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A numerical method is pr‘senbed for the anslysis of steady-statz wave prop-

agation problems in linearly elastic or viscoelastic media of infinite extent. Plane
and axisymetric geometries are considerad which consist of a finite irregular region
Joined to semi-infinite layared regicns., By this method, torsional and verticai vi-
brations of circular fcotings on, or embedded in, hamogeneous and inhcmcgeneous scil
layers over rcck are studied, The IZrregular region is discretized by compatitle
finite eiements, while the semi-infinite loyered regions are discreti-ed by subdivid-
ing the layers into thin sublsyers and by assuming that within each svblayer the dis-
placements vary linearly in the directior ncrmal to the layers. 'J{the directiun
parailel to the layers, the displacements are expanded into a fiiite number of plane
or axzisymmetric propagating and decaying wave modes which are determined by the soiu- L :
tion of algebraic eigenvalue problems. Dynamic stiffness matrices are developed which
unicuely relate nodal. forces to simultanecus nodal displacements at the boundary be- -
tween the irregular and the layered regions and thus represent the dynusic rewponse :
of 'the semi-in<inite layered regions. The dynamic stiftness of the ccombined regions
is computed by the direct stiffness method. The equations of motion are derived from
the principle of virtual work which is forrmlated to facilitate the use of complex
varisbles in ‘he analysis of the harmoni: motion. Sclutioas obtained Ly this nu-
merical method show good agreement with known analytical golutions. The response of
circular footings, which are supported by soil layers over rock sud are exciied to vi-
brate in the torsional and vertical mode, are investigated; the effects of the thick-
ness of the supporting iiyer, embedment of the footing and increasing shear nodulus
with depth are studied. The screening effect of trenches on herizontully polarized
shear wav:s is explored by varying the treach depth and the frequency of the wave

motion.
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ABSTRACT

A namerical method is presented for the analysis of steady-state
wave propagation problems in linearly elastic or viscoelastic media of
infinite extent. Plane and axisymmetric geometries are considered which
consist of a finite irregular region joined tu semi-infinite layered
regions. By this method, torsional and vercical vibrations of circular
footings on, or embedded in, homogeneous and inhomogeneous soil layers
over rock are studied.

The irregular region is discretized by compatible finite elements,
while the semi-infinite layered regions are discretized by subdividing
the layers into thin sublayers and by assuming that within each sublayor
the displacements vary iinearly in the direction normal to the layers.
In the direction parallel to the layers, the displacements are expanded
into a finite number of plane or axisymmetric propagating and decaying
wave modes which are determined by the solution of algebraic eigenvalue
problems. Dynazmic stiffness macrices are developed which uniquely relate
nodal forces to simultaneous noial dicplacements at the boundary between
the irregular and the layered regions and thus represent the dynamic
response of the semi-infinite layered regions. The dynamic stiffness of
the combined regious is computed by the direct stiffness method. The
equations of motion are derived from the principle of virtual work which
is formulated to facilitate the use of complex variables in the analysis
of the harmonic motion.

Solutions obtained by this numerical method show good ugreement
with known analytical solutions. The response of circular footings,
which are supported by soil layers over rock and are excited to vibrate
in the torsional and vertical mode, are investigated; the effects of the
thickness of the supporting layer, embedment of the footing and increas-
ing shear modulus with depth are studied. The screening effect of

trenches on horizontally polarized shear waves is explored by varying

the trench depth and the frequency of the wave motion.
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FOREWORD

The research described in this report was performed under Contract
3o. DACA39-T70-C-0023, "Dymamic Analysis of Brbedded Footings on Layered
Subsoil,” between the . S. Army Enginzer Waterways Experiment Station
(W=S) and The Regents of the University of California during the period
1 June 1970 to 30 .fune 1972.

The objective of the research, which was begun in June 1970, was
to compute steady state displacements generated within a layered soil
system by forced vibrations of a rigid circular footing located on, or
embedded in, this sytem. The stated objective has been achieved and in
addition a nev very general method has been developed for steady state
znalysis of irfinite plane and axisymmetric structures. The major part
of the rasearch da2scribed was performed by Mr. Ginter Waas as part of
his doctorzl research under the supervision of the principal investiga-
tor, Dr. John Lysmer, Associate Professor of Civil Engineering.

The vroject was administered by the Office of Research Services
of the Ccllege of Engineering. The contracting officer for WES was
fr. Johr J. Kirschenbaum, Jr., represented by Dr. ILyman V. Heller of
the Soils and Pavements Laboratcry. During the period of this work,
Yr. g. P. Sale was Chief of the Soils and Pavements Laboratory, Mr.

R. G. Ahlvin was Assistant Chief of the Scils and Pavements Laboratory,
and Mr. R, W. Cunny was Chief of the Soil Dynamics Branch.

CLL Trnest 3. Peixotto, CE, was the Director of the WES and

¥r. F. R. Browvn was the Technical Director.
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1. INTRODUCTION

1.1 Foundation Vibration Problems

The designer of foundations for machinery must be able to predict
whether or not the response of a foundation to dynamic loads from the
machine will meet certain design criteria and if the vibrations trans-
mitted through the ground will be small enough as not to affect other
machines, vibration sensitive equipment and humans in the neighbori.cod.
The prediction of the vibration amplitudes involves the determination
of the dynamic loads and soil properties, the selection of a mathematical
model and its analveig,

Discussions and data on dynamic loads from machines are presented
in Refs. [9, 27]. Periodic loads caused by combustion engines, com-
pressers and turbins are to be distinguished from transient loads caused
by forge hammers and testing machines. If the soil-foundatior system
behaves linearly under dynamic loading, the response to perlodic loads
can be obtained by superposition of{ che harmonic response at different
frequencies. Traunsie. & icads may he treate? similarly by 2mploying the
Fourier transf.rmation, possibly in a discretized form.

The determination of the dynawic soil properties is discussed
briefly in Chapter 2. The dynamic stress-strain behavior of soils is
approximately linear for small strain amplitudes and can therefoie be
represented by elastic moduli. To incorporate materizl damping in
harmon* ~on complex moduli may be employed.

:ometry involved is often quite complicated. 1t may consist
of the foundation, several soil layers with different material proper-
ties, rock at some depth and adjacent foundations and structures. To
make the problem amenable to analysis the geometry must therefore be
strongly idealized.

Many problems which are actually three-dimensional in space can

be reduced with some justification to either plane or axisymmetric

1
o]
¥
»
i+
t

:

2

!

PR TIPS D A R SO T

' X%

!




AT AN I S TR e TSR =

probleac. For instance, the soil-foundation interaction of a turbine

3 pedestal, which is ten times as long as it is wide, may be treated as
a plane problem if the motioa of the foundation slab in a plane per-

pendicular to the turbine axis is studied. Thus a cross-section of the

soil-foundation system is considered which is plane and of unit thicl-

Ay

3 ness. Oa the other hand, the vertical vibration of u machirne foundation
which is square in plan may be treated as an axisymmetric prcblem. For
this purpose the square footing is approximated by a circular footing

of equal area in plan.

g Many problems in soil dynamics can be characterized as wave

propagation problems, because the motion in the soil is dominated by

propagating waves. The waves are generated at some source, for instance
by the vibration of a machine footing, and from there they propagate
into the underlying medium which is unbounded except at the surface of

the ground. The effect of the propagating waves is to disperse energy

into the infinite medium and at the same time to carry disturbances a
long distance away from tie source. Due to energy dissipation by the
E waves, the footing respon.ie to dynamic loads is damped and the displace-

ment amplitudes of the foo.ing are considerably reduced, especially

at fregquencies corresponding to -.oximum amplitudes. :

The depth profile at a construction site commonly consists of

norizontally lay2red soil deposits underlain by rock. The lower soil

aeag PR TN P

layers are usually stiffer than the upper layers, because the overburden

T
ST

and thus the confining or consolidation pressure increases with depth.

o
— A A oL o b

Waves generated somewhere close to the surface of the ground are

T

therefore reflected and refracted at the layer interfaces. Since the
soil layers generally become stiffer with depth, the pattern of reflec-
3 tions and refraciions causes the waves to propagate mainly in the

horizontal direction and most of the dispersed energy is transmitted

T R I LA T I T

in the softer layers close to the surface. Even in the case of a

E vertically vibrating civcular footing which is supported by a hcao-

T T ELPUEIN

geneous elastic half space, Fig. 1, 67 percent cf the erergy is dis-
persed by Rayleigh waves which travel along the surface of the half

- space [28]. Therefore an even higher percentage of the energy will be

[ P ST R TT IY

dispersed in the horizoatal direction if the medium is stratified as
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described above. 1If the rock underlying the soil depcsits is inuch :

harder than the soil, as is usually the case, it may be assgqu for

VR ¥ Ao

practical purposes that the rock is completely rigid and that the waves

are totally reflected at the surface of the rock. N

i It 49 bun

S
3 1.2  Existing Methods of Analysis
3 The dynamic analysis of machine foundations is often EéSeg on the
¢ mathematicil model shown in Fig. 1. A circular footing is sypported by
> a homogeneous, isotropic, linearly elastic, semL-Lnflnite'half space.

This model was first studied by Reissrer [39, 40, 41] in the 1930's.
Er | He derived analytical solutions for the forced vertical aud tar51ona1

vibra. ion of the footing. Subsequeatly, the model has been studled by

some 20 researchers who have directed almost their entire attention to

4
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the dyramic compliances of the vertical, torsional, rocking ahd hori-
A recently publithed paper

zontal vivration of the circular footing.
by Luco and Westmann [23] presents a summary of the various soluticns
and numerical results for the compliances over a large frequency range.
The paper also contains somc information on the stress distributica
under the footing and on the displacements in the far field.

A mcre satisfactory model for many foundation vibration problems

where rock is situated at shallow depth is showr in Fig. 2. Here, a

s s AR Srioh L A i e ettt il

circular footing is supported by a homogeneous elastic layer over a

This model is more difficult to deal with by analytical
conditions

rigid base.
: methends than the half space model Lecause additional boundary

S AL Bl

E: bave to be satisfied at the rigid base. The forced torsicnal motion

[6], Bycroft [10] and

e,

';" of the footing was studied by Arnoid er al.

Awojobi [8]. The forced vertical motion of the footing was investigated

3 by Bycroft [10] and Warburtcn [46]. No merhods of analysis for the
g B rocking and sliding motion are available.

Froblems which include layering of the

foundation, two significant features of most foundation vibration

problems, have not been solved by analytical

s0il or embeament of the

0
IR b R a A bl i o

N

methods, since the in-

herent boundary conditions are too complex.
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Numerical methods such as the finite difference and the finite
element method are not directly applicable to steady~state wave
propagation problems in an infinite medium, because only a finite
numler of nodal points can be considered and thereiore the discrete
model is confined to a finite region. This poses the problen as to
how wave reflections can be prevented at an artificial boundary. which
is introduced to coanfine the model.

Lysmer and Kuhlemeyer [25] developed a viscous voundary which

absorbes much of the impinging wave energy. At the boundary they
applied viscous forces which they computed from one-dimensional wave

propagation thzory. The dashpots can be designed tou perfectly abscrb

the energy contained in P-waves (compressional waves) and S-waves

(shear waves) if the incident angles of the waves are known. However,

3 the incident aaglec are usually unknown and therefore must be
anticipated. If the actual incident angles differ from these anticipated
- by not more than about 60 degrees, the dashpotrs are very effective [25].

Lysmer and Kuhlemeyer cbtained good results wiil discrete models

n

i of the type shown irn Fig. 3 when applied to the analysis Of steady-state
3 vertical vibrations of circular footings embedded in a homongenecus
3 elastic half space. They designed the dashpots at the lower horizontal

boundary for paerpendicular incident angles and the dashpots at the

g vertical boundary “sr the frequencv dependent incidenc angles of the

P and S-wave ccmponents that form a Rayleigh wave.

Kuhiemever [22] extended the metind te the case of a layered

=

- half space. He obtained gcod results in the low frecuency vange fer

b=
e

case- in which the elastic moduii of the layers decvessed with depth.
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However, he observed that in general cult o predict the
3 incident angles of P and S-wavss at the artificial boundarv, because

the P and S-waves undergo m:ltiple reflections and refracticns at

"3 the layer interfaces anc at the free surface. To compliczte the watter,
; the incident angles often change drastically with freguency.
‘% Ang and Newnmark [4] developed a "tramsmitting boundary" at about
(_Q the same time that Lysmer and Kuhlemeyer developed their viscous
é - boundary. In ‘ssence, both boundaries are the same. They are based on

one~dimensional wave propagation theory and require some advance

Jo
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knowledge of the incident angles. Ang and Newmark used the transmitting

5
g
3
Ed
H
3
¥
H
»
£

boundary in the analysis of ground shock waves caused by nuclear blasts.

e

They demonstrated the effectiveness of the boundary in cases in which
the wave motion was mainly one-dimensional, but they presented little
evidence of the boundary's performance ir two-dimensicnal wave propaga-
tion problems.
However, studies bv Hadala [18] show that the transmitting boundary
is useful in certair twn-dimensional shock wave problems in layered
semi-infinite media, vhen only a very short time period after the blast
is considered. The degree of perfection required of a transmitting
boundary in these problems is less strinjz.c than in steady-state wave
progagatior. problems.
Another wethod of analyzing steady-state wave prcpagation problems
in infinite media is fo employ a very large discrete model with a con-
siderable amount of damping. Thus, the waves generated at the source
are strongly attenuated before they reach the artificial boundary, and
after reflecticn, are further attenuated so that they are almost
s dissipated before thev return to the zone of interest. This approach
% is physically justified if the chosen amount of damping is reasonable
and i1 the model is largs sacugh.  Bat .o praczrice, it is probibitively
exrensive in computational time and storage requirements despite the

: dramatic advances ia the development of digital computers.

: A new discrete model vhich is particularly suited for the analysis

of foundation vibration problems is described below.

o

E 1.3 A Finite Dynamic Mode! for Layered Semi-Infinite Media

i - The discrete meichod developed in this dissertation is designed to
) solve plane and axisymmetric wave propagation preblems in semi-infinite,
3 : linearly viscoelastic media of the type illustrated in Figs. 4 and 5.
Fig. 4 shows the cross-section of a typical plane problem in

£ which the geometry, the material properties and the external loads do
not change in the direction perpendicular to the cross-section. The

region 1 is joined along vertical planes to the regions L and R which
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extend infinitely to the left and to the right, respectively.

The regions L and R consist of horizontal layers which are welded
together at their interfaces and may differ in their material properties
and thickness. They are called the layered or semi-infinite regions.
The region I contains all geometrical irregularities and is therefore
called the irregular region. The regions L, R and 1 are welded to a
rigid base which is fixed in space.

The materials involved may be linearly elastic or linearly visco-
elastic. For simplicity, they are assumed to be isotropic.

All external forces act within the irregular regions and vary
harmonically with time. They generate harmonic motion which consists of
propagating and standing waves. The propagating waves transmit energy.
This energy is either dissipated due to material damping within a
finite distance from its source or is propagated outward to infinity
if the layered regions are ideally elastic.

Fig. 5 shows a typical cross-section of the analogous axisymmetric
problem in which the geometry, the material properties and the loads do
not vary in the angular direction.

Since there is no hore tu find closed form solutions to problems
as complicated as this, aumerical methods chich reduce the diffienley
by discretization must be resorted to.

The finite element method is the most flexible numerical method
available for solving complex boundary value problems in continuum
mechanics, because it is easily adaptable to complicated geometries
and local changes in material properties. Therefore it is employed to
aralyze the motiom in the irregular region. It is applied to the
present problem in the displacement formulation. The application is
outlined in Chapter 3.

The layered regions, however, cannot be treated by the finite
element method, because these regions are of infinite extent and their
discretization by finite elements would result in an infinite number
of elements and degrees of {reedom.

Since the geometry of the layered region, L or R, does not vary
in the horizontal direction, a numerical method is suggested which

reduces the analysis of harmonic motion in the layered region to a
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discrete problem with typically 20 to 60 degrees of freedom. 7To this

end, the region is discretized in the following way. The natural
layers are subdivided into thin sublayers as shown in Fig. 6 and it is
assumed that the displacements within each sublayer vary linearly in
the vertical direction. But in the horizontal direction the displace-
ments are required to satisfy the pertinent, ordinary differential
equations which are obtained from the governing, partial differential
equations by separating the variables. This method is similar to
Lysmer's original lumped mass methed for the analysis of Rayleigh
wvaves [26].

At a given frequency, the frece motion in the thus discretized
layered region consists of a finite number of wave modes which are
obtained by the solution of an algebraic eigenvalue problem. These
wave modes serve as shape functions for expanding the displacements in
the region in terms of mode participation factors.

If the lavered region is separated from the irregular region,
nodal forces have to be applied at the boundary as shown in Figs. 11 and
12 in order to preserve dyaamic equilibrium. These nodal forces are
derived from the displacemint expansicn by observing the strain-
Jicsplacemeatl aud oius3 -3iTara relaetions. (ne wodal forces are
uniquely related to the sirmultaneous nodal displacementc at the boundary
througk a dynamic stiffness matvix which represents the elastic and
the viscous response of the semi-infinite region. The dynamic stiffness
matriz is complex symmetric sznd frequency dependent.

Once the dynamic stiffaess matrices of the layered regions are
established, the analysis of the combined regions L, T and R follows
the usual procedure of the Jirect stiffness method. The analysis
yields the displacements and stresses in the irregular and the layered
regions.

The dynamic stiffness matrix of a layered region is developed in
Chapters 4 through 7 for the plane and the axisymmetric case. In each
case the motions in the plane and perpendicular to the plane of the

cross-section, shown in Figs. 4 and 5, are treated separately since

they are independent.
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In the layered regions, the motions in the plane and perpendicular
to the plane of the cross-section consist of generalized Rayleigh and

Love waves, respectively.
A generalized Rayleigh wave in the plane case is here defined by

S

x = u(2) exp (iwt - ikx)
(1.1)

w(z) exp (iwt - ikx)

$

z
in which Sx and 62 are the displacements in the x and z-direction, u(z)
and w(z) are the corresponding vertical mode shapes, ®w is the frequency,
k is called the wave number and i = v=1. The wave defined by Eq. (1.1)
is calied a generalized Rayleigh wave, because Rayleigh waves in
layered media are described mathematically iIn the same way, but are
usually understood as having real wave numbers [16], whereas the wave
number in Eq. (1.1l) may be real, imaginary or complex.

A generalized Love wave in the plane case is defined by

6y = v(z) exp (iwt -~ ikx) (1.2)

in which 6y is the displacement in the y~direction and v(z) is the
vertical mode shape. The wave number may again be real, imaginary or
ccmplex, while Love waves in layered media are usually understcod as
having real wave rumbers [16].

Axisymmetric geueralized Rayleigh and Love waves are described
similarly in Chapters 5 aad 7. Henceforth, the cases in which the
motion occurs either in the plane or perpendicular to the plane of the
cross-section are called the Rayleigh wave case or the Love wave case

according to the type of wave generated.
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2. DYNAMIC SCIL PROPERTIES

2.1 Introduction

Successful determination of the response of soil-foundation

systems to dynamic loads is critically dependent on tiie incorporation

of representative soil-properties in the analysis. Thus considerable

effort has been directed towards the determination of soil properties

in recent years. Several techniques for measuring cdynamic soil proper-

ties have been either ~ewly developed or improved and a considerabe
amount of data has been collected [42, 43].

The stress-strain relationships of most soils subjected to
symmetric cyclic loading conditions are curvi-linear as shown in Fig. 7.
The secant modulus, which is determined by the extreme points on the
hysteresis loop, and the damping factor, which is proportional to the

area inside the loop, may be select~i to represent the hysteretic

stress—-strain behavior in analyses. Both the wmodulus and the damping

factor depend tc some degree on the nagnituvde of the strain as the

axis and the area of the loop vary with the strain amplitude.

2.2 Experimental Determination

The main procedures for determining the moduli and dampiag
characteristics at low to moderately high strain levels are summarized

below [43].
a) Direct determination of stress-strain relationships
Hysteretic stress-strain curves of the type showa in Fig. /
can be obtained in the laboratory from triaxial compression
tests, simple shear tests or torsional shear tests conducted

under cyclic loading conditions. The strain amplitudes in

these tests may vary from about 10—2 to 5 percent.
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b) Forced vibration tests
Forced vibration tests may be performed cn cylindrical samples
by subjecting them to longitudinal vibratlons and torsional
vibrations with strain amplitudes from about 10-4 to 10“2
percent. The tests involve the determination of the resonant
frequencies and measurement of the response at other fre-
quencies.

c) Free vibration tests
In these tests cylindrical soil samples are set into longitu-
dinal or torsional vibrations as in the forced vibration tests
and thereafter the decay of the amplitudes is observed.
These tests are particularly suited for the determination of
the damping factor since the logarithmic decrement at any
given strain level is obtained directly from successive
amplitudes of free vibration.

d) Field measuremen” of wave velocities
Field tests have been used to measure the velocity of
propagation of P-waves, S-~waves and Rayleigh waves. The soil
moduli for low strains of about 5 x 10-4 percent can be
determined from the w- ve ".elocities, but damping factors nave

not been obtained from these tests.

2.3 Linearity

The strain amplitudes in soils beneath foundations for vibratory
machines are usually small [42]. Test data for soils under cyclic
loading conditions have shown that the soil response is approximately
linear for small strains, say 10_3 percent {43]. Thus the secant
moduli and the damping factcrs used in analyses of foundatisn vibration
problems may well be assumed to be independent of the strain amplitude.
Even in the case of large strains which are developed in soils during
earthquakes, reszarchers have successfully employed linear analyses

using soil properties based on observed strain amplitudes [20].
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2.4 Complex Modulus Representation

Though the internal damping in soils is not considered to be
caused by viscosity, the stress-strain behavior of soils under vibratory
loading is similar to that of viscoelastic materials. This permits
the use of complex moduli in representing the stress-strain behavior
of soils that are subjected to lcads varying harmonically in time.

The stress-strain relation under uniaxial conditions can be expressed by

o© exp (iwt) = g ¢© exp (iwt) (2.1)
in which
c .
Cc = 01 + i 02 (2.2)
c _ .
€7 =gy + i €y (2.3)
Ec(w) = El(w) + i E2 (w) (2.4)

are the complex stress, the complex strain and the complex modulus,
respectively, w is the circular frequency and i = /-1. The superscript
€ denotes a complex quantity.

The complex stress and strain may be visualized as a pair of
vectors rotating at the frequency w about the nrigin of the complex
plane .c¢ shown in Fig. 8. At any given time, the actual stress and
strain are thie projections of the vectors onto the real axis. The
ccmplex modulus is generally frequency dependent. Its real component,
El, is the modulus of strain which is in phase with the stress and its
imaginary component, EZ’ is the modulus of strain which is 90° out of
phase with the stress. El is associated with the elastic phenomenon in
which energy is stored in a recoverable form while E2 is associated
with the viscous phenomenon in which energy is dissipated.

Due to the viscous effect, the strain vector lags behind the
stress vector by an angle ¢L which lies between 0° and 90°. This
angle is called the "loss angle" and its tangent is called the "loss
tangent" because it is associated with energy loss. The loss tangent
i3 defined by

tan¢L = E2/E1 (2.5)

and is related to the damping factor or fraction of critical damping,
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8, and the logarithic decrement, D, by [42]

1 tan¢L = 2 B = D/3.14 (2.6)

if the damping is small. This is the case in foundation vibration

problems.
Since most data on damping characteristics of soils has been

RRITRL TRy

presentad in terms of the fraction of critical dawping, B will also be

used here as the measure for material damping. The zomplex modulus may

TRy

be written accordingly

EC = E, 1+328) Q2.7

The use of a complex modulus implies that the actual hysteresis

s

loops of the type shown in Fig. 7 are approximated by elliptical

3 hysteresis loops which are equivalent with respect to the slope of the

E! principle axes and the areas enclosed by the loops. Thus the secant

E modulus, determined as shown in Fig. 7, equals the real component of
e the corresponding complex modulus, and the energy losses per cycle,

3 which are proportional to the areas of the hysteresis loops, are also

: matched.
3 The complex modulus E® used above may represent any of the usual

“{ moduii, Young's modulug, ghear wedulwus or bulk modulus. The relations

E between the complex moduli of an isotropic, linearly viscoelastic

3 material at a given frequency are analogous to those between the real

moduli of an isotropic, linearly elastic material. Thus, a complex

Lame's constant A and a complex Poisson's ratio v¢ ray be defined by

; [ C_ (od

>\°=x1+i>\2=c(§ iG) (2.8)
3 36° - E

: c

vc=v1+i\)2=zc-1 (2.9)
2R 26

in which E¢ = E, + 1 E, and G° = G1 + i G, denote the complex Young's

Ty
ek

> 1 2 2
] modulue and shear modulus, respectively.
k- Values for E® and 6 can be directly determined from longitudinal :

g and torsional vibrations of cvlindrical soil samples in forced and free

vibration tests. However, later in the analyses it is more convenient ;
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to u~e the couwplex Lame's constants AS and GS.
Henceforth, the superscript € winn be omitted to simplify che

notation., It is understood that A and G denote complex moduli unless

otherwise started.

