corrections have the form 

fd*— '*--1- '-1'^ Jdv*(v) J(v) I2 I3I2 J(v) , (2.32b) 

as follows from (2.16) and (2.30). 
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In order to express the quantities (2.32) as matrix 

elements of collision operators we introduce the functions 

A, B and C, which are determined by the integral equations 

I2(v)A(v) = -Jx(v), 

I2(v)B(v) = -3n<v), (2.33) 

I2(v)5(v) = -v 

From (2.32), (2.33) and the symmetry of the Boltzmann collision 

operators I2, it follows then that the low density values 

A0/ n<s and D0 are given by 

A o = -   j   l A / AJ    t 
3kTT 

n0 = -J^T tB,B] 
(2), (2.34) 

Do = -| [c,6] (i). 

KK   KK For the first density corrections A, , ru  and D, we obtain 

1   3kT^ 

KK _  1  ,* j. (3) 
1    TÖkT (2.35) 

DX = § [3,6]
(5)- 

For convenience we have introduced a short hand notation 

defining matrix elements associated with the operators I, and 

Jk 
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[f ,g] (k) E / dv«Kv)f(v)*Iv(v)g(v)                     (2.36a) 

[f,g](k) = J dv<()(v)f (v)*Ik(v)g(v)                      (2.36b) 

where g(v) and f(v) are vector or tensor functions of the 

velocity v and * indicates the appropriate scalar product. 
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III.  Dynamics of hard spheres 

Once the coefficients in the expansion (1.1) for the 

transport properties are related to collision operators, 

the problem is reduced to an analysis of the dynamics of 

two, three, etc. isolated hard spheres. To describe the 

dynamics we introduced binary collision operators in (2.12). 

We now summarize some of the properties of the T-operators 

and elucidate how they enable us to give a compact and 

systematic description of collision sequences. 

The T-operators correspond to binary collisions which 

may be interacting or non-interacting.  The G0-operators, 

defined in (2.14), correspond to free streaming of the 

particles. Products of T-operators and G0-operators corre- 

spond to sequences of successive binary collisions among the 

particles, and can be represented by diagrams. The G0- 

operators are represented by labeled particle lines (labels 

1,2,3) indicating the free trajectories of the particles 

between collisions. We adopt the convention that time 

increases when the diagrams are read from bottom to top as 

indicated by arrows on the particle lines.  The T-operators 

correspond to the basic binary collision events and are 

represented schematically in Fig. 2.  The collisions are 

assumed to occur at a given time T = T0 and in Fig 2a we 

indicate that the velocities change in an interacting 

collision.  In Fig. 2b and 2c the velocities do not change, 
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Fig. 2.  Schematic representation of (a) an interacting collision, (b) a non- 
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time T=T0. 
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but we place marks just above/below the collision time in the 

non-interacting penetrating/separating collision to indicate 

that the particles overlap just after/before the collision. 

Occasionally, it will be necessary to require that the parti- 

cles overlap at a given time T = T0; we do this by connecting 

their trajectories with marks as shown in Fig. 2d. 

Using the foregoing symbolic representation, we can 

construct diagrams representing sequences  of collisions. 

As examples we show in Fig. 3 the diagrams associated with 

the various terms in the operator products Ti2G°T13 anc* 

f12G0T13. The operator T12 is only different from zero 

when particles 1 and 2 are in contact.  The operator T13 

requires that at the same time the phase of particle 3 is 

such that the collision between 1 and 2 is followed by a 

collision between 1 and 3, i.e. Ti3>Tx2"  For interacti-n9 

and non-interacting penetrating collisions the time ordering 

refers to x and for non-interacting separating collisions to 

T , where a  indicates the appropriate pair.  The operators 

act on functions of the positions and velocities of the 

three molecules.  The effect of the operator product is to 

transform the positions and velocities of the molecules just 

prior  to the first collision at the bottom of the diagram 

into those just after  the last collision at the top of the 

diagram"''.      As mentioned earlier, any penetrating 

collision will be followed by a separating collision at a 

"f Notice that the bot torn/top of the diagram is determined by the 
first/last collision.  The extensions of the particle lines below 
the first collision and above the last collision are shown for 
convenience only; they do not represent G0-operators. 
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2 /       l\ 3 

(a)  TiiG0Ti 

2/       l\        3) 
(b)   TiOoTj 

I     2\      3 

(<n T,JG0TS 

(e)    TiGoTi (f) TI2G0T,3 

Fig. 3.  Collision sequences associated with the operator 
products Ti2

G0T13 and T12G0T13* 
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later time.  However, the diagrams are non-committal about 

the number of and the time at which additional non-inter- 

acting collisions, not indicated explicitly, will occur. 

For example-,   in Figs. 3c and 3d a separating collision between 

1 and 2 will occur at T = T-_, but x.« may be either smaller 

or larger that T.._. AS another example, we show in Fig. 4 

the diagrams associated with the two terms of the operator 

product f23T12G°T13*  In t'iese collision sequences particles 

1 and 2 are colliding, while 2 overlaps with 3.  These 

diagrams can roughly be thought of as space-time plots of 

the centers of the molecules, with the time-axis vertical and 

the (one-dimensional) space-axis horizontal, and they allow 

a direct geometrical interpretation of the collision operator 

products. 

The operators satisfy a number of properties listed in 

Table I.  Proofs of these relations are either given by 

Ernst et al. [14] or are directly implied by their results. 

The relations (1.1) through (1.6) have an obvious dynamical 

meaning, when interpreted geometrically.  In (1.8) the 

operation of time reversal is represented by the operator T 

which reverses the directions of the velocities of all 

particles, while their positions remain unchanged. 

Any product of T- and G0-operators can be interpreted 

as a specific sequence of collisions.  However, some sequences 

may not be allowed according to the laws of mechanics. 
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TABLE   I 

PROPERTIES   OF   BINARY   COLLISION  OPERATORS 

faTa =  °  '  Vex " °   '   faG-Ta =  °   '  TaG°fa =  ° 
TaGaTa   =   0   ,   TaGcTa   =   0   ,   TaG0Ta  =   0 

These relations apply also to i- and n-collisions 

separately.     In  these relations G„  may be replaced by 

G0T" G0...Tn G0     if  a.   + a   for   i =  l,2...£;in   addition  any 

n    1 * T     (a.^oc)   may be replaced by T" 
i i 

1.1 

Va " -Ta'   V. =  -K 1.2 

VfJ " Va'   faTß " Va   <a^> 1.3 

f G.   +  G.T  G0  =  G„f     +  G„T  G,, 

f  G„   + G0T"G0   =  G„f     +  G.J"G. 
1.4 

faG»  " "faG-fa " faG^G<> 

G«fa " -faG»fa  " G»TaG»fa 
1.5 

T"GO   =   -T"G0f     - TnG0T*Gc 

G-^ "  "faG^  - ^>"K 
1.6 

T.. 

1   .1 
v.   + v. 

v2  + v2 

= 0,    /dv. dv . 
V.     +   V. 

vi  + vj 

T..   f(x.,x.)   =  0 

where f(xi#x.) and f(vi,y.) are arbitrary functions. 

1.7 

T+ = TT T_1   T+ = TT T-1 
a    a      a    a 

The dagger represents hermitian conjugation;T  is the opera- 

tion of time reversal. 

