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ABSTRACT

A numericaJ method is presented foi the analysis of steady-state

wave propagation problems in linearly elastic or viscoelastic media of

infinite extent. Plane and axisymmetric geometries are considered which

consist of a finite irregoilar region joined to semi-infinite layered

regions. By this method, torsional and vertical vibrations of circular

footings on, or embedded in, homogeneous and inhomogeneous soil layers

over rock are studied.

The irregular region is discretized by compatible finite elements,

while the semi-infinite layered regions are discretized by subdividing

the layers into thin sublayers and by assuming that within each sublayzr

the displacements vary linearly in the direction normal to the layers.

In the direction parallel to the layers, the displacements are expanded

into a finite number of plane or axisymmetric propagating and decaying

wave modes which are determined by the solution of algebraic eigenvalue

problems. Dynamic stiffness macrices are ieveloped which uniquely relate

nodal forces to simultaneous noial dicplacements at the boundary between

the irregular and the layered regions and thus represent the dynamic

response of the semi-infinite layered regions. The dynamic stiffness of

the combined regions is computed by the direct stiffness method. The

equations of motion are derived from the principle of virtual work which

is formulated to facilitate the use of complex variables in the analysis

of the harmonic motion.

Solutions obtained by this numerical method show good agreement

with known analytical solutions. The response of circular footings,

which are supported by soil layers over rock and are excited to vibrate

in the torsional and vertical mode, are investigated; the effects of the

thickness of the supporting layer, embedment of the footing and increas-

ing shear modulus with depth are studied. The screening effect of

trenches on horizontally polarized shear waves is explored by varying

the trench depth and the frequency of the wave motion.
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and Mr. *. W. Cun:n: was Chief of the Soil Dynamics Branch.
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1. INTRODUCTION

1.1 Foundation Vibration Problems

The designer of foundations for machinery must be able to predict

whether or not the response of a foundation to dynamic loads from the

machine will meet certain design criteria and if the vibrations trans-

mitted through the ground will be small enough as not to affect other

machines, vibration sensitive equipment and humans in the neighborood.

The prediction of the vibration amplitudes involves the determination

of the dynamic loads and soil properties, the selection of a mathematical

model and its apply=cis.

Discussions and data on dynamic loads from machines are presented

in Refs. [9, 27]. Periodic loads caused by combustion engines, com-

pressors and turbins are to be distinguished from transient loads caused

by forge hammers and testing machines. If the soil-foundation system

behaves linearly under dynamic loading, the response to periodic loads

can be obtained by superposition of che harmonic response at different

freatincies. Transi.t itoos may be t':eate4 similarly by 2mploying the

Fourier transformation, possibly in a discretized form.

The determination of the dynamic soil properties is discussed

briefly in Chapter 2. The dynamic stress-strain behavior of soils is

approximately linear for small strait, amplitudes ind can therefoie be

represented by elastic moduli. To incorporate material damping in

Sharmon' ' .on complex moduli may be employed.

!ometry involved is often quite complicated. It may consist

of the foundation, several soil layers with different material proper-

ties, rock at some depth and adjacent foundations and structures. To

make the problem amenable to analysis the geometry must therefore be

strongly idealized.

Many problems which are actually three-dimensional in space can

be reduced with some justification to either plane or axisymmetric

- - - - .- -..



proble.z.c For instance, the soil-foundation interaction of a turbine

pedestal, which is ten times as long as it is wide, may be treated as

a plane problem if the motion of the foundation slab in a plane per-

pendicular to the turbine axis is studied. Thus a cross-section of the

soil-foundation system is considered which is plane and )f unit thick-

ness. On the othei hand, the vertical vibration of • machine foundation

which is square in plan may be treated as an axisymmetric problem. For

this purpose the square footing is approximated by a circular footing

of equal area in plan.

Many problems in soil dynamics can be characterized as wave

propagation problems, because the motion in the soil is dominated by

propagating waves. The waves are generated at some source, for instance

by the vibration of a machine footing, and from there they propagate

into the underlying medium which is unbounded except at the surface of

the ground. The effect of the propagating waves is to disperse energy

into the infinite medium and at the same time to carry disturbances a

long distance away from t ie source. Due to energy dissipation by the

waves, the footing respon.ie to dynamic loads is damped and the displace-

ment amplitudes of the fooLing are considerably reduced, especially

at frequencies corresponding to -•ximum amplitudes.

The depth profile at a construction site commonly consists of

norizontally layered soil deposits underlain by rock. The lower soil

layers are usually stiffer than the upper layers, because the overburden

and thus the confirning or consolidation pressure increases with depth.

Waves generated somewhere close to the surface of the ground are

therefore reflected and refracted at the layer interfaces. Since the

soil layers generally become stiffer with depth, the pattern of reflec-

tions and refractions causes the waves to propagate mainly in the

horizontal direction and mosL of the dispersed energy is transmitted

in the softer layers close to the surface. Even in the case of a

vertically vibrating circular footing which is supported by a hcro-

geneous elastic half space, Fig. 1, 67 percent ef the energy is dis-

persed by Rayleigh waves which travel along the surface of the half

space [28]. Therefore an even higher percentage of the energy will be

dispersed in the horizontal direczion if the medium is stratified as

2



described above. If the rock underlying the soildeposits is much
harder than the soil, as is usually the case, it may be assimed for

practical purposes that the rock is completely rigid and that the waves

are totally reflected at the surface of the rock.

1.2 Existing Methods of Analysis

The dynamic analysis of machine foundations is often b&ea on the

mathematical model shown in Fig. 1. A circular footing is sq4orted by

a homogeneous, isotropic, linearly elastic, semi-infinite half space.

This model was first studied by Reissner [39, 40, 41) in the 1930's.

He deri'red analytical solutions for the forced vertical aid torsional

vibra.-ion of the footing. Subsequently, the model has been studied by

some 20 researchers who have directed almost their entire attention to

the dynamic compliances of the vertical, torsional, rocking ahd hori-

zontal vibration of the circular footing. A recently published paper

by Luco and Westmann [231 presents a sunmmary of the various soluticns

and numerical results for the compliances over a large freqpency range.

The paper also contains soac. information on the stress dis'ributioe

under the footing and on the displacements in the far field.

A more satisfactory model for many foundation vibration problems

where rock is situated at shallow depth is shown in Fig. 2. Here, a

circular footing is supported by a homogeneous elastic layer over a

rigid base. This model is more difficult to deal with by analytical

methods than the half space model :ecause additional boundary conditions

have to be satisfied at the rigid base. The forced torsional motion

of the footing was studied by Arnold et al. [6], Bycroft 1101 and

Awojobi [81. The forced vertical motion of the footing was investigated

by Bycroft 110] and Warburton 1461. No methods of analysis for the

rocking and sliding motion are available.

Froblems which inclade layering of the soil or embeament of the

foundation, two significant features of most foundation vibration

problems, have not been solved by analytical methods, since the in-

herent boundary conditions are too complex.

3
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Numerical methods such as the finite difference and the finite

element method are not directly applicable to steady-state wave

propagation problems in an infinite medium, because only a finite

number of nodal points can be considered and therefore the discrete

model is confined to a finite region. This poses the probleLq as to

how wave reflections can be prevented at an artificial boundary. whica

is introduced to confine the model.

Lysmer and Kuhlemeyer [25] developed a viscous uoundaiy which

absorbes much of the impinging wave enerjoy. At the bouudary they

applied viscous forces which they computed from one-dimensional wave

propagation th2ory. The dashpots can be designed to perfectly absorb

the energy contained in P-waves (compressional waves) and S-waves

(shear waves) if the incident angles of the waves are known. However,

the incident angle& are usually unknown and therefore must be

anticipated. If the actual incident angles differ from these anticipated

by not more than about 60 degrees, the dashporq are very effective [251.

Lysmer and Kuhlemeyer obtained good results w16. discrete models

of the type shown irt Fig. 3 when applied to the analysis of steady-state

vertical vibrations of circular footings embedded in a homogeneous

elastic half space. They designed the dashpots at the lower horizontal

boundary for perpendicular incident angles and the dashpots at the

vertical boundary 'or the frequency dependent incidenc angles of the

P and S.-wave components that form a Rayleigh wave.

Kuhlemever [22] extended the method to the case of a layered

half space. He obtained good results in the low freqluency range for

case-. in which the elastic moduil of the layers decreased wilh depth.

However, he observed that in general it is difficult zo predict the

incident angles of P and S-waves at the artificial boundary, because

the P and S-waves undergo multi.ple reflections and refractiens at

the layer interfaces and at the free surface. To complicate the tatter,

the incident angles often change drastically wi.th frequency.

Ang and Newmark [4] developed a "transmitting boundary" at about

the same time that Lysmer and Kuhlemeyer developed their viscous

* boundary. In *ssence, boch boundaries are the same. They are based on

one-dimensional wave propagation theory and require some advance

4



knowledge of the incident angles. Ang and Newmark used the transmitting
Si• boundary in the analysis of ground shock waves caused by nuclear blasts.They demonstrated the effectiveness of the boundary in cases in which

the wave motion was mainly one-dimensional, but they presented little

evidence of the boundary's performance in two-dimensional wave propaga-

tion problems.

However, SLudies by Hadala [18] show that the transmitting boundary

i' useful in certain two-dimensional shock wave problems in layered

semi-infinite media, vhen only a very short time period after the blast

is considered. The degree of perfection required of a transmitting

boundary in these problems is less string:.,c, than in steady-state wave

propagation problems.

Another .uethod of analyzing steady-state wave prcpagation problems

in infinite media is to employ a very large discrete model with a con-

siderable amount of damping. Thus, the waves generated at the source

are strongly attenuated before they reach the artificial boundary, and

after reflection, are further attenuated so that they are almost

dissipated before they return to the zone of interest. This approach

is physically justified if the chosen amount of damping is reasonable

and i, Lhe model is larga .ý,cugh. B.,t _.. p-zzticc, it i.- p'-bibitive'y

expensive in computational time and storage requirements despite the

dramatic advances in the development of digital computers.

A new discrete model which is particularly suited for the inalysis

of foundation vibration problems is described below.

1.3 A Finite Dynamic Model for Layered Semi-infinite Media

The discrete mechod developed in this dissertation is designed to

solve plane and axisyumnetric wave propagation problems in semi-infinite,

linearly viscoelastic media of the type illustrated in Figs. 4 and 5.

Fig. 4 shows the cross-section of a typical plane problem in

which the geometry, the material properties and the external loads do

not change in the direction perpendicular to the cross-section. The

region I is joined along vertical planos to the regions L and R which

5



extend infinitely to the left and to the right, respectively.

The regions L and R consist of horizontal layers which are welded

together at their interfaces and may differ in their material properties

and thickness. They are called the layered or semi-infinite regions.

The region I contains all geometrical irregularities and is therefore

called the irregular region. The regions L, R and ' are welded to a

rigid base which is fixed in space.

The materials involved may be linearly elastic or linearly visco-

elastic. For simplicity, they are assumed to be isotropic.

All external forces act within the irregular regions and vary

harmonically with time. They generate harmonic motion which consists of

propagating and standing waves. The propagating waves transmit energy.

This energy is either dissipated due to material damping within a

finite distance from its source or is propagated outward to infinity

if the layered regions are ideally elastic.

Fig. 5 shows a typical cross-section of the analogous axisymmetric

problem in which the geometry, the material properties and the loads do

not vary in the angular direction.

Since there is no hope tv find closed form solutions to problems

as complicated as Lii,, numeiitial mnthods ýhich reduce the diffirlelcy

by discretization must be resorted to.

The finite element method is the most flexible numerical method

available for solving complex boundary value problems in continuum

mechanics, because it is easily adaptable to complicated geometries

and local changes in material properties. Therefore it is employed to

analyze the motion in the irregular region. It is applied to the

present problem in the displacement formulation. The application is

outlined in Chapter 3.

The layered regions, however, cannot be treated by the finite

element method, because these regions are of infinite extent and their

discretization by finite elements would result in an infinite number

of elements and degrees of freedom.

Since the geometry of the layered region, L or R, does not vary

in the horizontal direction, a numerical method is suggested which

reduces the analysis of harmonic motion in the layered region to a

6



discrete problem with typically 20 to 60 degrees of freedom. To this

end, the region is discretized in the following way. The natural

layers are subdivided into thin sublayers as shown in Fig. 6 and it is

assumed that the displacements within each sublayer vary linearly in

the vertical direction. But in the horizontal direction the displace-

ments are required to satisfy the pertinent, ordinary differential

equations which are obtained from the governing, partial differential

equations by separating the variables. This method is similar to

Lysmer's original lumped mass method for the analysis of Rayleigh

waves [26].

At a given frequency, rhe free motion in the thus discretized

layered region consists of a finite number of wave modes which are

obtained by the solution of an algebraic eigenvalue problem. These

wave modes serve as shape functions for expanding the displacements in

the region in terms of mode participation factors.

If the layered region is separated from the irregular region,

nodal forces have to be applied at the boundary as shown in Figs. 11 and

12 in order to preserve dynamic equilibrium. These nodal forces are

derived from the dispiacem(.nt expansion by observing the strain-

Ji.Xi,•aea•t •.id 2tes -•tra~i, rel.Tlons. ,'ae noda; f4.-ces are

uniquely related to the simultaneous nodal displacementr at the boundary

through a dynamic stiffness matrix which represents the elastic and

the viscous response of the semi-infinite region. The dynamic stiffness

matrix is complex s:-poetric and frequency dependent.

Once tht dynamic stiffness natrices of the layered regions are

estabiished, the analysis of the combined regions L, I and R follows

th, usual procedure of the direct stiffness method. The analysis

yields the displacements and stresses in the irregular and the layered

regions.

The dynamic stiffness matrix of a liyered region is developed in

Chapters 4 through 7 for the plane and the axisymmetric case. In each

case the motions in the plane and perpendicular to the plane of the

cross-section, shown in Figs. 4 and 5, are treated separately since

they are independent.

7



In the layered regions, the motions in the plane and perpendicular

to the plane of the cross--section consist of generalized Rayleigh and

Love waves, respectively.

A generalized Rayleigh wave in the plane case is here defined by

x = u(z) exp (iwt - ikx) (1.1)

z = w(z) exp (itt- ikx) I
in which 6 and 6 are the displacements in the x and z-direction, u(z)x z

and w(z) are the corresponding vertical mode shapes, w is the frequency,

k is called the wave number and i = V-1. The wave defined by Eq. (1.1)

is called a generalized Rayleigh wave, because Rayleigh waves in

layered media are described mathematically in the same way, but are

usually understood as having real wave numbers [16], whereas the wave

number in Eq. (1.1) may be real, imaginary or complex.

A generalized Love wave in the plane case is defined by

6 = v(z) exp (iwt - ikx) (1.2)Y

in which 6 is the displacement in the y-direction and v(z) is they
vertical mode shape. The wave number may again be real, imaginary or

crmplex, while Love waves in layered media are usually understood as

having real wave -'.:'bers [161.

Axisymmetric genLeralized Rayleigh and Love waves are described

similarly in Chapters 5 aad 7. Henceforth, the cases in which the

motion occurs either in the plane or perpendicular to the plane of the

cross-section are called the Rayleigh wave case or the Love wave case

according to the type of wave generated.

8



2. DYNAMIC SOIL PROPERTIES

2.1 Introduction

Successful determination of the response of soil-foundation

systems to dynamic loads is critically dependent on the incorporation

of representative soil-properties in the analysis. Thus considerable

effort has been directed towards the determination of soil properties

in recent years. Several techniques for measuring dynamic soil proper-

ties have been either aewly developed or improved and a considerabl.e

amount of data has been collected [42, 431.

The stress-strain relationships of most soils subjected to

symmetric cyclic loading conditions are curvi-linear as shown in Fig. 7.

The secant modulus, which is determined by the extreme points on the

hysteresis loop, and the damping factor, which is proportional to the

area inside the loop, may be select-' to represent the hysteretic

stress-strain behavior in analyses. Both tho modulus and the damping

factor depend to some degree on thGU ma;nitude of the strain as the

axis and the area of the loop var, with the strain amplitude.

2.2 Experimental Determination

The main procedures for determining the moduli and damping

characteristics at low to moderately high strain levels are summarized

below [431.

a) Direct determination of stress-strain relationships

Hysteretic stress-strain curves of the type shoun in Fig. I

can be obtained in the laboratory from triaxial compression

k tests, simple shear tests or torsional shear tests conducted

§ under cyclic loading conditions. The strain amplitudes in

these tests may vary from about 10 to 5 percent.

9



b) Forced vibration tests

Forced vibration tests may be performed on cylindrical samples

by subjecting them to longitudinal vibrations and torsional

vibrations with strain amplitudes from about 10-4 to 10-2

percent. The tests involve the determination of the resonant

frequencies and measurement of the response at other fre-

quencies.

c) Free vibration tests

In these tests cylindrical soil samples are set into longitu-

dinal or torsional vibrations as in the forced vibration tests

and thereafter the decay of the amplitudes is observed.

These tests are particularly suited for the determination of

the damping factor since the logarithmic decrement at any

given strain level is obtained directly from successive

amplitudes of free vibration.

d) Field measuremenL of wave velocities

Field tests have been used to measure the velocity of

propagation of P-waves, S-waves and Rayleigh waves. The soil

-4moduli for low strains of about 5 x 10 percent can be
determine'd from the w- 'e .elocifes, bi~t damping factors have

not been obtained from these tests.

2.3 Linearity

The strain amplitudes in soils beneath foundations for vibratory

machines are usually small [42]. Test data for soils under cyclic

loading conditions have shown that the soil response is approximately
-3linear for small strains, say 10 percent 143]. Thus the secant

moduli and the damping factors used in analyses of foundation vibration

problems may well be assumed to be independent of the strain amplitude.

Even in the case of large strains which are developed in soils during

earthquakes, researchers have successfully employed linear analyses

using soil properties based on observed strain amplitudes [20].

10



ITh
~ 1 2.4 Complex Modulus Representation

Though the internal damping in soils is not considered to be

caused by viscosity, the stress-strain behavior of soils under vibratory

loading is similar to that of viscoelastic materials. This permits

"the use of complex moduli in representing the stress-strain behavior

of soils that are subjected to loads varying harmonically in time.

The stress-strain relation under uniaxial conditions can be expressed by
lc

a exp (iwt) = Ec c exp (iwt) (2.1)

in which

acc +i 2 (2.2)

E = C + i C (2.3)

1 2
I E (w) = E1 (W) + i E2 (W) (2.4)

are the complex stress, the complex strain and the complex modulus,

respectively, w is the circular frequency and i = YT. The superscript
c denotes a complex quantity.

The complex stress and strain may be visualized as a pair of

vectors rotating at the frequency w about the origin of the complex

plane c.s shown in iig. 8. At any given time, the actual stress and

strain are the projections oi the vectors onto the real axis. The

complex modulus is generally frequency dependent. Its real component,

El, is the modulus of strain which is in phase with the stress and its

imaginary component, E2 , is the modulus of strain which is 90' out of

phase with the stress. E is associated with the elastic phenomenon in

which energy is stored in a recoverable form while E is associated

with the viscous phenomenon in which energy is dissipated.

Due to the viscous effect, the strain vector lags behind the

stress vector by an angle L which lies between 00 and 900. This
L

angle is called the "loss angle" and its tangent is called the "loss

tangent" because it is associated with energy loss. The loss tangent

is defined by

tanýL = E2 /E 1  (2.5)

and is related to the damping factor or fract~ion of critical damping,
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8, and the logarithic decrement, D, by [42]

tandL = 2 B D/3.14 (2.6)

if the damping is small. This is the case in foundation vibration

problems.

Since most data on damping characteristics of soils has been

presented in terms of the fraction of critical damping, B will also be

used here as the measure for material damping. The zomplex modulus may

be written accordingly

EC = E (+i 2 ) (2.7)

The use of a complex modulus implies that the actual hysteresis

loops of the type shown in Fig. 7 are approximated by elliptical

j hysteresis loops which are equivalent with respect to the slope of the
principle axes and the areas enclosed by the loops. Thus the secant

modulus, determined as shown in Fig. 7, equals the real component of

the corresponding complex modulus, and the energy losses per cycle,

which are proportional to the areas of the hysteresis loops, are also

matchpd.

- I The complex modulus Ec used above may represent any of the usual

j moduli, Youag's modulus, shear m~dul]:q or bulk modulus. The relations

between the complex moduli of an isotropic, linearly viscoelastic

material at a given frequency are analogous to those between the real

moduli of an isotropic, linearly elastic material. Thus, a complex
Lame's constant Xc and a complex Poisson's ratio . c may be defined by

Sc X + i W22 Gc) (2.8)
2 3Gc _ Ec

c EC
V C I + i V 2 2 G- i c9

c 2 Gc

in which Ec = 1 + i E2 and Gc = GI + i G2 denote the complex Young's

modulus and shear modulus, respectively.

Values for Ec and Gc can be directly determined from longitudinal

and torsional vibrations of cylindrical soil samples in forced and free

vibration tests. However, later in the analyses it is more convenient

12
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to u-e the coplex Lame's constants Xc and Gc.

Henceforth, the superscript will be omitted to simplify hbe

notation. It is understood that A and G denote complex moduli unless

otherwise stared.

2. Wave Velocities

The velocity of P-waves, Vp, and the velocity of S-waves, VS, in

linearly viscoelastic media are [17]

Vp= Re /p/(X + 2G) (2.10)

VS= Re V'PThV (2.11)

in which o is the mass density and the symbol Re specifies the real

part. Vp and VS vary with frequency as do the complex Lame's constants.

If the imaginary parts of the complex Lame's constants are small,

Vp - Re V(X+2G)/p and VS Re AG/P.

In linearly elast 4 c media, the P-wa';e and S--wava velocities are

independent of frequency. They are

V= A( + 2G)/P (2.12)

S"VS

in which G and A denote real Lame's constants.

2.6 Material Damp.ing in Foundation Vibrations

The frequency of motion hardly affects the secant moduli and the

damping values of soils throughout the practical frequency range.

Therefore the complex moduli may be considered frequency independent.

This means that the damping forces in soils are proportional to the

strain amplitudes rather than to the strain velocities [43].

The fraction of critical damping in foundation vibration problems

is usually small. Its values for shear deformations may typically

vary from 2 to 5 percent, and its values for compressional deformations

13
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are even less. Therefore, it might be argued that a viscoelastic

theory for analyses of foundation vibration problems is not warranted,

especially so, as relative errors in the determination of the secant

moduli usually e--ceed 10 to 20 percent. However, it takes little

effort to include damping in the analyses, since most of the computations

will have to be performed using complex algebra. Furthermore, the incorp-

oration of damping avoids possible singularities in the analyses, which

might be troublesome, and it provides a more realistic model.

14
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3. METHOD OF ANALYSIS

3.1 Method of Complex Variables for Harmonic Metion

It is convenient to represent the fotces, displacements, strains

and stresses of harmonic motion by complex variables. If f(t) is

harmonic in time it can be defined by

f(t) = f cos(w~t + 4) (3.1)

0

or

f(t) = f coswt-f2 sinwt (3.2)

or

f(t) = Re (fc expxwt) (3.3)

i:. which w is the circular frequency and f is the complex variable

fc = f + i f (3.4)
1 2

with i = /-. The amplitude f is

j21 2 (3.5)

and the phase angle 4 is

S= tan- (f/f 1 ) (3.6)

Equation of Motion for Discrete Systems

The equation of motion for a simple damped oscillator with a mass

M, a spring constant K, and a dashpct constant C is

K uMt) + C z(t) + M i(t) = P(t) (3.7)

in which u, Zi, and U are the displacement velocity and acceleration of

the mass, respectively, and P(t) is the driving force. For harmonic

"motion at the frequency w, Eq. (3.7) can be reduced to

(Kc• 2 M) uc pc (3.8)

15
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in which [K =1 1 + i K2  K + i C w (3.9)

C

u = uI + i u 2 (3.10)

P =P 1 + i P2

Eq. (3.8) is a time independent, complex, linear equation which is

equivalent to the two real equations

2
K1 1 1 K 2 u2 1 M 1 1 (3.12)

K1 u K2 + K2 u1  W 2 M u2 = 2 (3.13)

The first equation states equilibrium when sinw-=O, the second when

cost.t=0. If both equations are satisfied then equilibrium prevails at

any time.