2. Wave Velocities

The velocity of P-waves, VP’ and the velocity of S-waves, VS’ in

linearly viscoelastic media are [17]

Vp = [Re ol (h + 2c;))'1 (2.10)
Vg = (Re /676)"1 (2.11)

in which 0 is the mass density and the symbol Re specifies the real
part. VP and Vs vary with frequency as do the complex Lame's constants.
I1f the imaginary parts of the complex Lame's constants are small,
VP = Re /TXI§§77B and Vs ~ Re /575.

In linearlv elast®c media, the P~wave and S-—wave velocities are

independent of frequency. They are

v, = VA + 26)/p (2.12)
Vg = Gl (2.13)

in which G and ) denote real Lame's constants.

2.6 Material Damping in Foundation Vibrations

The frequency of motion hardly affects the secant moduli and the
damping values of soils throughout the practical frequency range.
Therefore the complex moduli may be considered frequency independent.
This means that the damping forces in soils are proportional to the
strain amplitudes rather thaan to the strain velocities [43].

The fraction of critical damping in foundation vibration problems
is usually small. Tts values for shear deformations may typically

vary from 2 to 5 percent, and its values for compressional deformations
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are even less. Therefore, it might be argued that a viscoelastic

theory for analyses of foundation vibration problems is not warranted,
especially so, as relative errors in the determination of the secant
moduli usually evceed 10 to 20 percent. However, it takes little

effort to include damping in the analyses, since most of the computations
will have to be performed using complex algebra. Furthermore, the incorp-
oration of damping avoids possible singularities in the analysesg, which

might be troublesome, and it provides a more realistic model.
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3. METHOD OF ANALYSIS
3.1 Method of Complex Variables for Harmonic Mction ?
c It is convenient to represent the foices, displacements, strains

: and stresses of harmonic motion by complex variables. If £(t) is )
harmonic in time it can be defined by
? £(t) = £ cos(ut + ¢) (3.1) -
or
z £(t) = f; coswt-f, sinwt (3.2) %
£(t) = Re (£ expawt) (3.3)
f iz which w is the circular frequency and £¢ is the complex variable 3
E c _ . L 2
f f1 + i f2 (3.4) E
with i = ¥~1. The ampiitude fo is .
E _ 2 2 3
3 fo = f1 + f2 (3.5) 3
E and the phase angle ¢ is :
6 = tan L(£/£.) (3.6)
3 2771 i
3
. Equation of Motion for Discrete Systems é
‘? The equation of motion for a simple damped oscillator with a mass E
i M, a spring constant K, and a dashpct constant € is E
: K u(t) + C 4(t) + M u(r) = P(r) 3.7
; in which u, 4, and u are the displacement velocity and acceleration of %
f the mass, respectively, and P(t) is the driving force. For harmonic §
'i . motion at the frequency w, Eq. (3.7) can be reduced to %
2 (&S-w® M) o = PC (3.8 :
k: , :
‘ 15 b
2
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in which
. x°=1<1+11<2=1<+ij (3.9)
E c _ .
E u’ =y, + i u, (3.10)
2 C= .
P P1 + i P2

piLd

Eq. (3.8) is a time independent, complex, linear equation which is

EER T

£ equivalent to the two real eguations

(3.12)

1 K, u, ~ K, u, ~ 0> Mu, =P

171 2 72 1 1

K, u, + K, u, - w2 Mu, =P (3.13)

g 1Y 7Ky 2T 5

The first equation states equilibrium when sinwc=0, the second when
coswt=0. If both equatrions are satisfied then equilibrium prevails at 1
any time.

The equations of harmonic motion for a system of n degrees of

freedom ave, in generalization of Eq. (3.8), :
(IK°) - o M) () = () (3.14)

in which the mass matrix [M] and the complex stiffness matrix [Kc] = [Kl]

+ i[KZ] are of order n x n. [Kl] contains the stiffness coefficients

'é and [Kzl the damping coefficients multipliecd by w. The vectors {u°} and
;f {P®} contain the complex displacements and forces, u§ and P;, =1, ey
3 n, respectively. The complex stiffness matrix [K®] may be generated in

s
.

the same manner as a real stiffness matrix, the only difference being

S

g
fidt

that complex moduli are used instead of real moduli.

e,

¢l

LR ¥ b

Equation of Motion for Continuous System

¥ The equilibrium conditions for an infinitesimal element together
with the strain-displacement relations and the stress—strain relations
3 yield the field equations of motions in terms of the displacements.

1f the motion is harmonic the field equations can be reduced to
- time independent equations in the same way as shown above. Using
rectangular Cartesian coordinates, X, v, z, as indicated in Fig. 4, and

assuming plane strain conditions, i.e. all derivatives with respect to

P—
AL3) LR A

y vanish, the field equations for the homogeneous case, in which no

2%

external body forces act on the element, are
16
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’8211; Bzui Bzu; azu:' 2 e
— —— = 5
G (‘ 5 + 7 + (A + G) 7 + Y32 + pw ug 0 (3.15a)
oxX 3z 9x
/32\1; Bzu(z: 32u§ Bzus 2 e
Vs M — ——— =
G \ 5t = | t A+ G gt 5] tew u, =0 (3.15b)
3 9z 0z
Szuc 32u° 2 e
¢ |—Xt+—L) +pou " uS=0 (3.15¢)
2 2 y
9% d9z
s, u:, and u; are the complex displacements in the x, y, and z-
dirc -tions, respectively, p is the mass density and A and G are the
complex moduli iuntroducec¢ in Section 2.2. Egs. (3.15) are valid for
small deformations in an isotropic, linearly viscoelastic medium. Egs. f
4 (3.15a) and (3.15b) are coupled. They govern the motion in the x-z-
i plane, while Eq. (3.15c) governs the motion in the y-direction.
i The analogous equations for axisymmetiic couditions, when all .
é ' derivatives with respect to the angular direction 9 vanish, are :
g 2 c c C c 2 ¢ 2.¢ ;
= 37 du u du 3 u 3u 2 ¢ 5
: r. . 1_ _x z r _ z +pw u. =0 ¥
(A +26) ( 2 T 2t 8r82> + 6 ( 2 8r32> '
, ar T 3z
: (3.16a)
Bzui 1 3u:' Bzu; 32u§ 1 Bu;: azu:_ 1 3u§ E
E 26 4 x L _ I _ 2 I
3 (O + 26) 33z |t oz Al G 7 I drdz 1t Ir :
3z ar :
; 2 ¢ f
-4 + 0w ul = 0 (3.16b) :
4 2 ¢ c c 2 ¢ :
: 3 u du u 3 u g
1 G 8,1 8_8,_ 8} so? =0 (3.16¢) :
¥ 2 r or 2 2 ) ;
ar 9z

R s C C - .
E in which ui, Ug» and u_ are the complex displacements in the r, 9, and
2-directions of a cylindrical coordinate system as indicated in Fig. 5.

AU A RE IR b ot Pt o

e Eqs. (3.16a) and (3.16b) are coupled. They govern the moticen in the
£ r-z-plane, whereas the motion in the €-direction is governed by Eq. (3.16¢).
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Principle of Virtual Work

It is expedient to have a stationary principle available for the

viscoelastic medium as discretized by the finite element method. To

e SR ok 8 e el 2 L S LR

this end, the well known principle cf virtual work will be specialized
for application to harmonic motion. The principle of virtual work for

the dynamic case can be stated in the following form [17]

[ @l - [ @ - ptahav - [ @ rlas =0 Gan
v v S

E in which the stress vector {0}, the body force vector {F}, the surface

force vector {T}, and the acceleration vector {u} are functions of space

and time. The vectors {4} and {€} contain the virtual displacements and
3 virtual strains, respectively. The integration fv ... dV is performed
over the total volume of the body and the integration IS ... d5 is per-
formed over that part of the surface of the body where no displacements
are prescribed. The virtual displacements are small, triply differen-

2 tiable functions of space and must vanish over the surface of the body
where displacements are prescribed [17]. Accordingly, the virtual

A strains are small, twice differentiable functions of space.

&

Eq. (3.17) states that equilibrium prevails if the sum of the

Wy

virtual work. performed by the actual forces and actual strains on the

a:

é virtual displacements and virtual strains, vanishes. ‘
a3 Alternatively, the rate of the virtual work may be considered.

;: This leads to the equation of motion in the following stationary form
= Ny PR ¥ . PR ¥ _

3 €)' {oav - | {aY'({F} - ofihav - [ {a}{rdas = 0 (3.18) |
3 v Y S ;
?{ in which the vectors {u} and {€} contain the virtual velocities of the §
'Z displacements and strains, respectively. :

If the motion is harmonic with the circular frequency w, each
variable in Eqs. (3.17) and (3.18), including the virtual displacements
and the virtual strains, can be described in time as is f(t) in Eq.

(3.2). The time derivatives in Eqs. (3.17) and (3.18) are

R e R R
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{u} = - mz({ul} coswt - {uz} sinwt) (3.19)
{3} =-w ({Gl} sinwt + {32} coswt) (3.20)
(€) = - w (18]} sinut + {&,} cosut) (3.21)

The integration of Eqs. (3.17) and (3.18) over the time of one period

leads to
fv 60003 + (8,1 M0,} - 8T CE ) + 0l lu b - 16,1 (E,) + ow’lu,h]av

- fs ({Gl}T{Tl} + {GZ}{TZ})dS =0 (3.22)

and

[V [e)T0,) - 16,00} - 187} + oPle,h) + (3,37 (lr; ) + ol b av

- [ g,y - (6,)Tir has = o (3.23)
S 1 2 2 1
respectively, since
T/w 2 27/ W 9
sin” wt dt =.[ cos” wt dt = T/w (3.24)
(e} o
2 /w
_[ sinwt « coswt dt = 0 (3.25)

o

Now, Eq. (3.23) is multiplied by i = Y~1 and added to Eq.
(3.22). 1f complex variables are introduced according to Egs. (3.3) and

(3.4), tuis leads to the equation of harmonic motion in the stationary
form

[ @t - [ @ @)+ o? hav - [ @00 = 0
v

v S :

(3.26) 3

in which the superscript € indicates a complex variable, as before, and §
* 3

the indicates the transposed complex conjugate (e.g. {uc}={u1}+i{u2}and :
¥ A T ora 3T E
{§} —{ul} -i{uz} ). §
19 i
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Henceforth, however, the superscript € will be omitted for con~
venience, and it is understood that the quantities of harmonic motion

are represented by complex variables as is £(t) in Eq. (3.3).

3.2 Finite Element Method

The finite element method is a numerical technique for obtaining
approximate solutions to complex boundary value problems. The develop-
ment of the method in the field of structural mechanics began in the
early 1950's with the work of Turner et al. [45]. Since then the method
has been developed extensively and is now widely used in structural
and continuum mechanics. It has also been applied successfully to
various other physical problems.

A recently published text by Zienkiewicz [53] describes in detail
the applicatiun of the finite element method in structural and continuum

mechanics. The text also contains an extensive list of references on

the subject. The finite element method has been used very successfully
? in static and dynamic analyses of plane and axisymmetric problems [12,
E 13, 50, 51)}. It has also been applied to quasi-static and dynamic

; analyses of viscoelastic continua with considerable success [1, 3, 11,
32, 35]. ;

3 Since the finite element method is widely known, only the principal

steps involved in the particular application of the method to the
E anaiysis of harmonic motion in a viscoelastic medium are summarized

below.

3 (i) Discretization:

P T T TPV TN

Z The irregular vegion I is subdivided into subregions, called

finite elements, as shown in Fig. 6. The finite elements are prisms in

A g

3 the plane case and rings in the axisymmetric case and have arbitrary

i

quadrilateral cross-sections. They are interconnected at straight or

JaEa AR

circular nodal joints, which are located at the edges of the elements.
Because the strains are either plane or axisymmetric, the displacements
vary only over the cross—section of the elements. It is assumed that
3 the displacement field of an element is restricted to a finite number

3 of degrees of freedom. Here, the displacements of the nodal joints are
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introduced as the degrees of freedom. Each degree of freedom of an
element is associated with a shape function which defines the displace-
ment variation within the element. The shape functions vary linearly
along +<he boundary of an element, see Section 3.3. Hence, the displace-
ments across the boundary between adjacent elemer s remain continuous

during deformation if the elements are interconnected at their nodal

joints.

(ii) Element matrices:

The influence coefficients of an individual element with respect
to unit nodal displacements are derived from the principle of virtual
work, Eq. (3.26). This step is performed in Section 3.3. The influence
coefficients are collected in the element stiffness matrix [K'] and the
element mess matrix [M']. Because harmonic motion of a viscoelastic
body is considered, ]K'] is here a complex matrix representing the
viscous as well as the elastic resistance of the element against
deformation. The matrix [M'] is real and represents the inertia forces

of the element.

(iii) Assemblage of finite elements:

The elements are assembled by matching the displacements of
adjacent elements at ccmmon nodal joints. The global stiffness and nass
matrices of the assemblage, [K] and [M], are accordingly formed by
addition of the element matrices while observing the global numbering
system of the nodal displacements. The procedure is that of the direct

stifiress method [53].

(iv) Equation of motion:

Nodal displacements are prescribed which provide the kinematic
stability of the body and external loads are applied as discrete forces
acting at the nodal joints or as prescribed nodal displacements. The
loads vary harmonically with time at the circular frequency w. The
equation of motion is therefore

[A] {u} = {b} (3.27)

in which

2

[A] = [K] - o~ [M] (3.28)
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is a symmetric banded matrix with complex coefficients. The vector {u}

TTITF ST G G T

AR

TR MR,

contains the complex nodal displacements and the vector {b} the complex

nodal forces.

Eq. (3.28) can be partitioned in the following way

Aeg Apc | [Ys be
T = (3.29)

A u b

fs "ss [ s

in which {uf} contains the unconstrained Or free nodal displacements and
{us} the prescribed nodal displacements. Accordingly, {bf} contains
the prescribed nodal forces and {bs} the reaction forces. Hence, Eq.

(3.29) can be reduced to

[Aff] {uf} = {bf} - [ag] {us} (3.30)

v) Solution of equation:

Eq. (3.30) constitutes a set of simultaneous complex linear

equations. The coefficient matrix is symmet:ic, sparse and also narrowly

banded if a favorable numbering system of the nodal displacements is
used. The equations may be solved by a Gaussian elimination algorithm
without pivots using complex arithmetic. Once the displacement vector

{ug} is known the reaction forces {bs} can be computed by

b} = IAfs]T o} + 18] {u) (3.31)

Further details of the procedure outlined above are given in
Ref. [53]. However, a few points need additional discussion.

The semi-infinite layered regions R and L must also be considered.
Dynamic stiffness matrices for these regions are derived in Chapters 4
through 7 for the cases of plane and axisymmetric Love and Rayleigh wave
motion. When these matrices are added by the direct stiffness method
into the global matrix [A] of Eq. (3.2/7), the influence of the semi-
infinite regions on the motion in the irregular region is properly
accounted for.

The accuracy of the analysis depends upon the fineness of the
finite element mesh. In general, the larger the strain gradient the

finer should be the mesh. Therefore the mesh should be refined in areas
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where large strain gradients are to be expected.

Characteristic features of harmonic motion in elastic or visco~
elastic media are the wave lengths of P and S-waves. In order to obtain
a good approximation to the actual wave motion, the maximum cross-
sectional dimension of any finite element should be small compared to
the length of S-waves, which is always shorter than the length of P-
waves in the same medium at any given frequency. Lysmer and Kuhlemeyer
[25]) recommended that the maximum dimension of a rectangular finite
element with a linear strain field be not greater than about 1/10 of
the length of S-waves in the medium. This recommendation also applies
to the quadrilateral finite elements presented in Section 3.3.

Numerical solutions are compared with analytical solutions in
Chapters 9 and 11. The comparisons show clearly that very good results
can be obtained by the proposed method for steady-state wave propagation
problems in semi-infinite elastic and viscoelastic media.

It was mentioned earlier that the set of complex linear equations,
Eq. (3.30), may be solved by & Gaussian elimination algorithm without
pivots. The algorithms, used in the computer programs of Appendix 5 and
6, are coded in the FORTRAN IV language and employ the ccmplex arithmetic
capabilities of FORTRAN IV. By utilizing complex arithmetic, computer
storage requirements are half that required for the equivalent real
arithmetic computation, in which the complex matrix and the complex
vectors are decomposed into rezl and imaginary parts. Since the co-
eificient matrix is banded and symmetric, only half of the band needs
tc be stored in the computer memory.

No numericel sensitivity has been noted in the solution of the
equations. Numerical sensitivity could arise when the frequency of
excitaticn is extremely close to the natural frequency of a subsystem
of the discretized model. But this cannot be the case if the model
contains some viscous damping associated with each degree of freedom,
because then none of the subsystems possesses a real natural frequency
whereas the frequenty of excitarion is always real. If the model contains
no damping, the natural frequency of a subsystem could coincide with
the exciting frequency. But this is very unlikely. Therefore an al-

gorithm without pivots is used and the extra computation time and storage

needed for pivoting are saved.
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3.3 Element Stiffness and Mass Matrices

. T A .. DR

In order to assemble the matrices [K] and [M] appearing in Eq. (3.28)
it is necessary to first determine the matrices [K'] and [M'] for the
individual elements of the assemblage. The plane or axisymmetric cross-—
section of a typical element is shown in Fig. 9, which also shows the
global coordinate system (r, z) and a local coordinate system n, 8.

The two sets of coordinates are related through the transformation

in which roe Zpo w=1,2,3,4, are the coordinates of the four nodal points

T 2]
1 T L)
¢ <r z> = {b} c . (3.32)
: 3 23
SN

- of the element cross-section and {b} is the column vector defined by

3 (1-8) (i-n)
1 (1-8) (14n) (3.33)

3 B =7 Jwoam

3 (14£) (1-n)

é The Jacobian matrix of the transformation is é
2 r, 211 |
3 g1 = =, (3.3%)

1 or 2z 373

on an

3 T, z \
9 |4 T4 :

in which

oA ¥y

B

AR

(3.35)

ol
PRy LR P I

-(1-n) -(i+n) (1) (1—n)]

D] = ¢ [
D) (D) (HD) ~(#D)

(EH A

The determinant of [J] is denoted J.
For both the Love wave case and the Rayleigh wave case the
assumption will be made that the displacements within the element vary

according to ¢

s

FIERA L
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§(ryz) = §(E,n) = [b}T (3.36)

in which 51, 62, 53 and 64 are the nodal displacements in some
coordinate direction of the element shown in Fig. 10. Due to the special
properties of the chosen transformation, Eq. (3.32), this implies that all
displacements vary linearly along the boundaries of the element and that

all elements remain compatible as the nodal joints are displaced.

Element Matrices for Axisymmetric Lecve Wave Case

In the Love wave case, the quadrilateral element shown in Fig. 10a
has four degrees of freedom which ar: the nodal displacements in the
O-direction. The displacement field 66 = 6(£, n) is defined by Eq.
(3.36).

The strain-displacement relations in cylindrical coordinates are

Q0
HlO)

and = %% (3.37)

!
o

Yze

Differentiation by the chain rule yields

Yre B

= [T] 18} (3.38)

in which [T] is the 2 x 4 matrix
(1] = [17 0] (3.39)

and the matrices [J] and [D] are those defined in Egs.(3.34) and (3.35).

The strains expressed in terms of the nodal displacements are

v
{e} = ‘ rel = [s] {8} (3.40)
YI'Z
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in which [S} is the 2 x 4 matrix

t., -b/r t..-b,/t t,,-b,)/Jr t,, -b,/r

5] =] 11771 12 7 2 137 73 14~ %4 (3.41) :
a1 €22 t23 €24 !

The elemonts tij’ i=1, 2, j=1, 2, 3, 4, are the elements of [T] and
bj’ j=1, 2, 3, 4, are the elements of {b}, defined by Eq. (3.33). :
The stress-strain relation of an isotropic material is é
Tro .
{o} = = ¢lz} (3.42) :
Trz ;

in which G represents the complex shear modulus if harmonic motion in a
viscoelastic material is considered.

The nodal forces Qj’ j=1, 2, 3, 4, which are shown in Fig. 10a and
are collected in the vector {Q}, are the only external forces acting on
the element. They vary harmonically in time. Since [S] and {b} are
real, the principle of virtual work, Eq. (3.26), yvields

¢ [ (61" 1s17Is148)av - o [ {6¥"(b}(b}"{8}av = {6} "{q} (3.43)
A v

TR EU S AR ENY EASKEIY A S OS] ol R R AR L LR

in which the vector {g} contains the virtual displacements of the nodal
joints and the * denotes the conjugate transposed.

The fourAvirtual displacement states in each of whick a single
component of {8} is assigned the value 1 while the other three com-

ponents are 0 yield the matrix equation

4
P
El

(IK'] - w?M'] {8} = {qQ} (3.44)

in which [K'] is the 4 x 4 element stirfness matrix

XK'l =6 J, [s1°[slav (3.45)

and {M'] is the 4 x &4 consistent element mass matrix [5]

M'] =p fv IbHb} av (3.46)

The volume integral can be converted to an area integral since
dV=r d0 dA for an axisymmetric element.
dA=J d& dn.

la the §-n, coordinate system
The stiffness and mass matrices for a one radian segment
of the elemant. are therefore
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1 1
[K'] f [ crsiTIs] ¢ 3 4t dn (3.47)
1 4

1 1
M) f [ o{b}b}, r I dE dn (3.48)
A

The integration is performed numerically by Gaussian quadrature

- with a four point scheme [53].

Element Matrices for Plane Love Wave Case

Axisymmetric strain conditions become plane strain conditions at
large distance from the axis of symmetry. The matrices for a plane
strain element can therefore be deduced from Eqs. (3.47) and (3.48) by
3 considering a segment of infinite radius subtending a unit arc.

Since [3] reduces to [T], defined by Eq. 3.39, the matrices are

3 1 1
{ k1= [ [ em’nl 5 an (3.49)
3 21 =1

3 1 1 T

3 M'] = f f p{b}Hb}" J dE dn (3.50)
g -1 1

22
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Clement Matrices for Axisymmetric Rayleigh Wave Case

fH

The Rayleigh wave case involves two displacements and two forces

T L

per nodal joint as showan in Fig. 10b.
The r and z displacements within the element are, according to

- Ea. (3.36),

N7

Ladi i xean)

8
r
!6 } = [N]{8} (3.51)

4

Ay FRY L

in which {8} contains the nodal dispiacements Gj, j=1, ..., 8, and [N]

is the 2 x 8 matrix

>
B
o3
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b1 0 b2 0 b3 0 b4 0
[N] = (3.52)
0 b10 b20 b30 b4
The elements bj’ j=1, 2, 3, 4, are the components of 1b} defiuned in
Eq. (3.33).
3 The strain-displacement relations are
86r 362
Er = F ; Ez = g‘ (3.538)
Sr 8(’51_ 862
" T V2T ‘Y (3.335)
E Differentiation by the chain rule leads to
e
e r
.7> €z
{e} = = [s}{6} (3.54)
o
Yrz ;
iﬁ in which [¢] is now the 4 x 8 matrix :
N M
- 81 ® %y 0 3 0 £, O :
[ 0 ¢, 0 t, 0 t.0 ¢t -
. is1 = 21 22 23 24 (3.55)
3 bllr 0 b2/r 0 b3/r 0 b4/r 0 ‘
3 | %21 f11 f22 Y12 %23 P13 tas ti4 ;
EQ The elements tij’ i=1, 2, j=1, 2, 3, 4, are the elements of [T] defined §
4 in fq. (3.39) and by, j=1, 2, 3. 4, are the elements of {b} defined in !

