AFFDL-TR-71-154

AD 749479

1 2

FLIGHT CONTROL PRINCIPLES FOR CONTROL CONFIGURED VEHICLES

EDMUND G. RYNASKI NORMAN C. WEINGARTEN

CORNELL AERONAUTICAL LABORATORY, INC.

TECHNICAL REPORT AFFDL-TR-71-154

JANUARY 1972

Approved for public release; distribution unlimited.

AIR FORCE FLIGHT DYNAMICS LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO

A PARTY AND A P

Reproductor NATIONAL TECHNICAL INFORMATION SERVICE

CONTRACTOR OF THE OWNER OF

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto. いいろういうないっとうろうちょうかいでいうちょう

রে বিশেষ বিশ

South and the second second

+ Copies- of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE: 7-9-72/450

Unclassified

;

12624

Security Classification							
DOCUMENT CON (Security classification of title, body of abstract and indexin	TROL DAYA - R&C) ered when t	he overall report is cleasified)				
I ORIGINATING ACTIVITY (Corporate author)		24 REPOR	T SECURITY CLASSIFICATION				
Cornell Aeronautical Laboratory, Inc.							
Buffalo. New York 14221		25 EROUP					
A REPORT TITLE							
FLIGHT CONTROL PRINCIPLES FOR	CONTROL						
CONFIGURED VEHICLES							
A DESCRIPTIVE NOTES (Type of report and inclusive dates)							
FINAL REPORT							
5- AUTHOR(5) (Last name, first name, initial)							
Rynaski, Edmund, G. and Weingarten.	Norman C.						
. REPORT DATE	TA. TOTAL NO. OF P	AGES	78. NO. OF REPS				
January 1972	87						
SA. CONTRACT OR GRANT NO.	Sa. GRIGINATOR'S RE	PORT NUM	BER(S)				
F 33615-71-C-1238	TB-	3052-F	-1				
4 PROJECT NO.							
6220 c.	S. OTHER REPORT	NO(5) (Any	other numbers that may be assigned				
		יםידנ	8-71-154				
d.							
Approved for public release: dis	tribution unl	imited	l .				
11. SUPPLEMENTARY NOTES	Air Force Fl	ight Du	mamics Laboratory				
	Wright-Patte	rson A	ir Force Base, Ohio				
	45433						
13. ABSTRACT The compatibility betw	een maneuver	load c	ontrol, relaxed static				
stability, and flying qualities requirem	ents is investi	gated i	n this report. Three				
steps were involved in the investigation	n: 	. .	instens and their				
I. An analysis was made of effectiveness for maneuv	control suriac	e como	used with an air+				
plane having shortened ta	il length and r	educed	tail surface area.				
2. Control system configura	tions were syn	thesize	ed that minimize				
a weighted measure of ch	ange in drag,	wing ro	ot bending moment,				
control surface activity a	nd response en	rror be	tween a Level I				
3. A' direct optimization of t	he tail length.	tail ar	ea and control				
surface deflections requi	red to obtain a	compa	tible compromise				
of the CCV objectives wa	s performed.						
The results show that	reductions in 1	naneuv	er drag and wing root				
bending moment can be achieved it sub	licient controll	ability	is available to				
compensate for the lack of inherent sta	bility of the ve	same	little to artificially				
	والمراجع والمحادث والمحاد						
DD 152774 14/3		Un	classified				
1a		5	ecurity Cleasification				

<u> SARANA MANAN</u>

SALL SUGAL

والمعرجة بالأواء المانعاي

2

Unclassified

£

٩,

A STATE AND A ST

ing terminist particulation and the state

wither states

ł

Security Classification					_		
14		LIN	КА	LIN	K B	LIN	ĸc
		ROLE	TW	ROLE	WT	POLE	# T
Flight Control Maneuver Load Control Relaxed Static Stability Stability and Control Optimal Control							
				LJ			
 INSTRI ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations. (ROUP. Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the court and a force applicable, show that optional markings have been used for Group 3 and Group 4 as authorized. REPORT TITLE: Enter the complete raport title in all capital letters. Titles in all cases should be unclassification in all capital in parenthesia immediately following the title. DESCRIPTIVE NOTES: If appropriate enter the type of 21.11.12, interim process, summary, andul, or final. Give the inclusive dates when a specific reparting period is covered. AUTHOR'S): Enter the name(s) of author as shown on or in the report. Enter last name, furst name, yiddle initial. If mitiary, show rank and branch of service. The name of the principal a thor as an absolute minimum requirement. RORT DATE: Enter the date of the report as day, month, year, or month, year. If more then one date appears with report, as date of publication. IOTAL NUMBER OF PAGES: The total page count should follow nomel pagination procedures, i.e., enter the number of references cited in the report. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report number of the originating information. OREON DATE: Stepen NUMBER: Stepen the official report number of the contract or grant under which the report number of the originating information. MUHOR'S REPORT NUMBER: Enter the appropriate minitary department identification, such as p	UCTIONS imposed by such as: (1) ''' (2) ''' (3) ''' (4) ''' (4) ''' (5) '' (5) '' (5) '' (6) ''' (6) ''' (7) ''' (7) ''' (6) '''' (7) '''' (7) '''' (7) ''''' (7) ''''''''''''''''''''''''''''''''''''	y security Qualified port from Foreign as port by D. U. S. Govu is report a port by D. U. S. multiport direct shall port direct all distrikt ied DDC u eport has beparated and er LEMENT/ L. HANNE RACT: E ithe docu appear e ditional pro- research RACT: E ithe docu appear e ditional s l. ighly dess fied. Eas on of the in the para is no limit uggested UCRDS: H ra: that en ame, g en ame, g en ame, g en ame, g as equipt	classific requester DDC." nnouncen DC is not ernment a directly (request (isory agen tity from at throug) been furty for isory sha been furty for been furty for tor the p ARY NOT IILITARY set offic and dew niter an a ment indi isowhere graph, re tation on length is for words coar a the alogang tit coar a the alogang tit to finkt	sation, us rs may ob sent and ci i authoriz from DDC. through cies may DDC. Oth h this report il request this report il request for labo elopment. batract gi (cetive of in the bos equired. i t the absis cettive of in the bos equired. i t the absis cettive of in the bos equired. is t the absis is are tech in the report. classifica is, rules, i	ing stand tain copi dissemina ed." may obtain of the obtain of the obtain the office result of the the office result of the the office result of the the office result of the the report of result of the the of the of the the of the the of the of the of the of the of the the of the of the of the of the of the the of the of the of the of the of the of the of the the of the of the of the of the of the of the of the the of the of	lard state es of this tion of the in copies jualified I apres of the public of the public of the rolled for e of Tech the public ional exp er the nano natoring (address, tef and ba to, co- abstract, ords, easingful nay be us rds must 1 gured. I de name, juard as technical of the (S), (C)	ments of of DDC
					16:04		

A REAL STRUCTURE TO THE STRUCTURE OF THE ST

Security Classification

an a second the second second second second

+U.S.Government Printing Cifice: 1972 - 759-485/041 IR

FLIGHT CONTROL PRINCIPLES FOR CONTROL CONFIGURED VEHICLES

ł

Ê

EDMUND G. RYNASKI NORMAN C. WEINGARTEN

CORNELL AERONAUTICAL LABORATORY, INC.

FOREWORD

The research documented in this report was performed for the Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio by the Flight Research Department of the Cornell Aeronautical Laboratory, Inc. (CAL), Buffalo, New York. This study was performed under Air Force Contract No. F33615-71-C-1238, Project No. 8226, "Advanced studies on the compatibility of maneuver load control and relaxed static stability applied to military aircraft". The Project Officer was Captain Bruce Kujawski (FGC) of the Flight Dynamics Laboratory. The CAL Project Engineer was Mr. Edmund Rynaski.

Important suggestions were provided by Capt. Kujawski under the supervision of Mr. R. Johannes. At CAL, grateful acknowledgment is made to Mr. C. Mesiah who guided some of the excellent digital computer programming, Dr. R. T. Chen, who formulated the necessary conditions for the direct solution, and Mrs. J. Martino and Miss D. Kantorski for their report preparation skills.

This report was submitted by the authors October, 1971, and is being published simultaneously as Cornell Aeronautical Laboratory Report No. TB-3052-F-1.

This technical report has been reviewed and is approved.

GEORGE L. YINGLING Chief, Advanced Development and All-Weather Flying Branch Flight Control Division

ABSTRACT

The compatibility between maneuver load control, relaxed static stability, and flying qualities requirements is investigated in this report. Three steps were involved in the investigation:

- 1. An analysis was made of control surface combinations and their effectiveness for maneuver load control when used with an airplane having shortened tail length and reduced tail surface area.
- 2. Control system configurations were synthesized that minimize a weighted measure of change in drag, wing root bending moment, control surface activity and response error between a Level 1 flying qualities model and the actual T-33 airplane.
- 3. A direct optimization of the tail length, tail area and control surface deflections required to obtain a compatible compromise of the CCV objectives was performed.

The results show that reductions in maneuver drag and wing root bending moment can be achieved if sufficient controllability is available to generate the required forces and moments and at the same time to artificially compensate for the lack of inherent stability of the vehicle.

anan Misinin II Arini anya kata ini ini kata ang

TABLE OF CONTENTS

Sectio	<u>n</u>	F	age
I	INTRO		1
	1.1	Background	1
	1.2	Approach and Organization	2
II	ANAL	YSIS OF RELAXED STATIC STABILITY AND	
	MANE	UVER LOAD CONTROL SURFACE REQUIREMENTS .	4
	2.1	Introduction	4
	2.2	Derivation of T-33 Equations of Motion	4
	2.3	Derivation of an Ideal Flying Qualities Model	15
	2.4	Derivation of Surface Deflections Required to Match	
		the Model Response	19
	2.5	Results of the Study	21
III	THE S	YNTHESIS PROBLEM	27
•	3.1	Introduction	27
	3.2	Longitudinal Results.	30
~	3.3	Lateral-Directional Results	39
IV	DIREC	CT OPTIMIZATION	44
	4,1	Introduction	44
	4.2	Static Trim Optimization	44
	4.3	Dynamic Optimization	47
	4.4	Results	51
v	CONT	ROL SYSTEM MECHANIZATION	55
	5.1	Introduction	55
	5.2	CCV Bare Airframe Stability Derivatives	56
	5.3	Control (Feedforward) Augmentation	59
	5.4	Weight Considerations	60

Preceding page blank

State and the second states and the second states

人名日子 日本 日本市民市市市市市市市市 しょうしき あいいちんであいたい あいちちょう ちゅうちょう

あるい しまちい とう

* *

v

Section	-																		P	age
IV	CONC	LUSI	ONS	AN	D	RF:	co	MM	1EN	IDA	TI	ON	s.	•	•	٠	•	•	•	61
	6.1	Cor	nclus	ion	s.	•	٠	•	٤	•	٠	•	•	•	•	٠		•	٠	61
	6.2	Rea	omn	ien	dat	ion	15	•	•	•	•	•	•	•	•	٠	•	٠	•	62
APPEI	NDIX I	- Lir	NEAI	R O	ΡT	IM.	ىڌA	cc	DN T	RC	L	•	•	•	•	•	•	•	٠	65
APPEI	NDIX JI	: - c	ONJU	IGA	TE	G	RA	DIF	en t	C	ÛМ	PU	TE	RI	PRO	DGI	RAI	м.	•	73
REFEI	RENCE			•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	85

Same State Carry ale . The state

LIST OF ILLUSTRATIONS

1.2

N'A'SAIN.

11. C. T. J.

A STATE OF THE PARTY OF THE PAR

× ~

Figure	-	Page
1	Root Locus of CCV - T-33 Short Period Poles Vs.	11
		11
2	Wing Lift Distributions for α , δ_i , δ_i	12
3	Wing Root Bending Moment Contribution Vs. Wing Station	13
4	Short Period Frequency Requirements -	
	Category A Flight Phases	17
5	Transient Response of Lov 1 15 and High Lift	
	Level 1 Models at FC-1	18
6	Model Following System	21
7	Effect of Tail Length and Size on Drag During	
	4 g Pullup	22
8	Effect of Tail Length and Size on Wing Root Bending	
	Moment During 4 g Pullup	23
9	Effect of Tail Length and Size on Maximum Surface	
•	Deflections Required for 4 g Pullup.	24
10	Command Input Mechanization	22
10		55
11	Response of Control Configured Vehicle and	
	Flying Qualities Model	34
12	Comparison of Response With Two Different	
	Input Designs	38
13	Feedforward or Command Augmentation	59

vii

LIST OF TABLES

A CONTRACTOR OF THE	Van State Andread Andread	FORTHER FRANKLING IN THE REAL STATE OF THE CONTRACT OF THE STATE OF T	C
		LIST OF TABLES	
	Table		Page
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	I	T-33 Stability and Control Derivatives	7
	II	Variations in Flying Qualities Parameters as a Function of $K_{\mathcal{A}}$ and $K_{\mathcal{L}}$.	10
	III	Stability Derivatives and Other Characteristics of Two Level 1 Models	16
	IV ·	4 g Pullup With High n_{g}/α Model	25
N. S. C. S.	v	Comparison of CCV Performance for 4 g Pullup	35
	VI	Comparison of CCV Dynamics for 4 g Pullup	36
	VII	Results of Lateral-Directional Study	42
	VIII	Summary of Trim Optimization Results	46
	IX	Selected Results of the Conjugate Gradient Method.	53
	x	Attainable Feedback Gains	54

ANT ALLES

and the second second

LIST OF SYMBOLS

\$

. .

A STATISTICS

WHICH THE MERINA HAR HAR COLON DATA

Ą <i>R</i>	$-b^2/5$ - wing aspect ratio
Ь	- reference wing span, ft
b _H	- horizontal tail span, ft
ī.	- mean aerodynamic wing chord, ft
Ē _↓	- horizontal tail chord, ft
9	- gravitational constant, 32.17 ft/sec ²
h	- altitude, ft
I _{yy}	- moment of inertia about y-body axis, slug-ft ²
KA	- $\frac{S_{\mu_{COV}}}{S_{\mu_{T-SS}}}$ - tail area ratio
K_	$- \frac{L_{H_{CCV}}}{L_{H_{T-35}}} - \text{tail length ratio}$
Kρ	- proportional constant which relates drag to the square of lift in a parabolic drag polar
I _H	- distance from $\frac{\tilde{c}}{4}$ to $\frac{\tilde{c}_{H}}{4}$, tail length, ft
777	- W/g - aircraft mass, slugs
M _B	- wing root bending moment coefficient, ft/lb
n	- normal acceleration, g's
P	- roll rate, rad/sec
Ī Ģ	- $V^2/2$ - dynamic pressure, $1b/ft^2$
9	- pitch rate, rad/sec
*	- yaw rate, rad/sec
5	- reference wing area, ft ²
S _H	- horizontal tail area, ft ²
Δ٧	- perturbation velocity along x axis, ft/sec
Vø	- total velocity of airplane, ft/sec
W	- aircraft weight, lb

マナル

いたかでいい

¢	- angle of attack, rad
ß	- angle of sideslip, rad
5 _a	- aileron deflection, rad
δ _e	- elevator deflection, rad
Si	- inboard direct lift flap deflection, rad
8,	- outboard direct lift flap (collectively operated ailerons) deflection, rad
S _r	- rudder deflection, rad
3d	- Dutch roll damping ratio
3 _{ph}	- phugoid damping ratio
3 _{5P}	- short-period damping ratio
7	-y/b - wing station
θ	- pitch angle, rad
î,	- Lagrange multipliers used for constraints in performance indices
م	- air density, slug/ft ³
T _R	- roll mode time constant, sec
τ_{s}	- spiral mode time constant, sec
ø	- bank angle, rad
w _{nd}	- Dutch roll undamped natural frequency, rad/sec
^ω n _{eh}	- phugoid undamped natural frequency, rad/sec
ω _{πsp}	- short-period undamped natural frequency, rad/sec
	ABBREVIATIONS
CCV	- control configured vehicle
MLC	- maneuver load control
RF	- response feedback
WRBM	- wing root bending moment

43.

C'i

7.7.7.4

STS 5 5 4 4 4 1 5 1

the second second second second second

and the second

.

1

and survey and

in the second second

ł

WINNERS CONTRACTOR

and the lesses

The state and the second

SECTION I

INTRODUCTION

1.1 BACKGROUND

いたいという

The research documented in this report investigates the feasibility of implementation of several fundamental Controlled Configured Vehicle (CCV) concepts. The tail length and area of a typical Air Force inventory airplane (the T-33) were decreased to reduce the static stability and additional, active, wing-mounted control surfaces were used to provide a measure of control of the wing lift distribution. Control system design concepts were then used to evaluate the effectiveness of the maneuver load control concepts and to produce flight control system designs that can take advantage of the additional controllability of the vehicle and at the same time provide for adequate flying qualities. There is very little doubt that the geometry and the controllability of present day vehicles can be significantly improved as soon as fly-by-wire and control augmentation are fully accepted as integral parts of a flight control system.

Once feedback and command augmentation are fully accepted, then the full potential of the use of feedback can be and should be investigated and developed, for this knowledge can have a significant impact on the fundamental design of the airframe. For instance, inherent longitudinal or directional stability need not be built into the airframe if sufficient control surface effectiveness and power exist so that stability can be maintained by feedback. This is generally an easy requirement. A more difficult requirement is that, in addition to stability, the vehicle must satisfy flying qualities requirements. The research documented in this report places special emphasis on the flying qualities of the augmented airplane. The importance of the use of active controllers in addition to the conventional moment producing devices, i.e., elevator, rudder and aileron, has been amply demonstrated. Operational and experimental aircraft now are using or investigating the proper use of active X-force control devices (auto-throttle systems), Z-force control (direct lift flaps or spoilers) and even Y-force control (side force surfaces, differential throttle or differential drag devices). With this acceptance of additional force and moment generating devices, it becomes important to investigate their use in the attainment of many desirable objectives of airplane design, such as control of the wing lift distribution (to reduce the critical wing root bending moment), structural mode control, ride qualities improvement, gust alleviation, and certainly, the dominant factor in all flight control system design, the flying qualities. The research documented in this report emphasizes the use of active surfaces such as a direct lift flap and collectively acting ailerons in addition to the elevator, to produce good flying qualities in addition to reduced wing root bending moment and minimum drag, both statically (in trim) and dynamically, during maneuvering flight.

In this report, the T-33 airplane was used as the object of the study. A fairly modest CCV treatment was applied to the vehicle: the tail length and size were assumed variable; the flap and ailerons, in addition to the elevator, were assumed to be actively controlled as force and moment generating devices. The object was generally to determine the tail length, size and surface motion: that would satisfy the generally conflicting requirements of minimum change in wing root bending moment, minimum maneuver drag and minimum deviation from Level 1 flying qualities. Much more could have been, and eventually should be, done. The usefulness of additional force and moment devices, such as canard surfaces, spoilers, actively controlled thrust, sectioned flap and sectioned ailerons could have been included in the investigation. They were not included for three reasons:

1. It was felt that the configuration selected would demonstrate the feasibility. Feasibility rather than final design was considered to be the major objective of the program. ちち いちちんち ちょうちん あいちん ないちょう ひとうない ちょうちょう ちょうちょう ちょうちょう しょうちょう

こころも かってきたち ちょうちょう ひがかった うろん かかせない たちしん たいきょう ション・ビード たちょうかん ひかかか せんごうえん 大声をたた ふたん オン・シュー・・・・

معد مريحات المريحات والتا ومدم معتقلات المعاد المراجع المراجع والمعالم والمعالية والمعالية والمعالية والمعالية

そうちょうかいがくないない いろうちょうちょうかい ちょうちょう ひょうない ないないない ないない ちょうちょう

- 2. In this area, which represents a fairly radical departure from conventional design and development, careful, measured advances should be made.
- 3. Time and money for an extensive investigation were not available, and in fact should not have been made available at so preliminary a stage.

A second area in which the study was restricted was the area of more extensive geometrical changes in the airframe or the characteristics of the airframe. The tail area and length of the T-33 were considered changeable; these changes affected the stability derivatives of the airplane. The effects of other geometrical parameters were not investigated but eventually they should be considered in the CCV context.

Therefore, the study was restricted to feasibility rather than a thorough investigation of the potential of CCV concepts. Yet the results are both promising and gratifying. The wing root bending moment can be reduced; the drag can be controlled, and the T-33 airplane can be made to have Level 1 flying qualities with a shorter and smaller tail. Therefore, from the CCV point of view, the T-33 is overdesigned; weight, drag and structural loads can be reduced by using a feedback augmented flight control system. Since the demands of performance right now result in dynamically less well behaved airframes requiring augmentation to bring their dynamic behavior up to acceptability, this report takes the attitude that stability should not impose strong constraints on the geometry of the bare airframe. Feedback augmented flight control systems should provide the required stability. The research documented in this report shows how advanced flight control system design techniques can be used to realize many of the CCV concepts.