The equations of harmonic motion for a system of n degrees of

freedom are, in generalization of Eq. (3.8),

([Kc] - W 2 [M {uc} = {PC} (3.14)

in which the mass matrix [M] and the complex stiffness matrix [KC] = [KII

+ i[K 21 are of order n x n. [K 1 ] contains the stiffness coefficients

and [K 2 ] the damping coefficients multiplied by w. The vectors {uc) and

{P'} contain the complex displacements and forces, u. and P j=l, ... ,3 3

n, respectively. The complex stiffness matrix [KcI may be generated in

the same manner as a real stiffness matrix, the only difference being

that complex moduli are used instead of real moduli.

Equation of Motion for Continuous System

The equilibrium conditions for an infinitesimal element together

with the strain-displacement relations and the stress-strain relations

yield the field equations of motions in terms of the displacements.

If the motion is harmonic the field equations can be reduced to

time independent equations in the same way as shown above. Using

rectangular Cartesian coordinates, x, y, z, as indicated in Fig. 4, and

assuming plane strain conditions, i.e. all derivatives with respect to

y vanish, the field equations for the homogeneous case, in which no

external body forces act on the element, are

16
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a 2u' a2uc a2uc a2 c

G xUx --- + u 2 c 0 (3.15a)

2x+ z2 /+ (X + G) x+ + 2
2,z -;2 a ýx x

,/a2uc a2uc /dU2U\ 2 c

G z + + + 2z) + W2 uc =0 (3.15b)
2 2 z

xa zz

2 ac a2uc
G - +-- y + PW 2  C c 0 (3.15c)

\•2 z2 / y
c L cux. U Y and uz are the complex displacements in the x, y, and z-

dirL.tions, respectively, p is the mass density and X and G are the

complex moduli introduced in Section 2.2. Eqs. (3.15) are valid for

small deformations in an isotropic, linearly viscoelastic medium. Eqs.

(3.15a) and (3.15b) are coupled. They govern the motion in the x-z-

plane, while Eq. (3.15c) governs the motion in the y-direction.

The analogous equations for axisymmetric couditions, when all

derivatives with respect to the angular direction 0 vanish, are

u- au u, au +G a~u 3uc)c
2r)G + c) araz

(3ar2  r ar 2  -r'z 3 2

(3.16a)

2c 2 c 2 c c 2 c
dU au au U I- u a au~

(? +2G) +r r
\ar.) z r az az 2 / 2ar 2  r 3r araz r r)2 c

+ r2 u 0 (3.16b)
r

C uCa us 12 c
u G -+ I2Iec u + u + pWa U8 0 (3.16c)

in which c uc, and are the complex displacements in the r, 0, and

z-directions of a cylindrical coordinate system as indicated in Fig. 5.

Eqs. (3.16a) and (3.16b) are coupled. They govern the motion in the

"r-z-plane, whereas the motion in the e-direction is governed by Eq. (3.16c).
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Principle of Virtual Work

It is expedient to have a stationary principle available for the

viscoelastic medium- as discretized by the finite element method. To

this end, the well known principle cf virtual work will be specialized

for application to harmonic motion. The principle of virtual work for

the dynamic case can be stated in the following form [17]

f V{}T{0 }dV - f {u}T({.} - P{u})dV - f {G}T{dS = 0 (3.17)

V V S

in which the stress vector {W}, the body force vector {F}, the surface

force vector {T}, and the acceleration vector {U} are functions of space

and time. rhe vectors {M} and {E} contain the virtual displacements and

virtual strains, respectively. The integration f V ... dV is performed

over the total volume of the body and the integration f S "" dS is per-

formed over that part of the surface of the body where no displacements

are prescribed. The virtual displacements are small, triply differen-

tiable functions of space and must vanish over the surface of the body

where displacements are prescribed [17]. Accordingly, the virtual

strains are small, twice differentiable functions of space.

Eq. (3.17) states that equilibrium prevails if the sum of the

virtual work, performed by the actual forces and actual strains on the

virtual displacements and virtual strains, vanishes.

Alternatively, the rate of the virtual work may be considered.

This leads to the equation of motion in the following stationary form

f{ 1 T }dV - . { (F} - P{U})dV - j {W }T{T}dS = 0 (3.18)

JV *V S

in which the vectors {U} and {1} contain the virtual velocities of the

displacements and strains, respectively.

If the motion is harmonic with the circular frequency w, each

variable in Eqs. (3.17) and (3.18), including the virtual displacements

and the virtual strains, can be described in time as is f(t) in Eq.

(3.2). The time derivatives in Eqs. (3.17) and (3.18) are
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{ W} = - 2({u Cost - 2 sint) (3.19)

{u} W- ({^Ul sinwt + fu 2 cosWt) (3.20)

{} =- W ({MEI sinwt + {c2 } coswt) (3.21)

The int-gration of Eqs. (3.17) and (3.18) over the time of one period

leads to

f VI IT I}T1 + R2}1 T{a2 - { 11T({F1} + Pto2 { - {U2 T({F2} + PW2 {U2})JdV

V

- f ({u1T{T + {u2 H{T 2 })dS = 0 (3.22)

-S

and

f V{11T{a2} - E2 T1 cl) - {Q1 }T({F 2} + pto2{u2}) + {U2}T({FII + o 2{ui})IdV

V

- f T ({~iuI}T 2 I - {d2 IT{TI })dS = 0 (1.23)

respectively, since

sin2 wt dt = cos twt dt = Tr/w (3.24)

o 0

f2i/wJ sinwt- coswt dt = 0 (3.25)
0

Now, Eq. (3.23) is multiplied by i = /T and added to Eq.

(3.22). If complex variables are introduced according to Eqs. (3.3) and

(3.4), this leads to the equation of harmonic motion in the stationary

form

f {9} ac}jdV - f {iI ({f'c• + w2 {ucI)dv - f {*G{TcIdS = 0

V V S
(3.26)

in which the superscript c indicates a complex variable, as before, and

the indicates the transposed compl,'-x conjugate (e.g. {uC}={u l}+i{u 2}and

1 2
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Henceforth, however, the superscript c will be omitted for con-

venience, and it is understood that the quantities of harmonic motion

are represented by complex variables as is f(t) in Eq. (3.3).

3.2 Finite Element Method

The finite element method is a numerical technique for obtaining

approximate solutions to complex boundary value problems. The develop-

ment of the method in the field of structural mechanics began in the

early 1950's with the work of Turner et al. [45]. Since then the method

has been developed extensively and is now widely used in structural

and continuum mechanics. It has also been applied successfully to

various other physical problems.

A recently published text by Zienkiewicz [53] describes in detail

the application of the finite element method in structlxral and continuum

mechanics. The text also contains an extensive list of references on

the subject. The finite element method has been used very successfully

in static and dynamic analyses of plane and axisymmetric problems [12,

13, 50, 511. It has also been applied to quasi-static and dynamic

analyses of viscoelastic continua with considerable success [1, 3, 11,

32, 35].

Since the finite element method is widely known, only the principal

steps involved in the particular application of the method to the

analysis of harmonic motion in a viscoelastic medium are summarized

below.

(i) Discretization:

The irregular region I is subdivided into subregions, called

finite elements, as shown in Fig. 6. The finite elements are prisms in

the plane case and rings in the axisymmetric case and have arbitrary

quadrilateral cross-sections. They are interconnected at straight or

circular nodal joints, which are located at the edges of the elements.

Because the strains are either plane or axisymmetric, the displacements

vary only over the cross-section of the elements. It is assumed that

the displacement field of an element is restricted to a finite number

of degrees of freedom. Here, the displacfments of the nodal joints are

20
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introduced as the degrees of freedom. Each degree of freedom of an
element is associated with a shape function which defines the displace-

ment variation within the element. The shape functions vary linearly

along the boundary of an element, see Section 3.3. Hence, the displace-

ments across the boundary between adjacent elemer.s remain continuous

during deformation if the elements are interconnected at their nodal

joints.

(ii) Eltment matrices:

The influence coefficients of an individual element with respect

to unit nodal displacements are derived from the principle of virtual

work, Eq. (3.26). This step is performed in Section 3.3. The influence

coefficients are collected in the element stiffness matrix [K'] and the

element mass matrix [M']. Because harmonic motion of a viscoelastic

body is considered, JK'] is here a complex matrix representing the

viscous as well as the elastic resistance of the element against

deformation. The matrix [M'] is real and represents the inertia forces

of the element.

(iii) Assemblage of finite elements:

The elements are assembled by matching the displacements of

adjacent elements at common nodal joints. The global stiffness and nass

matrices of the assemblage, [K] and [M], are accordingly formed by

addition of the element matrices while observing the global numbering

system of the nodal displacements. The procedure is that of the direct

stiff.ess method [53].

t (iv) Equation of motion:

Nodal displacements are prescribed which provide the kinematic

stability of the body and external loads are applied as discrete forces

acting at the nodal joints or as prescribed noda] displacements. The

loads vary harmonically with time at the circular frequency w. The

equation of motion is therefore

[A] {u} = {b} (3.27)

in which

S[A] = [K] w2 (3.28)
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is a symmetric banded matrix with complex coefficients. The vector {ul

contains the complex nodal displacements and the vector {b} the complex

nodal forces.

Eq. (3.28) can be partitioned in the following way

Aff AfsI ufj bf

T =(3.29)
Asss] us bs

in which {u contains the unconstrained or free nodal displacements and
{us I the prescribed nodal displacements. Accordingly, {bf I contains

the prescribed nodal forces and {b } the reaction forces. Hence, Eq.
(3.29) can be reduced to

lAff] {ufI = {bfl - [Afs] {uIs (3.30)

(v) Solution of equation:

Eq. (3.30) constitutes a set of simultaneous complex linear

equations. The coefficient matrix is symmet::ic, sparse and also narrowly

banded if a favorable numbering system of the nodal displacements is

used. The equations may be solved by a Gaussian elimination algorithm

without pivots using complex arithmetic. Once the displacement vector

$.Uf) is known the reaction forces {b s} can be computed by

{bs = [Afs] T uf } + [AssI {uIs (3.31)

Further details of the procedure outlined above are given in

Ref. [53]. However, a few points need additional discussion.

The semi-infinite layered regions R and L must also be considered.

Dynamic stiffness matrices for these regions are derived in Chapters 4

through 7 for the cases of plane and axisymmetric Love and Rayleigh wave

motion. When these matrices are added by the direct stiffness method

into the global matrix [A] of Eq. (3.2/), the influence of the semi-

infinite regions on the motion in the irregular region is properly

accounted for.

The accuracy of the analysis depends upon the fineness of the

finite element mesh. In general, the larger the strain gradient the

finer should be the mesh. Therefore the mesh should be refined in areas
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where large strain gradients are to be expected.

Characteristic features of harmonic motion in elastic or visco-

elastic media are the wave lengths of P and S-waves. In order to obtain

a good approximation to the actual wave motion, the maximum cross-

sectional dimension of any finite element should be small compared to

the length of S-waves, which is always shorter than the length of P-

waves in the same medium at any given frequency. Lysmer and Kuhlemeyer

[25] recommended that the maximum dimension of a rectangular finite

element with a linear strain field be not greater than about 1/10 of

the length of S-waves in the medium. This recommendation also applies

to the quadrilateral finite elements presented in Section 3.3.

Numerical solutions are compared with analytical solutions in

Chapters 9 and 11. The comparisons show clearly that very good results

can be obtained by the proposed method for steady-state wave propagation

problems in semi-infinite elastic and viscoelastic media.

It was mentioned earlier that the set of complex linear equations,

Eq. (3.30), may be solved by a Gaussian elimination algorithm without

pivots. The algorithms, used in the computer programs of Appendix 5 and

6, are coded in the FORTRAN IV language and employ the complex arithmetic

capabilities of FORTRAN IV. By utilizing complex arithmetic, computer

storage requirements are half that required for the equivalent real

arithmetic computation, in which the complex matrix and the complex

"rectors are decomposed into real and imaginary parts. Since the co-

efficient matrix is banded and symmetric, only half of the band needs

to be stored in the computer memory.

5- No numericol sensitivity has been noted in the solution of the

equations. Numerical sensitivity could arise when the frequency of

excitation is extremely close to the natural frequency of a subsystem

of the discretized model. But this cannot be the case if the model

contains some viscous damping associated with each degree of freedom,

because then none of the subsystems possesses a real natural frequency

whereas the frequency of excitation is always real. If the model contains

no damping, the natural frequency of a subsystem could coincide with

the exciting frequency. But this is very unlikely. Therefore an al-

gorithm without pivots is used and the extra computation time and storage

needed for pivoting are saved.
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3.3 Element Stiffness and Mass Matrices

In order to assemble the matrices [K] and IM] appearing in Eq. (3.28)

it is necessary to first determine the matrices [K'] and [M'] for the

individual elements of the assemblage. The plane or axisymmetric cross-

section of a typical element is shown in Fig. 9, which also shows the

global coordinate system (r, z) and a local coordinate system (n, •).

The two sets of coordinates are related through the transformation

r 1  z 1

{b} r2  z2

<r z> = T (3.32)
r 4 z 4

in which rm, zm, m=1,2,3, 4 , are the coordinates of the four nodal points

of the element cross-section and {b} is the column vector defined by

1i (b-))(I+n) 
(3.33)

[(l+•) (1-n)J

The Jacobian matrix of the transformation is
rl z"

Dr 3zi r 2  z 2

[J] 9 = [D r3 z 33.)

r 4  z4

in which

i1-(-) -(i+n) (l+n) (1-n)] (33

[D] (3.35)

The de.terminant of [J] is denoted J.

For both the Love wave case and the Rayleigh wave case the

assumption will be made that the displacements within the element vary

according to
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T 6

6(r,z) = 6(C,n) = {b}T 2 (3.36)
3

4

in which 1 6 6 and 6 are the nodal displacements in some
1' 2' 3 4

coordinate direction of the element shown in Fig. 10. Due to the special

properties of the chosen transformation, Eq. (3.32), this implies that all

displacements vary linearly along the boundaries of the element and that

all elements remain compatible as the nodal joints are displaced.

Element Matrices for Axisymmetric Love Wave Case

In the Love wave case, the quadrilateral element shown in Fig. 10a

has four degrees of freedom which art the nodal displacements in the

0-direction. The displacement field 6e =( r, 1) is defined by Eq.

(3.36).

The strain-displacement relations in cylindrical coordinates are

Y ?6 and - (3.37)
T- r 'zO az

Differentiation by the chain rule yields

3~r
6 [ = [T] {6} (3.38)

;jz

in which [T] is the 2 x 4 matrix

[T] = [JI-i [D] (3.39)

and the matrices [J] and [D] are those defined in Eqs.(3.34) and (3.35).

The strains expressed in terms of the nodal displacements are

{} = { = IS] {6} (3.40)
Yrz
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in which [S] is the 2 x 4 matrix

tll b1 /r t1 2 - b 2 /r t 1 3 - b 3 /r t14 - b 4 /r]IS) 1 1 1 (3.41)

t 2 1  t 2 2  t 2 3  t 24  ]

The elem2nts tij., i=l, 2, j=l, 2, 3, 4, are the elements of [T] and

bj, j=l, 2, 3, 4, are the elements of {b}, defined by Eq. (3.33).

The stress-strain relation of an isotropic material is

{O}= jTre} = G{&} (.2
I Trz

in which G represents the complex shear modulus if harmonic motion in a

viscoelastic material is considered.

The nodal forces Q., j=l, 2, 3, 4, which are shown in Fig. 10a and

are collected in the vector {Q}, are the only external forces acting on

the element. They vary harmonically in time. Since [S] and {b} are

"real, the principle of virtual work, Eq. (3.26), yields

c f {61*[S]T[s(]{6dV - 62 { 6 }*{b{T{ 6 }dV = {6}1*iQI (3.43)
V V

in which the vector {61 contains the virtual displacements of the nodal

joints and the denotes the conjugate transposed.

The four virtual displacement states in each of which a single

component of {6} is assigned the value 1 while the other three com-

ponents are 0 yield the matrix equation

([K'] - 2 [M']){6} = {Q} (3.44)

in which [K'] is the 4 x 4 element st 4 rfness matrix

[K'] =G f•% IS]T[S]dV (3.45)

and [M'] is the 4 x 4 consistent element mass matrix 151

[M'] = fb}{b}TdV (3.46)

The volume integral can be converted to an area integral since

dV=r dO dA for an axisymmetric element. la the ý-r, coordinate system

dA=J d' dn. The stiffness and mass matrices for a one radian segment

of the element are therefore
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[K'] = _f ' 1- T [S] r J dr dr (3.47)

[M = - 1 f pb}{bT r J dE dnl (3.48)

The integration is performed numerically by Gaussian quadrature

with a four point scheme [53].

Element Matrices for Plane Love Wave Case

Axisymmetric strain conditions become plane strain conditions at

large distance from the axis of symmetry. The matrices for a plane

strain element can therefore be deduced from Eqs. (3.47) and (3.48) by

considering a segment of infinite radius subtending a unit arc.

Since [3] reduces to [T], defined by Eq. 3.39, the matrices are

[K'I= f _[T]T[T] J dý dn (3.49)

[M'] f f P{b}{b}T J dE dn (3.50)

Element Matrices for Axisymmetric Rayleigh Wave Case

The Rayleigh wave case involves two displacements and two forces

per nodal joint as shown in Fig. 10b.

The r and z displacements within the element are, according to

Eq. (3.36),

)1 = [N]{61 (3.51)

in which {6} contains the nodal displacements 6 jl, ... , 8, and [N]

is the 2 x 8 matrix
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b 0 b? 0 b3 0 b4 01

[N] 0 b 0 b2 0 b3 0 b4 (3.52)

The elements b., j=l, 2, 3, 4, are the components of tb} defined in

Eq. (3.33).

The strain-displacement relations are

36 36
Cr=-r r CZ =5 z (3.53a)

C = rrE Y z + -r (3.53b)
a r rz z 3r

Differentiation by the chain rule leads to

r

{C) = z = [s]{6} (3.54)

Y
rz

in which [S] is now the 4 x 8 matrix

t 0 t 0 t 0 t 0

11l 12 13 14

I 0 t 2 1  0 t 2 2  0 t 2 3 0 t 2 4
bI/r 0 b2/r 0 b3/r 0 b4/r 0

t t t t t t t t
t 2 1  ll t22 t12 23 13 24 14

The elements tiv, i=l, 2, j=l, 2, 3, 4, are the elements of [T] defined

in Eq. (3.39) and bj, j=l, 2, 3. 4, are the elements of {b) defined in

Eq. (3.33).

The stress-strain relation for an isotropic material is

a

{z= = [C]{&1 (3.56)

rz
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-g ý, -7

in which

X +2G +2G X

[C] = X A + 2G (3.57)

L 0 0 0 G

If harmonic motion in a viscoelastic material is considered, the Lame's

constants X and G are complex moduli, which are generally frequency

dependent.

The further derivation of the stiffness and mass matrices is

analogous to that in the Love wave case and leads to the 8 x 8 matrices

for a one radian segment of the element

[K') = Sfl_ TiC]s] r J dE dn (3.58)L - -1

[M'] =- fl- PN]TIN] r J dE dn (3.59)

in which IS] is the matrix defined by Eq. (3.55).

The integration is again performed numerically by Gaussian

quadrature with a four point scheme.

Element Matrices for Plane Rayleigh Wave Case

The stiffness and mass matriceýs for the plane strain element can

be deduced from those for the axisymmetric element by considering an

elemcnt segment of infinite radius subtending a unit arc. This leads

to

[K'] = f J I [I ] J dý dnI (3.60)

[N'] = i [N]TIN] J dC dn (3.61)

in which [•] is the 3 x 8 matrix obtained by deleting the third row in

matrix [S] and [ý] is the 3 x 3 matrix obtained by deleting the third

row and the third column in mpcrix [C].
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4. PLANE LOVE WAVE MOTION

4.1 Eigenvalue Problem for Continuous Layered Reion

Free harmonic motion under plane strain conditions in a semi-

Infinite layered region of the type shown in Fig. 4 is considered. The

region consists of n isotropic linearly elastic or viscoelastic layers.

which are welded together at their interfaces. The jth layer has the

mass density p. and the complex shear modulus G.3. All displacements are

perpendicular to the x-z-plane and are described by

S= 6 (x,z,t) = u(x,z) exp(iwt) (4.1)

y

in v ich w is the circular frequency.

The governing homogeneous differential equations for the spatial

part of the displacements in the n layers are, according to Eq. (3.15c),

G. + I Z2u J u P 0 j2, ... , n (4.2)

These partial differential equations may be reduced to ordinary

differential equations by separation of the variables. The assumption

that

u(x,z) = v(z) g(x) (4.3)

leads to

6 2 2
2 + 1_ jl .. n (4.4)

2 v G.dz a x2

which can only be valid for all values of x and z in the respective

layer if both sides of Eq. (4.4) are equal to the same constant. Setting

2
this constant equal to k yie)ds the ordinary differential equations

2
d + (P 2 pjG - k2 )v = v jl, ... , n (4.5)

dz 2  J
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and
2F

2 g = 0 (4.6)

The latter equation has a solution

g = exp(-ikx) (4.7)

in which i = /ri. The parameter k is called the wave number, which, if

real, is related to the phase velocity, c, and to the apparent wave-

length in the x-direction, 2, by

k. (4.8)c Z

Thus, a solution to Eq. (4.2) may be expressed in the form of a wave

6 = v(z) exp(iwt-ikx) (4.9)

The function in the z-direction, v(z), which will be called the mode

shape of the wave, must satisfy the n ordinary differential equations,

Eq. (4.5). In addition, the boundary conditions at the planes, z=zj,

j=l, ... , n+l, i.e. continuity of the displacements and shear stresses

at the interfaces between the n layers, zero displacements at the rough

rigid base and zero shear stresses at the free surface, must also be

satisfied. Since the shear stress on a horizontal plane is
6 dv

T = G z = G "-v- exp(iwt-ikx) (4.10)
zy ýz dz

these boundary conditions may be expressed in the form

d
z. v(z) G d (z) j=2,3, ... n (4.11b)

Gd j+l ddz

dz
d (z=0) =0 (4.110)

and

v(z-H) = 0 (4.11d)

in which z! and z'' refer respectively to planes immediately above and
3 3

immediately below the interface z..
i
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The general solution to Eq. (4.5) for z <z<zJ+ is

v(z) = a. cosy z + b' siny z (4.12)

in which

Y2 = 2 P4/G. - 2 (4.13)

The shear stresses at the interfaces j and j+1 in terms of vj=v(z.) and

v j+=V( j+1) follow from Eqs. (4.10) and (4.12) and, after some algebra,

re&dce to

-Tz (Z) = v. + d v exp(iwt-ikx) (4.14a)

zy cjj 3j3j+l1

and

T zy(Z+I) = (djv. + c v j+) exp(iwt-ikx) (4.14b)

in which

c. + G.y cotyjh (4.15a)
3 33i i i

d. = - Gjy./siny h. (4.15b)

and h z j+l-zj.