3 Eq. (3.33).

'% The stress-strain relation for an isotropic material is

3

E (o] :

3 r E

5 o :

d {c} = = [cl{e} (3.56) 5

i g :
T

: rz E

A E
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in which
A+ 26 A 0

1 A A+ 26 A 0

[c] = A +26 0 (3.57)

. 0 0 0 G

f f If harmonic motion in a viscoelastic material is considered, the Lame's

} J constants A and G are complex moduli, which are generally frequency

E dependent.

’ The further derivation of the stiffness and mass matrices is

;: analogous to that in the Love wave case and leads to the 8 x 8 matrices

? for a one radian segment of the element

i 1 1 T

: k1= [ [ s1'1ciist ¢ 3 € an (3.58)

% -1 -1

é 1 1 T

3 pr1= [ omiTm r g ag an (3.59)

3 -1 -1

in which [S] is the matrix defined by Eq. (3.35).

g The integration is again performed numerically by Gaussian é
;j quadrature with a four point scheme. ?
; Element Matrices for Plane Rayleigh Wave Case

‘| lie stiffness and mass matrices for the plane strain element can

1 be deduced from those for the axisymmetric element by considering an

E element segment of infinite radius subtending a unit src. This leads

‘o

3 R R

3 1= [ [ @Teis g e an (3.60) _,
R -1 -1 :
3 1,1 . :
M'] = [1 J—l p[N]"IN] J 4 dn (3.61)
;;i in which [3] is the 3 x 8 matrix obtained by deleting the third row in
-%ﬁ matrix [S] and [C] is the 3 x 3 matrix obtained by deleting the third .
'3; row and the third column in macrix [C].
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4. PLANE LOVE WAVE MOTION

4.1 Eigenvalue Problem for Continuous Layered Region

Free harmonic motion under plane strain conditions in a semi-
infinite layered region of the type shown in Fig. 4 is considered. The
region consists of n isotropic linearly elastic or viscoelastic layers.
which are welded together at their interfaces. The jth layer has the
mass density pj and the complex shear modulus Gj' All displacements are

perpendicular to the x-z-plane and are described by
§ = Gy(x,z,t) = u(x,z) exp(iwt) (4.1)

in v" ich w is the circular frequency.
The governing homogeneous differential equations for the spatial

part of the displacements in the n layers are, according to Eq. (3.15c),

2 2

2 2
G. (é_g + du + p. wzu =90 j=1, ..., n (4.2)
I\ ax 9z 3

These partial differential equations may be reduced to ordinary

differential equations by separation of the variables. The assumption

that
u(x,z) = v(z) * g(x) (4.3)
leads to
.2 0. 2
sv 1,73 2__3%g1 j=1, ..., n (4.4)
~.2 v G, 2 g
3z j ax

which can only be valid for all values of x and z in the respective
layer if both sides of Eq. (4.4) are equal to the same constant. Setting

this constant equal to k2 yields the ordinary differential equaticns

2
é—% + (wzp./G. - k2)v =9 j=1, ..., n (4.5)
dz J 3]
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and

2 g = 0 (4.6)
dx
The latter equation has a solution

g = exp(-ikx) 4.7)

in which i = v~1. The parameter k is called the wave number, which, if

(]

!

real, is related to the phase velocity, ¢, and to the apparent wave-

5 length in the x-direction, 2, by

3 _w _ 271

; k = ) (4.8)

; Thus, a solution to Eq. (4.2) may be expressed in the form of a wave

E: 8 = v(z) exp(iwt-ikx) (4.9)

= The function in the z-direction, v(z), which will be called the mode

i shape of the wave, must satisfy the n ordinary differential equatioms,

E Eq. (4.5). 1In addition, the boundary conditions at the planes, z=z,., L
fk j=1, ..., n¥l, i.e. continuity of the displacements and shear stresses ;
E at the interfaces between the n layers, zero displacements at the rough

E rigid base and zero shear stresses at the free surface, must also be

f satisfied. Since the shear stress on a horizontal plane is

3 _ 06 _ _dv e s

- sz =G Sy G iz exp (iwt-ikx) (4.10)

)i : these boundary conditions may be expressed in the form :
. v(zJ!) = v(z?) j=2,3, ..., n (4.11a)
E 6. L vz =6 L v §=2,3, ...n (4.11b)
E b i dz 3 jtl dz 3 T :

x :

'.v- 4 — = = A’ ;

3 1z v(z=0) = 0 (4.11c) :
E and

,3 v(z=H) = 0 (4.114d)

in which 23 and z} refer respectively to planes immediately above and
immediately below the interface z_..

H
3
<
1
r
H
X
4
i
H
2
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3
s
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The general solution tc Eq. (4.5) for zjfzfzj+l is
v(z) = a, cosY.z + i .
(z) 5 cosY;z b sianz (4.12)
in which
2 2 2
Yj =W p;/Gj -k (4.13)

The shear stresses at the interfaces j and j+1 in terms of vj=v(zj) and

vj+l=v(‘j+l) follow from Eqs. (4.10) and (4.12) and, after some algebra,

reduce to
- LA + P
sz(zj) (cjvj djvj+1) exp (iwt-ikx) (4.14a)
and
] -— . -,
3: sz(zj+1) = (djvj + ijj+l) exp (iwt-ikx) (4.14b)
; in which
3 . =+ G,y. coty, 4.1
; ¢ JYJ co Yth (4.15a)
d. = - G,Yy./siny.h, 4.
E 5 JY] 51nYJ 5 (4.15b)
; and h, =2, .-2z,.
3 ! KIS 5 B

g Substitution of Egqs. (4.14) into Eqs. (4.11) leads to a set of n

E homogeneous transcendental equations
? vy + d2v2 =0
i d, ,v, ., +{c, . +c)v, +dv, . =0 j=2, ..., N

j-173-1 3.1 T Yy T Vi J ’

4 + =

2 dn—lvn—l * “Ca-1 Cn) Yn 0
'; (4.16)
32 Non-trivial solutions to these equaticns can be obtained only ior eigen-
¥ values, kz, which cause the determinant of the coefficient matrix to
E vanish. Eq. (4.16) states a difficult eigenvalue problem, because the

eigenvalues are "hidden" in the arguments of the transcendental ex-
pressions cj and dj. Infinitely many different eigenvalues and associated

eigenfunctions exist; but it is difficult to obtain even a few of them,

because they can be found only by search procedures.
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In the study of the earth's crust, seismologists face eigenvalue
problems of tiis type when they calculate dispersion curves for Love
waves in a layered medium [16]. Dispersion curves show the relation
bet'r2en the frequency or period of a harmonic wave and its phase
velocity or wave number. Only the fuadamental wave mode, which is the
mode of greatest phase velocity or smallest wave number at any given
frequency, and one or two higher modes are usually considered. Haskell
[19] has formulated a matrix transfer method suited for automatic
computation that permits finding a few of the lower wave modes in a

layered elastic medium.

Expansion of Displacemerts into Eigeafunctions

The actual displacements in the layered region R shown in Fig. 4
may be expanded into eigenfunctions, which are determined from the
solutions to Eq. (4.16) and which satisfy the differential equationms,
Eq. (4.2), and the boundary conditions at horizontal planes, Eq. (4.11).

According to Eq. (4.9), the expansion is of the form

(o]
r

.
S(x,z,t) = zz <xsvs(z) exp(iwt~iksx) (4.17)
s=1

in which vé(z), ks and as are the mode shape, the wave number and the
mode participation factor of the sth mode or eigenfunction, respectively.

The mode participation factors have to be chosen so that dis-
placement and stress conditions at the boundary between the irregular
and the layered region are satisfied. In addition, only those modes
which transmit energy in the positive x-direction and do not increasz
in amplitude with x can be included in the expansion. These latter
conditions follow from energy considerations. Since the motion is
generated by external forces in the irregular regicn and since the
layered region R is open to the right, the energy transmission must be

positive in the x~direction and the energy density cannot increase with X.
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The method outlined above, which is based on continuum theory,
was employed to solve a very simple boundary value problem involving
a line load on a homogeneous layer, see Appendix 3. However, major
Jifficulties arise when a more complicated problem is to be solved by
this method. In actual analyses, the number of eigenfunctions included
in the expansion, Eq. (4.17), will be small, instead of infinite, because
the determination of any one eigenfunction takes a considerable effort.
In addition, it is difficult to ensure that none of the more important
eigenfunctions is omitted in the expansion and that a good approximate
solution is obtained.

Therefore, a discrete method will be developed for the analysis
of harmonic motion ir the layered region. This method is suited to
automatic corputation, provides accurate rcsults and is easy to use in

connection with the finite element analysis of the irregular region.

4.2 Eigenvalue Problem for Discretized Layered Region

The layered region is discretized in the vertical direction by
subdividing the region into thin layers as shown in Fig. 11 and assuming
that v(z) varies linearly within each layer. In order for this assump-
tion to be reasonable the thickness ,h, of each layer must be chosen
small compared to the wavelength of shear waves in the yer. TFor this
reason the number of layers, n, in the discrete system is usually larger
than the number of natural layers; a typical analysis involves from 10
to 40 layers. The region is subdivided into layers so that the inter-
faces between the layers coincide with the nodal joints at the vertical
boundary with the irvegular region. The layered and the irregular
regions can then be connécted at these nodal joints. As the disilace-~
ments at the vertical boundary vary linearly between the nodal joints
of the finite elements and between the layer interfaces, the displace-~
ments will be contiruous across the boundary.

The assumption of linear variation of v(z) within each layer
implies that v(2z) is defined by its values vj=v(zj), j=1, ..., n, at

the layer interfaces. Therefore, the displacements of a generalized
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Love wave may be represented by

{¢} = a{v} exp(iwt-ikx) (4.18)

in which the vector {8} contains the displacements Sj, j=1, ..., n, of
the layer interfaces. The vector {v} represents the mode shape and a
is the mode participation factor as before.

The displacement function for zjfzfz. is accordingly

j+1
u(x,z) = v(z) exp(-ikx) (4.19)

in which

\

vi_; = (zj+l-z)/hj . vj + (z—zj)/hj - v (4.20)

j+1
Omitting the common factor exp(iwt), these displacements produce the

shear strains

_ % _ .,
sxy = o = - iku (4.21a)
_ du _ . . 1
T ( v + vj+1)/hj exp (~ikx) (4.21b)
shear stresses
T =G. ¢ (4.22a)
Xy J Xy
T =G, ¢ (4.22b)
zy J 2y
and inertia forces
£ = 5. wla (4.23)

If a section of the layered region between the planes x=0 and

x=% 1is considered separately, see Fig. 11, the surface tractions

po(z) - Txy(O,z) (4.24a)

and

1}
4
~

Pr{2) (£,2) (4.24b)
<

must be applied at the boundaries x=0 and x={ in order t¢ preserve
dynamic equilibrium. They are th2 only external forces acting on this
section.

The application of the principle of virtual work as expressed by
Eq. (3.26) yields
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in which Eiy’ €;y and U* are the complex conjugates of the virtual

zy 2

fg /‘zn'l-l !
gx + &% - bk =_[ ux
A (exyrxy ex T,y ~ 8 £)dz dx uk(p  + Pg)dz
"1

21

strains and displacements, respectively.

cretized region are the nodal displacements Vj’ j=1, ..., n.

virtual displacement state "j , i.e.

and froa Egs.

g%

zy

(4.25)

According to Eq. (4.18), the only degrees of freedom in the dis-

)/h,

(z-z. 5-1

j-1

1"e

1 and

*exp(ikx)

(zj+1—z)/hj'exp(iix)

0

ik u*

1/h, ,*exp(ikx)

j-1
-1/hj°exp(i£x)

0

=0 for L #3j

(4.19 - 4.21) it follows that

for z, ,<z<z,
i-1==7

<z<
for zj_z_;j+1

elsewhere

for zj-l

<z<
for Zj z zj+1

<z<z,
J

elsewhere

in which k is the complex conjugate of k.

to the equilibrium equations for
displacement states "j", j=1, 2,

linear equations in the n unknowns vj.

Substitution of Eqs. (4.19

the section considered.

From the

(4.26)

(4.27a)

(4.27b)

(4.27¢)

- 4.24) and (4.27) into Eq. (4.25) leads
The n virtual
«e., 0, produce a set of simultaneous

When the simple integrations

defined in Eq. (4.25) are performed, the equilibrium equations can be

reduced to the matrix equation

in which {v} is the displacement vector with the elements Vi j=1, ..., n.

a2[a] + [6] - WP [MD) {v} = {0}

(4.28)

The n x n matrices [A], [G], and [M] consist of the contributions from

the individual layers and can therefore be conveniently assembled from
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the layer submatrices as demonstrated in Fig. 13. The submatrices to
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be substituted for [X]j, j=1, ..., n, in Fig. 13 are

o 33un o Borun At VE Nhvag s G R S o

: rl 17

3 _ 3 6 . E
£ [A]. = h.G, j=1, ..., n (4.293) E
£ R U |
: L% 3 g
B G"& 1 -1 %
E: [G]j = i j=1, ..., n (4.29b) g
4 i 1-1 1 E
; and %
3 1 17
4 . 3 6 . . p
E {Mi. = ».h, j=l, <., 1 (4.29¢) i
: i i 11 %
3 6 3- £
3 for the matrices [A], [G], and [M], respectively. The first two E
E matrices are obviously related tu the stiffness ol the layers. They :.e §
f real in the undamped case, when all shear moduli Gj’ i=l, ..y " e )
4 real. The mass matrix [M] is always real siace pj, the mass density of g
v ;
% the jth layer, is real. é
3 Eq. (4.28) is independent of {. Hence, the solutions to Eq. %
f: (4.28) satisfy equilibrium in the layered region between the vertical é
e K
B planes x=0 and x=£f where £ may take any value greater than zero. In the %
: following it will be assumed that & is infinitely large.
; As the circular frequency w is a given parameter, it is convenient 2
} te introduce the n X n matrix %
. 5 3
e [C] = [G] - w™[M] (4.30) 2
and write Eq. {4.28) in the form %

E 2 B 2
- ([AJx” + e iv} = {o} (4.31) :
E? 3
! . . . . . 2 ]
E which states an algebralc eigenvalue problem with n eigenvalues ks’ s=1, §
i : ..., 0, and the corresponding eigenvectors {v}s- é
% The matrices [A] and [C] are tridiagonal and symmetric. In the §
i undamped case they are real and matrix [A] is positive definite, giving %
8 - Eq. (4.31) the convenient property that all the eigenvalues and eigen- E
E vectors are real [49]. %
b g
P & 3
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A procedure for computing the complete set of eigenvalues and

corresponding vectors in the damped and undamped case is presented in
Appendix 1 and a FORTRAN IV subroutine for automatic computation is
listed in Appendix 5. The procedure uses Newton's method to find the
roots of the de:erminantl[A]k2 + [C}] and inverse iteration to obtain
the eigenvectors.

The orthogonality conditions of the eigenvectors can be derived

from any two solutions to Eq. (4.31) such as

(A + [eh v} = {0} (4.322)

and

([A]kﬁ + [c]){v}s {0} (4.32b)

The first equation is premultiplied by {v}z, the second equation is
transposed, post-multiplied by {v}r and then subtracted from the first

equation. This gives

(ki—kz){v}z [A]{v}r =0 (4.33)
which implies
T 1 for r=s
{v}_[alv}_ = (4.34)
0 for r#s

when the case r=s is used tc normalize the vectors.

The general motion of the discretized layered region can be des-
cribed by a linear combination of Love modes. Hence, if only one each
of the modes corresponding to the pairs tks, s=l, ..., i, exist in the

system, the displacements at x=0 are

n
{u}® = z a (v}, = vi{a) (4.35)

e=1

in which {a} is a column vector containing the generally complex
participation factors s s=1, ..., n, and [V] is an n x n matrix which
contains the mode shapes {v}s in its columns.

The orthogonality properties, Eq. (4.34), imply that

w17t = T qal (4.36)
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and Eq. (4.35) can therefore be inverted to

{a} = [v1 [l {u)R © (4.37)

>
-

3 s < PO N

which is used to compute the mode participation factors &, s=1, ..., n,
s

ALt AN g b

when the displacements at x=0 are known.

4.3 Wave Types

X . 2 . . 4
Each eigenvalue ks yields two possible wave numbers, + ks and - ks. i

One sign corresponds to a generalized Love wa.e which pro.agates or

> decays to the left, the other sign to a wave which propagates or decays

g to the right. Both waves have the same mode shape.

3 In the undamped case all eigenvalues and mode shapes are real, as
the matrices [A]} and [C] are real. Hence, by Eq. (4.18), positive

eigenvalues, k2>0, correspond to propagating waves of the type

SR

AR A P AR [

{6}, = a_{vl exp(iwe * ilkslx) (4.38a)

Negative eigenvalues, k§<0, yield purely imaginary wave numbers

E and motions of the type

[ {5}5 = as{v}s exp(iwt * Ikslx) (4.38b)

kb NS S A bk

which decay or increase exponentially in amplitude with x and do not
5 propagate.
In the damped case, when the matrices [A] and [C] are complex, all
eigenvalues and therefore all wave numbers are complex, i.e.
A3 ks=ki + ik;. The motion is a wave
3 {5}5 = us{v}s exp(iwt—ikix+k§x) (4.38¢c)

which propagates in the x-direction with the phase velocity cs=w/ki and
H a decaying or increasing amplitude, depending on the sign of kg.
2 In the undamped case the possibility exists that ks=0 and that

s the motion degenerates to
3 {o}s = as{v}s exp (iwt) (4.384d)

This motion is independent of x and consists cf a shear wave travelling
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vertically up and down through the layers, being reflected at the rigid

base and the free surface. This wave type can only occur at certain

frequencies which are the natural frequencies for one-dimensional

vertical waves in the layered system. The natural frequencies can be

found from the secular equation

[16] - w?[M]| =0 (4.39)

which follows from Eqs. (4.30) and {(4.31).

4.4 Dynamic Stiffaess Matrix for Layered Region

In order to develop the dynamic stirffness matrix for the layered
region R in Fig. 11 it is first assumed that only those modes which
decay or propagate energy in the positive x~directicn exist in R. This

requires choosing those n wave numbers out of the 2n numbers
+

ks=i(k§fi kz), s=1, ..., n, that have a negative imaginary part or, if
the imaginary part is zerc, have a positive real part, i.e. for s=1, ...,
n

K-ilkg| if K540
s = (4.40)
+ 17| if k5=0

The displacements in the layered region are then expressed by super-
position of the corresponding modes
n
{6} = 25 {v}sexp(lwt—lksx) o (4.41)

s=1

The only stress on the plane x=0, see Tig. 15, is the shear stress

n
B i S . '
Ty =03y (=0 = -1 2 kv (2) & (4.42)
s=1

in which G is the sh2ar modulus. The time factor exp(iwt) is understood.

The assumption that v(z) varies linearly within a layer implies that
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T y 1ls0 varies linearly with z as shown in Fig. 15a. The nodal forces

whichk are in equilibrivm with the stresses at the vertical face of the

jth layer are

n

93 = % G, Zz k(2 v§ + v§+l) a (4.43a)
s=1
n

PR Gh > kT2 o (4.43b)
s=1

. . s . X .
in which vj is the jch element of the eigenvector {v}s.

These forces, which are also shown in Fig. 15a, act on the region
x>0. The total forces acting at the boundary nodal joints of the

layerea region at x=0 are

Pj = P; + P; j=1l, ..y M (4.44)

with Pf=0. These forces can be expressed ia iratrix notation by
23R = 1[alv) K} ) (4.45)

in which {P}R contains the forces Pj. j=l, ..., n, and [X] is a diagonal
ratrix with the elements ks, s=1l, .... n, which are chosen according to
Eq. (4.40). Matrix [Y] contains the eigenvectors {v}s, =1, ..., N,
columnvise zad [A] is the matrix defined above by Eq. (4.29a).

The boundary forces {P}R are expressed in Eq. (4.45) in terms of
the mode participation factors & However, in the finite element
analysis of the irregular regior the ncdul displacemenis are introduced
as the unknowns. The coordinate transformation according te Eq. (4,27
yields

IR = ri{? (4.46)
in which

I HGR (4.47)

1l

iR}

is the dynamic stiffness matrix of the semi-infinite layered region.
The matrix [R] relates the rodal forces acting con the layered region to

the simultaneous nodal displzcements at the bruadary x=0. The attribute
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"dynamic" indicates that the effect of the inertia forces is included in
[R]. Matrix [R] is symmetric, as it should be according to the theorem
of reciprocity [14]. Its elements are generally complex. The real part
of [R] exactly represents the elastic resistance of the discretized
semi-infinite layered region to the displacement of the nodal joints.
Whereas the imaginary part of [R] represents the damping effect of the
layered region on the displacements of the nodal joints. This damping
is caused by dissipation of energy to infinity or by viscosity of the
material.

The dynamic stiffness matrix changes with the frequency of the
harmonic motions because the displacement functions chosen are the
frequency dependent eigenfunctions of the layered system. Eq. (4.46) is
also valid for the static case, w=0.

The dynamic stiffness matrix becomes singular if any one of the
wave numbers ks of the diagonal matrix {K] vanishes. 1If this is the
case no forces are required to excite the mode corresponding to ks=0.
However, this can happen only in the undamped case and then only at the
natural frequencies determined by Eq. (4.39).

The analysis of a left layered region L, as shown in Fig. 4, is
analogous to that of a right layered region. The only difference between
a left and a similar right layered region is due to their positions with
respect to the global coordinate system introduced in Fig. 4. Thus the
dynamic stiffness matrix, [L], of a left layered region is also given
by the right hand side of Eq. (4.47).

4.5 Energy Transmission

Consider a set of harmonic external forces

{F} = {P} exp(iwt) = ({Pl} + i{Pz}) exp{iwt) (4.48)
which act on the nodal points of a discrete systam and produce the nodal
displacenments

{61 = {u} expliwt) = ({u,} + i{uz}) exr{iwt) (4.493

mw-sﬂfvfw#
>
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The time uverage of the rate of work done by the forces on the displace-

mend so1s

m
1}
=3 | =

T < T
[ Re (8}7 Re {F} dt (4.50)
0

in which T=21/w is the period and {8} is the time derivative of £8}. Sub-

stitution of

Re {é}

[}

- w({ul} sinwt + {uz} coswt) (4.51)

and

Re {F} {Pl} coswt - {Pz} sinwt (4.52)

into Eq. (4.50) and integration over one period yields
< ¥ T - T
E=3 (g1 {p,} - oyt {e D) (4.53)
which is identical to
* h ]
E=7Im ({u}l (PH (4.54)

The * indicates the conjugate transpose. and Im denotes the imzginary

part.
The energy transmission from the irregular region I to the layered
region R at the boundary x=0 is now considered, see Fig. 11. Substitution

cf Eqs. (4.35) and (4.45) into Eq. (4.54) gives the time average

E=% o G VI AT VI K] (D) (4.55)

This expression can be simplified in the undamped case, when [A] and

therefore [V] are real, to

E = 3 Im (1{a}*[xl{a}) (4.56)

n

since [V]'[A]1(V] {1] according to Eg. (4.34). As {K] is a diagonal

matrix, Eq. (4.56) may also be written in the fomm

-~
Y

&1

n n
N & 2=>:
2 (ks+ks)!as| E (4.57)
=] s=1

0
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in which

% kslaslz if ks is real
g, = { (4.58)
l 0 if ks is imaginary

and represents the energy transmitted by a single mode s.
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5. AXISYMMETRIC LOVE WAVE MOTION

5.1 Motion in lLayered Region

The analysis of axisymmetric Love wave motion in a layered region
as shown in Fig. 5 is similar to the analysis of plane Love wave motion
presented in Chapter 4.

