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= Abstract
j : A theoretical investigation of thermal lensing in infrared windows is -
; presented which treats aberration effects to all orders in the small angle-of-
x deviation aprroximation. The model is applied to a truncated, G:iussian, infrared
' laser beam incident on a semitransparent, isotropic, disc-shaped window. It is
: shown that window aberrations limit the time a diffraction-limited focus can be
7 held in the far-field. This diffraction-limited time ty is computed for some
- candidate window :naterials and their relative merits are discussed. Some
- approaches to solving the thermal lensing problem from both an engineering and a
‘: - materials point of view, as well as some program research and development
£ needs, are discussed.
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Thermal Lensing in Infrared Laser
Window Materials

1. INTRODUCTION

Recent advances in high-power infrared lasers (Emmett, 1971} suggest the
possibility of focusing large power densities in the far-field. If, however, a laser
beam of ronuniform intensity passes through a semitran:. arent window the beam
will be distorted as the window heats up.

Distortion of a laser beam passing through a liquid cell has been observed and
attributed (Gordon et al, 1965; Tien et al, 1965) to a lensing action in the liquid

caused by nonuniform heating, Theoretical treatments of some problems quite

close to the one examined in this paper have also been given (Tien et al, 1965;
Quelle, 1966; Foster et al, 1970). In fact, Sparks (1971) showed that a significant
amount of thermal lensing will occur in an infrared window well before it fails due
to other causes. For a discussion of other modes of failure see Horrigan et al
(1969). These treatments have been restricted to a parabolic dependence of the
index of refraction with position, hence, no aberration of the beam occurs. Ring-
like interference patterns have been observed, however, and attributed to aber-
ration effects produced by thermal lensing in low-loss liquids (Whinnery et al,
1967).

In this paper we extend previous treatments of thermal lensing (Quelle, 1966;
Foster et al, 1970; Sparks, 1971) to include winduw aberrations to all orders and

(Received for publication 23 March 1972)
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we apply the analysis to .>e specific problem of calculating the amount of time the
far-field focused spct rimains diffraction-limited (Jasperse et al, 1972). This
diffraction-limited tim.: t,, turns out to be independent of the beam radius, the

distance £.~ the window to the spot, and the Gaussian focal lengths of the window.
Our analysis provides the laser systems engineer with one criterion for
choosing ameng « "wdidate windows and also suggests to the materials engineer
several possiblliti.3 for designing new materials.

2. A SOLVABLE VIODREL FOR THERVAL LENSING IN 1SOTROPIC,
DISC-SHAPED RINDORS

2.1 Gutline of the Calculation

In this section we generalize previous treatments of thermal lensing of a
TEM 00 laser beam to include all orders of aberration produced by a time-
dependent temperature distribution in an isotropie, disc-shaped exit window.
Employing cylindrical coordinates (p, $,2z) we assume that the temperature dis-
tribution so generated is independent of ¢. Furthermore, we assume a small
angle of deviation for a normally incident ray, allowing us to neglect the tempera-
ture's dependence on z since it will have a negligible effect on the bending of the
ray. This means that, in effect, we are dealing with a lens system which has a
leng but finite focal length. The total angular deviation Ow, of any ray in sucha
window, is the sum of two parts:

9w = egra.d nt 6bulge y (1)

.

where 0 is the contribu!'on due to a gradient in the refractive index n, and

grad n
ebul ge is the contribution due to a bulging of the originally parallel faces of the

window. Such an equation holds for both the o~ and ¢-polarized rays.

2,2 Calculation of n

We consider a temperature distribution in the window having the following
particular form when expressed in cylindrical coordinates:

T (p/po, t) =T (0,0) +gt) T (p/p,) . 2)

where T(0, 0) is a constant, g(t) is any function of time, p is the radial coordinate,
and p, is the window radius. The term T(p/p,) is any monotonically increa~‘ng or
decreasing even function of p expressible as the following convergent powe: series

in p/p,:




Tp/p.) = - g T,, (/o 2L, (3)
) 150 2¢ [\

The T2 g are dimensionless constants, with To 1.

A fundamental theory accurately establishing the index n, in terms of fre~

quency, temperature, and positions of all ions or atoms within the solid, is not

available. In place of such a theory, we develop a phenomenological treatment of

thermal lensing by regarding n at a given frequency as a function of temperature

and the appropriate strain teusor components. For the case of a plane stress in

a disc of isotropic material, the only nonvanishing strain components in

cylindrical coordinates aree_, € ¢ and €,, - Thus, inour case, the refractive

index may be determined by specifying the values of three quantities n,, i rep-
_ resenting p, ¢, and z, where

LT P 1 0 5 0 00 ¢

n, =n, (T, €pp’ €66* S22 ). 4)

For a fixed time, the temperature and the strains depend only on p. Therefore,

) for a small change in n., and following the development given by Quelle (1966) and
Sparks (1971) we write:

T ani) on,
j 7 Al’li *\3T AT + Bep 4€pp

0

ani ani
+ ae¢¢ Ae¢¢+ d€,, be,, - (5)

in matrix form, these equations become:

B A e W LR

et v

o

1

S FTTATe AU LU i i

on /@
: Anp np/ T o g Aepp
P o an, |=] an,/aT | aT +J -—P———i—) Ae , (6)
z :f: ¢ ¢ (tppa E¢¢»€zz ¢¢
. . \ 21, an, /8T e

2z

in which n " ng and n, are the components of refractive index along the three

: orthogonal directions, and J (np,n¢, n, /e pp* €46° €,,) is the "Jacobian-like" matrix

of the transformation between the n, and the Gj i’ defined as:

e cmm—e———

g e S s

3
2
E

E|




O iyt % 3 S Wl i T

ST e oy PR i e g

A i

pttt A A At B il ¥

WYl Al

LR M i

R R b

T et AR R PR TR P A

on on an

] £ ) £ ) 2
€pp €60 €2z

2

a% 2“4» :“qb .
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In an isotropic disc under plane stress and at a fixed temperature the Pockels
elasto-optic constants pij' also called the strain-optic coefficients, are defined by
(Krishnan, 1958):

i T ! ¢

2 2 P11 P12 Py pp

p 0

1 1 _

Z 27| " Pz P P €44 ’ ™
¢ ()

A 1

\\ 2 2 P12 Fi2 Py €22
4 [o]

n, being the unstrained refractive index. Under the conditions when the n, are not
too much different than . each element on the left-hand side of Eq. (7) can be
approximated by -2(n;-n )/n This allows Eq. (7) to be rewritten as:

b " Po 3 (P11 P2 Pr2} [€pp
-n
- - o
g = R Z Pl Py1 Praff€ge | - @)
B, " T Py Pia Py €22

With the aid of Eqs. (8), one can caloulate each 9a, /ac

so that the J-matrix in
Eq. (6) can be replaced by:

)
L
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where Y is Young's modulus, the 4 a¥e the three stress components in cylindrical
coordinates, V is Poisson's ratio, and « is the linear expansion coefficient. Now
we can define the initially unstrained "fiducial state' as that for which all o,j are
zero at zero time and at the uniform temperature T(0,¢). Then, any change in
temperature and/or stresses produces the following change in strains:

Ae 1 -V -V G 1
pp pp
=1 . - {
A€¢¢ = Y v 1 v O’¢¢ + a AT 1 . ) \11)
Aezz =V -V 1 uzz/ 1
kY

From Eqs. (6) note that each ani/ oT is measured at constant strain. Since each
n; is not too much different from Ny there would be no loss in generality if each
ani/a'r were replaced by the derivative evaluated in the fiducial condition, namely,
{an/aT] n=n, * Substituting this information, together with Eqs. (9) and (11), into
(6), and, using the fact that the On; can also be expressed as (ni-no). we get after

simplifying:
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np-n 1 Co C1 C1 app
(@) arfi]-2 e, c c o (12)
R T O 2Y 1 “o "1 ¢ |°
n,-n 1 C, ¢, G %
where
an an3
(Q) E( o) S (p11+2p12> , (13)
9T ) ;oo AT / (g 2
with n denoting the average index of refraction,
Co= P1172VPy3 (14)
Cl = (I-V) 912 = ”Pll ’ (15)
‘' "
and
AT = T (p/poo t) - T (0: 0) . (16)
The C's are related to the parallel and normal components of the stress-optic
coefficients (B" and B 0 respectively) via:
3
. B
Bu 2Y Co (7
and
n3
B 1227 Cy- (18)

For plane stresses in isotropic materials with disc-type geometry, the

relationship between the stress and the temperature change from the fiducial state
is (Boley et al, 1960):
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1 elp,
2
T4 = a¥Y ;j; dx x AT(x, t) + (pO/p) j; dx x AT(x,t) - AT(p/po. t) i, (19b)

azz-O.

Using Eqs. (16) and (3) for AT(p/po. t)in Eqs. (19), inserting these results
for the % into Eqs. (12), and solving for each n; results in:

[ ]
n, 6/pg, ) = 0,0+ g0 T v, G/eg) . (20a)

{
° ¢ 21
ngp/pgst) = 1y (0, 1) + g(t) 15'1 ny, (/o) . (20b)
f

The quantities n p (0, t) and n¢(0. t) specify the tir e dependence of the index of re-
fraction at the center of the window, while the n, and the n,, are given by:

3
= an an
nb, = Tm’(-ﬁ:)ﬂo + 35055 [(1-(2!+1)V)pn+(2£+1-(2!+3)V)p12]2. (21a)

3
¢ = on —an__ - - *
ng, = 'ru{( BT)0=°+ Tt [(zzu vip, +(1 (4[+3)V)p12]{. (21b)

The defails of this derivation are given in Appendix A.
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The equation for n, is not written out since its effect on the bending of a ray

in the small angle~of-deviation approximation is negligible.
The fact that the indices of refraction are different for each polarization shows

that the window develops a stress-induced birefringence.

2.3 Calculation of dgrad n

Consider a ray normally incident at a distance

= {t) ag 21«1
K= (nzo.gt;—pop-i ) 121 ny, 4 (pi/po) . 23)

\ Pi from the z axis of a parallel-faced disc, havingan
Re index np/p o+ t) as shown in Figure 1. A nonlinear,
second-order, differential equation for the ray's
aaY : - trajectory (p as a function of 2) in the small angle-of~
: E ™ ’ :Si deviation approximation is solved approximately in
! Appendix B. Its solution is:
= .
g A S ) A 2 2.4
: l p=p, [1+Kz +0§Ik|®2%} |, (22)
" % =L — where

Figure 1. The Bending
of & Ray as It Passes
Through a Disc-Shaped

3 Window Applyirs Snell's Law at the exit surface of the window,
f: we see that:

(0, t) = refracted angle o 8eraan (24)
i '™~ incident angle = Tdp/dz] y

; z:Lo 2=Lo

where Lo is the initial thickness of the window. From Eq. (22), including up to
second order:

T g e

I A WA G0t B, »mwWJ)!.“l:Hﬂﬂ}!.»“EMﬂmﬁ.‘l»iﬂﬂh}.ﬁﬁ&*}.’%rmwkmx".wnw)'muhla?.ﬂl,'h‘.!ﬁmlh!ﬂhh‘i“fﬂ'ﬁ‘!éri%m’:‘mﬂx‘ LB W e B S RSB R i e v

2 d =

* =2p,KL,. (25)
z=L°

-: Utilizing Eqs. (23) and (25) in (24), we obtain a stress-induced birefringence in

9 grad n given for p and ¢ polarizations by:
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0 o 2L°g(t) ® p: \22-1
Ggmd 0= 2piL° n{0, t) K" = o lfl n2[‘ ‘50— » (26a)
2L g(t) o p: \22-1
é . $_"7 ¢ i
egrad a 2piL0 n(O. t) K" = po IEI nu 1 (-p—o-) . (Zsb)

Throughout this paper we adopt the convention that the angle that any deviated
ray makes with the horizontal will be positive if the ray bends away from the
z axis and negative if towards the z axis.

2.4 Calculation of Ohulge

The equation for the plane curve L associated with one face of the bulging
window is:

Lip/pget) = L +%L° ey, - (27)

Utilizing Eqgs. (11) for 8¢, ,, Eqs. (A-4) and (A-5) for %0 and T4 and
Eq. (A-1) for AT, the above equation can be rewritten as:

Lgitha (1+v) o
L(p/pget) = L(O, 1) + ———— zfl Ty, /o,

) 2 (28)

in which, as usual, all the terms independent of p have been collected under the
symbol L (0,t). In Appendix C, we show that Ob ulge can be expressed as:

dL
Opuge = 20-1) F) N (29)
P=py

Utilizing Eq. (28) results in:

2L _g(t) g
o[ S5 . 21-1
ebulge -( o )a (1+¥)(n-1) lfl TZI /1 (pi/po) . (30)
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2.5 The Window Angle of Deviation, 6,

The total angle of deviation due to the window itself, 9?”, (where j can stand
for either p or ¢ polarizations) can be obtained by inserting Eqs. (26 a or b) and
(30) into (1), Itis *

j 2L°g(t) % P p; \2L-1
Gw = _Po—— lfl | n2‘ + a (1+v)(n-1) TZI f (—P:) . . (31)

The Gaussian focal lengths ch; are related to the terms of O-IV, which are linear
in Py They are

pz
= o (32)

R j .
2L,g®{n) + @ (-1 T, }

o

o fi
G gl
0%

We note that all formulas in Section 2 apply for both transient and steady-staie
conditions, since g(t) may be any function of time.