Substitution of Eqs. (4.14) into Eqs. (4.11) leads to a set of n

homogeneous transcendental equations

clv1 + d~v2 = 0

d._ivj_I + (cj_1 + c.) v. + d v = 0 j=2, ... , n

d V + nc + cn) v = 0
n-ln-l n-1 n n

(4.16)

Non-trivial solutions to these equations can be obtained only for eigen-
2values, k , which cause the determinant of the coefficient matrix to

vanish. Eq. (4.16) states a difficult eigenvalue problem, because the

eigenvalues are "hidden" in the arguments of the transcendental ex-

pressions c. and d.. Infinitely many different eigenvalues and associated3 3

eigenfunctions exist; but it is difficult to obtain even a few of them,

because they can be found only by search procedures.
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In the study of the earth's crust, seismologists face eigenvalue

problems of thi% type whpn they calculate dispersion curves for Love

waves in a layered medium [16]. Dispersion curves show the relation

bet,'2en the frequency or period of a harmonic wave and its phase

velocity or wave number. Only the fundamental wave mode, which is the

mode of greatest phase velocity or smallest wave number at any given

frequency, and one or two higher modes are usually considered. Haskell

[191 has formulated a matrix transfer method suited for automatic

computation that permits finding a few of the lower wave modes in a

layered elastic medium.

Expansion of Displacements into Eigenfunctions

The actual displacements in the layered region R shown in Fig. 4

may be expanded into eigenfunctions, which are determined from the

solutions to Eq. (4.16) and which satisfy the differential equations,

Eq. (4.2), and the boundary conditions at horizontal planes, Eq. (4.11).

According to Eq. (4.9), the expansion is of the form
Coe

6(x,z,t) = L v ss(z) exp(iwt-iksx) (4.17)

s=l

in which v (z), k and L are the mode shape, the wave number and the
s s S

mode participation factor of the sth mode or eigenfunction, respectively.

The mode participation factors have to be chosen so that dis-

placement and stress conditions at the boundary between the irregular

and the layered region are satisfied. In addition, only those modes

which transmit energy in the positive x-direction and do not increase
in amplitude with x can oe included in the expansion. These latter

conditions follow from energy considerations. Since the motion is

generated by external forces in the irregular region and since the

layered region R is open to the right, the energy transmission must be

positive in the x-direction and the energy density cannot increase with x.
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The method outlined above, which is based on continuum theory,

was employed to solve a very simple boundary value problem involving

a line load on a homogeneous layer, see Appendix 3. However, major

difficulties arise when a more complicated problem is to be solved by

this method. In actual analyses, the number of eigenfunctions included

in the expansion, Eq. (4.17), will be small, instead of infinite, because

the determination of any one eigenfunction takes a considerable effort.
In addition, it is difficult to ensure that none of the more important

eigenfunctions is omitted in the expansion and that a good approximate

solution is obtained.

Therefore, a discrete method will be developed for the analysis

of harmonic motion in the layered region. This method io suited to

automatic computation, provides accurate results and is easy to use in

connection with the finite element analysis of the irregular region.

4.2 Eigenvalue Problem for Discretized Layered Region

The layered region is discretized in the vertical direction by

subdividing the region into thin layers as shown in Fig. 11 and assuming

that v(z) varies linearly within each layer. In order for this assump-

tion to be reasonable the thickness ,h, of each layer must be chosen

small compared to the wavelength of shear waves in the iyer. For this

reason the number of layers, n, in the discrete system is usually larger

than the number of natural layers; a typical analysis involves from 10

to 40 layers. The region is subdivided into layers so that the inter-

faces between the layers coincide with the nodal joints at the vertical

boundary with the irregular region. The layered and the irregular

regions can then be connected at these nodal joints. As the disilace-

ments at the vertical boundary vary linearly between the nodal joints

of the finite elements and between the layer interfaces, the displace-

ments will be continuous across the boundary.

The assumption of linear variation of v(z) within each layer

implies that v(z) is defined by its values v.-v(z), j=l, ... , n, at

the layer interfaces. Therefore, the displacements of a generalized
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Love wave may be represented by

{6} = cdv} exp(iwt-ikx) (4.18)

in which the vector {6} contains the displacements S., j=l, ... , n, of

the layer interfaces. The vector {v} represents the mode shape and ot

is the mode participation factor as before.

The displacement function for z.<z<z+ is accordingly
j- - 3+1

u(x,z) = v(z) exp(-ikx) (4.19)

in which

V(-' = (z +l-Z)/h• v.3 + (z-z.)/h. * v j+ (4.20)

Omitting the common factor exp(it), these displacements produce the

shear strains

E =.. iku (4.21a)xy 3X

zy = •z = (-vj + vj l)/h. exp(-ikx) (4.21b)

shear stresses

T G. C (4.22a)
xy j xy

T =G. E: (4.22b)zy 3 zy

and inertia forces

f Oj W 2u (4.23)

If a section of the layered region between the planes x=O and

x=ý is considered separately, see Fig. 11, the surface tractions

po(Z) = - T (O,z) (4.24a)
0 xy

and
p,(z) = + T (•,z) (4.24b)

xy

must be applied at the boundaries x=0 and x=r in order to preserve

dynamic equilibrium. They are the only external forces acting on this

section.

The application of the principle of virtual work as expressed by
Eq. (3.26) yields
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F~ z 1  (~ fn+l

f f (^E* T + *z - l*f )dz dx 0u*(Po + P)dz (4.25)
0 zI zi

in which x*y z* and •* are the complex conjugates of the virtual
zy Z

strains and displacements, respectively.

According to Eq. (4.18), the only degrees of freedom in the dis-

cretized region are the nodal displacements v. j=l, ... , n. From the

virtual displacement state "j", i.e.

1 1 and = 0 for z # j (4.26)

and fron Eqs. (4.19- 4.21) it follows that

(z-z )l/hj-l.exp(ikx) for z -<z<z.

*= (z -z)/h'exp(ikx) for z.<z<z (4.27a)
j+l .j.-j+l

0 elsewhere

*= i * (4.27b)

xy

and

1/h exp(ikx) for z <Z<z.
j-1 j-l j

kz = -1/hjexp(ikx) for z.<z<z. 1  (4.27c)

0 elsewhere

in which k is the complex conjugate of k.

Substitution of Eqs. (4.19 - 4.24) and (4.27) into Eq. (4.25) leads

to the equilibrium equations for the section considered. The n virtual

displacement states "j", j=l, 2, ... , n, produce a set of simultaneous

linear equations in the n unknowns v.. When the simple integrations
.3

defined in Eq. (4.25) are performed, the equilibrium equations can be

reduced to the matrix equation

2 2
(k [A] + [G] - w [M]){v} = {01 (4.28)

in which {v} is the displacement vector with the elements vi, j=l, ... , n.

The n x n matrices [A], [G], and [M] consist of the contributions from

the individual layers and can therefore be conveniently assembled from

36



the layer submatrices as demonstrated in Fig. 13. The submatrices to

be substituted for IX]., j=l, ... , n, in Fig. 13 are

3 6

[A]. = h.G. I j=1, ... , n (4.29a)

G. 1 1
[G. = - j=l, ...,n (4.29b)

and

[M] h = 6h. j=1, .... n (4.29c)
1 1

for the matrices [A], [G], and [M], respectively. The first two

matrices are obviously related to the stiffness of the layers. Thev :.je

real in the undamped case, when all shear moduli G., j=1, ... , Ice

real. The mass matrix [M] is always real since p., the mass density of

the jth layer, is real.

Eq. (4.28) is independent of f. Hence, the solutions to Eq.

(4.28) satisfy equilibrium in the layered region between the vertical

planes x=0 and x=1.. where ý may take any value greater than zero. In the

following it will be assumed that C is infinitely large.

As the circular frequency w is a given parameter, it is convenient

to introduce the n x n matrix
9

[C] = [G] - w[M] (4.30)

and write Eq. (4.28) in the form

([Alk- + [C]){v} = {0) (4.31)

which states an algebraic eigenvalue problem with n eigenvalues k, s=1,

... , n, and the corresponding eigenvectors {v}s-

The matrices [A] and [C] are tridiagonal and symmetric. In the

undamped case they are real and matrix [A] is positive definite, giving

Eq. (4.31) the convenient property that all the eigenvalues and eigen-

vectors are real [49].
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A procedure for computing the complete set of eigenvalues and

corresponding vectors in the damped and undamped case is presented in

Appendix 1 and a FORTRAN IV subroutine for automatic computation is

listed in Appendix 5. The procedure uses Newton's method to find the
2

roots of the determinant l[Alk + [C1I and inverse iteration to obtain

the eigenvectors.

The orthogonality conditions of the eigenvectors can be derived

from any two solutions to Eq. (4.31) such as

2([Alk + [CI){v} = {0} (4.32a)

and
2

([A]k + [C]){v} = {0} (4.32b)
s

The first equation is premultiplied by {v}T, the second equation is

transposed, post-multiplied by {v1 and then subtracted from the first
r

equation. This gives

2_2 T
(k2-k){v} [A]{v} = 0 (4.33)r s s r

which implies

T for r=s
{v} [A]{v} (4.34)

0r 0 for ris

when the case r=s is used to normalize the vectors.

The general motion of the discretized layered region can be des-

cribed by a linear combination of Love modes. Hence, if only one each

of the modes corTesponding to the pairs ±k s=l ... , n, exist in the

system, the displacements at x=0 are

n

{u}R = I sVs = [V]{cd (4.35)

s=l

in which {W} is a column vector containing the generally complex

participation factors as, s=l, ... , n, and [V] is an n x n matrix which

contains the mode shapes {v} in its columns.S

The orthogonality properties, Eq. (4.34), imply that

V]- = [VTA] (4.36)
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and Eq. (4.35) can therefore be inverted to

{a} = IV]T [A]{}R 1 (4.37)

which is used to compute the mode participation factors -a s=l, ... ,

when the displacements at x=0 are known.

4.3 Wave Types

2Each eigenvalue k yields two possible wave numbers, + k and - k
S S SOne sign corresponds to a generalized Love wa.e which pro'iagates or

decays to the left, the other sign to a wave which propagates or decays

to the right. Both waves have the same mode shape.

In the undamped case all eigenvalues and mode shapes are real, as

the matrices [A' and [C] are real. Hence, by Eq. (4.18), positive
2

eigenvalues, k >0, correspond to propagating waves of the type

{1}s = as{v)s exp(iwt ± ilk slX) (4.38a)

2Negative eigenvalues, k <0, yield purely imaginary wave numbers
nand motions of the type

{6}s= aL {v} exp(iwt ± Ik Ix) (4.38b)

which decay or increase exponentially in amplitude with x and do not

propagate.

In the damped case, when the matrices [A] and [C] are complex, all

eigenvalues and therefore all wave numbers are complex, i.e.
5ks=k- + ik. The motion is a wave

a 2w

{[}S = cc {v} exp(iwt-iksx+ksx) (4.38c)

which propagates in the x-direction with the phase velocity cs=w/ks and
s 1Z

5
a decaying or increasing amplitude, depending on the sign of k2 .

In the undamped case the possibility exists that k =0 and that

the motion degenerates to

{}s = a s{v}s exp(iwt) (4.38d)

This motion is independent of x and consists of a shear wave travelling
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vertically up and down through the layers, being reflected at the rigid

base and the free surface. This wave type can only occur at certain

frequencies which are the natural frequencies for one-dimensional

vertical waves in the layered system. The natural frequencies can be

found from the secular equation

J[G] - W2 [M]i = 0 (4.39)

which follows from Eqs. (4.30) and (4.31).

4.4 Dynamic Stiffness Matrix for Layered Region

In order to develop the dynamic stiffness matrix for the layered

region R in Fig. 11 it is first assumed that only those modes which

decay or propagate energy in the positive x-direction exist in R. This

requires choosing those n wave numbers out of the 2n numbers

k k=±(k•+i kj), s=l, ... , n, that have a negative imaginary part or, if

the imaginary part is zero, have a positive real part, i.e. for s=l,

n

ks-ilk2I if ks#0
ks 1 2 2 (4.40)

I. + Iks1 if kk=O

The displacements in the layered region are then expressed by super-

position of the corresponding modes

n

= S {v}sexp(iwt-ik sx) a (4.41)
s=l

The only stress on the plane x=0, see Fig. 15, is the shear stress

n

T = G T G kv(z)a (4.42)XY •x (xO s s()s

s=l

in which G is the shear modulus. The time factor exp(iwt) is understood.

The assumption that v(z) varies linearly within a layer implies that
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T xY -als;o varies linearly with z as shown in Fig. 15a. The nodal forces

which are in equilibrit-m with the stresses at mne vertical face of the

jth layer are

n
•~~ 3=6Gh3 I ks(2 v.s + v3+lj cis (4.43a)

=- G.h. k 5 v. + 2 a (4.43b)j+l 6 3 s 3 + s

Is
in which v. i s the jrh element of the eigenvector {v} .

These forces, which are also shown in Fig. 15a, act on the region

t x• O. The total forces acting at the boundary nodal joints of the

layerea ragion at x=0 are

P. = P! + •" j=l, ... , n (4.44)

with P'=O. These forces can be expressed in matrix notation by

I {pR= i[A] [V][K]{a (4.45)

in which {PIR contains the forces P.. j=l, ... , n, and [K] is a diagonal

matrix with the elements ks, s=l, .... n, which are chosen according to

Eq. (4.-40). Matrix [,JV contains the eigenvectors {v}, s=l, ... , n,

column'.ise and [A] is the matrix defined above by Eq. (4.29a).

The boundary forces {p}R are expressed in Eq. (4.45) in terms of

the mode participativn factors a . However, in the finite element

analysis of the irregular regior the nodal displacemenLs are introduced

as :ITe unknowns. The coordinate transfo-zmation according to Eq. (4.27)

yields
{p)R = [RIfu} R (4.46)

in which
[R] = i[A][V][KJJv T [A) (4.47)

is the dynamic stiffness matrix of the semi-infinite layered region.

The matrix [R] relates the nodal forces actin3 on the layered region to

the simultaneous nodal disp:lcements at the bcni,,dary x=O. The attribute
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"dynamic" indicates that the effect of the inertia forces is included in

[R]. Matrix [R] is symmetric, as it should be according to the theorem

of reciprocity [14]. Its elements are generally complex. The real part

of [R] exactly represents the elastic resistance of the discretized

semi-infinite layered region to the displacement of the nodal joints.

Whereas the imaginary part of [R] represents the damping effect of the

layered region on the displacements of the nodal joints. This damping

is caused by dissipation of energy to infinity or by viscosity of the

material.

The dynamic stiffness- matrix changes with the frequency of the

harmonic motions because the displacement functions chosen are the

frequency dependent eigenfunctions of the layered system. Eq. (4.46) is

also valid for the static case, W=0.

The dynamic stiffness matrix becomes singular if any one of the

wave numbers k of the diagonal matrix [K] vanishes. If this is the5

case no forces are required to excite the mode corresponding to k s=0.

However, this can happen only in the undamped case and then only at the

natural frequencies determined by Eq. (4.39).

The analysis of a left layered region L, as shown in Fig. 4, is

analogous to that of a right layered region. The only difference between

a left and a similar right layered region is due to their positions with

respect to the global coordinate system introduced in Fig. 4. Thus the

dynamic stiffness matrix, [L], of a left layered region is also given

by the right hand side of Eq. (4.47).

4.5 Energy Transmission

Consider a set of harmonic external forces

fF} = [P} exp(iwt) = ({P l + i{e 2 }) exp(iwt) (4.48)

which act on the nodal points of a discrete system and produce the nodal

displacements

{61 = {u) exp(iwt) = ({u 1 + ifu 2 }) exp(iwt) (4.49,
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SThu- time average of the rate of work done by the forces on the displace-

E Re tý1 Re IF) dt (4.50)
T

in which T=2¶/w is the period and {61 is the time derivative of -[6}. Sub-

stitution of

Re {6} = - w({u sinwt + {u,} cosWt) (4.51)

and

Re {F} {PI} coswt - {P } siniwt (4.52)

into Eq. (4.50) and integration over one period yields
E = ! ({ul}T{P2} - {u 1T{PI}) (4.53)

2 1

which is identical to

E = Im ({u}*{P}) (4.54)

The * indicates the conjugate transpose,: and Im denotes the imaginary

part.

The energy transmission from the irregular region I to the layered

region R at the boundary x=0 is now considered, see Fig. 1]. Substitution

of Eqs. (4.35) and (4.45) into Eq. (4.54) gives the time average

E = Im (i{•}*[VJ*[A] [V] [KI{C}) (4.55)

2

This expression can be simplified ia the undamped case, when [A] and

therefore [V] are real, to

E • Im (ict}*[K]{(c}) (4.56)

since [V]T[A][JI = [I] according to Eq. (4.34). As [K] is a diagonal

matrix, Eq. (4.56) may also be written in the form

n n
-- -- ý ] s =k) (, 1 E (4.57)

4 ss ss
s=l s=]
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in which

f ks Ist12  if k is real
Es= S (4.58)

L 0 if ks is imaginary

and represents the energy transmitted by a single mode s.
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5. .4XISYNMETRIC LOVE WAVE MOTION

5.1 Motion in Layered Region

The analysis of axisymmetric Love wave motion in a layered region

as shown in Fig. 5 is similar to the analysis of plane Love wave motion

presented in Chapter 4.

Any point (r,z) in the region undergoes displacements in the

angular 0-direction only. The displacements of harmonic motion at the

frequency w,

6 = 6a(r,z,t) = u(r,z) exp(iwt) (5.1)

are governed, according to Eq. (3.16c), by the homogeneous differential

equations for the n layers

S•~2u
0 9A

Gj +~ . u wu\G -u + T + pjwu 0 j=l, .. , n (5.2)
?r. 2 r 'r r2 z2

The assumption that

u(r,z) = v(z) g(r) (5.3)

leads to

-v 4. + -2 =- -- +-- -, n. (5.4)-z2 v G. g r2 r 2

v G. dr2

which can only be valid for all values of r and z in the respective

layers if both sides of the equation are equal to the same constant.
2

Setting the constant equal to k , the following ordinary differential

equations

9
d-V + (p WI /G-k 2)v 0 j=l, ... , n (5.5)

dz 2
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and

k -2)g 0 (5.6)
dr2 r

are obtained. Eq. (5.6) is a Bessel equation [2] which has a solution

g(r) = H (2)(kr) (5.7)

11
in which I1(2) is the Hankel function of the first order and second kind

[2]. Eq. (5.7) can easily be verified by substitution into Eq. (5.6)

and observing the following derivatives

d I( (kr) = - k H 2)(kr) (5.8a)

d H (2) (kr) = - H- 2) (2kr) + k H(2) (kr) (5.8b)
dr I r 1 0

9

d1 z(icr) 2 2 )H(2) (k)- k H(2')k') (5.8c)
dr 2  1r 2 1  r o

The liankel functions H1(2)(r) and H 2I(kr) tend to zero in the

sector -,7< arg (kr) <0 as ikri --. They are related to the Bessel

functions of the first and second kind, J and Y' respectively, by

H1(2) = J - i Y (5.9)
m i m

in which the subscript m indicates the order of the functions and

i -II. However, Eq. (5.9) should not be used to compute values of
(2)

H (Or) in the sector -Tr< arg (kr) <0 from values of J and Y because
m m m

severe cancellations may occur in the subtraction J - i Y and may
m in

result in the loss of all significant digits. A method for computing
(2) ad(2)

the functions H and H by ascending and asymptotic series is
presented in Appendix 4 and a Fortran IV subroutine for automatic com-

putation of these functions is listed in Appendix 5.

A solution to Eq. (5.2) may be expressed in the form of an axi-

symmetric wave

6 = v(z) I 2 )(kr)/H 2)(kr) exp(i~t) (5.10)
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which is similar to a plane wave at some distance from the origin. In

this expression r° d'2-."ines the distance of the boundary between the

irregular and layered rLgions from the origin. If IkrI is large the

asymptotic approximation to the Hankel function [2]

H(2) (kr) /2/(kr•r) exp(-ikr+i3lT/4) (5.11)

may be used to obtain

S v(z) exp(iwt-ikr) v72/(lrkr) exp(i37/4)/Hl 2 )(kro) (5.12)

which is similar to Eq. (4.9) except for the decay factor / i/(Tkr) and

a complex number indicating a phase shift. The similarity to a plane

wave shows that Eq. (5.10) describes a wave travelling away from the

origin if the real part of the wave number k is positive.

The boundary conditions at the horizontal planes z., jý1,2,

n+l, are, as in the plane case, the continuity of the displacements and

the stresses at the layer interfaces, zero shear stresses at the free

surface and zero displacements at the fixed base. As the stress-

displacement relation is

T ) (()2 exp(it) (5.13)

z6 C-z--= I~h ~NJf 1 NJ 0 x~~

the boundary conditions take the form

v(z') = v(z"1) j=2, .... n (5.14a)

z =!) G VjI S) j=2, ... , n (5.14b)

V(Z'n) = 0 (5.14c)

and

2 dv(z") = 0 (5.14d)

The function v(z) is determined by the n ordinary differential

- equations, Eq. (5.5), and the boundary conditions, Eq. (5.14), which are

identical to the correspondinp differential equations and boundary con-

ditions for the plane case, Eqs. (4.5) and (4.11). Therefore, the re-

sulting aigenvalue problem and its solutions are the same for the plane

47

-~~~~~~ 

7t- 

~*~ ---.-- *



and axisymmetric cases. This holds not only for the continuum theory

but also for the discrete theory because in the axisymmetric case the

layered region is discretized in the same manner as in the plane case.

It is again assumed that v(z) varies linearly within each layer

according to Eq. (4.20). Hence, the displacements in the layered region

may be defined by the displacements of the layer interfaces which are

collected in the vector (61, i.e.

= <66) ... 6 > (5.15)
1 n

The sth axisymmetric mode is obtained from the sth solution to

Eqs. (4.31) and, by Eq. (5.10), takes the form

{31 = {v!s H r) /H (k r exp(iwt) (5.16)
s s I s 1 1lo

Thus, the displacements in the layered region may be expressed by the

linear combination

S~n
(Xfv (2) (2)

-{} ( } 2)(ksr)/H (kr) exp(iwt) (5.17)Ss s s0

s=l

The rule for the selection of the n wave numbers k from the 2n values
s

±ks, s=l, ... , n, is the same as in the plane case, i.e. Eq. (4.40).

This follows from the properties of 11(2) and its similarity to the

exponential function for large arguments.

5.2 Dvnamic $tiffness Matrix for Layered Region

The nodal displacement at the cylindrical boundary r=r between the

layered and irregular regions are, omitting the time factor exp(iwt),

n
R

fu} = {V} = (5.18)

s=l

Rin which the vector ju) has the elements u., j=l, ... , n, the n x nJ

matrix [VI contains the eigenvectors {v} columnwise, and the vector
5

{c} contains the mode participation factors as.
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The inversion of Eq. (5.18) gives, according to Eq. (4.36),

S{c} [v]T[A]{u) R (5.19)

which serves to obtain the mode participation factors from a known

vector {u IR.

The only stress at the boundary r=r is the shear stress TrrO. By

using the stress--displacement relation

TrO G (3-- r) (5.20)

and Eq. (5.17), the shear stress in the jth layer at r=r is obtained,
} i.e.

n

Tr G Vs(rr2 (5.21)
rO G~ I v(z) N. H 2 (ksro)I/HP(ksro) a

s=I 0

when the time factor exp(iwt)is omitted. The assumption that v(z) varies

linearly within a layer implies that T rO also varies linearly with z as

shown in Fig. 15a. The nodal forces which are equivalent to the stresses

acting on the vertical boundary of a one radian segment of the jth layer

are

n

P -l Gjh/ '" s s (2) (2)

"P "../ (v + vj s){-k r H (k r )/H (k2 r ) + 2} a
3 j+ 0 0 S0 1 50 S

5=1
(5.22)

and

n

pt Av r (2) (2
+1 G h A6 (vs + 2vs ){-k r (k r )/H 2 (k r) + 21 aj~ jj+1 5 0 o s 0 1 5 0 5

S=l
(5.23)

in which v. is the jth element of the eigenvector tv} . These forces,.3 s
which are also shown in Fig. 15a, act on the region r>ro.