1.2 APPROACH AND ORGANIZATION

The systematic study of relaxed static stability, maneuver load control and attainment of good flying qualities was performed in four major steps:

- 1. The tail size and length were varied and combinations of elevator motion, inboard flap and collectively acting ailerons were used to force the vehicle to fly "exactly" as a flying qualities model. For different combinations of surface usage, the changes in drag, wing root bending moment and measures of control surface effort were obtained as the vehicle maneuvered through a 4 g pullup "exactly" as the flying qualities model. These calculations verified the level of utility of using the additional surfaces. This research is described in Section II.
- 2. A feedback flight control system was then designed to minimize a weighted measure of incremental wing root bending moment, incremental drag, error in dynamical response between the actual aircraft and the flying qualities model, and control activity. Familiar linear optimal control techniques were used to obtain the solutions. The effect of variations of the weighting of the different elements in the performance index was investigated to some extent. The purpose was to verify that the different weighting could be successfully "juggled" rather than obtaining a final, or "about-to-be-mechanized" design. Section III of the report describes this phase of the study.
- 3. A direct parameter minimization of the performance index was tried. The purpose was to try to directly obtain values of tail length, size and control deflections that would minimize a weighted measure of incremental wing root bending moment, incremental drag and minimum deviation from Level 1 flying qualities behavior during a 4 g pullup. This effort is detailed in Section IV of the report.

4. Based upon the more than twenty years of experience with feedback fly-by-wire systems at the Cornell Aeronautical Laboratory, maximum attainable feedback gains for the present state of the art of flight control system design were estimated. Checks were made to assure that the feedback designs defined in Section III of the report appeared feasible.

SECTION II

ANALYSIS OF RELAXED STATIC STABILITY AND

MANEUVER LOAD CONTROL SURFACE REQUIREMENTS

2.1 INTRODUCTION

The first logical step in the alteration of an existing airplane to achieve the objectives of a Control Configured Vehicle is the determination of the effects of varying the tail length and area on the stability of the vehicle and the ability of the chosen force and moment generating devices to maneuver the airplane properly. If the aerodynamic characteristics of the airframe do not inherently provide the proper forces and moments, then the surfaces must be dynamically moved in a way to compensate for the loss in aerodynamically generated forces and moments. The analysis of geometry changes and surface adequacy was accomplished in the following manner:

- 1. The equations of motion of the T-33 airplane as a function of tail length and area were developed.
- 2. The equations of motion of two Level 1 aircraft mathematical models were derived from MIL-F-8785(B).
- 3. The changes in drag and wing root bending moment were developed as a function of tail length, tail area, and elevator, flap and collectively acting aileron deflections.
- 4. Combinations of these three surfaces were then deflected in a way that forced the T-33 to respond to a 4 g pullup command as the flying qualities model would respond.

5. Evaluations were then made of the effectiveness and usefulness of the surfaces in reducing maneuver drag, wing 100t bending moment and relative surface deflection.

2.2 DERIVATION OF T-33 EQUATIONS OF MOTION

Equations of Motion and Dimensional Data

The longitudinal equations of motion for the T-33 airplane used as the example in this CCV study are as follows:

$$\Delta \dot{V} = -g\theta - \frac{\bar{q}S}{m} \left\{ \left\{ \frac{2}{V_{\theta}} C_{\theta_{2}} + C_{\theta_{\Delta V}} \right\} \Delta V + C_{\theta_{\theta} | S_{e}|} |S_{e}| + C_{\theta_{\theta} | S_{i}|} |S_{i}| + C_{\theta_{\theta} | S_{\theta}|} |S_{0}| + K_{\rho} \left\{ C_{L_{s}} \alpha + C_{L_{s}} S_{i} + C_{L_{s}} S_{0} \right\}^{2} + K_{\rho} \left\{ C_{L_{s}} S_{e}^{2} \right\}^{2} \right\}$$
(1)

$$\dot{\alpha} = \dot{\Theta} - \frac{\overline{q} S}{V_{o}m} \left(\left\{ \frac{2}{V_{o}} C_{L_{t}} + C_{L_{\Delta V}} \right\} \Delta V + \left\{ C_{L_{\omega}} + \frac{T_{t}}{\overline{q} S} \right\} \alpha + C_{L_{S_{\varepsilon}}} \delta_{\varepsilon} + C_{L_{S_{\varepsilon}}} \delta_{i} + C_{L_{S_{\varepsilon}}} \delta_{\varepsilon} \right)$$
(2)

$$\ddot{\theta} = \frac{\bar{\varphi}S_{z}}{I_{yy}} \left(\frac{z}{2V_{\theta}} C_{m_{q}} \dot{\theta} + \frac{z}{2V_{\theta}} C_{m_{z}} \dot{\alpha} + C_{m_{dV}} \Delta V + C_{m_{\alpha}} \alpha + C_{m_{s}} \delta_{e} + C_{m_{s}} \delta_{i} + C_{m_{s}} \delta_{o} \right) (3)$$

というないないというないないないないないないないないないないない

and and a cost and a state of a cost of the second of the state of the second of the second of the second of the

For some of the calculations the following linearized drag equation was used:

$$\dot{u} = -g\theta - \frac{\overline{q}}{m} \left\{ \left\{ \frac{2}{V_0} C_{p_t} + C_{p_{\Delta V}} \right\} \Delta V + C_{p_{\Delta V}} \alpha + C_{D_{\mathcal{S}_e}} \delta_e + C_{D_{\mathcal{S}_i}} \delta_i + C_{D_{\mathcal{S}_o}} \delta_o \right\}$$
(4)

Two flight conditions with different values of n_{1}/α were investigated, though most of the work was performed with the first flight condition (FC-1). However, the methods used would apply to the second as well.

	FC-1	FC-2
V _o	641 ft/sec	414 ft/sec
h	10,000 ft	20,000 ft
ą	360 lb/ft ²	108 1b/ft ²
W	12,000 lb	15,000 lb
I 44	20,700 slug-ft ²	22,000 slug-ft ²

The dimensional data common to both flight conditions for the CCV-T-33 are:

wing: area,
$$S = 234.8 \text{ ft}^2$$

span, $b = 37.5 \text{ ft}$
chord, $\overline{c} = 6.72 \text{ ft}$
taper ratio = .355
sweepback of
quarter cord, $\Lambda_{z/4} = 5.0^{\circ}$
 $AR = 6.$
airfoil section = NACA 65_1-213 , $a = .5$

 S_{i} - It has been assumed during the course of this study that the inboard flap can readily be changed into an active control device, requiring a change from the present split flap arrangement to a simple flap with the following characteristics:

area, each side $S_{S_i} = 15.32 \text{ ft}^2$ chord, $\tilde{c}_{S_i} = 1.8 \text{ ft}$ wing station; 0 ft - 8.5 ft

 \mathcal{S}_{o} - It has also been assumed that the T-33 ailerons can be made to act collectively to a longitudinal stick command. These outboard direct lift flaps have the following characteristics:

area, each side $S_{s_i} = 8.75 \text{ ft}^2$ chord, $\bar{c}_{s_i} = 1.17 \text{ ft}$ wing station: 8.5 ft - 16.0 ft

Horizontal tail: area, $S_{\mu} = 43.5 \text{ ft}^2$ span, $b_{\mu} = 15.58 \text{ ft}$ chord, $\bar{e}_{\mu} = 3.12 \text{ ft}$ taper ratio = .32 $\mathcal{R} = 5.6$

horizontal tail length $\left(\frac{\overline{c}}{4} t_0 \frac{\overline{c}_H}{4}\right)$, $l_H = 15.9$ ft horizontal tail volume, $V_H = \frac{S_H}{S} \cdot \frac{l_H}{Z} = .438$

 $\frac{\delta_e - \text{elevator}}{\text{area, each side } S_{\delta_e} = 8.7 \text{ ft}^2}$ chord, $\overline{\epsilon}_{\delta_e} = .71 \text{ ft}$

vertical tail:

area, $S_v = 22.6 \text{ ft}^2$ vertical tail length $\left(\frac{z}{4} t_0 \frac{z_V}{4}\right)$, $\mathcal{L}_v = 16.1 \text{ ft}$ vertical tail volume $V_v = \frac{S_v}{s} \frac{\mathcal{L}_v}{b} = .041$

Stability Derivatives of the Basic CCV - T-33

19

All of the nondimensional stability derivatives, except the δ_i and δ_o control derivatives, for the basic T-33 were obtained from Reference 1. The control derivatives for the inboard and outboard flaps, δ_i and δ_o , were estimated from Air Force Datcom methods (Reference 2) using the dimensional data above. These stability derivatives are presented in Table I.

TABLE I

T-33 STABILITY AND CONTROL DERIVATIVES

Parameter	FC-1	FC-2	Parameter	FC-1	FC-2
$C_{D_{\alpha}}$	0.019	0.019	CL	0.15	0.15
CDu	0.117	0.106	CLa	6.50	5.90
CDolant	0.0111	0.0111	CLS	0.362	0.343
CDS	0.0176	0.0173	CLS:	1.64	1.64
Colsil	0.0408	0.0408	Cus	1.065	1.065
CDS:	0.0703	0.0703	C _{mo}	-0.010	-0.009
CDalal	0.0192	0.0192	Cmw	-0.690	-0.590
C _{Ds}	0.0384	0.0384	C _{mie}	-3.30	-3.10
Kp	0.06	0.06	C _m	-7,50	-6.90
$C_{\mathcal{D}_{r}}$	0.019	0.031	Cms	-0.94	-0.90
$C_{L_{t}}$	0.142	0.59	C _{ms} .	-0.524	-0.524
CDAV	0.00	0.00	Cms	-0.199	-0.199
CmAV	0.00	0.00	η ₃ /α	45.00	10.00
Chav	0.00	0.00	•		

Stability Derivatives in Terms of \mathcal{K}_A and \mathcal{K}_L

The horizontal tail area and tail length of the T-33 were altered to investigate the various CCV configurations. The following parameters are functions of the tail size:

$$\begin{array}{ccc} C_{D_0} & C_{L_{cc}} \\ C_{D_0} | s_e | & C_{m_{cc}} \\ C_{L_{se}} & C_{m_{sc}} \\ C_{m_{se}} & C_{m_{se}} \end{array}$$

Expressions for these parameters were developed in terms of the horizontal tail area ratio and tail length ratio of the particular CCV configuration under study and the basic T-33 values, where:

$$K_{A} = \frac{S_{H_{CCV}}}{S_{H_{BASIC} T-33}}$$
, tail area ratio (5)

$$K_{L} = \frac{l_{H_{CCV}}}{l_{H_{BAS/C} T-33}}, \text{ tail area ratio}$$
(6)

Methods from Reference 2 were used to estimate the tail contributions to the above derivatives. It was assumed that the dynamic pressure ratio at the tail was 1.0 as the horizontal tail is more than five feet above the wing and should be out of the wake of the wing. However, some of the derivatives were a function of the downwash at the tail which was estimated from Datcom methods as:

$$\frac{\partial c}{\partial \alpha} = .484 \left(K_{L} \right)^{-.4} \qquad (Datcom Sec. 4.4.1)$$

The expressions for the parameters influenced by the tail size are listed below with the corresponding Datcom sections which were used in their derivation:

Parameter	Datcom Section	FC-1	FC-2
Cpo	4.15	.0177 +.0013 KA	.0177+.0013 K _A
C _{Do}	(just used area) and length ratio	.0111 K _A	. 0111 K _A
Chisa	multiples	.362 K _A	.343 K _A
C _{me}	derivatives	94 K _A K _L	90 KA K.
C _{La}	4.5.1.1	6.0+[.968448(K2) ⁻⁴]KA	5.45+[.819425(K) ⁴]K _A
C _{mat}	4.5.2.1	.49-[2.29-1.11(K) ⁻⁴]K _A K _L	.48-[2.08-1.01 (K_L)-4]KAKL
Cmie	7.4.4.2	1.96 - 5.24 K _A (K _L) ^{1.6}	1.65 - 4.75 K _A (K _L) ^{1.6}
Cma	7.4.1.2	3.35-10.85 K _A (K _L) ²	2.95-9.85 K _A (K _L) ²

Characteristics of the T-33 as a Function of K_A and K_L

The short period characteristics of the T-33 were calculated for various K_A and K_L values, to see what the bare airframe characteristics were without augmentation. The tail ratios, K_{μ} and K_{L} , were varied together and kept at identical values. A simultaneous reduction in both tail length and tail size, with corresponding reduction in elevator area, could be considered to be a fairly severe loss of stability as well as control capability of the airplane. However, it was felt that the loss in control effectiveness and control power could be maintained with an all-movable horizontal surface. In addition, it was found that the net effect of inboard flap deflections and outboard flap deflections would generally be in a direction that supplements the pitching moment capability of the elevator during pullup maneuvers. The best values of K_{A} and K_{L} investigated separately are, of course, an important CCV concept, but for this study, the simultaneous variation of these parameters vividly demonstrated the problems and design principles. At these values of interest they both had approximately the same effect on the moment derivatives which directly affect the short period mode.

The short period frequency and damping and n_y/ω for these configurations were estimated by the following approximations (Reference 3): The change in mass and moment of inertia, I_{yy} , for the CCV configuration with K_A and K_L of .5 from the normal T-33 were estimated at a negative three percent and negative ten percent respectively. It is assumed that these vary approximately linearly for intermediate values.

The short period characteristics and $n_{\rm p}/\alpha$ for the various configurations are listed in Table II and shown in Figure 1.

TABLE II

VARIATIONS IN FLYING QUALITIES PARAMETERS

	F	FC-1		FC-2				
KA, KL	Wsp wrod /sec	55P	mg la	Wsp ~ rod /sec	5 _{SP}	713. /x		
1.0	4.627	. 4155	45.(.7	2.215	. 3167	9.96		
.875	3.420	.4538	45.19	1.605	.3473	9.85		
.75	1.810	.6932	44.66	.7062	. 6207	9.73		
				real roots:				
.725	1.325	.9087	44.57	1855	6513	9.71		
	real roots:	-						
. 70	1247	-2.183	44.47	.2350	-1.033	9.69		
.625	1.192	-3.232	44.19	.8291	-1.522	9.63		
0	2,36	-4.05	43.19	1.382	-1.934	9.52		

AS A FUNCTION OF K_A AND K_L

Derivation of Wing Root Bending Moment and Drag During Maneuvers

To determine the wing root bending moment (WRBM) developed in a maneuver it is first necessary to calculate the spanwise lift distribution over the wing and then find the equivalent force and moment arm to which this distribution is equivalent. (It was assumed that the lift distribution for the wing due to angle of attack and the incremental lift distributions due to flap deflections are linear with α , δ_{i} , and δ_{o} and are simply additive with no interference effects between control surfaces. This restricts the validity of the solutions to the linear range of $C_{L_{\alpha}}$ ($|\alpha| \leq 15^{\circ}$) and $|\delta| \leq 25^{\circ}$. This is a simplification that was felt to be justifiable for the depth of investigation considered in this study.)

The shapes of the lift distribution curves due to α , δ_i , and δ_o were estimated from methods in Reference 2 (Datcom Section 6.1.5.1). These are shown in Figure 2. The area under each curve can be treated as the total lift increment due to a particular α , δ_i , or δ_o deflection, respectively. The spanwise lift distribution times span position is shown in Figure 3. The area under each curve is equivalent to the incremental WRBM due to a particular α , δ_i , cr δ_o deflection. When the areas under the curves in the second set are divided by the areas in the first set, the result is the moment arm, or the position at which an equivalent force will produce the same WRBM as the lift distribution did.

Sec. Sec.

service at the set of the second service set of the second second second second second second second second se

i

and the address in the second state of the sec

A STARSON

になった日本の大学に見たった。

ののないであるというないのであるとなったが、ないのでの

ないというないなないのないないないないないないで

and the second state of the second second

and support and a second second second

Figure 3 WING ROOT BENDING MOMENT CONTRIBUTION vs WING STATION

Stew or ward

The above procedure was carried out on the accompanying figures with a planimeter with the following results:

Lift distribution due to:	Lift area	Lift x span position area (WRBM)	Equivalent WRBM arm	
¢.	.418	. 173	.414b = 6.62 ft	
δ_i	. 244	.0788	.323b = 5.16 ft	
8	. 159	.0874	.548b = 8.77 ft	

The incremental WRBM derivatives for each wing are given below. The moment arm associated with $M_{B_{\alpha}}$ and $M_{B_{\alpha}}$ are the same because the lift at $\alpha = 0$ has the same distribution as the lift at $\alpha \neq 0$.

MB	(zero angle of attack)	$= \left(\frac{1}{2} C_{L_0} \bar{q} 5\right) \times$	(6.62 ft)
MBe		$= \left(\frac{1}{2} C_{L_{\#}} \bar{q} S \right) \times$	(6.62 ft)
MBS:		$= \left(\frac{1}{z} C_{L_{s}}, \bar{q} S\right) \times$	(5.16 ft)
MBS		$= \left(\frac{1}{2} C_{L_{s_{a}}} \bar{q} 5\right) \times$	(8.77 ft)

FC-1

FC-2

È.

 M_{g_o} 41,970 ft-lb12,590 ft-lb M_{g_e} 1,460,500 ft-lb/rad397,860 ft-lb/rad $M_{g_{g_c}}$ 357,650 ft-lb/rad107,300 ft-lb/rad M_{g_c} 394,750 ft-lb/rad118,420 ft-lb/rad

The increment in WRBM developed in a maneuver is then written as

The incremental drag developed during a maneuver is defined by the following nonlinear equation:

$$\Delta Drag = \bar{q} S \left(C_{D_0} | \delta_e| + C_{D_0} | \delta_i| + C_{D_0} | \delta_0 \right)$$

$$+ K_p \left\{ C_{L_e} \alpha + C_{L_s} \delta_i + C_{L_s} \delta_0 \right\}^2 (\text{from induced drag on wing})$$

$$+ K_p \left\{ C_{L_s} \delta_e \right\}^2 (\text{from induced drag on herizontal tail})$$

$$(8)$$

In some instances it was necessary to use a linear drag equation to simplify the calculations:

$$\Delta \ Drag \cong \overline{q} \ S\left(\mathcal{C}_{\mathcal{D}_{s_e}} \delta_e + \mathcal{C}_{\mathcal{D}_{s_i}} \delta_i + \mathcal{C}_{\mathcal{D}_{s_o}} \delta_o + \mathcal{C}_{\mathcal{D}_{s_o}} \alpha\right) \tag{9}$$

2.3 DERIVATION OF AN IDEAL FLYING QUALITIES MODEL

Good flying qualities, as defined in MIL-F-8785B, is one of the major objectives of this study. Flight control system designs will be derived that will augment the airplane in such a way that the augmented vehicle response will be identical to or a close approximation to a model having "ideal" flying qualities. In this section, the equations of motion of the ideal model, as applied to this particular airframe, the geometrically altered T-33, are derived.

From MIL-F-8785B (Reference 4), an excellent Level 1 longitudinal flying qualities airplane would possess the following short period characteristics:

Two models were developed: one for an airplane with a normal lift slope, $C_{L_{\alpha}} \approx 2\pi \text{ rad}^{-1}$ (low lift model); and one for an exceptionally high lift airplane, $C_{L_{\alpha}} \approx 4\pi \text{ rad}^{-1}$ (high lift model). The drag polar, velocity derivatives, and control derivatives were assumed to be the same as the normal T-33. There are then only four derivatives that need to be found:

$$\mathcal{Z}_{w}$$
, M_{q} , M_{a} , $M_{a'}$, $M_{a'}$

It was first assumed that $M_q = 2 M_{ic}$ for this is true for the basic T-33 and is a very good approximation for many other aircraft. Then the following equations can be written:

$$\omega_{SP}^{2} = 2M_{ij}^{2} Z_{ij} - M_{ik}$$
(11)

$$\xi_{sp} = \frac{-(3M_{ij} + Z_{ijr})}{2\omega_{sp}} \tag{12}$$

$$Z_{ur} = -\frac{\bar{q}}{m\mu_{a}}C_{\mu_{a}}$$
(13)

$$\frac{n_{T}}{\alpha} = -\frac{u_{o}}{q} \mathcal{Z}_{ur}$$
(14)

From the relations $\omega_{5p} = n_{z}/\epsilon$ and $\xi_{5p} = .7$ for an ideal Level 1 shortperiod model and the above equations, all of the derivatives of the ideal flying qualities model can be evaluated. Speed stability was not investigated in this study. However, the phugoid roots of the models, which are approximately those of the T-33, were evaluated and were also Level 1.

TABLE III

STABILITY DERIVATIVES AND OTHER CHARACTERISTICS OF TWO LEVEL 1 MODELS

Flight	Low Lift Model		High Lift Model	
Condition	FC-l	FC-2	FC-1	FC-2
$C_{L_{gl}}$, $1/rad$	6.28	6.28	14.32	14.32
n_{z}/α , g/rad	44.12	10.60	100.7	2.4.2
ω_{sp} , rad/sec	6.64	3.26	10.03	4.92
55p	.7	.7	.7	.7
\mathcal{Z}_{ur} , sec ¹	-2.214	8237	-5.045	- 1. 878
M_{α} , sec ⁻²	-33.661	-8.549	-70.42	-17.93
M_q , sec rad	-4.723	-2.490	-6.00	-3.34
M_{\star} , sec ⁻¹	-2.362	-1.245	-3.00	-1.67
ω_{ph} , rad/sec	.06	. 10	. 06	. 09
6ph	.11	.04	. 12	.04

and the second second

The above models are labeled on Figure 4 along with the unaugmented CCV - T-33 configurations. It shows how these configurations compare to MIL-F-8785B short period frequency requirements for Category A Flight Phases (air-to-air combat, weapon delivery, etc.). It can be seen that the normal T-33 ($K_A = K_L = 1$) is close to an ideal model, while the flying qualities deteriorate quickly as K_A and K_L are reduced below. 85.

