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TECHNICAL  REPORT SUMMARY 

The objective of this project  is  to combine a number of  recent 

advances  in finite element  theory and computer technology for analyz.ng 

cavities and structures   in  rock.    This computer program applies  to general 

three-dimensional  structures,  considers nonlinear material  properties   includ- 

ing homogeneous deformations and  inhomogeneous deformations due  to joints, 

anisotropic and time-dependent material  propertoes,  gravity  loading,  and 

sequence of construction or excavation. 

During the first half of this contract, work has been aimed at pro- 

ducing a user-oriented computer program. The work of writing the program was 

divided  into three areas: 

a. Input 

b. Execution and output 

c. Material properties 

The Input Section automatically generates the continuum part of the finite 

element mesh, including joint elements, allows the user to add other elements 

(beam, shell, truss) to the mesh, plots the result, reduces the bandwidth and 

reads loads, material properties, and other quantities necessary to the cal- 

culation. The Execution Section forms the global stiffness matrix and solves 

equations of equilibrium for displacements by an implicit method.  The material 

properties ere represented by subroutines within the Execution Section, which 

are written in a modular form so that if the general equations of nonlinear 

elasticity, viscoelasticity, viscoplasticity, or plasticity do not suit a 

particular problem they may be easily modified. This work is now complete 

except for linkage among the various sections to be checked out and for the 

efficiency of some operations to be Improved. 

iii 
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One of the guidelines for this project was that no major new research 

was to be done. Accordingly, the program uses existing finite elements, a 

proven form of the equation of equilibrium, existing material property descrip- 

tions, and an existing bandwidth reducer. However, a small amount of new work 

was done. A new joint element was developed and an existing concept for 

automatic mesh generation was greatly extended. Also, a form of Choleski 

decomposition was modified for efficient use of multibufferlng, resulting In 

substantial improvement In efficiency of solving equations of equilibrium using 

peripheral storage. 

During the first six months of this study, some new work was reported 

by other ARPA/Bureau of Mines contractors which has been incorporated in the 

program. Among these are some creep data obtained by W. A. Wawerslk of the 

University of Utah and strength/deformabi11ty data for faults by R. E. Goodman, 

F. E. Heuze, bnd Y. Ohnishi of the University of California, Berkeley. 

The technical work reporteH below Is dlvld8d Into four main parts. 

Section 3 describes the equations of equilibrium and the types of finite elements 

available In the program, Including the new joint element. Section h  describes 

the properties of rock Including anlsotropy, rate effects, joints, and homogen- 

eous Inelasticity. Section 5 describes the computer program. Most attention Is 

given to the processing of input data and to options available to the user for 

mesh generation, sequential excavation, or construction, automatic bandwidth 

reduction and plotting of the mesh. Some logical flow diagrams are given. 

Section 6 describes some example problems which have been solved during the 

checkout of the program. 

During the second half of this project work will concentrate on 

applications of the program to field situations in which measurements are 

available for comparison with results of analysts. 

iv 
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SECTION   1 

INTRODUCTION 

The purpose of this contract  Is  to combine a number of recent 

advances  ,n finite element  theory and computer technology  Into a computer 

program   or analya,„g structures and cayltles  in  rock.    This computer program 

PP to genera    three-dl.nslona,  structures,  considers nonlInear m te  lal 

op,es   .ncluing homogeneous defection and  Inho.geneous deformation due 

«Joint.,  an.sotrop.c and time-dependent material  properties, gravity  loading 

1:17::; rnst:u:tion or ex"vat'on- u"~the —- - ^ ^' pr« !«    analys.s and design, great effort has been made  to foresee diffi- 

cult es  in using  it.    For example, much  tedious „ork. «hich for^rly „as  done 

e user, has    een eiiminated by sophisticated .sh generators and a band- 

w.dth reducer.    Also. 5|„ce many prospective users may have access  to .J 

«000 6000 eguat.ons).  the program uses up-to-date multlbuffering technlgues 

r access.ng peripheral  storage units,  thus dramatlcaHy reducing co J      run 

t me   or out-of-core prohiems.    Pinaily. an attempt  is made to lengthen  t 

1 ">  -' « P~«- * «Mn.  It simple to add new elects and to 

oTand   o M      PrOPerty deSCr'Pti0n ^ 6V ■■aki"9 ^ ^»- •"'"•"« for and compat.ble „Ith a wide variety of co^uters. 

n» do        T r^0" ^ thiS  rePOrt  'S  t0 ■"""" What  the «"*"" Program 
ow does and „hat  it „11,  do „hen the present contract  is co^lete.    Lt of 

«he descnpt.on  Is given from the standpoint of a prospective user.    Mesh 

generate    the types of elements available,  the types of  loading and construction 

ZtZ T" ^ r Mt*rl" Pr0,,erti" ^ JOi"" — ^ aval, 
d      r bed.    Assurance  that  the program is „orklng properly  is given by comparing 

a a,yt,c solut.ons for one-.  t„o-. and three-dimensiona,  problems „it    the fin    e 

element formulat.on  I. also described.    AUo.  the structure of the code  is 
indicated by  logic diagrams. 
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The work which will be done In the second half of the contract period 

involves application of the code to actual m'nlng situations. During this 

phase, general features of the program such as the Joint element and the 

material property representations will be refined. Parameters will be 

selected for specific field conditions and an attempt will be made to match 

field data with calculations. The sites have not yet been selected. 

To summarize, this report describes a finite element computer program 

which Incorporates a number of good features which are not all available In any 

other program.  By means of comparison with analytic solutions, evidence Is given 

that the program is consistent with the assumptions under which It was formu- 

lated and written, and that It contains no programming errors. The task of 

demonstrating that It accurately represents field conditions Is left to the 

second phase of the contract. 
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SECTION 2 

PHYSICAL ASPECTS OF ROCK AND SUPPORT SYSTEMS 
WHICH THIS PROGRAM REPRESENTS 

This section describes  the scope and specific goals of  the pr^nt 

computer program.    These are representation of gravity and  live  loading 

properties of homogeneous  rock  including anisotropic.   inelastic and Viscous 

effects    properties of jointed  rock, excavation and construction,  an'd geometry 
of cavities and support systems. 

To  illustrate  the capability of the program three typical  problems 

are described below.    These problems have not actually been solved with-the 

present program,  but  they could be solved at any  time.    The first  is  Mlus- 

trated  in Figure 2-1.     A section of  tunnel   is   to be excavated   in a  region 

containing a major joint.    The properties of  the joint are assumed to be known. 

The  rock adjacent  to the joint   is assumed  to be homogeneous and  to have viscous 

properties which can be  represented by a visco-plastic model.     In Step  I     the " 

tunnel  has not yet been excavated.    Stress  in  the rock  is  computed by applying 

static overburden  to the edges of the finite element mesh.    Then  the tunnel   is 

excavated by  removing appropriate elements.    At each stage of the excavation 

the  tunnel   roof  is propped by  truss and beam elements.    Eventually    the 

tunnel   Is  fully open and  the  final  supports are  installed.     Each stage  is 

associated with an elapsed  time,  during which  the  rock flows   in a visco- 

plastic manner.    At each  intermediate stage and at a stage  the user defines 

to be final,  the stresses   in  the  rock and  in  the support elements are printed. 

The second problem  is   illustrated  in Figure 2-2.    A bank  is  to be 

excavated  in a  rock such as «hale having nonlinear, anisotropic stress/strain 

properties and an anisotrop!, fracture criterion.     In Step  1.   the  in situ states 

of stress are computed bv applying gravitational   forces   in a steP-by-steP 

fashion  throughout   the grid.     In subsequent steps, elements  are  removed  in any 

sequence  the user desires.     Between excavation steps  the  remaining rock will 

be checked for fracture which would correspond  to   spall and sliding  in an 
actual   field situation. 
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STEP 5 AAtt70 

FIGURE 2-].  TWO-DIMENSIONAL fUNNEL WITH EXCAVATION 
TEMPORARY BRACING AND JOINTS 



A IW215-2299 

BEDDING PLANE 

REGION TO BE EXCAVATED 

STEP 1.  GRAVITY LOADING APPLIED TO ALL NODAL POINTS 

STEP 2.  EXCAVATION 

CHECK FOR FRACTURE HERE 

STEP 3.  EXCAVATION 

FIGURE 2-2.  EXCAVATION OF BANK 
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The third example is an extension to three dimensions of the first 

example. The final stage In the calculation, at which the section of tunnel 

under consideration is fully excavated, is Illustrated in Figure 2-3. Notice 

that the plane of the joint is not parallel to the axis of the tunnel. This 

problem Is one of the largest and most difficult which the code Is intended to 
handle. 

Several important questions remain unanswered. First, how much do 

such analyses cost In terms of computing time and engineering preparation and 

interpretation? Second, are sufficient field data available for nonlinear and 

anisotropic properties of the rock and for the properties of the joints to be 

accurately modeled? Part of the answer to the first question can be found In 

Section 6 of the present report in which the computer times for solving 

simple checkout problems are given. More information on costs will be forth- 

coming at the end of this project.  It appears at present that sufficient 

field data are not available for accurate modeling. Hopefully, the develop- 

ment of analytic tools Midi as the present program will stimulate the 

necessary measurements. 
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SECTION 3 

APPLICATION OF FINITE ELEMENT THEORY 

This section discusses the present formulation of equations of 

equilibrium. The provisions to extend this formulation to Hrge deformations is 

also described. Then the typ« of elements, including truss, beam, plane strain 

and axlsymmetric. three-dimensional and thick shell elements are described.  In 

addition, a new element for representing slip and debondlng along planar Joints 

Is described. 

3-'  SOLUTION OF NONLINEAR EQUATIONS OF EQUILIBRIUM 

The matrix equation of equilibrium for a structural system with 

material nonllnearlty Is: 

K (y) u - P (3-1) 

where the Instantaneous stiffness matrix (K)  Is a nonlinear function of the 

displacement vector (u). P  Is the vector containing external loads. There 

exist numerous methods of solving the above system of nonlinear equations.  In 

general, these methods can be divided Into two classes: Iterative methods and 

incremental methods. 

Iterative methods apply the total load initially and approach the 

solution by modifying the stiffness matrix and/or modifying the locd vector. 

Modification of the stiffness matrix In general accelerates the convergence 

but Is computationally costly. The optimum may be achieved by occasional 

stiffness reformulation. 