The total forces acting on a one radian segment of the layered

region are

P. P' + P', j=l ... , n (5.24).•3 j .3'
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with PI=Q. In matrix notation these forces may be expressed by

R
p}R = [A][VI[HI[a} (5.25)

The vector {p}R contains the forces P., j=l, ... , n; the n x n matrix
J

[VI contains the eigenvectors {v}s, s=l, ... , n, columnwise; [A] is the

matrix defiiied by Eq. (4.29) and [H] is the diagonal matrix

[H] = Diag f-ksr. H (2)(k r )/H (kr) + 2} (5.26)
S 0 0 50 1 0

Substitution of Eq. (5.19) into (5.22) gives

[p}R [R]{u}R (5.27)

in which

T
[R] = [A][VI[HI[VI [A] (5.28)

The matrix [R] is the dynamic stiffness matrix for a one radian

segment of the axisymmetric layered region which extends in the radial

direccion from r to infinity. It relates the nodal forces to the

simultaneous nodal displacements at the boundary r=r° and is valid for

axisymmetric harmonic motion including the static case. Matrix [R]

changes with frequency and depends on r°. It cannot become singular,

because none of the diagonal elements of [H] can vanish at any given

frequency and matrices [A] and [V] are always non-singular.
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6. PLANE RAYLEIGH WAVE MOTION

6.1 Eigenvalue Problem

Free harmonic Rayleigh wave motion under p]ane strain conditions in

a semi-infinite layered region as shown in Fig. 5 is considered. Any

point in the region undergoes displacements in the x and z-directions,

i.e.

S= qx (x,z) exp(iwt) (6.1a)
6 = q z(x, z) exp(iwt) (6.1ib)

The homogeneous differential equations of motion for the spatial

parts of the displacements are accot'ing to Eq. (3.15), for the jth layer,

G. + + (Xj + G.) ( +2x ) + p. (6.2a)

and

2 2q q2

G ýk 2 3 2 ) + (X .+ Gj ýz z2 + PjW = 0 (6.2b)

Separation of the variables x and z with the assumptions that

qx(x,z) = u(z) g(x) (6.3a)

and

q (x,z) = w(z) g(x) (6.3b)

leads to the coupled ordinary differential equations

2
2k (X + 2G W P u-C duL + ik (X + -Gj z 0 (6.4a)

j j 2 dz

and

2 2 d2
{k. - W P w - (X + 2G) dw + ik (X. + G •z 0 (6.4b)2 dz"

,_•dz
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for each of the n layers, j=l, ... , n, and to the differential equation

d-& + k2
dx2 (6.5)

Since a solution to Eq. (6.5) is

g(x) = exp(-ikx) 
(6.6)

the displacements in the layered region may be expressed in the form of
a wave by

6 = u(z) exp(iwt-ikx) 
(6.7a)

6z = w(z) exp(iw0t-ikx) 
(.b

The mode shapes u(z) and w(z) are determined by the 2n differential
equations, Eq. (6.4), and by the boundary conditions at the horizontal
planes z=zj, j=l, ... , n+l, i.e. the continuity of the displacements and
the stresses at the layer interfaces, zero stresses at the free surfaceand zero displacements at the fixtd base. Using the stre.s-displacement
relations

a6 6
S (A + 2G) +---£ .{( +2C dw

z + z d) + A • -(u + 2.) ýz- ikAul exp(iwt-ikx) (6.8a)
and

T ( - + --)= G {- ikw + exp(iwt-ikx) (6.8b)

these conditiois can be written

u(z') u(z") and w(z') w(z'z) j=2, ... n (6.9a)
-t-3 3 "''

u(. 1 ) = 0 and W(Zn 0 (6.9b)

(A._1 + 2G._ - w(zj)-il, A uA z C (x + 2 CGj) w(z.)-ik A. u(z2)13- dzI j1 3 dz

for j=2, ... , n (6.9c)
G+ . ) C -k w(") + )

j-1 (-kwz) •) j Gjj z-3 Z z •

for j=2, ... , n (6.9a)
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d + 2G' w(z") ik X1 u(z) 0 (6.9e)

and

-ik w(z") + ~-U(Z") 0 (6.9f)

in which z' and z" respectively refer to planes immediately above and

immediately below the interface z..3
Eqs. (6.4) and (6.9) lead to an ui-envalue problem similar to that

for Love waves. In continuum theory, this problem consists of 2n simul-

taneous homogeneous equations with coefficients which contain the eigen-

value k in the argument of transcendental functions. A derivation of

the eigenvalue problem can be found in Ref. [22]. Finding solutions to

this problem is even more difficult than finding solutions to the corres-

ponding eigenvalue problem for Love waves, Eq. (4.16), because in the

Rayleigh wave case the, number of equations for n layers is 2n nA I._ co-

eff cients are moie complicated than those in the Love wave case. For

the same reasons given in Section 4.1, a discrete theory is preferred to

the continuum theory and -ill now be developed.

Discretization

As in the Love wave case, the layered region is treated as a

continuum in the horizontal direztion but discretized in the vertical

direction by assuming that u(z) and w(z) in Eq. (6.7) vary linearly

within each laer. In order for t,.; assumpticn to be reasonable the

layers have to be chosen thin compared to the length of S-waves in the

layer.

The displacements in the layered region may be defined by

{6}T = <6 6 6z9 ... 6 6z> (6.10)
Xl zl ~z" xn zn

in which 6.x and 6zj, j=l, ... , n, are the horizontal and vertical inter-

face displacements, respectively. !" the elements of the corresponding

mode shape {v) are

= u(zj) aPJ vj = w(z.) j=l, ... , n (6.11)v2j-1
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the discrete representation of a plane generalized Rayleigh wave is

{6} = {v} exp(iwt-ikx) (6.12)

The displacement functions in terms of interface displacements are

qx(x,z) = u(z) exp(-ikx) (6.13a)

q z(x,z) = w(z) exp(-ikx) (6.13b)

in which, for z <z<z
j- j+l11

u(z) = (zj+1 - z)/h • v2j-1 + (z-z.)/h. "1 v2j+I (6.14a)

w(z) = (zj+1 - z)/h " v 2 j + (z-z.)/h. " v 2 J+ 2  (6.14b)

Omitting the common factor exp(iwt), these displacements produce the

strains

aqx
Cx = 3 = -ikqx (6.15a)

Cz = 3-z = (-v + v+)Ih'exp(-ikx) (6.15b)
3 z 2j + 2j+2 j*

Y+ -xx- = (_v 2 j-I + v2 5+l)/hj exp(-ikx) -ikq (6.15c)

stresses

= (X4 + 2G.) C + X. C (6.16a)
x J X 3 z

S= (X + 2G.) C + X. C (6.16b)z :3 z 3 x

T = G. Y (6.16c)

and inertia forces

fi 2PJ q (6.17a)

1 2
f = 2 q (6.17b)

Z

If a section of the layered region between the planes x=O and z=ý

is considered separately, see Fig. 12, one has to apply as surface

traction -T (O,z) and -r(O,z) at the left bcindary, x=O, and Oa (C,z) and

T(F,,z) at the right boundary, x=ý. The surface tractions are the only
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external forces acting on this section of tOe layered region.

The applicati:rn of the principle of virtual work as expressed by

Eq. (3.20) yielL I

z
+ ^, I ffI I i".* + T*-T f - x ldzdxAx z z xz z zX=O Z=ZI

(n+l ^

= j - q*(O,z) ",(O,z) - q(O,z) T(O,z)
Z=ZI

+ qj*(C' z) (3 (•' z) +Z(, z)d (6.18)

x x z(I

in which 'k, '*z and "xz* are the complex conjugates of the virtual
s ad *xz

strains and ~and ý* are the complex conjugates of the virtual displace-
x z

men c,.

The degrees of freedom in the discretized region are v.. j=l,

2n, according to Eq. (6.11). The virtual displacement state "'T defined

by

'£ = 1 ; 0 0 for mk9 (6.19)Z m

yields, with Eqs. (6.13 - 6.15), for odd values of Z, i.e. £=2j-i
(z-z-)/hJ-! exp(ikx) for z._<z<zj.

J I1 j -1 3

S-Z)/h exp(ik'x) for z.<z<zj+I (6.20a)

0 elsewhere

0 0  (6.20b)

i/hj_1 " exp(ikx) for zj_l<z<z.

Y*z i/h ' exp(ik.x) for z <Z<Z (6.20c)X i j+l

0 elsewhere
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and for even values of Z, i.e. k=2j

(z-zj 1 )/h . exp(i7x) for Zjal<Z<Zz

j-i1 -1
q z (+-Z)/h. exp(ikx) for zj<z<zj (6.20d)

0 elsewhere

Aj* 0 , *0 ; y* = +ik~z (6.20e)
x xz

1 i/hj l -1 exp(ikx) for Zj-l<Z<z
z 1-/hj- 3- .1

1= /h. exp(ikx) for z.<z<z. (6.20f)

z 3 j 14-

0 elsewhere

Substitution of Eqs. (6.13 - 6.17) and Eqs. (6.20) into Eq. (6.18)

leads to one equilibrium equation for each of the 2n virtual displacement

states "'". The 2n equilibrium equations are simultaneous complex linear

equations in the 2n complex unknowns v., X=I, ... , 2n. When the si-iple

integrations defined in Eq. (6.18) are performed, the set of equations

may be written in matrix nctation as

2 T2
(k [A] - ik[D] + ik[D] + [G] - u2 [M]){v} = {t} (6.21)

The vector {iv contains the complex displacements v., j=l, ... , 2n. The

2n x 2n matrices [A], [D], [GI and [M] consist of the contributions from

the individual layers and can therefore be assembled by addition of layer

submatrices as indicated in Fig. 14. The submatrices to be substituted

for [X]. in Fig. 14 are

2(2G0+tj) 0 (2G +X.) 0

0 2G. 0 G.
1 3

[A]j 1 h. G j=l, .. n (6.22a)
6 J (2G.+X) 0 2(2G.+X.) 0

0 G. 0 2G.
, 3
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. 0 -

Gj 0 -Gi 0

ID]j ~,.. n (6. 22b)

2 0 A.

0 Aj 0 -A.
G 0 G3

G. 0 -G. 0

[G 0 (2G j+X) 0 -(2G +A 6.2cS j -G. 0 fG.

S1 0

1- 0 (2Gc+X.) 0 (2G.+).,2)

1/3 0 1/6 0

00 /3 0 1/6

S[Mi. =ojh. j=l, ... , n (6.22ci)
=P 1/6 0 1/3 0

0 1/6 0 1/3

for the matrices [A], 1D], [1] and [M], respectively. The first three

matrices are obviously related to th3 stiffness ,.f the layers and are

real in the undamped case when the shear moduli G. and the Lame's con-

stanzs Y. j=i, ... , n, are real. Matrix [M] is a consistent mass- .3

matrix [5].

Eq. (6.21) is independent of r. Hence, the solutions to Eq. (6.21)

satisfy equilibrium in the layered region between the vertical planes

x=O and x=ý where ý may take any value greater than zero. In the follow-

ing it will be assumed that E is infinitely large.

The circular frequency w is a given parameter. When the 2n x 2n

matrices

[C] = [G] - • 2 [M] (6.24)
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and

[B] = [D - [D (6.25)

are introduced, Eq. (6.23) can be written

([Aik2 + i[BJ k + [C]){v} 0 (6.26)

The matrices [Al and [C] are symmetric and the matrix [B] is skew

symmetric. [A], [f8 and [C] are real in the undamped case and complex

in the damped case. Eq. (6.26) differs from a similar matrix equation

obtained by Lysmer [261 in that it includes a consistent mass matrix,

while Lysmer employed a lumped mass matrix. Eq. (6.26) constitutes a

set of 2n linear homogeneous equations which have non-trivial solutions

{v0 only if the determinant of the coefficient matrix vanishes. Hence,

for any given frequency w, the secular equation

I[A~k2 + i[B] k + [C]I = 0 (6.27)

defines the possible wave numbers for generalized Rayleigh waves in the

layered region.

Because the determinant, Eq. (6.27), is a polynomial in k of order

4n, Eq. (6.26) states an algebraic eigenvalue problem which has 4n

generally complex roots k, s=!, 2, ... , 4n. The corresponding solution

vectors {V}, s=l, ... , 4n are called eigenvectors or mode shapes. A

numerical method for finding all of the eigenvalues and eigenvectors is

presented in Appendix 2 and a FORTRAN IV subroutine for this task is

listed in Appendix 6e

Tt is convenient for the following wave interpretation to rewrite
Eq. (6.26) in the partitioned form

[ik BTVkI = 1* (6.28)

xzk B A + C

where the elements of {v } are the horizontal displacements v., j=l, 3,

... , 2n-l, and the elements of {v } are the vertical displacements
v 1, j=2, 4, ... , )n. The n x n submatrices tAx], [Az], [Cx], [Cl and

[B I are obtained from the mitrices [A], [C] and [B], respectively,

by permuting the rows and columns in the same way as the vector elements
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are permuted.

6.2 Wave Types

Each eigenvalue ks and its corresponding eigenvector {v!s define

Pa'ayleigh wave mode which can exist in the layered region and has the

displacements

{6}s = as{V}s • exp(iewt-ik sx) (6.29)

The nature of this motion depends on the wave number k . As in the Love5

wave case four wave types can be distinguished.

a) If k is complex, k = k1+i k21 k1 O, k2)iO, the motion is of the

form

{S) = t{v} - exp(k 2 x) • exp(iwt-ik1 Y) (6.30a)

which propagates in the x-direction with the phase velocity c=wD/kI and

decays or increases in amplitude depending on the sign of k The mode

shape {v) is complex and generally neither the horizontal nor the vertical

displacements are in phase on vertical planes.

b) If k is real, k = ki, k2 =0, the motion is a wave which propagates

in the x-dire-tion with a constant amplitude and the phase velocity

c=-i/k and is of the form

W1 = acv} exp(iwt-ik X) (6.30b)

Inspection of Eq. (6.28) shows that for a real k the vector (v x is
x

purely real while the vector {v is purely imaginary. This mcans that

ail h~rizontal displacements are in phase at constant x and 90" out of

phase with the vertical displacements. The particle motion describes an

ellipse with its major axi,7 either parallel or normal to the surface.

c) If k is purelv imaginaary, k=ik21 k240, the motion is

11} = a{v] ex:p(iwt) (6.30c)

which varies exponentially in the x-direction and does not propagate.

As the coefficient matrix of Eq. (6.23) is real for a purely imaginary k,
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and as the phase does not change in x, the horizontal and vertical dis-

placements of a]l points in the layered region have the same phase. In

this case particles oscillate along straight lines.

d) If k=O the motion is independent of x, i.e.

{6} = c{v} exp(iwt) (6.30d)

and degenerates to a one-dimensional standing wave. This wave type can

occur only at certain frequencies of a layered wedium without viscous

damping. The natural frequencies can be found from the secular equation

2
J[G] - w [MIJ = 0 (6.31)

which follows from Eqs. (6.24) and (6.26). When '=0, Eq. (6.28) shows

that the horizontal and vertical displacements are uncoupled. The motion

corresponding to the natural frequencies therefore consists either of

standing S-waves with horizontal displacements or of standing P-wave with

vertical displacements. The standing S-waves are identical to the

degenerated Love waves with a vanishing wave number discussed in Chapter

4, except that the displacements occur here in the x-direction.

Waves of the types b) and d) do not exist in the damped case

because all waves attenuate with distance from their source due to damp-

ing and thus k2 cannot vanish.

A study of the structure of Eq. (6.26) with reference to Eq. (6.28)

shows that if k is an eigenvalue of Eq. (6.26) and {v} the corresponding

eigenvector, which contains the elements v., j=l, ... , 2n, then -k is

also an eigenvalue and its corresponding eigenvector in transposed form

is

{v}T = <-v 1 v 2 -v 3 v ... -v2nl v2n > (6.32)

which is obtained from {v} by changing the sign on all horizontal dis-

placements. The vector {M} is the adjoined of {v1.

The two solutions describe the motions

{6} = adv} exp(iwt-ikx) (6.33a)

and

{6} at{0 exp(iwt+ikx) (6.33b)
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which are identical waves propagating or decaying in opposite directions.

Substitution of the second solution, -k with {G}, into Eq. (6.26) yields

"([Alk" - i[B]k + [CI){G} = {0} (6.34)

In the undamped case, when [A], [B] and [C) are real, the complex

eigenvalues occur ia conjugate pairs, k and k. For this case the complex

conjugate of Eq. (6.34) is

([A]k + [BIk + [C!){z5} fo{0 (6.35)

which shows that K with {:•} satisfies Eq. '6.26). Prom the complex con-

jugate of Eq. (6.26) it may also be shown that -K with {6.1 is a 3.ther

solution.
Summing up, the eigenvalue problem, Eq. (6.26), has the property

that if

a) K with {v}f

is a solution to Eq. (o.26) then

b) -k with {M}

is another solution and, in the undamped case,

c) k with i7}

d) -k with {v}

are also solutions. These solutions are linearly independent with the

exception that the solutions c) and d) depend on a) and b) if k is

purely real or purely imaginary.

Orthogonaiity of Eigenvwctors

Two solutions to Eq. (6.26), {v}r with k #0 and {0} with k s0, are
r r s

considered, i.e.

([Ark 2 + i[g]k + [C]){vl}r = {O} (6.36a)

and
[A]k 2 - i[B]k + [C]I){s = {O} (6.36b)

Premultiplying the first equation by J } /kr and the second by {v)r/ks,

then subtracting the transposed second equation from the first gives

{ T (([A](kr-ks) [C](kr-ks)/(krks)){V} = 0 (6.37)
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Division by (k r-k ) provided k Ik s yields the orthogonality relations

rr s

in whic1h :1:: th aek ksisue o omlz the eigenvectors. Eq.
(6.38) may be expressed by che matrix equation

[KI] v]A][V] fKi - [viT[c][V] = 2[K]2 (6.39)

in which !,K] is a 2n x 2n diagonal matkix containing one each of the

pairs of eigenvalues ±ks, s=l, ... , 2n, and [V] and [V] are 2n x 2n

nodal matrices containing the corresponding mode shapes {v}s and {V1s2

s=l, ... , 2n, columnwise.

6.3 Dynamic Stiffness Matrix for Layered Region

The "energy zonditions" discussed in Section 4.1 demand that only

those 2n generalized Rayleigh waves which decay or propagate energy in

the positive x-direction are chosen from among the 4n solutions to Eq.

(6.26). Thus, among the waves possessing complex wave numbers, those

waves which have a wave number with a negative imaginary part are

selected. If wave numbers are real the selection must be based on the

direction of energy propagation. While for Love waves the directions in

which the energy and the "phase" travel are always identical, it some-

times occurs that the "phase" of Rayleigh waves travels backwards, i.e.

the directions of the phase velocity c=w/k and of the energy propagation

are opposed. This phenomenon was also observed by Lysmer [261.

It will be shown in Section 6.4 that the energy transmission is

positive for waves with a positive wave number k and a corresponding

mode shape Nvi if the complex conjugata of the mode shape, {v} is
5S

equal to the adjoined mode sh.pe {Vs after normalization by Eq. (6.38),
s

i.e. {(Vs = {10s. If {V}s = - ,s? the direction of energy transmission
is opposite to that of the phase velocity. Hence, the rules for the

selection of the 2n wave numbers k, s=l, ... , 2n, from the 4n wave
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sI

numbers -k (k +i k) are
S2

k < 0 or if k 0 andv }k s 2 2 S S (6.40)ks= - ori2k2 -0and{v -k Sf > 0 or if k 0 an.1, =,

The displacements in the layered region, when expanded into waves

corresponding to the selected wave numbers ks, are

2n

{6} = IV Vs exp(iwt-iksx) as (6.41)

s=1

and the displacements uP, j=l, ... , 2n, of the nodal points at the

boundary %=0 are, omitting the time factor exp(iut),

2n

{u}R = 3 v a = [V]{a} (6.42)4.1 s s

s=l

in which the vectors {u}R and {a} are of equal dimension, 2n, and contain

the elements uj and as, respectively. The matrix [V] is the 2n x 2n modal

matrix containing the mode shapes {v}s columnwi;e. The inversion of

Eq. (6.42) yields the mode participation factors in terms of the nodal

displacements, i.e.

ICE} = [v]- l[uR (6.43)

The normal stress a and the shear stress T at the boundary x=0

are by Eqs.(6.16) and (6.41) for z.<z<zj+I

2n
S I-iks(X +2G )[(zl-Z)/Ih s s+(z-z)/h ' V!

x j + I h"j(vl 2l ji .j2 .j+l

s 4s
+ .h.* (-V' +V2.9 at (6.44a)

and

2nxz l(v2jl+v2j+l) - ik(Zj+l-Z) -2 + (z-z,;v2 .+ 2 ]j Cs

s=l

(6.44b)
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in which vs is the jth element of {v} . The time factor exp(iwt) is
.1 s

implied.

The nodal forces which are in equilibrium with these stresses and

act on the region x>O as shown in Fig. 15b are

Pt  S
2j-1 v2 j-l

2n s
2j = (i[A k + [D v2j (6.45)

pt Z A' s [D v s s

2j+l s1l 2j+l
Pi

t  S
2j+2 v2 j+ 2

in which [A]. and [D]i are the layer matrices defined by Eq. (6.22). The

total forces, Pij, acting on the layered region each consist of the force

components from the layer above and below the respective nodal point,

i.e.

P. Pe + P" j=l, .... 2n (6.46)
J i i

with P"' = P" = 0. Expressed in matrix notation they are

R
1p}R (i[A] [V] [K] + [D] [V]){a} (6.47)

in which {p}R is the vector containing the elements P., j=l, ... , 2n,

and [K] is the diagonal matrix containing the wave numbers k5 , s=l,

2n.

Substitution of Eq. (6.43) into Eq. (6.47) gives

(p}R = [R]{u}R (6.48)

in which

[RI = i[A][V][K][V]-1 + [D] (6.49)

The 2n x 2n matrix [R] is the dynamic stiffness matrix of the semi-

infinite layered region R. It relates the nodal forces to the simultaneous

nodal displacement at the boundary x=0.

Matrix [R] is symmetric, as it should be, according to the theorem

of reciprocity [14]. Because the symmetry is not apparent from Eq. (6.49)

it is proved below.

The analysis of a left layered region 1. shown in Fig. 4 is analogous

to that of a right layered region R. The only difference between a left
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and a similar right layered region is due to their positions with respect

to the global coordinate system. Thus the dynamic stiffness matrix,

[L], of a left layered region may be computed from the right hand side

of Eq. (6.49) by changing only the sign on all the coefficients that

relate horizontal forces to vertical displacements or vertical forces to

horizontal displacements.

Proof that [R] is Symmetric

Eqs. (6.49) and (6.25) yield

[R] T-[R] = i[vI-T [K][V]T [A] + [D]T - i[A [V) [K] [V-I - [D]

= i[v]-_T [TV]-I (6.50)

in which

[XI = [K] [V] [A] [V] - [V]T[A] [V] [K] - i[VIT [B]I[V] (6.51)

In order to show that each element xrs of [X] vanishes, two solutions

to Eq. (6.26) are considered, i.e.