;i.8 
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Of course, the laws of mechanics are here extended to include 

the possibility of non-interacting collisions.  The defini- 

tion of the T-operators implies that any operator product 

associated with a forbidden collision sequence vanishes 

automatically.  Some of these forbidden collision sequences 

are of a trivial nature and follow from the properties of 

T and f compiled in Table I.  For example, it follows from 

(1.1) that 

T^GoT^GoT^ = 0  . (3.1) 

This relation expresses the fact that a pair of particles 

cannot recollide after a collision, unless the trajectory of 

at least one of the two particles is deflected by an interme- 

diate interacting collision with the third particle. 

In addition to such obvious restrictions, there are 

several restrictions which are not of a trivial nature, but 

are consequences of theorems concerning the dynamics of 

three hard spheres.  In Table II, we present lemmas that 

express forbidden collision sequences.  These lemmas are 

consequences of the following two theorems: 

THEOREM 1.  Three hard spheres (with equal masses and 

diameters) cannot undergo more than four successive inter- 

acting collisions.  Moreover, any sequence of four successive 

interacting collisions is either of the type described by 

the diagram of Fig. 5, or else obtainable therefrom by inter- 
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TABLE II 

LEMMAS INDICATING FORBIDDEN COLLISION SEQUENCES 

f  T G T.G T     =   0 Y a o  ß o a II.1 

f  T G T.G T     =  0 
Y  a o  ß o Y 

II.2 

T   G T_G TnG   f  T 
aoßoaoaY 

= 0 II.3 

TGT0GTGTD   = a o  ß o a o  ß 0 II.4 

T  G TaG T  G T     = 
a o  ß o Y o a 

0 II.5 

T  G T0G T  G T  G T ao  ßoaoYoot 
= 0 II.6 

T  G  T0G  T  G  T.G  1 aoßoYoßo 
i 

a s 0 II.7 

The lemmas hold for the interacting and non-interacting terms 

of each T - or f -operator separately. The lemmas remain 

valid upon insertion of any number of additional Tn - or T11 - 

operators.  Moreover, T may be replaced by T . 
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Fig. 5.. The only dynamically possible sequence of four 
successive interacting collisions for three 
identical hard spheres. 
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changing particle lables and/or reversing the direction of 

time. 

THEOREM 2.  In the recollision sequence defined by the 

diagram of Fig. 6, it is not possible for spheres 2 and 3 

to collide or overlap at any intermediate time; i.e. 

r32(x)>a for 
T
I^

T
1
T
IU' 

Theorem 1 was stated by Sandri and coworkers [17] and 

proved by Murphy and Cohen [18].  Theorem 2 was proved by 

Hoegy and Sengers [12].  For further details the reader is 

referred to AEDC-TR-71-51 [11]. 

In addition to the concepts already used in describing 

the mechanics of hard sphere collisions, it is convenient 

to introduce the notion of "overlap collisions", in order 

to distinguish between statistical and dynamical correlations. 

An overlap collision is a collision of any type (i.e. inter- 

acting, penetrating or separating) between two particles 

which occurs while at least one of the two colliding particles 

overlaps with the third particle.  The collision between 1 

and 2 in Fig. 4 is an example of such an overlap collision. 

The collision between 1 and 3 in Figs. 3c and 3d would be 

an overlap collision in the case Ti2>T13* We maY  furt^er 

distinguish between single-overlap collisions and double- 

overlap collisions.  In a single-overlap  collision only one 

of the two colliding particles overlaps with the third 
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I        2 

Fig. 6.  Recollision sequence for Theorem 2, 
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particle and in a double  overlap  collision both  colliding 

particles overlap with the third particle. 
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IV., Expansion of the collision operators. 

The coefficients of the density expansion for the 

transport properties are determined by matrix elements or 

collision integrals (2.34) and (2.35) which involve the 

collision operators I, and I3, given by (2.28).  In this 

section we show how these collision operators can be de- 

composed into terms that correspond to collision sequences 

involving increasing numbers of successive binary collisions. 

For this purpose we recall that the collision operators 

I, and I- are related to the resolvent operators G(12) 

and G(123) via (2.26) and (2.21).  From (2.19) it follows 

that the resolvent operators satisfy the integral equations 

G(12...A) = G0+Go V TaG(12...£)   , (4.1) 
a 

where a runs over all pairs among the Ü  particles. A binary 

collision expansion is obtained upon interation of (4.1) 

G(12...£) = £ LXGOT
CJ
SG

°   • (4,2) 

s-0  o 

In particular 

G(12) = G0+G0T12G0       . (4.3) 

In equations (4.1) - (4.3) the operators G and T may be replaced 

by G and T, respectively.  We also note that those terms in 

(4.2) with two successive T-operators with the same index a 

vanish automatically as a result of (1.1).  This is also 
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the reason why (4.3) terminates after the second term. 

We first consider the Boltzmann collision operator 

I~(v).  If we now substitute equation (4.3) for G(12) 

into the expressions (2.28a) for I_(v),  using (2.26b) and 

(2.21a), we obtain 

I2l^l) = J  dx2<|l{v2>^12(1+P12) = 

= /^2*(v2)a
2/da12|^12-ai2[(R  -1)(1+P12) ,     (4.4) 

12 

12 a12 v,^«a,^ < 0 

which is the familiar form of the Boltzmann collision opera- 

tor. The operator l2^
vi^ ^or the self-diffusion is obtained 

from (4.4) by deleting the permutation operator P-i2' 

In order to derive a similar expression for the triple 

collision operator I., (v) it is convenient to symmetrize over 

the labels 2 and 3 in (2.26c).  If we then insert (2.21) and 

iterate (4.1) once, we obtain from (2.28b) after rearranging 

some terms 

3 
I3(^l) = I /**2dx3*(v2)*(v3,T(123) X Pli   ' (4,5) 

i=l 

with 

T(123) = lim )T  G(123)W(123)-\ f  G0 + 
e-H)«-^01! *->    al 

al al 
(4.6) 

"IE (Ta1
G«VV0Ta2G°)]G:1 

a^a2 
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The indices a. and a, in the summations run over the pairs 

(12), (13) and (23) .  To obtain a symmetric expression we 

have added terms starting with T_3 and terms ending with 

T.. P„,  (k^i.j); they vanish as a result of (1.7).  For the 

self-diffusion one derives similarly 

*3(^1} = I f dx2dx3*(v2)<J>(v3)T(123), (4.7) 

where T(123) is again given by (4.6). As a next step we 

replace G(123)W(123) by W(123)G(123) according to (2.15b) 

for N=3 and insert the expansion (4.2) for G(123). After 

rearranging terms and using (1.1) and (1.4) we find [12] 

T(123)   =ZifRf   T        +    LL fvT     G0T        + 
°1M81       «1^2 "  ai 2 

(a^B^o^)      (a^yjia^ (48) 

+ LL  d+fY)Ta  G0T        Y[Z    G0T 
al*»2 Y       X 2   £i  ai * 

-,1 

(a1^Y^a2
) 

Some of the conditions on the summations in (4.8) are auto- 

matically satisfied due to (1.1).  It is always understood 

that the limit e-*-0 has to be taken at the end of the calcula- 

tions, but we omit indicating this limit explicitly. 