A R-7215-2299 

In  Incremental  methods  the  loads  are applied  In several  steps  and an 

Incremental   form of the Equation 3-1   Is solved. 

K    Au jLl -n --n+1 AP 
n+1 (3-2) 

where 

Au n+1 -n+1       -n 

^n+1     "    Pn+l   " en 

It   is   Important  to note that  the stiffness matrix    Kn    can only be formed based 

on  the displacement vector from the previous step    u     which creates some 
-n 

step-wise error.     In  this simple  Incremental   technique  the step-wise errors 

can accumulate and  lead  to considerable total  error.    To prevent  this accumula- 

tion of the step-wise error, a nodlfied form of the  load vector  is  used. 

K    Au .. -n —n+1 P-n+l (3-3) 

where 

En+1 
Total   load vector at  the end of  the  (n+1)th step 

F -    Vector of the  internal   resisting forces at  the end of  the 
th 

n      step 

By using  this method of  load vector correction  the equilibrium is satisfied at 

the beginning of each  incremental  step and  thereby  the accumulation of  the 

step-wise   error  is prevented.     Satisfaction of equilibrium is assured  in spite 

of errors or approximations  in  the stiffness matrix and,  therefore,  the  reformu- 

lation of  the stiffness matrix  is noi  required at every step.    However,   the 

error  in each step  is directly dependent on  the approximation of  instantaneous 

stiffness matrix. 
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An alternative method Is to apply the total force from the beginning, 

In which case the load In Equation 3-3 will be 

Pn " Ptotal     ^ N) 

It should be noted that the application of the total loads makes this method 

equivalent to an Iterative scheme with load vector correction which was 

previously discussed. However, the loads In general have a specified history 

dictated by the sequence of application, sequence of construction and excava- 

tion, and the time phenomenon associated with the viscous material properties. 

In most practical problems, the specified history of loading Is a series of 

step functions. This Is true In case of construction and excavation which can 

be considered as a discontinuity In force-displacement relation and an abrupt 

change In the Instantaneous stiffness matrix. 

An efficient scheme Is to apply the total of the step-wise loading 

at each stage and then carry out several Iterations with occassional stiffness 

reformulation to accelerate the convergence. This scheme is summarized In the 

following steps. 

For each step: 

a. Compute    un - u^,  + Aun   (for first step;    u    - 0) 

b. Compute the strains   (E  )  or strain  Increments  (Ae  )   using  the 

derivatives of  the shape functions  for each element which have 

been  initially computed and stored 

c*       *•      For time-independent materials compute the stress   (0  )  and 

the  Instantaneous stress-ktrain  relations   (C )   (see section on 
-n 

material  properties) 

2.      For vlsco-elastic elements 

I.       Compute stresses    0    - C   (E    - EC  .)    where    C    Is 
n     -n  -n-l        - 

the elastic stress-strain matrix, En is the total strain 
C 

•nd £„.] !• the total creep strain 

10 
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r 
ii.  Using the stresses, compute e  which is the total 

-n 
creep strain at the end of the time step (see section on 

material properties) 

fii. Compute effective stress 

ön - C (e - cC) 
-n    - *-n  -n 

d. Compute the internal resisting forces from the stresses (effec- 

tive stresses for viscoelastic elements).  If it is stiffness 

update cycle, compute stiffness matrix. 

e. Solve Equation 3-3 to obtain Au +.. Compute y  = HAu ,1. 

f. If a specified number of iteration has been reached or If 

Y < E  (e is a specified quantity), go to Step g; otherwise, 

go to Step a and repeat the iteration. 

9«  Apply the next loading step an^ go to Step a. 

3.2 EQUATIONS OF EQUILIBRIUM FOR LARGE DEFORMATIONS 

The method of large deformation finite element analysis to be used In 

the present computer program was Initially introduced by Sharifi and Yates, 

Reference 3-1. 

The matrix equations of equilibrium (or motion) are derived from an 

incremental virtual work expression and the original configuration of the finite 

element system is taken as the reference configuration. This choice of the 

reference state eliminates the need for updating of the coordinates of the 

nodal points which Is computationally a costly operation. 

11 
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, , v-.rtual work expression U 

The incremental v.rtu 

. fi^elj ^ 

(3-M 

where 

^u. 

fctt 

Slj 

^e 
ij 

t 0f displacement vector 
. component dlsplacement vector 

^ntal component of dlsp^a 
. »ncrementat e« v 

„ent of traction vector 

' C0mp0nent      ent of traction vector 
. incremental component 

f  Piola stress tensor 
„    Component .       ^^ tenSor 
. lncre^ntal component of ^ 

ont of incremental stra 
Linear component tensor 

-nt of Incremental Nonlinear component of 

^e U 
AU1J+  i'1    ' 

^k.i^.i 

(3-5a) 

(3-5b) 

shipe functions 

U 
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~1 

« 
HU, (3-6a) 

. 
Au,    =    H AU (3-60 

where    H    is  the vector of  the shape functions  and    U.     and    ALL    are the 

vectors of the total  and  inc.emental  displacements of the element nodes. 

Without  loss of generality the remaining part of this section will 

be devoted to the derivation of the appropriate matrices  for  the two- 

dimensional quadrilateral  element. 

Substituting the Equation 3-6 into Equation 3-5 wi11 result in 

the following expressions for the strain increments in terms of the nodal 

point displacements:    , 

Ae 
XX *'x    ^+   ^xyx)     (H.xAyx)   +   (H.xyy)     (HJxAU) 

AEyy   a   % AU-v + {H-'y VJ   % V + (H.y yy)    (H.y Mly) 

Aexy    =    tl'x % + H-'y % +  % yx)     <H.y AUJ  +   (H>y yy) 

(3-7) 

(H.x  %)   ^   (H.x yx)     (H      Ayx)   +   (H.     AUJ 
y   -y 

The above equations can be written as matrix fo rm 

A§ " § (I + §) Ay = B AU (3-8) 

where I is the identity matrix and 

13 
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XX 

E      -     f Z 
yy 

xy 

AU -Xi 

AU 
i -y 

(3-9) 

H, 0 -'x 
X  H'x 8y »•* 

Ü H.w E      = 
-'y yy   H.y Uy b.y 

H.x B »y 

(3-10) 

B     is  the usual   strain-displacement matrix for  infinitesimal  deforma- 

tion and    E    is  the  large deformation contribution. 

The  linear and geometric stiffness matrices and  the load correction 

vector are 

be    ■ C  B dv m 
m 

/ B    S  B dv m 
m 

f    = yvs dv 
m 

(3-11) 

(3-12) 

(3-13) 

m 

where    v      is  the area of each element  in original   configuration,  and    C    Is 
m 

the  instantaneous stress-strain  relation 

AS    =    C A e (3-14) 

Finally, the matrix equafon of equilibrium is 

(Ke + Kg) AU = R - F (3-15) 

\k 
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It Is important to note that for the computation of the above matrices 

only the derivatives of the shape functions H,x and H,y at original geometry 

of each element is required. Therefore, these derivatives at integration 

points, can be computed in the first part of the program. 

3.3 STRUCTURAL FINITE ELEMENTS 

A description of the structural elements Incorporated In this computer 

program are given here. The beam and thick shell elements have linear elastic 

properties. All other elements are capable of representing nonlinear properties. 

3.3.1  THREE-DIMENSIONAL TRUSS ELEMENTS 

The truss element Is the conventional space truss member which can 

resist compression or tension along its axis.  It can also be used to model 

bolts. The truss member is subject to three translations at each end of the 

member as shown in Figure 3-la. The member stiffness matrix is of order 

6x6. The material and geometrical properties are defined by the tangent 

Young's modulus, and the cross-sectional area of the element. 

3.3.2 THREE-DIMENSIONAL BEAM ELEMENTS 

The  three-dimensional  beam element   is  subject to three translations 

and three  rotations at each end of the member.    The generalized forces and  the 

generalized displacements associated with  the six-degrees-of-freedom (DOF)  at 

each end are shown  in   Figure 3-lb. 

The geometrical   properties of the beam element are specified by an 

axial  and two shear areas and  three principal  moments of  inertia,  two associated 

with bending and one with  torsion.    Young's modulus and Poisson's  ratio are 

required to define  the material  properties of the beam element. 

The element stiffness matrix Is of order    12 x 12    and  Is obtained 

from the classical  beam theory  Including  the effects of the shear deformations. 

15 
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W r}f 

^pj 

^bi 

uu' P|, 

•t»' PU 

 fc. x 

AJA2I2! 

(a)     THE  THREC-DIMEMSIOIJAL  TRUr.5   ELEMENT 

 •> r 

AJA;I?J 

(b)     THE  THREE-DI/IEMSIOI.'AL   BLAfl ELE/'.EHT. 

FIGURE 3-1.     TRUSS AND BEAM ELEMENT 

16 



A R-7215-2299 

A provision for the member end boundary conditions accounts for 
hinges and other  releases. 

3.3.3    TWO-DIMENSIONAL PLANE STRAIN AND AXISYMMETRIC ELEMENTS 

Quadrilateral   Isoparametric elements will  be used  In  the computer 

program.    For a qenoral  quadrilateral  element,  as shown  In Figure 3-2,  the 

local  and global   coordinate systems are  related by 

4 
x = Z    h. x. 

1-1    1    ' 

y "I    h, y 

(3-16) 

i=l 1 '1 

where  the  Interpolation  functions are given by 

hl ' V4 (l-s) (1-t) 
h2 ' V4 (Us) (1-t) 
h3 a V4 (1+s) (1+t) 
h4 " 1/4  (l-s) (Ut) 

The same  Interpolation  functions are used  In  the displacement 
approximation. 

(3-17) 

ux (s.t) = I ^ ux1   * h: Bj + h6 ^ 

"y U.t) - I h1 uyi ♦ h5 a3 ♦ h6 ^ (3-18) 

where 

h5 - (l-s2) 

h6 - (1-t2) 

h5 and h6 are the incompatible Interpolation functions. 