([Alk 2 + i[B]k + [C]){v} ={} (6.52a)
S S

and

(Alk + i[Blk + [C]){v} = {o) (6.52b)
r r r

T T
Pre-multiplying the first equation by iv}T and the second by {v} , then

subtracting the transposed second equation from the first yields

22 (A s-ý i[BI(k s+k)r{v} s= (6.53)

Since (k +k )ý0 for any two k of matrix [K], Eq. (6.53) givess rn

{v}T ([A](kr-ks) - i[BI)tv} = 0 (6.54)r rr

The left hand side of Eq. (6.54) is identical to element x . Hence,

it is shown that

[R] [R5T (6.55)
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6.4 Energy Transmission

The energy transmission from the irregular region to the layered

region at the boundary x=0, shown in Fig. 12,is by Eqs.(4.54), (6.42)

and (6.47)

Im ({u}P}) ={ - ({ *} - {u}*{P})

=i4'{a}*I-i[K]*[V]*[A]*[VI + [V]*[D]*[V]

-i[V] *[A] [V] [K] - [VI *[D] [V]){c} (6.56)

in which indicates the conjugate transposed.

In the undamped case, when [A] and [D] are real, Eq. (6.56) can be

simplified to

W*
E= {c}*([K] [VI *A][V] + [V]*[AI[V][K] + i[V]*iB][V]){a} (6.57)

because [B] = [D]T - [D] by Eq. (6.25), and Eq. (6.57) can be further

reduced when the orthogonality relation

{v} [A]{v} (k +k ) + i{v}*[BI{v}s = 0 for k #k (6.58)
r s r s r sr s

is observed, in which k i3 the conjugate of k . The result obtainedr

is

2n

E = E (6.59)

s1

in which
S. IS !l2 {v}*([AJ(ks+k) + (6.60)

Is 4 . s S([A] i[B]){v s (.0

is the energy transmitted by the sth mode. Hence, in the absence of

viscous damping, the generalized Rayleigh waves are orthogonal with

respect to energy transmission as were the generalized Love waves.

In order to prove Eq. (6.58) two solutions to Eq. (6.26) are con-

sidered, i.e.

([Alk2 + i[B]k + [C]){v}s = {0} (6.61a)s S

"and
2([Ajk + i[B]k + [CI){v) = {0} (6.61b)
r r r
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Pre-multiplying the first equation by {v}, the second by {v}i, then

subtracting the conjugate transposed of the second equation from the

first yields
-C) + i[B](ks- k = 0 (6.62)

r+ s[B]kS{v}S

Division by (ks - k r),provided k sk r, proves Eq. (6.58).

SIn evaluating Eq. (6.60) for the wave types discussed in Section

6.2 it is of assistance to consider the conditions under which the wave

number k is complex, real or imaginary in the undamped case. Pre-

multiplying Eq. (6.26) with {v} and introducing the abbreviations

A = {v}*[A]{v} ; B = -i{v}*[B]{v} ; C = {v}*[C]{v} (6.63)

gives the quadratic equation

A k2 B k + C = 0 (6.64)

which has the solutions

k = 12 - 4AC)/(2A) (6.65)$ ~~1,2 (B B

As [A] and [C] are real symmetric and [B] is real skew symmetric, the

numbers A, B and C are real, A being positive, because matrix [A] is positive

definite. With the above abbreviations, Eq. (6.60) can be written

E t = ý a1 2 ((k + K) A - B) (6.66)

The results obtained from Eqs. (6.65) and (6.66) are:

a) k is complex if B#0 and B--4AC<O and from k + k = B/A it

follows that

E = 0s

b) k is imaginary if B=O and C>O and from k + k -- 0 it follows

that

E =0

c) k is real if B -4AC>O and from (ks + ks) = 2ks and Eq. (6.66)

it follows that

E- !- 1 2(Ak -C/ks) = 2 fI1 *([Alks [C!k){v}

(6.67)
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In Sect.ion 6.2 it was shown that the horizontal and vertical dis-placements of Zvj. are 900 Ou:: of phase if ks is real and that in thiscase {v} = ±{N} after normalization by Eq. (6.3S). Eqs. (6.67) and
S S•.

(6.38) therefore yield

+ ks % if {V) =+ 60)
E =S

s kI 12 f (6.68)S- • k~~s ] • ] i Vs = s•

which is of the same form as the corresponding expression for the energy
transmission of Love waves, Eq. (4.58).
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7. AXISYMMETRIC RAYLEIGH WAVE MOTION

'I Motion in the Layered Region

The analysis of axisymmetric Rayleigh wave motion in a layered

gion of the cype shown in Fig. 5 is similar to that for plane Rayleigh

wave motion presented in Chapter 6.

Any point (r,z) in the region undergoes displacements in the radial

direction, r, and in the vertical direction, z. For harmonic motion at

the fr,--qenicy the displacements can be expressed by

r (r,z,t) = q r (r,z, exp(itwt) (7.1a)
anid

z(zt)= dqi z ( ) exp(iwt) (7.1b)

The governing homogeneous differential equations for the spatial

part of the displacements are, by Eq. (3.16), for the jth layer

23 
2 9 2

0,~ + 2G) ( 2r~ + o(j~ Drz

+ PjW 2 ~ a 0 (7.2a)

and

(2 22
++ 

r 1r r3z q qI i

+j \z1r) w 2z +Gz r q0 7.2b)

Separation of the variables r and z leads to a particular solu-ion

to Eqs. (7.2) of the form

q(r,z) = 111 H(2 (kr) (7.3a)

q (rz) =w(z) i 11(2k) (.b
qz 0 k)(.b

inwhch1(2) 1(2)il wic H and 11 are the Hankel functions which were introduced in'0
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I

Chapter 5. The functions u(z) and w(z) are unknown functions which must

satisfy the coupled ordinary difitcrential equations for J=l, .... n

Ik2X+2. 2o.lu -G. d'u + --k(X +C ) ýz 0 (7.4a)
d z32dz 29 d

2 2- du

{k G -P I w - (X +2G -E + ik(XC4Gj) z 0 (7.4b)i j i ~dz 2 ii

Eqs. (7.3) and (7.4) are easily verified by substituting Eqs. (7.3) into

Eqs. (7.2) and observing Eqs. (5.8). Eqs. (7.4) are identical to the

corresponding equations for plane Rayleigh waves, Eqs. (6.4).

The boundary conditions at the horizontal planes z., j=l, ... , n+l,3

are

uz) = u(z) ; w(z') = w(z") j=2. ... , a

j (7.5)
U(Z n+!)= 0 ; W(7n+l) = 0

and

OzZ)" = 0 ' .... = 0
z ;.,r 1 (7.6)

oz()3 = (z z') ; T zr(Z) = Tzr(Z") j=2, ... , n

When the stress displacement relations

H r
Oz=" ° z %+ 2G) -- + X \( +__r

((dw-k . i

2G) z- u (kr) exp(i,0t) (7.7a)

and •6

''3Zzr =oG -
4 ",du -iw (2)

= (- kw) H( (kr) exp(i-wt) (7.7b)

are substituted into 'q. (7.6), these boundary conditions reduce to those

of the plane case, Eq. (6.9).

As the differential eqii t ions, Eqs. (6.4) or (7.4),and the boundary

conditions, Eq. (6.9). are ie,. ical for plane and axisynMaetric Rayleigh

waves, the resulting .- igenvalue problem ; .d its solutions are the

same in both the plane and axisymmetric case. This holds not only for
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the continuum theory but also for the discrete theory, because the

layered region is discretized in the axisymmetric case in the same manner

as in the plane case.

It is again assumed that u(z) and w(z) vary linearly within each

layer according to Eq. (6.14). The displacements in the layeree region

can then be defined by the displacements of the layer interface-; which
are collected in the vector W6, i.e.

{T <rl 6zl r2 Sz2 " rn 6zn> (7.8)

in which 6 and 6. are the radial and the vertical displacements of

the iaterfaces.

The displacements may be expressed as a linear combination of the

2n modes that propagate or decay in the positive r-direction, i.e.

2n

I{} = " {6} CL (7.9)

s=l

in which o is the participation factor of the sth mode {6Ws s

The sth mode {6} is obtained from the sth solution to Eq. (6.26)5

i.e. from {v}s and k s, when Eqs. (7.3) arc observed. The displacements

of the sth mode are accordingly

0 s = vs 11 2) (ksr) - exp(iw0t) j=1,3, .. 2n-1 (7.10a)
.1 J

and

6s = Vsi(2(r) - exp(iwt) j=2,4, 2a (7.10b)

Fhe 2n modes used in the expansion, Eq. (1.9),are selected accord-

ing to the rules of Eq. (6.40) which were derived for the plane case.

From the properties of tue Hankel functions and from the similarity of

axisymmetric waves to plane waves at large values of Iks ri it follows

that these rules also hold for the axisvmmetric case.
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7.2 Dynamic Stiffness Matrix for Layered Region

The displacements at the cylindrical boundary, r=ro, between the

irregular and the layered region ar=, if the time factor exp(iwt) is

omitted,

R (7.11)

in which the vector {u}R contains the displacee,,ents of the layer inter-

faces at r=r, i.e. up j=l, ... , 2n, and the vector {d} contains the

mode participation factors ccs, s=l, ... , 2n. The 2n x 2n matrix [4] con-

tains the vecturs {1s , s=!, ... , 2n, columnwise. The elements of {•}s

are by Eq. (7.10)

= v. a j=l,3, ... , 2n-1 (7.12a)

and

s v. b j=2,4, ... 2n (7.12b)
3 s

with

as 1= (2) (kro ) and b = i H(2) (k r (7.13)

The inversion of Eq. (7.11), i.e.

{rI = PH-1 {u}R (7.14)

yields the mode participation factors if the boundary displacements are

kiown.

The stresses at the boundary r=r are
0

- (A + 2G) r + z + (.15a)
X -r T r

and

G + (7.15b)
rz C~z a r

According to Fqs. (7.3) and (7.9) the stresses are, for z <z<zj+1,

2n

x Y ([-ik (X'+2G) us(z)+X -ý_ wd W)b - "/r u (z ) a
Xd s j J sz sjo s

s=lI

(7.16a)
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and

.n

rz G z Us(Z) -iksws(z) as a (7.16b)

s=l

in .which

us(Z) = (zj+ - z)!h. v" + (zz)/h s (717a)s v+ 2j~ + (zz)h "2j+l(71a

and

W (Z)=(z )/h v~ s + (z-z.)/h. v5  (7.17b)
s j+l j v 2 J j • 2j+2

The nodal forces which are in equilibrium with the stresses on a

segment of unit raoian are

PI * s b s
2j-1 2j-1 s 2j-1
, 2n s 2n 2
P2j iksro[AJ v2j as c + ro([D]+[E]2) a

pit[v s b 0 1 0 S S
2j4-1 S=1 vj+l s s=l 2j+l

P2 j+ 2  aj+2 a2j+2

(7.18)

in which the layer matrices [A]. and [D]. are those defined by Eqs. (6.22)

and layer matrix [E)i is

2G..j 0 1 0

[El G J 0 2 0 0 (7.19)

-0 0 0 0

The total forces acting on the layered region r>r at the boundary0

nodal joints each consist of the force contributions from the layer

above and below the respective nodal joint, i.e.

P. = P. + I'l j=l, ... , 2n (7.20)

.I J J

with P1  = P2 = 0. The forces expressed in matrix notation are

- r (i[AI['I'1[K] + [D1[*] + [E][) L} (7.21)
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in which the vector {p}R contains the nodal forces PJ, j=l, ... , 2n.

Matrices [A], [K] and [D] were defined in Chapter 6. Matrix [E] is

assembled by addition of the layer matrices [ENj as shown in Fig. 14

by substituting [E] for [X]M. atrix ['] consist of the column vectors

{s' s=l, ... , 2n, which have the elementsss

,Di = v. b j=l, 3, ... , 2n-l (7.22a)

and

= v. a j=2, 4, 2n (7.22b)

Substitution of Eq. (7.14) into Eq. (7.21) gives

R [R)} (7.23)

in which [R] is the dynamic stiffnes3 matrix for the semi-infinite

layered region R, i.e.

[R] = r (i[A][f][K] [f]- + [D] + [E]) (7.24)

which relates tg.? nodal forces per radian to the simultaneous nodal dis-

placements at the boundary r=r . The matrix [R] has properties similar

to those of the dynamic stiffness matrix for the plane case; in parti-

cular, matrix [R] is symmetric in accordance with the theorem of

reciprocity [14]. This may be shown by a prcof similar to that presented

for the plane case in Section 6.3.
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8. SUMMARY OF PROCEDURE

The theory for the proposed method of analysis is now completed

and the steps involved in analyzing plane or axisymmetric systems of

the type shown in Figs. 4 and 5 are summarized below.

1. idealization

1. Subdivide the layered regions R azd L into sublayers so that

the thickness of each sublayer is less than about 1/10 of

the length of S-waves -r;velling in it at the frequencies

considered.

2. Cover the irregular region I by a finite element mesh and

specify the coordinates and reference numbers of the nodal

joints. The nodal joints at the boundaries between the

irregular region and the layered regions must c.aincide with

the interfaces of the sublayers, see Fig. 6. The maximum

dimension of each element should again be less than 1/10 of

the length of S-waves and perhaps smaller near stress

concentrations.

3. Define the material properties of the finite elements and

sublayers. Viscous damping is included by the use of complex

moduli.

4. Define the prescribed nodal displacements and the external

forces acting on nodal joints of Region I and specify the

frequency of the harmonic loading.

ii. Dynamic Stiffness Matrix for Layered Regions

1. Formulate the eigenvalue problem for region R, i.e. E'y;. (4.31)

and (6.26) in the Love and Rayleigh wave cases, respectively.

2. Solve the eigenvalue problem by the methods outlined in

Appendix 1 and 2.
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3. Form the dynamic stiffness matrix [R] for region R according

to Eqs. (4.47), (5.28), (6.49) and (7.24) in the plane and

axisymmetric Love and Rayleigh wave cases, respectively.

4. In the plane cases, perform steps 1., 2. and 3. in a similar

manner to obtain the dynamic stiffness matrix [L] for region L.

III. Analysis of Irregular Region

1. Form element mass and stiffness matrices [M'] and [K']. Use

complex moduli to include viscous damping in [K'].

2. Assemble the global matrix [A] = [K] - " [M] by the direct

stiffness method from the element matrices of region I and the

frequency dependent dynamic stiffness matrices [R] and [L] for

the layered regions.

3. Compute the nodal displacements by solving Eq. (3.27). The

amplitudes and phase angles of the nodal displacements are

determined by 7qs. (3.5) and (3.6). Reaction forces may be

computed by Eq. (3.31).

IV. Displacements in Layered Regions

I. Compute mode participation tactors for region R by Eqs. (4.37),

(5.19), (6.43) and (7.14) in the plane axisymmetric Love

and Ray:leigh wave cases, respectively.

2 Compute displacements of the sublayer interfaces in region R

by Eqs. (4.41), (5.17), (6.41) or (7.9).

3. In the plane cases, perform steps j. and 2. for region L.

Computer programs wliich accomplish steps II, III and IV of the

above procedire for systems c the type shown in Figs. 4 and 5 have been

developed. The major part of the computation required is performed in

complex variables utilizing the complex arithmetic capabilities of

FORTRAN IV. Res,,lts fcou the analysis of saveral examples are presented

in the following chapters.
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9. LINE LOADS ON HOMOGENEOUS LAYER

The accuracy of the presented method is studied by application to

the following problem. A harmonic line load of unit amplitude acts on

the surface of a homogeneous layer of unit thickness as shown in Fig. 16.

The layer material has a unit mass density and a Poisson's ratio v=0.3.

If no material damping is assumed, the shear modulus G=1 unit, and if a

fraction of critica- damping 3=0.05 is chosen, the stress-strain behavior

is represented by the complex shear modulus G=(l + i2ý) units.

9.1 Love Wave Case

Fig. 16 shows . line load, P=l-exp(iwt) per unit length, which

acts in the direction perpendicular to the specified x-z-plane and thus

generates planE generalized Love waves. The correct solutio, to this

problem, labelled E, is derived in Appendix 3 and serves to chick the

numerical solutions which are computed by the presented method for

three different discrete models. Each of these models makes use of the

sym7metry of the problem about the z-axis.

Model A, shown in Fig. 17, consists of a region I with 18 x 18

rectangular finite elements and a region R with L8 sublayers. The

finite element mesh is condensed near the line load and the maximum mesh

size is 1/15 of the wave length of shear waves at the highest frequency

consiicýred (=2.2r).

Model B contains no finite element region; tOe layered region R

extends from x=O tL- infinity and consists of 18 sublayers as does

region R in Model A.

Model C is obtained from Model B by dividing each sublayer into

two sublayers of equal thickness resulting in a total of 36 sublayers.

The solutions ,otained from these models are referred to as

solutions A, B, and C respectively.

Displacements for the static case, w=O, ana displacement amplitudes

for harmonic motion with and witheut material damping at the frequency
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S=271 are shown in Table 1 for several points. The phase shifts of the

displacements with respect to the phase of the line load are presented

in Table 2.

Table 1 and Table 2 show that the solutions A and B are about

equally close to the correct solutions, E, and satisfactorily accurate

in the neighborhood of the line load and at some distance from it. The

solution C is significantly better than the solution B because the sub-

layers in Model C are only half as thick as in Model B.

"rhe errors in the displacements, displacement amplitudes and phase

shifts of the solution C are almost precisely four times smaller Lhan

the errors of the solution B. This is true for all the values presented

in Table : and Table 2 and is therefore a strong indication that the
2errors, if they are small, are essentially proportional to 1/h where h

is the thickness of a sublayer.

This observation can be utilized to obtain a much improved solution,

called D, from the solu ions B and C by adding one third of the

difference between the solutions C and B to the soluticn C. Values of

the solution D are also listed in Table 1 and Table 2. They have one or

two more correct digits than the values of solution C and agree very

well with the values of the correct solution.

The approximate solutions for the layered regions consist of

finite series of approximate wave modes, Eq. (4.41), while the correct

solutions are infinite series of exart ,ave modes, Eq. (A3.13). Some

wave numbers of corresponding approximate and exact modes are listed in

Table 3, in which the letters B, C, D, and E indicate, as before, the

respective models an.- solutions.

The values C, obLainec with 36 layers, are again almost exactly

four times closer to the correct values E than the values B obtained

with 18 layers. The very precise values D are computed by adding one

third of the difference between the values C and B to the values C.

One may reca1l that the displacements of the sth wave mode are

6 (x,z,t) = v (z) exp(iwt-ik x). In the undamped case, 0^=, the waves S s

numbers k are either real or imaginary and correspond to waves whichs

propagate with constant amplitude or decay exponentially in the x-

direction. The rapidly decaying waves, which have a wave number with

a large negative imaginary part, contribute significantly to the total

displacements Mnly at small values of x, i.e. close to the line load.
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At some distance from the line load only the propagating modes areI
important.

'•hen damping is irtroduced, as in the case B=0.05, all waves

propagate and attenuate in the x-direction because all wave numbers are

ccmplex. However, the exponentfil decay is relatively small for the

waves which would propagate with constant amplitude in the undamped

case and the wave lengths of the modes which would decay exponentially

in the undamped case are relatively long, ns the real parts of their

x:ave numbers are small.

9.2 Rayleigh Wave Case

The case in whizh the harmonic line load P=l-exp(iwt) per unit

length is applied at x=z=O and acts in the z-direction, rather than in

the y-direction as shown in Fig. 16, is now considered. Generalized

plane Rayleigh waves are generated by the force.

The correct solution to this problem is not known and cannot be

found easily. Approximate solutions are obtained for the discrete

:aodels A, B, and C described in the Love wave case. Their values for

iisplace,:ents, displacement amplitudes and phase shifts are shown in

Table 5 and 'Pable 6 for several points.

The agreewent between the solutions A, B, and C is about as good

as in the Love wave case. It shows that the numerical results change only

very slightly as the ltIýt boundary of the layered region R is moved from

x=l (Model A) to x=O (Mode- B) and as the discretization of the region

R is refined by reducing the Lhickness of the sublayers (Model C). The

solutions differ significantly oi,'y at points very close to the line

load, see point (x=0.01, z=O). TAis must be expected, because the

strain directly under the line load (x=:=0) is infinitively large in a

linearly elastic coatinuum.

Some approximate wave numbers which wete computed from Modl B

and C are compared with correct wave numbers in Table 4. The correct

numbers are the roocs of a difficult secular equation with transcendental

terms 122). They were computed iteratively by the secant method using

as initial guess the wave numbers obtained from Model C.

The values C, obtained with 36 layers, aye again almost exactly
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four times closer to the correct values E than are the values B, obtained

with 18 layers. As in the Love wave case, this indicates that the errors,

if they are small, are essentially proportional to I/h2 where h is the

thickness of a sublayer.

The values D are computed by adding one third of the difference

between the values C and B to the values C. This extrapolation improves

the accuracy by one or two digits.
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10. SCREENING EFFECT OF tRENCHES

Many attempts have been made to reduce ground-transmitted vibrations

by the installation of wave barrin's in the form of trenches or walls.

Barkan [9] reviewed several installations and came to the conclusion

that such barriers are often practically useless. ne attributed the

limited success to the absence of a rational design procedure for this

tyuc of installation. Recent experimental st'idies by Woods [52] and by

Dolling [15] have greatly improved the understanding of the screening

problem. B,. a rational design procedure which includes a sound analysis

of the screening is still not available.

Tne method developed in this dissertation is capable of analyzing

plane strain and axisymmetric screening problems. A relaliv'ely simple

example is presented below in which the ground transmitted disturbance

consists of plane generalized Love waves.

Figs. 18 and 19 show computed surface displacements near a st-ip

footing embedded in a homogeneous linearly elastic soil layer over a
2

rigid base. The footing is excited by a harmonic force P = W • coswt

per unit length. This type of loading is typical for foundations support-

ing rotatory machines.

The finite element mesh used in the a alvsis contained 430

rectangular elements and extended from the left edge or the footing to

the right edge of the trench. The semi-infinite layered regions c.) the

left :ind to the right ot the finite elemEnt mesh were represented by

18 sublayers each.

Fig. 19 shows the effect of trench depth at the frequency w = 1.

At this frequency a trench is quite effective in reducing the surface

vibrations. Its effectiveness increases with increasing trench depth.

A, perhaps, unexpected result is that the presence of the trench causes

a reduction in the displacement amplitude of the footing. This

reduction is due to reflections from the trench wall. However, the

reflections might just as well cause an amplification of the footing
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displacement depending on the frequency of the exciting force and on the

distance between the footing and the trench. The curve labeled w = 1.5

in Fig. 18 illustrates this point.

Fig. 18 shows the effect of changing the frequency for the case in

which the trench penetrates half way through the soil layer. At the

lower frequencies W = 0.5 and w = 1.0 the trench is quite effective but

as the frequency is increased to W = 1.5 the trench becomes useless.

This phenomenron is associated with the number of propagating Love modes

in the system. At frequencies below w = IT/8 =.39 no propagating modes

exist and the displacement amplitudes in the far field, i.e. beyond the

trench, decay exponentially according to Eq. (4.38b). In the frequency

range 0.39 to 1.18 one propagating mode exists. Its mode shape, shown

in Fig. 18, indicates that most of the energy is transmitted in the upper

half of the layer. The trench is therefore quite effective in reflecting

the Love wave. This is demonstrated by the curves labeled w = 0.5 and

1.0 in Fig. 18. As the frequencoy is increased into the range 1.18 to

1.96 a second propagating mode appears. Its mode shape, shown in 'ig. 18,

indicates that a significant part of the energy is transmitted below

the bottom of the trench. Consequently, the trench is not an effective

barrier for the second mode. This is illustrated by the curves labeled

; = 1.5 in Fig. 18. At frequencies beyond w = 1.96 additional modes

will appear and the displacement in the far field becomes more complicated.
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11. TORSIONAL MOTION OF RIGID CIRCULAR FOOTINGS

11.1. Introduction

A rigid circular footing on an axisymmetric medium has four

distinct degrees of freedom; they are the vertical and hcrizontal trans-

lations and the rotations about a horizontal and a vertical axis. The

ritational motion about the vertical axis of symmetry, called torsional

motion, is of considerable importance to precision tracking radar towers

and communication antennas [47, 48].