Expansion (4.8) still contains many terms corresponding 

to collision sequences that are not allowed by the laws of 

mechanics.  In the last term of the right hand side of (4.8) 

the term with f vanishes as a result of lemmas (II.1) and 
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(II.2).  This means that the conditions imposed by the 

presence of (1+f^) are automatically satisfied.  Further- 

more, lemmas (II.4) - (II.7) imply that the expansion 

terminates after products of four T-operators.  Thus 

T(123)   -£fpfYV££fß*aG.V 
a       aß 
+ IE [V^VV^V^Y]* (4-9) 
aß 

+ II [^G»TßG'TaG-V?aG-TßG°TYG«'Tß] ' 
a ß 

where, from now on, we use the convention a^ß^y^a«  In (4.9) 

we have also omitted those combinations of three or four 

T-operators which vanish according to (1.1). 

As mentioned in the introduction we want to make a 

distinction between statistical correlations and dynamical 

correlations.  Statistical correlations are determined by 

those points in configuration space for which two or more 

particles are overlapping.  In the expansion of the collision 

operators they lead to the presence of "overlap collisions". 

Therefore, we want to separate the collision sequences into 

collision sequences with and without overlap collisions. 

The expansion  (4.9) , however, is not yet in a form which 

makes this distinction evident. The reason is that only 

those configurations for which the particles overlap at 

the time of the first collision are indicated explicitly in 

(4.9) by Mayer functions.  In addition, however, the collision 
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sequences may also generate overlap collisions at a later 

time, not indicated explicitly in (4.9).  Such overlap 

collisions will occur, if a particle has penetrated a 

second particle and collides with a third particle before 

it separates from the second particle.  Thus we consider in 

more detail those collision sequences in (4.9) which contain 

an intermediate Tn- operator.  The formal analysis is most 

easily carried out by using (1.6), which leads to the follow- 

ing decompositions. 

T^G.TJG.T^ = -TaGeT^GoT^GoTY-TaG0T^G0f3TY   , (4.10) 

V3°T0G<>TalG«'TY = -TaG-T0G-TSI6-556-TY'raG«TpG«TSG«faTY   ,   (4'lla) 

TaG0T^G0TiGoTß = -TaGoT^Gof^GoT^G0T3-TaGoT^GofßTiGoTß   .   (4.11b) 

The terms in (4.11) represent sequences of four successive 

collisions.  The last term in (4.11a) vanishes due to lemma 

(II.3) and the last term in (4.11b) vanishes as a result of 

(1.1).  Since the remaining terms on the right hand side 

of (4.11) do not contain any Mayer functions, we thus conclude 

that sequences of four successive collisions cannot lead to 

any overlap collisions [11,19]. If we substitute (4.10) and 

(4.11) into (4.9) we obtain the following expansion of the 
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collision operator 

4 
T(123) = Y  T (123)    , (4.12) 

M=l 

with 

Tl(123) = £ TE(a) E y   f3fYTa    , (4.13) 

a a 

T2(123)   =    yy   TS
(a'ß)   i     ZZ  Ta{fYGo"GoTYG(,fY}Tß (4#14) 

aß a {T 
T3(123)   =    ££   [TR(a,ß)+Tc(a/ß)+TH(a,ß)J     = 

- 2J[v-T3G«vv«T&G-%^as^-^G-T
Y ]    '        (4-15> 

a" ß 

55[TRc(a- T4(123)   "      ^ALTRC(a'ß)+TCR(a'ß)+TRH(a'ß)+THR(a'ß)] 
E    7E [TaG0TJGeTiG0TY+ToGoT^GQT^G0Te 

cT ß 

1    /"    T    f    'P^f    T    — T    C    T>^f    Hi"/-«    rp^-/ 
■a"°'ßGoTaG°TaGoTY TaG°TßG°   ßG°   Y  °^ß   J   " 

-T^G0TQG0T"G0f"G0T^-T^GeT"G0TVG0T^G0T0 j . (4.16) 

The first term T (a) = f.f f requires that pair a collides 

while both molecules are overlapping with the third molecule. 

It contains the dynamics of only one  collision, which is 

evidently a "double overlap" collision.  This term is pre- 

cisely the term given by the theory of Enskog as will be 

demonstrated in the next section.  We therefore refer to 

this term as the double  overlap  or Enskog  term. 

To elucidate the meaning of the second term it is 

advantageous to write it as the sum of three terms, using 

(1.5), 
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Ts(a,0) = Tsstaf3)+TSN(a,ß)+TNS(a,0)  = 

E -Ta{fYG0fY+fYGoT^G0+GoT^G0fY}Tß (4.17) 

This term contains "the dynamics of two  successive collisions 

involving respectively pair a and pair ß.  In the term 

T s(a,ß) the first and last collisions are single overlap 

collisions, while TgN(a,ß) or T  (a,ß) corresponds to the 

case where the first collision is a single overlap collision 

and the last collision is a non-overlapping collision, or 

vice versa.  We therefore refer to term Tg(a,ß) as the 

single  overlap  term. 

The terms in T_(123), given by (4.15), represent 

sequences of three   successive collisions to which we refer 

as recollisions , cyclic collisions   and hypothetical  collisions. 

The terms in T.(123) represent sequences of four   successive 

collisions, which are combinations of recollisions, cyclic 

collisions and hypothetical collisions.  We emphasize- that 

both T_(123) and T.(123) do not contain any overlap collisions. 

The geometrical meaning of the various collision sequences 

will be elucidated in the next section. 

The triple collision operator I,(v), which is related 

to T(123) via (4.5), is a symmetric   operator [11,12].  To 

exhibit the symmetry we take the hermitian conjugate of the 

operator T(123).  Using (1.8) and the relation Gt = TG0T 

we find for the Enskog term 
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Tl - hW1 > {4-18) 

and after appropriate relabeling of the particles 

T£S(<X,3) = rTss(a,ß)T_1 

T*(a,ß) = TTR(a,B)T-1 

(4.19) 

T*(a,ß) = TT^ccßJT-1   , (4.20) 

.'J(a,ß) = TTHr- -- 
x 

T;(afß) = TT„(a,ß)T' 

<RC<a,ß) = 7TCRf- —-
1 

T^H(a,3) = rTHR(a,ß)T_1 
(4.21) 

Thus the triple collision operator I~(v) is symmetric in the 

space of functions f(v) of the velocity which have a definite 

parity (±) under the operation of time reversal, i.e. 

Tf(v) = f(-v) = ±f(v). (4.22) 

The functions of interest in calculating matrix elements 

of above operators (4.18)- (4.21) are the solutions of the linear 

inhomogeneous integral equations (2.33).  These solutions 

have indeed a definite parity, while the linearized Boltzmann 

operator I2(v) is isotropic in velocity space.  The isotropy 

of I3(v) in velocity space ensures that I-(v) does not have 
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any matrix elements between functions of different parity. 

A proof of the symmetry of the Zwanzig form of the triple 

collision operator I., (v) for a general potential has been 

given by Ernst [20 ] . 
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V.  Specification of collision integrals 

The expansion (4.12) for T(123) implies an expansion 

for the first density correction (2.35) to the transport 

coefficients  4 4 
(3) 
u 

y=l y-1 
4 4 

«f = I% = ikr Y[t'i]v3)      ' {5'1] 

y-1 y=l 

u«l       y=l 
where the matrix elements are obtained from (2.36) and (4.5), 

if T(123) is replaced by T (123) as given in (4.12) - (4.16). 