17 
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vy* 
x3»ys 

Z"Z 

x-.y i »/i 

♦ x 

Q.       GLOBAL    SYSTEM 

(-•,i) 

1-1,-11 
♦ x 

b.        LOCAL    SYSTEM 

FIGURE 3-2. TWO-DIMENSIONAL ISOPARAMETRIC ELEMENT 
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For two-dimensional analysis the strain-displacement equations a 
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rr 

3ux 

cyy" ay"Eh1.yüyi^5,y-3*h6(ya|> 

SU,  3u 

V ■  ay *  9, - i hj>y «„, + r h1jx Uy) . Vyai . ht>y02 + ^^ , 

Or Equation 3-19 can be written  in matrix form 

c - B U 
H.x  0 
0    H.y 

H.y      H.x 

as 

Ux 

A 

(3-19) 

(3-20) 

3 « 12 ™,r,x. (h. submatric« in EquatPo„ 3.20 „, g.v(!i> by 

i!,«'[hl.xh2.x''3.x,'4.x.h5>x-VxJ 
1!,y-[h1.yh2.y

h3.y,'4.y'''S.y.Vy] 

n, ,umm MIMM, .„„ is glv.„ by eh€ f0||<>(lng ^^^ 

C B dv 

(3-21) 

(3-22) 
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where C It the stress-strain matrix. The above equation is Integrated 

numerically 

- • X |j J »i (3-23) 

This stiffness matr x which  is  12 x 12  is  reduced to 8 x 8 by elimination of 

the four Incompatible modes before assembling  in the global  stiffness matrix. 

S«M    THREE-OIMEUSIONAL ELEMENT 

For an arbitrary eight-point brick element shown  In Figure 3-3,   the 

appropriate displacement approximations are 

8 
ux"   *   uxi +h90xl +h10ax2 + hll   ax3 

8 
uy ' iy V f ^Vi *hioV + hn 0y3 

* 

8 
u2' 1J. Uzi +h9cl2l * h10az2 + hn   a23 

(3-24) 
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Z 
A 

■►y 

FIGURE 3-3. EIGHT-POINT THREE-DIMENSIONAL ELEMENT 
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h7. 

h8" 

'10 

1/8 (1 +0 0 ♦n) 0 ^c 

1/8 (1 - U (1 +n) (1 *c 

1/8 (1 - O (1 - n) 0 + c 

1/8 (1 ♦ O (1 - n) 0 ♦ c 
1/8 (1 + 0 (1 ♦ n) (1 - c 

1/8 (1 - O (1 ♦ n) (1 - c 

1/8 (1 - 0 0 • n) (1 - c 

1/8 (1 + O (1 - n) (1 - c 

(1 C2) 

(1 - n2) 

(1 C2) 

(3-25) 

The first eight are the standard compatible interpolation functions. The last 

three are incompatible and are associated with linear shear and normal strains. 

The nine incompatible modes are eliminated at the element stiffness level by 

static condensation. 

3.3.5 THICK SHELL ELEMENTS 

The thick shell element described here was initially developed by 

Wilson, et al.t Reference 3-3. 

This shell element is a 16-node curved solid element shown in 

Figure |"4« Each node has three unknown displacements. Therefore, if the 

shell is considered as a two-dimensional surface there are six unknowns per 

point. It is apparent that this type of formulation avoids the problems 

associated with the sixth degree of freedom—the normal rotation is set to 

zero when certain finite elements are used in the idealization of shells. 

22 I 
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FIGURE 3-4. THREE-DIMENSIONAL THICK-SHELL ELEMENT 
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The locations of the nodes ere defined by the orthogonal, right- 

handed coordinate system (x, y, z) which Is referred to as a global system. 

Within the element a local coordinate system U, n. 0 has been chosen such 

that C, n, C vary from -I to *|| (0, 0, 0) Is located at the centroid of the 

element. 

The local and global coordinate systems are related through a set 

of interpolating functions: 

16 

1-1 

16 

x ■ E  h^ x^ 

y " I  h, y. (3-26) 
1-1  1 1 

16 
E 

1-1 
z - E  hj Zj 

/ 

2k 
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h] - V8 (1 + 0 (1 + n) (1 + c) U + n - 1) 

^2 ■ ^ Cl -0 (1 +n) (1 *c)(-€ + n-l) 
h3 ' VS (1 - 0 (1 - n) (1 ♦ 0(-C - n - 1) 
h4 " V8 (l + 0 0 - n) (1 + 0 U - n - 1) 

h5   " V8 (1 +0 (1 +n) (1 - 0 U + n- 1) 

h6   • 1/8 (1 -00+ n) (1 - 0(-C + n - 1) 

h7   - 1/8 (l - « (1 - n) (1 - tUH - n - 1) {3'27) 

"8   " ^8 (1 + 0 (1 - n) (1 - c) U - n - 1) 

hg   - V4 (1 - 52) (i + „ ) d 4 c) 

h10 " V4 (1 - £ ) (1 . r,2) (1 + c) 

hll "1/4 (1 -C2) (1 -n )(! +;) 

^2 " V4 (1 ♦ | ) (I . n
2) (] + C) 

h13 " ^ 0 - 52) (1 * n ) (1 - c) 

^4 ' V« (1 - C) (I - n2) (1 - 0 
h15 " V4 tl - C2) (1 - n ) (1 - c) 
hl6- V4 ^.♦f ) (l -n2) (1 -c) 

The displacements within  the element are assumed to be of  the follow- 
mg form: 

16 
\ '   *}  

h1 hi + h17 axl + h18 ax2 + h19 0x3 + h20 ax4 + h21 ax5 

16 
"y ' ,5, h1 "yl + h17 ayl + h18 ay2 + h19 «y3 + h20 V + h21 0y5        (3-28) 

16 
"/ ' ,£, hi "zl + h17 «zl + h18 0z2 + h19 az3 + h20 az4 + h21 ** 
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h18 » n (1 - n2) 

h19 -    (1  - C2) 
19 (3-29) 

hgo ■ In 0 - c2) 

h21 • nt (1 - n2) 

The motivation for addition of the Interpolation functions h.  to 

h2)  Is to increase the capability of the element In producing closer approxi- 

mations to the exact displacements under simple loadings, thereby Increasing 

the convergence to exact solution. The Incompatible interpolation functions 

h17 t0 h21 have zero va,ues at the "odes and produce Incompatibilities In 

displacement field along the interelement boundaries. 

3.*» JOINT FINITE ELEMENT 

The joint element is intended to represent the rock joints, faults. 

Interfaces and similar discontinuities in continuum systems. The joint 

element has the capability of representing the main characteristics of the 

deformation behavior of the rock joints such as debonding and slip. The 

term debonding means the ability of separation of the two blocks of continuum 

adjacent to the joint surface which were Initially in contact. Subsequent 

contact can also develop by the movement of the two blocks towards each other. 

The term slip means the relative motion along the join«- surface or fault when 

the shearing force exceeds the shear strength of the joint. 

Previous attempts have been made to develop discrete elements to 

represent the joint behavior. Goodman, Taylor and Brekke (Reference 3-2) 

developed a simple rectangular, two-dimensional element with »ight degrees 

of freedom. This element has no thickness, and therefore the adjacent blocks 
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of continuum elements can penetrate into each other. Zienkiewicz, et al., 

(Reference l-k)  advocate the use of continuum Isoparametric elements with a 

simple nonlinear material property for shear and normal stresses, assuming 

uniform strain in the thickness direction.  Numerical difficulties may arise 

from ill conditioning of the stiffness matrix due to very large off-diagonal 

terms or very small diagonal terms which are generated by these elements in 

certain cases. 

To avoid such numerical problems a new joint element is developed 

below, which uses relative displacements as the independent degrees of freedom, 

The displacement degrees of freedom of one side of the slip surface are 

transformed into the relative displacements between the two sides of the slip 

surface. The transformation relations are as follows: 

T      B   . u . = u . + Au . 
xi     xl    xi 

T      B 
u .  = u . + Au . 
y    yl   yi 

T     B 
u .  = u , + Au . 
xj     xk    xj 

T      B 
u .  = u . + Au . 
yj   yk   yj 

The superscripts T and B refer to the top and bottom elements 

with respect to the slip surface respectively. As shown in Figure 3-5, those 

degrees of freedom of the upper element which are on the slip surface are 

transformed but the degrees of freedom of the lower element are the original 

displacement quantities. 
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Au. Au . ÜUyJ 
nj   yj 

UPPER 
CONTINUUM 
ELEMENT 

JOINT ELEMENT 

LOWER CONTINUUM\ 
ELEMENT       \ \ 

Y ^y^J 

y 

i 

(GLOBAL COORDINATES) 

"L '   Uxr+Auxi 

-;. " "J) + Aüyi 
B   .  A ■ u . + Au . 
xk    xj 

•Jj 
B 

-  U . + Au , 
yk    yj 

FIGURE 3-5. GEOMETRY OF JOINT ELEMENT 
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The joint element is assumed to have the relative displacements as 

the degrees of freedom. For example, in a two-dimensional problem the joint 

element will have four degrees of freedom (Figure 3-6). The relative normal 

and tangential displacements. Aun and Aus. are assumed to vary linearly along 

the element as follows 

Au  = h Au  + h.Au . 
n     1  ni   J  nj 

Au  = h.Au . + h.Au , 
s     1  si   J  sj 

(3-30) 

where the h.  and h.  are the linear interpolation function 

^i - ^ - c) 

h. - ^  + c) 
1/   « (3-31) 

and Aun.. Aun., Aus. and Ausj are the nodal point values of the relative 

d.splacements.  The joint element is assumed to have only two strain com- 

ponents; en = normal strain, and ^ = shear strain. These two strain 

components are related to the relative displacements through the following 
relations. 

en = -J- Au 
n    t  n 

es - iAus 
(3-32) 
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C, n 

(GLOBAL COORDINATES) 

e, s 

FIGURE 3-6.  COORDINATE SYSTEMS FOR JOINT ELEMENT 
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The substitution of Equations 3-30 and 3-31   Into Equation 3-32  results 

In  the stratn-dlsplacenent  relation for the element 

2t 
s 

(1-5)        0        (1 + U        0 

0        (l-l)        0        (1 + U 
(3-33) 

e    -    B AU 

The stresses and the strains are related through the following 

material property matrix C. 

C  C 
nn ns 

C  C 
L sn ss 

(3-3'») 

g - C e 

In general the above stress/strain relationship for rock joints is 

nonlinear, the details of which are given in Section k. 

The stiffness matrix for the joint element is formed in n-s 

coordinate system; 

bns - Jv BTC I dv (3-35) 
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and transformed to the x-y coordinate system as fo I lows 

k - T'k  T 
- -ns - (3-36) 

where T  is th 
e transformation matrix containing the direct ion cosines. 

where 

L 
5? 