Figure 5 shows digitally computed time histories of both the low lift and high lift model responses. The primary effect of n_2/ω can be seen in the transient of the pitch rate response and in the steady state value of $\Delta \omega$. High n_2/ω means higher Z_{ω} , which shows up as a smaller overshoot in the pitching rate response to a command elevator input.

ω ł ļ... . HIGH LIFT $\left(n_{\frac{2}{3}}/\alpha = 100.7\right)$ ຜ -1 Figure 5 TRANSIENT RESPONSE OF LOW LIFT AND HIGH LIFT LEVEL 1 MODELS AT FC-1 TIME (sec) ‡... 1 Ţ ł ł N ł 90 9 1.0 0.5 Ň -10 Ŗ ō ā Ň $(ft/sec \times 10^{-1})$ (rad/sec x 10⁻¹) $(rad \times 10^{-2})$ Δα (s,6) ٨٧ Δnz ·Ø 00 **[***] ł ł ! 1 ; •••••• ø -LOW LIFT ($n_3/\kappa = 44.12$) ١ . TIME (sec) 1 : !. US TO HE 4 1 . . 1 1 |. 1 ļ 1 : 1 ł 2 ì ŧ ł --10 1.5+ C.1 0.5 -10 . , 9 0 ċ Ň ŝ N (rad/sec × 10⁻¹) 0 (ft/sec × 10⁻¹) (rad \times 10⁻²) Δα **E**n∆ (s,b) 2 ۰Ø

2.4 DERIVATION OF SURFACE DEFLECTIONS REQUIRED TO MATCH THE MODEL RESPONSE

The flying qualities model defines the equations of motion of a Level 1 airplane. Evaluation of surfaces or other force and moment generating devices is accomplished by obtaining the deflections required to force the CCV - T-33 airplane with altered tail length and size to respond "exactly" as the flying qualities model responds. Three control surfaces: elevator, inboard flap and collectively acting ailerons were used in various combinations to force the altered airplane to respond as the model.

The flying qualities model represents three degrees of freedom of motion; if fewer than three independent force and moment generating devices are used for control, the response of the flying qualities model cannot be exactly reproduced; only one state variable (and derivatives) per controller can, in general, be made to respond as the flying qualities model would respond. The calculations for the control motions are done in the following way:

The small perturbation equations of motion for an aircraft can be written in the state-vector form

$$\dot{x} = F_{\mathcal{X}} + G u \tag{15}$$

where

and a second second

- \mathscr{X} is a vector representation of the state variables of the vehicle. For this aircraft, the state vector $\varkappa^{\tau} = [\varkappa, \theta, \dot{\theta}, \Delta V]$ has been chosen.
- \mathcal{U} is a vector representing the control variables of the vehicle; in this case the control vector elements are defined from elevator deflection, \mathcal{S}_e , flap deflection, \mathcal{S}_i , and collectively acting ailerons, $\mathcal{S}_o \cdot u^{\tau} = [\mathcal{S}_e, \mathcal{S}_i, \mathcal{S}_o]$
- F is a square (4 x 4) matrix of dimensional stability derivatives of the airplane. A coefficient of this matrix, when multiplied by a state variable and an appropriate inertia or mass, represents a moment or force applied to the vehicle due to the configuration of the vehicle.
- G is a matrix of dimensional control derivatives of the vehicle. A coefficient of this matrix, when multiplied by a control surface deflection and an appropriate mass or inertia, represents a force or moment applied to the aircraft by a surface deflection.

The equations of motion (15) are partitioned:

$$\begin{bmatrix} \dot{x}_{i} \\ -\frac{1}{x_{z}} \end{bmatrix} = \begin{bmatrix} F_{ii} + F_{i2} \\ -\frac{1}{x_{z}} - \frac{1}{x_{z}} \end{bmatrix} \begin{bmatrix} x_{i} \\ -\frac{1}{x_{z}} \end{bmatrix} + \begin{bmatrix} G_{i} \\ -\frac{1}{G_{z}} \end{bmatrix} \qquad (16)$$

The partitioning is selected so that F_{22} and G_2 are of the same p x p dimension when p represents the number of independent controllers on the vehicle. The equations of motion of the flying qualities model are similarly partitioned:

where $x_{i_m}(t)$ represents the motions or state variables of the flying qualities model that we wish the aircraft to reproduce.

The control law is of the following form

$$u(t) = k_1 \, \dot{\nu}_{2_m}(t) + k_2 \, \varkappa_{2_m}(t) - k_3 \, \varkappa_1(t) \tag{18}$$

Substituting Equation 18 into Equation 16 yields

$$\dot{x}_{2} = (F_{21} - G_{2} K_{3}) x_{1} + F_{22} x_{2} + G_{2} K_{2} x_{2m} + G_{2} K_{1} \dot{z}_{2m}$$
(19)

Taking the Laplace transform of (19) and rearranging yields

$$(I_{5}-F_{22})\chi_{2}(s) = (F_{21}-G_{2}K_{3})\chi_{1}(s) + (G_{2}K_{1}I_{5}+G_{2}K_{2})\chi_{2m}(s)$$
(20)

The substitution of the following gains

into Equation 20 yields

$$(I_{5}-F_{22}) \mathcal{V}_{2}(5) = (I_{5}-F_{22}) \mathcal{X}_{2_{m}}(5)$$
(22)

and we have the desired result: namely that $x_2(t) = x_{2}(t)$.

The system is shown in block diagram form in Figure 6 below.

Although the computation to determine the control system deflections, $\mu(t)$ actually involves the definition of a control law, and incidentally a control system design, the design is generally not a good one and would not normally be mechanized. The feedback gains $\mathcal{K}_{\mathcal{F}}$ can be destabilizing and because the subset $\nu_{\mathcal{I}}(t)$ of the state vector is not required to be fed back, the system design would be sensitive to poorly known or varying stability derivatives. However, if the same number of controllers as degrees of freedom of motion were available, then the model following design of Figure 6 is practical and any feedback, presumably the feedback that leads to a stable, insensitive system, would form the basis for a model following flight control system design.

2.5 **RESULTS OF THE STUDY**

The curves of Figures 7, 8, and 9 and Table IV summarize the results of using the model-following technique to obtain the control surface deflections required to perform a 4 g pullup which would be performed by an airplane whose equations of motion were exactly the same as the low lift flying qualities model at FC-1 of Table II. Figure 7 shows the change in drag obtained by using only the elevator, the elevator and the flap, and finally the elevator plus collectively acting ailerons as a function of tail length and size ratios, K_A and K_L . The curve shows that the maneuver drag is reduced both by shortening the tail and reducing the tail size and by using both elevator and flap or ailerons to perform the maneuver. Drag can be reduced by a out 13% using two surfaces, and it can be reduced by approximately 8.5% by cutting the tail length and size in half. A maximum reduction of 30% can be obtained by cutting the tail length and size in half and using both elevator and ailerons for maneuvering control. To do this, however, would not be practical, for as shown by Figure 9, the maximum control surface deflection of the elevator would be tripled. Since the maximum elevator deflection of the T-33 is limited to -25.0°, the 4 g pullup would represent the maximum at FC-1, thereby limiting the maneuvering capability of the airplane.

A STATISTICS

8 EFFECT OF TAIL LENGTH AND SIZE ON WING ROOT BENDING MOMENT DURING 4 g PULLUP

Figure 9 EFFECT OF TAIL LENGTH AND SIZE ON MAXIMUM SURFACE DEFLECTIONS REQUIRED FOR 49 PULLUP

The reduction in the maximum wing root bending moment by using auxiliary surfaces is equally pronounced as compared to changes in drag. Compared with the nominal size tail length and area, the wing root bending moment decreases by approximately 9.2% by the use of flap and elevator and by approximately 15% by using elevator and collectively acting aileron. The change in wing root bending moment also decreases as the tail length and area are reduced but the change, as shown in Figure 8, is not as dramatic as the drag effect.

These improvements in drag and moment changes cannot be obtained without cost. The cost is obviously in the deflections of the control surface required to perform the maneuver. The maximum deflections of the elevator, the flap and the ailerons are shown in Figure 9. As the tail area and length are cut in half, the elevator deflections required to perform the 4 g pullup are tripled, with some decrease in maximum elevator required when either the flaps or the ailerons are used. Because the elevator deflection is reduced rather than increased, the flaps and ailerons produce a beneficial effect; they aid rather than fight the elevator in the generation of the response.

Influence of the Flying Qualities Model

D

The flying qualities model that dictated the shape of the response during the 4 g pullup has a strong, probably the most important, effect on the results. Table IV below summarizes a few of the more important results using the high n_{p}/α model, where $n_{p}/\alpha = 100.7$, as compared to the lower $(n_{p}/\alpha = 44.12)$ model of the previous analysis.

Aircraft	Surface	∆ Drag	∆ WRBM	Max. Su	rface Def	lec.(rad)
Configuration	Configuration	(1b)	(ft-1b)	δe	Si	80
Base T-33	δ_e only	907	129, 100	~. 229		
14 - 14 - 10	Se + Si	2900	139, 400	-,157	+.217	
KA KL = 1.0	$\delta_e + \delta_i + \delta_o (\delta_i = \delta_o)$	2740	158,100	137	+.128	+. 128
	Se + Sa	2490	184, 600	113		+.315
	Se only	814	129, 100	381	* =	***
	Se + Si	2970	142, 300	361	+.228	
$K_A = R_L = 0.5$	Se+Si+So (Si+So)	2800	163, 300	278	+.132	+ .132
	$S_e + S_o$	2260	179, 900	182	~-	+.315

TABLE IV 4 g PULLUP WITH HIGH n_3/α MODEL

By comparing the surface deflections required of the high and low requirements (both models, high and low n/α , satisfy the flying qualities requirements in MIL-F-8785B equally well) there is a significant difference. For the low n/α models of Figures 7, 8, and 9, the flap and aileron deflections were negative, which decreased the lift on the wing and significantly reduced the Wing Root Bending Moment. For the high lift model at FC-1 whose characteristics are tabulated in Table III, the n/α of the model was significantly higher than that of the T-33. This means that the airplane performs the 4 g pullup with less pitching motion than it normally would have. In order to do this, the effective slope of the lift curve must be increased. This requirement demanded a positive (downward) deflection of either the flap or the collectively acting ailerons. An increase in wing lift produces an increase in wing root bending moment as vividly demonstrated in Table IV. If elevator alone is used to generate the required change in lift, a larger maximum elevator deflection must be used to perform the 4 g pullup, for $1/\tau_{\theta_2}$ is larger in absolute value with the high n/α model. When two control surfaces are used for maneuvering, both the angle of attack and the pitch rate response of the model are exactly reproduced by the T-33. This demands a different pitching-heaving behavior than is normally obtained in a T-33, causes the positive flap and/or aileron deflections, and increases the wing root bending moment. Thus it can be concluded that relaxed static stability and maneuver load control are incompatible for high lift models.

のないないないないないないないないない

As the ailerons and flaps are used, the deflection action requirements of the elevator are significantly reduced and the elevator deflections become less strongly a function of tail length and size. This is to be expected because heaving (direct lift) requirements are predominant; pitching motions are not as important in producing lift changes and therefore become a less strong function of tail length and size. The flying qualities then, have a very pronounced effect on the maneuver load alleviation requirements of a Control Configured Vehicle. The n/ω requirements to be satisfied by the CCV should be as low as possible consistent with available elevator power if wing trailing edge lift modulating surfaces are used. This will generally require negative (T.E. up) lifting control surface deflections that will aid the elevator and at the same time redistribute the lift on the wing in a desirable way to reduce the wing root bending moment.

SECTION III

THE SYNTHESIS PROBLEM

3.1 INTRODUCTION

In the previous section, the T-33 airplane was forced to respond as the flying qualities model responds. The tail length and size were varied to determine the effect of these parameters on the drag, wing root bending moment and on the surface deflections. Several combinations of candidate surface configurations inherent to the T-33 airplane that can be considered for maneuvering were considered. These surfaces were the elevator, the flaps (assumed to be a simple flap capable of both positive and negative deflections), and collectively acting ailerons. Other surfaces, such as the addition of spoilers or canard surfaces were briefly considered then discarded, because it is felt that these additional force and moment generating devices should not be added to the airframe unless the existing surfaces prove incapable of doing the job.

In the previous section, the approach taken was one of analysis. Parameters were changed and the effects were noted. In this section the problem of synthesis is investigated. Since flying qualities requirements are fairly broad and many different configurations will yield a Level 1 aircraft, the requirement that the airplane respond exactly as the model is much too stringent a requirement. More emphasis should be put on drag and wing root bending moment reduction for this was felt to be actually more important than satisfying the ultimate in flying qualities. To satisfy the conflicting requirements of minimum drag and wing root bending moment, a performance index was formulated that included quadratic measures of the error in dynamic behavior between the actual aircraft and the flying qualities model, the maneuver drag, the change in wing root bending moment and the control surface motions. The quadratic performance index is an indirect, rather than direct measure of the design objectives. The modeling error, the drag and the wing root bending moments are minimized relative to each other in a way that produces a most useful kind of solution to the problem. The control motions are relatively smooth and well behaved and the control effort and maximum deflections are managed by the judicious choice of weighting parameters in the performance index. The resulting control law is linear for a linearized description of the airplane dynamics, and these ontrol laws are of the type most likely to be actually mechanized on an aircraft. The parameters of the closed loop system will then yield results that will indicate those stability derivatives, such as C_{m_e} and C_{m_e} that a CCV aircraft might inherently possess. The performance index is of the general form

$$2J = \min_{u} \int_{0}^{\infty} \left[\left\| \dot{z} - Lz \right\|_{Q}^{2} + \left\| \Delta D \right\|_{V}^{2} + \left\| \Delta WRBM \right\|_{T}^{2} + \left\| u \right\|_{R}^{2} \right] dt$$
(23)

where

- = matrix of dimensional stability derivatives of the flying qualities model
- $\Delta D = E_x + Hu$ = linearized expression for the change in drag

AWRBM = Mx + Nu = linearized expression for the change in wing root bending moment

 $\mathcal{U} = \text{control deflections}; \ \mathcal{U}^{T} = \left[\delta_{e}, \delta_{i}, \delta_{o}\right]$ $\mathcal{V} = \text{state vector of the airplane}; \ \mathcal{U}^{T} = \left[\Delta V, \Delta \Theta, q, \Delta \omega\right]$ $\left\| y \right\|_{e}^{2} = y^{T} Q y$

The solution is constrained by the equations of motion of the T-33 airplane.

$$\dot{x} = F x + G u \qquad (24)$$

where F and G are the matrices of dimensional stability and control derivatives of the T-33 airplane given in Table I.

The solution to the problem posed above will yield the motions of the three control surfaces as a function of the state vector $\boldsymbol{\mu} = -\boldsymbol{k}\boldsymbol{\mu}$ that will minimize the performance index. The matrices \boldsymbol{Q} , $\boldsymbol{\vee}$, $\boldsymbol{\tau}$ and $\boldsymbol{\mathcal{R}}$ express relative emphasis placed on the requirements to minimize model following errors, drag changes, wing root bending moment changes and control motions. These weighting parameters are adjusted relative to each other, the absolute numbers are comparatively meaningless except in very simple cases.

The problem of minimizing a quadratic performance index is a well established method of flight control system synthesis and literally hundreds of papers and reports have been written on the subject since the technique was formulated and popularized by R.E. Kalman (Reference 7) and S.S. Chang (Reference 8). Later reports, like Reference 9, established the relationships that exist between the performance index form of solution (called linear optimal control) and the more conventional control system synthesis techniques, like root locus methods. Reference 9 gives many examples of realistic flight control applications and the theory is very briefly summarized. The solution to the linear optimal control problem yields the following control law which minimizes the performance index of Equation (23)

$$u = -\mathcal{R}^{-1}\mathcal{G}^{\prime}\mathcal{P}\mathcal{X} \tag{25}$$

where P is the positive definite symmetric solution to the matrix Riccati equation

$$0 = PF + F^{T}P - PGR^{-1}G'P + Q. \qquad (26)$$

As shown in Appendix I this equation satisfies the general Hamiltonian equations

$$\begin{bmatrix} \dot{\varkappa} \\ \dot{\lambda} \end{bmatrix} = \begin{bmatrix} F & -GR^{-1}G^{T} \\ -Q & -F^{T} \end{bmatrix} \begin{bmatrix} \varkappa \\ \lambda \end{bmatrix} \qquad \begin{split} \varkappa(0) = \varkappa_{0} \\ \lambda(0) = \lambda_{0} \end{split}$$
(27)

that are necessary and sufficient for the solution of this problem. The mathematics of this problem will not be discussed; however, a brief introduction to one of the more important closed form solution techniques is given in Appendix I. A few characteristics of the solution that will result when this technique is applied are discussed below.

- 1. Guaranteed Stability If the bare airframe is unstable, the choice of positive definite weighting matrices Q, V, T and R will always yield stable linear solutions to linear problems. This does not mean that the resultant closed loop system will necessarily be stable. If an error between a model and the actual airplane is minimized, the closed loop aircraft response can be unstable if the model is unstable, but the error between the aircraft and the model will approach zero asymptotically.
- 2. The solution will generally yield a closed loop system that has a smooth and well behaved response in the state variables (or errors) included in the performance index. These states will generally respond more quickly than the open-loop aircraft and exhibit little overshoot to an initial condition or command input.
- 3. The solutions as a function of the weighting matrices exhibit no surprises. A series of solutions, which require at most a few moments of digital computation time, quickly establishes the trends of the solutions as a function of the weighting matrices. Engineering judgment based upon the knowledge of the limits, capabilities and flying qualities of the airframe is used to adjust the weighting matrices to rapidly arrive at acceptable solutions. The actual numerical value associated with the performance index is a very poor substitute for knowledge of the airframe stability and control and flying qualities requirements.

3.2 LONGITUDINAL RESULTS

Problem Formulation

reder in our own where a revealer to a strict the process in the relation of the states of the

The performance index of Equation (23) was reformulated entirely as a model problem, where zero change in drag and wing root bending moment was included in the model formulation as an objective of the solution. The performance index becomes

$$\begin{aligned} \mathcal{Z}J &= \int_{0}^{\infty} \left[\left(\dot{x} - L_{1} x \right)^{T} \mathcal{Q}' \left(\dot{x} - L_{1} x \right) + u^{T} \mathcal{R} u \right] dt \\ &= \int_{0}^{\infty} \left[\left(Y x + \mathcal{Z} u \right)^{T} \mathcal{Q}' \left(Y x + \mathcal{Z} u \right) + u^{T} \mathcal{R} u \right] dt \\ &= \int_{0}^{\infty} \left[\chi^{T} Y^{T} \mathcal{Q}' Y \chi + \chi^{T} Y^{T} \mathcal{Q}' \mathcal{Z} u + \iota \iota^{T} \mathcal{Z}^{T} \mathcal{Q}' Y \chi + u^{T} \left(\mathcal{Z}^{T} \mathcal{Q}' \mathcal{Z} + \mathcal{R} \right) u \right] dt \end{aligned}$$

where the relations between X, Y and Z and the original matrices F, G, L, M; N, E. H, Q, R, T and V of Equation (23) are given below

$$Y = \begin{bmatrix} f_{31} - l_{31} & 0 & f_{33} - l_{33} & f_{34} - l_{34} \\ f_{41} - l_{41} & 0 & 0 & f_{44} - l_{44} \\ 0 & 0 & 0 & e_{14} \\ 0 & 0 & 0 & m_{14} \end{bmatrix}$$
(28)

$$R = \begin{bmatrix} r_{1} & 0 & 0 \\ 0 & r_{2} & 0 \\ 0 & 0 & r_{3} \end{bmatrix}$$
(31)

Input Design

The rest of the state to be a state of the s

The linear optimal control problem described above to obtain the minimum integral of drag change, wing root bending moment change and minimum integral error squared during a transient or set of initial conditions describes only the feedback or regulator part of the solution to the problem. The input or command gains must also be defined. The problem could have been formulated as a model following problem as sketched below:

with a performance index

00

$$J = \int_{0}^{\infty} \left(\left\| x_{m}^{2} - x \right\|_{g}^{2} + \left\| \Delta D \right\|_{V}^{2} + \left\| \Delta W R B M \right\|_{T}^{2} + \left\| u \right\|_{g}^{2} \right) dt$$
(32)

but the regulator or closed loop part of the system is not influenced by the model; the model is an uncontrollable part of the system and appears only in the feedforward or command portion of the system. It was felt to be more realistic in terms of an operational system to include the model in the performance index as a restraint on the feedback or regulator part of the system and separately compute the feedforward gains to yield a good quasi-steady state match of the model, at a time l = 2 seconds after the applied command. At this time the short period had responded but there was no significant speed change. This was felt to be realistic in terms of the majority of maneuvering requirements of existing fighter aircraft.