The functions A(v), B(v) and C(v), determined by the Boltzmann 

equation (2.33), are usually given in the form of a Sonine 

polynomial expansion [1].  A numerical representation of these 

functions has been obtained by Brooker and Green [21] .  In 

general, a calculation of the transport coefficients (5.1) 

requires the evaluation of a set of triple collision matrix 

elements of the form 

[* 'Xlp3) = j/dv1dx2dx3$(123)^(v1)*Ty(123) £x<v±)  , 

*     „ L"1 (5.2) 

[*rXly3) = jj^dv1dx2dx3*(123)^(v1)*Tu(123)X(v1) 

where we have introduced the shorthand notation 

♦ (123) = ♦(v1)<Mv2)<Mv3) . (5.3) 
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It is convenient to symmetrize these integrals by inter- 

changing the velocity variables to yield 

3 3 

WrXlji35   - |- J dv1dx2dx3$(123)^ ^(vi)*Tu(123) f X(v\)    , 

'i1 J"* (5.4) 
[^'X^3)   - |/d^ldx2dx3* (123> T * (^i} *Ty (123) X(^i} 

i-1 

In this section we shall investigate the structure of 

these collision integrals and elucidate how they are related 

to specific collision sequences.  The collision integrals 

corresponding to the first term in the expansion (5.1) are 

obtained by substituting (4.13) into (5.4).  Since the 

three terms of (4.13) yield equal contributions, we may write 

2 ^ 
[iKX]{3) = j   fdv1dx2dx3f13f23$(123) ^1'(vi)*T12^

,X(vj)  , (5.5) 

i=l j=l 

where the terms i=3 and j=3 vanish as a result of (1.7).  We 

note that the operator T.2 contains a S-function which restricts 

the distance r..- to the value a.  Using the relation 

Jdr13f13f23J   _  = JJ  „er  , (5.6) 
r12"° 

which is the value of the first density correction to the 

radial distribution function g(r.J at r12 = a,  we conclude 

W'X]{3) = if TTö3[^fX] 
(2)      , (5.7) 

(2) where [ty,x]    is the well known binary collision integral 
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associated with the Boltzmann equation.  For the self-diffu- 

sion we find similarly 

[*'x]!3> = if 1T°3^'Xl(2)  • (5.8) 

It thus follows from (5.1) and (2.34) that 

,      5  3, 

5   3 
ni;L = -j2  Tro ^o r (5.9) 

5   3 D11 = -j-j ™  D0 , 

which are precisely the contributions predicted by the theory 

of Enskog [7]. 

We now turn our attention to the contributions for 

U=2,3,4, not contained in Enskog1s theory. Since the collision 

integrals (5.4) are symmetric with respect to permutations of 

the particle labels, it suffices to evaluate operators T (123) 

for one permutation only. Thus 

[* 

[* 

,X]ll3) = /dv1
dx2dx3*(123) / ♦(vi)*Tu (12,13) £ xtVj)  , 

,Xly3) = J  dv"id*2
dx3$(123) V ^(vi)*Ty(12,13)X(vi) 

i=l 
where 

T2(12,13)   =  Tss(12f13)+TSN(12,13)+TNS (12,13) 

T3(12,13)   = TR(12,13)+TC(12,13)+TH(12,13) , (5.11) 

T4(12,13)   =  TRC(12,13)+TcR(12,13)+TRH(12,13)+THR(12,13)      , 
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as defined by (4.14)- (4.17).  Note that in (5.10) the term 

i=3 vanishes as a result of (1.7).  It should be noted 

also that the summation over the particles j in (5.10) 

contains only those two particles which are involved in 

the last collision. 

The matrix elements in (5.10) contain binary collision 

operators (2.12) and describe sequences of binary collisions. 

In this section the collision sequences corresponding to each 

matrix element will be represented by diagrams, using the 

notation developed in section III, the only difference being 

that we don't find it necessary to specify whether the first 

and last collisions are interacting or non-interacting.  In 

addition the expressions for the matrix elements, which 

still contain 6-functions through (2.12), are reduced to 

fourteen dimensional integrals over regions of phase space, 

where the corresponding collision sequence is geometrically 

possible.  Furthermore, we specify the integrands completely 

in terms of the integrating variables.  Since the reduction 

of the matrix elements is rather involved, we give the 

details for two specific examples in a separate appendix B, 

and simply list the results here. 

We consider first the single overlap term u=2, which 

can be written as a sum of three terms according to (4.17) 

and (5.10) 

[*,x]^3) = [¥»X1^) + [*#X)^}
>
 
+
 N''X]NS

>
        '       (5-12> 
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where 

[iKxlgg*   -  -   /  dv1dx2dx3#(123)i(»(v1,v2)*T12f23G0f23T13x(vlfv3J    , 

(5.13a) 

I*»xlSN>   =  -/dv1dx2dx3$(123)i(.(vlfv2)*T12f23GoT53G0T13x(vlfv3)/ 

(5.13b) 

[
*'X1NS

>
   

= ~J dv1dx2dx3»(123)*(vliv2)*F12G0T536.f23T13x(vlfv3)i 

(5.13c) 

and where we have introduced the shorthand notation 

<Mv. ,v.) = ip (v.) +i() (v .)  , 
1 3 1    3 (5.14) 

Xtv^v.) = xt^J+xtVj)  . 

The terms in (5.13) are represented by the diagrams in Fig. 7. 

In order to express the matrix elements in a compact form 

we define 

A0>i*(*ifSD) - 1i(vi*,vj*)-t(vi,vj)      , (5.15) 

where the velocities v.* and v.* are functions of o- .. v. 
x j 1]'     i 

and v.   as given in   (2.13).    Using the results of appendix B 

we find for the SS-col]isicn sequence 

tf'Xlgs5   = "   / dn*(123)Äa    ^l'V^a    x(^l'^3) ' (5*16) 

(SS) 12 13 

where the volume element is 
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dft = a |v12'a12|da12dr13dv1dv2dv3 . (5.17) 

The conditions determining the (SS)-integration region 

are given by the diagram in Fig. 7a, and read explicitly 

v12-S12 > 0 ; r23 < a  ; (5.18a) 

(^13X^13)2"(av13)2 < ° ; Tl > °  '' (5.18b) 

T-L < T2  . (5.18c) 

The integrating variables represent the positions and veloci- 

ties just after  the first collision.  That is, r,2 = a,2 

and r, 3 refer to the relative positions at the time of the 

first collision at the bottom of the diagram and (v) = 

vl'v2'v3 to tne veloci'ties between   the first and the last 

collision. 

The other symbols are defined in terms of the integrating 

variables as follows 

513 = ?13+*13T1 '*     *23 = *13"°12   ' 

V13T1 - -?13^13-[°2-(?13X^13>2]1/2 <5'19> 

V23T2 = -r23'V23+[a "(r23XV23) j 

Equation (5.18a) requires that the first collision has 

occurred, and that it is a single overlap collision (i.e. 

r23<a).  The conditions (5.18b) require that the second 
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collision occurs at some T. after  the first collision. 