«Uj - 2B,)  2(A3 + B2)   (A, - 2B,)   ^ + B^ 

2(A2 + 28,)  (A3 ♦ B2)   {A2 + 2B,) 

2(A1 - 2B,)  2(A3 + B2) 
Symmetric 

1     ss     nn 

C  b' + C a 
ss    nn 

(Cnn " ^   ab 

ü - f Vvi) 

2(A2 + 2B2) 

B. 

r  ab 
ns 

C  (a2 - b2) 
ns 

(3-37) 
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SECTION I* 

REPRESENTATION OF PROPERTIES OF ROCK, INCLUDING ANISOTROPY, 
INELASTICITY, RATE EFFECTS AND 
PROPERTIES OF FAULTS OR JOINTS 

The first part of this section describes homogeneous properties of 

rock which are available in the AA computer program. As used here, "homogeneous* 

refers to properties which can reasonably be averaged over several feet, which 

is a typical dimension of a finite element in applications to mining engineer- 

ing.  Inhomogeneous properties of rock masses, such as those caused by faulting. 

are treated by a separate procedure which is described in the second part. 

The topics which are covered below include the following: 

a. Inelabt ic i ty 

1. Variable modulus 

2. Variable modulus with perfect plasticity 

3. Variable modulus with perfectly plastic fracture 

criterion and strain hardening cap 

b. Anisot ropy 

1. Variable modulus with anisotrope fracture criterion 

based on the hypothesis of Jaeger (plane geometry only) 

2. Variable modulus with anisotropic yield criterion based 

on the hypothesis of Hill 

c. Rate Effects (Isotropie Only) 

1. Creep (series of Kelvin elements) 

2. Viscoplasticity (based on work of Perzyna) 

3^ 
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d. Joint Properties 

I«      Oilatant 

2.      NondiIi tant 

'••I     HOUQGENEOUS  PROPERTIES 

Tiese models, which are also summarized In Table U-],  afford some 

material  descriptions which probably cannot be effectively used at present 

owing to the  lack of experimental  data on  rock fro. particular mines.    As 

analysis  Increases  in effectiveness.   It   Is expectec  that nore data wl11 be 

routinely obtained,  thus enabling more sophisticated material models  to be 

used.    Advantages end disadvantages of these models are surprized  m 

Table 4-2.    Typical   laboratory properties  for rocks are shown  In   Figure k-i 

TABLE M.     SUMMARY OF AVAILABLE MATERIAL PROPERTIES 

Material Characteristics 

Type of Model 
N0 

/ / 
Constant elastic moduli X 0 X 0 

Variable moduli X 0 x.o 
Elastic/plastic  (fixed 
»tatlc yield surface) 

Constant moduli X 0 X 3 

Variable moduli X 0 X 0 

Cap model X 
X 

X    options or    0   options may be used simultaneous y. but 
x    and    0    options may not be mixed, except „;.«, e noted. 

35 



A R-7215-2299 

TABLE k-2.   ADVANTAGES   AND  DISADVANTAGES OF EACH MODEL 

Advantages Disadvantages 

A.     Elastlc-ldeally Plastic 

Simple   tJ fi t  to data 
Approximates most  features of data 
6 - Const.  G • G(P  )  and associated 

flow rule  theoretically correct 

Hay not  fit all  available data 
Cannot match trlaxial   test 
Other  treatments of G can   lead 

to possible paths of energy 
generation 

For nonassociated flow rule no 
general  uniqueness   theorem 

B.    Variable Moduli 

Best fit of data 
Only model  with  repeated hysteresis 

within failure envelope 
Ideal   fur finite element 
Computationally simple 
Relatively easy  to fi t 

Restricted to near-proportional 
loading  (in shear) 

For nonproportional   loading paths 
no uniqueness  theorem 

Additional  quantity must be stored 
at each grid point 

C.    Cap Model 

Satisfies all rigorous theoretical 
requirements 

Reasonably good fit of data 
Effective control of dllatency 

Indirect approach needed to fit 
data 

Relatively complicated 
Additional quantity, the strain 

hardening parameter, must be 
stored at each grid point 

D.    Viscoelastlc 

Simple  to fit  to data 
Approximates  features 

of data for some  rocks 

Requires sophisticated testing 
to define viscous coefficients 
for multi-axial   loading. 

Does not account  for deterioration  In 
strength with  time 

E.    Vis cop I as 11c 

Approximates  some  features of 
data  Including shear strength, 
stick-slip phenomenon 

Requires sophisticated testing 

36 



A «-7^5-2299 

1 

VS 

(a) 
HYDROSTAT 

AV/V lb) 
FAILURE ENVELOPE 

♦ P 

H 

m 
TRIAXIAL COMPRESSION 

M 
TRIAXIAL COMPRESSION 

AV/V 

*j«jni 

FIGURE k'\.     TYPICAL UBORATORY DATA ON ROCK FROM WHICH CONSTITUTIVE 
EQUATIONS ARE DERIVED 
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The programming of  the material  property subroutines   is arranged to 

provide maximum flexibility and ease  In  changing properties.     This  Is done by 

performing each separate  function  in  the material  properties description by a 

separate subroutine.    Thus    e.arate subroutines are provided for the following 

purposes: 

Computing variable moduli 

Computing derivatives of the yield functions with  respect 

to Its arguments. 

Testing for yielding or  fracture 

Adjusting stresses  for vlscoelastlc  relaxation. 

Adjusting stresses  for vlscoplastlc relaxation. 

Transforming strain  Increments  to principal  axes of orthotrophy 

and transforming the matrix of stress/strain coefficients to 

the global  axes. 

There  is considerable  interdependence between  the  inelastic and an Isotropie 

capabilities.    V/herevcr possible  this  Interdependence  Is used to economize on 

programming.    Log.c diagrams  for each subroutine  In the homogeneous material 

property package, are given  In Appendix A. 

4.1.1     IIJELASTICITY  FOR  ISOTROPIC MATERIALS—VARIABLE MODULUS 

Inelasticity  In  Isotropie materials  Is  represented  through variable 

bulk and sheir moduli  and  throrjh plasticity  theory.    The bulk modulus    B 

Is assumed  to depend on the curr«ni  value of elastic volumetric strain    u    and 

Its previous maximum value    u 
max 

FOR LOADING   (0 > y * ,.      ) 
■WAX 
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B MB " B lAÜ u    m   u^w,/ 

where 

(^2) 

B  - the lesser of 
(»„♦"„■Vpr) 

I- 
FOR LOADING OR UNLOADING/RELOADING IN TENSION (y < 0) 

b - B. (4-3) 

Application of this model to a granitic rock is illustrated In 

Figure 4-2. Specific parameters for this rock are 

tt  - 7.6 x 10 psi m r 

Bo - 1.205 x 106 psi 

i,  - 0.0275 

u2 - 0.05 

The shear modulus G is also assumed to depend on u and u 
max 

FOR LOADING (0 < u   < u) 
- max " ' 

m    mo fc) (k-k) 
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FOR UNLOADING/RELOADING (0 < y < u  ) 

G = Maximum previous value of G (4-5) 

FOR LOADING OR UNLOADING/RELOADING IN TENSION (y < 0) 

G = Gt  . r- ; (4-6) 
^ / 

Application of this model to cracked and uncracked granitic rocks 

is illustrated in Figure 4-3.  Specific parameters for these rocks are: 

Gm = 4.35 x 10ö ps 

G  = 0 
0 

y3 = 0.005 

n       The incremental stress da.,  is related to the increment', com- 

pbpent of elastic strain de.,  by the following expression: 
1 . '        4-' 

c 

..daij ^ (B-fG) dEkk 6ij+ 2GHJ)   '       <*» 
where 

6..     =    0     if     i^j;=1     if     i=j 

Theoretical guidance on the appropriate functions for B and G 

is provided by Walsh (References 4-7, 4-8), who postulates that the effective 

modulus differs from the intrinsic modulus due to cracks and pores, MS these 

are closed by increasing pressure, the effective modulus tends toward the 

consolidated value.  Walsh's work contains parameters which are not retained 
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in the following empirical expressions for the effective bulk modulus. How- 

ever, the basic concept is retained. Also, the present model for the effective 

shear modulus merely follows Walsh's concept. The idea of coupling the shear 

stiffness to volumetric strain is proposed in Reverence /»-g and carries the 

danger that energy might be extracted from tht model by hydrostatic com- 

pression, followed by shearing, followed by releasing the pressure and finally 

by releasing the shear. This danger is avoided by assuming that friction 

prevents cracks from reopening during unloading so that the largest value of 

G reached on loading is retained during subsequent unloading/reloading. 

Under these conditions a material may dissipate energy in shear during 

loading and unloading cycles but can never produce additional energy. 

A. 1.2 INELASTICITY FOR ISOTROPIC MATERIALS—VARIABLE MODULI WITH PLASTICITY 

The present adaptation of plasticity theory is based on work of 

References ^»-9 through 4-13. The model consists of a yield criterion 

f(a.j, L) = 0 (14-8) 

where L is a function of plastic strain, 

and a plastic flow rule in which f is regarded as a potential function 

u 

The incremental stress is related to the elastic component of incremental 

strain by Equation k-7.     Defining 

de..  = de.. - de?. (4-10) 
IJ      ij    ij vn ,u' 
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Substituting Equaeions k-S  and '♦-lO into Equation h-J  leads to 

""■u ■ »K^^'.j^K -«dr-) (»-"i 

where 

X » Ü - j G 

If the yield criterion is satisfied, the stress state must lie on the surface 

defined by f in Equation i»-8. The mathematical statement of this constraint 

i s 

Af               3f J „ If „ df ■   do. . + — dL 3a. .   11 3L 
U   J 

(4-12) 

Substituting Equation 1»-11   into ^-12 permits  solutions  for    A 

A ^^kk)   fU+2Gd£iifii 

"    AfkkfU +  2G  fi/ij  +  R 
(4-13) 

where R is a strain-hardening function to be defined below. 

Substitution of Equation 4-13 into 4-11 expresses the stress increment in 

terms of the strain increment. 
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Specific functional forms have been assumed for f. These contain 

empirical constants whose values can be selected to match data for a specific 

material. The forms are 

Polynomial 1 in o 
LL 

f}(c..)  - 
r'    n»! 

.n-1 

v^r- 
J, > b 

J. < b 

(*«1W 

Polynomial 2 in o.. 
 1 U. 