Three control surfaces are used to control the three degrees of freedom of motion of the vehicle so the problem can be exactly solved. The command input gains are obtained by solving for the values of the control vector μ_c in the following equation

ACCORDING TO MANAGERY STREET STORE

$$\dot{\varkappa}_{m}(t_{i}) = \left[F - GK\right] \varkappa_{m}(t_{i}) + Gu_{c}$$
(33)

$$u_{c} = (G^{T}G)^{-1}G^{T}\left\{ \dot{x}_{m}(t_{i}) - [F - GK] x_{m}(t_{i}) \right\}$$
(34)

where t; = 2 sec after the applied pilot input.

This guarantees that the states of the augmented airplane have the same values $(q, \alpha, \forall, \theta, \dot{q}, \dot{\alpha}, \dot{\nu})$ as the model 2 seconds after the command input. The trajectory of the response between t = 0 and t = 2 sec will be different and this difference will be a function of how closely the requirements of minimum dynamic error between the model and the actual aircraft were met compared to the other minimization requirements of the performance index. An alternate way to consider the command part of the system is to connect the stick only to the elevator, but this, as will be shown later, produces a less desirable solution.

Example Solution

A fairly wide range of linear optimal control solutions was run to investigate the feasibility of obtaining less drag and wing root bending moment during dynamic maneuvers. The important considerations were integral of drag or absolute magnitude, and peak wing root bending moment. Additional evaluations were based on maximum control deflections and control action, (integral of the square of the control deflections) as well as evaluations of the time histories of the response of the system. Solutions were easily obtained that yielded good results and could also be mechanized without difficulty. An example is given by the performance index

$$2J = \int_{0}^{\infty} \left\{ \left\| \dot{x} - Lx \right\|_{q_{3}}^{2} = q_{4}^{2} = 10^{6} + 10^{3} (\Delta D)^{2} + (\Delta WRBM)^{2} + S_{e}^{2} + S_{i}^{2} + S_{o}^{2} \right\} dt$$
(35)

This performance index weights each portion of the flying qualities error, the drag changes and the wing root bending moment changes in the same order of magnitude and is a very straightforward way to select the weights in the performance index. The solution produces a feedback gain matrix

$$K = \begin{bmatrix} (\Delta V) & (\Delta \Theta) & (\dot{\Theta}) & (\Delta w) \\ 9.9 \times 10^{-6} & 9.6 \times 10^{-4} & -.25 & -1.03 \\ -4.9 \times 10^{-6} & -4.9 \times 10^{-4} & .124 & -.196 \\ 4.5 \times 10^{-6} & 4.4 \times 10^{-4} & -.112 & 3.88 \end{bmatrix} (\Delta S_{e})$$
(36)

which indicates that feedback from pitch rate and angle of attack changes to the three control surfaces are the only significant feedback requirements. The gains are quite reasonable and relatively easy to mechanize. The closed loop system matrix becomes

 $F-GK = \begin{bmatrix} -.01424 & -32.17 & +3.82 \times 10^{-4} & 32.17 \\ 0 & 0 & 1.0 & 0 \\ 2.837 \times 10^{-4} & +2.01 \times 10^{-2} & -6.823 & -26.59 \\ -1.569 \times 10^{-4} & +6.19 \times 10^{-6} & .9976 & -1.09 \end{bmatrix}$ (37)

The feedforward gains obtained from Equation (34) are shown in the sketch below relative to the basic T-33, which requires an elevator deflection of $S_e = -.158$ rad to obtain a quasi-static change in normal acceleration of 4 g at the flight condition under study, FC-1.

Figure 11 shows the responses of the flying qualities model and the optimal system to a 4 g command input. The response of the augmented vehicle is similar to that of the model and would most likely be considered to have Level 1 flying qualities. The motions of the control surfaces, although initially abrupt because no actuator dynamics were included in the simulation, are not considered excessive.

Table V shows the results of three different solutions with the basic T-33 airplane while Table VI shows the feedforward, and feedback gains and closed loop eigenvalues for the three systems. The tables show that the maneuvering drag and the wing root bending moment can be reduced by a reasonable amount through the reduction of the tail length and area, yet the control system required to still give good Level 1 flying qualities is not overly complex and can be mechanized without difficulty. The only potential problem is that about 4 times as much elevator deflection is required to perform the 4 g pullup when the tail length and size are cut in half. This may be solved by replacing the elevator with an all-movable horizontal surface.

the state of the second s	

and a

Barde Standard Standard Standard

i.

A A MAN PROVINCE A REAL

やいたいでいくい

TABLE V

COMPARISON OF CCV PERFORMANCE FOR 4 g PULLUP

		$K_{A} = K_{L} = 1$	K _A = K _L = 1	$K_A = K_L = .5$	$K_A \cdot K_L = .5$
		0	10 ⁶	10 ⁸	10 ³
	Q4	0	10 ⁶	0	0
Weighting Parameter	v.s	0	1,0 ³	0	0
	Т	0	1	1	10
	R	0	I	$r_2 = r_1 = 10^4$ $r_3 = 10^8$	10 ⁶ 1
I	rag (lb)	2200	2400	1870	1830
Δv	VRBM _(max)	147,000	112, 500	127,600	127, 200
	δ_{e}	0758	085	. 265	. 262
	S;		.059	078	075
	8,		147	.019	.017
	$\int u^2$. 127	.403	. 311

TABLE VI

$K_A = K_L = .5$ $K_A = K_L = 1$ $K_A = K_L = .5$ 10³ 10⁸ 10⁶ Q_3 10⁶ Q_4 0 0 Weighting 10³ v 0 0 Parameters 10⁻² Т 1 1 $r_{1} = r_{2} = 10^{4}$ $r_{3} = 10^{8}$ 10⁶1 R I $\delta_e/\dot{\theta}$ -.25 -1.03 -.85 $\delta_i/\dot{ heta}$ -.65 .12 0 *S*,/ė .59 -.11 0 Significant Se/a -5.72 -1.03 -12.8 Feedback δ₀/ż -2.61 -.20 4.08 Gains 8°/X 3.9 0 1.06 S_{ec}/S_{s} 3.15 16.1 6.42 Feedforward δ_i / δ_s -.844 -4.18 6.21 Gains 8. /S. -3.00 -0.475 -9.86 \mathcal{G}_{SP} .679 . 693 .949 Short Period WSP 5.83 5.59 7.19 3_{ph} . 105 .104 . 100 Phugoid ω_{ph} .9651 .069 .071

ないたというないないであったというないないないないないないないないないないないない

COMPARISON OF CCV DYNAMICS FOR 4 g PULLUP

Effect of Command Input Mechanization

The linear optimal control optimization study of this section produced feedback gains but did not specify the command or feedforward gains and this produces somewhat of a problem.

One obvious way to specify command gains is to design the flight control system as a model following system. A second way is to calculate the feedforward interconnecting gains such that the resulting control effectiveness matrix would be the same as that of the model. A third way would be to command only the elevator, and altering the feedforward gain or the "gear ratio" in such a way that the augmented aircraft maintains a quasi-static 4 g response to the same stick deflection as the basic T-33 airplane. A fourth way of designing the command input portion of the system is given by Equation (34), where the gains are calculated such that the augmented aircraft response has the same state values as the model 2 seconds after the command input is applied by the pilot.

In this section, a comparison is made of two command input designs, command to the elevator alone and command to produce a state match at t = 2 seconds. The feedback used was generated by the third solution to the linear optimal control problem of Table V, in which the weighting parameters were $q_3 = 10^3$, $t = 10^{-2}$, $\mathcal{R} = 10^6$ I.

Comparisons of the responses of the systems are shown in Figure 12. The most significant difference between the two system responses is in the control deflection time histories. The design that commanded only the elevator input requires significantly larger peak and steady state control deflections to obtain the 4 g pullup with significantly larger increase in drag during the maneuver. The deflections required of the elevator command system, however, are in the right direction, inboard flap down, outboard flap up, to produce significantly less wing root bending moment change during the maneuver.

There are actually a near-infinite number of ways that the control surfaces can be connected to the stick command input. At least four logical ways are mentioned above, and each has its advantages and disadvantages. Yet all 'with the possible exception of the model following arrangement) can be considered to be solutions to the linear optimal control problem solved in this section, for any initial set of control deflections can be thought of as a set of initial conditions of the state vector, since the control law $\mu = -K_{\mathcal{K}}$ directly relates the control deflections and the state vector.

ing the state of the

and a set of the set of

Since CCV concepts involve reduced tail lengths and size, using additional control surfaces to aid the resulting less effective elevator, the inputs, i.e., the deflections of the various surfaces required to perform the maneuver, are critical to the CCV design concept. These deflections along with the tail length and area ratios are directly considered and optimized to achieve the desired objective of good model following with minimum change in drag and wing root bending moment.

3.3 LATERAL-DIRECTIONAL RESULTS

Introduction

Although most of this study deals with a CCV for the longitudinal degrees of freedom of motion, it is desirable to check similar vertical tail variations on the lateral-directional behavior of the airplane. A brief investigation was conducted similar to the linear optimal control solution for longitudinal CCV described earlier in this section.

The lateral-directional equations of motion are:

$$\begin{bmatrix} \dot{\beta} \\ \dot{\phi} \\ \dot{\rho} \\ \dot{\rho} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} Y_{\beta} & g/\mu_{0} & Y_{p} + \alpha & Y_{p} - 1 \\ 0 & 0 & 1 & 0 \\ L'_{\beta} & 0 & L'_{p} & L'_{r} \\ N'_{\beta} & 0 & N'_{p} & N'_{r} \end{bmatrix} \begin{bmatrix} \beta \\ \beta \\ \beta \\ \rho \\ r \end{bmatrix} + \begin{bmatrix} Y_{\delta_{\alpha}} & Y_{\delta_{p}} \\ 0 & 0 \\ L'_{\delta_{\alpha}} & L'_{\delta_{p}} \\ N'_{\delta_{\alpha}} & L'_{\delta_{\alpha}} \end{bmatrix} \begin{bmatrix} \delta_{\alpha} \\ \delta_{r} \end{bmatrix} (38)$$

in the second

As was done with the longitudinal modes, it is necessary to derive relationships of the lateral-directional derivatives with the altered vertical tail areas and lengths of the CCV and the normal T-33 derivatives.

The basic T-33 derivatives for the following flight condition were obtained from Reference 1

$$V_o = 805 \text{ ft/sec}$$

 $h = 23,000 \text{ ft}$
 $\bar{q} = 372 \text{ lb/ft}^2$

Using the basic derivatives and methods from Reference 5, the tail effects on the lateral-directional derivatives were evaluated. The lateral-directional equations of motion for the CCV - T-33 can then be written as:

$$\begin{bmatrix} \dot{\beta} \\ \dot{\phi} \\ \dot{\phi} \\ \dot{\phi} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} -\left[.134 + .057(K_A) \right] & .04 & 0 & 1. \\ 0 & 0 & 1. & 0 \\ -\left[13.4 + 4.4(K_A)^2 \right] & 0 & -2.86 & \left[.83 + .21(K_A)^2(K_L) \right] \\ -\left[1.6 + 7.9(K_A)(K_L) \right] & 0 & -.044(K_A)^2(K_L) & -\left[.20 + .17(K_A)(K_L)^2 \right] \end{bmatrix} \begin{bmatrix} \dot{\rho} \\ \dot{\rho} \\ r \end{bmatrix} \\ + \begin{bmatrix} 0 & .052(K_A) \\ 0 & 0 \\ -21.4 & 3.72(K_A)^2 \\ .232 & -7.06(K_A)(K_L) \end{bmatrix} \begin{bmatrix} \delta_a \\ \delta_r \end{bmatrix}$$
(39)

where now:

.232

and analogous to the longitudinal study, the rudder size was reduced at the same rate as the vertical tail.

Problem Formulation and Results

Similarly to the longitudinal case, it is desired to calculate the response feedback gains necessary for the CCV to have approximately the dynamic characteristics of an ideal model with small control deflections. The ideal model was chosen from Reference 6. The following are its equations of motion and lateral-directional characteristics:

$$\begin{bmatrix} \dot{\beta} \\ \dot{\phi} \\ \dot{p} \\ \dot{r} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} -.743 & .04 & 0 & -1. \\ 0 & 0 & 1. & 0 \\ -10.0 & 0 & -4.0 & .865 \\ 5.87 & 0 & .04 & -.507 \end{bmatrix} \begin{bmatrix} \beta \\ \phi \\ p \\ r \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ -20 & 3.30 \\ 0 & -3.13 \end{bmatrix} \begin{bmatrix} \delta_{\alpha} \\ \delta_{r} \\ s_{r} \end{bmatrix} (40)$$

 $\omega_d = 2.5 \text{ rad/sec}$ $\zeta_d = .25$ $\tau_g = .25 \text{ sec}$ $\tau_s = \infty$ $\phi/\beta = .9$

The performance index included quadratic measures of the error on the dynamic behavior between the CCV and the model, and the control surface motions: ∞

$$J = \int_{0}^{\infty} \left(\left\| \dot{\boldsymbol{x}} - \boldsymbol{L} \boldsymbol{x} \right\|_{\boldsymbol{q}}^{2} + \left\| \boldsymbol{u} \right\|_{\boldsymbol{z}}^{2} \right) d\boldsymbol{z}$$

where both of the weighting matrices were set equal to identity matrices. A more comprehensive study should consider tail loads.

Seven CCV configurations with various values of K_A and K_L were evaluated. The results are listed in Table VII.

Evaluation of Results

All of the modal characteristics, though not identical to the "excellent" model, are still Level 1 according to specifications in Reference 4. However, there are other factors which show that there is a limit to the amount of vertical tail reduction that is allowable.

First of all, β feedback gains much greater than 5. are not realizable, so configuration 7 with a δ_{α}/β of 8.9 is not realistic. Also the amount of rudder deflection to hold a constant sideslip may be a limiting factor. From MIL-F-8785B, an airplane must be able to hold an approximate 15 degree sideslip in case of an extreme crosswind landing. The amount of control deflection necessary to trim each CCV configuration in a steady level 15 degree sideslip is also listed in the following table. Again, configuration 7 is unrealistic as it would call for a 57 degree rudder deflection.

It can be seen from configurations 2 and 4, and 3 and 6 that the effects of \mathcal{K}_A and \mathcal{K}_L are almost identical and stability derivatives depend on the value of the product ($\mathcal{K}_A \cdot \mathcal{K}_L$). The limiting value for the CCV - T-33 for ($\mathcal{K}_A \cdot \mathcal{K}_L$) is most likely 0.1. From the table it can be seen for this value (configurations 3 and 6) the $\mathcal{S}_{r}/\mathcal{S}$ gains are about 5.0 and the rudder deflection to hold the maximum sideslip is approximately 20 degrees. Though the unaugmented configuration 6 is statically and dynamically unstable:

Para.	"Excel-	Basic		Augmen	ted CCV	Config	uration	s	
	lent Model (Ref.6)	Unaug- mented T-33	1	2	3	4	5	6	7
K _A		***	1.0	5.	0.1	1.	• 5	.2	.1
<u> </u>		••	1.0	1.	0.1	.5	.5	.5	.5
w	2.5	2.2	2.45	2.41	1.90	2.41	2.28	1.87	1.50
zd	.25	.09	. 167	. 171	. 546	. 184	.283	.555	.773
$\tau_{\!\!R}$.25	. 3	. 250	.250	. 248	.250	. 249	. 249	. 249
\mathcal{T}_{s}	~	150.	685.	882.	138.	905.	430.	130.	66.4
¢ ß	.90	1.6	. 92	. 92	1.28	. 92	•99	1.29	1.78
Response Feedback Gains									
Salp			. 356	. 252	.167	.534	. 325	. 202	.159
S_a/ϕ		~ -	0	0	0	0	0	0	001
Sa/p			051	053	053	051	053	053	054
δ_a/r			008	005	0	024	021	013	.003
Sr/B			044	.964	5.800	.980	2.671	5.727	8.956
5+/Ø			0	.001	.082	.001	.012	.080	. 201
δ_r/ρ			.010	.010	014	.013	.015	020	.031
S _r /r	• •		039	100	-2.447	119	485	-2.385	-5.548
\mathcal{S}_{a} for Steady 15° Sideslip	·	-12.4	-12.4	-9.7	-9.3	-10.4	-10.3	-9.6	-9.5
S ₄ . for Steady 15° Sideslip	'	0.93	0.93	9.5	-19.8	9.3	-1.0	-20.2	-57,3

RESULTS OF LATERAL-DIRECTIONAL STUDY

NY WARE

(the two real Dutch roll roots are -1.7 and +1.05 and

a survey of the second s

areas no see and

THE REPORT NAME AND ADDRESS OF

$T_{g} = .34 \, \text{sec}, \qquad T_{s} = -11.4 \, \text{sec}$

with a simple feedback system, this configuration can be made to fly with Level 1 handling qualities. Therefore a corresponding and possibly necessary reduction in vertical tail area and length is compatible with reductions in the horizontal tail. Also with a smaller tail, the vertical tail loads will be reduced, resulting in a possible reduction in structural stiffening and a further weight saving.

A REAL PROPERTY AND A REAL

SECTION IV

DIRECT OPTIMIZATION

4.1 INTRODUCTION

on de canalisation a chuisdeachadh a thach ann an tha an

In Section II of this report, several control surface configurations were investigated in order to obtain measures of change in drag, wing root bending moment and surface deflection as the T-33 airplane, with altered tail length and area, was forced to respond "exactly" as the flying qualities model would respond. This study revealed the effectiveness of surfaces other than the elevator in aiding the elevator to perform the pullup maneuver. Then, in Section III, the control system was obtained that would minimize a measure of the change in drag, wing root bending moment and error between the actual aircraft and the model. Two values of tail length and area were used to show the effect of this parameter on the resulting solutions but no direct effort was made to optimize tail length and area. It was also shown that the input design has a great effect on the resulting system behavior. とううち こうちょうちんかんないないできん

In this section, the geometry-dependent characteristics are treated directly. The objective is to determine optimum tail length, tail area and surface deflections that would minimize the trim drag and wing root bending moment and the change in drag, wing bending moment and the model-response error for a 4 g pullup. The problem is open loop in the sense that no feedback will be directly obtained; instead, the geometrical parameters will be optimized, and the control deflections required to minimize drag and wing root bending moment in trim and in maneuvering flight will be treated.

It was felt that the dynamic optimization would provide the optimum tail length and area and once these were obtained the deflections of the surfaces could be calculated to maintain minimum drag and wing root bending moment in trim. Then the required command inputs obtained from the dynamic optimization would complete the design requirements. In actual practice, the two parts, static and dynamic optimization were done separately yet concurrently, so the static optimization did not use the values of K_A and K_L obtained during the dynamic optimization part of the study. It would be a relatively simple matter to repeat the static optimization design for any value of K_A and K_L .