Radar toters are often supported on spread footings of approximately

circular plan. The footings are st~ff compared to the soil underneath

and may therefore be treated as rigid circular disks.

A solution for the harmonic torsional motion of a rigid circular

disk fixed to the surface of a homogeneous linearly elastic half space,

Fig. 1, was first obtained by Reibsner and Sagoci [41]. Stallybras

[64] derived a solution to the same problem which is easier to evaluate

for high frequencies. Weissmann [47] considered the effect of material

damping and slippage between the footing and the surface of the half

space.

The assumption that the footing is supported by a homogeneous

half space is mathematically convenient and for practical purposes

suita'le if the subsoil is homogeneous to a depth of a few footing

diameters. But this condition is not often encountered in practice.

Arnold ec al. [6] obtained a solution for the torsional motion of

a rigid circular Looting supported by an elastic layer which extends

laterally to infinity and is fixed at its bottom to a rigid base, see

Fig. 2. They assumed that the dyn-nmic stress distribution under the

footing on a layer is similar to the static stress distribution under a

rigid footing on a half space. This assumption loses its validity as

the frequency of the motion increases and the thickness of the layer

decreases. Awojobi [ 8] treated the same problem by reducing it to the
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solution of an integral equation without assuming a priori a stress

distribution under the rigid footing. However, he sub3tituted the kernel

of the integral by an approxinwition for which he could find a closed form

solution.

The half space solution based on the model iii Fig. I and the layer

solution based un the model in Fig. 2 are currently used in design

practice. But as footings are always embedded in the ground and are
usually supported by layered soil, the applicability vf the- half Space

and layer solu•'-ns is often questionable. No mechods of analysis have
been published so far vhich nan quantitatively account for the effect of
embedmrnt and layering of the soil.

'Lne method presented herein his the flecibility to analyze the

response of footings embedded in layered soil. In the following exampl(, s

the effect of the ::hickness of a howogeneous layer over a rigid base, the

effect of damping, the effect of embed1w.et and the effect of an increase-

in the shear modulus or the soil with -- ptb are studied.

First, a few te.rms used in the piesestation and the discussion of

che examples have to be explained.
The harmonic torsional motion uf a =asEless rigid footing is des-

cribed by

T
J= -0 F exp(iwt) (li.•

in which 0 is the angle of rotation about the axis, T is the amplitude

of the external torque on the footing, and k is the static spring

constant. The dimensionless complex quantity F = F + i F2 , designated

as the displacement function, depends on the circular frequency w or on

the dimensionless frequency ratio ,q

a° = r/V (ii.2)
0 s

in which r is the radius of the footing and V is the shear wave velocity
in the soil.

If the displacement function F for a footing without inertia is

known one can calculate the response of a footing with 'he mass moment

of inertia,10 ,about the axis of rotation, as shown by Lysmer and Ricr.art

[24], by
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T
k c's(wt + h) (11.3) Ak64

in which M is the dynamic magnification factor

2 2
2 ~ 1/kF, + (w' FI 0

M F.+1 (11.4)
2l~ F - 2 2I(l W 2Ie F1 A) + (W2I0 F2/k8)

and * is the phase shift

-I F2

tan (11.5)2I 2 21
F - I (F+ /

It is often convenient to employ a dimensionless inertia ratio,

which can be defined by 1421

I0
SB8= 0  (11.6)

• pr5

where P is the mass density of the soil.

If the mass density and the shear wave velocity of the soil vary

with depth, p an,! V in Eqs. (11.2) and (11.6) are the values of the
s

density and the shear wave velocity at a designated reference depth. In

all the following examples, in which soil propercies vary with depth,
S~this reference depth will be taken to be equal to one footing radius.

P 11.2 Coapaison of Numerical Results with Analytical Solutions and

Experimental Results

Arnold et al. 16] performed model tests to check their analytical

solutions for the torsional motion of a rigid circular disk on an elastic

layer agair.n.t experimental results. They glued a disk to the surface of

a sheet of foam rubber and forced the disk to vibrate in the torsional

mode

Fig. 20 shows their experimental and their analytical results for

the following parameters. The ratio of the layer thickness to the disk

Sradius is 1!/r 0.97 arA the inertia ratio of the disk is B0  0.79.
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The analytical and experimental results agree well with respect to the

resonance frequency and the general shape of the response curve; but

they differ in the maximum amplitude.

Awojobi [81 also compared his analyticai solution with Arnold's

experimental results. The comparison, see Fig. 20, shows a good agree-

ment in the ascending part of the response curve, but a difference of

about 10 percent in the resonance frequency.

The same example was studied numerically by the finite element

method with a fine mesh, which is shown in Fig. 21. The maximum dimen-

sion of the elements and the maximum thickness of the sublayers are

less than 1/25 of the length of shear waves at the trequency racio

a = 2.5. Numerical results are presented in Fig. 20 for an elastic

material without damping, a = 0%, and for a viscoelastic material with

a fraction of critical damping 8 = 7.5%. The numerical solution for the

undamped material and Arnold's experimental results agree very well

with respect to the resonance frequency and the general shape of the

response curve. The deviation in the peak amplitude is apparently

caused by the internal damping of the foam rubber. The numerical solution

for 8 = 7.5%, which takes the damping of the foam rubber into account,

fits the experimental results exceptionally well throughout the given

frequency range.

The small difference between Arnold's analytical solution and the

finite element solution for 8 = 0% can be attributed mainly to 'I .f

deviation of the stress distribution assumed by Arnold et a!. from the

actual dynamic stress distributi'.n under the rigid footian,. The error

resultir.g from the finite element discretization is expected oe small

becaise the chosen mesh is fine.

The computational time needed for the finite elemn. inalysis at

one frequency was approximately 4 seconds on the CDC 6, computer.

11.3 Effect of Layer Thickness

Fig. 22 shows the displacement function F for the torsional motion

of a massless footing on a homogeneous elastic layer without material
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damping. The figure also shows the geometry of the vibrating system.

The radius of the footing is r and the thickness of the layer is H.

Displacement functions are presented for the ratios H/r° = 1, 2, 4, 8,

and -. The function for H/r° = is the Reissner-Sagoci solution for

the elastic half space [41].

Fig. 22 shows that the F2 -curves are zero for frequency ratios

below certain values which can be computed from Eq. (A3.6). No Love

waves can exist which propagate through the layer and no energy is

dissipated away from the footing, if
r

a (11.7)

or

Z =2r V /= 2v rr/a > 4H (11.8)
5 s 0 0

in which 2s is the length of a shear wave and V is the shear wave

velocity. This means that there is no geometric or radiation damping,

that the rotation of the footing is in phase with the applied torque,

and thar the F2 -curve is zero. In this range where 2s > 4H, the response

of a footing with inertia can become infinitely large as the denominator

in Eq. (11.4) may vanish, depending upon the moment of inertia of the

footing and on the frequency.

The waviness of the displacement function Fig. 22 is caused by the

change of wave modes from the decaying type to the propagating type as
the frequency ratio increases, see Section 4.3. The change of the sth

mode occurs at

2s-1 r0
a 0 H1

a.:cording to Eq. (A3.6). The wave number k of the sth mode vanishes at5

this a value, while it is purely imaginary and purely real for smaller
0

and for larger frequency ratios, respectively.

As pointed out in Section 5.2, the dynamic stiffness of a layer

against torsional motion does not become singular if one of the wave

numbers vanishes.

The displacement functions for small ratios H/r differ significantly

from the half space solution; the smaller H/r the greater they differ.

However, the displacement function for H/r = 8 shows good agreement with
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the half spaceý solution in the range a° < 2, which is the range of interest

for most footings.

The values of the static spring constants are also presented in

Fig. 22. For H/r > 2 the static spring constant is close to that of a
0

footing on a half space.

The discrete models used in the computaticn of the displacement

functions were similar to the one shown in Fig, 21. The maximum mesh

size was, in all cases, smaller the'n 1/]2 of the length of a shear wave.

Values of the displacement functions were computed at frequency ratios in

intervals of 0.2.

l1.4 Effect of Embedment

It was shown in the previous example that a footing on a homo-

geneous elastic layer with a thickness of several footing radii responds

to torsional excitation very much the same as does a footing oil a homo-

geneous elastic half space.

The effect of embedment will be demonstrated for a footing on a

thick layer, H/r° = 8. The response curves for three different footings,

each with inertia ratios B 2 and B0 = 4, are shown in Fig. 23.

Footing I is placed on the surface of the layer. Footing 2 is

0embedded to a depth of 0.4 x r° and has a free periphery. Footing 3 is

embedded to the same depth as Footing 2 but its periphery is in contact

with the surrounding soil. No slippage occurs where the footings and the

layer are in contact.

The static stiffness coefficients of Footing 1, 2 and 3 are
3

k 5.34, 7.04 and 11.9 x G r0 , respectively, where G is the shear

modulus and r is the footing radius. This means that the static
0

compliance is strongly reduced by the embedment of the footing and by

side friction.

The above value for the static stiffness of Footing 3 agrees well

with Kaldjian's [21] results for the torsional stiffness of embedded

circular footings.

The reduction of the static compliance causes the resonance
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frequency to increase and, as the amount of geometric or radiation

damping grows with frequency, this results in an increased damping of

the footing motion. The peak amplitude is therefore even further reduced

by embedment of the footing than is the static compliance.

A comparison of the response curves for the inertia ratios B0 =2

and B =4shows that a decrease of the inertia ratio has a similar effect

on the footing response as have embedment and side friction.

The displacement functions from which the response curves in Fig.

23 were calculated by Eqs. (11.3), (11.4) and (11.6) are presented in

Fig. 24.

The F -curves are changed only insignificantly by embedment and

side friction. The F2 -curve for Footing 3 is somewhat higher than those

for Footing i and 2. This means that the radiation damping is increased

by embedment with side friction.

11.5 Shear Modulus Increasing with Depth

In the previous example it was assumed that the medium supporting

the footing was homogeneous with respect to the mass density and the

shear modulus. However, the elastic moduli of soils usually vary with

depth even though the mass density and other properties of the soil may

be fairly constant within the zone of interest.

The shear moduli of sands and gravels increase approximately as

the square root of the effective confining pressure [43] and thereforeI with the depth below the surface. In the following examples, the relation

between the shear modulus and the depth is assumed, accordingly, to be

G(z) = G rZ-I (n11.10)

0 0

in which z is the depth below the surface, ro is the footing radius and

G is the shear modulus at z = r.

The confining pressure in the soil below the footing is decreased

by the load of the footing. To accoutit for this fact in a very simple

manner it is assumed that the modulus under the footing, r<ro, is

G(z) =G rp for yz<q (11.11)
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in which y ts the unit weight of the soil, q is the average contact I
pressure under the footing, and p is the dimensionless load ratio de-

fined by

0-q (11.12)

Fig. 25 shows the assumed variation of the shear modulus with depth for

r<r at p=0.5, l and 2 and for r>r .

Displacement functions for the torsional motion of three footings

without inertia are shown in Figs. 27, 28 and 29. One footing sits on
the surface of the ground, the other two are embedded in the soil to a

depth of 0.4 x ro, one with and one without soil, contact at their sides.

Each footing is supported by a thick soil layer over a rigid base,

H/ro = 8. The shear modulus in the layer increases with depth according

to Fig. 25 and its value under the footing is determined by the parameter

p. Displacement functions for p = 0.5, 1.0 and 2.0 are presented and

for comparlson the displacement functions for a homogeneous layer are

also shown in Figs. 27, 28 and 29.

The displacement functions for the layer, in which the shear

modulus increases with depth, differ somewhat from the displacement

fuiactions for the homogeneous layer. The difference is pronounced in the

case where the footing sits on the surface of the layer, but is less

significant in the more practical cases of embedment either with or

without side friction.

The parameter p has hardly any influence on the displacement

functions, but it affects the static spring constant k., values of which

are also presented in Figs. 27, 28 and 29 for the various cases.

11.6 Displacements in the Far Field

Displacement amplitudes versus depth at different distances from

the axis of symmetry and along the surface are shown for three particular

cases in Figs. 30-33. In Case A the footing sits on the surface- of a

homogeneous layer; in Case B the footing is embedded in the same hoo-

geneous layei:; in Case C the feoting is embedded in a layer in which
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the shear modulus increases with depth as shown in Fig. 26 (p=l.18).

In each case the thickness of the layer is equal to 18 footing radii,

the material damping of the xayers is 8 3% of critical damping, and

the footings are exr- :e. at the frequency w = 60W so that the amplitudes

of the footir, £otatiou are one radian.

Figs. 30 and 31 show that the displacement amplitudes close to the

axis (r,4ro are, as expected, much larger at the surface than at some

§ depth. Bu!. the displacement amplitudes at greater distance from the

axi. (r=36r ) do not decrease with depth. This can be explained by

vt:"t.. act tna :e genera.lized Love waves generated by the torsional

vii ... o; ions of t c, fotings are not surface waves, as are the Rayleigh

wave.i whit . b--,e :a:,, amplit ides close to the surface and attenuate

with d pth, bu: ... stof S-waves which are reflected at the free surface

and the rigid base.

A comparison of Figs. 30 and 31 shows that for Case B the displace-
ment amp.11.udes in the far field are almost exactly twice as large as

for case A. The' reason for this is that the torque applied through the

footing to the layer is 2.04 times larger in Case F than in Case A.

Since the wave length of S-waves, Rs' is large compared to the focting
radius at the considered frequency, (2s=8.6ro ), Saint-Venant's principle

applie,. A different distribution of the shear stresses around the

tooting has a negligible effect on the displacements at some distance

from the footing if the applied total torque is the saue. For high

frequencies at which the length of S-waves is not long compared to the

7footing dimension, this is not true.

In Case C, Fig. 32, the displacement amplitudes attenuate with

depth even at large distance from the axis o? symmetry (r=36ro), because

the shear modulus increases with depth. Most of the energy is propagated

- •through the softer part of the layer near the ourface.

This is also the reason for the amplitudes of the surface displace-

ments, Fig. 33, being much larger in Case C than in Case A or Case B.
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12. VERTICAL MOTION OF RIGID CIRCULAR FOOTINGS

12.1 Introduction

The vertical motion of a rigid circular footing which is supported

by a homogeneous, livearly clastic half space, Fig. 1, and excited by a

harmonic vertical fcrct vas fir;t studied by Reissner [39] in 1936, who

assumed, for simplicity. , c.niform stress distribution under the footing. I
Bycroft 110] investigated the same problem. He assumed that the dynamic

stress distribution beneath the rigid footing is siilar to that for the

static case and obtained an approximate solution valid for low frequencies.

Lysmer [24] and Awojobi and Grootenhuis [7] derived solutions for the

same problem by accounting properly for the frequency dependence of the

stress distribution beneath the footing. I
The application of the half space theory to the analysis of footing-

soil systems implies the assumption that the subsoil under the footing

is fairly homogeneous down to a depth of several footing diameters.

Often, this assumption cannot be justified, especially if large footings

are to be analyzed. Considerable deviations from the half space theory

occur in cases in which rock or hard layers are encountered at shallow

depth below the footing [29].

Warburton [46] studied the vertical vibration of a rigid circular

footing supported by a homogeneous elastic layer which extends infinitely

in the horizontal direction and rests on a rigid base, Fig. 2. He assumed

a frictionless interface between the layer and the rigid base and made

an approximation regarding the stress distribution beneath the footing.

Paul [38] studied the same problem without assuming a priori v stress
distribution beneath the footing. But he did not present a realily
useable solution and left the results in implicit form.

In each of the analytical half space and layer solutions referenced

above, it was assumed that the interface between the footing and the

supporting medium is frictionless.
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Lysmer and Kuhlemeyer [25] used successfully a finite element I
method with an energy absorbing boundary (see Chapter 1) to study the

effect of embedment on the vertical motion of a footing which is supported

by a homogeneous elastic half space. Kuhlmeyer [22] used the same method
to study the vertical motion of a fcating supported by a stratified half •
space and found that the method gave inconclusive results when the deeper

layers were stiffer than the surface layer, which is usually the case

in foundation vibration problems.

In the following examples the vertical motion of rigid circular
footings on the surface of a homogeneous layer and of those embedded in a

layer in which the elastic moduli increase with depth are investigated

by the method presented in this dissertation.

Before the examples can be discussed a few terms need to be ex-

plained. The harmonic vertical motion of a rigid, massless footing is I
described by

P
w T Fexp(iwt) (12.1)

z

in which w is the vertical displacement of the footing, P is the
0

amplitude of the vertical force exciting the footing motion and k is the

static spring constant. The dimensionless complex quantity F = F + i F

is the displacement function as before and depends on the circular

frequency w or the dimensionles- frequency ratio a defined by Eq. 11.2.0
If the displacement function F for a massless footing is known,

one can calculate the response of a footing with the mass m, as shown

by Lysmer and Richart [24], byZF- P

ST= o M cos(Wt +u) (12.2)
kM in which M is the dynamic magnification factor

V/(IE 2  2
It+ F / k

S( 1_ 2 m Fl/kz 2 + (W 2 m F2,/k) 2(2.)•

and is the phase shift
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-1 F2

*=tan1  F 2 (12.4)

Fl -w m (Fl + Fj)/kz

A dimensionless mass ratio may be defined by

G r
mB . (12.5)z P r z

in which p and G are the mass density and the shear modulus of the soil,

respectively, and r0 is the footing radius.

12.2 Footing on Homogeneous Layer

The vertical motion of a rigid circular footing supported by a

homogeneous layer, Fig. 2, is studied. The footing has the radius ro and

is smooth at its interface with the layer, permitting free horizontal

displacements of the layer surface beneath the footing. The layer has

the thickness H and is welded to the rigid base. Poisson's ratio of the

layer material is v = 0.25 and the complex shear modulus G=(l + i 2 8)

units, where 8 is the fraction of critical damping.

Displacement functions for the ratio of layer thickness to footing

radius H/r° = 10 and 6 are presented in Figs. 34 and 35 for different

values of B. The curves for H/r° = 10 and H/r = 6 look similar if the
abscissas in Figs. 34 and 35 are scaled by the layer thicknesses. In

the undamped case, B=0%, the displacement functions show singularities,

but in the damped case, a=5% or 10%, they are "smooth."

To explain the singularities in the undamped case it is best to

look at the spectral lines of the wave numbers which characterizes the

wave modes used in the displacement expansion according to Eq. (7.9).

The first five spectral lines are presented in Fig. 36 which shows

a three-dimensional space. The axes in Fig. 36 are labeled ý=Re(k)-H,

T=Im(k)'H and --H/Vs where It is the thickness of the layer. The long

dashed lines lie in the F-4- plane and represent real wave numbers. The

short dashed lines lie in the n-Q- plane and represent imaginary wave

numbers. The full lines are curves in the •-•-.Q- space and occur in

pairs which are symmetric about the n-5- plane; each pair represents a
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pair of complex wave numbers, k = k1 -ik 2 and -k =-k-ik .2

The spectral lines intersect the planes =-0Q, ý=O and n=O at right

angles. This follows from the fact that the secular equation, Eq. 6.27,

is an analytical function of 2 and k2 in the undamped case. A proof can
be performed in a similar manner to that given by McNiven et al. [311 for
the spectral lines of waves in axisymmetric rods and will therefore not

be presented.

The points at which the spectral lines intersect the a-axis define

natural frequencies of the layer corresponding to vertically propagating

waves which are reflected at the free surface and the rigid base resulting

in a standing wave. At these frequencies the dsiplacements in the layer

vary only with the depth z and any plane parallel to the surface remains

plane during motion because k=O.

The natural frequencies labelled a, c and d in Fig. 36 are

associated with pure S-waves producing only horizontal displacements.

They can be comp~ted by
2n-i1

=n2- 1T Vs/H n=1,2, ... (12.6)

in which V is the shear wave velocity. Because the waves corresponding
5

to the points a, c and d have no displacement components in the vertical

direction, they do not affect the vertical motion of the footing.

The natural frequencies labelled b and e in Fig. 36 are associated

with pure P-waves producing only vertical displacements in the layer.

The layer surface can move up and down at these frcequencies without being
Jexvited by external forces, and since it remains plane the boundary

conditions tinder the mazz: ýss footing are identical to those of the free

surface. Therefore, these frequencies are naturai frequencies of the

footing-layer system if the footing is massless. Consequently, the dis-U

placement :unctions for 0=0 in Figs. 34 and 35 have singularities at the
corresponding frequency ratios. The natural frequencies in question are

2n-i
W =-2-1- Vp/H n=1,2, ... (12.7)

n 2 p

in which V is the velocity of P-waves.
p

The first two natural frequen-cies for the vertical motion of the

massless footing in the case Hir 10 occur at a =0.272 and ao:0.816.
0 0
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Fig. 34 shows clearly the singularity at a =0.272, but the singularity
0

at a =0.816 is hardly noticeable.
In Fig. 34 one observes another irregularity at a =0.746 which

corresponds to the frequency at g and g' in Fig. 36. At this frequency

two wave modes exist in the layer which have equal and opposite phase

velocities. The group velocity, which is

dw
U = (12.8)

dk

if k is real [16], vanishes at g and g'. The two wave modes have,

therefore, zero group velocities at this frequency and do not transmit

energy, because the rate of energy transmitted by a wave is the product

of the group velocity and the energy density in the wave [17].

If the amplitudes of the two wave modes are equal, the modes

combine to a standing wave and the horizontal and vertical displacements

in the axisyxmetric case vary along the free surface as

6x Jl (kr) exp(itAt) (12.9a)

6 w J a (kr) exp(iwt) (12.9b)

in which J and Jl are the Bessel functions of order zero and one,
respectively. Eq. (12.9) follows from Eqs. (6.32, 7.1, 7.3) and from

the properties of the Hankel functions [2].

H((kr) - H 2 (-kr) 2J (kr) (12.10a)
0 0 0
(2) (2) I

H1  (kr) + H1  (-kr) = 2J 1 (kr) (12.10b)

Because che wave number corresponding to point g in Fig. 36 is

relatively small, kr =0.208 for H/r = 10, the free surface in the area
0 0r<r° rermairs approximately pl• ,e during vibration in these two modes.

The difference in the vertical displacements at r=r and r-0 is only one

percent. This means that the displacements of the free surface are

almost compatible with those under the rigid massless footing. Therefore

it taken only a small force to completely satisfy the boundary ctonditions

under the footing and to produce a large footing displacement at this
frequency. Consequently, the Fl-curve for 0=0% in Fig. 34 shows a peak
at ao=0.746. The peak is finite in height; but it is difficult to
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determine the height numerically, because the peak is very narrow.

The same phenomenon occurs al the frequency corresponding to the

points f and f' in Fig. 36. But since this frequLncy is very close to

the lowest natural frequency of the footing-layer system, no separate

peak shows up in Fig. 34.

A similar phenomenon to that described above was observed experi-

mentally in steel rods by Oliver [36] and studied theoretically by

McNiven [30). In the rods, very narrow and high response peaks occurred

also at those frequencies at which pairs of complex spectral lines for

wive numbers became purely real as happens at the points f and f" or g

,nd g' in Fig. 36.