The time T2 is the time between the (12)-collision and 

the separating (23)-collision.  Condition (5.18c) requires 

that particles 1 and 3 collide before   2  and 3 separate, 

i.e. the (13)-collision is also a single overlap collision. 

In the original integral (5.13) the integration extends 

over the entire phase space of the three particles.  The 

6-function in the T-operator guaranteed that the integrand 

would vanish for those phase points for which the required 

collision sequence would not occur.  However, in (5.16) 

we have integrated over these 6-functions, so that the 

integration must now be restricted explicitly to those 

phase points for which the required collision sequence 

will occur. 

Next, we consider the (SN)- and (NS)-terms in (5.12), 

which are represented by the diagrams in Fig. 7b,c.  The 

contributions of the (SN)- and (NS)-diagrams are related 

through the symmetry property (4.19), which implies 

[♦.xl^- IX,*]^ • (5.20) 

The expressions for the matrix elements are 

[^,X]sN) + lf'X](3)   " NS 

=  -   /dn*(123) 

(SN) 
{Aa12*(Vfy'Ao13X<V*3J   + 

+Ao,   X<V*2>*A0    *<v1,v3)} 

(5.21) 
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The volume element dfi is given by (5.17) and the conditions 

for the integration region now refer only to the SN- 

collision sequence as determined by the diagram in Fig. 7b, 

or explicitly, by the conditions (5.18a,b) and 

T1 > T2 (5.22) 

The diagrams in Fig. 7a,b show clearly that the conditions 

(5.18a,b) apply to both diagrams, while the condition, 

T. smaller or larger than x_, distinguishes whether particles 

1 and 3 will collide before or after particles 2 and 3 

separate. 

The corresponding matrix elements [ip/Xl?  for the 

self diffusion can be obtained from (5.16) and (5.21) 

by replacing ♦ (vi,v.) and xtv^v.) by iM^) and x^), 

respectively. 

The collision integrals for u=3 in (5.10) can be 

expressed as a sum of three terms 

[f,Xl33) = M/Xlj^ + t^Xlc^ + ^'Xl^ , (5.23) 

where 

[*,X]R
3) = JTdv1dx2dx3$(123)ij;(v1,v2)*T;L2G0Tj;3G0T:L2x(v1,v2)/ (5.24a) 

[Kxlc3) "   J   dv1dx2dX3#(123)#(vliv2)*T1260Tj3G0T32x(V3,v2)l   (5.24b) 

[^X]H
3) = - f dv1dx2dx3*(123)iKv1,v2)* 

(5.24c) 

T12G0T;3G0f;3GoT32x(v3fV2), 
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The subscripts refer to the recollision, cyclic collision 

and hypothetical collision sequences as represented by the 

diagrams in Fig. 8. 

After reduction the recollision term becomes 

[*'X]R3> = /dO»(123)A0 *(vlfv2)*Aa# X(v£,v^)   ,        (5.25) 

(R) 
where the volume element is given by 

dß = a |v12'
ai2ld^12a |v13

,a,3|da13dTdv.dv2dv3   . (5.26) 

The integration region for the recollision is determined 

by the diagram in Fig. 8a, or, explicitly, by the conditions 

V12"°12 > °   '*   V13*°13 < °    '   T > 0  ? (5.27a) 

(r12(2)!<vy
2-(av[2)

2 < 0    ;    TR > 0     , (5.27b) 

where we have defined 

-*■ 

a12 = r12(2)+V12TR    ' r12(2) - 012+V12T ' 

*\ .     A. 
Vl = vr(v13"a13,a13  ;   V2 = v2 '* (5,28) 

11/2 
V12TR " -r12 (2).vl2-[a

2-{?12(2)xvi2}
2T 

Equation (5.27a) states the condition for the first two 

collisions to occur, where the integrating variable T is 

the time between the first and second collision.  Equation 

(5.27b) gives the requirements for the last collision to 

occur, where TR is the time between the second and third 
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collision.  Primed velocity variables refer to the velocities 

between the second and third collision, and r,2(2) is the 

relative distance between 1 and 2 at the time of the second 

collision. 

We proceed with the cyclic collision term 

[f/X]c3) = jTdfi$(123)Aa  iMv1,v2)*Aa  x(v^,v£)    ,        (5.29) 

(O       12       32 

where the volume element is again given by (5.26).  The 

integration region for the cyclic collision is determined 

by the diagram in Fig. 8b, or explicitly by the conditions 

(5.27a) and 

{r32(2)xv'2}
2-(öv^2 

2 < 0    ;    TC > 0  . (5.30) 

The quantities used in (5.29) and (5.30) are defined in 

terms of integrating variables by 

°32 = ?32(2)+^32TC    ;    *32(2) = °12"°13^12T   ' 

^3 = V(*13*513)S13 ''    ^2 = ^2 ' (5'31) 

V32TC = -r32(2)'V32" a
2-{r32(2)xv-2}2J 

The last term in (5.23), represented by the hypothetical 

collision diagram in Fig. 8c, reads 

[^,X1H
3)
 ■ -Jdfi*(123)Aa if»(v1,v2)*Aa x(v3,v2) . (5.32) 

(H) 12 32 

The volume element is again given by (5.26) and the integration 
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region for the hypothetical collision is determined by the 

conditions expressed by the diagram in Fig. 8c, or explicitly 

by (5.27a) and 

{r32(2)xv32}2-(ov32)
2 < 0    ;    TH > 0  . (5.33a) 

TH > T±   . (5.33b) 

The above quantities, expressed in integrating variables, 

are 

°32 " ?32(2)+^32TH    ;    ?32(2) = 512^13+^12T 

-   r 2 f -   2l1/2 V32TH = -r32{2)-v32_La "{r32(2)xV32}  J ;       (5"34) 

V
13Ti = -2513^13 • 

Note that (5.33b) expresses the condition that the particles 

1 and 3 separate before the (23)-collision, where T. is the 

time particle 3 spends inside the action sphere of particle 

1.  If we would reverse condition (5.33b), i.e. take 

TU < T., we would recover the diagram in Fig. 7c and its 
n    l 

corresponding (NS)-matrix element. 

The corresponding contributions for the self diffusion 

are 

[*,Xl£3> = / dQ*(123) I V t(v±)*A   X(v!) 
(R) i=l  1Z 12 

[¥,XJc3) - J    dfi*(123)Aa  *(v2)*A0  X(v2)        , (5.35) 
(C) I2        32 
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[*,X]i3> = - J  d«$(123)A  ^(v2)*A   X(v2) H     (H) °12   Z   °32   2 

In order to obtain the collision integrals involving 

four successive collisions we substitute (5.11) for u=4 

into (5.10) and use (4.16). We thus obtain 

where 

[^,X1RC
>
 
= J   dv1dx2dx3*(123)^(v1,v2)*T12G0T5;3G0Tj2G0T32x(v3,v2) , 

[*'xlCR} =J   dv1
dx

2
dx3$(123)l|'(^1^2)*?12GoTi3GoT32GoT13x(''l'^3) , 

t^rXlR^ = - J dv1dx2dx3*( 123)^i(v1#v2)* 

T12G0TJ3GOTJ2G0T£2G0T23X(V2,V3), (5.37) 

[* lX]HR    = "J     dv1dx2dx3$(123)iKv1,v2)* 

T12GOTJ3GOT^3G0T32G0T13X(V1,V3) . 