4.2 STATIC TRIM OPTIMIZATION

Formulation of the Problem

It is desired to minimize drag and WRBM while trimming the CCV with the elevator, inboard flap and outboard flap. The following functional, F, is formed containing a measure of drag, WRBM, and Lagrange multipliers times the three longitudinal trim equations (level, l g flight with constant thrust and velocity):

$$F = K_1 \cdot (Drag) + K_2 \cdot (WRBM) + \lambda_1 \cdot (Trim \ Equations)$$
(41)

where
$$Drag = C_{D_0} \delta_i + C_{D_0} \delta_0 + C_{D_0} \delta_e$$

+ $K_p \left[C_{L_0} + C_{L_u} \alpha + C_{L_s} \delta_i + C_{L_s} \delta_0 \right]^2 + K_p \left[C_{L_s} \delta_e \right]^2$ (42)

$$WRBM = M_{\mathcal{B}_{o}} + M_{\mathcal{B}_{o}} \alpha + M_{\mathcal{B}_{\mathcal{S}_{i}}} \delta_{i} + M_{\mathcal{B}_{\mathcal{S}_{o}}} \delta_{o}$$
(43)

Trim Equations

3

SECTOR AND ADDRESS OF AD

$$\lambda_{1}\left(\frac{thrust}{\overline{q}5}=C_{D_{0}}+C_{L_{2}}\alpha+C_{D_{s_{i}}}\delta_{i}+C_{D_{s_{0}}}\delta_{0}+C_{D_{s_{0}}}\delta_{e}\right)$$
(44)

$$\lambda_{z}\left(\frac{weight}{\overline{q}\,5} = C_{L_{g}} + C_{L_{g}}\alpha + C_{L_{g}}\delta_{i} + C_{L_{g}}\delta_{o} + C_{L_{g}}\delta_{e}\right) \tag{45}$$

$$\lambda_{3}\left(0 = C_{m_{o}} + C_{m_{o}}\alpha + C_{m_{s_{i}}}\delta_{i} + C_{m_{s_{o}}}\delta_{o} + C_{m_{s_{e}}}\delta_{e}\right)$$
(46)

Taking derivatives of F with respect to the unknown variables and setting them equal to zero, we obtain seven equations which can be solved simultaneously for a unique solution for each set of weighting constants, K_{i} and K_{i} , on the drag and WRBM.

$$\frac{\partial F}{\partial \alpha} = 0 = K_{i} \left[2K_{p}C_{L_{\alpha}}^{2} + 2K_{p}C_{L_{\alpha}}C_{L_{s_{i}}} \delta_{i} + 2K_{p}C_{L_{\alpha}}C_{L_{s_{j}}} \delta_{0} + 2K_{p}C_{L_{0}}C_{L_{\alpha}} \right]$$

$$+ K_{2}M_{B_{\alpha}} + \lambda_{i}C_{D_{\alpha}} + \lambda_{2}C_{L_{\alpha}} + \lambda_{3}C_{m_{\alpha}}$$

$$(47)$$

$$\frac{\partial F}{\partial S_e} = 0 = \mathcal{K}_1 \left[C_{D_0} S_e + 2\mathcal{K}_D C_{L_{S_e}}^2 S_e \right] + \mathcal{I}_1 C_{D_{S_e}} + \mathcal{I}_2 C_{L_{S_e}} + \mathcal{I}_3 C_{m_{S_e}}$$
(48)

$$\frac{\partial F}{\partial S_{i}^{\prime}} = 0 = \mathcal{K}_{i} \left[C_{\mathcal{D}_{0}} S_{i}^{\prime} + 2\mathcal{K}_{\mathcal{D}} C_{\mathcal{L}_{S_{i}}}^{2} S_{i}^{\prime} + 2\mathcal{K}_{\mathcal{D}} C_{\mathcal{L}_{S_{i}}} C_{\mathcal{L}_{S_{i}}} \alpha + 2\mathcal{K}_{\mathcal{D}} C_{\mathcal{L}_{S_{i}}} C_{\mathcal{L}_{S_{i}}} S_{0} \right. \tag{49}$$

$$+ 2\mathcal{K}_{\mathcal{D}} C_{\mathcal{L}_{0}} C_{\mathcal{L}_{S_{i}}}^{2} \right] + \mathcal{K}_{2} M_{\mathcal{B}_{S_{i}}}^{2} + \mathcal{I}_{i} C_{\mathcal{D}_{S_{i}}} + \mathcal{I}_{2} C_{\mathcal{L}_{S_{i}}} + \mathcal{I}_{3} C_{\mathcal{M}_{S_{i}}}^{2}$$

$$\frac{\partial F}{\partial \delta_{0}} = 0 = K_{1} \left[C_{D_{0}} \delta_{0} + 2K_{D} C_{L_{\delta_{0}}}^{2} \delta_{0} + 2K_{D} C_{L_{\omega}} C_{L_{\delta_{\delta_{0}}}} \alpha + 2K_{D} C_{L_{\delta_{\delta_{0}}}} \delta_{L_{\delta_{\delta_{0}}}}^{2} + 2K_{D} C_{L_{\delta_{0}}} \delta_{L_{\delta_{0}}}^{2} + \lambda_{1} C_{D_{\delta_{0}}} + \lambda_{2} C_{L_{\delta_{0}}} + \lambda_{3} C_{m_{\delta_{0}}}^{2} \right]$$
(50)

$$\frac{\partial F}{\partial \lambda_{i}} = 0 = C_{\mathcal{D}_{o}} + C_{\mathcal{D}_{s_{i}}} \delta_{i} + C_{\mathcal{D}_{s_{o}}} \delta_{o} + C_{\mathcal{D}_{s_{o}}} \delta_{e} + C_{\mathcal{D}_{s_{o}}} \alpha - \frac{thrust}{\overline{q}S}$$
(31)

$$\frac{\partial F}{\partial \lambda_2} = 0 = C_{L_0} + C_{L_s} \frac{\delta_i}{\delta_i} + C_{L_s} \frac{\delta_0}{\delta_0} + C_{L_s} \frac{\delta_e}{\delta_e} + C_{L_a} \alpha - \frac{weight}{\overline{q} 5}$$
(52)

「おおおお、たちにはないです あっていたい ないなくなかい たちなん なたのである ないのない たちょうちょう ない

and a set a straight in the set of the set o

Textice.

いたいとうないないないというないないないない

$$\frac{\partial F}{\partial \lambda_{3}} = 0 = C_{m_{0}} + C_{m_{s_{i}}} S_{i} + C_{m_{s_{0}}} S_{0} + C_{m_{s_{e}}} S_{e} + C_{m_{\alpha}} \alpha$$
(53)

The seven unknowns are: the trim α , δ_i , δ_o , δ_e ; and the Lagrange multipliers λ_i , λ_2 , and λ_3 . The values of the latter three parameters have no significance as the equations of motion are just added to insure that the aircraft is trimmed. Only the relative difference in the weighting constants, k_i and k_2 , is significant, and if both are increased by the same multiple, the resulting solution will be the same except that the λ_i will change by the same multiple. The actual values of k_i and k_2 have no meaning other than they do cause different minimum drag and WRBM solutions to occur.

Results and Evaluation

The only CCV - T-33 configuration investigated was the one with the normal T-33 tail size, $K_A = K_L = 1$. Other configurations would involve similar results. The significant solutions obtained are summarized in the following table:

K,	Kz	æ (rad)	Je (rad)	δ <u>;</u> (rad)	δ ₀ (rad)	Trim (Levei l g Flight) (lb)	Trim WRIM (ft-1b)
10.x10 ⁻⁴	1.	. 168	426	2.069	-4.071	16, 313	-580, 498
5.x10 ⁻⁴	1.	.020	·· · 093	. 380	683	4, 278	-52, 575
4.4×10^{-4}	1.	.007	063	. 230	381	3, 218	-16, 312
$4. \times 10^{-4}$	1.	003	041	.117	154	2,499	18, 316
3.6x10 ⁻⁴	1.	015	015	013	.107	1,953	58, 221
$1. \times 10^{-4}$	1.	079	. 130	760	1.589	6,956	284, 551
$.1 \times 10^{-4}$	1.	110	. 200	- 1. 103	2.294	9,374	392, 622
1.	1.	113	. 207	-1.142	2.373	9,645	404,669
trim with no T-33 (no S S availab	ormal ; or le)	001	010		p = -	1,723	40, 998

TAELE VIII SUMMARY OF TRIM OPTIMIZATION RESULTS

It can be seen that the trim WRBM can be eliminated completely with inboard and outboard wing flap deflections. However, this is done at the expense of increased trim drag. In fact, it appears as though all of the trim solutions with δ_i and δ_o develop more drag than the basic T-33 solution. Also the trim flap deflections are relatively high for the reduced WRBM solution. For example, the solution which results in an approximate 50% reduction in WRBM ($K_1 = 4. \times 10^{-4}$), requires almost 10 degrees of flap deflection. This would severely limit the amount of flap deflection left for maneuvering. Each CCV under study must be evaluated separately to determine, for its particular mission, whether the reduced trim WRBM and the resulting decreased structural weight is worth the increased trim drag and control deflections.

4.3 DYNAMIC OPTIMIZATION

Derivation of Necessary Conditions

The longitudinal small perturbation equations of motion being considered are:

$$\dot{x} = F(\underline{K})\underline{x} + G(\underline{K})\underline{u} , x(o) = 0$$

$$4 = A\underline{x} + B\underline{u}$$

$$4 = (V, \theta, q, \alpha)^{T} - \text{perturbed state vector}$$

$$\underline{K} = (K_{A}, K_{L})^{T} - \text{horizontal tail geometrical parameter}$$

$$\underline{u} = (\delta_{e}, \delta_{i}, \delta_{o})^{T} - \text{control perturbation vector}$$

$$u(t_{e}) = (\alpha, q, \dot{\alpha})^{T} - \text{measure of state at final time}$$

$$(54)$$

It is desired to find a step perturbation in the control vector $\underline{\#} = \underline{b}$ and the tail parameters \underline{K} , such that during the maneuver, which transforms the CCV from the initial state to some final state $\underline{y}(t_f)$ at a prescribed final time, t_f , the motions of the airplane will be close to an ideal flying qualities model and the drag and WRBM will be minimized. In the following discussions we are concerned only with the drag and WRBM developed during the maneuver so we will use just the linearized incremental expressions:

$$\Delta Drag = \Delta D = d_1^T(\underline{K}) \underline{x} + d_{\underline{x}}^T(\underline{K}) \underline{u}$$
⁽⁵⁵⁾

$$\Delta WRBM = \Delta m = m_1^T \underline{\nu} + m_2^T \underline{\omega}$$
⁽⁵⁶⁾

where

$$\begin{split} \underline{d}_{1}^{T}(\underline{K}) &= \left(0, \ 0, \ 0, \ \bar{q} \ SC_{p_{d}}(\underline{K})\right) \\ \underline{d}_{2}^{T}(\underline{K}) &= \left(\bar{q} \ SC_{p_{s_{e}}}(\underline{K}), \ \bar{q} \ SC_{p_{s_{i}}}, \ \bar{q} \ SC_{p_{s_{o}}}\right) \\ \underline{m}_{1}^{T} &= \left(0, \ 0, \ 0, \ M_{\mathcal{B}_{d_{i}}}\right) \\ \underline{m}_{2}^{T} &= \left(0, \ M_{\mathcal{B}_{s_{i}}}, \ M_{\mathcal{B}_{s_{o}}}\right) \end{split}$$

From the preceding discussions, the problem previously stated can be recast in the following precise terms:

Find \underline{K} and \underline{b} such that the performance index

$$J' = \int_{0}^{t_{f}} \left\{ \| \dot{v} - L x \|_{\theta}^{2} + \| \Delta D \|_{v}^{2} + \| \Delta W R B M \|^{2} \right\} d\mathcal{T}$$
(57)

is minimized subject to the constraints:

$$\dot{\varkappa} = F(\underline{K})\underline{\varkappa} + G(\underline{K})\underline{b}$$

$$\underline{\varkappa}(0) = 0$$

$$g(t_f) = A_{\varkappa}(t_f) + B\underline{b} = \underline{c} = \left[\varkappa(t_f), q(t_f), \dot{\varkappa}(t_f)\right]^T$$
(58)

and \mathcal{L} is the ideal handling qualities model. The weighting parameters Q, \mathcal{V} , \mathcal{I} , and \mathcal{L} and $t_{\mathcal{L}}$ are given.

The Conjugate Gradient Solution

For the conjugate gradient solution, we first introduce a Lagrange multiplier vector $\lambda = (\lambda_1, \lambda_2, \lambda_3)^T$ and form a new performance index:

$$J = J' + \sum_{i=1}^{3} \lambda_{i} y_{i}^{2}(t_{f})$$

$$= \int_{0}^{t_{f}} \left\{ \varkappa^{T} \left[(F-L)^{T} Q(F-L) + \upsilon \underline{d}, \underline{d}, T + t \underline{m}, \underline{m}, T \right] \underline{\varkappa} + 2 \varkappa^{T} \left[(F-L) QG + \upsilon \underline{d}, \underline{d}_{2}^{T} + t \underline{m}, \underline{m}_{2}^{T} \right] \underline{b} \right\} dT$$

$$+ t_{f} \underline{b}^{T} \left[G^{T} QG + \upsilon \underline{d}_{2} d_{2}^{T} + t \underline{m}_{2} \underline{m}_{2}^{T} \right] \underline{b} + \sum_{i=1}^{3} \lambda_{i} y_{i}^{2}(t_{f})$$
(59)

The second large term above does not contain an integral sign because all of the terms contained in it are constant for $t \in (0, t_f)$. Also in all of the above expressions, it is to be emphasized that F, G, A, B, d_i , and \underline{d}_2 are functions of $\underline{\mathcal{K}}$, and $\underline{m}_i, \underline{m}_2$, are independent of $\underline{\mathcal{K}}$.

We will require the gradients of J with respect to \underline{k} , \underline{b} , and $\underline{k}_{\underline{i}}$.

$$\nabla_{\mathbf{x}_{i}} J = y_{i}^{2}(t_{f}) ; i = 1, 2, 3$$
(60)

$$\overline{V}_{K_{i}}T = \begin{bmatrix} \overline{\lambda} \\ \overline{\lambda} \\ i \in I \end{bmatrix} \overline{V}_{i} \frac{\partial y_{i}}{\partial k_{i}} (t_{i}) \cdot 2y_{i} \end{bmatrix} + 2t_{f} \underline{b}^{T} \begin{bmatrix} \frac{\partial G^{T}}{\partial K_{i}} QG + v \frac{\partial d_{2}}{\partial k_{i}} d_{2}^{T} \end{bmatrix} \underline{b} \\
+ 2\int_{0}^{t_{f}} \frac{\partial v^{T}}{\partial k_{i}} \begin{bmatrix} (F-L)^{T}Q(F-L) + v d_{i}d_{i}^{T} + t \underline{m}_{i} \underline{m}_{i}^{T} \end{bmatrix} \overline{v} d\mathcal{C} \\
+ 2\int_{0}^{t_{f}} \sqrt{T} \begin{bmatrix} \frac{\partial F^{T}}{\partial k_{i}} Q(F-L) + v \frac{\partial d_{1}}{\partial k_{i}} d_{i}^{T} \end{bmatrix} v d\mathcal{C} + 2\int_{0}^{t_{f}} \begin{bmatrix} \frac{\partial x}{\partial k_{i}} (F-L)QG + v d_{i}d_{i}^{T} + t \underline{m}_{i} \underline{m}_{j}^{T} \end{bmatrix} \underline{b} d\mathcal{C} \\
+ 2\int_{0}^{t_{f}} \sqrt{T} \begin{bmatrix} \frac{\partial F}{\partial k_{i}} Q(F-L) + v \frac{\partial d_{1}}{\partial k_{i}} d_{i}^{T} \end{bmatrix} v d\mathcal{C} + 2\int_{0}^{t_{f}} \begin{bmatrix} \frac{\partial x}{\partial k_{i}} (F-L)QG + v d_{i}d_{i}^{T} + t \underline{m}_{i} \underline{m}_{j}^{T} \end{bmatrix} \underline{b} d\mathcal{C} \\
+ 2\int_{0}^{t_{f}} \sqrt{T} \begin{bmatrix} \frac{\partial F}{\partial k_{i}} QG + (F-L)^{T}Q \frac{\partial G}{\partial k_{i}} + v \frac{\partial d_{1}}{\partial k_{i}} d_{2}^{T} + v d_{1} \frac{\partial d_{2}^{T}}{\partial k_{i}} \end{bmatrix} \underline{b} d\mathcal{C} \tag{61}$$

$$\nabla_{b_{j}} \mathbf{J} = \left[\sum_{i=1}^{3} \lambda_{i} \frac{\partial y_{i}}{\partial b_{j}} (t_{i}) \cdot 2y_{i}\right] + 2t_{f} \mathbf{g}_{j}^{T} \left[G^{T}QG + \nu d_{z}d_{z}^{T} + t_{\mathcal{D}_{z}}\mathbf{m}_{z}^{T}\right] \mathbf{b}$$

$$+ 2\int_{0}^{t_{f}} \frac{\partial v^{T}}{\partial b_{j}} \left[(F-L)^{T}Q(F-L) + \nu d_{j}d_{j}^{T} + t_{\mathcal{D}_{j}}\mathbf{m}_{j}^{T} \right] \mathbf{b} d\mathcal{C}$$

$$+ 2\int_{0}^{t_{f}} \frac{\partial v^{T}}{\partial b_{j}} \left[(F-L)^{Q}G + \nu d_{j}d_{z}^{T} + t_{\mathcal{D}_{j}}\mathbf{m}_{z}^{T} \right] \mathbf{b} d\mathcal{C}$$

$$+ 2\int_{0}^{t_{f}} \frac{\partial v^{T}}{\partial b_{j}} \left[(F-L)^{T}QG + \nu d_{j}d_{z}^{T} + t_{\mathcal{D}_{j}}\mathbf{m}_{z}^{T} \right] \mathbf{b} d\mathcal{C}$$

$$(62)$$

where
$$b_j = \delta_e$$
, δ_i , δ_o (input steps)
 $B = (\underline{B}_1, \underline{B}_2, \underline{B}_3)$
 $\underline{e}_1 = (1, 0, 0)^T$ $\underline{e}_2 = (0, 1, 0)^T$ $\underline{e}_3 = (0, 0, 1)^T$

Also required in the above expressions are the sensitivities: $\frac{\partial k}{\partial k_i}$ and $\frac{\partial k}{\partial b_j}$ which are the solution of:

and the second second of the second s

いたたい

$$\frac{d}{dt}\left(\frac{\partial z}{\partial K_{i}}\right) = F \frac{\partial z}{\partial K_{i}} + \frac{\partial F}{\partial K_{i}} z + \frac{\partial G}{\partial K_{i}} b , \frac{\partial z}{\partial K_{i}} (0) = 0$$

$$\frac{d}{dt}\left(\frac{\partial z}{\partial b_{j}}\right) = F \frac{\partial z}{\partial b_{j}} + Ge_{j} , \frac{\partial z}{\partial b_{j}} (0) = 0, G = (g_{1}, g_{2}, g_{3})$$
(63)

The above expressions are reduced somewhat in the calculations because many of the matrices contain many zero locations. The function dependence of the stability derivatives were reduced to linear relations in \mathcal{K}_A and \mathcal{K}_L . This gave the following matrices for the CCV - T-33 at Flight Condition 1:

$$F = \begin{bmatrix} -.00062(K_{A}) - .01362 & -32.17 & 0 & -2.2154(K_{A}) + 7.9421 \\ 0 & 0 & 1. & 0 \\ .000136(K_{A})(K_{L}) - .00062 & 0 & -2.743(K_{A})(K_{L}) + 1.191 & -35.0883(K_{A})(K_{L}) + 17.228 \\ -.000157 & 0 & 1. & -.1299(K_{A})(K_{L}) - 2.1691 \\ \end{bmatrix}$$

$$G = \begin{bmatrix} -3.978(K_{A}) & -15.8886 & -8.6788 \\ 0 & 0 & 0 \\ -25.734(K_{A})(K_{L}) & -14.1077 & -5.2802 \\ -.1276(K_{A}) & -.5782 & -.3755 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -.000157 & 0 & 0 & -2.1619 - .1299(K_{A})(K_{L}) \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -.1276(K_{A}) & -.5782 & -.3755 \end{bmatrix}$$

$$d_{1}(K) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$d_{2}(K) = \begin{bmatrix} 1487.8(K_{A}) \\ 5942.3 \\ 3245.9 \end{bmatrix}$$

$$\underline{m}_{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1,460,500 \end{bmatrix} \qquad \underline{m}_{2} = \begin{bmatrix} 0 \\ 357,650 \\ 394,750 \end{bmatrix}$$

Letting the parameter vector be defined as:

$$\underline{P} = (K_A, K_L, S_e, S_i, S_o, \lambda_1, \lambda_2, \lambda_3)^T$$

the conjugate gradient algorithm can be written as follows:

- (i) Guess an initial value for \underline{P} and call this \hat{P}_{i}
- (ii) Compute J and $\nabla_{\rho} J(\hat{P}_{i})$ using the previous expressions and let $a_{i} = \nabla_{\rho} J(\hat{P}_{i})$
- (iii) Determine the constant multiplier α_i of the corrections α_i by a one dimensional search:

$$\overset{min}{\alpha} J(\hat{P}_i - \alpha_i \alpha_i)$$

- (iv) Define the new parameter vector: $\hat{P}_{i} = \hat{P}_{i} \alpha_{i} \alpha_{i}$
- (v) Evaluate the updated J and test to see if it has converged to a minimum value. If it has, a solution has been obtained. If it has not converged, proceed to the next step

ころがないでいたかでのないである

ちゃうちゃい ういちょうちょう しろいたち、おうちょうちょういつ いろいたちょうちょうちょうないないないないないないないないないない

(vi) Compute the gradient $\nabla_{p} J(\hat{P}_{i})$ and new corrections:

$$a_{i} = \nabla_{p} J(\hat{P}_{i}) + \frac{\|\nabla_{p} J(\hat{P}_{i})\|^{2}}{\|\nabla_{p} J(\hat{P}_{i-1})\|^{2}} a_{i-1}, i \ge 2$$

(vii) Repeat steps (iii) through (vii) until a minimum J has been reached.

4.4 RESULTS

AT DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER

and a stand a s

Results of a few representative runs of the conjugate gradient program are presented in Table IX. Two different initial value sets were run with various weighting constants: Set 1: initial $K_A = 1.0$, $K_L = .5$ Set 2: initial $K_A = .01$, $K_L = .01$

and the second secon

The maneuver performed was a 4 g pullup in 2 seconds with $q(t_f) = 2$ rad/sec, $\alpha(t_f) = 0$ rad/sec.

As can be seen in the table of results, the solutions are not too promising. The conjugate gradient method as formulated here yields many local minima. In fact, for each different set of initial guesses for K_A , K_L , se step, etc., a different solution for the minimum of the performance index, J, was obtained. Also the size of the control step inputs relative to each other had a much more pronounced effect on the solution that was obtained (the initial guess in each case was a $S_e = .15$ rad step) than to changes in tail area or tail length. In many solutions the tail parameters increased in size. For Set 2 all of the solutions remained with the smallest tail and even though the conditions at 2 seconds were matched, the airplane was still unstable, and was diverging rapidly at that time.