The effect of material damping on the response of footings is to

smooth the displacement functions and eliminate natural frequencies.

ihe displacement functions in Fig. 34 and 35 for 8=5% and 10% of

critical damping therefore show no singularities.
The spectral lines for the wave numbers in the damped case are not

much different from those shown in Fig. 36 for the undamped case. But

they do not intersect the ý-Q- plane, as all wave rumbers have negative,

non-zero imaginary parts in the damped case, and they are smooth with

continuous first derivatives at the frequencies at which the spectral

lines form right angles in the undamped case.

It is more realistic to include some material damping in the

analysis than to assume that the soil behaves purely elastically.

Furthermore, the incorporation of damping has the advantage that singular-

ities are avoided.

Response spectra for footings with different mass ratios are

presented in Figs. 37 and 38 for h/r = 6 and H/r° = 0 at 6=5%. They

show peaks at frequencies close to the first natural frequencies of the

corresponding undamped cases. The peaks are high for H/r 0 6, but not
I very significant for H/r° = 10.

Except for these peaks, the response spectra for H/r = 10 are
vr

quite similar to those for the vertical motion of a rigid circular

footing on a homogeneous elastic half space, which are shown in Fig. 39

and are based on Lysmer's solution [24). However, the response spectra

for li/r = 6 differ markedly from those for the half space.
o
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The values of the displacement functions in Figs. 34 and 35 were
S! computed by using rectangular meshes, which were similar to tht' shown

in Fig. 21 and consisted of 22 x 5 finite elements and 22 sublayers.

The maximum dimension of any element and the maximum thickness of any

layer was less than 1/10 of the length of shear waves at the highest 4

frequency considered.

To verify the validity of the theory and to check the comput~er

program, anplyses for H/r = 6 were repeated at several frequencies with0
a different mesh, in which a much larger region, r<6r as compared to

r<r , was represented by finite elements. The results obtained using

the two different meshes were virtually identical. The relative

differences between the computed values of the displacement functions

were less than one percent.

12.3 Footing Embedded in Inhomogencous Layer

Fig. 40 shows an embedded rigid circular footing which is forced

to vibrate in the vertical mode. The shear modulus in the supporting

layer increases with depth as defined in Fig. 26. Poisson's ratio is

V=1/3 throughout the layer, and 3% of critical damping for sh-ar and

dilatational deformations in the layer is assumed. The damping is

introduced by using a complex shear mod.,ius (Fig. 26 shows only the real

part of the shear modulus). Since Poisson's ratio is real, Lame's

constant X=2Gi/(l-2v) is also complex. The layer has c thickness of

18 footing radii and rests on a rough rigid base.

The displacement function for a massless footing and the response

spectrum f)r a footing with mass are presented in Fig. 40. The figure

indicates a small peak at a frequency close to that at which the layer,

in the absence of damping, would have its first natural frequency for

vertical displacements.

A comparison with the response spectra in Figs. 37 and 38 scggests

that the response peak in Fig. 40 is small because the layer is thick

with respect to the footing radius, H/rt = 18. Due to damping, the

displacement function shows no further peaks at the frequencies at
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which the layer, in the absence of damping, would have higher natural
frequencies.

Figs. 41 and 42 show displacement amplitudes along the surface of

the layer and displacement amplitudes versus depth at various distances

from the axis of the footing. The displacements are caused by vcrtical

vibration of the footing with unit displ•cement amplitude. The horizontal

and vertical components of the displacements along the surface have

about equal amplitudes except close to the footing where the vertical

component dominates. Fig. 42 shows that the displacement amplitudes

decrease with depths at close and far distances from the axis of the

footing. This means that most of the energy is propagated in the uprar

part of the layer, vhere the material is softer than at greater dep)-,

and also that the rigid base assumed in the analyses has little or no

influence ou the results.

9
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13. SUMMARY AND CONCLUSIONS

A numerical method has been presented for the analysis of steady-

state wave propagation problems in linearly elastic or viscoelastic

media of infinite extent. The geometries considered are either plane or

axisymmetric and consist of a finite, irregular region which is joined

to semi-infinite layered regions of the type shown in Figs. 4 and 5. All

external loads are applied within the irregular region and vary harmonic-

ally with time. Motions both in the plane and perpendicular to the

plane of a cross-section through an axisymmetric or plane geometry have

been treated.

The irregular region is discretized by the finite element method.

Compatible finite elements with quadrilateral cross-sections are employt

and the displacements at the nodal joints of the elements are introduced

as the degrees of freedom.

The semi-infinite layered region is discretized by subdividing the

layers into thin sublayers and by assuming that within each sublayer the

displacements vary linearly in the direction normal to the layers. In

the direction parallel to the layers, the displacements are required to

satisfy the pertinent ordir.-ry differential equations, which are obtained

by separation of the variables from the partial differential equations

that govern the motion of the continuum.

Compatibility conditions for displacements and equilibritnA must be

satisfied along the sublayer incerfaces, the stress free surface and

the fixed base. These conditions constitute an algebraic eigenvalue

problem, since no external forces are applied within the layered region.

The solutions to the cigenvalue problem describe the propagating an.

standing waves which can exist in the discretized layered region. These

waves serve as shape functions for the displacement expansion. A dynamic

stiffness matrix is then developed which uniquely relates the nodal

forces to the simultaneous nodal displacements and properly represents

the elastic ano viscous dynamic resp.onse of the semi-infinite layered
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region.

The equations of motion for the discrete model are derived from

the principle of virtual 4ork which has been formulated to facilitate

the use of complex variables in the analysis of harmonic motion.
An important step in the procedure is the determination of the

wave modes in the layered region by the solution of the eigenvalue

problem. For motions perpendicular to the cross-sectional plane the

problem ([A]k + [C]) {v} {0} must be solved in which [A] and [C] are

complex, symmetric, tridiagonal matrices. For motions in the cross-

sectional plane the problem is ([A]k 2 + i[B]k + [C]) {vl = {0} in which

[Aj and [C] are complex, symmetric matrices with baadwidth 5 and [B]

is a complex, skew-symmetric matrix with bandwidth 7. Efficient .MRTRAN

IV subroutines for solving these problems have been developed and

presented.

The method is consistent in that the same displacement expansions

are employed for the derivation of the elastic, damping and inertia

forcos at any nodal joint. The displacement expanriions both in the

finite element regions and in the layered regions are compatible and

thus provide continuous displacements throughout the entire domain. The

analysis yields the displacements in the irregular region as well as in

the semi-infinite layered regions.

Accuracy Studies

The accuracy of the method was investigated for the example in

which a line load acts on the surface of a homogeneous layer and

generates plane generalized Love or Rayleigh waves. In the Love wave

case, the numerical results for the discretized layer were compared with

the exact solution for the continuous layer. Good agreement was obtained

with a relatively coarse mesh and excellent agieement was achieved with

a fine mesh. IP the Rayleigh wave case, the accuracy of the numerical

solutions nad to bt -tudied indirectly by comparing solutions obtained

with different meshes, because no exact continuum sulution is available.

For this purpose the boundary between the irregular and the layered
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region was shifted, replacing the finite element displacement field by

the expansion into wave modes and vice versa. The size of the tinite

elements and the thickness of the sublayers were also varied. The

relative differences between numerical solutions obtained with different

meshes were insignificant. In addition, exact wave numbers for waves

in the continuous layer were computed and compared with the wave numbers

for the corresponding waves in the discretized layer. The agreement was

highly satisfactory and improved as the discretization was refined.

Similar studies of numerical solutions to axisyImetric problems were

performed but have not been presented here. In these cases the agreement

of solutions obtained with different meshes was equally good.

In another study, a numerical solution for the torsional vibration

of a circular footing on a homogeneous layer was computed for comparison

with published analytical solutions and test results. The numerical

method was again found to yield excellent results.

Torsional Motion of Circular Footing

The method presented herein was primarily developed for the analysis

of steady-stat vibrations of machine foundations. Thus emphasis was

placed on applications to this type of problem.

The torsional response of circular footings to vibratory torques

about the vertical axes of the footings was studied. The effects of the

thickness of a supporting layer, embedment of the footing and increasing

shear modulus with depth were investigated. The response of a footing on

a homogeneous layer which has a thickness of 4 footing radii :r more is, I
for Practical purposes, identical to that of a footing on a homogeneous

half space. Footings on layeib with a thickness of one footing radius

or less respond quite differently and do not benefit from radiation

damping at low frequencies.

Embedment may reduce the vibration amplitudes drastically,

especially when the footing sides are bonded to the adjacent soil.

Several cases were studied in which the shear modulus increased as the

square root of the depth below the ground surface. A careful determination

of the static stiffness is, as usual, of prim&:y importance. The dynamic
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effects are similar to those in the case of a homogeneous half space.

Therefore, the displacement functions of the half space solution may be

utilized in the analysis as a first approximation provided that the shear

modulus at a depth of about one half of the footing radius is chosen as

the representative shear modulus. A study of displacements in the far

field has indicated that, in the typical frequency range, the amplitudes
of surface displacements at some distance from the footing depend pre-

dominantly on the torque transmitted into the ground and on the layering

of the soil.

Vertical Motion of Circular Footings

The vertical vibration of a circular footing supported by a homo-

geneous layer over a rigid base was investigated for two ratios of layer

thickness to footing radius, H/r° = 6 and H/ro = 10. Displacement

functions of massless footings were computed for cases vith and without

damping. In the undamped case two different resonance phenomena were

observed and discussed. Response spectra for footings with typical mass

ratios show only cne pronounced peak when a realistic amount of damping

is assumed. This peak occurs at the fundamental natural frequency for 4
vertically travelling P-waves in the soil layer. For H/r = 6 or smaller

this peak is high, but for H/r° = 10 or larger this peak is insignificant.

The response of footings on a thick layer, H/r > 10, is similar to that
0

of a footing on a homogeneous half space. The vertical response of a

circular footing embedded in a layer, in which the moduli increase with
depth, was also analyzed.

Screening Effect of Trenches

The versatility of the method was demonstrated by a further
xexample. The screening effect of trenches on horizontally polarized

S-waves was investigated by varying te depth of the trench and the

frequency of the wave motion. It was shown that trenches can be quite

effective as a barrier against waves of some frequencies but may be

7 '

103



S2
ineffective for waves of other frequencies.

Possible Additional Applications

It is believed that the method may also be of value in the study of

soil-structure interaction during earthquakes. This would require the

introduction of a few features in addition to those included in the

analyses presente!d herein. In this type of problem, the rigid base of

the model may be subjected to motion in the form of a time-displacement

history of the bedrock underlying the soil. The induced transient motion

may be analyzed with the assistance of a discretized Fourier transforma-

tion.

The method might also find application to wave propagation problems

in other fields. In seismology, fault mechanisms of earthquakes and the

effect of valleys and mountain ranges on seismic waves may be studied.

The interpreation of results from non-destructive vibratory pavement

testing may also be improved with the aid of this method of analysis.

I
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Table I

j Displacements for Line Load
(Love Wave Case)

, 01s11.c asz D1s61ac .asz •11t •d 0lDsplac --za' M plitude

Static Cage '02•, * - - 0w ; A- 0.0sV i j;.,1501  ;" - • , 1!- - i 1----a 0 .0 1 . 0 1 -1.0 X 10.01 1-0OA 1- 1.0 10.01 1.01f,-0

i 414m .60S .13421 .8,12 .3601 .2445 1
'k 1.5) S~ . M .:,11 .3,0 .21 .939 .384 .1505

4. C 1.4S 6155 :143 7 353 24) .9S22 .3610 .1510
0.0 •,2 ..81049 .1330 .9 231 .3525 .24,12 .190 . .3_0 .1512

541 .81049 .130 9136 .3"74 .2412 .9310 IS3S 1

A'! .56442 .55147 .12692 3448 .332.7 .1713
-SIM0 $310 .12704 .3454 .331 .102 .3290 .31)9 .111M4.2 c !1 SS0 5I6 :110 U3 :35 .7 36 3117 1121
S ft61I .,1S2S .1269 " .3411 .3297 .1703 .3254 .3105 :.1121

.5i 168 .3412 .3297 .1713 .3254 ."109 .1424

A . 33718 .34658 - r4 .15212 .1734 .1749
i•• .15701 * .3149,1 .- 66 MA -1821 . 7Z9 D163 .AM6 .1693 .1228"

0.4 c .13756 .14341 .10644 .1135 .1745 .1,t6 .1770 .163 .1217
S.35)76 .34894 .10643 . .1440 .1331 .17,0 .1771 .16fi? .12139 .35774 .348104 .10643 .18.0 .17,1 .11773 .1097

A - .21437 .2109 .03400 .146, .1502 .28.3 .

8 .214628 .2 1090 .07603 .12478 .1695 .2831 .1361 .1369 * .1420.5 C .211S2 .21109 .0159 ;, .1446 .1465 LT-.1 .0331 .1340 .1•19
,D .21460 .2311 ' .0Y596 .1435 .1414 .2778 13-71 .1330 .111

,t4 .21439 .21116~ .075k! : .14.)S .!454 -2774 .1321 - :1~.330 oi l

A .10159 .11029 .039462 .. ,2068 .01.O .2198
S 1o13 , .10025 ,.3943 j: .2088 .2074 .2206 .1 "9 .s785 .64130.8 ;. C .10164 . °10033 .43941 ý, .2071 .2057 2 .217, 1: .1780 .1736 .139 .

' 1 .O7W .10036 .039" 0 .70M .202 .216) :1 .1775 .1760 .1389t 10167 I.10036 -03940 - 7 .2052 .2163 ' .1775 .1760 .!36

Table 2

Phase Shift!; for Line Load
(Love Wave Case)

cre t Shift In e.•.tes

z I-u0.1.1-0.1 x 0.01 1 -a .1 1 2.0

.18. 1 h f 95.-5.
26. 1 , 8 ..11 6_ .u 0 . 1):,6

0.- C 26.32 61.6! 7." ; 32.2, 34.20 ,3 ,2
D 26.26 83.2 8.11 1 2.0 8 ,.001 , 14.73
S26.28 89).36. s.!1 32.20 &.00 14.;

:19. -22ft.R 23.
a -119.IS .128.35 -93 122.23 :L30.46 -A 34.7

0.2 1. -119.50 -128.1 2 21.z -12.90 -130.82 3.913
-1911.38 -128 40 -7.147 -12,.78 ' -1C.78 i 35.12

' i • -119.3e 1.SAG - - .7 -123.3 3 -130.76 S- 3.12

A -1 62.2 1 -16-.1 -102.. I
S -161.81 -166.78 -102.55 -272.62. -177.23 -101.31

0., .C -161.$ 6 -144..1 -102.85 -?72.11 i .177.0. -101.84
-D -161.4, :!02.6S -172.27 -177.05; -101.68

ri' - '- z -- 4- 1" -16 .42. - 02.53 -172 .27 -173. '3 -101. ,
A, 67.) ! 63.9 -l .7i .

, 67.16 63.45 -128.54 63.q9 I b3 42 -126.19
00.6 i 6,.14 -128.96 63..I S . .

0 67.1) ! 63.13 -12V.10 68.9(. ' 63.57! -176:;8
61.4 67.13 61.4 -k29.10 63.90 j 63.37 -126.16

.A 4•5.1 42.5 .1)3.72

'.4.18 I2.30 -U.4.43 40.00 ILA.3 -M-211 20.8 c L4.28 41.5) -1-336.7 39.26 7r 33 023 6~44.12 u 26 13.4 3.2 J 366 341.6.1351i • l ., : •.6 : IiA. 9 _01-7

L __jO
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Table 5

Displacements for Line Load
(Rayleigh Wave Case)

a Me" t Dis.cmr 3placement Ampltu.de vI lm.t 0.0ltud
lkpk : tattc•.. .- 2 ,; 0- 3 2,* ; 9-o0.0

2 t 1!- -

i.41.0.01 i1~O .1 .0 1 -0.01 1.0.1 1.1-0 I 1-.0.01 1-0.1 I .
A-.08496 0041 .08102 .08" .194,2• DUN .087 .14113

0.0 ; .-.:0149 -. o0946 .00143 .0614 .o2820 .192o 8 .07 6s .062. .13890
*.09434 -. 08522 .0042 09TA3 .08111 .1934$ .09540 O03 .13970

A .00141 .04398 .01394 .01039 .08791 .01334 .006 7 .0DOM0 .0111?
0.2 • .00143 i .04389 .01396 .0103? .08743 . .07307 .00926 .0001 i .05100

!- C .001S8 .014 1 01396 .. 01043 1•.08741 ' .07139 .00921 .08043 .01351

A .00298 .02190 .02526 . 04742 i .01238 .00482 .6418 .0432
. 0.. ' •0•a02 0 .0201 . 6 .251 2 .04148 .016 •1 08 .ol 04462 .0421

C_ .00300 .0202 .2u29 .00511 .04 ' .011 .0048 .0 3 .0

A 0.021 03024 .06$7 -ooz2e .02712 .065s
,± t 0.2 • .0013 I .0133 022 "01 :01023 . .10489 .00286 .02111 .0641

C •19 •2134 .. 128 •2003±3 .03020 .041,8 .002 1 .02h63 .065$9

A .8633 .3•21 . 00106 .6316 .2422 i .1329 .6262 i .246 .032
0.0 .9126 .3917 .00122 .6769 .2428 :.1311 1 .6118 .2421 .0932

,.00118 .. 677 . •341 6122 .243 .092

A . In$1OC*•2 .2303 . 1938 ,.1616 .2307 .19151 6S
0.2' MY4)1.33S2 O.0022 .2302 .1:919 .1613 .2303 1913) :1036
*C M" MS88 O.31 .00,02. :1 .2316 .199 .3646 :2316 :1922 ±19s.2259 214014.19t 16 8 .75 1

0.70 8 .1 :40 .1621 1 .1062220 1 .2123 .00163 .2004 .34 8 •4 •11 .3721 .1060
.22610 .221 .00 1401.. : .11 1 4"• 1 3. 1720 .. 100

.. 216: i0 00343 16. .0'8 .016.124 .1 2

AA I6. - 9& •. -7. 7I.5 i 7.

:if .3224 .003. 4 -1 •::. : I•$•310 6 - 79.1, 2l 1 .0792 .1
, .,12 .OD35 -0 19.2 "

;1: C1 6 .19 . 7 • 1 '. - .1& - 7 .1 1 O M•

0.2 - .0031

Table 6

Phase Shifts for Line Load
(Rayleigh Wave Case)

Det a. 4. nwte hit 1. pbese. SI t1. S Ift ± .c
..2w b0 1-. .21;800

I z I - .• -0.- .- 0.$i I,-.

31- 66 349.) 170.1 -70.$ -1540.3 M-±44.6
S176.3. i 1 48. 1 68.1 1• 0.1 I1 3.9 1

-117.0 1490 70.0 134.3 -171.7 -10 -.9A 28.3 - 32.6 367.8 3448 .3. 1.
- 0.2 a -21.9 32.6 141.9 ~ 34.6 j".3 41 ±9.9

- 28.0' -2.9 3 64.8 -34.6 ".97 IW

A £6.4 -694 8. 76.1 79.1 74.6
0.4 64 2 -6., 8. 76.2 79.2 1 7..

64 C 3-6.4 -69.7 - .3 -17. -79.1 76.

A .__ 46 .4 . . 49.. 49.2 -315.2 (6.0
0.6 6 j .31 .148.9 4.. II -1. 346 4.

C 46. -349.1 47.3 -1108 -314. 4
F, 26.1 - 11.4 -323.2 Ij -32.3 -3. 123.0

I0.0.8 -24.5 -176.3 -126.6 -30.8 82.8 -32.6.
C -24.1 - 76.1 -321.1 I -30.9 .82.8 _1-21.0

* ~ .81.7 -302.2 , .13.4 . -90.1 -106.S 3090 2 368 -c.
0. 84. -±0M. :. 90.2 1 .4 -2.I, - 4.1 -302.5 -322 -8.4 -±06.8 1 -124.3

-2

A .3".S* -313.1 -331.$ -348.7 -311.2 1 -122.6
01 8 1-4.4. 313. -170.4 -386 -311.2 -12S.* I

I,-

, S .4 .. 9 N -3486 -11.3 -12.1.

EA * 1I'1.0 -310.4 -322.1. -313.9 -±77.0 -330.1
0.6 3 8 -166.8 -30.2 -324.1 jI -171.7 -316.9 -132.

1'C -113 . -2. -31.31 -177.3 -±3.2



APPENDIX 1

SOLUTION METHOD FOR ([Alk 2 + NCJ) {v} = (01

The n x n matrices [A] and [C] in

([A]k2 + [C]) {v} {[} (A1.l)

are tridiagonal, complex symmetric and [A] is well conditioned. The

diagonal elements of [A] and [C] are called aj and cj, J=l, ... , n, and

the off-diagonal elements are called b and dj, J=l, ... , n-i, respectively.

The eigenvalues and eigenvectors of Eq. (Al.l) are generally complex.

A determinant search technique employing Newton's iteration
2

method is used to compute the n eigenvalues X. = k2, s=l, ... , n, of
s

Eq. (Al.•).

The characteristic polynomial to Eq. (Al.l), deflated by the

divisors which are already known is

M1
f~~ = r+ o'ml(t - -X (Al•2)

fr=1At r\s C1 l r S

in which tr is the rth approximation to the mth root, A, and X

s=l, ... , m-l, are the roots alteady calculated.

Newton's iteration scheme is

S= tr - fr/fr (Al.3)

in which * denotes the derivative with respect to t. The diagonal

elements after triangular factorization of([Aitr + [C]) are

uI a at + cI =at +c -(Ai.4)

i 1r 1
j = aj+ itr + cj+1 - (bitr + d ) 2u ; j=l, ... , n-l

Then

n m-
f II u. H (tr-)X) (AI.5)

r r sj=l s=l
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and

n rn-1

fr/f ) u/u + Mt X (A1.6)
r r 1 *4 j 1 r s

J=l 3=1

in which

Ul = a I (Al.7)
./2. 2~ ,..,-

u•+I = aj+1-2b (b t + d.)/u. + (b t + d ) / 2 j1,, n-i

The sth eigenvector corresponding to the eigenvalue As is computed

by two steps of inverse iteration

([A]Xs + [C]){v s} r+ = {vs I ; r=1,2 ZAI.8)

where {Vs} is chosen as a full unit vector.

A FORTIUN IV subroutine, ALANDAB, which is based on the method out-
lined above is listed in Appendix 5. About 10 iterations are needed on

the average to obtain 12 to 14 decimal digits for each eigenvalue.

I14
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APPENDIX 2

SOLUTION METHOD FOR.([Alk2 + i[B]k + [C]) {v) = {0}

All eigenvalues ks and eigenvectors (vjs of

([Alk2 + i[B]k + [C]) (v1 {=0 (A2.1)

are wanted. The matrices [A] and [C] are non-singular, complex symmetric

and defined by Eqs. (6.22) and (6.24); [B] is complex skew symmetric and

defined by Eq. (6.25). [A], [C], and [B] are of order m-2n, typically

30 to 60, and are narrowly banded with bandwidths of 5, 5, and 7,

respectively.

Eq. (A2.1) can be transformed into

([Alk2 + [I,)k + [C]) {wl {0} (A2.2)

in which
i [B] = i[S] [B] IS]- (A2.3)

is symmetric and

{wl} [S] {v) (A2.4)

The transformation matrix [S] is diagonal and its odd and even numbered

diagonal elements are 1 and i = 1/_, respectively. [A] and (C] are un-

altered by the transformation.