The corresponding diagrams are given in Fig. 9.  The contri- 

butions of the CR-diagram and the HR-diagram are related 

to those of the RC-diagram and RH-diagram through the 

symmetry property (4.21) 

W'XICR* 
= ^'^Lc 

[*'X1HR} = IX^]RH) 
(5.38) 
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2 I 3 

(a)     RC-collision 

3 2        I 

(b)   CR- collision 

(c)    RH-collision (d)   HR- collision 

Fig.   9.     Diagrams  for   ty/X]) (3) 
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After integrating out the 6-functions in (5.37) and using 

(5.38), the matrix element for the RC-collision reduces 

to 

[^Xl^ + ^'XlcR5 = 

-/dfl»(123)[A 0 ♦(v1,^2)*A  X<v5,v-) + (5>39) 

(RC)       L 12 32 

The volume element dfi is again given by (5.26).  The 

integration region for the (RC)-collision sequence is 

determined by the diagram in Fig. 9a, or explicitly by the 

recollision conditions (5.27) and 

{r32(3)xv32}
2-(ov^2)

2 < 0    ;   TRC > 0    . (5.40) 

The above quantities can be expressed in terms of integrating 

variables through (5.28) and in addition 

a32 = r32(2)+v52TRC   i   r32(3) = r"32 (2)+V'2TR 

r32(2) = a12-°13+V12T  ' 

$3 = v2+(v-12.S*2)a*2  ,   *• -S-  , 

1/2 

(5.41) 

V   T     = — T V32TRC   r32 (3)-v»2-p-{?32(3)xv«2}2] 

The RH-collision sequence gives the following matrix 

element 
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'2> 
(RH) 12 32 

+\/<vl'v2>*aa3/^3^2
)]  - (5'42) 

with dß as given by (5.26).  The integration region for 

the RH-collision is determined by the diagram in Fig. 9c, 

or explicitly by the recollision conditions (5.27) and 

{?32(3)xv^2}
2-(ov;J2)

2 < 0    ?   TRH > 0  . (5.43) 

In order to define all symbols completely in terms of 

integrating variables, we need in addition to (5.28) the 

relations 

a32 = r32(3)+v32TRH   ;   r"32<3) = r32(2)+v32TR  ,• 

r32(2) = o12~
a13+v12T  ; (5.44) 

V32TRH * -r32<3)*V32- 
2 ,-  „. -   ^V2 

o -{r32(3)x V32} J 

Note that we have not explicitly imposed the condition 

T_„ > xf, where v^2
T-[ ** ~2ai2"v12' as was ^one *-n  t*ie 

comparable case (5.33b).  The reason is that contributions 

from the RH-region where T_„ < T .' automatically vanish, 
Kri     1 

since we have shown that sequences of four successive 

collisions cannot contain any overlap collisions (c.f. 

remark following (4.11)). 

The corresponding contributions for the self diffusion 
->■ ->■ 

are obtained from (5.39) and (5.42) by replacing ty(v.,v.) 
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.-*■       •* 

and x(v.|V.) by <Mv_) and x(v2) respectively. 

We remark that the recollisions, cyclic collisions and 

hypothetical collisions, defined by the diagrams of Fig. 8 

have a close resemblance to, but are nevertheless different 

from, similarly named collision sequences introduced in 

earlier papers [3,8].  In the present report we have 

separated the statistical and dynamical correlations, so 

that the C- and H- collisions in Fig. 8b and 8c do not 

contain any overlap collisions, in contrast to the collision 

sequences derived originally.  Furthermore, in the earlier 

formulation the diagrams representing collision sequences 

had to be supplemented with a number of auxiliary conditions 

[3,8].  Those conditions effectively accounted for the 

contributions from sequences of four collisions.  In the 

present report we have shown that the latter contributions 

can be reduced to two collision integrals defined in terms 

of the diagrams Fig. 9a and 9c. 
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VI Discussion 

We have shown explicitly how the first density corrections 

to the transport coefficients of a hard sphere gas are 

determined by a set of three-particle collision integrals. 

These collision integrals account for the correlations in 

the position and velocity variables of three molecules. 

The correlations are of both a statistical and a dynamical 

nature.  The statistical correlations refer to correlations 

in configuration space irrespective of the velocities of the 

particles.  For a gas of hard spheres they reduce to excluded 

volume effects and lead to the consideration of overlap 

collisions.  In an overlap collision the center of at least 

one of the two colliding particles is constrained to lie 

inside the interaction sphere of the third particle. These 

statistical correlations are represented mathematically by 

Mayer functions (and they are the only correlations to be 

considered in the density dependence of the equilibrium 

properties.)  In addition we need to consider dynamical 

correlations brought about by sequences of successive collisions. 

These correlations involve both the position and velocity 

variables and can be represented mathematically by sequences 

of binary collision operators. 

We have made a systematic analysis of the statistical 

correlations versus the dynamical correlations. This 

analysis led to a decomposition of the collision integrals 
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in terms of integrals associated with the dynamics of 

one,   two,   three  and four   successive binary collisions 

among three particles.  In order to accomplish this, the 

triple collision operator was represented by a binary collision 

expansion.  The terms in the binary collision expansion were 

then ordered such that successive terms in the series corre- 

spond to a decreasing number of Mayer functions and increasing 

number of binary collision operators .  The resulting 

set of collision integrals is summarized in Table III for 

easy reference. 

(3) As the first term [i|i,xK   in this ordering we recover 

the coefficient predicted by the theory of Enskog. This 

collision integral involves the dynamics of only one   collision, 

while the positions are correlated by the requirement that 

both colliding particles must overlap with the third particle. 

This term, therefore, reduces to the familiar binary collision 

integral associated with the Boltzmann equation, multiplied 

with the volume common to the action spheres of two colliding 

particles. 

The second term accounts for the effect of dynamical 

correlations brought about by sequences of two  successive 

collisions.  In addition, the positions are now correlated by 

the requirement that only one of the two colliding particles 

overlaps with the third particle.  This term, therefore, 

accounts for a combination of excluded volume effects and 

Note that the sequence TaG0Ta counts as only one collision, 

since the operators refer to the penetrating and separating 

part of the same non-interacting collision. 
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TABLE III 

Summary of three-particle collision integrals 

V 
(number of 
successive 
collisions) 

contributing 
collision integrals equation diagram 

1 [*,xlj3> (5.7) (Enskog theory) 

2 l*iX]fi} (5.16) Fig. 7a. 

[♦»xliJ)*[*.xi£) (5.21) Fig. 7b. 

3 [*rX]i3) (5.25) Fig. 8a. 

[*.xl^3) (5.29) Fig. 8b. 

[*,X!H
3) (5.32) Fig. 8c. 

4 [*.x]ic) + I*'X]c
3i> (5.39) Fig. 9a. 

I*'X,HH)+I*'X1HR) (5.42) Fig. 9c. 
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dynamical effects. The corresponding collision sequences 

are represented by the diagrams in Pig. 7, to which we have 

referred as SS-, SN- and NS-collisions.  In the SS-collision, 

represented by Fig. 7a, both collisions are overlap collisions 

and in the SN- and NS collisions, represented by Fig. 7b 

and 7c, only one of the two collisions is an overlap collision. 