However, the conjugate gradient method may still be of some use. One remedy to the non-uniqueness problem may b to use a fewer number of unknown variables. By reducing the number of control step inputs as varibles, there would most likely be fewer local minimums and more importantly, the solution would have to be reached by the changing of the tail parameters, $k_{\rm A}$ and $k_{\rm L}$ rather than through the use of control deflections. More research in this area is necessary and perhaps a different minimization technique less prone to local minima should be investigated, such as quasilinearization or Kalman filtering. A better choice of cost function may also be found. TABLE IX

000

SELECTED RESULTS OF THE CONJUGATE GRADIENT METHOD

4 g pullup maneuver, $t_f = 2$ seconds, $v = 10^{-6}$, $t = 10^{-8}$

Initial Input = $\delta_{e_{3}tep}$ = -. 15 rad, $\delta_{i} = \delta_{o} = 0$.

				FINAL 1	TERATED	VAL UE	S		
	2,	Ø	×2	K.	Se	Si	50	DWRBM	∆ Drag
Set 1.									1
	104		1.6	1.6	17	.15	- 59	37,440	4, 750
$k_{A} = 1.0$	104	0	1.7	1.7	17	. 52	. 83	11,500	7, 260
K = .5	0	10 ⁴	1.03	. 57	52	. 58	12	132,600	4,850
Set 2:	104		. 0107	. 0107	. 00005	019	. 047	56,300	540
Initial	0		. 0106	. 0106	0002	. 084	21	49,200	1,560
	0	104	. 0107	. 0107	. 0018	75	1.9	402,500	10, 630
ן אנג - יייען									

TABLE X

A state of the second second second

「日本の日本になった」となった。

Variable Surface Other Wing Fi.p Elevator Surface Rudder Aileron ΔV _ _ _ - - -_ _ _ ---_ _ _ Δα rad/rad ±5 **±**5 ±₽ **±**4 - - ė rad/(rad/sec) **±**3 **±**3 ±2 **±**3 _ _ _ θ rad/rad ±5 **±**4 ±2 _ _ _ β rad/rad ±3 **±**8 。 rad/(rad/sec) **±**2 **±**3 ---Ø rad/rad ±4 ---. . . r rad/(rad/sec) **±**3 - - ----_ _ _ _ _ _

ATTAINABLE FEEDBACK GAINS

1. NY 1. 18 34

and the second states of the second second

SECTION V

CONTROL SYSTEM MECHANIZATION

5.1 INTRODUCTION

Construction of the second

In previous sections, the need for adequate control power was stressed. If the tail size were reduced, including the elevator size, it is fundamental that larger elevator surface deflections would be required to maneuver the airplane. Flap and collectively acting ailerons help the elevator produce the required pitching moments but not to a completely compensating amount, so there is a limit to the extent that the elevator size can be reduced. Control surface power is a fundamental limitation associated with a CCV.

A second fundamental limitation associated with a CCV is the physical limitation associated with feedback control mechanization. Sensor and amplifier noise and structural flexibility limit the amount of feedback that can be applied to an airplane. Table X summarizes some of the regularly attainable feedback gains that are used during flight investigations involving the AF/CAL T-33 and AF/CAL C-131 (TIFS) airplanes. The gains listed in the table are not necessarily the maximum that can be achieved; these gains are regularly and easily obtained without special provision for sensor and amplifier noise, servo bandwidth, structural dynamics and other corrupting or limiting influences. The gain values represent day-to-day state of the science and are conservatively estimated. If differences exist in the maximally allowed feedback among aircraft, the more conservative number is always chosen. It is nevertheless important to note that large differences among individual aircraft do occur and these differences are due mainly to variations in structural flexibility. Because a CCV may be highly flexible, the gains listed below may even be too optimistic without specific structural mode control provisions. If feedback is provided to augment the fundamental, rigid body dynamical behavior and the attainment of this feedback requires extensive structural mode control, then the problems of reliability and aircraft parameter identification ar doubly critical. Advanced, accurate methods of vehicle parameter identification are only now being developed (Reference 1!) and it will likely be another decade or more before adequate tools are available to identify the structural mode and flutter parameters of an airplane, in addition to the rigid body stability derivatives.

Two general comments can be made, then, about maximally usable feedback gains. First, as mentioned above, the smaller and more rigid the airframe, the higher the attainable feedback gains. Second, the lower the degree of the derivatives of the state variable used for feedback, the higher the feedback gain that can be attained. This limitation is attributable as much to the sensor characteristics as to the structural flexibility. Pitch accelerometers generate more noise than pitch rate gyros which in turn tend to be less noise-free than attitude gyros. There are exceptions, particularly when the good and bad features of angle of attack vanes and accelerometers are evaluated in their ability to alter the short period natural frequency of the airplane and compared to the noise output level of these sensors, but in general, the state derivative rule holds. As discussed in a previous section, the control system of the T-33 CCV airplane requires mainly pitch rate and angle of attack (or normal acceleration) feedback in the longitudinal plane of motion with very little speed or attitude augmentation. There is no reason to believe that other vehicles would be significantly different unless they possess highly objectionable speed stability or phugoid characteristics, so the major effort was placed upon estimation of the pitch rate and angle of attack gains, with little emphasis on attitude and none at all on velocity. Table X reflects this emphasis.

5.2 CCV BARE AIRFRAME STABILITY DERIVATIVES

Using the attainable feedback gains given in Table X, it is a relatively straightforward computation to estimate the minimum dimensional stability derivatives that must inherently be possessed by the bare airframe of a Control Configured Vehicle. assuming that sufficient surface effectiveness and power is available to augment the derivatives if they are found to be acceptable.

The equations of motion of the bare airframe CCV and the flying qualities model can be expressed as

$$\dot{x} = F x + G u$$
 (64)

$$\mathcal{U}_{m} = F_{m} \mathcal{U}_{m} + G_{m} \mathcal{U}_{m} \tag{65}$$

The feedback control law is of the form

$$c = -K \varkappa \tag{66}$$

so a fully augmented aircraft can be described by the equation

$$\dot{\mathbf{x}} = (\mathbf{F} - \mathbf{G}\mathbf{K})\mathbf{x} + \mathbf{G}_{m}\boldsymbol{u} \tag{67}$$

If the augmented CCV is to fly as the flying qualities model flies, then

$$F_m = F - GK \tag{68}$$

and the matrix of dimensional stability derivatives of the bare airframe are respected to the range

$$F_{bare \ CCV} = F_m \pm G \left| K_{max} \right| \tag{69}$$

If the matrix of stability derivatives of the model, Table III and the matrix of gains (assuming three controllers) were substituted into Equation (69), the longitudinal requirements become:

Man and

and and the state of the second states and the second states of the second states of the second states of the s

$$F_{bare CCV} = \begin{bmatrix} -.01424 & -32.17 & 0 & 5.70 \\ 0 & 0 & 1 & 0 \\ .0057 & 0 & -7.085 & -28.4 \\ -.000157 & 0 & 1 & -2.225 \end{bmatrix} + \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ 0 & 0 & 0 \\ q_{31} & q_{32} & q_{33} \\ q_{41} & q_{42} & q_{43} \end{bmatrix} \begin{bmatrix} -25 & \pm 3 & \pm 5 \\ -25 & \pm 5 & \pm 5 \\ -25 & \pm$$

where the symbol — means that the gain is not considered and has been shown to be negligible.

It becomes clear then, that surface effectiveness plays a very strong role in the augmentation possible. If this aircraft possessed the surface effectiveness of the elevator, flap and ailerons of the T-33, the CCV bare airframe requirements become

$$F_{bare} = \begin{bmatrix} - & -32.17 \pm 101 & \pm 77.0 & 5.7 \pm 134 \\ - & 0 & 10 & 0 \\ - & \pm 196 & -7.085 \pm 130 & -5.28 \pm 220 \\ - & \pm 3.7 & 1 \pm 2.87 & -2.225 \pm 5 \end{bmatrix}$$
(71)

which could quickly lead one to the conclusion that the bare airframe stability derivatives are meaningless to a CCV if augmentation is to be fully realized and if the control surfaces have sufficient effectiveness to do the job.

If sufficient control effectiveness is not provided, then it will be difficult to realize CCV objectives. Consider, for instance, the T-33 airplane with shortened tail and reduced horizontal tail surface $K_A = K_L = 0.5$. The matrices of stability and control derivatives become:

$$F_{K_{A},K_{L}^{2},.5} = \begin{bmatrix} -.0139 & 32.17 & 0 & 6.834 \\ 0 & 0 & 1.0 & 0 \\ -.000028 & 0 & .505 & 8.456 \\ -.000157 & 0 & 1.0 & -2.202 \end{bmatrix}, G_{K_{A},K_{L}^{2},.5} = \begin{bmatrix} -2.02 & -15.8 & -8.7 \\ 0 & 0 & 0 \\ -7.3 & -14.1 & -5.3 \\ -.06 & -.58 & -.38 \end{bmatrix}$$

$$(72)$$

If elevator alone is used for augmentation purposes the aircraft can be augmented to the extent

errete an 1945 en 1978 A fried. En 144 erreten verken die keinen die der der die die ster die ster die ster bester die ster die

$$F_{aug} = \begin{bmatrix} -.0139 \pm - & 32.17 \pm 10 & \pm 6.06 & 6.83 \pm 10.1 \\ 0 & 0 & 1.0 & 0 \\ -.000028 \pm - & \pm 36.5 & .505 \pm 21.9 & 8.456 \pm 36.5 \\ -.000157 \pm - & \pm .30 & 1.0 \pm .18 & -2.202 \pm .30 \end{bmatrix}$$
(73)

If the matrix of Equation (73) is compared to that of the model, it is seen that two very important terms in the matrix $f_{33} = M_q + M_{\dot{w}}$ and $f_{34} = M_{\alpha} + M_{\dot{w}} \not\equiv_{\alpha r}$, which are used to approximate short period damping and ω_{5p}^2 , are just barely attainable. If only elevator is used for augmentation, then the stability derivatives cannot be independently altered. Once a value of feedback gain is selected, each column of the F matrix is fixed, or another way to express this constraint is that since the 1st, 3rd, and 4th rows of the F matrix contain the coefficients of a separate degree of freedom of motion of the vehicle.

The flap and the aileron of the T-33 in this example can just barely be considered independent control devices, because they produce pitching moments, Z and X forces almost, but not quite, proportional to each other. Therefore, normally the two surfaces would not be considered efficient for dynamic augmentation purposes, but they do provide a good measure of controllability of the wing lift distribution and therefore wing root bending moment control.

5.3 CONTROL (FEEDFORWARD) AUGMENTATION

Control and the second second second

が正式

ALC: NO.

Feedforward, or control augmentation is less restrictive than feedback. If the Control Configured Vehicle does not exhibit the required control effectiveness to produce good handling qualities, then other surfaces can be used to augment the vehicle.

The matrix of control effectiveness terms of the flying qualities model is given by

$$G_{m} = \begin{bmatrix} -3.98 \\ 0 \\ -270 \\ -.14 \end{bmatrix}$$
(74)

and the second second

.....

-

.

using just the elevator to produce the required control forces and moments. The T-33 with reduced tail length and area but using the flap and ailerons is given by

$$G_{7-33}_{K_{A},K_{L}=.5} = \begin{bmatrix} -2.02 & -15.8 & -8.7 \\ 0 & 0 & 0 \\ -7.3 & -14.1 & -5.3 \\ -.06 & -.58 & -.38 \end{bmatrix}$$
(75)

The effectiveness of the other surfaces, i.e., the flap and ailerons, can be used to augment the elevator as shown in the following sketch:

The gains are computed from

$$\begin{bmatrix} 1 + \mathcal{K}_{1} \\ \mathcal{K}_{2} \\ \mathcal{K}_{3} \end{bmatrix} = \begin{bmatrix} G_{7-33, \mathcal{K}_{4}, \mathcal{K}_{L}} = .5 \end{bmatrix}^{-1} \begin{bmatrix} G_{m} \\ \end{bmatrix}$$

$$= \begin{bmatrix} -2.02 & -15.8 & -8.7 \\ 0 & 0 & 0 \\ -7.3 & -14.1 & -5.3 \\ -.06 & -.58 & -.38 \end{bmatrix}^{-1} \begin{bmatrix} -3.98 \\ 0 \\ -27.0 \\ -.14 \end{bmatrix}$$

$$(76)$$

のたいというないで、ころいろうちもちのであるがないのでいろう

or

$$K_1 = 3.71$$
, $K_2 = -0.895$, $K_3 = 0.995$

and the system can be mechanized without difficulty.

The investigations and results of this section have shown that stability and flying qualities should have very little influence on the geometry of a Control Configured Vehicle. If sufficient control power is available, the vehicle can have almost any shape and stability augmentation, within the present state of the art, can alter the flying qualities to the desirable Level 1 behavior.

5.4 WEIGHT CONSIDERATIONS

The T-33 configuration with $K_A = K_L = .5$ is about the maximum tail reduction possible for the CCV to still have the ability to obtain a Level 1 airplane with a realizable feedback system. This corresponds to a change in static margin of about -15%. The entire aft section of the fuselage of the T-33, which includes the tail assembly and exhaust extension past the engine, is estimated by CAL personnel to weigh approximately 700 pounds. With the .5 K_A and K_L this can be reduced to 350 pounds. Further weight savings from a lighter wing structure for reduced wing loads due to the MLC system of wing flaps is conservatively estimated at 150 pounds. This 500 pounds is 5% of the normal T-33 dry weight.

This estimate, however does not take into account the weight of the reliable control system that would have to be added to the existing airplane to allow the vehicle to fly with the geometrical configuration assumed in this report. Overall it is believed that the tota! weight reduction along with the reduced wing root bending moment and drag will significantly improve the performance or payload capacity of the T-33.

SECTION VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

No. of Contraction of

The purpose of the research reported in this document is to investigate CCV design and control system concepts in a general way and to apply these concepts to a T-33 airplane in as realistic a way as possible within the limited scope of the program. The study accomplished this goal in a positive sense and the following conclusions are drawn from the results. These conclusions are tentative; not all of the aspects of the problem we e considered and further effort may modify some of the results but probably not significantly alter the fundamental principles. The major conclusions are summarized below:

- 1 Relaxed static stability, maneuver load control, and good flying qualities can be made to be compatible if adequate numbers of independent force/moment producing devices with adequate effectiveness and power are provided.
- 2. Because the geometry and surface configurations are generally fixed, the application of CCV concepts after the fact, i.e., on a presently existing airplane, will yield only limited success. Control Configured Vehicle concepts, to be most effective, should be incorporated into the preliminary design stages of a new airplane.
- 3. The T-33 configuration with $K_A = K_L = .5$ is about the maximum reduction possible. This corresponds to a change in static margin of about -15%. Total structural weight reductions may amount to about 500 pounds or approximately 5% of the normal T-33 dry weight. This can be interpreted to mean a 10% increase in fuel capacity.
- 4. Flying qualities have a significant effect on the control system configuration. Flying qualities are very flexibly or broadly defined and can be selected to benefit the maneuver load control objectives of the CCV. Flying qualities requirements can be chosen to restrict or enhance the application of maneuver load control.
- 5. The present state of the art of feedback control allows for augmentation of an extremely wide variety of bare airframe characteristics and therefore, geometrical shapes of the airframes. Stability constraints, such as static margins, have little or no importance if sufficient control effectiveness and power are available to provide for good flying qualities and maneuverability.

A MAY SAMPLE A MAY WAY AND

6. A more comprehensive effort, considering many aspects not included in this study would be necessary to optimize the results, but feasibility has been demonstrated.

6.2 RECOMMENDATIONS

This study has only investigated a few CCV concepts: 1) reduced static stability through reduced tail area and tail length, 2) maneuver load control in a pullup through the addition of inboard and outboard direct lift flaps on the wing, and 3) the constraint of flying qualities requirements. The feasibility of this type of vehicle has been demonstrated. However, in the early design of any new CCV, a more extensive study should be carried out. With a precise knowledge of mission and performance criteria, more specific candidate controllers should be investigated. Canards, ventral fins, split wing flaps, and various wing positions should be evaluated to optimize the design to achieve desired characteristics. Torsional wing bending moments must be evaluated, as this may become a problem with the additional wing flaps. va 1924 of the state of

\$ 3

est.N.

and a state of the state and the state state of the state

Ś

The concepts of relaxed static stability and maneuver load control represent evolutionary, rather than revolutionary advances in aircraft stability and flight control practice. Feedback to augment damping is already in full operational use, so additional feedback and command augmentation to improve static stability is only a step beyond present design procedures. Wing surfaces designed to alter the magnitude and symmetry of the lift along the wing have been in use for fifty years or more. The use of flaps, ailerons or other wing surfaces to alter the lift distribution on the wing during either trimmed or transient flight is also logical extension of present practices, so maneuver load control is also. β jible.

Feasibility only has been demonstrated by the results presented in this report. A more comprehensive study and simulation program is needed before actual mechanization and flight testing could be undertaken. In general, control surfaces are sized and located on aircraft only after extensive analysis and model testing has been done. To be most effective, CCV concepts should be included in the preliminary design stage of an airplane. The application of CCV concepts after the fact of the airplane design will likely be not as effective and the modifications will probably be costly.

Flying qualities requirements will play an important role in the establishment of CCV airframe designs and augmentation configurations. Two flying qualities models were used in the present study. The flying qualities parameter n/α was shown to have a strong effect on the use of flap and ele-vator surfaces to simultaneously obtain lower wing root headings and good flying qualities. In addition, relaxed static stability of the bare airframe will require relatively large surface deflections and surface rates to artificially produce the stability characteristics demonded by flying qualities. However, flying qualities requirements are broad, and it appears possible to be able to

satisfy both flying qualities requirements and make optimum use of CCV concepts at the same time. The mutual overlap of these requirements should be carefully defined.

1

It would be very important to consider the effects of geometrical alterations throughout the entire flight envelope of operation of the vehicle. It is one thing to design a flight control system that will give good flying qualities at a single flight condition but an entirely different matter to design a simple system for the entire range of operation of the vehicle. The bare airframe dynamics and the optimum flying qualities model changes as a function of flight condition. Although all the elements that make up a Level 1 airplane are broad in range at one flight condition, a minimum complexity control system that satisfies all elements for a Level 1 airplane at all flight conditions represents a formidable challenge to the Control Configured Vehicle designer.

APPENDIX I

LINEAR OPTIMAL CONTROL

The linear optimal control problem treated in Section III of this report is a variation of the general problem using the performance index

$$J = \int_{0}^{\infty} \left(x^{T} H^{T} Q H y + u^{T} R u \right) dt \tag{I-1}$$

subject to the constraint of the differential equation. of motion

$$\dot{\mathcal{L}} = F\mathcal{K} + G\mathcal{U}$$
 (I-2)

$$y = H \mathscr{L}$$
 (I-3)

The solution to this problem requires that the Euler-Lagrange equations be satisfied

$$\begin{bmatrix} \dot{x}(t) \\ \dot{\lambda}(t) \end{bmatrix} = \begin{bmatrix} F & -GR^{-1}G^{T} \\ -H^{T}QH & -F^{T} \end{bmatrix} \begin{bmatrix} x(t) \\ \lambda(t) \end{bmatrix} \qquad x(0) = \chi_{o}$$
(I-4)

subject to the boundary conditions on the state vector $X(0) = X_0$ and the Lagrange multiplier $\lambda(0) = \lambda_0$. The basic problem is to determine the boundary condition $\lambda(0)$ as a function of the state vector, thereby eliminating the two-point boundary value aspects of the problem which will then yield a closed form solution.

It has been shown by R. E. Kalman (Reference 7) and others that λ (0) and λ (0) are related by the equation

 $\lambda(0) = \mathcal{P}(\infty) \chi(0) \tag{I-5}$

where $\mathcal{P}(\infty)$ is the positive definite symmetrical solution to the matrix Riccati equation

$$0 = PF + F^{T}P - PGR^{-1}G^{T}P + H^{T}QH \qquad (I-6)$$

It has been shown (Reference 10, for instance) that the eigenvalues of the Hamiltonian system of Equation I-4 consist of the eigenvalues of the stable optimal closed-loop system with negative real parts Λ and the eigenvalues of the unstable "adjoint" system - Λ with positive real parts.