3. APPLICATION TO A TRUNCATED GAUSSIAN LASER BEAV INCIDENT
ON A DISC-SHAPED, {SOTROPIC RINDOW

3.1 Assumptions

In applying the solvable model given in Section 2 to the specific problem of a
laser pulse®” of time t incident on a semitransparent, disc-shaped window, we
make the following assumptions:

(1) total angular deviations are less than about 10"2 radians;

(2) the window material is isotropic;

(3) the thermally induced stresses and the corresponding strains are per-
fectly elastic;

* The first two terms of each of these series have also been derived by a
Raytheon group using a different method, namely, by computing phase differences
between rays traversing the window at different radial distances. Their phase

p
angles are related to our ol via k o dp. See F.A. Horrigan and T. F. Deutsch,
w o w

Raytheon Research Division, Second Quarterly Report, Contract No. DAAH0O1-70-
C-1251 (1970).

** The mode of lagser operation contemplated here is interrunted cw with
typical values of t on the order of a few seconds,
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(4) the laser pulse time is less than or comparable to the smallest of the
characteristic times for heat flow;

(5) bulk absorption dominates other loss mechanisms in the calculation of the
radial temperature gradient; and

(6) the power per unit area absorbed in the window P A is given by

“B,L. -B,L, ) !
P, (o/o,) = Pp (0/py) (1-R) (1-e A °)(1-Re A °) . (33)

Here PI ig the incident power per unit area, R is the reflectivity of the window
material, and B A is the bulk absorption coefficient.

For BALO << 1, Eq. (33) reduces to:

Py /o) =Plp/p,) B, L, - (34)

3.2 Calculation of the Temperature Distribution

The equation of heat flow in the window is:

AL

o5 0red. o

where K is the thermal conductivity, c' is the specific heat times the density, and
Q. given by P A/ Lo' is the rate of heat generated within the window per unit vol-
ume. To give the reader some appreciation of the temperature distribution in
cylindrical geometry, two model problems are presented from Carslaw and
Jaeger (1959).

(1) Consider a disc, infinite along the p dimension and finite in
z (- Lo /2<2<L 0/2) . With zero initial temperature, zero surface temperatures,
and Q constant for t > 0, the solution for T(z, t) is given by Eq. (7), page 130 of
Carslaw et al (1959). Its graph, depicted in our Figure 2, plots normalized
temperature versus normalized distance with normalized time as parameters.
The dominant term in the infinite series, namely, the first term, is proportional
to [ 1-exp(-t/ ‘rz)] » where Ty the characteristic time for heat flow along the
2 axis, is given by c' ch, / K'lrz. Consequently, for t < T, We see that to a fair
approximation the temperature varies linearly with time,

(2) Consicer the same disc as in (1) above. Besides a zero initial tempera-~
ture and constant Q for t > 0, both faces at z = iLol 2 transfer heat into a medium
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; Figure 2. Normalized Temperature vs hhb
i Normalized Axial Distance for the Case 06
H of a Disc, with Infinite Radius, at

Zero Initial Temperature, Zero Surface

Temperatures, and Constant Rate of
H Heat Generation. The numbers on the 04
curves refer to normalized times

(8t/m2r)

0.2

e

at zero temperature. The solution for T(z,t,h) is given by Eq. (12), page 132 of
Carslaw et al (1959). Its graphs, labelled in exactly the same fashion as
Figure 2, are depicted in Figure 3 for three different dimensionless radiation
parameters, Loh/Z; h is defined as the ratio of the surface heat transfer co-
efficient, or surface conductance, to the conductivity, Since the CGS dimensions
of the surface transfer coefficient are cal/cmz-oc-sec. then h has dimensions of
reciprocal length. Problem (1) could also be considered as a special case of
problem (2), in which L h/2 is infinite.

Returning to our finite window, we choose to represent the power per unit
area of the incident beam as any monotonically decreasing even function of p ex-
pandable in a convergent power series of the form:
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P o) = PO = (1! P,, (ofp) 2! (36)
1 W/Pg) = Lo 2g WPieg .

Assuming time independence, and utilizing Eq. (34), Q can be expressed as:

ikt A

(R

Polo/p.)
Qee/ey) = —2—2 = 8, Py /o) - (37)
o

e 1 K8 AT

1f, in the heat equation, the Laplacian term becomes negligible compared with
Q/c', then direct integration results in T being linearly dependent on t. That is,

-

R phbs

Tlp,t) =t Q/c' + T(0,0) . (38)
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Figure 3. Normalized Temperature vs Normalized Axial Distance for the Case of
a Disc with Infinite Radius, Zero Initial Temperature, Constant Rate of Heat
Generation, and Both Faces Transferring Heat into a Zero Temperature Medium
with Normalized Radiation Parameters (a) Loh/2 = 10; (b) Loh/2 = 1.0; and

(c) Lyh/2 = 0.1. The numbers on the curves refer to normalized times (8t/727,)
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Initial uniform temperature has been assumed, and the z dependence has been
neglected because it has negligible effect on the bending of a ray in the small angle-
of-deviation approximation. Substituting Eqs. (37) and (36) into (38) produces:

B tP(O) -] 24
A A -t L
T(po ,t) T0,0+A5— T (1 P2!(p°) . (39)

We see that the form of T is the same as that assumed in Eqs. (2} and (3), where

B. tP(0)
glt) =-A—— (40)

and
Ty, = (-1)! P (41)
Il 28

Po must also equal unity.

Let us now consider under what conditions the Laplacian term, CE,- V2T(p, t) ‘ R
would be much less than | Q/c'l . First, we assume that T has the form depicted
in Eq. (39). T ien, for cylindrical coordinates:

tKB 2 21-2
oT - A 2 T
(p F‘7)] ) c'2 Pw)("o) z;1( v Pz (po) - 42)

From Eqs. (37) and (36):

f’.lw

- X
VT-C[

©l=
Q)|
Sl

B ® 2t
Q. A -t
&=or PO Z (D) pm(%) : 43)

For those cases in which both sums converge over the range of p and have values
comparable in magnitude, it followa that | (K/c") val« 1Q/c'| whent<<e! p2/4K.
We designate this quantity, c'p I4K, as 'rp the characteristic time for heat flow
along the p direction. It should be noted that, in general, any characteristic time
for heat flow depends on cooling detrils.