Any point (r,z) in the region undergoes displacements ia the
angular 8-direction only. The displacements of harmonic motion at the
frequency w,

& = Se(r,z,t) = u(r,z) exp(iwt) (5.1)

are governed, according to Eq. (3.16c¢), by the homogeneous differential

equations for the n layers

2

2
- _1+§_l£)+ o.wlu =0 j=1, ...y n (5.2)
2 2 j
ar r 9z

+
5 fp—
u)!w
~ e

The ascumption that

u(r,z) = v(z) * g(x) (5.3)
leads to
W2 p. ~2
'7V_l_4.__lw2=__];(f_g.+_1..§g.__‘l'_) j=1, ..y n (5.%)
3 2 v G, g\. 2 r 3r 2
z h| Jr X

which can only be valid for all values of r and z in the respective
layers if both sides of the equation are equal to the same constant.
Setting the constant equal to kz, the following ordincry differential
equations

2

43y (Dij/Gj—kz)v =0 551, ceean (5.9

dz2
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d_za ldg _
=i s 5 - x%g = (5.6)
dr Y

are obtained. Eq. (5.6) is a Bessel equation [2] which has a solution

g(r) = Hiz)(kr) (5.7)
(2)

in which “1 is the Hankel function of the first order and second kind
[2}. Eq. (5.7) can easily be verified by substitution into Eq. (5.6)

and observing the following derivatives

3"; H(()z)(kr) = -k Hiz)(kr) (5.8a)
= u ( 2 (k) = - & Hfz)(kr) + K Héz)(kr) (5. 8b)
& 2 2 2

4w ()(kr)=(2 k)H()(k) k ()(k) (5.8¢)

dr r

The Hankel functions Héz)(kr) and ng)(k:) tend to zero in the
sector -ni< arg (kr) <0 as |kr| +o. They are related to the Bessel
functions of the first and second kind, Jm and Ym, respectively, by

n(z) =J -1iY (5.9)
m m m

in which the subscript m indicates the order of the functions and
i=v-1
(2)

. Bowever, Eq. (5.9) should not be used to compute values of
(kr) in the sector -n< arg (kr) <0 from values of J and Y because
severe cancellations may occur in the subtraction Jm -i Ym and may
result in the loss of all significant digits. A method for computing

@) g 4

the functions H by ascending and asymptotic series is
presented in Appendix 4 and a Fortrar IV subroutine for automatic com-
putation of these functions is listed in Appendii 5.

A solution to Eq. (5.2) may be expressed in the form of an axi-

symmetric wave

§ = v(z) n{z)(kr) /'H](_z)(kro) « exp(iwt) (5.10)
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which is similar to a plane wave at some distance from the origin. 1In
this expression r, d-fines the distance of the boundary between the
irregular and layered regions from the origin. If Ikr| is large the

asymptotic approximation to the Hankel function [2]
H§2)(kr) = 2/ (krm) exp(-ikr+i3n/4) (5.11)
may be used to obtain

§ = v(z) exp(iwt-ikr) v2/(mkr) exp(i3ﬂ/4)/H§2)(kro) (5.12)

which is similar to Eq. (4.9) except for the decay factor /37?§E;3 and
a complex number indicating a phase shift. The similarity to a plane
wave shows that Eq. (5.10) describes a wave travelling away from the
crigin if the real part of the wave number k is positive.

The boundary conditions at the horizontal planes zj, ji=1,2, ..,
n+tl, are, as in the plane case, the continuity of the displacements and
the stresses at the layer interfaces, zero shear stresses at the free
surface and zero displacements at the fixed base. As the stress-
displacement relation is

q

26 z & ng)(kr)/ﬂ§2)(kro) * exp(iwt) (5.13)

the boundary conditiors take the form

v(z!) = v(z") j=2, «e.y n (5.14a)
J J
_d. 1 = —d- «f L1 i= 5'1[‘b
doz v(zj) Gj+l 1 x\hi j=2, «.., M ( )
: i} 5.14
v(zn+1) 0 ( c)
and
Lz =0 (5.14d)
dz 1

The function v(z) is determined by the n ordinary differential
equations, Eq. (5.5), and the boundary conditions, Eq. (5.14), which are
identical to the correspondins differential equaticns and boundary con-
ditions for the plane case, Egs. (4.5) and (4.11). Therefore, the re-

sulting eigenvalue problem and its solutions are the same for the plane
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and axisymmetric cases. This holds not only for the continuum theory

but also for the discrete theory because in the axisymmetric case the

layered region is discretized in the same manner as in the plane case. )
It is again assumed that v(z) varies linearly within each layer :

according to Eq. (4.20). Hence, the displacements in the layered region

may be defined by the displacements of the layer interfaces which are

collected in the vector {8}, i.e.

(T _ e ox
8 = ~0102 . oo 6n> (5.15)

The sth axisymmetric mode is obtained from the sth solution to

Eqs. (4.31) and, by Eq. (5.10), takes the form

{5}, = (v}, Hiz)(ksr)/ﬂiz)(klro) . exp(iwt) (5.16) )

Thus, the displacements in the layered region may be expressed by the

linear combination

N
¢y = z o v} uiz) (ksr)/Hf)(ksro) - exp(iut) (5.17)
s=1

g R LA

The rule for the selection of the n wave numbers ks from the 2n values

4 iks, s=l, ..., n, is the same as in the plane case, i.e. Egq. (4.40).

QY S e O PR B AN

)
3 This follows from the properties of H;z’ and its similarity to the

E exponential furction for large arguments.

[STRI

i
edl

5 5.2 Dynamir “tiffness Matrix for Layered Region

The nodal displacement at the cylindrical boundary r=r between the

E lavered and irregular regions are, omitting the time factor exp(iwt),

20 oA ALV T B 50 o KD LAt

n
£ fu}R = zg {v}sas = [Vi{a} (5.18)

{;
P

. . . iR .
in which the vector {u} has the eiements uj, j=l, ..., n, then x n

b S L e i

matrix [V] centains the eigenvectots {v}s coiumnwise, and the vector

3 {a} contains the mode participation factors «,.
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The inversion of Eq. (5.18) gives, according to Eq. (4.36),

{a} = (V1T [a1{u)® (5.19)

» i 1
TP L LA i VRN, 4
P R s s et g casd £ i arag ooy ]
'
d

which serves tc obtain the mode participation factors from a known

R
vector {ul”.
The only stress at the boundary =T is the shear stress Tre“ By

using the stress--displacement relation

r =g X_S
=6 G- (5.20)

and Eq. (5.17), the shear stress in the jth layer at r=r is obtained,

4 i.e.

. n

- (2) (2) 2 (5.21)
Tre =G z VS(Z) {ks HO (ksro)/ﬂl (ksro) - ro} (!S

s=1

wvhen the time factor exp(iwt) is omitted. The assumption that v(z) varies

1 linearly within a layer implies that Tre also varies linearly with z as
The nodal forces which are equivalent to the stresses

shown in Fig. 15a.

E: acting on the vertical boundary of a one radian segment of the jth layer

9 are :

7; n %

Pt = . S+ v® ik r o« u@ ) PR :

> *5 Gjhj/5 ES(ZVj + vj+1)t ksro H (ksro)/}il (ksro) 2} G

= s=1

: (5.22)

1 and ;

W o I P T ¢ (2) + 9} o

3 Pj+1 = Gjhjlﬁ :Z‘(vj + 2vj+l){ ksro do (ksro)/Hl (ksro) 2} o ;

s=1 :
(5.23) §

Wk Kt e,

in which v is the jth element of the eigenvector {v}s. These forces,

E which are also shown in Fig. 15a, act on the region r>ro. :
3 The total forces acting on a one radian segment of the layered §
3 region are :
2 P, =P +p" j=1, ..., n (5.24) g
é ] 3 ] :
3 49 :
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with Pr=0. In matrix notation these forces may be expressed by

tp3® = a1V {a} (5.25)

R . . .
The vector {P}" contains the forces P, j=1; ..., n; the n x n matrix

: [V] contains the eigenvectors {v}s, s=1l, ..., n, columnwise; [A] is the
z matrix defiued by Eq. (4.29) and [H] is the diagonal matrix
- s _ (2) (2)
3 [H] = Diag { k.r  Hj (ksro)/Hl (k) + 2} (5.26)
Substitution of Eq. (5.19) into (5.22) gives
e1® = Ry (5.27)
in which
T
(R} = [A][VI[H][V] [A] (5.28)

The matrix [k] is the dynamic stiffness matrix for a one radian

-
>
3

segment of the axisymmetric layered region which extends in the radial :
direction from r, to infinity. 1t relates the nodal forces to the
simultaneous nodal displacements at the boundary r=r_ and is valid for
axisymmetric harmonic motion including the static case. Matrix [R]
changes with frequency and depends on r.- It cannot become singular,
because none of the diagonal elements of [H] can vanish at any given

frequency and matrices [A] and [V] are always non-singular.
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6. PLANE RAYLEIGH WAVE MOTION

6.1 Eigenvalue Problem

Free harmonic Rayleigh wave motion under plane strain conditions in
a semi-infinite layered region as shown in Fig. 5 is considered. Any
point in the region undergoes displacements in the x and z-directionms,

i.e.

q,(x,2) exp(iwt) (6.1a)
q,(x,2) exp(iwt) (6.1b)

X

z
The homogeneous differential equations of motion for the spatial

parts of the displacemenis are according to Eq. (3.15), for the jth layer,

2 2 2 2
3 q, 3 q, 9 q 9 q, 2
Gj —2- + —T + (AJ + Gj) —2— + %32 + pj w qx =0 (6.23a)
Ix oz 9x
and
2 2 2 2
9 qz 9 9, 9 qx 9 9, 2
G. + + (A, +G) \s=——+ +p,.0wq =0 (6.2b)
J 8x2 822 j j 9xdz 322 J z

Separation of the variables x and z with the assumptions that

q_(x%,2) = u(z) g(x) (6.3a)
and
q,(x,2) = w(z) g(x) (6.3b)
leads to the coupled ordinary differential equations
2
2 2 d"u dw
k . P 2G) ~wpluG, —+ik (A, +G.)— = 0 (6.4a)
(05 + 209 = wogd w6y S5+ 1k Oy + 0
and
{kZG—wzp}w—(\ +2G)£‘1+1k()\ +G)i‘£=0 (6.4b)
3700 T2 370 %
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for each of the n layers, j=1, ..., n, and to the differential equation
ng 2
dx :
Since a solution to Eq. (6.95) is ’
8(x) = exp(-ikx) (6.6) :
the displacements in the layered region may be expressed in the form of
a wave by
GX = u(z) exp (iwt-ikx) (6.7a)
62 = w(z) exp (iwt-ikx) {6.7b) :
The mode shapes u(z) and w(z) are determined by the 2n differential f
equations, Eq. (6.4), and by the boundary conditions at the horizontal ;
planes z=zj, J=1, ..., ntl, i.e. the continuity of the displacements and i
the stresses at the layer interfaces, zero Stresses at the free surface i
and zero displacements at the fixed base. Using the Stress-displacement .
relations %
3d 86x dw H
= == =1 (S -— -~ 1 i -1 . i
g, = (A +26) 55 o {(x + 206) 3z = ikAu} exp(iwt-ikx) (6.8a) :
and g
%62 86x du
= —— = {— it _ e ist—-1 kv .
T = Glg—=+ ey G {- ikw + dz} exp (iwt-ikx) (6.8b)
these conditious can be written ;
u(zl) = u(z;) and w(z!) = w(z;) j=2, ..., n (6.9a) :
z 3 i
r - erf =t = . i
u(zn+1) =0 and d(~n+l) 0 (6.9b) ;
d . d .
+ 26 — w(z!)-iw ), 2= (L +26) 2 w(z")-ik A, u(z" :
(Aj—l 2 j_1) O w(zJ) i \3—1 u(zJ) (AJ GJ) iz \(zJ) ik AJ u(zJ) %
for j=2, ..., n (6.9¢) g
d . d i
] s 1y o4 9 ' ) = |- my 4 94 " ) ;
GJ_1 ( ik w(zj) a2 u(zj) GJ ( ik W(zj) ™ U(Zj) 5
for j=2, ..., n (6.94) E
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O, + 26 % w(z)) - ik AL u(zl) = 0 (6.9e)
and
_3 " i 1"t =
ik w(zl) + P u(zl) =0 (6.9£)

in which zg and z; respectively refer to planes immediately above and
immediately below the interface z..

Eqs. (6.4) and (6.9) lead to an eizenvalue problem similar to that
for Love waves. In continuum theory, this problem consists of 2n simul-
taneous homogeneous equations with coefficients which contain the eigen~-
value k2 in the argument of transcendental functions. A derivation of
the eigenvalue problem can be found in Ref. [22]. Finding solutious to
this problem is even more difficult than finding soiutions to the corres-
ponding eigenvalue problem for Love waves, Eq. (4.16), because in the
Rayleigh wave case th- number of equations for n layers is 2n ant *"._ co-
eff cients are more complicated than those in the Love wave case. For
the same reasons given in Section 4.1, a discrete theory is preferred to

the continuum theory and will now be developed.

Discretization

As in the Love wsve case, the layered region is treated as a
continuum in the heorizontal direction but discretized in the vertical
direction by assuming that u(z) and w(z) in Eq. (6.7) vary linearly
within each laver. 1In ovder for tu:s assumpticn to be reasonable the
layers have to be chosen thin compared to the length of S-waves in the
layer.

The displacements in the layered region may be¢ defined by

T
= 8 ) S >
{6} <'xl 621 S0 v S ézn (6.10)

in which ij and 623, j=1, ..., n, are the horizontal and vertical inter-

face displacements, respectively. I the elements of the corresponding

mode shape {v} are

v2j—1 = u(zj) and vzj = w(zj) j=1, ..., n (6.11)
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the discrete representation of a plane generalized Rayleigh wave is
{8} = {v} exp(iwt-ikx) (6.12)

The displacement functions in terms of interface displacements are

qx(x,z) = u(z) exp(-ikx} (6.13a)
qz(x,z) = w(z) exp(-ikx) (6.13b)

in which, for zjfzfzj+l,
u(z) = (Zj+l - z)/hj . v2j-l + (z—zj)/hj . v2j+l (6.14a)

w(z) = (zj+l - z)/hj . Va3 + (z-zj)/hj . (6.14b)

V2j+2

Omitting the common factor exp(iwt), these displacements produce the

strains

2 dq

. € = 3m = —1kqx (6.15a)

24,

E e, =35, = (—vzj + v2j+2)/hj‘exp(~1kx) (6.15b)

i aqx 3qz ;
? Y., = . + Frali (—vzj_1 + v2j+1)/hj‘exp(—1kx) -1qu (6.15¢) %
4 stresses 5
3 ox = ()\j + 2Gj) ex + )‘j ez (6.16a)
4 g = (A, +2G.) e + A € (6.16b)

: z j j z j T«

2 T= Gj Yyz (6.16¢) ;
i and inertia forces

3 I_ 2
3 fx = pj q, (6.17a) :
3 I_ 2 ;
E = .17 3
: fz w pj q, (6.17b) :

If a section of the layered region between the planes x=0 and 2z=§f

is considered separately, see Fig. 12, one has to apply as surface

traction -ox(O,z) and -1(0,2) at the left bcundary, x=0, and ox(i,z) and

1(£,2) at the right boundary, x=£. The surface tractions are the only

b, 3 Ak B ¢ s a L b
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external forces acting on this section of the layexed region.

The application of the principle of virtual work as expressed by
Eq. (3.20) vielcs

4
ni-l ~ I 1
FZ*J + €%+ y* T -Gk f - g% £ | dzdx
A X Z 2 Xz z 2z X X
X=0 2=2
1
“n+1 R
= l- q%(0,2) = (9,2) - §(0,2) 1(0,2)
2=z, ’ -
1
tOAKE, 2) 0@, 2) +AE, 2 1E, 2 4 (6.18)

in whica e;, {é, and Yiz are the complex conjugates of the virtual

strains and Q; and a: are the complex conjugates of the virtual displace-
mep co.

The degrees of freedom in the discretized region are v,, j=1,

27, according to Eq. (6.11). The virtual displacement state "2" defined
by

92 =1 3 v. =0 for m#g (6.19)

yields, with Eqs. (6.13 - 6.15), for odd values of %, i.e. 2=2j-1

- { * ex '—. FAR <z<z,
(z zj_l)/‘)j_l exp (ikx) for zJ_l_z_?J
Ak = - o exn(ik £ <2< .2
q% (zj+1 2)/hj exp (ikx) for zj_z_zj+1 (6.20a)
t 0 elsevherc
a* = 0 ; &% s ikgx ; 8% =9 (6.20b)
z X X z
1/k. + exp(ikx for 2z,  <z<z,
/ j-1 xp (ikx) -1 i
A* = - . . ';_ <z< (G.ZOC)
sz l/hj exp(ikx) for zj z Zj+l
l 0 elsewhere

= . e ST s T
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and for even values of %, i.e. 2=2j

2-z, /h, * exp(ivx for z_, ,<z<z,
( 3—1) j-1 p{ikx) 3-1525%4
A* = - 3 7. < ~
q% (zj+1 z)/hj exp(ikx) for zjfz_zj+l (6.70d)
0 elsewhere
Nx = - Ex = . A'. = 3t A* A
qf 0 ; €% 0 i, +ik qx (6.20e)
1/h, . ikx for z, ,<z<z,
5-1 exp(ikx) j-1 3
g% = (- . ik <2< .
x l/hj exp(ikx) for 2%z zj+1 (6.20f)

0 elsewhere

Substitution of Eqs. (€.13 - 6.17) and Eygs. (6.20) into Eq. (6.18)
leads to one equilibrium equation for each of the 2n virtual displacement
states "¢". The 2n equilibrium equations are simultaneous complex linear
equations in the 2n complex unknowns Voo X=1, ..., 2u. VWhen the siuple
integrations defined in Eq. (6.18) are performed, the set cf equations

may be written in matrix nctation as
(’[A) - 1k[D] + ik[D]T + [6] - w? M) (v} = {C) (6.21)

The vector {v} contains the complex displacements vy, j=1, ..., 2n. The
4

2n x 20 matrices [A], [D], [Gl and [M] consist of the contributions from

the individual layers and can therefore be assembled by addition of layer

submatrices as indicated ipr Fig. 14. The submatrices to be substituted

for [X]j in Fig. 14 are

2(2G.4X.) 0 (26 4\.) 0 ]
( 3 J) ( J)

0 26, 0 G.
1 3 j
[A]. = r h. j=1, ..., n (6.22a)
J J (2G6.+X.) 0 2(2G.+x.) 0O
] 1] l 3
0 G, 0 26,
- J J
56
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1
[Dlj =3 j=1, ..., n (6.22b)
0 A ) -A
k| ki
G. 0 -G, 0
5 i i ]
¢ 0 -G o |
j h
0 (26.+X.) 0 ~(2G.4).)
(e, = Hl' 13 i 321, ..., n (6.22¢)
j 1 -G, 0 G, 0
j k]
0 ~(2G.+\,) O 2G.4+X,
(26,41) (263#2) |
1/3 0 1/é 0
0 1/3 0 1/6
[M]. =p.h. 3=1, ee.y n (6.22d)
333 176 0 1/3 0
0 i/é 0 1/3
L =

for the matrices [A], [D], [G] and [M], respectively. The first three
matrices are obviously related to thz stiffuess «f the layers and are
real in the undamped case when the shear moduli Gj and the Lame's con-
stancs Aj’ j=i, ..., n, are real. Matrix [M] is a consistent mass
matrix [5}.

Eq. (6.21) is independent of §. Hence, the solutions to Eq. (6.21)
satisfy equilibrium in the layered region between the vertical planes

x=0 and x=f where £ may take any value greater than zero. In the fullow-

g A ALy L e s

ing it will be assumed that £ is infinitely large.

The circular frequency w is a given parameter. When the 2n x 2n

matrices
(¢l = 6] - w’[M) (6.24)
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and

8} = )7 - b} (6.25)
are introduced, Eq. (6.23) can be written
([AJk® + i[B] k + [ch{v} = 0 (6.26)

The matrices [A] and [C] are symmetric and the matrix [B] is skew
symmetric. [A}, {B] and [C] are real in the undamped case and complex

in the damped case. Eq. (6.26) differs from a similar matrix equation

obtained by Lysmer [26} in that it includes a consistent mass matrix,
while Lysmer employed a lumped mass matrix. Eg. (6.26) constitutes a
set of 2n linear homogeneous equations which have non-trivial solutions
{v} only if the determinant of the coefficient matrix vanishes. Hence,

for any given frequency w, the secular equation
2
[[AJK® + i[B] k + [C]]| = © (6.27)

defines the pessible wave numbers for generalized Rayleigh waves in the
layered region.

Because the detemminant, Eq. (5.27), is a polynomial in k of order
4n, Eq. (6.26) states an algebraic eigenvalue problem which has 4n
generally complex roots ks, s=1, 2, ..., 4n. The correspcending sclution
vectors {v}s, s=1, ..., 4n are calied eigenvectors or mode shapes. A
numerical method for finding all of the eigenvalues and eigenvectors is
presented in Appendix 2 and a FORTRAN IV subroutine for this task is
listed in Appendix €.

Tt is convenient for the following wave interpretation to rewrite

Eq. (6.26) in the partitioned form

KA+ cx: ik B__ v, 0
—_ - '_.T. = ) -—2 ————— ;-— = (—)- (6.28)
Sk B KT A+ C z

~

where the elements of {vx} are the horizontal displacements vj, j=1, 3,
..+, 2n-1, and the elements of {vz} ar: the vertical displacements

vj, j=2, 4, ..., 2n. The n x n submatrices {Ax], IAZ], ch]’ [Cz] and
[sz] are obtained from the matrices [A], [C] and [Bj, respectively,

by permuting the rows and columns in the same way as the vector elements
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are permuted.

6.2 Wave Types

Each eigenvalue ks and its corresponding eigenvector {v}s define

ch
\ayieigh wave mode which can exist in the layered region and has the

"

-~
(¢4

displacements

»l

{<S}s = as{v}s . exp(iwt—iksx) (6.29)

The nature of this motion depends on the wave number ks. As in the Love

3 wiave case four wave types can be distinguished.

a) If k is complex, k = k1+i kz, kl#O, k,#0, the motion is of the

T
K

form

ik

{3} = a{v} - exp(k,x) * exp(iwt-ik,») (6.30a)

b
»

which propagates in the x—direction with the phase velocity c=m/kl and
E: decays or increases in amplitude depending on the sign of k2. The mode
shape {v} is complex and generally neither the horizontal nor the vertical
displacements are in phase on vertical planes.

b) If k is real, « = kl’ k2=0, the motion is a wave which propagates

in the z-dirertion with a constant amplitude and the phase velocity

c=u/kl and is of the form

: {8} = afv} exp(iwt—iklx) (6.30b)

. Inspection of Eq. {6.28) shows that for a2 real k the vector {vx} is

purely real while the vector {v7} is purely imaginary. This mcans that

ail hsrizontal displacements are in phase at constant x and 90° out of

3 phase with the vertical displacements. The particle motion describes an
- ellipse with its major axic either parallel or normal to the surface.

E c) If k is purely imaginary, k=ik2,
d {3} = af{v] exp(iwt) (6.30c¢)

k2¥0, the motion is

which varies exponentially in the x-direction and does not propagate.

¢ As the coefficient matvix of Eq. (6.23) is real for & purely imaginary k,
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and as the phase does not change in x, the horizontal and vertical dis-

placements of all points in the layered region have the same phase. 1In
this case particles oscillate along straight lines.
d) If k=0 the motion is independent of x, i.e.

~

{8} = a{v} exp(iwt) (6.304)

and degenerates to a one~-dimensional standing wave. This wave type can
occur only at certain frequencies of a lavered medium without viscous

damping. The natural frequencies can be found from the secular equation
2
[[G] - «"[M]| =0 (6.31)

which follows from Eqs. (6.24) and (6.26). When =0, Eq. (6.28) shows
that the horizontal and vertical displacements are uncoupled. The motion
corresponding to the natural frequencies therefore consists either of
standing S-waves with horizontal displacements or of standing P-wave with
vertica) displacements. The standing S-waves are identical to the
degenerated Love waves with a vanishing wave number discussed in Chapter

4, except that the displacements occur here in the x-direction.

Waves of the types b) and d) do not exist in the damped case
because all waves attenuate with distance from their source due %o damp-
ing and thus k2 cannot vanish.

A study of the structure of Eq. (6.26) with reference to Eq. (6.28)
shows that if k is an eigenvalue of Eq. (6.26) and {v} the corresponding
eigenvector, which contains the elements vj, j=1, ..., 2n, then -k is

also an eigenvalue and its corresponding eigenvector in transposed form
is
{v}T = <=V, V, =V, V, «e. =V v, > (6.32)
17°2 374 2n~1 "2n

which is obtained from {v} by changing the sign on all horizontal dis-
placements. The vector {v} is the adjoined of {v}.