If we transfer Equation I-4 into the diagonal canonical form using a linear transformation

Preceding page blank

いたいとうないないで、 いたいないないできたいたからうまでいたいでしょうかいで、

$$\begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \boldsymbol{T}_{11} & \boldsymbol{T}_{12} \\ \boldsymbol{T}_{21} & \boldsymbol{T}_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{3}_{1} \\ \boldsymbol{3}_{2} \end{bmatrix}$$
(I-7)

5875584 577456

we would have

Marine and

$$\begin{bmatrix} \ddot{\boldsymbol{3}}_{1} \\ \dot{\boldsymbol{3}}_{2} \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}^{-1} \begin{bmatrix} F & -4\mathcal{R}^{1}G' \\ -H'QH & F' \end{bmatrix} \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{3}_{1} \\ \boldsymbol{3}_{2} \end{bmatrix}$$

$$= \begin{bmatrix} \Lambda & 0 \\ 0 & -\Lambda \end{bmatrix} \begin{bmatrix} \boldsymbol{3}_{1} \\ \boldsymbol{3}_{2} \end{bmatrix} \qquad \qquad \begin{bmatrix} \boldsymbol{3}_{1} & (0) \\ \boldsymbol{3}_{2} & (0) \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}^{-1} \begin{bmatrix} \boldsymbol{\psi}(0) \\ \boldsymbol{\lambda}(0) \end{bmatrix} (I-8)$$

where Λ is an $\pi \times \pi$ diagonal matrix with (distinct) negative real parts. The response can be then written

$$\begin{bmatrix} \mathbf{3}_{1}, (t) \\ \mathbf{3}_{2}, (t) \end{bmatrix} = \begin{bmatrix} e^{\mathbf{A}t} & \mathbf{0} \\ \mathbf{0} & e^{-\mathbf{A}t} \end{bmatrix} \begin{bmatrix} \mathbf{3}_{1}, (\mathbf{0}) \\ \mathbf{3}_{2}, (\mathbf{0}) \end{bmatrix}$$
(I-9)

or

$$\begin{bmatrix} \boldsymbol{\mathscr{X}}(t) \\ \boldsymbol{\lambda}(t) \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \begin{bmatrix} e^{At} & 0 \\ 0 & e^{At} \end{bmatrix} \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}^{-1} \begin{bmatrix} \boldsymbol{\mathscr{X}}(0) \\ \boldsymbol{\lambda}(0) \end{bmatrix}$$
(I-10)

For the time being, write the inverse of the transformation as

$$\begin{bmatrix} T_{II} & T_{I2} \\ T_{2I} & T_{22} \end{bmatrix}^{-1} \begin{bmatrix} \mathcal{K} & L \\ M & N \end{bmatrix}$$
(I-11)

then

$$\begin{bmatrix} \chi(t) \\ \lambda(t) \end{bmatrix} = \begin{bmatrix} T_{H} & T_{I2} \\ T_{ZI} & T_{Z2} \end{bmatrix} \begin{bmatrix} e^{\Lambda t} & 0 \\ 0 & e^{-\Lambda t} \end{bmatrix} \begin{bmatrix} K & L \\ M & N \end{bmatrix} \begin{bmatrix} \chi(0) \\ \lambda(0) \end{bmatrix}$$
(I-12)

from which we can obtain

STRATE STRATE

Service States and the service station

No. XALL CALL

an an a station of the survey of the state of the

an Stimble Cables for S

$$\lambda(t) = T_{11} e^{\Lambda t} K + T_{12} e^{\Lambda t} L \lambda(0) + T_{12} e^{-\Lambda t} M \chi(0) + T_{12} e^{-\Lambda t} N \lambda(0)$$
(I-13)

The optimal solution for $\varkappa(t)$, which is stable, cannot contain terms in $e^{-\Lambda t}$. Therefore, $\varkappa(o)$ and $\lambda(o)$ must be related by the expression.

$$\lambda(0) = -N^{-1} M \mathcal{K}(0)$$
 (1-14)

ALL AND ALL AND

Substituting this expression for λ (0) in Equation I-13 yields

$$\kappa(t) = T_{\mu} e^{\Lambda t} (K - L N^{-1} M) \kappa(0)$$
 (I-15)

From the identity

$$\begin{bmatrix} T_{II} & T_{I2} \\ T_{I1} & T_{I2} \end{bmatrix} \begin{bmatrix} K & L \\ M & N \end{bmatrix} = \begin{bmatrix} K & L \\ M & N \end{bmatrix} \begin{bmatrix} T_{II} & T_{I2} \\ T_{I1} & T_{I2} \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$$
(I-16)

We can obtain, among others, the following relationships

$$M = -NT_{21}T_{11}^{-1} \qquad (a) \qquad K = -LT_{22}T_{12}^{-1} \qquad (c)$$

$$N = (T_{22} - T_{21}T_{11}^{-1}T_{12})^{-1} \qquad (b) \qquad L = (T_{21} - T_{22}T_{12}^{-1}T_{11})^{-1} \qquad (d)$$
(I-17)

Substituting these expressions for K, L, M, and N in Equation I-15 yields

$$\kappa(t) = T_{11} e^{\Lambda t} T_{11}^{-1} \kappa(0)$$
 (I-18)

Comparing Equation I-5 and I-14 we find that the steady-state solution to the Riccati Equation is given by

$$\mathcal{P}(\omega) = -N^{-1}M \tag{I-19}$$

or, from a substitution in Equation I-19a we have

$$P(\infty) = T_{2/1} T_{1/1}^{-1}$$
 (I-20)

This result could have been shown in another way. From Equation I-8 we have

$$\begin{bmatrix} K & L \\ M & N \end{bmatrix} \begin{bmatrix} F & -GR^{\cdot 1}G' \\ -H'QH & -F' \end{bmatrix} \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} = \begin{bmatrix} \Lambda & 0 \\ 0 & -\Lambda \end{bmatrix}$$
(I-21)

Expanding the left-hand side of Equation I-21 yields

ning isa mangang na manang na manang na mangang na pangang na mangang na pangang na pangang na pangang na pang

$$\begin{bmatrix} KFT_{11} - LH'QHT_{11} - KGR^{-1}G'T_{21} - LF'T_{22} & KFT_{12} - LH'QHT_{12} - KGR^{-1}G'T_{22} - LF'T_{22} \\ MFT_{11} - NH'QHT_{11} - MGR^{-1}G'T_{22} - NF'T_{21} & MFT_{12} - NH'QHT_{12} - MGR^{-1}G'T_{22} - NF'T_{22} \end{bmatrix}$$

$$= \begin{bmatrix} \Lambda & 0 \\ 0 & -\Lambda \end{bmatrix}$$
(I-22)

From the lower left-hand part of the partitioned matrix of Equation I-22 we have that

$$\mathsf{MFT}_{n} - \mathsf{NH}'\mathsf{Q}\mathsf{HT}_{n} - \mathsf{M}\mathsf{G}\mathsf{R}^{-1}\mathsf{G}\mathsf{T}_{n} - \mathsf{N}\mathsf{F}'\mathsf{T}_{n} = \mathsf{O}$$

Substituting $M = -NT_{2}$, T_{11} , and post multiplying the entire equation by $+T_{11}$, and pre-multiplying by $-M^{-1}$ yields

$$T_{2i}T_{ii}^{-1}F + F^{-1}T_{2i}T_{ii}^{-1} - T_{2i}T_{ii}^{-1}GR^{-1}G'T_{2i}T_{ii}^{-1} + H'GH = 0$$
(I-23)

If we compare Equation I-23 with the Riccati Equation

$$PF + F'P - PGR'G'P + H'QH = 0 \qquad (I-24)$$

we have the same result as in Equation I-20, namely that

$$\mathcal{P}(\infty) = \mathcal{T}_{2i} \mathcal{T}_{i}^{-1} = (\mathcal{T}_{ii}^{-1})' \mathcal{T}_{2i}'$$
(I-25)

A similar development involving the upper-right partitioned matrix of Equation I-22, i.e., that

$$KFT - LH'QHT_{12} - KGR^{-1}T_{22} - LF'T_{22} = 0 (I-26)$$

will yield another result. Substituting $\mathcal{K} = -\mathcal{L} \frac{\tau_2}{22} \frac{\tau_2}{12}^{-1}$ post multiplying the entire equation by $-\mathcal{L}'$ and pre multiplying by $+\mathcal{T}_{12}^{-1}$ yields

$$T_{22}T_{12}^{-1}F + F'T_{22}T_{12}^{-1} - T_{22}T_{12}^{-1}GR^{-1}G'T_{22}T_{12}^{-1} + H'QH = 0 \qquad (I-27)$$

or

$$P(\infty) = T_{2} T_{1}^{-1} = T_{22} T_{12}^{-1}$$
(I-28)

Therefore, once we know the eigenvectors of the Hamiltonian system of Equation I-4 we can directly compute the optimal feedback control law. The technique shown in this section is independent of the order of the system and the number of controllers of the dynamic system. Equations I-18 and I-20 show that the feedback gains and the regulator transient response are directly related to the eigenvectors of the system. Those eigenvectors are a function of the weighting matrices Q and R in the performance index.

Example

Consider the two controller, second order system described by the equations

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -2 & 2 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ y_2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
(I-29)

It is desired to find the optimal control law that will satisfy the performance index

$$2V = \lim_{u} \int_{0}^{\infty} (q_{1} x_{1}^{2} + q_{2} x_{2}^{2} + r_{1} u_{1}^{2} + r_{2} u_{2}^{2}) dt \qquad (I-30)$$

where $q_1 = q_2 = r_1 = r_2 = 1$

The Hamiltonian system for this example is

$$\begin{bmatrix} x_{1} \\ x_{2} \\ \lambda_{1} \\ \lambda_{2} \end{bmatrix} = \begin{bmatrix} -2 & 2 & -1 & 0 \\ 1 & -3 & 0 & -1 \\ 1 & 0 & +2 & 1 \\ 0 & 1 & 2 & +3 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \lambda_{1} \\ \lambda_{2} \end{bmatrix}$$
(I-31)

whose characteristic polynomial is given by

$$\Delta(\mathbf{s})\overline{\Delta}(\mathbf{s}) = (\mathbf{s}^2 + 5.55 \mathbf{s} + 5.89) (\mathbf{s}^2 - 5.55 \mathbf{s} + 5.89)$$

= $(\mathbf{s}^\pm 4.115) (\mathbf{s}^\pm 1.44)$
(I-32)

The left half plane roots, i.e., the eigenvalues of the closed-loop optimal system, are given by

and it is necessary to find the two eigenvectors of Equation I-31 associated with these two eigenvalues

The eigenvector transformation is found to be

a service and a service of the servi

$$\mathcal{T} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ .467 & -.934 & 1 & 1 \\ .369 & .147 & 1 & 1 \\ .271 & -.093 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \mathcal{T}_{11} & \mathcal{T}_{12} \\ \mathcal{T}_{21} & \mathcal{T}_{22} \\ 1 \end{bmatrix}$$
(I-33)

where the two blank columns represent the eigenvectors associated with the eigenvalues $S_{3,4} = +1.44, +4.1/5$ From Equation I-25, we have

$$P(\infty) = + T_{2I} T_{II}^{-1} = + \begin{bmatrix} .369 & .147 \\ .277 & -.098 \end{bmatrix} \begin{bmatrix} 1 & I \\ .467 & -.984 \end{bmatrix}^{-1}$$
$$= \begin{bmatrix} +.299 & +.153 \\ +.153 & +.255 \end{bmatrix}$$
(I-34)

dorfer 14, octour tellfen die dette ferheren gescherten beseten anderen geschert Valley werrieten gescherten o

which is a positive definite symetric matrix. The optimal control law becomes

$$\mathcal{U} = -\mathcal{R}^{-1}G'\mathcal{P}_{\mathcal{K}} = -\begin{bmatrix} +.299 & +.153 \\ +.153 & +.256 \end{bmatrix} \begin{bmatrix} \mathcal{L}_{1} \\ \mathcal{L}_{2} \end{bmatrix}$$

and the closed-loop optimal regulator description is

間にないいました

and the second states and the second states

the track is intra the state of the second second in the second second

$$\dot{\chi} = (F - GK) \chi$$

$$\begin{bmatrix} \dot{\chi}_{1} \\ \dot{\chi}_{2} \end{bmatrix} = \left\{ \begin{bmatrix} -2 & 2 \\ 1 & -3 \end{bmatrix} - \begin{bmatrix} .299 & .153 \\ .153 & .256 \end{bmatrix} \right\} \begin{bmatrix} \chi_{1} \\ \chi_{2} \end{bmatrix}$$

$$\begin{bmatrix} \dot{\chi}_{1} \\ \dot{\chi}_{2} \end{bmatrix} = \begin{bmatrix} -2.299 & 1.848 \\ .848 & -3.256 \end{bmatrix} \begin{bmatrix} \chi_{1} \\ \chi_{2} \end{bmatrix}$$
(I-36)

whose characteristic polynomial is given by

Station of the same of the sam

$$\Delta(s) = s^{2} + 5.55s + 5.87$$
 (I-37)

as predicted by Equation I-32. The regulator transient response is given by Equation I-18.

$$x(t) = T_{ij} e^{At} T_{ij}^{-1} x(0)$$

which, for our example becomes

. . .

$$\begin{bmatrix} \varkappa_{1}(t) \\ \varkappa_{2}(t) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ .467 & -.984 \end{bmatrix} \begin{bmatrix} e^{-1.44t} & 0 \\ 0 & e^{-4.115t} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ .467 & -.984 \end{bmatrix}^{-1} \begin{bmatrix} \varkappa_{1}(0) \\ \varkappa_{2}(0) \end{bmatrix}$$
or
$$\varkappa_{1}(t) = (.697 e^{-1.44t} + .322 e^{-4.115t}) \varkappa_{1}(0) + .690 (e^{-1.44t} - e^{-4.115t}) \varkappa_{2}(0)$$

$$\varkappa_{2}(t) = (.326 e^{-1.44t} - .317 e^{-4.115t}) \varkappa_{1}(0) + (.322 e^{-1.44t} + .679 e^{-4.115t}) \varkappa_{2}(0)$$

$$(I-38)$$

APPENDIX II CONJUGATE GRADIENT COMPUTER PROGRAM

The flow chart and listing for the conjugate gradient program used in Section IV of the report are given below.

۰.

観ぎ

continued . . .

e Server and STR

2

12

A FOR STORE STORE

continued . . .

INPUT

70;

of multiplication

hillin She

いたいたいたいた

All input is read in NAMELIST form:

$$\mu(3) = \text{ initial input steps of } \delta_{e}, \delta_{i}, \delta_{o}$$

$$L(4 \times 4) = \text{model F matrix}$$

$$Q(4) = \text{weighting matrix on states}$$

$$\chi_{L}(3) = \text{initial values on } \lambda_{1}, 2, 3$$

$$TITLE = (\text{any 80 characters})$$

$$\mathcal{Z}(40) = \text{constants for F, G, } d_{1}, d_{2}, m_{1}, m_{2}$$

$$\text{matrices:}$$

$$F = \begin{bmatrix} \mathcal{Z}(1)\mathcal{K}_{A} + \mathcal{Z}(2) & -32.17 & 0 & \mathcal{Z}(3)\mathcal{K}_{A} + \mathcal{Z}(4) \\ 0 & 0 & 1 & 0 \\ \mathcal{Z}(5)\mathcal{K}_{A} \cdot \mathcal{K}_{L} + \mathcal{Z}(6) & 0 & \mathcal{Z}(7)\mathcal{K}_{A} \cdot \mathcal{K}_{L} + \mathcal{Z}(8) & \mathcal{Z}(9)\mathcal{K}_{A} \cdot \mathcal{K}_{L} + \mathcal{Z}(10) \\ \mathcal{Z}(11) & 0 & 1 & \mathcal{Z}(12)\mathcal{K}_{A} \cdot \mathcal{K}_{L} + \mathcal{Z}(13) \end{bmatrix}$$

$$G = \begin{bmatrix} Z(14) \cdot K_{A} & Z(15) & Z(16) \\ 0 & 0 & 0 \\ Z(17)K_{A} \cdot K_{L} & \overline{Z}(18) & Z(19) \\ Z(20) & \overline{Z}(21) & \overline{Z}(22) \end{bmatrix}$$

$$d_{I} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ Z(23) + \overline{Z}(24)K_{A} \end{bmatrix} d_{Z} = \begin{bmatrix} Z(25)K_{A} \\ \overline{Z}(26) \\ \overline{Z}(27) \end{bmatrix} m_{I} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \overline{Z}(28) \end{bmatrix} m_{Z} = \begin{bmatrix} 0 \\ 0 \\ \overline{Z}(29) \\ \overline{Z}(28) \end{bmatrix}$$

 $DT = \Delta$ time increment NTP = number of time points V =weight on drag \mathcal{T} = weight on WRBM CA = initial constant for α_i (defaulted to 1.) **REDUCE** = reduction multiple for ω_{c} update (defaulted to . 1) $LOOP = \max \text{ number of loops in } \alpha_i$ updates (defaulted to 10) NCYCLE = max number of conjugate gradient iterations (defaulted to 10) XJSTOP = J convergence test: stops if $|J_{i-1} - J_i| \leq |XJSTOP \cdot J_i|$ (defaulted to .005) IPRINT = to print intermediate interations set to 1 if not set to 0. (defaulted to 1) = initial tail area ratio KA = initial tail length ratio KL

OUTPUT

The output form is:

input data $\begin{cases}
 Title Date \\
 Final values wanted for states: <math>q, \omega, \dot{\omega}$ Model 1 matrix $Q \\
 V \\
 T
 \end{bmatrix}$

Title Date Icycle J Time histories of: Time, ΔV , θ , q, α , Δ Drag, Δ WRBM Drag WRBM ∫∆ DRAG each ĴWRBM iteration KA KL δ_{e} δ_{i} δ_{o} $\lambda_{1}, \lambda_{2}, \lambda_{3}$ F matrix Linear search values for α_i , J

LAND AND

for

```
CONJUGATE GRADIENT METHOD FOR CCV , TO FIND TAIL AREA, LENGTH, AND CONSTANT
С
   CONTROL INPUTS DE, DI, DO FOR A 46 PULL UP
С
      DIMENSION X(4,1), XOUT(4,51), F(4,4), G(4,3), U(3), L(4,4), C(3), Q(4),
     *XL(3),TITLF(20),FFDM(4,4),FGDM(4,3),GCDM(3,3),DFFA(4,4),DFFL(4,4),
     *DFGA(4,3),DFGL(4,3),DGGA(1,3),DGGL(1,3),D2(3,1),M2(3,1),FML(4,4),
     *SB[4,3),PHI1(4,4),PH12(4,4),Z(40),TIME(51),DFA(4,4),DFL(4,4),
          DGA(4,1),TM2M2(3,3),TEMP1(4,4),TEMP2(4,4),TEMP3(4,4),FMLTQ(4,4)
     *, DFATQ(4,4), DFLTQ(4,4), SKA(4,1), SKL(4,1), PHI2G(4,3), PHI2GU(4,1),
     *DRAG(51),WPBM(51),XT(1,4),TEMP4(4,4),SKAT(1,4),SKLT(1,4),SBT(3,4),
     *A(8), APPFV(8), ULAST(3), XLLAST(3), DELJ(8)
      REAL KA, KL, L, MI, M2, KALAST, KLLAST
      RFAL*8 TDATE
      NAMELIST/INPUT/U,L,C,Q,XL,TITLE,Z,DT,NTP,V,T,CA,REDUCF,LOCP,NCYCLF
     +,XJSTOP, IPRINT,KA,KL
      CALL CLEAR(CA, DELJ(8))
      CA=1.
      XJSTOP=.005
      REDUCF=.1
      LCOP=10
                                         Reproduced from
best available copy.
                                                         0
      NCYCLF=10
      TDELJ=1
      IPRINT=1
      CALL DATF(TDATE)
    1 READ(5, INPUT, END=9999)
      WRITE(6,20)TITLE, YDATF, (C(I), I=1,3), ((L(I,J), J=1,4), i=1,4)
   20 FORMAT(1H1+2X+20A4+10X+A8+//+2X+*MODEL 0+ALPHA+ALPHA-DOT AT FINAL
     *TIME ARE: ',3E17.6,//,2X,'MODEL L MATPIX 1S::,/,(4E16.6))
      WRITE(6,21) (Q(I),I=1,4),V,T
   21 FORMAT(//,2X,'0 = ',4F17.6,/,2X'V = ',F17.6,/,2X,'T = ',F17.6)
      ISTOP=0
      ICYCLF=0
С
   SET UP VARIABLES WHICH ARE NOT FUNCTIONS OF KA.KL
      F(1,2) = -32.17
      F(2,3)=1.
      F(4,1)=Z(11)
      F(4,3+=1.
      G(1,,,=Z(15)
      G(1,3) = Z(16)
      G(3,2)=Z(18)
      G(3,3)=Z(19)
      G(4,2)=Z(21)
      G(4,3)=Z(22)
      D2(2,1)=2(26)
      D2(3,1)=2(27)
      M1=Z(28)
      DD1A=2(24)
      DD2A=2(25)
      42(2+1)=7(29)
      M_{2}(3,1)=Z(30)
      DFA(1,1)=2(2)
      DFA(1+4)=Z(4)
      DGA(1,1) = 7(14)
      DGA(4+1)=7(20)
      DO 30 1=1,3
   30 TEMP1(1,1)=M2(1,1)+T
      CALL MATMPY(M2, TEMP1, TM2M2, 3, 1, 3, 3, 4, 3)
   35 ICYCLF=ICYCLF+1
   36 CONTINUE
```