Eq. (A2.2) can now be rewritten in the form of a linear eigenvalue

problem of double dimension, 2m,

Q(E] - k[F]) Mwi = {O} (A2.5)

in which

[E] 0 (A2.6)

[F) = (A2.7)
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are symmetric 2m x 2m matrices and

{w= = (.8)
S2 1kw

The 2m eigenvalues of Eq. (A2.4) and their corresponding elgen-
vectors are in general complex. The row and column elgenvectors are

identical because [E) and [PF are symmetric. The eigenvectors are

orthogonal to each other with respect to [F] and can be normalized in

the s.nse

{w}T [F] {wl = 0 if r(sr s(A2.9)
= 1 if r=s

The generalized Rayleigh quotient iteration, GRQI, is ch-sen as

solution method because it can take full advantage of the narrow band-
widths of [A], [B], and [C] and it converges rapidly. Ostrowski [37]

proved that, under certain conditions, the GRQX's convergence rate is

cubic in the limit. GRQI consists of inverse iteration with a shift by

the generalized Rayleigh quotient, P, at each step

([E] -P.,_[F]) {x}. = [F] {x}j_1 (A2.1O)

{x}T [El {x1 WxT [F] {})

j {x}T [F] {x = - +{x) [F] {x)(.ll)

where {x}T• [F] {x}1 # 0. As j - O,{xl 1 and pj will go to {w) and k,

respectively. The generalized Rayleigh Quotient, Eq. (A2.11), is a

complex number and is stationary in the neighborhood of an eigenvector

[37].

The iteration scheme, Eqs. (A2.10) and (A2.11), is now specialized

to take advantage of the structures of [E] and [F]. The steps are

(i) Inverse iteration

(_[]+ [B] + [C]){x", 1 =[C] {Xl j-l0jI [A]{x2IjN

(A2.12)
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{x} i ({xP L } {xl}j-1)/Pj=l (A2.13)

in which the ' indiicates a vector which is not normalized;

(ii) Rayleigh Quotient

Y2 = {jT[C] -xj f2) [A] {x1(A2.14)

+. x' {x,, (}. xjT Y
ci J-1 J- 2 I IJ1

(A2.15)

(iii) Normalization of vector

(x I j= {xl•/p• i(A2.16)

{x'I = {x /P/ (A2.17)

(iv) Check

if - < tolerance

then let k=p. and {w 111
x2

otherwise j=j+l and return to (i).

The matrix in the lefthand side of Eq. (A2.12) has half bar. .4idth

4, including the diagonal. The triangular factorization is ther '..e very

fast. The FORTRAN IV subroutine listed in Appendix 6 involves approxi-

mately 40 x m complex multiplications and additions per iteration. On

the average 7 iterations were needed to find about 12 correct digits

of an eigenvalue and its corresponding eigenvector from an arbitrary

initial vector.

To avoid convergence towards already known eigenvectors the

iteration vector is deflated by Gram-Schmidt's orthogonalization process

[49]. In order to keep the computational work involved in the deflation

small an -rbitriry vector {p} of dimension 2m is selected which is

assumed to be complete in the 2m-dimensional space, i.e.
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2m

{P} = ,; as#O (A2.18)
s1ss=l

The starting vector {xW for the iteration towards the rth eigenvector
0

is then obtained by

r-1

o= {P} - s as (A2.19)

s=l

with

s= {P}T [F] {wMs (A2.20)

From the structures of [A], [B], and [C] it follows that if

(k, {w}) is a solution to Eq. (A2.4) then (-k, {71) is another solution

in which

{i} = (A2.21)

2 2
1w2 1 0-S I w 2

Therefore only m eigensolutions to Eq. (A2.4) need to be determined by
iteration and the deflation by Eq. (A2.19) can be performed for a pair

of eigenvectors, {w} 2) 1 and M} = {W2s-l' simultaneously.

As Gram-Schmidt's orthogonalization process is sensitive to

roundoff errors, the eigenvalues and eigenvectors have to be precise.

No difficulties in finding all the eigenvalues and eigenvectors by the

presented method have been experienced in a few hundred analyses of

problems with dimensions up to 2m = 140 on the CDC 6400 computer, which

has a mantissa of 48 binary bits in floating point arithmetic.

The complete solution of a problem with the dimension 2m = 80 takes

about 16 seconds on the CDC 6400. The computation time increases with

the square of the dimension.

A
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APPENDIX 3

EXACT SOLUTION FOR LINE LOAD ON HOMOGENEOUS LAYER

The physical system considered is shown in Fig. 16. The loading

consists of a harmonic line load, P = 1 • exp(iwt) per unit length.

The motion of the elastic layer is governed by the wave equation

a: •2u = G 2u , 2u) AM•oi•Bt2 dx "z21- = - \•• +(A3.I)

at p ax2 az2

in which u is the displacement in the y-direction, G is the shear

modulus, and p is the mass density. Eq. (A3.M) has the plane wave

solution

u(x,z,t) - (A ces yz + B sin yz) exp(iwt-ikx) (A3.2)

in which A and B are arbitrary constants, k is the wave number, and

2
y = k (A3.3)

G

Satisfaction of the boundary =onditions u(x,H,t) (0 and Ty (xiOz=Ot)zy
- 0 leads to the eigenfunctions

v• s(X,Z,t) =coS(Ysz) exp(iwt-iksX) s=1,2, .. (A3.4)

in which

2s-1in
Ys 2 H (A3.5)

and
an 

2 _2_ 2s-liT 2k G - H-'--• (A3.6)

An interpretation of the solutions defined by Eqs. (A3.4) to (A3.6)

and rules for the choice of the sign on k have been given previously in

Chapter 4.

The shear stress T on the plane x=0 corresp9nding to the sth mode

is
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3v
T (S) = s= -iksG cos(y z) exp(iwt) (A3.7)

xy a

Because of symmetry about x=0 it is sufficient to consider only

the region x>0. The shear stress T at x=0 vanishes except at the
xy

point (0,0) where the load P = I 1 exp(iwt) is applied as a Dirac delta

function 6(z) defined by

6(z) = 0 for z/O

(A3.8)
6(z)dz = 1 for all e>0

0

The complete solution is some linear combination of the eigenfunctions

given by Eq. (A3.4). The boundary condition at x=0 is therefore

CO

a3 T(s) =-6(z) exp(iwt) (A3.S?)I
s=I

which by (A3.7) yields

iG ctsksCOS(ysz) = 6(z) (A3.10)
s=1

The coefficients a can be obtained by multiplication of Eq. (A3.10) withs
coSCYr z) and integration over z

SiG j [sks 0 cos(ysz)cos(yr)dz = 6(z)cos(yrz)dz (A3.11)

0 r j 0s=l

The integr,- on the right has the value 1/2 and the integrals in the sum

vanish except for s=r in which case the value is H/2. Hence Eq. (A3.11)
reduces to _•

r H s=l,2, ... 

(A3.12)•s G H ks•

which defines the coefficients a and the complete solution for x>0 is

s 5o



u(x,z,t) = -i exp(iwt) >d cos(ysZ) exp(-iksx)

G H s= k (A3.13)

with y and k given by Eqs. (A3.5) and (A3.6).
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APFENDIX 4

COMPUTATION OF HANKEL FUNCTIONS

It is not advisable to compute values of the Hankel functions of
(2)

the second kind and xath o:der, H2(z), for complex arguments,

z = Izjexp(iý), in the range 0<-ý<r from the v:,lues of the Bessel

functions J (z) and Y (z) by

H (2)(ZW = Jm W - i Ym(Z (A4.1)

because severe cancellations occur in the subtraction unless NzI is

small (e.g. 9 significart digits would be lost for IzI = 10 and

S=-51/6) [21.

The FCRTRAN IV subroutine HANKEL, which is listed in Appendix 5,

computes It(2) (z) ar- H (2)(z) for 0<-<,ir by ascending series if IzI<10

and by asympto:ic expansions if IzI>iO. The computations are based on

the following expressions which are taken from [2] and are rewritten.

Ascending series:

H(2) W a + + i2/• • (1 + 1/2 +... +/k)) b (A4.2)

k=l

H2(z) W [a + (1 + 4/z2)] z/2
(( (A4.3)

+ z/2 ° {a + i2/t - [1 + 1/2 + 1/k + 0.5/(k+l)]}b 2 /(k+l)

k=l

in which i = /-•,

a = I-i2/i7 * [0.577215664901533 + Zn(z/2)] (A4.4)

k
b k = ! (A4.5)
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Asymptotic expansions:

S(2 z) = '2/(2 z) exp(-iz + iirm/2 + ir,/4)" ( + ck(A4.6)

_ in which
S~k

c [k! (i8z) k-I H 4m - (2k-i) 2 (A4.7)

k j=l

In the program, the series, Eqs. (A4.2), (A4.3), and (A4,6), are

truncated when lbkI or I -k <i0 8- Computed values of H(2) and R (2)

were checked against tables [33, 34] for several values of Izi and 4.

The maximum relative error found was about 5 x 10 and occurred in the

transition zone, Iz-l10, for ý~-iT/2.

1
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APPENDIX 5

PROGRAM TORVIB

Identification:

Analysis of torsional motions cf circular footings on, or embedded

in, a layered, linearly elastic or viscoelastic medium.

Programmed by Gunter Waas, University of California, Berkeley,

June 1972.

Purpose: I
The program is designed to analyze harmonic torsional motions in

an axisymmetric system which consists of one or more linearly elastic or

viscoelastic layers supported by a rough rigid base. The layered system

is subdivided into a finite cylindrical region I and an infinite region R.

The two regions are joined together at a cylindrical boundary. The

harmonic motions are excited at nodal joints either by harmonic forces

acting in the angular direction 0, i.e. perpendicular to the axisymmetric

cross-section, or by prescribed displacements in the same direction.

The program consists of the main program TORVIB and the 9 sub-

routines: INPUT, BOUNCO, STIFFT, MODIFY, FORCES, DISPLA, ALAMDAB,

HANKEL and CYNSOL.

Discretization:

The region I is discretized by finite elements which are rings

with rectangular cross-sections, while the region R is subdivided into

sublayers. A typical mesh is presented in the figure below which indicates

the order in which elements and nodal joints are numbered.

Size Limitations:

The program uses dynamic storage allocation for array.,, the length

of which is problem dependent. The total storage available for these
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arrays is defined by the length, LA, of the array A which appears in the

blank COMMDN statement of program TORVIB. The required length for any

2LA > NL (2 NC + 4) + NL (9 NC + 4 NDI + 7) + 9 NDI + 2 NP + NC

in which NL, NC, NDI, and NP are the numbers defined in paragraph B

under Input Data.

Input Data:

A. HEADING CARD (12A6) (Read in TORVIB)

Columns 1 to 72 contain alphanumeric data to be printed as titles on
the output.

B. CONTROL CARD (815) (Read in TORVIB)

Cols, 1-5 No. of main layers, NML
6-10 Total number of sublayers, NL

11-15 No. of columns of elements, NC
16-20 No. of elements the material properties of which are to

be reset, NEC
21-25 No. of nodal loads (external forces or prescribed dis-

placements), .DI
26-30 No. of points in Region R where displacements are to be

computed, NP
31-35 Loading parameter, MODE

If MODE=l loading consists of nodal forces
If MODE=2 loading consists of prescribed nodal displace-
ments

36-40 No. of frequencies at which the system is to be analyzed,
NFR

(E.g. in the figure NML=3; NL=5; NC=3, NDI=3; MODE=2)

C. LAYER CARDS (15,4F10.0) (Read in INPUT)

One card for each main layer commencing with the surface layer and
ending with the bottom layer.

Cols. 1-5 No. of sublayers to the main layer, NS
6-15 Thickness of the main layer, X

16-25 Mass density of the main layer, Y
26-35 Real part of the shear modulus, C1
36-45 Imaginary part of the shear modulus, C2

Note: These data also define the thickness and the material properties
of the finite elements in Region I.

D. RADIAL COORDINATE CARDS (SF10.0) (Read in INPUT)

As many cards are used as needed to contain the radial coordinates of
the vertical grid lines, commencing with the line next to the axis
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of symmetry and ending with the line which defines the boundary
between Region I and Region R. (E.g., the radial coordinates in
the figure are those of nodal joints 1, 6, and 11) The number of
radial coordinates, NC, is specified in the Control Card.

E. ELEMENT MODIFICATION CARDS (415,3Fl0.O) (Read in INPUT)

These cards are omitted if NEC=O, Control Card. The material
Hproperties of the elements are ahr -1 defined by the Layer Cards.
However, the material properties of some elements may be changed to
any other values including zero. To do this one card must be inputfor each rectangular block of elements for which the properties are

to be reset.

6Cols. 1-5 No. of uppermost sublayer of block, IB
16-10 No. of lowermost sublayer of block, IE
11-15 No. of leftmost column of block, JBS16-20 No. of rightmost column of block, JE

21-30 Mass density, RO
31-40 Real part of shear modulus, G1
41-50 Imaginary part of shear modulus, G2

(E.g., if the properties of &e elements 13 and 14 are to be changed
then iB=3, IE=4, JB=3, JE=3, and NEC=2 in Control Card.

F. LOAD CARDS FOR FORCES (15,2Fl0.O) (Read in INPUT)

These cards are omitted if MODE=2 in Control Card. One card is
needed for each nodal joint at which an external Zorce is applied.

Cols. 1-5 Number of the nodal joint at which force is applied
6-15 Real part of force per radian

16-25 Imaginary part of force per radian

G. LOAD CARDS FOR DISPLACEMENTS (1015) (Read in INPUT)

These cards are omitted if MODE=I in the Control Card. The cards
contain the numbers of the nodal joints at which non-zero angular
displacements are prescribed. All displacements are then auto-
matically prescribed to be in phase and have an amplitude equal to
the radius of the respective nodal joint. As many cards are used as
needed to contain all nodal joints with prescribed non-zero displace-
mcnts. The number of these nodal joints is equal to NDI specified
in the Control Card.
(In the example the nodal joints are 1, 6, and 11)

IH. OUTPUT SPECIFICATION CARDS (15,FIO.O) (Read in INPUT)

Cols. 1-5 Number of the interface passing through the point at
which the motion in Region R is to be computed, IZ.
Interfaces are numbered from the surface downward
commencing with 1.

6-15 r-ordinate of point at which motion is to be computed, RR
Use one card for each point in Region R. The number of points, NP,
is specified in the Control Card.
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I. FREQUENCY CARDS (F1O.0) (Read in TORVIB)

bF- Cols. 1-10 Angular frequency in radians per unit time
One card for each frequency at which the system is to be analyzed.[ The number of frequencies, NFR, is specified in the Control Card.

Several problems may be analyzed in one run. The data set for each

problem commences with a Heading Card.

Output Information:

The program prints the following output:

(i) Input and generated data.

(ii) Nodal displacements including amplitudes and phase angles for

all nodal joints in Region I and for specified points in Region R.

(iii) Reaction forces for nodal joints at which non-zero displace-

ments are prescribed, including amplitudes and phase angles.

IsS S
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APPENDIX 6

PROGRAM PLAXLY

Identification:

Analysis of plane and axisymmetric layered media of infinite extent

subjected to harmonic loads which act within the plane of the cross-section.

Programmed by Gunter Waas, University of California, Berkeley,

June 1972.

Purpose:

Program PLAXLY is designed for the analysis of harmonic motion in

plane and axisymmetric systems of the type shown in Figs. 4 and 5.

Materials may be either linearly elastic or viscoelastic. The loads

(prescribed nodal forces and nodal di.splacements) vary harmonically with

time. Static loads may be analyzed by setting the frequency zero. The

program consists of a main program PLAXLY and 15 subroutines: INPUTD,

ELSTEF, QUAD, BUUMAT, GENEP, SECEVA, BOMAP, INVERTC, HANKEL, STIFF,

BLOCKS, MODIFY, OUTPUTD, RFORCE and OUTDIS.

Discretization:

The irregular regin I, see Figs. 4 and 5, is subdivided into finite

elements with quadrilateral cross-sections as shown in Fig. 6. The

layered regions are subdivided into tain sublayers such that the layer

interfaces coincide with the finite element nodes at the plane or

cylindrical boundaries betweea the irregular and tl-e layered regions.

Any finite elem-.nt, except those adjacat to the boundaries between the

irregular and layered regions, may have zero moduli and zero mass density,

while the su*layers of the layered regions must always have non-zere

property values.

The nu.i•eriag of the finite element nodes is. arbitrary wich the

following restriction. If it exists the left layered region L, sce

-•--- -,--- -. - --- 5_--....- -



Fig. 4, is connected to the first NUHLL+l nodes, where NUHLL is the number

of sublayers in the left layered regions. The surface layer is connected
to nodes I and 2, the second layer to noder 2 and 3, ... , and the bottom

layer (numbered NUMLL) to nodes NUOLL and NUMLL+l. The right layered
region R, if existing, is connected to the last NUMLR+1 nodes, where

NUMLR is the number of sublayers in the right layered region. The sur-

face layer is connected to the nodes WWf'-NLMEL and NUMNP-NU +l, .. ,

and the bottom layer to NUM4P-l and NUIMP, where NUMHP is the total

number of nodes. Because the system is supported by a rough rigid base,

- see Figs. 4 and 5, zero displacements must be specified for the nodes at

the bottom.

Size Limitations:

The program uses dynamic storage allocation for arrays the lengths I
of which are problem dependent. The total storage available for these

arrays is the length, HTOT, of the array A which appears in t.'e blank

CONMMN statc ient of program PLAXLY. The length requirement is

MTOT > MBAND (5NBAND+7) + 3NUMNP + 2NPBB

in which

MBAND = maximum half-bandwidth of global stiffness matrix, i.e.
twice the maximum difference between nodal point numbers
of nodes belonging to any element +2

NUMNP = total number of nodal points
NPBB = number of points outside che finite element region at which

motion is to be computed.

MTOT is set 15000 in the version of the program libted below. If the

value of MTOT is reset then the dimension of the array A in the blank

COMMON statement of program PLUXLY must also be adjusced.

Output Intormation:

The program prints the following output:

i) Input and generated data.

ii) Nodal point displacements including amplitudes and phase angles.
iii) Reaction forces for nodes at which non-zero displacements are

prescribed, including am*4itudes and phase angles.
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Input Data:

A. START CARD (5H) (Read in PLAXLY)

The word START must be punched in columns I to 5 on a separate card
at the beginning of each problem. Several problems can be analyzed
iii on~e run.

B. HEADING CARD (12A6) (Read in program PLAXLY)

Columns I to 72 contain alphanumerical data to be printed as title on
the output.

C. CONTROL CARD (815) (Read in PLAXLY)

Cols. 1-5 No. of nodal points, NUMVP
b-10 No. of finite elements, NUMEL

11-15 No. of different materials, NUMAT
16-20 No. of sublayers in Region L, NUMLL, less or equal 40
21-25 No. cf sublayers in Region R, NUMLR, less or equal 40
26-30 No. of points outside of Region I where displacements

are to be computed, NP3B

31-35 No. of frequencies at wiich the model is to be analyzed,
NFRQ

36-40 If column 40 is left blank problem is taken to be axi-
symmetric and X!JHLL must be zero. I in column 40
indicates a plane problem.

Note: If NUMLR is input as minus NIUMLL Region R is understood to be
a mirror image of Region L, and some computation can be saved.

D. MATFR1AL CARDS (215,5F10.0) (Read in INPUTD)

On. rard for each different material; not more than 40 materials.

Cols. 1-5 Material number, M
6-10 Interpretation parameter, INTPR

If INTPR=0 Cols. 21-60 contain moduli
If INTPR=l Cols. 21-60 contain wave velocities

11-20 Mass density, RHO
21-30 Real component of shear modulus or S-wave velocity, G,
31-40 Imaginary part of shear modulus or S-wave velocity, G2
41-50 Real part of Poifson's ratio or P-wave velocity, NU1
51-60 Imaginary part of Poisson's ratio or P-wave velocity, NU?

E. 1. YER CARDS (1015) (Read in INPUTD)

Cols. 1-5 Material number for sublayet 1
6-10 Material number for sublayer 2

etc,
Note: This data is grouped in sets, one set for each layered region.

If there are two layered regions the first sets describes
Rpgion L and the second set Region R. If NUHLL=O or NUMLR=0
the respective set is omitted. In the axisymmetric case NUMLL
should be zero. Each set consists of as many cards as necessary
to contain the material numbers of the layers sequentially,
starting with the surface layer and ending with the bottom
layer.



F. NODAL POINT CARDS (215,4F10.0,15) (Read in INPUTD)

Cols. 1-5 Nodal point number, NL
6-10 Parameter indicating if displacements or forces are

specified, ICODE
11-20 r-ordinate, (x-ordinate in plane case), R(NL)
21-30 z-ordinate, Z(NL)
31-40 U(1,NL) see below41-50 U(2,NL) see below
51-55 Parameter for nodal point generation, INCL

If ICODE is
0 U(I,NL) is specified force in r-direction and U(2,NL) is

specified force in z-direction
SU(,NL) is specified di c nrection and U(2,NL) is

specified force in z-di c nrection
2 U(I,NL) is specified force in r-direction and U(2,NL) is

specified displacement in z-direction
3 U(I,N) is specified displacement in r-direction and U(2,NL) is

specified displacement in z-direction
Note: Nodal point cards need not be input in numerical sequence.

Suppose cards for nodes NA and NB ane input sequentially. If
(NA - NB) <1 then nodal point data will be generated for nodes
NA+INCL, NA+21NCL, noda NB-INCL where INCL is the integer
specified on the cLrd for node NA. The coordinates for these
nodal points will be obtained by linear interpolation between
nodes NA and NB. The value of ICODE for the generated nodes

is 0. if (NA - NB) > 0 no data are generated. If left blank
INCL is taken as 1.

G. OUTPUT SPECIFICATION CMRDS (F5.0,FlO.O) (Read in INPUTD)

Cols. 1-5 Number of the interface passing through the point atCwhich motion in Region L or Region R is to be computed,
RZ. Interfaces are numbered from the surface downward
commencing with t.

6-15 Absolute r-ordinate (horizontal) of point at which motion
is to be computed, RZ.

Use one card for each point in Region L and Region R. Cards for points
in Region L are placed first. The numbef of points, NPBB, is

specified by the Control Card, see C.

H. ELEMENT CARDS (715) (Read in ELSTIF)

Cols. 1-5 Element number, MMM
6-10 Nodal point i, IY(l)

11-15 Nodal point j, IY(2)
16-20 Nodal point k, IY(3)
21-25 Nodal point I, IY(4) Z
26-30 Material identification number for element, IY(5j. If

left blank it is taken as 1.
ji--35 Element generation parameter, INCL

Note: Ordei nodal points counter clockwise when the r-axis points
horizontally to the right and the z-axis points vertically
downiiaro:.
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Note: Element data may be generated automatically if the material
number is the same for all elements in a series and the nodal .

point numbers can be obtained as follows:

IY(1)i = IY(l). j+INCL
IY(2)i = IY(2) +INCL
IY(3)i = fY(3).+INCL
IY(;)i = IY(4)}+INCL

where j refers to an element for which the element number
MMMJ is one less than the element number MNfi. In this case
only the element card for the first element of the series need
be input. However, the last element (highest element number)
must always be input. If INCL is left blank then INCL=1.

I. FREQUENCY CARDS (FlO.O) (Read in PLAXLY)

Cols. 1-10 Frequency of the exciting forces and displacements, CPS
Note: If CPS is positive it is interpreted as the frequency in cycles

per second. If CPS is negative it is interpreted as the
angular frequency in radians per second. The number of A

frequency cards is equal to NFRQ specified in the Control
Card, see C.

J. StOP CARD (4H) (Read in PLAXLY)

For normal termaintion of execution the complete data deck (not each
individual problem) finishes with a card with the word STOP punched
in columns 1 to 4.
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