The two solutions describe the motions

{6} = afv} exp(iwt-ikx) (6.33a)
and
{8} = a{Vv} exp(iwt+ikx) (6.33b)
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which are identical waves propagating or decaying in opposite directions.

Substitution of the second solution, -k with {v}, into Eq. (6.26) yields
2 -
([AJk° - i[Blk + [cH{v} = {0} (6.34)

In the undamped case, when [A], [B] and [C] are real, the complex

eigenvalues occur ia conjugate pairs, k and k. For this case the complex

conjugate of Eq. (6.34) is
-2 - POu, P 5
(fAlk™ + i[Blk + [cD)iv} = {0} (6.35)

which shows that k with {V} satisfies Eq. {6.26). From *he complex con-

jugate of Eq. (6.26) it may also be shown that -k with {v} is auother

A ACELCELL A

solution.

Summing up, the eigenvalue problem, Eg. (6.26), has the property
that if

a) k& with {v}
is a solutien to Eq. (0.26) then

b) -k with {v}
is another solution and, in the undamped case,

¢) k with {9}

d) -k with {v}
are also solutions. These solutions are linearly independent with the
exception that the solutions c¢) and d) depend on a) and b) if k is

purely real or purely imaginary.

Orthogonaiity of Eigenvzctors

Two solutions to Eq. (6.26),{v}r with kr#O and {V}s with ks#O, are
considered, i.e.
(ARG + 1Bl + [Civ)_ = {0} (6.362)
and
([A]ki - i[Blk + [CD{¥} = {0} (6.36b)
Premultiplying the first equation by {;}:/kr and the second by {v}r/ks,

then subtracting the transpoused secend equation from the first gives

@) ((ar k) - (€1 (e =k )7 (k k) {v) = 0 (6.37)
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Division by (kr-ks), provided kriks, yields the orthogonality relationms

T T 2 if kr=ks
vi_[altv}_ - fv}S[C]{v}r/(krks) = (6.38)
0if k #k
r's
in which the case kr=ks is used to normalize the eigenvectors. Eq.

(6.38) may be expressed by che matrix equation
=T 5T .12
[KI[V] " {A)IVIIK) - [Vi [CI[V] = 2[K] (6.39)
in which {K] is a 2n x 2n diagonal mat:ix containing one each of the
pairs of eigenvalues iks, s=l, «.., 2n, and {V] and [9] are 2n x 2n

nodal matrices containing the corresponding mode shapes {v}s and {3}5,

s=1, ..., 2n, columnwise.

6.3 Dynamic Stiffness Matrix for Layered Region

The "energy conditions" discussed in Section 4.1 demand that only
those 2n generalized Rayleigh waves which decay or propagate energy in
the positive x-direction are chosen from among the 4n solutions to Eq.
(6.26). Thus, among the waves possessing complex wave numbers, those
waves which have a wave number with a negative imaginary part are
selected. If wave numbers are real the selection must be based cn the
directicn of energy propagation. While for Love waves the directions in
which the energy and the "phase" travel are always identical, it some-
times occurs that the 'phase" of Rayleigh waves travels backwards, i.e.
the directions of the phase velocity c=w/k and of the energy propagation
are opposed. This phenomenon was also observed by Lysmer [26].

It will be shown in Section 6.4 that the energy transmission is
positive for waves with a positive wave number ks and a corresponding
mode shape {v}s if the complex conjugate of the mode shape, {;}s’ is
equal to the adjoined mcde sh .pe {5}5 after normalization by Eq. (6.38),
i.e. {;}s = {G}s. If {;}s = —{G}s, the direction of energy transmission
is opposite to that of the phase velocity. Hence, the rules for the

selection of the 2n wave numbers ks, s=1, ..., 2n, from the 4n wave
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? numbers tk_ = (k> + i k5) are
s 1 2
.. .S ce .S ~ ~
+k, if ky < 0 or if k; = 0 and {V}s = {v}s
k, = 2 2 ) (6.40)
- kg if k; > 0 or if k5 = 0 and {v}s =-{v}s

The displacements in the layered region, when expanded into waves

corresponding to the selected wave numbers ks’ are

" 2n
= Vl 1 -7
{6} E { 'S exp(lu)t 1ksx) OLS (6- 41)

s=1

ARSI s i i 2

and the displacements uj, j=1, ..., 2n, of the nodal points at the

boundary ¥=0 are, omitting the time factor exp(iwt),

Th

Zn
: () = z v}, o = e (6.42)

s=1

in which the vectors {u}R and {a} are of equal dimension, 2n, and contain
the elements u. and Qs respectively. The matrix [V] is the 2n x 2n modal
3 matrix containing the mode shapes {v}s columnwise. The inversion of

g Eq. (6.42) yields the mode participation factors in terms of the nodal

displacements, i.e.

5 o} = (v MR (6.43)
? The normal stress O, and the shear stress 1., 3t the boundary x=0
.z are by Eqs.(6.16) and (6.41) for zj<z<zj+l

? 2n

3 s . _ . .S . . .S

3 o= ji [-1ks(kj+26j)[(zj+1 z)/hj vzj_1+(z “j)/hj v2j+1]

3 s=1 s s .

; + A/ + (V545 2] o (6.44a)
f and

3 2n

3 s s .

# = - - - 3 - <2 + - .} .

3 Ty :E:Gj/hj [( ij-l+v2j+1) 1kS[(zj+1 z) 23 (z 2 v23+2]] a

3 s=1

E: (6. 44b)
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in which v? is the jth element of {v}s. The time factor exp(iwt) is
implied.
The nodal forces which are in equilibrium with these stresses and

act on the region x>0 as shown in Fig. 15b are

f ' § ( s 3
P25-1 , Vi1
P!. 1 Vo,
\ 23 ¢ =$(1[A}.k + [D].) ¢ 25 | a (6.45)
p" P J s J VS ]
2j+1 s=1 2j+1
Pn VS
| 2j+2 | | 2j+2 )

in which [A]j and [D]j are the layer matrices defined by Eq. (6.22). The
total forces, Pj, acting on the layered region each consist of the force

components from the layer above and below the respective nodal point,

i.e.
p. = P! + P" =1, «... 2 6.46
b 3 h] =1 " ( )
with Pf = PJ = 0. Expressed in matrix notation they are
(P¥R = (L[ATIVIIK] + [D][V]){a) (6.47)

in which {PI} is the vector containing the elements Pj’ j=1, ..., 2n,
and [K] is the diagonal matrix containing the wave numbers ks, s=1, ...,
2n.

Substitution of Eq. (6.43) into Eq. (6.47) gives
IR = [r{uwk (6.48)
in which
[R] = i[Al[VI[KI[V]™} + [D] (6.49)

The 2n x 2n matrix [R] is the dynamic stiffness matrix of the semi-

infinite layered region R. 1t relates the nodal forces to the simultaneous

nodal displacement at the boundary x=0.

Matrix [R] is symmetric, as it should be, according to the theorem

of reciprocity [14]. Because the symmetry is not apparent from Eq. (6.49)

it is proved below.

The analysis of a left layered region L shown in Fig. 4 is analogous

to that of a right layered region R. The only difference between a left
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and a similar right layered region is due to their positions with respect
to the global coordinate system. Thus the dyramic stiffness matrix,

[L], of a left layered region may be computed from the right hand side
of Eq. (6.49) by changing only the sign on all the coefficients that

relate horizontal forces to vertical displacements or vertical forces to

horizontal displacements.

Proof that [R] is Symmetric

Egqs. (6.49) and (6.25) yield

RT-r] = 1 T Tl + 17 - S1ANVIKI V)T - (]
| = i (6.50)
§ in which
ix] = K1V1TAl V] - (VITIATIVIIK] - i[V)T[B1LV) (6.51)

e In order to show that each element x _ of [X] vanishes, two solutions

to Eq. (6.26) are considered, i.e.

"

([A]kﬁ + i[BJk  + [c]){v}s {0} (6.52a)

and

{0} (6.52b)

2 .
(lalk; + i[Blk_+ [CDH{v},
T
Pre-multiplying the first equation by tv}z and the second by {v}s, then

subtracting the transposed second equation from the first yields

T (181035 + 1B G )Y, = 0 (6.53)
5 Since (ks+kr)#0 for any two k of matrix [K], Eq. (6.53) gives

“ (v (181 k) - i[Bl)i_ = 0 (6.54)
% The left hand side of Eq. (6.54) is identical to element X _. Hence,

j it is shown that

: (®] = (R (6.55)

el
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6.4 Energy Transmission

The energy transmission from the irregular regicn to the layered

region at the boundary x=0, shown in Fig. 12,is by Eqs.(4.54), (6.42)
and (6.47)

)
]
e

I ({u}*{e}) =% ((2}*(u} - {w}*(p})

O SR NN G T

~iv1¥[A) V] [K) - (VI¥[D] v))ia) (6.56)

*
in which indicates the conjugate transposed.

In the undamped case, when [A] and D] are real, Eq. (6.56) can Le
simplified te

E =% ()" (K" V1 A1 V] + (VI¥TAIIVILK) + 1[v1™{BI[V]){a} (6.57)

because [B] = [D][ - [D] by Eq. (6.25), and Eq. (6.57) can be further

reduced when the orthogonality relation

{v}i[A]{v}s(Er+ks) + i{V}t[B]{V}s =0 for kr¢ks (6.58)

is observed, in which Er iz the conjugate of k . The result obtained
L

3 is

% 2n

, E = z Eg (6.59)
3 s=1

e in which

] B =2 o 2vE(1AJE 4k ) + i[B]){v] (6.60)
E s 4 17s s s s S

; is the energy transmitted by the sth mode. Hence, in the absence of

viscous damping, the generalized Rayleigh waves are orthogonal with
respect to energy transmission as were the generalized Love waves.

In order to prove Eq. (6.58) two solutions to Eq. (6.26) are con-

sidered, i.e. :

3 ([A]ki + i{B]ks + [C]){v}s {0} (6.61a)
and .

-3 ([ + a[8]k_ + [chiv}_ = (o) (6.61b)

e R R RS 1a
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Pre~-multiplying the first equation by {v}:, the second by {v}:, then
subtracting the conjugate transposed of the second equation from the
first yields

(a1 - KD + 1181k - K)vd, = 0 (6.62)

r S r S r s

Division by (ks - ﬁr),provided ks#ﬁr, proves Eq. (6.58).

In evaluating Eq. (6.60) for the wave types discussed in Section
6.2 it is of assistance to consider the conditions under which the wave
number k is complex, real or imaginarv in the undamped case. Pre-

*
multiplying Eq. (6.26) with {v} and introducing the abbreviations
* * *
A= {v} [al{v}; B =-ilv} [BI{v} ; c = {v} [cl{v} (6.63)
gives the quadratic equation

AKS =BKk+C=0 (6.64)

which has the solutions

K = (B £ VB? - 4AC) /(24) (6.65)

1,2

As [A] and [C] are real symmetric and [B] is real skew symmetric, the
numbers A, B and C are real, A being positive, because matrix [A] is positive

definite. With the above abbreviations, Eq.(6.60) can be written
5 1o 20,25 21
Eg =7 logl (kg + k) A-B (6.66)
The results obtained from Egs. (6.65) and (6.66) are:

2 ~
a) kS is complex if B#0 and B -4AC<0 and from %  + ks = B/A it

=

follows that

b) ks is imagirary if B=0 and C>0 and from ks + Es = 0 it follows
that

E =0
s

&)k is real if B2-4AC>0 and from (ke + E) = 2k_ and Eq. (6.66)

it follows that

e, = % fa|%Gak, - o7k = ¥ Jag | BvI (AT, - [C1/k){v)

(6.67)




In Sect

fon 6.2 it was shown that the horizo
placements of &}s are 90° ou:

case {v} =
S

ntal and vertical dis-
of phase if ks is real and that in this

i{G}S after normalization by Eq. (6.33). Egs. (6.67) and
(6.38) therefore yield

., 2 - ~
+ % kg lasl if {v}s = + {¥}

(6.68)
“$k, loyl?

AIETIE ) S

which is of the same form as the corresponding expression for the energy
transmission of Love waves, Eq. (4.58).
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7. AXISYMMETRIC RAYLEIGH WAVE MOTION

".1 Motion in the Lavered Region

The analysis of axisymmetric Rayleigh wave motion in a layered
gion of the cype shown in Fig. 5 is similar to that for plane Rayleigh
wave motion presented in Chapter 6.
Any point (r,z) in the region undergoes displacements in the radial
direction, r, and in the vertical direction, z. For harmonic motion at

the freguency w0 the displacements can be expressed by

Gr(r,z,t) = qr(r,z, exp(iwt) (7.1a)

and

Sz(r,z,t) qz(r,z) exp(iwt) (7.1b)

The governing homogeneous differential equations for the spatial

part of the displacements are, by Eq. (3.16), for the jth layer

2 o 2 2 2
o 9y 1 dqr 9y o 1, 0 9y 3 4
(Aj * ch) Brz * T or ;5 t i)t Gj 2 T dz3r

3z~
2
+ pjw a =0 (7.2a)
and
2 2 /a2 R
“+)G)/aqr+_3qr+ Z\-!-G 8qz+laq2_oqr _laqr
Y37 P37 \ezar T r iz 352 / i\ 5.2 r or ¢zd9r 1 3z
2 2 /
+puq = 0 (7.2b)

Separation of the variabies r and z leads to a particular solu: ion
to Eqe. (7.2) of the form

qr(r,z) = u(z) Hiz)(kr) (7.3a)
a,(r,2) = w(z) i Héz)(kr) £7.3b)
2 (2)

in which Ho and Hl are the Hankel functions which were introduced ir
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Chapter 5. The functions u(z) and w(z) are urnknown functicns which must

satisfy the coupled ordinary diftcrential equations for j=1, ..., n

2
d"u

2 2 dw N
{(k“(\.426.) - w0 . Ju~-G, == + ik(A.4G.) —= =0 7.4a
¢ J J J J dz2 ( j J) dz ( )
‘)
2 2 dw du
{k6.-wp } w = (A.,+2G,) — + ik(A.4G.) — = 0 7.4b
jRyl W s Opr6) S Opis) F (7.4b)

Egs. (7.3) and (7.4) are easily verified by substituting Egqs. (7.3) into
Egs. (7.?) and observing Eqs. (5.8). Eqs. (7.4) are identical to the
corresponding equations for plane Rayleigh waves, Eqs. (6.4).

The boundary conditions at the horizontal planes zj, j=1, ..., ntl,

are
(z') = u(z" ; wiz') = w(z" A
u( J) u( J) J) J) 3 7.5
u(zn+l) =0 ; w(zn+l) = (
and
g (") =0 ;1.2 =0
z 1 zr 1 (7.6)
1 — 1" - 1 = 11 3= ..
oz(zj) = oz(zj) ; Tzr(zj) Tzr(zj) j=2, ..., n
When the stress displacement relations
362 (GGr 6r)
JZ = (>‘+2G)§—T.—+)\ o +-lj-
_ dw . L (2) NV
= @A +26) 5 -k du) 1B (ko) exp(ivt) (7.7
and (36 08
T _ =6 .79— + = )
zr 3z ar
=6 €% - sl B (kr) explion) (7.7b)

are substituted into Ig. (7.5), these boundary conditions reduce to those
of the plane case, Zq. (6.9).

As the differential eqw: tions, Eqs. (6.4) or (7.4),and the boundary
conditions, Eq. (6.9). are id:: ical for plane and axisymmetric Rayleigh
waves, the resulting cigenvalue problem ¢ .d its solutions are the

same in both the plane and axisymmetric case. This holds not only for
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the continuum theory but also for the discrete theory, because the
layered region is discretized in the axisymmetric case in the same manner
as in the plane case.

¢ | It is again assumed that u(z) and w(z) vary linearly within each

layer according to Eq. (6.14). The displacements in the layered region

H can then be defined by the displacements of the layer interfaces which
are collected in the vector {8}, i.e.

~T - "
} = \
(s} <6rl z1 °r2 S22 “** °m Gzn> (7.8}

TR TP TR, I

C

in which 6rj and 624 are the radial and the vertical displacements of
]

the iaterfaces.

LS

The displacements may be expressed as a linear combination of the

Xl )

2n modes that propagate or decay in the positive r-direction, i.e.
61 = > ) o (7.9)

in which x_ is the participation factor of the sth mode {G}S.
The sth mode {6}5 is obtained from the sth solution to Eq. (6.26)
i.e. from {v}s and ks’ when Eqs. (7.3) arc observed. The displacements

of the sth mode are accordingly

o =47 H(Z)(k r) + exp(iwt) j=1,3, ..., 2n-1 (7.10a)
3 jol s
and
s _  8.4(2) . .. o
éj = \leo (Asr) exp (iwt) 3j=2,4, ..., 2a (7.10b)

The 2n modes used in the expansion, Eq. (7.9), are selected accord-
ing to the rules of Eq. (6.40) which were derived for the plane case.
From the properties of the Hankel functions and from the similarity of
axisymmetric waves to plane waves at large values of Iksr} it follows

that these rules also hold for the axisvmmetric case.
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; 7.2 Dynamic Stiffness Matrix for Layered Region

The displacements at the cylindrical boundary, r=r , between the

irregular and the layered region are, if the time factor exp(iwt) is

omitted,

tob L A L AR O S

(W = [oHal (7.11)

Faaur

in which the vector {u}R contains the displacewents of the layer inter-
faces at rsros i.e. ujs j=1, ..., 2n, and the vector {a} contains the
mode participation factors Oes s=1l, ..., 2n. The 2n x 2n matrix [¢] con-
tains the vectors {¢}S, s=i, ..., 2n, columnwise. The elements of {é}s

are by Eq. (7.10)

£ .S S -

- @j = vj a_ j=1,3, ..., 2n-1 (7.12a)

i and

E

3 .S S . .-

: ;;j = vj bs j=2,4, ..., 2n (7.12b)

with

T 3 I _ o (2 a
ag = Hy (ksro) and bs = i Ho (ksro) (7.13)

The inversion of Eq. (7.11), i.e.
{a} = (6] Hu)® (7.14)

yields the mode participation factors if the boundary .Jdisplacements are
known.

The stresses at the boundary r=r  are

36r (362 §r)
G = (\ = :'\ -_— -'.
. (X + 26) Tl ot T (7.15a)
and :
(Bér 367) ‘
T, = 6\57 *+ 37 (7.15b) :
According to Fgs. (7.3) and (7.9) the stresses are, for zj<z<zj+1,
n
d
> = -ik 2 — -7 .
“x 2{ ([ 1hs(lj+-Gj) us(z)+)\j P ws(z)]bs -Cj/ro us(z)as> o
s=1
(7.16a)

e |
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faww - -~ =

2n
\ 4 ‘
Gj (dz us(z) - lksws(z)) a (7.16b)
s=1
" in which
E s s
3 = - / . - .
3 us(z) (zj+1 z),hj v2j-1 + (z zj)/hj v2j+l (7.173a)
3 and
_ _ .. .S o . .5

ws(z) = (zj+l z)/nj v2j + (z zj)/hj v2j+2 (7.17b)
: The nodal forces which are in equilibrium with the stresses on a
; segment of unit radian are
ey 1 ) ( S . 1 ( S ]
3 P2j-1 Vaj-1" P ®25-1
2 2n s 2n s
, p!. v, . a ..
2
3 § <J = jz ik r [A]. 9 23 (o + ig‘r ([D).+[E].) < 23 3 o
: p so |8 b s JZ, o j j d)s s
P 25+1 s=1 2j+1 s=1 2j+1

1" S . S
“ L P2j+2 J kv2j+2 as J . ¢2j+2 )
&
E in which the layer matrices [A]j and [D]j are those defined by Egqs. (6.22)
3 and layer matrix [E]j is
3 2 0 1 0
E 1 6 O 0 0 O
E ). = = 7.
3 El; =37 11 0o 2 o (7.19)
3 o
E 6 0 0 ©
: The total forces acting on the layered region r>r0 at the boundary
1 nodal joints each consist of the force contributions from the layer

above and below the respective nodal joint, i.e.

P. =P + P i=1, ..., 2n 7.20)
i 3 75 ¢

2 with P; = P = 0. The forces expressed in matrix notation are

: (1R = ¢ (SAII¥I (K] + [DII0] + [EDIO): o (7.21)

§
{
?
|
|
|
g
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in which the vector {P}R contains the nodal forces Pj‘ j=1l, ..., 2n.

Matrices [A], [K] and [D] were defined in Chapter 6. Matrix [E] is

assembled by addition of the layer matrices [Ej. as shown in Fig. 14

by substituting [E]j fer {x]j. Matrix [Y] consist of the column vectors

{#}S, s=1, ..., 2n, which have the elements

’S = S i= —

Uj vj bs j=1, 3, ..., 2n-1 (7.22a)
and

¢? = v? a j=2, 4, ..., 2n 7.22b

J ) s ] i ( )

Substitution of Eq. (7.14) into Eq. (7.21) gives

R = Ry a® (7.23)
in which [R] is the dynamic stiffnes; matrix for the semi-infinite
layered region R, i.e.

[R) = ¢ (iIAJ[¥1IKI (917" + [D] + [ED) (7.24)

which relates th> nodal forces per radian to the simultaneous nodal dis-

placements at the boundary r=r_. The matrix [R] has properties similar

to those of the dynamic stiffness ratrix for the plane case; in parti-

cular, matrix [R] is symmetric in accordance with the theorem of

reciprocity [14)}. This may be shown by a prcof similar to that presented

for the plane case in Section 6.3.
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8. SUMMARY OF PROCEDURE

The theory for the proposed method of analysis is now completed
and the steps involved in analyzing plane or axisymmetric systems of

the type shown in Figs. 4 and 5 are summarized below.

I. idealization

Subdivide the layered regions R and L into sublayers so that
the thickness of each sublayer is less than about 1/10 of
the length of S-waves .r:velling in it at the frequencies
considered.

Cover the irregular region I by a finite element mesh and
specify the coordinates and reference numbers of the nodal
joints. The nodal joints at the boundaries between the
irregular region and the layered regions must ccincide with
the interfaces of the sublayers, see Fig. 6. The maximum
dimension of each element should again be less than 1/10 of
the length of S-waves and perhaps smaller near stress
concentrations.

Define the material properties of the finite elements and
sublayers. Viscous damping is included by the use of complex
moduli.

Define the prescribed nodal displacements and the external
forces acting on nodal joints of Region I and specify the

frequency of the harmonic loading.

1i. Dynamic Stiffness Matrix for Layered Regions

1.

2.

Formulate the eigenvalue problem for region R, i.e. Eis. (4.31)

and (6.26) in the Love and Rayleigh wave cases, tespectively.
Solve the eigenvalue problem by the methods outlined in

Appendix 1 and 2.
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3. Form the dynamic stiffness matrix [R] for region R accocding
to Eqs. (4.47), (5.28), (6.49) and (7.24) in the plane and

axisymmetric Love and Rayleigh wave cases, respectively.

4. 1In the plane cases, perform steps 1., 2. and 3. in a similar
] manner to obtain the dynamic stiffness matrix [L] for region L.
% 1II. Analysis of Irregular Region

1. Form element mass and stiffness matrices [M'} and [K']. Use

complex moduli to include viscous damping in [K'].

2. Assemble the global matrix [A] = [K] - w: [M] by the direct
stiffness method from the element matrices of region I and the
frequency dependent dynamic stiffness matrices [R] and [L] for
the layvered regions.

3. Compute the nodal displacements by solving Eq. (3.27). The
amplitudes and phase angles of the nodal displacements are
determined by Zgs. (3.5) and (3.6). Reaction forces may be

computed by Eq. (3.31).

IV. Displacements in Layered Regions

1. Compute mode participation tactors for region R by Egs. (4.37),
(5.19), (6.43) and (7.14) in the plane « axisymmetric Love
and Ravleigh wave cases, respectively.

2 Compute displacements of the sublayer interfaces in region R
by Eqs. (4.41), (5.17), (6.41) or (7.9).

3. 1In the plane cases, perform steps i. and 2. for region L.