The state of the s

14

1

79

and the second and the second second second second and the second and the second s

```
SET UP TERMS WHICH DEPEND ON KARKL NEEDED FOR J CALCULATIONS
С
      F(1,1)=Z(1)+Z(2)*KA
      F(1,4)=Z(3)+Z(4)*KA
      F(3+1)=Z(5)+Z(6)*KA*KL
      F{3,3)=Z{7}+7{8}*KA*KL
      F(3,4)=Z(9)+Z(10)*KA*KL
      F(4,4)=Z(12)+Z(13)*KA*XL
      G(1,1)=Z(14)*KA
      G(3,1)=Z(17)*KA*KL
      G(4.1)=Z(20)*KA
      D1=Z(23)+Z(24)*KA
      D2(1,1)=2(25)*KA
      CALL MATFXP(4, DT, F, PHIL, PHI2, TEMP1, TEMP2, 4, 4, 4, 4, 4, LT)
      IF(LT.F0.0)G0 T0 40
      WRITE(6,37)LT,DT
   37 FORMAT()HO,3X, MATEXP FAILED, LT = "12." DT = ",FR.5)
   38 WRITE(6,39)((F(1,J),J=1,4),I=1,4)
   39 FORMAT(1H0.3X, "F MATRIX", /, (4E16.6))
      GO TO 1
   40 DD 41 I=2, NTP
   41 TIMF(1)=TIMF(1-1)+DT
      CALL MATMPY(PHT2,G,PHI2G,4,4,3,4,4,4)
      CALL MATMPY(PH12G, U, PH12GU, 4, 3, 1, 4, 3, 4)
      CALL MATADD(F,L,FML,4,4,4,4,4,1)
   SET UP MATRICES WHICH DEPEND ON KA.KL . FOR J CALCULATIONS
C
      00 45 1=1.3
   45 TEMP1(1,1)=02(1,1)*V
      CALL MATMPY(D2, TEMP1, TEMP2, 3, 1, 3, 3, 4, 4)
      CALL MATADD(TEMP2+TM2M2+TEMP1+3+3+4+3+4+0)
       nn 46 [=],4
      DD 46 J=1.3
   46 TEMP2(J, I)=G(I, J)+Q(1)
       CALL MATMPY(TEMP2,G, TEMP3, 3, 4, 3, 4, 4, 4)
       CALL MATADD(TEMP3, TEMP1, GGDM, 3, 3, 4, 4, 3, 0)
       DO 47 1=1.4
      PO 47 J=1.4
   47 FM) TQ(1,J)=FML(J,1)+Q(J)
       CALL MATMPY(FMLTQ, FML, FFDM, 4, 4, 4, 4, 4, 4)
       FFDM(4+4)=FFDM(4+4)+V+D1++2+T+M1++2
       CALL MATMPY (FMLTQ, G, FGDM, 4, 4, 3, 4, 4, 4)
       FGDM(4,1)=FGDM(4,1)+V+D1*D2(1,1)
       FGDM(4,2)=FGDM(4,2)+V+D1+D2(2,1)+T+M1+M2(2,1)
       FGDM(4,3)=FCDM(4,3)+V*D1*D2(3,1)+T*M1*M2(3,1)
       IF(IDELJ.FQ.0) GO TO 60
     SET UP MATRICES FOR DELL CALCULATIONS
C.
       DGA(3,1)=Z(17)*KL
       DGL=2117;*KA
       DFA(3,1)=2(6)+KL
       PF4{3+3}=Z(8)*KL
       DFA(3,4)=2(10)*KL
       DFA(4,4)=Z(13)*KL
       DFL(3,1)=7(6)*KA
       DFL[3,3)=7(8)*KA
       DFL(3,4)=2(10)*KA
       DFL(4,4)=Z(13)*K4
       DD 50 T=1+4
    50 TEMP1(1,T)=DGA(1,1)=O(1)
       CALL MAYMPY(TEMP1,G,DGGA,1,4,3,4,4,1)
```

Second Second Second

HARD A PARTY REPORT A REAL AND A R

and the second second

Children and

a hand a second a second a second a second a second second as a second second second second second second second

80

```
00 51 [=1+3
   51 DGGA(1,I)=DGGA(1,I)+V+DD2A+D2(I,1)
      00 52 [=1,3
   52 DGGL(1,1)=DGL*Q(3)*G(3,1)
      DO 53 1=1,4
      10 53 J=1.4
   53 DFATQ(1,J)=DFA(J,1)*Q(J)
      CALL MATMPY(DFATQ,FML,DFFA,4,4,4,4,4,4)
      DFFA(4,4) = DFFA(4,4) + V = DD1A = D1
      00 54 [=3.4
      nn 54 J=1,4
   54 DFLTQ(J,1)=DFL(1,J)+Q(1)
      CALL MATMPY(DFLTQ,FML,DFFL,4,4,4,4,4,4)
      CALL MATMPY(DFATQ,G,DFGA,4,4,3,4,4,4)
      CALL MATMPY(FMLTQ,DGA,TFMP1,4,4,1,4,4,4)
      00 55 [=1,4
   55 DFGA(1,1)=DFGA(1,1)+TEMP1(1,1)
      DFGA(4,1)=DFGA(4,1)+V*DD1A*D2(1,1)+V*D1*DD2k
      PFGA(4,2)=DFGA(4,2)+V*DD1A*02(2,1)
      DFGA(4.3)=DFGA(4.3)+V*DD1A+C2:3.1)
      CALL MATMPY (DFLTQ, G, DFGL, 4, 4, 3, 4, 4, 4)
      NO 56 [=1.4
   56 DFGL(1,1)=DFGL(1,1)+FMLTQ(1,3)+DGL
   60 CONTINUE
C
       INITIALIZE FOR TIME = 0.
      XJ=0.
      DN 61 [=1,8
   61 DELJ(1)=0.
      DD 62 1=1,4
      X([,1)=0.
       SKA(1,1)=0.
       SKL(1,1)=0.
      DD 67 J=1,3
   62 SB([,J)=0.
       SUMD=0.
       SUMW=0.
       NN 100 [T=2,NTP
       IF(IDFLJ.EQ.0) GO TO 79
    CALCULATE SENSITIVITIES
C
       CALL MATMPY(DFA, X, TFMP1, 4, 4, 1, 4, 4, 4)
       00 65 [=1,4
   65 TEMP1(1,1)=TFMP1(1,1)+DGA(1,1)+U(1)
       CALL MATMPY(PHI2, TEMP1, TEMP2, 4, 4, 4, 4, 4, 4)
      CALL MATHPY(PHI1, SKA, TEMP1, 4, 4, 1, 4, 4, 4)
       CALL MATADD(TEMP1, TEMP2, SK4, 4, 1, 4, 4, 4, 0)
       CALL MATMPY(DFL, X, TEMP1, 4, 4, 1, 4, 4, 4)
       TEMP1(3,1)=TEMP1(3,1)+DGL=U(1)
       CALL MATMPY(PH12, TEMP1, TEMP2, 4, 4, 1, 4, 4, 4)
       CALL MATMPY (PHIL, SKL, TEMP1, 4, 4, 1, 4, 4, 4)
       CALL HATADD(TFMP1,TEMP2,SKL,4,1,4,4,4,4,0)
       CALL MATMPY(PHI1, SB, TEMP1, 4, 4, 3, 4, 4, 4)
       CALL MATADD!TEMP1, PH125, SB, 4, 3, 4, 4, 4, 0)
   70 CALL MATMPY(PHIL, X, TFMP1, 4, 4, 1, 4, 4, 4)
       CALL MATADD(TFMP1, PHI2GU, X, 4, 1, 4, 4, 4, 4, 0)
       IF(IDELJ.E0.0) GO TO 75
       nn 72 [=1,4
   72 XOUT(1, (T) = X(T, 1)
       DRAG(TT)=D1*X(4,1)+D2(1,1)*U(1)+D2(2,1)*U(2)+D2(3,1)*U(3)
```

No. of Contraction

ANK I

はためにないないですが、「かったないない」ではないでは、そのでは、そのではないです。ことである。 ことできる。 ここであるためにないたないできった。そので、ここでは、ここではないできた。そうないとう

ŕ

自然のです。

81

```
SUMD=SUMD+DRAG(IT)
      WRBH([T]=M1#X(4,1)+M2(2,1)#U(2)+M2(3,1)#U(3)
      SUMW=SUMW+WRRM([T]
   75 00 76 1=1.4
   76 XT(1,1)=X(1,1)
    INCREMENT J
C
      CALL MATMPY(FFDM, X, TEMP1, 4, 4, 1, 4, 4, 4)
      CALL MATMPY(FGDM, U, TFMP2, 4, 3, 1, 4, 3, 4)
      NO 77 [=1.4
   77 TEMP3(1,1)=2.*TEMP2(1 1)
      CALL MATADD(TEMP3, TEMP1, TEMP4, 4, 1, 4, 4, 4, 0)
      CALL MATMPVIXT, TEMP4, TEMPJ, 1, 4, 1, 1, 4, 1}
      XJ=XJ+TEMPJ+DT
       IF(IDFLJ.EQ.0) GO TO 97
    INCREMENT DELL
С
                                      Reproduced from
                                                      ê O
       00 80 1=1,4
                                      best available copy.
       SKAT(1,1)=SKA(1,1)
       SKLT(1,1)=SKL(1,1)
       00 80 J=1,3
       SBT(J,I)=SB(I,J)
   80
       CALL MATADD(TEMP1, TEMP2, TEMP3, 4, 1, 4, 4, 4, 7)
       CALL MATMPY(SKAT, TEMP3, TEMDJA, 1, 4, 1, 1, 4, 1)
       CALL MATMPY(SKLT, TEMP3, TEMPJL, 1, 4, 1, 1, 4, 1)
       CALL MATMPY(SBT, TEMP3, TEMP4, 3, 4, 1, 3, 4, 4)
       CALL MATMPY(DFFA, X, TEMP1, 4, 4, 1, 4, 4, 4)
       CALL MATMPY(DEGA, 1, TEMP2, 4, 3, 1, 4, 3, 4)
       CALL MATADD{TEMP1, TEMP2, TEMP3, 4, 1, 4, 4, 4, 01
       CALL MATMPY(XT, TEMP3, TF4P, 1,4,1,1,4,1)
       DELJ(4)=DELJ(4)+(TEMDJA+TEMP)*2.*DT
       CALL MATMPY(PFFL, X, TFMP1, 4, 4, 1, 4, 4, 4)
       CALL MATMPY(DEGL+U+TEMP2+4+3+1+4+3+4)
       CALL WATADD(TEMP1, TEMP2, TEMP3, 4, 1, 4, 4, 4, 0)
       CALL MATMPY(XT, TEMP3, TEMP, 1, 4, 1, 1, 4, 1)
       DELJ(5)=DELJ(5)+(TEMDJL+TEMP)*2.*01
       CALL MATMPY(XT, FGDM, TEMP1, 1, 4, 3, 1, 4, 4)
       DC 85 T=1.3
    R5 DELJ(5+T)=DELJ(5+T)+(TEMP4(T+1)+TEMP1(1+T))*2+*DT
    90 CONTINUE
   100 CONTINUE
   FINAL SUM UP OF J
С
       CALL MATMPY(GGDM+U+TEMP1+3+3+1+3+3+4)
       XJ=XJ+TIMF(NTP)*(U(1)*(EMP1(1+1)+U(2)*TEMP1(2+1)+U(3)*TEMP1(3+1))
       XADD=YL(1)*(X(3+1)-C(1))**2+XL(2)*(X(4+1)-C(2))**?
       ADD=(2(11)*X(1,1)+X(3,1)+F(4,4)*X(4,1)+G(4,1)*U(1)+G(4,2)*U(7)+
      *G(4,3)*U(3)-C(3))**2**1(3)
       XJ=XJ+XADD+ADD
       IF(IDFLJ.E0.0) GO TO 190
    FINAL SUM UP OF DELJ
C
       nFLJ(1)=(X(3,1)-C(1))**2
       DFLJ(2)=(X(4+1)-C(2))**?
       DFLJ3 = 7(11)*X(1,1)+X(3,1)+F(4,4)*X(4,1)+G(4,1)*U(1)+G(4,2)*U(2)
      $+G[4,3)*U[3)-C[3]
       DELJ(3)=DELJ3++2
       XLADD=0.
       XA4DD=0.
       DO 105 T=1.3
       XAADD=XAADD+2.*TIME(NTP)+U(1)+DGCA(1,1)+U(1)
   105 XLADD=XLADD+2.*TIME(NTP)*U(1)*DGGL(1.1)*U(1)
```

のないであるというないというないできたのであるというないできたので、

たいたいたいというのであるのであっていた。

and the second second

CASE SATISFIC COMPANY

states first states

n - Xina William

CONTRACT OF

```
DELJ(4)=DFLJ(4)+XAADD+XL(1)+SKA(3,1)+2.*(X(3,1)-C(1))+XL(2)*
     *SKA(4,1)*2.*{X(4,1)-C(2)}
      DFLJ(4) = DELJ(4) + XL(3) + (Z(11) + SKA(1,1) + SKA(3,1) + F(4,4) + SKA(4,1)) +
     *2.*(DELJ3)
      DELJ(4)=DELJ(4)+XL(3)*(DEA(4,4)*X(4,1)+DGA(4,1)*U(1))*2.*DELJ3
      DELJ(5)=DELJ(5)+XL4DO+XL(1)*SKL(3,1)*2.*(X(3,1)+C(1))+XL(2)*
     *SKL{4,1}*2.*(X(4,1)-C(2))
      DFLJ(5)=DELJ(5)+XL(3)+{7(11)*SKL(1,1)+SKL(3,1)+F(4,4)+SKL(4,1))+
     *2.*DELJ3
      DELJ(5)=DELJ(5)+XL(3)*DFL(4,4)*X(4,1)*2.*DFLJ3
      CALL MATMPY(GGD4, U, TEMP1, 3, 3, 1, 3, 3, 4)
      00 110 I=1.3
  110 DELJ(I+5)=DELJ(I+5)+2.*TIME(NTP)*TEMP1(I.1)
      00 115 I=1.3
  115 DFLJ(1+5)=DELJ(1+5)+XL(1)*SB(3,1)*2.*(X(3,1)-C(1))+XL(2)*SR(4,1)+
     *2.*{X(4:1)-C(2))
      00 120 I=1,3
      DFLJ([+5)=DFLJ([+5)+XL(3)*(2(11)*59(1.1)+59(3.1)+F(4.4)*59(4.1) +
     $G(4,1))*2.*DELJ3
  120 CONTINUE
      WRITE(6,125)TITLE,TDATE,ICYCLE,XJ
  125 FORMAT(1H1+2X+20A:+10X+A8+//+5X+*ICYCLF=*+13+4X+*J= *+F13+6+//)
      IF(ICYCLE.EQ.1) GO TO 135
C
    TEST FOR J CONVERGENCE
      [F(AHS(XJLAST-XJ).LF.ABS(XJSTOP+XJLAST)) GO TO 140
      IF(ICYCLF.GF.NCYCLF) GO TO 130
      IF(IPRINT_EQ.1) GP TO 135
      GO TO 150
  130 ISTOP=1
      ITER=ICYCLE-1
      WRITE(6,131)ITER
  131 FORMAT(1H0:2X, 'J FAILED TO SATISFY CONVERSENCE TEST AFTER ', 13. ' 1
     STERATIONS. FINAL TIME HISTORIES ARE: 1,//)
      GO TO 145
  135 ITFR=ICYCLE-1
      WRITE(6,136)1TER
  136 FORMATELHO, 2X, "AFTER ", T3, " ITERATIONS, TIME HISTORIES APE: ",//)
      GD TO 145
  140 ISTOP=1
      ITER=ICYCLE-1
      WRITE(5,14)) [TFR
  141 FORMAT(1H0,2X, J SATISFIED CONVERGENCE TEST AFTER 1,13, 1 ITERA: ION
     $S. FINAL TIME HISTORIES ARE: +,//)
  145 WR[TF(6,146)
  146 F7RMAT(3X+*TEME*,7X,*NFLTA V*,10X,*THFTA*,13X,*Q*,13X,*ALPHA*,12X,
     ** 0RAG* , 12X , * WRBM* , / )
      WRITE(6,147) {TIMF(I),(XOUT(J,1),J=1,4),DRAG(I),WRBM(I),I=1,NTP)
  147 FORMAT(19+F6.2+6E16.6)
      WRITE(6,148) SUMD,SUMW,KA,KL,(U(1),[=1,3),(XL(1),[=1,3)
  148 FORMAT(1HO, * INTEGRAL OF DRAG = *, E13.6,/,* INTEGRAL OF WRRM = *,
     *E13.6,// KA = ',F13.6,/,' KL = ',F13.6,//,' DF = ',E13.6,/,'
     *DI = '+F13.6,/,' DO = '+F13.6,//,' LAMBDA = '+3F17.6)
      WP[T<sup>c</sup>[6,39] ([F[1,J], J=1,4], J=1,4]
      IF(NCYCLE.E0.1) GO TO 1
      IF(ISTOP.FQ.1) GO TO 1
  150 CONTINUE
С
    CONJUGATE GRADIENT UPDATE 100P
      8D=8N
```

We wante all the state of the second state of

```
AN=1
      CO .55 I=1.8
  155 BN=8N+0ELJ[] +*2
      IF(ICYCLE.E0.1) GO TO 161
      RETA=8N/8P
      00 160 1=1,8
  160 A(I)=DFLJ(I)+RFTA+APREV(I)
      GD TO 165
  161 NO 162 T=1+8
  162 A(I)=DELJ(I)
    ONE DIMENSIONAL SEARCH LOOP FOR ALPHA
С
  165 [DELJ=0
      ALPHA=CA/SQRT(BN)
      XJLAST = XJ
      KALAST=KA
      KLLAST=KL
      DD 169 I=1,8
  168 APREV(I)=A(I)
      nn 169 I=1,3
      ULAST(I)=U(I)
  169 XLLAST(I)=XL(I)
  170 CONTINUE
      00 210 IL00P=1+L00P
  175 KA=KALAST-ALPHA+A(4)
      KL=KLLAST-ALPHA*A(5)
      DO 180 [=1,3
      U(1)=ULAST(1)-ALPHA+A(5+1,
  180 XL([)=XLLAST([)-ALPHA*A([)
      WRITE(6,185) ILCOP,ALPHA
  185 FORMAT(////.2X, IN ONE DIM. SEAPCH LCOP, ILDOP = '.13, ALPHA = '.
     *E13.6)
      GO TO 36
  190 WRITE(6,195) XJ
  195 \text{ FORMAT}(4X, *J = *, F13.6)
      IF(IL00P.EQ.1) GO TO 200
      TE(XJ.GE.XJLOOP) GO TO 230
      60 TO 205
  200 IF(XJLAST.LT.0.) GO TO 201
      IF(XJ.LT.1.00001*XJLAST) GO TO 205
      GN TO 203
     IF(XJ.LF..999999*XJLAST) GO TO 205
 201
  203 ALPHA=ALPHA*REDUCE
      IF(ALPHA.LT.1.E-20) GO TO 1
      GO TO 175
  205 XJLOOP=XJ
                             Reproduced from
      ALPHA=ALPHA+2.
                             best available copy.
  210 CONTINUE
  215 KA=KALAST-ALPHA+4(4)
      KL=KLLAST-ALPHA*A(5)
      DO 220 1=1,3
      U(1) = ULAST(1) - ALPHA + A(5+1)
  229 XL(I)=XLLAST(I)-4LPHA+4(I)
      GO TO 235
  230 ALPHA=(ALPHA/2.)*(XJ-4.*XJL00P+3.*XJLAST)/(2.*XJ-4.*XJL00P+2.*XJIA
     *ST)
      GO TO 215
  235 WRITE(6,240) ALPHA
  240 FORMAT(////+2X, COMPLETED ONE DIM. SEARCH LOOP, ALPHA = +, 513.6)
```

```
84
```

IDELJ=1 GN TN 35 9999 STNP END

7712519462

۲Ţ

LIST OF REFERENCES

- Hall, G.W. and Huber, R.W.: <u>System Description and Performance</u> <u>Data for the USAF/CAL Variable Stability T-33 Airplane</u>. AFFDL-TR-70-71, July 1970.
- 2. Anon: USAF Stability and Control Datcom. Air Force Flight Dynamics Laboratory, revised June 196?.
- 3. Newell, F.D.: Criteria for Acceptable Representation of Airplane Dynamic Responses in Simulations Used for Pilot Training. NAVTRADEVCEN 1146-1 September 1962 (revised August 1963)
- Chalk, C.R., et al: <u>Background Information and User Guide for</u> <u>MIL-F-8785B(ASG)</u> "Military Specification - Flying Qualities of Piloted Airplanes". AFFDL-TR-69-72, August 1969.

- 5. Etkin, B.: Dynamics of Flight. John Wiley & Sons, Inc., 1959.
- 6. Stein, G., and Henke, A.H.: <u>A Design Procedure and Handling-</u> <u>Quality Criteria for Lateral-Directional Flight Control Systems.</u> AFFDL-TR-70-152, October 1970.
- 7. Kalman, R.E. and Englar, T.: <u>Fundamental Study of Adaptive Control</u> System. Vol. I and II ASD-TR-61-27 March 1961 and March 1962.
- 8. Chang, S.S.L.: <u>Synthesis of Optimum Control System</u>. McGraw Hill Book Company, Inc., New York, 1961.
- Rynaski, E.G. and Whitbeck, R.F.: <u>The Theory and Application of Linear Optimal Control</u>. AFFDL-TR-65-28 (CAL Report No. 1H-1943-F-1) October 1965.

Bass, R.W.: <u>Machine Solution of High Order Riccati Equations</u>.
 4th Winter Institute on Advanced Control, University of Florida, 1967.

 Chen, R.T., Eulrich, B.J. and Lebacqz, J.V.: <u>Development of</u> <u>Advanced Techniques for the Identification of V/STOL Aircraft</u> <u>Stability and Control Variables</u>. CAL Report No. BM-2820-F-1, August 1971.