Thus, we see that temperature will be approximately a linear function of time
so long as t <7, and 7 , respectively. Since the ratio 'rp/'rz goes as (pO/ Lo)z.
which is much greater than unity, then 7, is by far the smaller of the two quantities.
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10~ Consequently, we can conclude that the
(d) LINEAR APPROXIMATION temperature behavior given by Eq. (39)
€ 29) is approximately valid for times less

. than Ty £
“;. (c) -"%L' al Numericai values of T, for some ;.ja
g" osl- materials under consideration will be §
::'_ "”ig'l'-l quoted later. 2%
] @, We can get a quantitative estimate jj
z ' of just how valid this linear approxima- ’*’:i
tion is by reconsidering problem (2) f;
mentioned above. Going back to Figures %
% : o.ls : |.|o 3(a) through 3(c) we can obtain informa- ;»‘;‘
sy tion about how normalized temperature ??s

varies with normalized time for the
Figure 4. Normalized Temperature vs

Normalized Time at the Center of the
Infinite Disc Referred to in Figure 3.
Curves (a) through (c) apply to Figures
3(a) through 3(c), respectively, while
curve (d) is the approximate linear
solution given by Eq. (39)

three different radiation parameters at,
say, the center plane of the disc

(2z/ L, = 0). We plot this data from these
three figures in Figure 4 as curves (a)

S T ) e

through (c), respectively. The line (d)
represents the approximate linear solu-
tion given by Eq. (39). From Figure 4 we see that as 8t/ w2 7, varies from O to 1
the approximate linear solution is within about 3% of the exact solution for
Loh/ 2 = 0. 1, within about 9% of the exact solution for Loh/ 2 = 1.0, and within 24%
for Loh/z = 10.

In the case of a finite disc in which p o/ Lo is still much larger than unity and
for a given h, we can arrive at a more accurate g(t) function than the approximate

linear solution. From the appropriate normalized temperature vs distance curves,

S it Py S L oot i e

as shown in Figure 3, for example, we could average each time-curve over the 2

coordinate, thereby eliminating the z-dependence of temperature. From this in-

S

formation, a normalized temperature vs time curve, similar to those shown on
Figure 4, could be plotted and a g(t) function could be curve-fitted from it for use
in Eq. (2).

3.3 Angular Deviations for Truncated Gaussian Beams in the
Quartic Polynomial Approximation

If we choose the incident beam as having a truncated Gaussian power distribu-
tion given by

Pylo/og) = PO) exp [-W (/o) (44)
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for0<p < Py where W is a dimensionless constant, and make a quartic poly-
nomial approximation to it, we obtain

Pilo/p,) = P(0) [1 - P, (p/p,,)2 +P, (9/00)4] . (45)

Performing a least squares fit to determine P, and P,, we find that for W = 1,
P, = 0.96 and P, = 0.33, and that Eq. (45) fits Eq. (44) to within 1% everywhere;
whereas for W = 2, P, = 1.75 and P, = 0.93, and Ey. (45) fite Eq. (44) to within
32% everywhere.

The formulas for 6& and 9‘: in the quartic polynomial approximation (that is,
2 = 1and 2 only) are given by Eq. (31) in conjunction with Eqs. (21), (40), and
41).

They are:

2L_tP(0)B on an® Py
0P =(—-g:c,—&> -P, [(a—)o=o+-§—((1-3V)p11+(3'5!))p12) +a(1+v)(n-1)];‘;
+2P (_a_n +¢m3 {1-5V)p, .+ (5-Tv + a (1+v)(n-1) -p—i—s (46a)

4 ar)o=° 1z ( -5Uipyy pyp)* e n (po a

and,

/ 2L _tP(0)8 3 . s

$ _y o __TA}). on an_ (i - -l
W T e ) Pz[(a'r)c +25 (00 (100 + atisvi- ]

=0

3 0. \3
a an
+ 2P4[(-5%>0=0+ 1—2-((5-v)pu+ (l-llv)p12)+na (1+v)(n-1)](p—;-> ! (46b)

Utilizing the substitutions:

B 3
(c—:,&) [(g_%\)c=o+ G ((-3vip, 1 +(3-50)p,,) .

2L
Py of—2
FA@) '(Po )P(O)Pzt

+ a(1+V)(n-l)] ‘ , {17a)
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op (a_,';,) s ((1-5u)pn+ (5-71/)p12)+a(1+!/)(n-1)
Fg - _1_5_4 =0 . (47b)
2 (%%)0 _ + 0’.%. ((1-31,-)pn+ (3-5v)p12)+a(1+v)(n-1)

for the p polarizations, and,

B 3
(c—A) [ 1), 5 (v + (1-7V)p12)+0(1+v)(n-1)]£ . (48a)

- PR (2__0)
FI(t) = PO)P,t
1 Po 2

[(%%)a +d'—1“; ((s-u)pu+ (1-11v)p12)+ a(1+v)(n~1)]
=0

2p
4 =( 4) (48b)

R R e

for the ¢ polarizations, we can rewrite Eqs. (46a and b), for either polarization,
as:

. . p. p: 2
J o _plgy L J (i ]
6 = -Fl e [1+F2(p°) . (49)

We note that the Fy and F2 are functions of materizi parameters; F1 may be
of either sign, but, for all materials studied so far, F2 is always positive and is
typically less than unity. Under these circumstances, the qualitative behavior of
9?” will be governed by the sign of FJ1 . That "=, depending on whether Fj1 is
positive or negative, the window may act like a converging or diverging lens,
respectively, having spherical aberration for each polarization. If more terms

were kept in the approximation to the beam intensity, higher-order aberrations
would appear.

4. THE DIFFRACTION-LIMITED TIME, tg

Diffraction patterns in the scalar (Campbell et al, 1969) or vector {Bendow etal,
1972) Kirchhoff approximations can easily be calculated using modern computers.
Such calculations do not, however, give the materials engineer much insight into
how to design a better window, nor do they give the laser systems engineer a
simple way of assessing the performance of known window materials. The object
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of this work is to obtain approximnate formulas of use to both types of investigators.
To that end we give an approximate treatment of diffraction effects using a combina-
tion of geometrical optics and scalar Kirchhoff theory applied separately to the

p and ¢ polarizations.

Initially, the spot size at focus in the far-field is determined only by diffrac-
tion. Aberrations produced by the window eventually dominate diffraclion effects,
however, and rapidly enlarge the spot size. We define the diffraction-limited time
tyas the time a laser-window system takes to pass from its diffraction-limited
condition at t = 0 to its window-aberration-limited - snditionatt = t e In this
section we compute ¢t 4 and show that it depends on window aberrations.