Coasputer programs which accomplish steps II, III and IV of the
above procedure for systems ¢ the type shown in Figs. 4 and 5 have been
develoned. The major part of the computation required is performed in
complex variables utilizing the complex arithmetic capabilities of
FORTRAN IV. Resrlts frow the analysis of several examples are presented

in the following chapters.
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9. LINE LOADS ON HOMOGENEOQUS LAYER

The accuracy of the presented method is studied by application to
the following problem. A harmonic line load of unit amplitude acts on
the surface of a homogeneous layer of unit thickness as shown in Fig. 16.
The layer matevial has a unit mass density and a Poisson's ratio v=0.3.
If no material damping is assumed, the shear modulus G=1 unit, and if a
fraction of critica. damping 8=0.05 is chosen, the stress—strain behavior

is represented by the complex shear modulus G=(1 + i28) units.

9.1 Love Wave Case

Fig. 16 shows o line load, P=1¢exp(iwt) per unit length, which
acts in the direction perpendicular to the specified x-z-plane and thus
generates plane generalized Love waves. The correct solutior to this
problem, labelled E, is derived in Appendix 3 and serves to check the
numerical solutions which are computed by the presented method for
three different discrete models. Each of these models makes use of the
symretry of the problem about the z-axis.

Medel A, shown in Fig. 17, consists of a region I with 18 x 18
rectangular finite elements and a region R with L8 sublayers. The
finite element mesh is condensed near the line load and the maximum mesh
size is 1/15 of the wave length of shear waves zt the highest frequency
consiicred (w=27).

Hodeli B contains ro finite element region; tine lavered region R
extends from x=0 to infinity and consists of 18 sublayers as does
region R in Model A.

Model C is obtained from Model B by dividing each sublayer into
two sublayers of equal thickness resulting in a total of 36 sublayers.

The solutions ootained from these mcdels are referred to as
solutions A, B, and C respectively.

Displacements for the static case, w=0, and displacement amplitudes

for harmonic motion with and withcut material damping at the {requency

i7
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w=27 are shown in Table 1 for several points. The phase shifts of the
displacements with respect to the phase of the line load are presented
in Table 2.

Table 1 and Table 2 show that the solutions A and B are about
equally close to the correct solutions, E, and satisfactorily accurate
in the neighborhood of the line load and at some distance from it. The
solution C is significantly better than the solution B because the sub-
layers in Model C are only half as thick as in Model B.

The errors in the displacements, displacement amplitudes and phase
shifts of the solution C are almost precisely four times smaller than
the errors of the solution B. This is true for all the values presented
in Table I and Table 2 and is therefore a strong indication that the
errors, if they are small, are essentially proportional to l/h2 where h
is the thickness of a sublayer.

This observation can be utilized to obtain 2 much improved solution,
called D, from the solu ions B and C by adding one third of the
difference between the solutions C and B to the solutica C. Values of
the solution D are also listed in Table 1 and Table 2. They have one or
two more correct digits than the values of solution C and agree very
well with the values of the correct solution.

The approximate solutions for the layered regions consist of
finite series of approximate wave modes, Eq. (4.41), while the correct
soluticns are infinite series of exa~t 'rave modec, Eq. (A3.13). Some
wave numbers of corresponding approximate and exact modes are listed in
Table 3, in which the letters B, C, D, and E indicate, as before, the
respective models arn? solutions.

The values C, obiainea with 36 layers, are again almost exactly
four times closer to the correct values E than the vaiues B obtained
with 18 layers. The very precisc values D are computed by adding one
third of the difference between the values C and B to the values C.

One may recall that the displacements of the sth wave mode are
Gs(x,z,t) = vs(z) exp(iwt-iksx). In the undamped case, 3=0, the wave
numbexs ks are either real or imaginary and correspond to waves which
propagate with censtant amplitude or decay exponentially in the x-
direction. The rapidly decaving waves, which have a wave number with
a large negative imaginary part, contribute significantly to the total

displacements only at small values of x, i.e. close to the line load.

78

%ﬁl.. e APV b d ALY S B st L oDV T 20D A s



e T A R R T R AN

At some distance from the line load only the propagating modes are
important.

When damping is irtroduced, as in the case B=0.05, all waves
propagate and attenuate in the x-directiou because all wave numbers are
ccmplex. However, the exponentiil decay is relatively small for the
waves which would propagate with constant amplitude in the undamped
case and the wave lengths of the modes which would decay exponentially
in the undamped case are relatively long, 2s the real parts of their

Lave numbers are smail.

9.2 Rayleigh Wave Case

The case in whizh the harmonic line load P=l-exp(iwt) per unit
length is applied at x=2=0 and acts in cthe 2-direction, rather than in
the y-direction as shown in Fig. 16, is now considered. Generalized
plane Rayleigh waves are generated by the force.

The correct solution to this problem is not known and cannot be
found easily. Approximate solutions are obtained for the discrete
wnodels A, B, and C described in the Love wave case. Their values for
displacewents, displacement amplitudes and phase shifts are shown in
Table 5 and Table 6 for several points.

The agreewant between the solutions A, B, and C is about as good
as in the Love wave case. It shows that the numerical results chenge only
very slightly as the lcft boundary of the layered regjon R is moved from
x=1 (Model A) to x=0 (Mode! B) and as the discretization of the region
R is refined by reducing the chickness of the sublayers (Model C). The
solutions differ significantly oun'y at points very close to the line
load, see point (x=0.0L, 2z=0). Tais wmust be expected, because the
strain directly under the line lead (x=-=0} is infinitively large in a
linearly elastic coatinuun.

Some approximate wave numbers which were computed from Model B
and C are compared with cnzrect wave numbers in Table 4. The correct
numbers are the roocs of a difficult secular equatien with transcendental
terms [22). They were computed iteratively by the secant method using
as initial guess the wave numbers obtained from Model C.

The values C, obtained with 36 layers, ave again almost eXactly
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four times closer to the correct values E than are the values B, obtained

with 18 layers.

As in the Love wave case, this indicates that the errors,

if they are small, are essentially proportional to llh2 where h is the
thickness of a sublayer.

The values D are computed by adding one third of the difference

between the values C and B to the values C. Tihis extrapolation improves

the accuracy by one or two digits.
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10. SCREENING EFFECT OF IRENCHES

Many attempts have been made to reduce ground-transmitted vibrations
by the installation of wave barri~ 's in the form of trenches or walls.
Barkan [9] reviewed several installations and came to the conclusion

that such barriers are often practically useless. ne attributed the
limited success to the absence of a rational design procedure for this
tyvc of installation. Recent experimental gtidies by Woods [52] and by
Dolling [15] have greatly improved the unders:anding of the screening
problem. Buv. a rational design procedure which includes a sound analysis
of the screening is still not available.

Tne method developed in this dissertation is capable of analyzing
plane strain and axisymmetric screening problems. A relalively simple
example is presented below in which the ground transmitted disturbance
consists of plane generalized Love waves.

Figs. 18 and 19 show computed surface displacements neavr a strip
footing embedded in a homogeneous linearly elastic soil layer over a
rigid base. The footing is excited by a harmonic force P = wz * coswt
per unit length. This type of loading is typical for foundations support-
ing rotatory machines.

The finite element mesh used in the a 2lvsis countained 430
rectangular elements and extended from the left edge o the footing to
the right edge of the trench. The semi-infinite layered regicns co the
left and to the right of the finite element mesh were represented by
18 sublayers each.

Fig. 19 shows the effect of trench depth at the frequency w = 1.
At this frequency a tremnch is quite effective in reducing the surface
vibrations. Its effectiveness increases with increasing trench depth.

A, perhaps, unexpected result is that the presence of the trench causes
a reduction in the displacement amplitude of the footing. This
reduction is due to reflections from the trench wall. However, the

reflections might just as well cause an amplification of the footing

81
st aEKTR R sy o AR s G SRR B o ..

B Yl e ba e

PESTIIY

ﬁffm



Rded AT

13

o

i AR R T

i
\ 'n“l\

displacement depending on the frequency of the exciting force and on the
distance between the footing and the trench. The curve labeled w = 1.5
in Fig. 18 illustrates this point.

Fig. 18 shows the effect of changing the frequency for the case in
which the trench penetrates half way through the soil layer. At the
lower frequencies w = 0.5 and w = 1,0 the trench is quite effective but
as the frequency jis increased to w = 1.5 the trench becomes useless.

This phenomernn is a2ssociated with the number of propagating Love modes
in the system. At frequencies below w = T/8 =,39 no propagating modes
exist and the displacement amplitudes in the far field, i.e. beyond the
trench, decay exponentially according to Eq. (4.38b). In the frequency
range 0.39 to 1.18 one propagating mode exists. Its mode shape, shown

in Fig. 18, indicates that most of the energy is transmitted in the upper
half of the layer. The trench is therefore quite effective in reflecting
the Love wave. This is demonstrated by the curves labeled w = 0.5 and
1.0 in Fig. 18. As the frequency is increased into the range 1.18 to
1.96 a second propagating mode appears. Its mode shape, shown in Tig. 18,
indicates that a significant part of the energy is transmitted below

the bottom of tne trench. Consequently, the trench is not an effective
barrier for the second mode. This is illustrated by the curves labeled
v = 1.5 in Fig. 18. At frequencies beyond w = 1.96 additional modes

will appear and the displaceme~t in the far field becomes more complicated.
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11. TORSIONAL MOTION OF RIGID CIRCULAR FOOTINGS

11.1 Introduction

A rigid circular footing on an axisymmetric medium has four
distinct degrees of freedom; they are the vertical and hcvyizontal trans-
lations and the rctaticns about a horizontal and a vertical axis. The
rutational motion about the vertical exis of symmetry, called tcrsional
motion, is of considerable importance to precision tracking rader towers
and communication antennas [47, 48].

Radar towzrs are often supported on spread footings of approximately
circular plan. The footings are st ff compared to the soil underneath
and may therefore be treated as rigid circular disks.

A solution for the harmonic torsional motion of a rigid circular
disk fixed to the surface of a homogeneous linearly elastic half space,
Fig. 1, was first obtained by Reissner and Sagoci [41]. Stallybras
[44] derived a solution to the same problem which is easier to evaluate
for high frequencies. Weissmann {47] considered the effect of material
damping and slippage between the footing and the surface of the half
space.

The assumption that the footing is supported by a homogeneous
half space is mathematically convenient and for practical purposes
suitable if the subsoil is homogeneous to a depth of a few footing
diameters. But this condition is not often encountered in practice.

Amold et al. [6] obtained a solution for the torsional motion of
a rigid circular footing supported by an slastic layer which extends
laterally to infinity and is fixed at its bottom to a rigid base, see
Fig. 2. They assumed that the dynamic stress distribution under the
footing on a layer is similar to the static stress distributicn under a
rigid footing on a half space. This assumption loses its validity as
the frequency of the motion increases and the thickness of the layer

decreases. Awojobi [ 8] treated the same probiem by reducing it to the
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solution of an integral equation without assuming a priori a stress

distribution ender the rigid footing. However, he subtstituted the kernel
of the integral by an approximation for which he could find a closed form
solution.

The half spacze solution based on the model iu Fig. 1 and the layer
solution based un the model in Fig. 2 are currently used in design
practice. But as footings are aiways embedded in the ground and are
usually supportad by layered soil, the applicability ui the half space
and layer sc¢lut“ons is often questionable. No mechods of analysié'have
been published so far which rcan quantitatively account for the effect of
embedment and layering of the soil.

the method presented herein hus the flwe:ibility tc analyze the
response of footings embedded in layered soil. In the follcwing examples
the effect of the rhickness of a hurogeneous layer over a rigid base, the
eifect of damping, the effect of embecdieir and the effect of an 1ncrease~.
in the shear mudulus or thte soil with - opth are studiad.

First, a few %“ervms used in the piesantation 2nd the discussion of
che examples have to be explained.

The harmonic torsional motion uv{ 3 macsless rigid footing is des—:

cribed by

[0
]

= Eg F exp{iwt) (11.13

<

in which O is the angle of rotation about the axis, TO is the amplitude
of the externa2l torque on the f{ootring, and k0 is the static spring

constant. The dimensionless complex quantity F = F, + 1 Fz, designated

1
as the displacement function, depands on the circular frequency w or on

the dimensionless freguercy ratio

a, = er/Vs (11.2)

in which r, is the radius of the focting and VS is the shear wave velocity
in the soil.

If the displacement function F for a footing without inertia is
known one can calculate the response of a footing with the mass moment
of inertia,le,about the axis of rotation, as shown by Lysmer and Ricrart
[24], by i
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=2 M cos(ut + ¢) (11.3)

0 =
kg

in which M is the dynamic magnification factor

= Nty

E SRV AP SRR S MR o
B H 6 176 0 °2°78

.

E and $ is the phase shift

£

: F

é ¢ = can 3 (11.3)
% Fl -w 16 (F1 + FZ)/ke

It is often convenjent to employ a dimensionless inertia ratio,

LN

which can be defined by [42]
1

[«4}

B R e B

(11.6)

By =

w

pr

(o]

s where p is the mass density of the soil.
& i If the mass density and the shear wave velocity of the soil vary
with depth, p and Vs in Egs. (11.2) and (11.6) are the values of the

density and the shear wave velocity at a designated reference depth. In

P b AW

. me o

all the following examples, in which soil properties vary with depth,

this reference depth will be taken to be equal to one footing radius.

UL w1 s iin o

11.2 Comparison of Numerical Results with Analytical Solutions and

Experimental Results

Arnold et al. [6] performed model tests to check their analytical

TR ]

solutions for the torsional motion of a rigid circular disk on an elastic
layer agairst experimental results. They glued a disk to the surface of

a sheet of fcam rubber and forced the disk to vibrate in the tersional

ikt

mode .
Fig. 20 shows their experimental and their amalytical results for

the following parameters. The ratio of the layer thickness to the disk

radius is !!/ro = 0.97 ar< the inertia ratio of the disk is BG = 0.79.
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The analytical and experimental results agree well with respect to the
resonance frequency and the general shape of the response curve; but
they differ in the maximum amplitude.

Awojobi [8] also compared his analyticai solution with Arnold's
experimental results. The comparison, see Fig. 20, shows a good agree-
ment ir the ascending part of the response curve, but a difference of
about 10 vercent in the resonance frequency.

The same example was studied numerically by the finite element
method with a fine mesh, which is shown in Fig. 21. The maximum dimen-
sion of the elements and the maximum thickness of the sublayers are
less than 1/25 of the length of shear waves at the trequency racio
a = 2.5. Numerical results are presented in Fig. 20 for an elastic
material without damping, 8 = 0%, and for a viscoelastic material with
a fraction of critical damping B = 7.5%. The numerical solution for the
undamped material and Arnold's experimental results agree very well
with respect to the resonance frequency and the general shape of the
response curve. The deviation in the peak amplitude is apparently
caused by the internal damping of the foam rubber. The numerical solution
for 8 = 7.5%, which takes the damping of the foam rubber into account,
fits the experimental results exceptionally well throughout the given
frequency range.

The small difference between Arnold's analytical solution and the
finite olement solution fer 8 = 0% can be attributed mainly to thn
deviation of the stress distribution assumed by Arnold et al. from the
actual dynamic stress distributizn under the rigid footiny. Thc error
resultirg from the finite element discretization is expected ve small
becatse the chosen mesh is fine.

The computational time needed for the finite elems. inalysis at

one frequency was approximately 4 seconds on the CDC €. computer.

11.3 Effect of Layer Thickness

Pig. 22 shows the displacement function F for the torsional motion

of a massless footing on a homogeneous elastic layer without material
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damping. The figure alsc shows the geometry of the vibrating system.

The radius of the footing is r, and the thickness of the layer is H.
Displacement functions are presented for the ratios H/ro =1, 2, 4, 8,
and ®. The function for H/ro = = is the Reissner-Sagoci solution for
the elastic half space [41].

Fig. 22 shows that the Fz-curves are zero for frequency ratios
below certain values which can be computed from Eq. (A3.6). No Love
waves can exist which propagate through the layer and no energy is

dissipated away from the footing, if
r

a < ?o- (11-7)

0

(STE]

or

Zs = 27 Vs/w = 27 ro/ao > 44 (11.8)

in which QS is the length of a shear wave and Vs is the shear wave
velocity. This means that there is no geometric or radiation damping,
that the rotation of the footing is in phase with the applied torque,

and that the Fz—curve is zero. In this range where ls > 4H, the response
of a footing with inertia can become infinitely large as the denominator
in Eq. (11.4) may vanish, depending upon the moment of inertia of the
footing and on the frequency.

The waviress of the displacement function Fig. 22 is caused by the
change of wave modes from the decaying type to the propagating type as
the frequency ratio increases, see Section 4.3. The change of the sth
mode occurs at

2s-1 o

a ==>5 T (11.9)

a:cording to Eq. (A3.6). The wave number ks of the sth mode vanishes at

this a, value, while it is purely imaginary and purely real for smaller
and for larger frequency ratios, respectively.

As pointed out in Section 5.2, the dynamic stiffness of a layer
against torsional motion does not become singular if one of the wave
numbers vanishes.

The displacement functions for small ratios le0 differ significantly
from the half space solution; the smaller H/ro the greater they differ.

However, the displacement function for H/ro = 8 shows good agreement with

87




the half space solution in the range a, < 2, which is the range of interest

for most footings.

The values of the static spring constants are also presented in

Fig. 22. For H/ro > 2 the static spring constant is close to that of a
footing on a half space.

The discrete models used in the computaticn of the displacement

functions were similar to the one shown in Fig, 21. The maximum mesh

size was, in all cases, smaller than 1/12 of the length of a shear wave.

Values of the displacement functions were computed at frequency ratios in
intervals of 0.2.

11.4 Effegt of Embhedment

1t was shown in the previous example that a footing on a howo-
geneous elastic layer with a thickness of several footing radii responds
to torsional excitation very much the same as does a footing ou a homo-
geneous elastic half space.

The effect of embedment will be demonstrated for a fouting on a
thick layer, H/ro = 8. The response curves for three different footings,
each with inertia ratios Be = 2 and B9 = 4, are shown in Fig. 23.

Footing L is placed on the surface of the layer. Footing 2 is
embedded to a depth of 0.4 x r, and has a free periphery. Footing 3 is

embedded to the same depth as Footing 2 but its periphery is in contact

with the surrounding soil. No slippage occurs where the footings and the

layer are in contact.

The static stiffness coefficients of Footing 1, 2 and 3 are
k0 = 5.34, 7.06 and 11.9 = G rg, respactively, where G is the shear
modulus and r, is the footing radius. This means that the static
compliance is strongly reduced by the embedment of the footing and by
side friction.

The above value for the static stiffness of Footing 3 agrees well
with Kaldjian's [21] results for the torsional stiffness of embedded

circular footings.

The reduction of the static compliance causes the resonance
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frequency to increase and, as the amount of geometric or radiation
damping grows with frequency, this results in an increased damping of

the footing motion. The peak amplitude is therefore even further reduced
by embecment of the footing than is the static compliance.

A comparison of the response curves for the inertia ratios Be=2
and88=4shows that a decrease of the inertia ratio has a similar effect
on the footing response as have embedment and side friction.

The displacement functions from which the response curves in Fig.
23 were ca'culated by Eqs. (11.3), (11.4) and {11.6) are presented in
Fig. 24.

The Fl-curves are changed only insignificantly by embedment and
side friction. The Fz-curve for Footing 3 is somewhat higher thaa those
for Footing 1 and 2. This means that the radiation damping is increased

by embedment with side friction.

11.5 Shear Modulus Increasing with Depth

In the previous example it was assumed that the medium supporting
the footing was homogeneous with respect to the mass density and the
shear modulus. However, the elastic moduli of soils usually vary with
depth even though the mass density and other properties of the soil may
be fairly constant within the zone of interest.

The shear moduli of sands and gravels increase approximately as
the square root of the effective confining pressure [43] and therefore
with the depth below the surface. In the following examples, the relation

between the shear modulus and the depth is assumed, accordingly, tc be

G(z) = Go \/zlro {11.10)

in which z is the depth below the surface, r, is the footing radlus and

(2]

is the shear modulus at z = L
The confining pressure in the soil below the footing is decreased
by the load of the footing. To accouut for this fact in a very simple

manner it is assumed that the modulus under the footing, r<r°, is

6(2) = G, /p for vz<q (11.11)
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in which Y is the unit weight of the soil, ¢ is the average contact

pressure under the footing, and p is the dimensionless load ratio de-
fined by

T (11.12)

Pig. 25 shuws the assumed variation of the shear modulus with depth for
r<ro at p=0.5, 1 and 2 and for r>ro.

Displacement functions for the torsional motion of three footings

without inertia are shown in Figs. 27, 28 and 29. One footing sits on

the surface of the ground, the other two are embedded in the scil to a
depth of 0.4 x r, . one with and one without soil contact at their sides.
Each footing is supported by a thick soil layer over a rigid base,

H/ro = 8. The shear modulus in the layer increases with depth according

to Fig. 25 and its value under the footing is determined by the parameter
p. Displacement functions for p = 0.5, 1.0 and 2.0 are presented and
for comparison the displacement functions for a homogeneous layexr are
also shown in Figs. 27, %8 and 29.

The displacement functions for the layer, in which the shear

mcdulus increases with depth, differ somewhat from the displacement

furctions for the homogeneous layer. The difference is pronounced in the

case where the footing sits on the surface of the layer, but is less

significant in the more practical cases of embedment either with or
without side friction.

The parameter p has hardly any influence on the displacement
functions, but it affects the static spring constant ke, values of waich

are also presented in Figs. 27, 28 and 29 for the various cases.

11.6 Displacements in the Far Field

Displacement amplitudes versus depth at different distances from

the axis of symmetry and along the surface are shown for threc particular

cases in Figs. 30-33. In Case A the footing sits on the surfac: of a

homogeneous layer; in Case B the footing is embedded in the same homo-

geneous layei; in Case C the froting is embedded in a layer in which
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the shear modulus increases with depth as shown in Fig. 26 (p=1.18).

In each case the thickness of the layer is equal to 18 footing radii,
the material damping of the iayers is B = 3% of critical damping, and
the footings are exr :e. at the frequency w = 607 so that the amplitudes
of the footin: rotatioir are one radian.

Figs. 30 and 31 show that the displacement amplitudes close to the
axis (rhéro) are, as expected, much larger at the surface than at some
depth. Bu! the displacement amplitudes at greater distance from the
axi. (r=36ro) do not decrease with depth. This can be explained by
ti» sact tnar iie generatized Love waves generated by the torsional
viti..tions of t': fertings are not surface waves, as are the Rayleigh
wave.;, whic : h=va ‘z-;2 amplitides close to the surface and attenuate
with d pth, bu: ~wi..st of S-waves which are reflected at the free suriace
and the rigid base.

A comparison of Figs. 30 and 31 shows that for Case B the displace-
mert ampii.udes in the far field are almost exactly twice as large as
for case A. The reason for this is that the torque applied through the
footing to the layer is 2.04 times larger in Case B tham in Case A.

Since the wave length of S-waves, 28, is large compared to the focting
radius at the considered frequency, (£s=8.6r°), Saint~Venant's principle
applies. A different distribution of the shear stresses around the
tooting has 2 negligible effect on the displacements at some distance
from the footing if the applied total torque is the same. For high
frequencies at which the length of S-waves is not long compared to the
footing dimension, this is not true.

In Case C, Fig. 32, the displacement amplitudes attenuate with
depth even at large distance from the axis of symmetry (t=36ro), because
the shear modulus increases with depth. Most of the energy is propagated
through the softer part of the layer near the surface.

This is also the reason for the amplitudes of the surface displace-

meats, Fig. 33, being much larger in Case C than in Case A or Case B.
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12. VERTICAL MOTION OF RIGID CIRCULAR FOOTINGS

12.1 Introduction

The vertical motion of a2 rigid circular footing which is supported
by a homogeneous, livearly clastic half space, Fig. 1, and excited by a
harmonic vertical fcrce was first studied by Reissner [3%9] in 1936, who
assumed, for simplicity. 2 uvaiform stress distribution under the footing.
Bycroft {10] investigated the same problem. He assumed that the dynamic
stress distribution beneath the rigid footing is similar to that for the
static case and obtained an approximate solution valid for low frequencies.
Lysmer {24} and Awojobi and Grootenhuis [7) derived solutions for the
same problem by accounting properly for the frequency dependence of the
stress distribution beneath the footing.