Mo..) 
v^-! 

i • (■ - -4 +a2J" 0 

y7[ - (a, + a2) 

J, > b 

J, < b 

CMS) 

Cap (to be used with Polynumial 2) 

f2 - (J, - v)2+ P2(j' -Q) - 0 c-ie) 

in which 

V » L + P X(L) X'd.) 

Q ■  [X(L)]2|l t P2[X'(L)]2} 

and 

X(L) 
H'-C-ir)2!* 
A + C 

L  < B 

L > Ü 

(fc-ISa) 

^5 



A 
fed •« 

X'(L) 

L     <     B 

L     >     B 

R-7215-2299 

(*-l|fcJ 

The hardening parameter,  L,  is 

L - £*•(!,. V1!) V^61 {l»-20) 

where 

where 

and 

g = ■' I- yfc 
l2 

r* 
•5 - (^r)2 * H)2 * (*?)' 

The hardening parameter R  is 

(i^W) PW • i • ei' 
0., 0«, 0. are principal stresses 

R - 0  if f - f,. 

(*-Il) 

('•-22) 

(*•») 

The cap parameters and stress/strain relations produced by the cap 

model are shown in Figures k-U  through k-f>.     Data cn strength for granite 

containing various degrees of cracking are shown in Figure W, which illus- 

trate the adequacy of the assumed fracture criter'a. 
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FIGURE M.     CAP MODEL 
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The iocremental siress/strain equations are expressed in matrix form 

as foflows: 

Ido} - (Cjidc) (k-lk) 

where dc is the total increment of strain. The C matrix thus contains 

generalized tangent moduli and can be used in forming the element stiffness 

riatrices. For the models descr'bed above, the C matrix is as follows: 
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The C matrix is clearly composfd of .1.5tic and inelastic parts 

C " ^ " CP (4-26) 

Th. Ce and C" matrices are computed separately. The reason for this is 

•fflciency In treating isotropic and anisotroplc materials with the same 
Fortran statements. 

In weaUy nonlinear problems It I, possible to avoid time-consuming 

reformulat.on of the stlf'ness matrix by Introducing nonllnearity through 

the load vector. The method is an extension of the egulllbrium equations 

fl.ven In Reference t*.  .n the following equation, time is used as a 

parameter. Number of load step could be used instead. 

At time ,.  he total change in complimentary strair energy is 

equal to the change in cnmplInentary work done by nodal poinc forces. 

h)      . <C>T ^^T dV  "   E <">  (dP) T"0 ^vol    T    T       W)   T    T (*-l7J 

where 

<s>. {do} - Element strain and stress Increment 

<u>. {dP} - .Jodal d.splacement and force vector 

V - Volume of finite element 

T - Arbitrary instant of time 

The strain/displacement relation Is 

C«) -  lB]{u} 

0r <c> - <u>[B)T (4-28) 
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The stress increment in an elastic/plastic material may be expressed by 

rewriting Equation k-2k  as follows. 

{do} - [C]{de} - {dop} ('»-ZS) 

elastic  correction 

where now C - C 

Substituting Equations 2-28 and 2-29 into Equation 2-27, 

2 f  <U>T [B]T{[C][BHdu}T - {dap}T}dV - £ <u>T {dP}T   (^30) 
T-0 •'vol l T=,0 

Noting that <u>  may be eliminated from both sides and that 

f  [B]T[C][B]dV - [K] (Ml) 
•'vol 

where [K]  is the elastic stiffness matrix. Equation 2-30 may be rewritten as 

T^11^ - L [B)Ttdo^dv) 
♦ w(*.)lt - Jwo| rf\*,\Lt« ■ I («,     (»■»' 

where {du}A , jda }   equal change in u and 0  during the Interval 
At  I  p'At f 

t - At to t. 

Performing the indicated summation, assuming stress to be constant 

throughout the element and defining 

E  - t,   [KHduL 
T      T-0 

('.-33) 



A 
we have 
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[KHdu}At -   [B]T|dap[      V    -    {p}t -  {E} +  [B]T/a I v ^ 
At I P7t-&t 

For small Increments of stress and time in a step-by-step integration, the 

second term on the left hand side is neglected. 

The expression which is used for {E} in the computer program is 

derived as follows. The recoverable work done on an element is equated to 

the elastic strain energy stored in the element by the following equati 

3M 

;ion. 

2 <">{£} j<e>[C]{e}V (4-35) 

or 

{E} =  [BT][C]{E}V 

Thus Equation k-3k  may be rewritten 

[K]{du}At = {R} 

/ 

Following Equation k-2S 

or 

da. j   -   Kköij + 2adEij).(x^-6ij + 2G_|y 

(4-36) 

(4-37) 

(4-38) 

dalj    =   Xdekk6ij + 2G deij " ^?j (4-39) 
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where 

^de,,,   Tr^-+  2G dc..     3f (.        Xde +  2G  d-.. .  -^— 

X-il-6     +&    9f                        u ,J  5 -ff      n 

=   0 

kk U ij |j (i»-40) 

if f < 0 

After each   integration step,     Au.     is given;     de.,     is  found. 
1 

Based on dSj.  and stress at previous time, f  is checked 

and da.j  is calculated according to whether material is 

elastic or plastic by adding contribution for elastic part 

to contribution from plastic part. 

Stiffness is always based on elastic, parameters, i.e.. A, G. 

Plasticity is introduced through updating of stress increment. 

Hence, there is need to update stiffness matrix. 

4.1.3  INELASTICITY FOR ANISOTROPIC MATERIALS—THEORY OF JAEGER 

The fracture of anisotropic rocks is the subject of several failure 

theories. The Walsh-Brace theory (Reference k-]k)   assumes that failure is 

tensile in nature and that it is influenced by the presence of preexisting 

cracks. Some of the cracks are assumed to be small and randomly oriented 

while others are long and have preferred directions.  Extension of the cracks 

is postulated to occur when the Griffith criterion (Reference 4-15), as 

modified by McClintcck and Walsh (Reference A-l6) to account for friction on 

the crack faces, is satisfied. 

In contrast, Jaeger (Reference 4-17) assumes the material to fail in 

shear either along a single plane of weakness or within the matrix material 

according to a Mohr-Coulomb type of failure criterion of the form 

T = ao - aa1 (4.38) 
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where 

T     = Shear stress on plane of fracture 

a     = Normal stress on plane of fracture 

a
0» 

a]     = Cohesion, angle of friction 

The theory is expressed in terms of principal stresses by an axis rotation 

as follows 

2ao " 2a1g3 ai - a3 =  ;—hz (*-39) 
ai ' V*+] 4 

improved agreement with experiment is obtained if a  is assumed to vary 
o 

ao = a2 " a3 COS (2(5 " &) iwo) 

where 

ß = Counterclockwise angle from the direction of the major prin- 
cipal stress (c^) to the direction of the bedding planes 

5 = The orientation of ß at which a  is minimum. Usually 
assumed to be equal to 30 deg    0 

The angle ß  is shown in Figure 4-8 along with angles relating it to global 

directions in the finite element formulation. McLamore and Grey (Refer- 

ence 4-18) have obtained satisfactory agreement between experimental 

data on strengths of slates and shales using a modification of Equation 4-25 

as follows: 

a
0 

a    a2 - a^lcos 2U  " ß)]n  for  0 < C < 3 

(4-41) 
ao = a4 ' a^cos  2^ " ß)]"  for  ß < 5 < 90° 

Some of their results and those of Brace and Walsh are illustrated in 

Figure 4-9. 
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FIGURE  i»-8.     ORIENTATION OF PLANES OF WEAKNESS DEFINING ANISOTROPIC  BEHAVIOR 
ACCORDING TO  JAEGER 
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The present application of the hypotheses in Reference 4-18 is 

limited to plane geometry.  It does not take into account the effect of the 

intermediate principal stress which is sho'n in Reference k-]S  to play an 

important role in fracture of some types of rocks. More work is needed to 

remove these restrictions. 

The first step is to determine the magnitude of the principal 

0., 0  and their direction as 

clockwise angle from the +X global axis. 

stresses 0., o« and their direction as specified by 0, the counter- 

0 W^' xx     j^   ±   iTxx      YY)   + o2 {k-kl) 
1,2 2 f\        2        / xy 

=    '   Arctan f ^-] i^-h^) 
2 "(Ä) 

Bilinear stress/strain relations are specified by the user in terms 

of Young's moduli and Poisson's ratio in directions parallel and perpendicular 

to the bedding planes (oriented at a  relative to global axes).  Thus, 

experimental data is required from specimens cut orthogonal to bedding plane 

and at angles other than 90 . The computer program transforms the various 

E and v to the principal directions of stress and modifies them to account 

for fracture. These parameters, E. , ■'jo» J]-i*  ^2* v21 ' V2V etc*» are 

assembled into a matrix relating incremental stress and strain in principal 

stress axes. The relationship between incremental stress and incremental 

strain expressed in the principal axes of anisotropy (principal stress axes) 

is shown in Equation 2-24 where C  is given by Equation 4-44. The matrix is 

then transformed through the angle 6  into global coordinates for inclusion 

in the element stiffness matrix. An illustration of the bilinear Young's 

modulus approach is superposed on data in Figure 4-10. 
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50 
DATA 

PRESENT MODEL 

25,000 PSI      _ 

1 M I 
PERCENT STRAIN (EACH UNIT - 1* STRAIN) 

FIGURE i.-10.  STRESS-STRAIN CURVES FOR GREEN RIVER SHALE-2 FOR VARIOUS 
CONFINING PRESSURES, ß - 10 DEG (REFERENCE 2-18) 
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M1 • W E|(VI2+  V|,VJ2J 

E2(V2I  +  v23 !|J E
?('   -  ^v.J 23 3r        -2-        ,33, 

E>(vI3+ VI2V23) 

E2(V23  +  v21v13) 

U]    .   1   E3(V,3+-32^)        ^32^,^)        E,(|.vJ2v2t) 

where 

f*-MO 

1 - 
'23 32   -     ,2^2.   "  -,3V31   -  v12v23^31 V13U21V32 

*.!.*     INELASTICITY FOR ANISOTROPIC  ROCK-THEORY OF HILL 

HIM   (Reference ^9)   has  proposed a yield criterion  fn • 

:he stress 
axes of anisotropy (not n 

can be expressed by 

components are expressed in the principal 

ecessarily principal stress axes), the yield criteri on 

where 

iW' Jf) (*-45) 

J2"',; = Cl(^C-%n)  + C2(%n " ^)2 - €3(0^ -c,  ) 

VCC + c50^ + c60 a 

J* ■ c 0rr " Crann + C, '   T« " l'8arin + VCC 
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in which it is assumed that the (, n, f. axis system coincides with the principal 

direction of anisotropy. f may be used as the potential function described 

above. Adaptation of this theory to rock is described in Reference 4-20. 