The diffraction half-angle 8 Qiff is a convenient approximate measure of the
amount of spreading of a beam due to diffraction effects. We take it ag that half-
angle which contains 90% of the total diffracted power at the focused far-field spot.
This can be obtained approximately by resorting to Figure 4 of Olanfe (1970). A
horizontal line drawn from the ordinate 0. 9 {which represents fractional power)
intersects the n = 1 curve (which corresponds to our W = 1 case) at an abscissa
value of approximately 3. This abscissa is the normalized radial distance,
@A) 09 gigpe Where A is the wavaiength of the radiation. Equating the latter
expression to 3, we obtain:

3
Saite = 7mp_ (50)

In the case of a beam prefocused to have a focal length R o the incident angle
of deviation is given by -p/Ro. It can be added to 9;]” [see Eq. (49)] to obtain the
total angle of deviation:

. . : 2
o), = -1%~ Fit) %[1 - 1 (F"o—) ] , (51)

in which p has replaced p; *

Because of the presence of the aberrating terms in Eq. (51), the rays incident
at different p will not all come to a focus at the same range. Instead, the envelope
of these rays will form a circle of least confusion. In Appendix D we calculate the
time dependence of the radius and location of this circle of least confusion using
geometrical optics, as depicted in Figure 5 for the quartic polynomial approxima-
tion.
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Figure 5. Two Rays Emanating from Two Different
Radii Within the Window for the Case When v Increases
Monotonically with p. Their intersection (D, r) will
give the distance and radius, respectively, of the
circle of least confusion after r is maximized

The diffraction-limited time occurs when the radius of the circle of least con-
fusion has grown so that it is equal to the radius of the diffraction circle. This
latter radius, subtended by the angle ediff of Eq. (50), :an be calculated in the
small-angle approximation by multiplying it by its distance from the window.

At the diffraction-limited time td thig distance ig also equal to Dg (td), as given
in Eq. (D-11) of Appendix D. Thus,

h] = J
ro ty) = O4i0¢ Dg ()

(52)
Substituting Eqs. (50), (D-10), and (D-11) into Eq. (52) results in:
f ol gl - S
-.FZ“F l(td) T, . (53)

Depending on the polarization, either Eqs. (47a,b) or (48a,b) can be employed in
the above equation. Solving for the time gives:

# G2 (5550 c'/Ba

27L,/ \ P(O)P 3
° ! (g%)(,=0+%((1‘5”)1’11"'(5'7V)plz)+a(1+u)(n-l)

(54a)




i Fet ORI S Sl
e S M e

v

20

for the p polarization, and,

tg = (2%, )(P((l))P ) 3 c'/BA l(541:)
; (o] 4 (%%)cm +% ((5-V)p11+(l-llll)p12)+a(1+v)(n-1) l

. for the ¢ polarization. Note that tg and tg are independent of EQ: Py the quadratic
{ term P,, and the Gaussian focal lengths of the window { see Egs. (32) and (21)}.
The diffraction-limited time t 4 Serves asan excellent figure of merit for thermal
lensing since it is independent of these quantities. Note also that the difference
between ts and tg for a given material serves as a measure of the importance of
birefringence in determining the true diffraction patterns.

Figure 6 gives a graphical interpretation of td for the cases of Dc either de-
creasing or increasing with time,

Dc(t) DECREASING WITH ¢t
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Confusion r c(1:) for Two Different
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B4t Py _
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There are two other quantities of interest which are calculated. The first is
the temperature difference between the center of the window and its edge, denoted
by AT(t). Referring back to Eq. (39) and employing only up to quartic terms in
ele o’ (that is, £ = 2) the temperature difference becomes:

E B
g AT(t) = T(0,t) - T(1,1) =(?‘—) P(0) (PZ-P4) t. (55)
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The second quantity of interest is the amount of bulging in one face of the
window, denoted by AL (t). Referring back to Eqs. (28), (49), and (41), and,

§, proceeding as in the calculation of AT (t) above, we get:
- i By Lo
AL(t) = L(0,t) - L(1,t) = o P(0) (Py-P,) 5-a (1)t (56)

Thus, both AT(t) and AL(t) vary linearly in time in our approximation.
Values of tg. tj» characteristic time 7,, as well as those of AT and AL
evaluated at the time tf , have been computed for a number of candidate window

materials for which reasonably complete data have been found.

They are shown
in Tables 1 and 2.

In these computations we considered a Gaussian incident beam
truncated at the el power point and chose L 0 = 3 cm with P(0) = 500 watts/cmz.
Note that for times approaching tyinthe I - VIl and II - VII compounds the window
nxperiences radial temperature differentials from center to edge in the tens of
degrees, while the center of each face bulges out by factors several times that of

the wavelength., The corresponding values for the other substances are very
much smaller, ¥

¥ b IR L QPRI TN, TR AR Y A

apmp

s

The material dependent parameters used in these calculations were taken
from the literature and are listed in Tables 3 and 4. These parameters should be
considered as being representative only and are by no means definitive. The
reason for this is that oftentimes the literature will report either many discrepant
values, questionable values (for example, no listing of the wavelength or tempera-
ture at which the data was measured), or no values at all.

gy R

ok WP

g ESEER

TS LT

Data on thermal con-
ductivities seems to be especially erroneous. In such instances, one has to guess

which values seem more reasonable compared with those of similar materials,
or, to calculate an average value either from among 21l the listed data or from
that which seems reasonable, or, to extrapolate from known data.

] The value of Poisson's ratio hardly changes from substance to substance and

was taken to be 0. 3 throughout. The only exception to this was found to be TI
No. 20 glass for which v is 0, 19.
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At o

§ For an e.2 truncated Gaussian beam the relative ordering of the materials
i § by ts and t d will not change but all of their values will decrease by a factor of
b 0.33/0. 93 or by about 1/3.
£ ? We emphasize here that all formulas in this section are valid only for times
4 E less than or comparable to 7_ .
,, % * We note here that the diffraction patterns for windows used under actual
s % conditions will be very gensitive to small changes of shape of the window produced
O by nonthermal effects, that is, those produced by small vibrations or other
;b mechanical disturbances.
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5. DASCUSSION

3.1 Diffraction-Limited Time

Equations (54 a,b) show that the material-dependent portion of td is directly
proportional to the ratio c¢'/B A and inversely proportional to the sum of three
terms. The first two terms of this sum are contributions to the spherical aber-
ration coming from the gradient in the refractive index. We will refer to the
second quantity as the "elasto-optical" term. The third term arises from the
window's bulging, and, under the prevailing circumstances, always makes a posi-
tive contribution. With regard to the substances studied, the numerical values
corresponding to each of these terms, including the elasto-optic for both polariza-
tions, are listed in the last four columns of Tables 1 and 2.

For the I - VII and II - VII compounds, (9n/ 8T)o=o is negative and of com-
parable magnitude to a(1+v)(n-1). Therefore, these two terms almost cancel.
This allows the elasto-optic terms to play a very significant role even though they
are typically an order of magnitude smaller.

For covalent crystals (9n/9T) =0 is observed to be positive and larger than
a(1+v){n-1), which, in turn, is larger than either elasto-optic quantity. Thus,
the elasto-optic terms will have a small effect.

In glasses, (dn/ a'r)o=° and a(1+v)(n-1) are both positive, comparable in mag-
nitude, and only slightly greater than the elasto-optic quantities. The only glaring
exception is Aszs3 glass, for which the elasto-optic terms at 4u are comparable
to a(1+v)(n-1) and both elasto-optic terms are at least an order of magnitude
greater than (an/aT)‘,=o .