Correlations caused by sequences of three  successive 

collisions are accounted for by collision integrals associated 

with recollisions, cyclic collisions and hypothetical 

collisions, defined by the diagrams of Fig. 8. These collision 

sequences do not contain any overlap collisions. 

Finally, the effect of correlations due to sequences of 

four  successive collisions is determined by collision 

integrals defined with respect to the diagrams of Figs. 9a 

and 9c. 

We remark that the same three-particle collision 

integrals were derived earlier in AEDC-TR-71-51 using geometrical 

considerations [11,22].  That derivation was based on the 

cluster expansion of the pair distribution function developed 

by Green and Cohen [23,24],  An expansion of the three- 

particle collision integrals in terms of the number of 

successive collisions was then obtained by decomposing and 

rearranging the triple collision integrals obtained earlier 

using a surface-integral method [3,25].  However, that 

derivation requires rather intricate geometrical  considerations 
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and we prefer the more direct algebraia  derivation presented 

in this report.  Moreover, an attempt was made to give a 

complete self contained presentation, so that the results 

do not depend on too many previous papers and reports. 

An attempt to separate the statistical and dynamical 

correlations was made recently by Henline and Condiff [9]. 

As the first term they also recover the Enskog contribution. 

In order to assess the contribution from single-overlap 

collisions, they introduce a term called EVD.  This abbrevi- 

ation indicates that the term incorporates both excluded 

volume and dynamical effects.  However, in deriving this 

EVD term, Henline and Condiff consider only collision sequences 

in which the particles overlap initially,     As a result 

their EVD term does not account for all collision sequences 

that involve single-overlap collisions.  It corresponds to 

our collision integrals [i|i,x]gS 
+ tiKx3gN ' but does not 

include [i|j,x]«s •  The latter term is equal to [X^CM 

as shown in (5.20); it is considered by Henline and Condiff 

implicitly in a term called TCI.  The NS-collision 

sequence, represented by Fig. 7c, is obtained from the SN- 

collision sequences by time reversal, so that the collision 

integrals [if'/Xlgw and [^»XljL have the same physical 

origin. The matrices of collision integrals associated 

with the EVD and TCI terms of Henline and Condiff are not 

symmetric.  In this report we have shown how a systematic 
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analysis leads to a decomposition of the three-particle 

collision integrals into matrices that are symmetric. 

The relationship between our collision integrals and 

those of Henline and Condiff is shown in Table IV.  Henline 

and Condiff did not consider collision integrals accounting 

for four collisions involving three molecules. 

We have analyzed and calculated the various collision 

integrals, derived in this report, for all three transport 

coefficients.  A detailed account will be presented in a 

subsequent technical report. 
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TABLE IV 

Comparison with the collision integrals 
of Henline and Condiff. 

Henline and Condiff This work 

EVD [♦.xiff+w.xijy 

TCI [*,xl^s)+I*'X]i3) 

TC2 [*.x]c3) 

TC3 [*,xl£3) 
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Appendix A.  Collisional transfer contributions. 

In the main text of this report we have demonstrated 

KK   KK how the kinetic contributions X  , n  and D, up to terms 

linear in the density n, could be obtained from a cluster 

expansion of the time correlation functions (2.1).  In this 

appendix we show how the potential energy contributions 

,KU ^ ,UK   ,  KU L     UK     ,    ,  . . .  . .. .. X       +  X       and r\       +  r\       can be calculated with the same 

technique. 

The potential energy contributions (2.8) to the 

currents J contain derivatives of the intermolecular potential. 

For hard spheres it is convenient to eliminate these deriva- 

tives by writing the current J(t) as the time derivative 

Of a moment M(t) [29] 

J(t) = M(t) (A.l) 

with 

A N 

(A.2) 

i=l 
The term U(r..)r. in (A.2) vanishes for a gas of hard spheres. 

iD  i 

Relation (A.l) enables us to relate the current to pseudo- 

streaming operators. First, we note that the correlation 

function <J(t,)J(t^)> depends only on the time difference 

(t,-t_), so that 
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<J(t1)J(t2)> = <M(t1)M(t2)> = -<M(t1)M(t2)>       , (A.3) 

and, secondly, we have in accordance with (2.15a) 

WM(t) = WL^M(t) = LNWLNM(t). (A.4) 

The correlation function can now be expressed as 

<J ^jfz- fdxN n^(vi)Mi:Nw(i2*"N)e NL
N

M
-   

(A,5) 

N ' J 1=1 

By means of (2.10) and (A.l) we can introduce pseudo currents 

LNM = J
K + J^ 

-LjjM = JK - j"        , (A. 6) 

with the kinetic parts given by (2.7) , and the collis-ional 

transfer  parts 

N N 

fi > - TTT   T..k(v2-v2)?.. 5   hüv. + ,X   4 /_JZ_I  ij2   i  j' ij L-i l 
i^j i=1 (A. 7) 
N 

P   =1))  T..Jmv..r\.l 

Expressions for J_ can be obtained from (A.7) by replacing 

T. . by TT. T"1 from table (1.8). 

Again we can separate the time correlation functions 

in KK-, KU-, UK- and UU-parts.  The KÜ- and UK-parts are 

equal, as can be verified with the help of the relations 

in Table I.  In the present theory the UU-part of the time 
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correlation function can be neglected, since it contributes 

2 only in 0(n ) to the transport coefficients.  Hence, to the 

relevant order in the density.we may write down a new time 

KK   KU 
correlation function for X=A +2X  and Section II applies 

immediately. 

Instead of (2.17) we have expressions for the complete 

X and Ti (to the relevant order in n) which can be obtained 

from (2.17) by replacing the functions y  by new functions y 

satisfying 

¥' (v,e)   =  r(v,e)J(v)+a(v,e) , (A.8) 

with 

n 
1=1 i-2 

naly)   =   2 ^Tj^iy,   J dxA_1 H $ (v±) Ü(12 . . .£) . 

00 N (A. 9) 

'I   TN^ITTZ-/dxN'Ä     n   <(»(vj)W(12...N)JU     , 
N=£ j = £+l 

where J is given by (A.7). 

To lowest order in the density only the term (£=1) 

contributes to a(v?e). It gives for the heat conductivity 

a^(vlfe) = 2G, j-h^+n y\ix2<|,(v2)w(12)T12 |m(v2-v^)?12 L 

4  3 ±   .-*■ ,ji\a  nJ^ (vi; = G„^Tra nJ, (vn) , (A. 10) 

and for the viscosity 
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an(v1,e)   = 2G0n   jdx^ (v2) W(12}T12    |"fcv12r"12 i 

8      3   ■£     ■*■ = G0^-7ra nJ   (v1) . 

In the derivation of the integrals (A.10) and (A.11) we 

have used (2.6), (2.7), (2.12), Table (I.1J and hU = pU/n = 

2  3        2 Ü = j-na  nkT + 0(n ) where p = nkT + p is the hard sphere 

pressure.  In principle, the term (1=2)   in (A.9) could also 

contribute to 0(n), but its contribution vanishes due 

to (1.2) . 