The elastic behavior of the material may be prescribed to be either 

Isotropie or anisotropi .  If it is Isotropie, the quantities B and G may 

be used.  If I  is anisotropic, Young's moduli and Poisson ratios E., v.-, 

Vj., etc. are specified in the principal directions of anisotropy. The C 

matrix (Equation k-2k)  which relates incremental stress to incremental strain 

is thus initially expressed in the principal axes of anisotropy and is sub- 

sequently transformed to global directions of the finite element mesh. 

4.1.5 RATE EFFECTS—VISCOPLASTICITY 

This method of incorporating rate sensitivity equations is based on 

Perzyna's elastic-viscoplastic modul (Reference 4-21) which is a generaliza- 

tion of an earlier model proposed by Hohenemser and Prager (Reference 4-22), 

An adaptation of the cap model described above for viscoplasticity is described 

in Reference 4-23. The present model is taken from Reference 4-24. 

A linear elastic, rate independent region is bounded by a static 

yield criterion 

f(J1, J^  
< 0 C«-1»6) 

within which Hooke's Law applies.  If the static yield criterion is satisfied 

or exceeded 

f(J1, Jp > 0 (4-47) 

A viscoplastic strain rate is assumed to develop according to the following 

flow rule. 

ij 
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where 

F 

A function of the static yield criterion f 

Assumed potential function.  Presently, a nonassociated 
flow rule is used in which F- J^ and differentiation 
is performed with respect to the stress deviators o1 

u 
Empirical viscoplastic parameter 

t is assumed in the present work that 

♦ (fj  - 

1  
E a J? 
nTi  n  1 

n-1 
J,  >  b 

J,  i b 

(MfJ 

for 

1v
7r- E»^; n-1 

n-i 

^/Jj - a5 > 0 

^ 0   J,  > b 

J,  < b 

(*-50) 

If f < 0, elastic invtscfd stress/strain relations apply. 

Making use of Houke's law 

a    = xckk&..  + 2G , • e (4-51) 

and expressing the elastic deviatoric strain rate by 

• e 1 
e. . 

U 

• 1 . p1 

E. .   -  e. . 
U iJ (4-52) 
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ZMLT "here f ■ *'the stre" r"te m*y b'expre!sed *,h' fo"owi 
ng 

IJ 
'•''■'ti^-'M'- 

(♦-») 

If time  is considered  the  integration parameter and  the time step  is    At 
the  incremental   stress   is 

da. 
U ME. . 6.. + 2G kk  ij K-MMüH Cl-S'i) 

The absence of p.asUc volUTO strain I. düe to choosin9 a nonassoclated flow 

rule m „h.ch J, does not appear In the plastic potential. 

Some exaMe calculations, which are summarized in Tables «-3 and *■» 
are shown in Fibres »Ml through 4.13. Comperison with some data for a 

tonallte is shown In Figure »-I*. The co^arison Illustrates the ability of 

the model to represent increase ir strength with strain rat. and its inability 

to represent nonlinear behavior prior to yl.ldmg.  It ein be shown that the 

effects of yiscoplasticity can be accounted for entirely by a correction to the 

oad vector (Reference 4-24). The technipue is simMar to that described above 

or rate-,ndepend.nt plasticity and to that described below for viscoelastlcity. 
An important consequence of this U that- ♦•im-     •    , H    or tnis is that time-consuming reformulation of the 
stiffness matrix Is avoided. 
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TABLE ^-3.  SUMMARY OF EXAMPLE CALC0LA1IONS 

Stress Ratio, Strain Rate,- 

Case Type of Loading a3/o1 
in./in.-sec 

1 Proportional loading 0.293 200.00 

Proportional loading 0.293 2.00 

Proportional loading 0.293 0.20 

Proportional loading 0.293 0.01 

Proportional loading 0.200 0.20 

Proportional loading 0.100 0.20 

Uniaxial strain 0.293 0.02 

8 Uniaxial strain 0.293 0.20 

9 Uniaxial strain 0.293 2.00 

10 Uniaxial strain 0.293 200.00 

■For proportional loading, these are elastic strain rates 

TABLE k-k.     PROPERTIES USED IN PRESENT EXAMPLES 

Properties 

Buik modulus B = 1.5x1 

Shear modulus G = 10 psi 

Cohesion a 
0 

■ U50 

Angle of friction al = -0.1 

Viscoplastic coeff cient Y = 1.0 

66 



A R-7215-2299 

— 
> 

— uwm 

1 
  
 1  

1L- 
n 

\ 

... I   1 
*  1 

«•» 

1 1 

\ \ \ 
— 

A — 
\ 

\ \ 

\ \ v L\ 
\ \ 
\ 

\ 

\\ 

^ 
v 
k 

s 
0 

_ 1 
v ^. 

UM»r»   m 

</) 1    |    !    '« 

LA
TI

C 
TO
 

ER
E 
NT
 

1        1 
1 T 

1* 

1 
JJ       u. 
ec a u. i 1 
Z »- Q 
— «J 

/
S
T
R
A
 

SU
BJ
E 

NG
 
A
T
 1—■ 

1 T - T 
1 

1. 
■1 

l" 

"- 
im 

TR
ES
S 

OD
EL
 

LO
AD

I 

\ 
r 

— \ 
s               -JO VT^ 

PR
ES

SI
VE
 

PR
ES

EN
T 

PO
RT

 I
Q
W
 

ES
S 

RA
TI
 

\ 
" i 

I   - 
1 * 1 \ i\ N 

■sj\i   i   \l 
z: oe 0 a: 
0 0 ac 1- 1  X^.!    iV u LL. a. co 1 PKk \ X 

• 
CM i        I 

1 
1 ^ ̂ .: i IV 

1 1 ^ Vv 
UJ ^^ 
3 ^v 
ü l _l   M  .K 1 Ä £ S s m t * ~ 0 • 

z 
o 

< 
-J 
UJ 

bJ 

H «0 
ol 3 O 

to 
to 

to 

to 
to 

oc 
a. 
o o 

tn 
-1 o 
UJ  < 
Q O 
O -1 
z 

_l 
I- < z z ui o 
«/) — 
UJ  h- 
ac ec 
a. o 

o. 
oe o 
o ae u. a. 

1 

ec 

X 
< 
— «/) 
Z UJ 

» 

1 
1 1 

\, ^v S 
< NK, 

fS\ k 1 

^ ̂  \ 
^\ 

1 i ^ L 
— ^ ^ 

\ 
V s 

Ä r* e ■ «1 

v 
^ 

o — 
£$ 
o 1- 
UJ to 
-> 
GO  «O 
3 Z> 
CO O 

-j ä 
UJ  < 
a > 
o 

2 
oc i- 
a. to 

1 
-a- 

67 

oc 



A R-7215-2299 

9^o£vrv 

< 
z 
o 

0£ < 

o 

< 
-j 
Ui 
a' 

< 
\- 
l/) to 
V. UJ 
00  I- 
J/l < 
UJ cc 
a: 
I- z 
co — < 
UJ cc 
> I- 
— to 
10 
to to 
LÜ   3 
oe o 
a. — 
3: ec 
o < 
o > 

1 

=3 

IS>I 'ssaais 

68 



#||\ R-7215-2299 

^.1.6 RATE EFFECTS--VISCOELASTICITY 

The total strain is defined to be the sum of instantaneous elastic 
and viscoelastic parts. The strain is further divided into shear and volumetric 
components, which are treated separately as follows: 

eij  m  eij -SIJ ekk ■  (eij)e+ ^\PC (^-SSi) 

e ^bk)    + IHJ (4-55b) kk   "    ^kk'    T  vt-kk 

In the computer program the user may choose to have either elastic or visco- 

elastic shear deformation and to have either elastic or viscoelastic volumetric 
deformation. 

Kelvin, Maxwell and three-parameter fluid models are available as 

shown In Figure 4-15. To simplify the following discussion, no distinction is 

made between volumetric and shear components. The creep rate and creep strain 

at t + At may be expressed as follows: 

KELVIN 

tc + a, e
c = a2a ^fil) 

Gt + At = et exP(_alAt) +0t i^
1 _ exP(_aiAt)) UStb) 

where a1 = -■ and a2 = T » E and 1 are the spring and dashpot constants 
respectively. 

MAXWELL 

eC = a.a + a.o (4-573) T  a2^ 

c        c , 
£t + At = et + (a^t + a,) at + at -a^J (4-57b) 

where a, = ■=■ and a» = — IE      2  n 
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1 
KELVIN 

-VsAr ■MAXWELL 

1 f 
3 PARAMETER 
FLUID 

FIGURE 4-15.  VISCOUS MODELS AVAILABLE IN THE 
PRESENT COMPUTER PROGRAM 

70 



A R-7215-2299 

THREE-PARAMETER FLUID 

compone 

and dashpot 

The creep strain of the three-parameter fluid Is divided Into two 

nts t      and  e
c which represent the creep strain In a Kelvin model 

c _  ! c  2 c 
E  -  e + e 

Kc = Kc ***<„ ^ . _ a2 

(^-58a) 

t + At =  et exP(-alAt) + at — (1 " expC-a, At))       (l,-5|b) 

£t + At "  et + At +^ot 
(4-58c) 

These models are Illustrated In Figure 4-15. Various aspects of their proper- 

ties are discussed In Reference 4-35. Equations 4-56a> -57a, and -58a are In 

suitable form for application to a time-marching integration procedure. 

Typical creep and creep recovery data for several rocks are shown in 

Figure 4-16. Application of a Kelvin model to one of the rocks is shown In 

Figure 4-1?.  By suitably varying the parameters a,  and a2, a range of 

behavior can be reproduced. To assist the inexperienced user In selective 

coefficients for these models, the following guidelines are offered. 

The finite element adaptation of these models uses the initial 

strain approach to writing the equilibrium equations based en the change In 

Internal energy. 