The application of the half space theory to the analysis of footing-
soil systems implies the assumption that the subsoil under the footing
is fairly homogeneous down to a depth of several footing diameters.
Often, this assumption cannot be justified, especially if large footings

are to be analyzed. Considerable deviations from the half space theory

occur in cases in which rock or hard layers are encountered at shallow ;
depth below the footing [29]. §

Warburton [46] studied the vertical vibration of a rigid circular §
footing supported by a homogeneous elastic layer which extends infinitely %
in the horizontal direction and rests on a rigid base, Fig. 2. He assumed £
2 frictionless interface between the iayer and the rigid base and made é

an approximation regarding the stress distribution beneath the footing.
Paul [38] studied the same problem without assuming a priori & stress
distributicn beneath the footing. But he did not preseat a readily
useable solution and left the results in implicit form.

In each of the analytical half space and layer solutions referenced
above, it was assumed that the interface between the footing and the

supporting medium is frictionless.

92




A
AT

2 ﬁ&;‘%t:%

R
oo 5y

ST

&

e

X
K

ogod

T

Ll

P

[

h

e
%r‘ﬁ‘! i

iR

i
i

o
i

R

i
| 'ﬁg',-

™

A
¥
il

!

SHE

S L G

B

i p

e o e e e e 4 . e Al 2 AR S AR il ot R

Lysmer and Kuhlemeyer [25] used successfully a finite element
method with an energy absorbing boundary (see Chapter 1) to study the
effect of embedment on the vertical motion of a footing which is supported
by a homogeneous elastic half space. Kuhlmeyer [22] used the same method
to study the vertical motion of a fcoting supported by a stratified half
space and found that the method gave inconclusive results when the deeper
layers were stiffer than the surface layer, which is usually the case
in foundation vibration problems.

In the following examples the vertical motion of rigid circular
footings on the surface of a homogeneous layer and of those embedded in a
layer in which the elastic moduli increase with depth are investigated
by the method presented in this dissertation.

Before the examples can be discussed a few terms need to be ex-
plained. The harmonic vertical motion of a rigid, massless footing is

described by

"

w = > F exp(iut) (12.1)
z
in which w is the vertical displacement cf the footing, P° is the
amplitude of the vertical force exciting the footing motion and kz is the
static spring constant. The dimensionless complex quantity F = Fl + i F2

is the displacement function as before and depends on the circular

frequency w or the dimensionless frequency ratio a, defined by Eq. 11.2. g
If the displacement function F for a massless footing is known, %
one can calculate the response of a footing with the mass m, as shown 3
by Lysmer and Richart [24], by %
P 3
w = Eg M cos(wt + ¢) (12.2) :

z

in which M is the dynamic magnification factor

F2 + T2
M= (12.3)

(l-wzm Fllkz)z + (wzm 'Fz/kz)2

and ¢ is the phase shift
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F
¢ = tan ! 5 ; > (12.4)

A dimensionless mass ratic may be defined by

Gr
2 3 ” (12.5)

in which p and G are the mass density and the shear modulus of the soil,

respectively, and I, is the footing radius.

12.2 Footing on Homogeneous Layer

The vertical motion of a rigid circular footing supported by a
homogeneous layer, Fig. 2, is studied. The footing has the radius T and
is smooth at its interface with the layer, permitting free horizontal
displacements of the layer surface beneath the footing. The layer has
the thickness H and is welded to the rigid base. Poisson's ratio of the
layer material is v = 0.25 and the complex shear modulus G=(1 + i 2 B)
units, where B is the fraction of critical damping.

Displacement functions for the ratio of layer thickness to footing
radius H/ro = 10 and 6 are presented in Figs. 34 and 35 for different
values of 8. The curves for H/ro = 10 and H/ro = 6 look similar if the
abscissas in Figs. 34 and 35 are scaled by the layer thicknesses. 1In
the undamped case, B=0%, the displacement functions show singularities,
but in the damped case, B=5% or 10%, they are "smooth."

To explain the singularities in the undamped case it is best to
look at the spectral lines of the wave numbers which characterizes the
wave modes used in the displacement expansion according to Eq. (7.9).

The first five spectral lines are presented in Fig. 36 which shows
a three-dimensional space. The axes in Fig. 36 are labeled &=Re(k)°H,
n=Ia(k}*H and Q=mH/VS where U is the thickness of the layer. The long
dashed lines lie in the £-G- plane and represent real wave numbers. The
short dashed lines lie in the n-{:~ plane and represent imaginary wave
numbers. The full lines are curves in the £-n-Q- space and occur in

pairs which are symmetric about the n-{- plane; each pair represents a
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pair of complex wave numbers, k = k ~ik, and -k = ~k,-ik,.

The spectral lines intersect the planes =0, £=0 and n=0 at right
angles. This fcllows from the fact that the secular equation, Eq. 6.27,
is an analytical fuaction of wz and kz in the undamped case. A proof can
be performed in a similar manner to that given by McNiven et al. [31] for
the spectral lines of waves in axisymmetric rods and will therefore not
be presented.

The points at which the spectrai lines intersect the Q-axis define
natural frequencies of the layer corresponding to vertically propagating
waves which are reflected at the free surface and the rigid base resuliing
in a standing wave. At these frequencies the dsiplacements in the layer
vary only with the depth z and any plane parallel to the surface remains
plane during motion because k=0.

‘The natural frequencies labellad a, ¢ and d in Fig. 36 are

associated with pure S-waves producing only horizontal displacements.

They can be computed by

_ 2n-1 . _
wn =3 T VS/H. n=1,2, ... (12.6)

in which Vs is the shear wave velocity. Because the waves corresponding
to the points a, ¢ and d have no displacement components in the vertical
direction, they do not affect the vertical motion of the footing.

The natural frequencies labelled b and e in Fig. 36 are associated
with pure P-waves producing only vertical displacements in the layer.
The layer surface can move up and down at these frequencies without being
exvited by external forces, and since it remains plame the boundary
conditions nwnder the mezsivess footing are identical to those of the free
surface. Therefore, these frequencies are naturai frequencies of the
footing-layer system if the footing is massless. Consequently, the dis-
placement Junctions for B=0 in Figs. 34 and 35 have singularities at the

corresponding frequency ratios. The natural frequencies in question are

2n-1
Go= T TV /M n=1,2, ... (12.7)
in which Vp is the velocity of P-waves.

The first two natural frequesncies for the vertical motion of the

massless footing in the case H!to = 10 occur at a°=0.272 and ao=d.816.
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Fig. 34 shows clearly the singularity at ao=0.272, but the singularity
at a°=0.816 is hardly noticeable.

In Fig. 34 one observes another irregularity at ah=0.746 which
corresponds to the frequency at g and g' in Fig. 36. At this frequency
two wave modes exist in the layer which have equal and opposite phase
velocities. The group velocity, which is

. du
U= K (12.8)

if k is real [16]), vanishes at g and g'. The two wave modes have,
therefore, zero group velocities at this frequency and do not transmit
energy, because the rate of energy transmitted by a wave is the product
of the group velocity and the energy deasity in the wave [17].

If the amplitudes of the two wave modes are equal, the modes
combine to a standing wave and the horizontal and vertical displacements

in the axisymmetric case vary along the free surface as
Gx x Jl (kr) exp(inmt) (12.9a)

Gz x« Jo (kr) exp(iwt) (12.9b)

in which Jo and Jl are the Bessel functions of order zero and one,
respectively. Eq. (12.9) follows from Eqs. (6.32, 7.1, 7.3) and from
the properties of the Hankel functions [2].

8 ey - 1P () = 20 (e (12.10a)

Hi") (k) + an) (-kr) = 23, (kn) (12.10b)

Because che wave number corresponding to point g in Fig. 36 is
relatively small, kro=0.208 for H/ro = 10, the free surface in the area
r<ro remairs approximately plzie during vibration in these two modes.

The difference in the vertical displacements at r=r and r=0 is only one
percent. This means that the displacements of the free surface are
almost compatible with those under the rigid massless footing. Therefore
it takes only a swmall force to completely satisfy the boundary conditions
under the footing and to produce a large footing displacement at this
frequenicy. Consequently, the Fl—curve for 8=07 in Fig. 34 shows a peak
at ao=0.746. The peak is finite in height; but it is difficult to
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determine the height numerically, because the peak is very narrow.

The same phenomenon occurs at the frequency corresponding to the
points f and f' in Fig. 36. But since this frequency is very close to
the lowest natural frequency of the footing-layer system, no separate
peak shows up in Fig. 34,

A similar phenomenon to that described above was observed experi-
mentally in steel rods by Oliver {[36] and studied theoretically by
McNiven [30]. In the rods, very rarrow and high response peaks occurred
also at those frequencies at which pairs of complex spectral limes for
wive numbers became purely real as happens at the points f and £- or g
end g' in Fig. 36.

The effect of material damping on the response of footings is to
smooth the displacement functions and eliminate natural frequencies.
lhe displacement functions in Fig. 34 ard 35 for B=5% and 10% of
critical damping therefore show nc singularities.

The spectral lines for the wave numbers in the damped case are not
much different from those shown in Tig. 36 for the undamped case. But
they do not intexrsect the £-Q~ plane, as all wave rumbers have negative,
non-zero imaginary parts in the damped case, and they are smooth with
continuous first derivatives at the frequencies at which the spectral
lines form right angles in the undamped case.

It is more realistic to include some materizl damping in the
analysis than to assume that the soil behaves purely elastically.
Furthermore, the incorporation of damping has the advantage that singular-
ities are avoided.

Response spectra for footings with different mass ratios are
presented in Figs. 37 and 38 for H/ro = 6 and H/ro = 10 at B=5%Z. They
show peaks at frequencies close to the first natural frequencies of the
corresponding undamped cases. The peaks are high for H/ro = 6, but not
very significant for H/to = 10,

Except for these peaks, the response spactra for H/rc = 10 are
quite similar to those for the vertical motion of a rigid circular
footing on a homogenevus elastic half space, which are shown in Fig. 39
and are based on Lysmer's solution [24]. However, the response spectra

for li/ro = 6 differ markedly frem those for the half space.
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The values of the displacement functions in Figs. 34 and 35 were

computed by using rectangular meshes, which were similar to thaé'shown

GL R

in Fig. 21 and consisted of 22 x 5 finite elements and 22 sublayers.

RN

The maximum dimension of any element and the maximum thickness of any

s

: layer was less than 1/10 of the length of shear waves at the highest «
i N

H frequency considered. N

~
To verify the validity of the theory and to check the computer

TR T T e N T R

program, anrlyses for H/ro = 6 were repeated at several frequenéieg with
a different mesh, in which a much larger region, r<6ro as compared to

r<rC, was represented by finite elements. The results obtained using

O T T T N S

the two different meshes were virtually identical. The relative

differences between the computed values of the displacement functions

(1

were less than one percent.

. 12.3 Footing Embedded in Inhomogencous Layer .

N

Fig. 40 shows an embedded rigid circular footing which is forced
to vibrate in the vertical mode. The shear modulus in the supporting

layer increases with depth as defined in Fig. 26. Poisson's ratio is

vty b o

v=1/3 throughout the layer, aud 37 of critical damping for sh-ar and
dilatational deformations in the layer is assumed. The damping is

[

introduced by using a complex shear modius (Fig. 26 shows only the real
part of the shear modulus). Since Poisson's ratio is real, Lame's
constant A=2Gv/(1-2v) is also complex. The layer has = thickness of
18 footing radii and rests on a rough rigid base.

The displacement function for a massless footing and the response
i spectrum for a footing with mass are presented in Fig. 40. The figure
indicates a small peak at a frequency close to that at which the layer,
in the absence of damping, would have its first natural frequency for
vertical displacements.

A comparison with the response spectra in Figs. 37 and 38 suggests

that the response peak in Fig. 40 is small because che layer is thick

with respect to the footing radius, H/ro = 18. Due to damping, the

displacemenc function shows no further peaks at the frequencies at
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which the layer, in the absence of dampiag, would have higher natural
frequencies.

Figs. 41 and 42 show displacement awplitudes along the surface of
the layer and displacement amplitudes versus depth at wvarious distances
from the axis of the footing. T7he displacements are caused by vertical
vibration of the focting with unir displacement amplitude. The horizontal
and vertical components of the displacements along the surface have
about equal amplitudes except close to the foocing where the vertical
component dominates. Fig. 42 shows that the displacement amplitudes
decrease with depths at close and far distances from the axis of the
footing. This means that most of the energy is propagated in the vyprer
part of the layer, vhere the material is softer chan at greater dep.h,
and also that the rigid base assumed in the analyses has little or no

influence on the results.
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13. SUMMARY AND CONCLUSIONS

i i o

A numerical method has been presented for the analysis of steady-

state wave propagation problems in linearly elastic or viscoelastic

I A

media of infinite extent. The geometries considered are eiti:er plane or

P
R

axisymmetric and consist of a finite, irregular region which is joined

o
3

z to semi-infinite layered regions of the type shown in Figs. 4 and 5. All

¥

external loads are applied within the irregular region and vary harmonic-

ally with time. Motions both in the plane and perpendicular to the

Y
A S R R

plane of a cross-section through an axisymmetric or plane geometry have

il

been treated.

Wi

ks The irregular region is discretized by the finite element method.

il

Compatible finite elements with quadrilateral cross-sections are employt

vn

=
Gt

and the displacenrents at the nodal joints of the elements are introduced

as the degrees of freedom.

The semi-infinite layered region is discretized by subdividing the

g e P

2

layers into thin sublayers and by assuming that within each sublayer the
displacements vary linearly in the direction normal to the layers. 1In
the direction parallel to the layers, the displacements are required to

satisfy the pertinent ordiriry differential equations, which are obtained

by separation of the variables from the partial differential equations
; that govern the motion of the continuum.

Compatibility conditions for displacements and equilibriwm must be
satisfied along the sublayer incerfaces, the stress free surface and
the fixed base. These conditions constitute an algebraic eigenvalue
= problem, since no external forces are applied within the layered region.
% The solutions to the sigenvalue problem describe the propagating an
standing waves which can exist in the discretized layered region. ‘these
waves serve as shape functions for the displacement expansion. A dynamic
stiffness matrix is then developed which uniquely relates the nodal
forces to the simultaneous nodal displacements and properly represents

the elastic ane viscous dynamic response of the semi~-infinite layered
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region.

The equations of motion for the discrete model are derived from
the principle of virtual <ork which has been formulated to facilitate
the use of complex variables in the analysis of harmonic motion.

An important step in the procedure is the determination of the
wave modes in the layered region by the solution of the eigenvalue
problem. For motions perpendicular to the cross-sectional plane the
problem ([A]k2 + {c]) {v} = {0} must be solved in which [A] and [C] are
complex, symmetric, tridiagonal matrices. For motions ir the cross-
sectional plane the problem is ([A]k2 + i[Blk + [€]) {v} = {0} in which
{A] and [C] are complex, symmetric matrices with baadwidth 5 and [B]
is a complex, skew-symmetric matrix with bandwidth 7. Efficient I'ORTRAN
iV subroutines for solving these problems have been developed and
presented.

The method is consistent in that the same displacement expansions
are employed for the derivation cof the elastic, damping and inertia
forcs's at any nodal joint. The displacement expan-ions both in the
finite element regions and in the layered regions are compatible and
thus provide continuous displacements throughout the entire domain. The
analysis yields the displacements in the irregular region as well as in

the semi-infinite layered regions.

Accuracy Studies

The accuracy of the method was investigated for the example in
whick a line load acts on the surface of a homogeneous layer and
generates plane generalized Love or Rayleigh waves. In the Love wave
case, the numerical results for the discretized layer were compared with
the exact solution for the continuous layer. Gocd agreement was obtained
with a relatively coarse mesh and excellent agreement was achieved with
a fine mesh. Ir the Rayleigh wave case, the accuracy of the numerical
solutions had to hi ~tudied indirectly by comparing solutions obtained
with different meshes, because no exact continuuu sviution is available.

For this purpose the boundary between the irregular and the layered
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region was shifted, replacing the finite element displacement field by
E: the expansion into wave modes and vice versa. The size of the finite
elements and the thickness of the sublayers were also varied. The
relative differences between numerical solutinns obtained with different
meshes were insignificant. In addition, exact wave numbers for waves
in the continuous layer were computed and compared with the wave numbers
5 for the corresponding waves in the discretized layer. The agreement was
3 highly satisfactory and improved as the discretization was refined.

g Similar studies of numerical solutions to axisymmetric problems were

e
S

performed but have not been presented here. In these cases the agreement

mea
¥

PEEN

of solutions obtained with different meshes was equally good.

" 4
iy

In another study, a numerical solution for the torsional vibration
E of a circular footing on a homogeneous layer was computed for comparison
3 with published anmalytical solutions and test results. The numerical

method was again found to yield excellent results.

N Torsional Motion of Circular Footing

The method presented herein was primarily developed for the analysis

. of steady-stat vibrations of machine foundations. Thus emphasis was

placed on applications to this type of problem.

The torsional response of circular footings to vibratory torques
about the vertical axes of the footings was studied. The effects of the
thickness of a supporting laver, embedment of the footing and increasing
shear modulus with depth were investigated. The response of a footing on
a homogeneous layer which has a thickness of 4 footing radii - r more is,
for practical purposes, identical to that of a footirg en a homogeneous
half space. Footings on layers with a thickness of cone footing radius
or less respond quite differently and do not benefit from radiation
damping at low frequencies.

Embedment may reduce the vibration amplitudes drastically,
especially when the footing sides are bonded to the adjacent soil.
Several cases were studied in which the shear modulus increased as the
square root of the depth below the ground surface. A careful determination

of the static stiffness is, as usual, of prima.y importance. The dynamic
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effects are similar to those in the case of a homogeneous half space.
Therefore, the displacement functions of the half space solution may be
utilized in the analysis as a first approximation provided that the shear

] modulus at a depth of about one half of the footing radius is chosen as

the representative shear modulus. A study of displacements in the far

field has indicated that, in the typical frequency range, the amplitudes

R T

of surface displacements at some distance from the footing depend pre-

"y

dominantly on the torque transmitted into the ground and on the layering

of the soil.

Vertical Motion of Circular Footings

The vertical vibration of a circular footing supported by a homo-

geneous layer over a rigid base was investigated for two ratios of layer

PRI ST R R

thickness to footing radius, H/ro = 6 and H/r° = 10. Displacement

: functions of massless footings were computed for cases with and without

; damping. In the undamped case two different resonance phenomena were
obsarved and discussed. Response spectra for footings with typical mass
ratios show only cne pronounced pezk when a realistic amount of damping

H is assumed. This peak occurs at the fundamental natural frequency for
vertically travelling P-waves in the soil layer. For H/ro = 6 or smaller
this peak is high, but for H/ro = 10 or larger this peak is insignificant.

The response of footings on a thick layer, H/ro > 10, is similar to that

A
=
3
Y
5
H

of a footing on a homogeneous half space. The vertical response of a
circular footing embedded in a layer, in which the moduli increase with

depth, was also analyzed.

SRS S il

Screening Effect of Trenches

"

Cl il L i S

The versatility of the method was demonstrated by a further
example. The screening effect of trenches on horizontally polarized

S-waves was investigated by varying thke depth of the trench and the

gy}

frequency of the wave motion. It was shown that trerches can be quite

effective as a barrier against waves of some frequencies but may be
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ineffective for waves of other frequencies.

Possible Additional Applications

It is believed that the method may also be of value in the study of
soil-structure interaction during earthquakes. This would require the
introduction of a few features in addition to those included in the
analyses present:d herein. In this type of problem, the rigid base of
the model may be subjected to mction in the form of a time-displacement
history of the bedrock underlying the soil. The induced transient motion
may be analyzed with the assistance of a discretized Fourier transforma-
tion.

The method might also find application to wave propagation problems
in other fields. In seismology, fault mechanisms of earthquakes and the
effect of valleys and mountain ranges on seismic waves may be studied.

The interpreation of results from non-destructive vibratory pavement

testing may also be improved with the aid of this method of analysis.
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APPENDIX 1

SOLUTION METHOD FoR ([Alk® + [c}) {v} = {0}

The n x n matrices [A} and [C] in
(ialk? + [cD) {v} = {o} (A1.1)

are tridiagonal, complex symmetric and [A] is well conditioned. The
diagonal elements of [A] and [C] are called a, and cj, j=1, ..., n, and

b

the off-diagonal elements are called b, and dj’ j=1, ..., n-1, respectively.

The eigenvalues and eigenvectors of Eq? (Al.1) are generally complex.
A determinant search technique employing Newton's iteration
method is used to compute the n eigenvalues As = kz, s=l, ..., n, Of
Eq. (Al.l).
The characteristic polynomial to Eq. (Al.l), deflated by the

divisors which are already krown is

m-1 -1
£ = |1A] £+ [c]l-( I (e - xs)) (A1.2)
s=1
in which t. is the rth approximation to the mth root, Am’ and ks,
s=1, ..., m~1, are the roots alieady calculated.

Newton's iteration scheme is

t =t - fr/fr (A1.3)

r+l
in which ° denotes the derivative with respect to t. The diagonal

elements after trianpular factorization of([A]tr + [C]) are

n

t +c¢
r

u a
1 1 . (A1.4)
uj+1 = aj+1tr + Cj+1 - (bjtr + dj) /uj s j=1, ..., n-1

Then

| =S

m-1
f =1 u / N(_-21) (a1.5)
r j=1 s=1 T s
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(A1.7) E:
=1, ..., n-1 %
g

The sth eigenvector corresponding to the eigenvalue As is computed
by two steps of inverse iteration

§t

. . .=2b.(b.t_ + 4. .+ t:+d.2'.
41 = 25417205 (BytL + d ug + (bt + d )T By/u

(el )

E:
2y
3

2
%

({A]As + [c]){vs}r+1 = {vs}r s r=1,2 (Al.8)

where {vs}l is chosen as a full unit vector.

A FORTRAN IV subroutine, ALAMDAB, which is based on the method out-

lined above is listed in Appendix 5. About 10 iterations are needed on

the average to obtain 12 to 14 decimal digits for each eigenvalue.
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APPENDIX 2

SOLUTION METHOD FOR ({A]k2 + i[Blk + [c]) {v} = {0}

All eigenvalues ks and eigenvectors {v}s of

([a)x? + 1{Bjk + ic) (v} = {0} (A2.1)

are wanted. The matrices [A] and [C] are non-singular, complex symmetric

and defined by Eqs. (6.22) and (6.24); [B] is complex skew symmetric and

defined by Eq. (6.25). {[Al, [C], and [B] are of order m=2n, typically

30 to 60, and are narrowly banded with bandwidths of 5, 5, and 7,

respectively.
Eq. (32.1) can be transformed into
Al + Bk + [cl) {w,} = {0} (A2.2)
in which
(8 = 1[s18)1s1 7" (A2.3)
is symmetric and
(A2.4)

{wl} « [s] {v}
The transformation matrix [S] is diagonal and its cdd and even numbered
diagonal elements are 1 and i = V-1, respectively. [A] and [C] are un-

altered by the transformation.
Eq. (A2.2) can now be rewritten in the form of a linear eigenvalue

problem of double dimension, 2m,

(IE] - k[F}) {w} = {0} (A2.5)
in which
[0 c]
[E] = R (A2.6)
C B
[F] = (A2.7)
;0 -A.J
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are symmetric 2m x 2m matrices and

w w
1 1
Y2 by
The 2m eigenvalues of Eq. (A2.4) and their corresponding eigen-
vectors are in general complex. The row and column eigenvectors are
identical because [E]} and [F] are symmetric. The eigenvectors are

orthogonal to each other with respect to [F] and can be normalized in

the siase

0 if rgs
1 if r=s
The generalized Rayleigh quotient iteration, GRQL, is ch ‘sen as

Wit (7] {w}
r S (A2.9)

solution method because it can take full advantage of the narrow band-
widths of [A], [B}, and [C] and it converges rapidly. Ostrowski [37]
proved that, under certain conditions, the GRQI's convergence rate is
cubic in the limit. GRQI consists of inverse iteration with a shift by
the generalized Rayleigh quotient, p, at each step

(IE] - py_, [FD) {x}j = [F] {x}j__1 (A2.10)

T T
_ {x}j [E] {x}j _ . {x}j,[F] {x}j-l

0. = = o. (A2.11)
k| T j-1 T
{x}j F] {x}j {x}j [F] {x}j

where (x}§ [F] {x}j #0. As j » w,{x}j and P; will go to {w} and k,
respectively. The generalized Rayleigh Quotient, Eq. (A2.11), is a
complex number and is stationary in the neighborhood of an eigenvector
[37].