Next, we substitute (A.10) and (A.11) in (A.8), multiply 

(A.8) on the left with r  , and obtain integral equations, 

similar to (2.27) in which J. (v) is replaced by (I+^-TTO n)J. (v) 

and J (v) is replaced by (l+^-=-ira n)J (v) .  The final results Ti * lb      ri 

for the transport coefficients are then 

(A.11) 

X = (1+C-TTCJ n)X0+nX1     , 

n = (l+T|
ira3n)no+nnJK 

The terms X0 and r\0   are the Boltzmann values for the hard 

sphere transport coefficients, the terms proportional to 

nX0 and nn,0 are the collisional transfer contributions, 

and are identical to those obtained from Enskog's theory. 

KK       KK The terms nX,  and nru  are the contributions from triple 

collisions, calculated in the main text. 

(A.12) 
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Appendix B.  Reduction of triple collision integrals. 

In this appendix we give the details of the reduction 

of the triple collision integrals to the explicit forms 

listed in Section V.  As prototypes of this reduction 

we treat two examples, namely the matrix elements corre- 

sponding to the SS-collision and to the recollision. 

We start with the matrix element (5.13a) , which can 

be written as 

tV,X]gs) = " /dv1dx2dx3$(123)JT^2iI)(vlfv2)}* 
(B.l) 

f23Gof23T13x(^1^3)  ' 

where we have taken the hermitian adjoint of the T-operator 

and used the fact that TT commutes with $(123) due to (1.7). 

According to (2.12), (1.8) and (5.15) one can write. 

Tj2*(vlf*2) = o2f  da12|^12-S12|A 0i*(vrv2)5(r12-a12) 
'12 

'12-12   %   n Vi,-a15  >  0 (B.2) 

T13X(vlfv3)   = c2f dd13\v13'S13\^x{vlt^3)6ir13-o13) 

v13-o13 <  0 
00 

We further recall that G0 = (e-L0)
-1 = / dTe"eTeTL°, and that 

0J 

the limit e+0 is taken in (B.l).  Inserting the above 

expressions in (B.l) and using (2.5) we find 
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^'Xlgg5   =  "/    dWV?12d?13*(123)a2/    d512^^*5^1    * 12 "12 

*12'°12 * ° 

oo 

•5(r12-o12)A0i *(v1,v2)*6(a-r23) J dt0(a-|r23+v23T|). 
12 0 

•a2 J  dS13|v13-a13|6(r13+^13T-S13)Aai3X(v1,v3) 

lj 13 (B.3) 

In obtaining (B.3), we use the fact that, for any function 

.-*■      ■*■ 

F(r. .,v. .) , 

JL0 f(r..,v..) = f(r..+v..T,V..)  . (B.4) 

The appearance of 6-functions allows us to carry out some 

integrations.  Using the first 6-functions in (B.3) we 

integrate over r-2, so that r _ has to be replaced every- 

-»■ 

where by cr,-.  The second 6-function will be used to carry 

out the integrations over T and cr.-.  In order to do so we 

use the relation 

/ dTcr2 / da. .|v. .-a. . |6(3) (r. .+v. .x-a. .)F(a. .,T) = 
0
J     J        ID1 i]  13 '     ID  ID   ID   ID 
00 

/aT0
2/d;iji^.j.;..|ä(i)(T-Tii,5(2>s.jxvir3..xC1:i)P(j.j+?..T,T) 

-*■ v..*a.. < 0 
ID  ID 

■ -►   A  1        -*■ (B. 5) 
= 0(a-|rijxv.j|)0(Tu)P(aij,Ty) 

where o±.   and T on the last line of (B.5) are explicitly 

given by 
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->■      ->--»■ 

a. . = r..+v. .T   , 
XD    ID  13 W (B.6) 

vijTy - -rij*VijT "(rijXVij) J 

In the first step in (B.5) the 3-dimensional 6-function 

is decomposed into a 1-dimensional 6-function for the 

component of r.. parallel to v.. and a 2-dimensional 6- 

function for the components of r.. perpendicular to v... 

In the second step the integrals over the time T and the 

solid angle a.. are carried out to yield, respectively, the 

conditions 0(T ) and 0(o-|r. .*v. . |■) ; for the a. .-integration 

we use the variable transformation b = o..xv.. to obtain 

a2 / da. • |v. .'a. . |6{2) (r. .*v. .-a. .«v. .) = J       i]1 ij  ij '     i]  ID  ID  ID 
v..'a. .   <  0 .  „. 
i]  ID (B.7) 

= f  d(2)S6(2)(S-?..xv..) = 0(a-|r\.xv..|). 

ISI < o 

After carrying out the above integrations we obtain for the 

relevant matrix element 

W'^sV   - "/ dW^3a2^12'S12ld°12d?13 

• 0 (v12 *a12) 0 (a-r23) 0 (o-1 r23+v23T11) 0 (T1) 0 (a- | r12>< v12 |) . 

•*(123)A0  *(vlfv2)*Aa  x(v1,v3)      , (B.8) 

where 
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S13 = ?13+^13T1    ;    ?23 = ?13"°12 

V13T1 = -r13'V13- 
2   ,    ^     l2W2 

_a -(r13xv13) J 

These results can be put in the form  (5.16)-(5.19) of the main 

text, by realizing that ir,2+ 
V
23
T
TI < cr is equivalent 

with T. < T_, where T2 is defined in (5.19).  The reduction 

of the SN -term proceeds along similar lines. 

As a second example we treat the recollision term, 

defined in (5.24a).  We start again by taking the hermitian 

adjoint of T1_ and use relations similar to (B.2).  The 

recollision term can then be written as 

[<JJ,X1R
3)
 = J  dv1dv2dv3dr\L2dr13<M123)a

2 J  dS 12|v"12-a12|6(r12-S12) 

v12-a12  >  0 

00 

"Aa12* (^1 '*2} * J dTff2 J   dS13 1*13 ' °13 I 6 (?13^13T"513) ' 

V513 <   ° 
CO 

• / ds°2 / da12 I V12 ' a12 I 6 (r12+V12T+V12S-a12) Aa*2* (vl'V2> 

12 u12 

where the prime on the velocity variables represents the 

action of the operator R  , where v! . = v.'-v'. and 

*i = Ro13^l 
= V(*13*S13>°13 f 

^2 ■ Ra13^2 = *2  ■ 
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The first two 6-functions are used to carry out the integra- 

tions over r_2 and r.,.  If we introduce the notation 

*12(2) = ?12+^12T = °12+^12T ' (B*12) 

the last line in (B.10) has precisely the form of (B.5), so 

that we can carry out the integrals over s and ff?2*  
T^e 

result is 

(3)   /  ■+■-►->  2 i■>   A  i A   21-*■   A  i A 

I^'XIR =J    dv1dv2dv3a |v12«o12|da12a jv13'o13|da13dT. 

•0(v12-c12)0(T)0(-v13*a13)0(TR)0(a-|r12(2)xvj[2|) .     (B.13) 

•*(123}A 0 *(vlfv2)*Aot jMvi,^), 

where all quantities appearing in (B.13) are expressed in 

terms of integrating variables in (5.28).  Equation (B.13) 

is equivalent with the results (5.25)-(5.28) of the main text. 

The remaining collision integrals, corresponding to 

the C-, H-, RC- and RH-collision can be reduced in a 

similar way. 
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