= I   aTe dV - I PTu 
•'vol        -'S 

dS (4-59) 

The stress/strain relations are In terms of a matrix C of elastic stress/ 

strain coefficients 

{at} = [C]|eo+de.eo
C| (4-60) 
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•    ■ 
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(a)     CREEP AND  CREEP  RECOVERY   (SLATE)—REFERENCE 4-28 

1 1 1 1 

20 - WW^iSÜ 1 

r 

'215 mtm              ^^r i 
X 
w 
c 

I10 {/\ I 
5 /            Granite ^                      -^ 

1 1 1 0 
1     |6 hours 

)                    5 10 15 20                  2 5 
Time, sec x 103 

(b)  CREEP UNDER CONSTANT STRESS AND RECOVERY CURVES--REFERENCE 4-30 
(AFTER REFERENCE 4-31) 

FIGURE 4-16.  EXPERIMENTAL DATA ON VISCOELASTIC PROPERTIES OF SEVERAL ROCKS 
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(a)jE'-W-2 
(rl1    "    3.950 (b) I- l/2n 

MU'.m„ 

-3- 
I 

< a: 

o   TS- 

TIME,   KT SEC 

FIGURE k-]7.     COMPARISON BETWEEN PRESENT CREEP MODEL AND EXPERIMENTAL DATA 
(REFERENCES 4-30, 4-31) 
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{a } ■ Stress at t 

{e } = Total strain (including creep) at  t = t 
o 0 

{del = Strain increment (including creep) during At = t - to 

<eC> = Accumulated creep to t =  t 

An error is committed in Equation 4-60 in that de contains both elastic and 

viscous components, whereas it is treated as if it were entirely elastic. 

Defining the strain/displacement transformation matrix B as 

{e} =  [B]{u} (^61) 

The strain energy for an element is 

t 

U = duT I   BTCBdV u + f   U  - ej1 CBdV u (4-62) 
•'vo 1 •'vo 1 

Defining 

I J, , B'cBdV = k (4-63) 
vol 

where K  is the element stiffness matrix and performing a variation with 

respect to the generalized displacements u results in 

kdu = P - F (4-64) 
e 

where 

P = J PTdS 
•'s 

- J , K - 0T CBdV 
e    -'vol 
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It is significant that the element stiffness'matrix consists entirely of 

linear elastic terms. Thus, the assemblage stiffness matrix needs to be 

formulated only once, resulting in great economy of computing.  It is neces- 

sary to store the components of the creep strain at t  for use in the next 
o 

step. 

This approach has been adapted to finite element for rock and 

concrete (Reference -»-26).  Some experimental work which has been performed 

on rock is compared in Reference 4-27 with a series of Kelvin models. 

Reference k-28  discusses methods of accounting separately for volumetric and 

deviatoric creep strains. 

k.2    MATERIAL PROPERTIES OF JOINTS 

This section describes the properties which may be assigned to joints. 

These properties consist of the shearing and normal stiffnesses of the joints. 

They correspond physically to the stiffness and strength of fault gouge, to 

the roughness of the joints and to the angles of slip surfaces relative to the 

principal plane of the joint. They are classed as dilatant if shearing pro- 

duces joint expansion or contraction or nondilatant if shearing and normal 

displacement are uncoupled.  The properties are specified by the user in 

natural coordinates which may be directions parallel and perpendicular either 

to slip surfaces or to the principal plane of the joint.  In either case, 

transformation to global directions is automatically performed by the program. 

As in the case of homogeüeous material properties, the joint prop- 

erties are controlled by subroutines CONECT and ELPL through modular subroutines 

Presently, these contain built-in joint properties.  As more data become 

available on properties of joints and the present joint material properties 

become obsolete, the present model may easily be modified without disturbing 

the main program or any of thf other material properties. 
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^.l  NONDILATANT JOINTS 

fh   .   ThiS C,aSS 0f j0intS is the »^'•»t to model mathematically since 
there .s no volume change due to shearing strains, and therefore the shear 

an  the normal components of deformation are uncoupled and the stress-strain 
relations are as follows: 

C   0 nn 

0 C 
ss 

{ e 

(^-65) 

However. Cnn and Css are nonlinear functions. 

In stress-deformation relationship In normal direction, three 
dist met stages can be recognized (see Figure 4-18); 

a. Separation,  Cnn = Css = 0 when ^ > 0 

b. Crushing of the surface irregularities or the compression of 

the material in the fault or joint. If any C  = E 
(en < En < 0)-  For smooth surfaces this case^oes not exist, 
therefore e  = 0. n 

c  Contact. Cnn = Ef.  (^ < E*) 

It is Important to note that very high values can be assigned to Ef    without 

any numerical problems with the special joint element described In Section 3. 

The tangential stress-strain relationship is assumed to be elastic- 
perfectly plastic using a Mohr-Coulomb yield criterion: 

C   = G ss 

C   = 0 ss 

0
C < c + 0  tan s       n 

a  = c + a  tan s n 

where c and * are the cohesion or the angle of frlet ion. 

(4-66) 
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(COMPRESSION) (TENSION) 
».e 

FIGURE 4-18.  NORMAL STRESS-STRAIN RELATION FOR JOINTS 
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^».2.2 DILATANT JOINTS 

Dilatancy of rock joints and faults are very complex to model 

mathematically; however, to include a measure of dilatancy, the procedu e 

developed by Goodman, Dubois, and Brekke (Reference 4-36) Is used here. 

Further data are available from Reference 4-37. 

It is assumed that the deformation in p-q coordinate system shown 

in Figure 4-19 is nondllatant.  The angle y    between the p direction and the 

joint surface is, therefore, defined to be a material property of the joint. 

Tho stress-strain relation in n-s coordinate is: 

(C  C2 + C  S2) 
qq    PP 

(c - c ) sc 
qq  PP 

(c - c ) sc 
qq  PP 

(c s2 + c c2) 
qq    PP 

(4-67) 

where 

C = cos Y 

S = Sin Y 

4.2.3 DEMONSTRATION OF JOINT ELEMENT 

The example problem In Figure 4-20 demonstrates the behavior of the 

present joint element. The problem consists of a plane system of three solid 

blocks and three joint planes.  The system is restrained at the bottom and is 

subjected to lateral pressure P and vertical pressure 2P.  The joints are 

assumed to be filled with nondilatent material having the properties shown in 

Figure 4-20.  The blocks are assumed to have the Isotropie elastic properties 

shown In Figure 4-20.  The material In the joints is represented by joint 

elements which are shown as their shaded strips. Ambiguity with respect to 

nodal displacements would arise at the point of the wedge-shaped block If the 

joint elements were to extend to the point. Ambiguity Is avoided by stopping 

the elements short of the point. This Is a good approximation to a physical 
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yi 

-•*• x 

FIGURE A-19.  DILATANT JOINT 
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system if the joint elements extend infinitesimally close to the point.  In the 

present example, the gap is made large to illustrate how the difficulty is 

avoided. The blocks are represented by plane strain elements. 

Results of the present example are shown in Figures k-2]  and k-22. 

Figure k-2]  shows how the vertical displacement varies as a function of hori- 

zontal distance from the centerline. Each curve in Figure ^»-21 corresponds 

to a different distance below the top surface. Figure 4-22 shows the wedge in 

its final position. 

N 
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FIGURE 4-21.  VERTICAL DISPLACEMENTS FOR EXAMPLE WEDGE PROBLEM 

82 



A R-7215-2299 

FIGURE ^-22.  FINITE ELEMENT MESH IN THE DISPLACED CONFIGURATION FOR 
WEDGE PROBLEM IN FINAL EQUILIBRIUM STATE 
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SECTION 5 

DESCRIPTION OF THE COMPUTER PROGRAM 

This section describes the computer program in terms of features 

which are apparent to the user, such as automatic mesh generation, and in 

terms of its logical structure. The first part of the section describes the 

steps which the user takes in order to prepare the input data. The mesh 

generator, bandwidth reducer and plotting capability are described.  The 

motive and logic diagrams for element renumbering are also described. 

The second part of this section describes the execution part of the 

computer program in terms of logic diagrams. Subroutines are described which 

control the computation, form the global stiffness matrix and compute the load 

vector, form element stiffnesses and other operations. Also described is the 

technique of multlbuffering whereby data is transferred between core and per- 

ipheral storage units at the same time that computations are being performed 

in core. This technique greatly improves the efficiency of the program for 

problems where large blocks of data are stored on peripheral memory units. 

5.1  PROCESSING OF INPUT DATA 

The sequence in which input data are processed is shown in Figure 5-1 

There are three basic phases. The first consists of generating continuum 

(two- or three-dimensional) and joint elements and plotting the results. The 

second phase consists of adding other elements (beam, thick shell, bar, etc.) 

manually, reducing the bandwidth, shuffling the element numbers so that they 

appear in the order of contribution to the global stiffness matrix, and 

plotting the final mesh.  The third phase consists of reading additional data 

such as material properties and loads. 

MESH GENERATOR 

The automatic mesh generation scheme incorporated in the program 

reqiires the user to provide a coarse mesh which the program refines by 

subdivision under the control of the user. The main goal is to minimize the 
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the input preparation on the part of the user.  The method uses the key 

diagram concept described in Reference 5-1; the remainder of the present 

mesh generation scheme is new and original work. 

The subdivision of the given, coarse mesh to obtain the final, fine 

mesh is carried out by subdividing each one of the mesh units, as "zones," 

within the coarse mesh in the following manner.  Consider the simple case 

of a general, two-dimensional mesh, in which the basic mesh unit or zone is 

a parabolic quadrilateral as shown in Figure 5-2. Assume that the x and y 

coordinates of the four corner mesh points, 1. 2, 3, and 4, as well as those 

of the four m-Jpoints, 5, 6, 7, and 8, are known. The x and y coordinates 

of an arbitrary point P within this zone can then be expressed conveniently 

in terms of the coordinates of the eight points through the use of the local, 

curvilinear coordinates, { and n, whose values range from -1 tc +1 on 

opposite sides as indicated in Figure 5-2.  Thus, one ran write 

8 

8 (5-" 
y = L N-y- 

i = 1 

In which N.'s are the so-called "isoparametric shape functions" expressible 

in terms of the curvilinear coordinates as follows: 

N, ■ -| (1 - 4)0 - n)(« + n + 1) 

" | (1 - 1)0 + n)U - n + 1) 

3 - | (1 + CHI + n)U + n - 1) 

Ni, - | (1 + 0(1 - n)U - n - 1) 

N5 - 1(1-0(1 -n2)     i 
(5'2) 

N6 - j (1 - 0(1 - n2) 

N7 - j (1 - t2)(1 + n) 

N8 _ 7 (1 _ 52)(l ♦ n) 

N2 

N 
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FIGURE 5-2.  QUADRILATERAL ZONE, WHJSE SHAPE AND COORDINATES ARE 
EXPRESSED BY PARABOLIC SHAPE FUNCTIONS 
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Thus, for a certain set of values of the curvilinear coordinates, or "natural 

coordinates," the corresponding Cartesian coordinates can be easily found 

from Equations 5-2. Consequently, to subdivide the zone into a k x k  mesh, 

for example, and establish the Cartesian coordinates of the twenty-one new 

mesh points, one merely substitutes into Equations 5-1 twenty-one times, 

each time with a different combination of values of E and n which are 

incremented successively by 0.5. 