One should recall that the values of td given in Tables 1 and 2 are accurate
only if the assumptions listed in Section 3 are valid. Actual materials may not
perform as well.

3.2 Relative Merits of Candidate Window Materials

One must also remember that the diffraction-limited time is but one factor
in the selection of a window material for a particular application. In the following
discussion of the relative performance of materials listed in Tables 1 and 2, we
will include some of these other factors.

For 10. 6-micron operation the alkali halide crystals listed in Table 1 are
much better in their ability to hold a diffraction-limited focus than any other class
of ma terials studied. Their single-crystalline mechanical properties are, how-
ever, generally poor. They are hygroscopic and they cannot easily be coated for
protective or antireflective purposes. The II-VI and III-V crystals have fair
mechanical properties but are, in general, only marginal in terms of beam
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distortion. In addition, one expects some difficulty in growing large-size optical-
quality crystals of these materials. From a thermal lensing point of view CdTe
appears to be quite a bit better than ZnSe or the III-V's examined in Table 1. Per-
haps, as better samples of the other materials are prepared, thereby producing
lower values of S A for example, these samples may become more competitive
with CdTe. Germanium has a rather low diffraction-limited time but its other
properties are good except for its large index of refraction. With an index of 4,
Ge would probably require antireflective coatings. The TI glasses have good
mechanical properties and can be cast in large sizes but have rather low values

] for t;. Inaddition, they have characteristic thermal times ('rz and 7 ) which are
: quite large and would probably require rapid face cooling even for pulsed laser

| operation. The polycrystalline materials shown in Table 1 have values of td that

| are too low but have good mechanical and thermal properties. In general, poly-

PR T

L

LU N L SN (O TP

, crystalline materials would show more promise if techniques could be found to

§ reduce their bulk absorption coefficients closer to intrinsic, single-crystalline

' values.

The situation for 3- to S~-micron laser operation is somewhat better. The

I-VII and II-VII compounds shown in Table 2 all appear to be good candidate
windows: they hold a diffraction limited focus for a long time; they have good
mechanical and thermal properties. are not hygroscopic, and, from all indications,
large optical quality crystals can be grown. The remaining materials shown in
Table 2 are, at best, only marginal from a thermal lensing point of view. As
more data becomes available, other materials may also be found which are good
candidates for 3- to S-micron operation.
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6. SOME APPROACHES TO SOLVING THE THERMAL LENSING PROBLEM

6.1 Material-Type Solutions
6.1.1 MINIMIZE BA

S TN e R 1 A IS st I e R L B b s SN

material with a very small 8 A and with negligible beam energy losses by other
mechanisms. This may involve synthesizing a very pure solid or designing a
A completely new material, .

!
!

| One of the most obvious ways to minimize aberration effects is to find a
t

*

kS
AP

ol

6. 1.2 MUTUAL CANCELLATION OF ABERRATING TERMS

X3,

From an inspection of Eq. (54) it is clear that t% is large if the denominator
in the material dependent term is small. If a substance could be synthesized or
2 designed such that

Fe b (40 S0 4 N
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(28)  +[elasto-optic term]” + a (1+¥)a-1) = 0, 67)
o=0

then there woul:: be no aberration for that polarization in the quartic approximation
to the truncated Gaussian beam, In fact, this effect is quite prominent in the

I - VIl and II - VII compcunds shown in Tables 1 and 2. This shows that it may be
possible to find or design.an ionic material where Eq. (57) is fulfilled. Satisfying
Eq. (57) would not eliminate all aberration, since there would still be a small
amount resulting from the terms that we neglected in Eq. (31).

6.1.3 COMPOSITE WINDOW

2
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It is possible, in principle, to find two different materials, one with a positive
Ow and the other with a negative Ow of the same magnitude, such that when they
act in series as a composite window the aberrations nearly cancel out. If two
such materials could be found, a diffraction-limited focus could be maintained for
a long time.

6.2 Engineering-Type Solutions
6.2.1 COOLING

One method of minimizing the thermally-induced aberrations is to cool the
window in such a way as to minimize the temperature gradient in the p direction.
We can imagine several schemes of forced face-cooling below ambient tempera-
ture which may accomplish this, and these, as well as other cooling configurations,
should be thoroughly studied. If one face-cools too rapidly, however, large
temperature gradients in the 2 direction will be set up which could either per-
manently strain the window or crack it,

6.2.2 MOVING WINDOW OR MOVING BEAM

Another engineering possibility suggested by M. Sparks is to minimize ther-
mal effects by moving a large window with respect to a smaller laser beam. This
would allow the beam to travel through fresher material than if the entire system
had been fixed. After the exposed portion of the window rotated away from the
beam, it could be cooled.

6.2.3 OPTICAL COMPENSATION

A very appealing solution would b2 to compensate fully for window aberrations
by designing a continually changing fore-optical system. This system would have
to change shape in such a manner that it caused the incident angle at the window to
be given by:
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When Oi omp was added to 6 3” [given by Eq. (49)], the resulting total angle of
deviation would be:

9{°t . -f;o ) (59)

This means that no spherical aberration would occur and that the beam would
remain diffraction-limited for a long time.

7. PROGRAM RESEARCH AND DEVELOPMENT NEEDS

In this section, we list some laser window program needs in the area of
materials research and development. * We divide them into three areas: im-

SR i -8 € b e

@ mediate R and D objectives as well as longer-term experimental and theoretical 5
t R studies. ** a
5, b

‘{ 7.1 Some Specific Inmediate R and D Objectives

7.1.1 TO OBTAIN DATA

More and better data on key material parameters are needed at both 10. 6u
and 3 to 5u sc that prospective window candidates may be properly evaluated.
These important parameters are:

; (a) bulk absorption coefficient 8 ¢

(b) specific heat ¢! ;

: {(c) linear expansion coefficient a :

: (d) index of refractionn :

(e) temperature coefficient of index of refraction ( 2n )

Rt

ot 1

(f) Poisson's ratio v ;
(g) Pockel's elasto-optic constants Py and,
| (h) thermal conductivity K .
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* A brief discussion of some of these needs was presented by Dr. J.R.

F{ Jasperse at the ARPA-sponsored meeting on laser window materials at Wood's
Hole, Mass. in July, 1971.
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9 ** This list should not be considered as exhaustive or as representative of
% the current laser window program at AFCRL. It gives the authors' thoughts on g
g some of the more important program needs as of July 1971. %
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For many materials of interest, data are just not available; whereas in other
cases they are not reliable.

7.1.2 TO IMPROVE AND DEVELOP SOME SPECIFIC CANDIDATE
MATERIALS

(a) Alkali Halides
Here, work in the immediate future should be centered around
the two objectives of improving the mechanical properties of the I - VII's
and reducing their propensity to pick up water.

by
e
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() I -Vi'sandIII - V's
Two aspects of research and development should be emphasized
here: (1) growth of crystals of increased purity and improved optical
quality, 8o as to produce materials that achieve a 8 A approaching its
intrinsic value; and, (2) development of large-size growth techniques
since difficulties are anticipated in growing large crystals of these
materials.