The iteration scheme, Eqs. (AZ.10) and (A2.11), is now specialized
to take advantage of the structures of [E] and [F]. The steps are

(i) Inverse iteration
<p§_1[A1 + 0, 1B + [eD{xj} =1l xy}y_ -0y ATk}, )

(A2.12)
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: ' = 1 - jj
3 {xl}j ({xz}j {xl}j—l)/pj=l (A2.13) y
2 in which the ' indicates a vector which is not normalized; %
;. (ii) Rayleigh Quotient §
2 _ ra)T : 4T : :
E Y; = Bl el i) - ) 1Al {x), (42.14) :
; g
E T T 2
= +( T - ? ) =
] Py =Py {xl}j fci {xl}j-l {xz}j {A] {xZ}j-l /Yj £
: (A2.15)
4 (iii) Normalization of vector 3
4 {xl}j {x7) 3 /o 5 (A2.16) j
3 {xz}j {xz}j/pj (A2.17) :
4 (iv)  Check :
4 if —-JLr——rl——— < tolerance 3
e P, E
E 3 %‘
; E :
3 then let k=pj and {w} = g
*2)3 3
3 otherwise j=j+l and return to (i). %
3 The matrix in the lefthand side of Eq. (A2.12) has half bar.sidth é
4 4, including the diagonal. The triangular factorization is ther -<..e very %
§ fast. 7The FORTRAN IV subroutine listed in Appendix 6 involves approxi- é
g mately 40 x m complex muitiplications and additions per iteration. On §
E the average 7 iterations were needed to find about 12 correct digits §
;: of an eigenvalue and its corresponding eigenvector from an arbitrary §
i initial vector. g
E To avoid convergence towards already known eigenvectors the %
E: iteration vecter is deflated by Gram-Schmidt's orthogonalization process g
3 [49]. 1In order to keep the computational work involved in the deflation 3
E small an .rbitrary vector {p} of dimension 2m is selected which is §
1 assumed to be complete in the 2m-dimensional space, i.e. §
3
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{p} = Z{w}s @ ; af0 (A2.18)

The starcing vector {x}o for the iteration towards the rth eigenvector

is then obtained by

r-1
x}, = o} - ) W (42..19)
s=1 s
with
o, = (p}" [F] {wl, (a2.20)

From the structures of [A], [B], and {[C] it follows that if
(k, {w}) is a solution to Eq. (A2.4) then (-k, {w}) is another solution

in which

1
{w} = = 9 (A2.21)
0 -S w
Y2 2

Therefore only m eigensolutions to Eq. (A2.4) need to be determined by
iteration and the deflation by Eq. (A2.19) can be performed for a pair
of eigenvectors, {w}zs_l and {w}zs = {ﬁ}Zs-l’ simultaneously.

As Gram-Schmidt's orthogonalization process is sensitive to
roundoff errors, the eigenvalues and eigenvectors have to be precise.
No difficulties in finding all the eigenvalues and eigenvectors by the
presented method have been experienced in a few hundred analyses of
problems with dimensions up to 2m = 140 on the CDC 6400 computer, which
has a mantissa of 48 binary bits in floating point arithmetic.

The complete solution of a problem with the dimension 2m = 80 takes

about 16 seconds on the CDC 6400. The computation time increases with

the square of the dimension.
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APPENDIX 3

EXACT SOLUTION FOk LINE LOAD ON HOMOGENEOUS LAYER

The physical system considered is shown in Fig. 16. The loading
consists of a harmonic line load, P = 1 « exp(iwt) per unit length.

The motion of the elastic layer is governed by the wave equation

%y + 32“) (A3.1)
2 2 .

32 G (3
2 P ( 3z

at? 3
in which u is the displacement in the y~direction, G is the shear
modulus, and p is the mass density. Eq. (A3.1) has the plane wave

solution
u(x,2,t) = (A ccs yz + B sin yz) exp(iwt-ikx) (A3.2)

in which A and B are arbitrary constants, k is the wave number, and
wo _ 2 (A3.3)

Satisfaction of the boundary -onditions u(x,H,t) = 0 and sz(x#o,z=0,t)

= 0 leads to the eigenfunctions

vs(x,z,t) = cos(ysz) exp(iwt~iksx) s=1,2, ... (A3.4)
in which
Y, = 2;-1 % (A3.5)
and
2
2 _w¥h 25172

An interpretation of the solutions defined by Eqs. (A3.4) to (A3.6)

and rules for the choice of the sign on kg have been given previously in

Chapter 4.

The shear stress Txy on the plane x=0 corresponding to the sth mode

is
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Txy G T iksG cos(ysz) exp(iwt) (A3.7)

T

Because of symmetry about x=0 it is sufficient to consider only
the region x>0. The shear stress Txy at x=0 vanishes except at the
point (0,0) where the load P = 1 * exp(iwt) is applied as a Dirac delta

3 function 6(z) defined by

R

§(z) =0 for 27(0
(A3.8)
for all £>0

N

'()eé(z)dz

The complete solution is some linear combination of the eigenfunctions

given by Eq. (A3.4). The boundary condition at x=0 is therefore

o
Txy = 2 o T}(:,) = ~§(2z) exp(iwt) (43.9)
; s=1
which by (A3.7) yields
w
iG Z ok cos(y 2) = 8(2) (A3.10) 5
s=1 E

A
CIRRTRES Sy

The coefficients o can be obtained by multiplication of £q. (A3.10) with

v

cos(er) and integration over z

ERCIEAE S

H H

3 iG z [a k f cos(y 2)cos(y z)dz] = f &(2)cos(y_2)dz (A3.11)
ss % s r 0 T

1o

Dl

s=]

e L IR

‘ The integrsl on the rigﬁt has the value 1/2 and the integrals in the sum

vanish except for s=r in which case the value is H/2. Hence Eq. (A3.11)
reduces to

E o = s=1,2, ... (A3.12)

which defines the coefficients oy and the complete solution for x>0 is

e
R ST AN SR e s Rt oo iR £ CR S bt S i W
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u(x,z,t) = —= exp(iwt) 21 COS(YSZ) eXP(-iksx)

: A3.13
GH o1 k_ ( )

with Y, and kS given by Eqs. (A3.5) and (A3.6).
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APFENDIX 4

1 COMPUTATION OF HANKEL FUNCTIONS

§

; It is not advisable to compute values of the Hankel functions of
the secend kind and uth o:der, H(z)(z), for complex arguments,

z = |z|exp(i9), in the range 0<-¢<m from the vilues of the Bessel

functions Jm(z) and Ym(z) by
H;Z)(z) =3 (2) - i Y_(2) (a4.1)

because severe cancellations occur in the subtraction unless !zl is

small (e.g. 9 significart digits would be lost for lzl = 10 and

o = -51/6) [2].
The FCRTRAN 1V subroutine HANKEL, which is listed in Appendix 5,

gl daf a4

LTy

computes ng)(z) ar.’ Hiz)(z) for 0<-¢<7 by ascending series if |z|<10
and by asympto:ic expansions if lzlzzo. The computations are based on

the following expressions which are taken from [2] and are rewritten.

Ascending series:

ng)(z) ca+ > {a+i2/m e (L +1/2+ ... 41/K) bi (A4.2)

i N8

-

Hiz)(z) s fa+i/m+ (L+4/2D)] 2/2
(A4.3)
+ z/2 Z{a + i2/m s (L +1/2+ ...+ 1/k + 0.5/(k+1)]}bi/(k+l)
k=1
in which i = v-1,
a = 1-i2/w * [0.577215664901533 + g¢n(z/2)] (A4.4)
izk
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{
§ Asymptotic expansions:
i B2 (2) = /2T 2) + exp(-iz + 1m0/2 + iW/4)° (1 + z ck) (A4.6)
F ‘___.l
in which
k,-1 k 2 2
: = [k! (i82) ] I {4m” ~ (2k-1)7) (A4.7)
; j=1
In the program, the series, Eqs. (A4.2), (A4.3), and (A4.6), are
truncated when lb l or Ic l <10 Computed values of HCE ) and H(z)
were checked against tables [33, 34] for several values of |z| and $.
The maximum relative error found was about 5 X 10~ 7 and occurred in the
transition zone, lz]-lO, for ¢~-7/2.
14
3 :
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¥
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APPENDIX 5

PROGRAM TORVIB

T PRy

Identification:

WERTET A A

Analysis of torsional motions c¢f circular footings on, or embedded

WRTTTITAT

in, a layered, linearly elastic or viscoelastic medium.

Programmed by Gunter Waas, University of California, Berkeley,
June 1972.

™ ,ﬂ, P

Purgose:

eI

The program is designed to analyze harmonic torsional motions in

et

an axisymmetric system which consists of one or more linearly elastic or
viscoelastic layers supported by a rough rigid base. The layered system
is subdivided into a finite cylindrical region I and an infinite region R.
The two regions are joined together at a cylindrical boundary. The
harmonic motions are excited at nodal joints either by harmonic forces
acting in the angular direction 6, i.e. perpendicular to the axisymmetric
cross-section, or by prescribed displacements in the same direction.

The program consists of the main program TORVIB and the 9 sub-

routines: INPUT, BOUNCO, STIFFT, MODIFY, FORCES, DISPLA, ALAMDAB,
HANKEL and CYMSOL.

Discretization:

The region 1 is discretized by finite elements which are rings
with rectangular cross-sections, while the region R is subdivided into
sublayers. A typical mesh is presented in the figure below which indicates

the order in which elements and nodal joints are numbered.

Size Limitations:

The program uses dynamic storage allocation for arrays, the length

of which is problem dependent. The total storage available for these
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arrays 1s defined by the length, LA, of the array A which appears in the
blank COMMON statement of program TORVIB. The required length for any

problem is

LA>NL2 (2NC+4) +NL(9NC+ 4NDI + 7))+ 9 NDI + 2 NP + NC

in which NL, NC, NDI, and NP are the numbers defined in paragraph B

under Input Data.
Input Data:

A. HEADING CARD (12A6) (Read in TORVIB)

Columns 1 to 72 contain alphanumeric data to be printed as titles on
the output.

B. CONTROL CARD (8I5) (Read in TORVIB)

Cols. 1-5 No. of main layers, NML
6-10 Total number of sublayers, NL
11-15 No. of columns of elements, NC
16-20 No. of elements, the material properties of which are to
be reset, NEC
21-25 No. of nodal loads (external forces or prescribed dis-
placements), JDI
26-30 No. of points in Region R where displacements are to be
computed, NP
31-35 Loading parametexr, MODE
If MODE=1 loading consists of nodal forces
1f MODE=2 loading consists of prescribed nodal displace-
ments )
36-40 No. of frequencies at which the system is to be analyzed,
NFR
(E.g. in the figure NML=3; NL=5; NC=3, NDI=3; MODE=2)

C. LAYER CARDS (15,4F10.0) (Read in INPUT)

One card for each main layer commencing with the surface layer and
ending with the bottom layer.

Cols. 1-5 No. of sublayers to the main layer, NS
6~15 Thickness of the main layer, X
16-25 Mass density of the main layer, Y
26-35 Real part of the shear modulus, C
36-45 Imaginary part of the shear modulus, C,

Note: These data also define the thickness and the material properties

of the finite elements in Region I.
D. RADIAL COORDINATE CARDS (5F10.0) (Read in INPUT)

As many cards are used as needed to contain the radial coordinates of

the vertical grid lines, commencing with the line next to the axis
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of symmetry and ending with the line which defines the bourdary
between Region I and Region R. (E.g., the radial coordinates in
the figure are those of nodal joints 1, 6, and 11) The number of
radial coordinates, NC, is specified in the Control Card.

ELEMENT MODIFICATION CARDS (4I5,3F10.0) (Read in INPUT)

These cards are omitted if NEC=0, ¢ . Control Card. The material
properties of the elements are alv .y defined by the Layer Cards.
However, the material properties of some elements may be changed to
any other values including zero. To do this one card must be input
for each rectangular block of elements for which the properties are
to be reset.

Cols. 1-5 No. of uppermost sublayer of block, IB
6-10 No. of lowermost sublayer of block, IE

11-15 No. of leftmost column of block, JB

16-20 No. of rightmost column of block, JE

21-30 Mass density, RO

31-40 Real part of shear modulus, Gy

41-50 Imaginary part of shear modulus, Gy
(E.g., if the properties of the elements 13 and 14 are to be changed
then iIB=3, IE=4, JB=3, JE=3, and NEC=2 in Control Card.

LOAD CARDS FOR FORCES (15,2F10.0) (Read in INPUT)

These cards are omitted if MODE=2 in Control Card. One card is
needed for each nodal joint at which an external force is applied.

Cols. 1-5 Number of the nodal joint at which force is applied
6-15 Real part of force per radian
16-25 Imaginary part of force per radian

LOAD CARDS FOR DISPLACEMENTS (101I5) (Read in INPUT)

These cards are omitted if MODE=1 in the Control Card. The cards
contain the numbers of the nodal joints at which non-zero angular
displacements are prescribed. All displacements are then auto-
matically prescribed to be in phase and have an amplitude equal to
the radius of the respective nodal joint. As many cards are used as
needed to contain all nodal joints with prescribed non-zero displace-
meats. The number of these nodal joints is equal to NDI specified

in the Control Caxd.

(In the example the nodal joints are 1, 6, and 11)

OUTPUT SPECIFICATION CARDS (15,F10.0) (Read in INPUT)

Cols. 1-5 Number of the interface passing through the point at
which the motion in Region R is to be computed, IZ.
Interfaces are numbered from the surface downward
commencing with 1.
6-15 r-ordinate of point at which motion is to be computed, RR
Use one card for each point in Region R. The number of points, NP,
is specified in the Control Card.
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1. FREQUENCY CARDS (F10.0) (Read in TORVIB)

Cols. 1-10 Angular frequency in radians per unit time
One card for each frequency at which the system is to be analyzed.
The number of frequencies, NFR, is specified in the Control Card.

E

Sevcral problems may be analyzed in one run. The data set for each

i d L

problem commences with a Heading Card.

TTEITIRY

Qutput Information:

S i g

The program prints the following output:

(i) Input and generated data.
(ii) Nodal displacements including amplitudes and phase angles for

S S A R T b

all nodal joints in Region I and for specified points in Region R.

§
;%
3
%
¥
B
:
z

g (iii) Reaction forces for nodal joints at which non-zero displace-~ :
: ments are prescribed, including amplitudes and phase angles. 3
ks E
1 <
3 3
: E
3 3
: 3
:
3
ks
-
3 3
-
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APPELDIX 6

PROGRAM PLAXLY

Identification:

Analysis of plane and axisymmetric layered media of infinite extent
subjected to harmonic loads which act within the plane of the cross-section.
Programmed by Gunter Waas, University of California, Berkeley,
June 1972.

Purpose:

Program PLAXLY is designed for the analysis of harmonic motion in
plane and axisymmetric systems of the type shown in Figs. 4 and 5.
Materials may be either linearly elastic or viscoelastic. The loads
(prescribed nodal forces and nodal displacements) vary harmonically with
time. Static loads may be analyzed by setting the frequency zero. The
prograr consists of a main program PLAXLY and 15 subroutines: INPUTD,
ELSTIF, (UAD, BUUMAT, GENEP, SECEVA, BOMAP, INVERTC, HANKEL, STIFF,
BLOCKS, MODIFY, OUTPUTD, RFORCE and OUTDIS.

Discretization:

The irregular region I, see Figs. 4 and 5, is stbdivided into finite
elements with quadrilateral cross-sections as shown in Fig. 6. The
layered regions are subdivided into thin sublayers such that the layor
interiaces coincide with the finiio element nodes at the plane or
cylindrical boundaries betweea the irregular and tle layered regions.

Any finite elemwnt, except those adjac.at to the boundaries between the
irregular and layered regions, may have zero moduli and zero mass deasity,
whiie tne sutlayers of the layered regions must always have non-zere
property values.

The nw.teriag of the finite clement nodes is arbitrary wich the

fcilowing restriction. If it exists the left layered region L, sce
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Fig. 4, is connected to the first NUMLL+1 nodes, where NUMLL is the number
of sublayers in the left layered regions. The surface layer is connected
to nodes 1 and 2, the second layer to noder 2 and 3, ..., and the bottom
layer (numbered NUMLL) to nodes NUMLL and NUMLL+l. The right layered
region R, if existing, is connected to the last NUMLR+l nodes, where
NUMLR is the number of sublayers in the right layered region. The sur-
face layer is connected to the nodes NUMNP-NUMLL and NUMNP-NDMLL+1, ...,
and the bottom layer to NUMNP-1 and NUMNP, where NUMNP is the total

number of nodes. Because the system is supported by a rough rigid base,
see Figs. 4 and 5, zero displacements must be specified for the nodes at

the bottom.

Size Limitations:

The program uses dynamic storage allocation for arrays the lengths
of which are problem dependent. The total storage available for these
arrays is the length, MTOT, of the array A which appears in tbe blank
COMMON statc tent of program PLAXLY. The length requirement is

MTOT > MBAND (5 MBAND+7) + 3NUMNP + 2 NPBB

in which
MBAND = maximum half-bandwidth of global stiffness matrix, i.e.
twice the maximum difference between nodal point numbers
of nodes belonging to any element +2
NUMNP = total number of nndal points
NPBB = number of points outside che finite element region at which

motion is to be computed.

MIOT is set 15000 in the version of the program listed below. If the
value of MIOT is reset then the dimension of the array A in the blank

COMMON statement of program PLAYXLY must also be adjusced.

Qutput Intormation:

The program prints the following output:

i) 1laput and generated data.

tnbe
[
~

Nodal point displacements including amplitudes and phase angles.

fobe
1)
[
N’

Reaction forces for nodes at which non-zero displacements are

prescribed, including am>litudes and phase angles.
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Input Data:

A. START CARD (5H) (Read in PLAXLY)

The werd START must be punched in columns 1 to 5 on a separate card

at the beginning of each prolLlem. Several problems can be analyzed
fu oile run.

PG i rsiad o S

T

3 3
: B. HEADING CARD (12A6) (Read in program PLAXLY)
: Columns 1 to 72 contain alphanumerical data to be printed as title on 7
3 the output. £
: C. CONTROL CARD (815) (Read in PLAYLY) 3
1 Cols. 1-5 No. of nodal points, NUMNF 3
3 6-10 No. of finite elements, NUMEL E
3 11-15 No. of different materials, NUMMAT 5
1 16-20 No. of sublayers in Region L, NUMLL, less or equal 40 f
21-25 No. cf sublayers in Region R, NUMLR, less or equal 40 E
26-30 No. of points outside of Region I where displacements K
are to be computed, NEF3B b
31-35 No. of frequencies at wiich the model is to be analyzed, E
NFRQ
’ 36~40 If column 40 is left blank problem is taken to be axi- 3
symmetric and ¥JMLL must be zero. 1 in column 40 :
indicates a plane problem.
3 Note: 1If NUMLR is input as minus NUMLL Region R is understood to be
'3 a mirror image of Region L, and some computation can be saved.

D. MATFRIAL CARDS (215,5F10.0) (Read in INPUTD)
3 On. rard for each different material; not more than 40 materials.

Cols. 1-5 Material number, M
6—-10 Interpretation parameter, INTPR

3 If INTPR=0 Cols. 2:-60 contain moduli
E: If INTPR=1 Ccls. 21-60 contain wave velocities
; 11-20 Mass density, RHO
21-30 Real component of shear modulus or S-wave velocity, Gj
31-40 Imagirary part ¢f shear modulus or S-wave velocity, G
41-50 Real part of Poisson's ratio or P-wave velocity, NUj
51-60 Imaginary part of Poisson's ratio or P-wave velocity, NU,

-3 E. LAYER CARDS (1015) (Read in INPUTD)

Lottty A 2R R TOD AL L 1

ALK ..

e

PEXTUIN § WV SV

Cols. 1-5 Material number for sublayer 1

' 6-10 Material number for sublayer 2

-3 etc.

Note: This data is grouped in sets, one set for each layered regicn.
1f there are two layered regions the first sets describes
Region L and the second set Region R. If NUMLL=0 or NUMLR=0
the respective set is omitted. In the axisymmetric case NUMLL

3 should be zero. Each set consists of as many cards as necessary

to contain the material numbers of the layers sequentially,

starting with the surface layer and ending with the bottom

- laver.

P TP ETE AT A FT R 11T P
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F. NODAL POINT CARDS (215,4F10.0,15) (Read in INPUTD)

Cols. 1~-5 Nodal point number, NL
6-10 Parameter indicating if displacements or forces are
specified, ICODE
11-20 r-ordinate, (x-ordinate in plane case), R(NL)
21-30 z-ordinate, Z(NL)
31-40 U(1,NL) see below
41-50 U(2,NL) see below
51-55 Parameter for nodal point generation, INCL
If ICODE is
0 U(1,NL) is specified force in r-direction and U(2,NL) is
specified force in z-direction
1 U(1,NL) is specified displacement in r-direction and U(2,NL) is
specified force in z-direction
2 U(1,NL) is specified force in r-direction and U(2,NL) is
specified displacement in z-direction
3 U(1,NL) is specified displacement in r-direction and U(2,NL) is
specified displacement in z-direction
Note: Nodal point cards need not be input in numerical sequence.
Suppose cards for nodes NA and NB ave input sequentially. If
(NA - NB) <1 then nodal point data will be generated for nodes
NA+INCL, NA+2INCL, ..., NB-INCL where INCL is the integer
specified on the card for node NA. The coordinates for these
nodal points will be obtained by linear interpolation between
nodes NA and NB. The value of ICODE for the generated nodes
is €. 1if (NA - NB) >0 no data are generated. If left blank
INCL is taken as 1.

G. OUTPUT SPECIFICATION CARDS (F5.0,F10.0) (Read in INPUTD)

Cols. 1-5 Number of the interface passing through the poini at
which motion in Region L or Region R is to be computed,
RZ. Interfaces are numbered from the surface downward
commencing with 1.
6-15 Absolute r-ordinate (horizontal) of point at which motion
is to be computed, RZ.
Use one card for each point in Region L and Region R. Cards for points
in Region L are placed first. The number of points, NPBB, is
specified by the Coxntrol Card, see C.

4. ELEMENT CARDS (715) (Read in ELSTIF) g :
Cols. 1-5 Element number, MMM k
i
i
2

E

o

it LS o e e 3 6 L O ki

-7

6-10 Nodal point i, IY(1)
11-13 Nodal point j, IY(2)
16-20 Nedal point k, IY(3)
21-25 Nodal point 1, IY(4)
26-30 Material identification number for element, IY(5,. If
left blank it is taken as 1.
31--35 Element generation parameter, INCL
Note: Order nodal points counter clockwise when the r-axis points
horizontally to the right and the z-axis points vertically
downuwaraz.
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Mote: Element data may be generated automatically if the material
number is the same for all elements in a series and the nodal
point numbers can be obtained as follows:

o
e danlsme Unarssiabores Phaint BaviiubA e il %

i LA LB

IY(2); = IY(Z)j+INCL
3 IY(3); = [Y(3)j+INCL
3 Iv(); = IY(A)j+INCL
where j refers to an element for which the clement number
g MMM; is one less than the element number MMM;j. In this case

only the element card for the first element of the series need
be input. However, the last element (highest element number)
must always be input. If INCL is left blank then INCL=l.

1. FREQUENCY CARDS (F10.0) (Read in PLAXLY)

Cols. 1-10 Frequency of the exciting forces and displacements, CPS
Note: If CPS is positive it is interpreted as the frequency in cycles
per second. If CPS is negative it is interpreted as the
angular frequency in radians per second. The number of

frequency cards is equal to NFRQ specified in the Control
Card, see C.

J. SIOP CARD (4H) (Read in PLAXLY)

=
%
A
3
2
Y
z
)
5
2
%
S
?
:
t
-
%
;
-
Z
£
3
=
%
¥
2
a
i
4
[
5
5
3

For normal termaintion of cxecution the complete dats deck (mot each

individual problem) finishes with a card with the word STOP punched
in columns 1 to 4.
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