{c) Glasses
Research and development on glasses should be geared toward

golving the problem of designing a glass with a small 8 A and with an
increased thermal conductivity, Large-size window fabrication should
not be a major problem for the glasses, since modest-sized castings
are currently available with present technology.

(d) Polycrystalline Materials
The important objective here is to make polycrystalline aggregates

RN b e S MR N A T P T S 4 A A N S D it S

with 8 A close to intrinsic values. This would provide window materials g

W

which could be formed in large sizes and yet have small values for 8 A

5

7.2 Some Specific Experimental Studies Needed 3
(1) The optical properties of polycrystalline materials as a function of grain E,
size. These studies should be carried out for both a cubic and a noncubic ma- 5
terial chosen such that grain sizes can be varied over a wide range compared }
with the wavelength of the light. {
(2) The influence of impurities and defect struciure on the optical properties ,}

of candidate crystals. %

(3) The surface and bulk scattering properties of rezl candidate materials.

(4) The surface and bulk absorption properties of real candidate materials.

(5) Determination of the intrinsic dielectric breakdown limit in real candidate
materials as power densities are increased over those currently anticipated.
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(6) The development of coating technology for all candidate materials,
especially for the alkali halides where difficulties are known to exist.
. (1) Energy-loss mechanisms studies.

7.3 Some Specific Theoretical Studies Needed

3 (1) A fundamental theory for n and 8 5 in dielectric crystals which is accurate
: in the vicinity of 10. 6 microns.
2 (2) A fundamental study of why (%%) is negative for ionic crystals and
positive for covalent crystals, e

(3) A fundamental model for the elasto-optic coefficients accurate in the
vicinity of 10. 6 microns.

(4) A study of the effect of coherent light on the absorption of power in a
disc-shaped laser window.

T R Py o] EE oA e o . e 4 P

(5) A study of the effect of surface absorpticn on thermal lensing and on
localized heating,

(6) A study of the effect of surface and bulk scattering on the temperature
distribution in the laser window.

(7) Studies on how to design a new material with a maximum diffraction-
limited time and witn other desirable physical properties.

(8) Calculations of w versus k in prospective window materials to include
some ternary compounds.
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Appendix A

Derivation of the Polorization-Dependent Refractive Indices
as Power Series in p/pp

In order io evaluate the two integrals in Eqs. (19a and b), we must first

determine AT. Substituting Eqs. (2) and (3) into (16) and replacing p/p o bY a, we
get:

P AT S R AR L e e e e Y
A T A I SR EAL A i TR v Dot o L TR2AR A N N b ST e D et o A et o % AR L A LR e Y

AT(qg,t) = glt) 2 'I‘ q (A-1)
1=0

Then,

q ) ® 2041 _ Toy 2442
j‘; dx x AT(x, t) = g(t) §° TZl J;q dx x gt l‘_& T (A-2)

and
1 © 'I‘2 P
L dxx 76,0 < g®) T it (A-3)
When these integrals are ingerted into Eqs. (19), there results:

o T
2 21
Opp-aYg(t) E 3I57 {l-q }. (A-4)
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-1

G za¥glt) B T2t 1- (20+1) g2t (A-5)
3 | Yy g 1= 21%2 9 :

From Eq. (12): }

g(t) ;Jo T qu --ﬂi [C o +C.o ] (A-6)
oo 170 24 2Y |~o pp 17¢¢

i - =80
3 T ™" t5r)
§ ) Upon substituting Eqs. (14), (15), (A-4), and (A-5) into the above and solving for

; np:

R S G P A S S AR A A s

; np=n+(-g-%)

: =0 2142

SopaT O

) 3 o T
gty T T, q? -Loagw) T I
L=0 t=0

{[pu'z"pxz] [1-a* ]+ [ 4-92pypm0py) .[1"2“""2‘] } (A=)

e

This can be rearranged to:

T ALt pa% At

¥

R e Y e AT 7 2P A L

an 2t 3

' [ ]
5 n, =n+g(t) lfoth {(’ﬁ')az B TFTEEY) [‘1"'"’11

Wokare

g I

RO Do) ciny
Trwr LRt

ik PRI T IOR Sat TN,

+(1-30)p, o> {(1-2e+ 10 b, + (2!+1-(21+3)V)p12}] } : (a-8)

3t T;-‘H'v’ .

g

We now partition the summation into two terms: one being the summand evaluated
at t = o, the other being the sum from one to infinity. When *his is done, one can
easily see that there will be some terms that do not contain q. These are collected
under the symbol n p(0, t), leaving:

-,

o3 $OEENEERN TG b 2 AT s i e et i G R i 2N e

: n, =n (0,8 +gl) Z T,, o2t (22) ..
9 p - MW TBE 2 T 3 N\BT ) T 2RAR)

: [(1-(2!+1)V)pu + (2141 - (2[+3)V)p12] } (A-9)
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This can be rewritten as:

p 21
= + ) -
np np(o,t) g(t) l'fl ny, 4 (A-10)

which is Eq. (20a}and where

3
- On, —an__ (- - (A-11)
ng‘ = Taq \\5T )c=° *3GD) [(1 (20+1)p,, + (2141 (21+3)V)912]} ,

which is Eq. (21a).

The same line of reasoning pertains to n¢(q. t). In its counterpart to Eq. (A-6),
the np is replaced by nge and the C o and C1 are interchanged. Thus, the counter-
part to what is inside the braced term in Eq. (A-7) becomes:

{[(1"')912 - Vpu][ l-q?"] +[pn -2v912][ 1- (20+1)q%! ] } ,

which can be rearranged to:

‘\
ks
4]
?}

[(l-v)pu + (1-3V)p12 - qm {(2t+1-v)pn + (1-(4!+3)V)p12}] .

Again, partitioning the sum into two terms and collecting all terms not containing
q under the symbol n¢(o, t), this leaves:

o v v ———— o = - AT o b 4

o AT R S e B SISy L | T A, T B g Yy,

[} o

2t

n, =n,0,t) +gt) T n?, q (A-12) :
(I 11 2 4 :

)

which is Eq. (20b), where f
o =T (ﬁﬂ-) ++‘"‘3— (22+1-v)p, . + (1-(42+3)W)p (A-13) ‘ﬂ
2t " C2u\aT/ T 2RI P11 12 ¢ ° ' E

"1
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which is Eq. (21b).
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Appendix B

Approximete Solution to Rey Trece Equation

According to the ray-trace formulas, the radius of curvature R ¢ 8t any point
on the ray trajectory is (Born et al, 1964):

'ﬁl. «D.9 (tnn) = (;(ln n)| cos @ , (B-1)
c

where ¥ ig the unit normal along R e and n represents either n? or n¢ (See Figure 1).

From elementary calculus the radius of curvature of a simple plane curve is

i W 2 dz2 .
Rc [1 +(agze)2 ]372

Consider an index of refraction which depends only on p, and which is either
monotonically increasing or monotonically decreasing, so that the algebraic sign
of R c does not change. If we equate the right-hand side of the two equations above,
and replace cos 8 by [1 + tan®6])~1/2, where tan 8 = dp/dz, then we obtain the
following nonlinear, second-order differential equation for the ray trajectory:
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Lo [i+(%) | -0 ®-2)

dz

2
For small angles of deviation, (%%) is negligible compared to unity. *

Since we are agsuming refractive indices of the form shown in Eqs. (20a) or
(20b), the dn/dp are calculable as power series and the n in the denominator of
Eq. (B-2) can be approximated by n(0,t). The nonlinear equation becomes:

2 ©
Lo (280 ) 5 o 1?0 (B-3)
dz n(0, thp L£1 °

Looking for a solution of the form
plz) = pi (1+y(z)),

where |y| << 1, we obtain

20-1
i 21-1
+ =0. -
(—-(—F-Ln o %pi)‘”1 oy ! o) 1+y) 0 (B-4)

Expanding (1 + y)zl.1 up to first-order in y, the differential equation can be
written as:

%:5'-- 2KM) - 2Kt y=0, (B-5)
where
20-1
K(t) = wa%);:;; 1§1 ny, ¢ (%) . (B-6)
and
K'(t) = 'R{)‘%;?Ti I,y £ @00y (B-7)

Employing the boundary conditions that y = dy/dz = 0 at z = 0, we can get
2 possible solutions for y, depending on the sign of K'. For K' >0,

*This is equivalent to the paraxial-ray approximation.
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y -% {coshwrz-K—' z - l}.

L
Ey
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Or, expanding up to order Kszs, remembering that K and K' have the same order
of magnitude:

. yoeke® +EK 44 0fk3.0 ),

PITIN A T L S RAPR RS o

b D

whereas, for K' <0,
y=- T‘Err{cosqz lK'l z - 1}.
Again, expanding,

yeusz - KIK! z4+0{|Klazs}.
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Thus, for either case, the solution can be expressed as:

p(z) = p, [1+Kzz+-l_§l_6l_x'_l.z4+0{l!(|3 25 }] (B-8)

where K can be either positive or negative.
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Appendix C

Derivation of Equation (29)

Figure C1 depicts a ray, incident at P=py being refracted at each surface of
the bulging window. All angles are exaggerated for clarity. The i's represent
incident angles at each surface, the r's refracted angles, and the y's the angles

which the surface tangents make with the vertical. The Gb represents ebulge

Figure C1. The Refraction
of a Ray as It Passes Through
a Bulging Window
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From the inner triangle, we see that

eb =5+ 8y {C-1)

which can be replaced by:

T

Gb = \'il-rl) + (rz-iz) . (C-2)

BT L e SO

Now, Snell's law at each interface is approximated by:

nei, fry /i, . (C-3)

k3
-

Substituting this information into (C-2), it becomes:

Ob = (n-1) ry + (n-1) iz . (C-4)

N
M AR L e e £ A AN o ok, b, b S g

In the small angle-of-deviation approximation, however,
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When these replacements are inserted into Eq. (C-4), the net result is:

B

. z(n-l)(y‘%-)p=pi . (C-5)
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Appendix D

The Circle of Least Confusion From Geometric Optics

In this Appendix we calculate the radius of the circle of least cc;nfuaion and its
distance from the window using geometric optics for either polarization. We
define the distance from the window to the point where the ray crosses the z axis
by:

Rlp) = —gL = —&-—y (D-1)
prE - tot YWP/P,
where,
vl/pg) = = 6y (-2)

in the small angle-of~deviation approximation. Employing Eq. (51) in the above:

[ 2
0 vaPo (o 2\ - F (2. .
7(90) R, p°)+ Fy Po [1 Fa po) ] ®-3)

and,

F 21!
ddeL |h- -
Rip) {Ro+ e [1 F, (‘f;) ]} . (D-4)
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Since R ° is always in front of the window (i.e., positive), we will confine our
attention only to those circumstances in which R{p) also remains positive.
Regardless of the magnitudes and signs of F1 and Fz. this condition can always
be satisfied provided 1 - F, /o o)2 is always greater than - p 0/ F,R,. ThenR,
and hence etot‘ remain monotonic with p .

In Figure 5, we depict two of the rays for the case in which R increases
monotonically with p. The ray emanating from p =p ° makes an angle of ¥ o with
the horizontal and has an equation given by:

p=~y°z+p°. (D-5)

A second ray, emanating from p = ~p', is shown coming from the bottom half of
the window for reasons that will soon become obvious. It makes an angle of v’
with the horizontal so that its equation is:

p=y'2z-p'. D-6)
The two rays intersect at a distance r from the origin given by:

S ' - -
P [P o) -1

The ma:imuvm value of r, which we call ro is the radius of the circle of least
confusion. To obtain r., we first maximize r in Eq. (D-7) with respect to p'/po
and get a corresponding value for p'. This particular p', together with p o 8re all
that is necessary to prescribe those two rays which are sufficient to determine the
circle of least confusion.

Taking the derivative of Eq. (D-7) with respect to p'/p o results in:

J?-—-: (+l)_d_‘)'.'_- - . )_d’V___ (D-8)
d(e'fog) ~ PoTo™ (d(p'/po) 70) fo (‘Y pe o dlp'/p,)

Setting this equal to zero yields:

_‘£+1)_ﬂ_— =y ty . (D-9)
(po dl'/p,) °

Now utilizing Eq. (D-3) at both p o and p', the above reduces to:

2(.%‘1).)3 + 3("_;)2 -1=0. (D-10)
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Of the three solutions, namely, 1/2, ~1, and -1, only p'/po = 1/2 is the phys:aully
acceptable solution. Substituting this into (D-7) and changing r to r o’ the radius
of the circle of least confusion, for either polarization, is now given as:

J i
[ Fi{() Fy
c 4 ' . 3 i : (D-11)
- ] - 3
R°+F1(t)(1 TFZ)

The distance of the circle of least confusion from the window, DJ can be
obtained from either Eqs. (D-5) or (D-6) if z is replaced by D"i and p by r
Solving for DJ results in:

p
0 . (D-~12)

J 2
c p . -

—2 4 gl -3l

R tFy (-F3)
o

When R(p) is a monotonically decreasing function of p, we find that the same
equations as given above hold and that r-l and Di have the same forms as in
Eqs. (D-11and 12).. The signs of the F- functions may differ, however, and only

the magnitude of ri is of consequence.
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