This technique can be used to treat each one of the zones in a 

given, coarse mesh of any configuration. The only restriction that has to be 

observed is that the number of subdivisions between any two adjoining zones 

must match. This is to satisfy the fundamental connectivity requirtr-nt of 

the finite element method. To satisfy this continuity requirement and to 

facilitate the preparation of the input that defines the basic coarse mesh, 

it is convenient to introduce the so-called "key diagram." 

A key diagram, in general, is a rectangular grid resembling a 

checker-board.  It has no physical dimensions.  Its purpose is to present, 

or define, the connectivity of the zones in the coarse mesh and to facilitate 

defining the position of a mesh point in the form of row and column numbers 

in the coarse mesh. Another purpose of the key diagram is to help define the 

extent of subdivision of a zone, for, to satisfy the aforementioned connec- 

tivity, a newly introduced mesh line has to extend across all the zones 

located in the same row or column in the key diagram. 

Figure 5-3 illustrates the generation of a simple finite element 

mesh representing a dam and part of its foundation. The domain has been 

blocked into three zones which are connected as shown in the accompanying 

key diagram. The final mesh is the result of subdividing the first and the 

last zone into two subdivisions and the second into three subdivisions in 

the vertical direction, and all three zones into three subdivisions in the 

horizontal direction. 
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KEY DIAGRAM 

1» *■* ■■• ~^ 2 

3 k 

5 6 

7 >_ 
-♦«■ _, 8 

FIGURE 5-3.  KEY DIAGRAM AND RESULTING FINITE ELEMENT MESH FOR A 
DAM AND FOUNDATION 
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Aside from being used to define an edge of a zone on a curve, a 

midpoint can also be used to imply a mesh grading.  The mesh shown in 

Figure 5"^ is the result of specifying the three midpoints, M , M. and M-, 

purposely off-centered and toward the edge of the circular hole. Midpoints 

M1  and M- .ire there merely to form the edge of the hole on a curve.  In 

this particular example, number of subdivisions of 5 and 5 in the vertical 

direction (in the key diagram) and of 16 in the horizontal direction were 

specified. 

Another feature that makes the scheme versatile and powerful is 

the provision for the user to prescribe a zone as void merely by assigning 

zero for the material number of that zone. With this provision, one can 

easily generate a mesh around a notch or a cutout.  The mesh around a tunnel 

shown in Figure 5-5 is such an example. 

The final feature to be mentioned here is the program's ability to 

join any two edges in the key diagram.  This makes it possible to produce the 

meshes shown in Figures 5-6 and $-7•     The us^r may prefer the type of mesh 

shown in Figure 5-7 over that shown in Figure 5-5 for the radiating pattern 

of the mesh lines which makes it easier to make a finer mesh around the 

edge of the tunnel. 

The same scheme can be used to generate a tiirc^-dimenslonal mesh. 

The necessary changes are to replace the two-dimensional shaoe function and 

key diagram by their three-dimensional counterparts, and to introduce the 

third Cartesian coordinate.  The basic "zone" or "block" in this case is a 

general, six-sided body with parabolic edges.  It has eight corner nodes and 

twelve midpoints as shown in Figure 5-8, and the Cartesian coordinates at an 

arbitrary point P within the block having the natural coordinates £,  n 

and c,    are  expressible in terms of the Cartesian coordinates of the twenty 

controlling points as follows: 

*k 
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EDGE OF CIRCULAR HOLE 
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■ EVENTUALLY 
BECOMES NODAL 
POINT 177 

z a: 

♦■ 8. 
OISTRNCE (IN) 

FIGURE 5-4.  KEY DIAGRAM AND.RESULTING FINITE ELEMENT MESH FOR A 
QUADRANT OF A SQUARE PLATE WITH A CIRCULAR HOLE 
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KEY DIAGRAM 

AAMSO 

FIGURE 5-5.  KEY DIAGRAM AND RESULTING FINITE ELEMENT MESH FOR A TUNNEL 
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EDGES JOINED- 

204. 

(Z 

—• 

I  i ;. i ;; i li EDGES JOINED 

KEY DIAGRAM 

.FORMED BY EDGE-JOINING 
s  U ^ 
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0. E. 10- IE. 20. Zt. 30. 

OISTRNCE CFT) 

FIGURE 5-7.  KEY DIAGRAM AND RESULTING FINITE ELEMENT MESH FOR A TUNNEL, 
ILLUSTRATING CAPABILITY TO JOIN ANY TWO EDGES IN THE 
KEY DIAGRAM 
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FIGURE 5-8. THREE-DIMENSIONAL ZONE WHOSE SHAPE AND COORDINATES ARE 
EXPRESSED BY PARABOLIC SHAPE FUNCTIONS 
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(5-3) 

20 

fe   Nl2i 

v/here,   for corner points, 

N.    -    -j (1  + CiC)(l  + nin)(l  +  C.OUjC + l|,l| ♦  CjC ■  2) (5-M 

and for midpoints. 

H  - jl (1 - 42)(i + n.n)(l + c^)  for points with £. 

N. - I (1 ♦ ijOO - n2)(l ♦ CjC) for points with ft, - 0 

T- (1 + C|C)(t + nin){1 - C2) for points with «;. 

As before, zero can be used as material number to imply void or cavity, and 

a midpoint can be so specified as to imply a curved edge as well as a mesh 

grading along the edge.  Instead of joining two edges, one can now join any 

two interfaces as long as the meshes on them are compatible. Some three- 

dimensional meshes automatically generated in this manner are illustrated 

in Figures 5-9 and 5-'0. 
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I FIGURE 5-9.  AUTOMATICALLY GENERATED THAEE-OIMENSIONAL MESH 
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BANDWIDTH REDUCER 

The computer time 'equired to perform a computation is approxinately 

proportional to the square of the bandwidth.  Thus it is important to ai-n 

for a minimum bandwidth when numbering nodal points.  However, when the finite 

element mesh is generated automatically by the technique described above, 

no attention whatever is paid to minimizing bandwidth.  The user can influence 

the bandwidth to some extent by judicious choice of key diagram.  Neverthe- 

less, it is very likely that the bandwidth so generated will not be optimum. 

The situat on will often be made worse when elements are added manually. 

To help alleviate this difficulty and thus encourage thj user to use the 

automatic mesh generator, a bandwidth reducer is included in the present 

computer program. 

The function of the bandwidth reducer is shown in Figure 5-11. The 

INPUT NODAL POINT configuration is typical of the mesh which would be gen- 

erated automatically for which the maximum difference in nodal point nu^rs 

for any element is )1«  This configuration was submitted to the bandwidth 

reducer. The result, after 2 sec of computation time by the bandwidth 

reducer is the REDUCED NODAL POINT configuration, for which the maximum 

difference in node numbers is 6.  That this configuration is not optimum is 

shown by the IDEAL configuration for which the maximum difference is 5. Thus, 

the technique is not optimum because it does not always converge to the 

minimum bandwidth in the computer time which the user has selected. Also, 

the technique operates on nodal point numbers rather than on degree of 

freedom numbers. Thus, when several types of elements are mixed, the con- 

figuration corresponding to minimum difference In node numbers does not 

necessarily correspond to minimum bandwidth. 

Logic diagrams for the bandwidth reducer arc shown in Figures 5-12 

and 5-13- 

ELI ME NT NUMBERING 

In addition to renumbering nodal points to reduce the bandwidth of 

the global stiffness matrix, the elements are numbered in the order of their 

contribution to the global stiffness matrix. In this way, the strain/ 
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INPUT NODAL POINT CONFIGURATION 

MAXIMUM NODAL POINT DIFFERENCE - 31 

REDUCED NODAL POINT CONFIGURATION 

2<«  MAXIMUM NODAL POINT DIFFERENCE - 6 

SOLUTION TIME - 2 SECONDS 

IDEAL CONFIGURATION 

MAXIMUM NODAL POINT DIFFERENCE - 5 

AAM8I 

FIGURE   5-11.     rxAMPLE  OF BANDWIDTH  REDUCER 
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c 'JTART 

I J 
DETERMINL THE MAXIMUM BANDWIDTH AND THE 
NODES CAU5ING THE MAXIMUM BANDWIDTH 

TWO 

CAN THr HIGHER NUMBERED" 
NODE BE INTERCHANGED WITH A 
LOWERED NUMBERED ONE TO REDUCE 
THE BANDWIDTH? 

CAN THE LOWERED NUMBERED 
NODE BE INTERCHANGED WITH A 
HIGHER NUMBERED ONE TO RE- 
DUCE THE BANDWIDTH? 

CAN THE HIGHER NUMBERED NOD? 
BE INTERCHANGED WITH A LOWER 
NUMBERED NODE AND STILL 
.MAINTAIN THE SAME BANLWIDTHJ 

YES. 

CAN THE LCUcR NUMBERED NODE 
BE INTERCHANGED WITH A HIGHER 
NUMBERED NODE AND STILL MAINTAIN., 
THE SAME BANDWIDTH? 

YES. 

NO FURTHER INTERCHANGES ARE POSSIBLE 
EXIT 

PERFORM THE INDICATED NODE INTERCHANGE 

*          
MODIFY ME "IS" TABLE TO REFLECT THE CURRENT 
INTERCHANGE 

AA*659 

FIGURE 5-13.  PROCEDURE USED IN BANDWIDTH REDUCER (REFERENCE 5-3) 
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stiffness matrixes can be retrieved from peripheral storage in the least 

time. Since the element data are used in the basic operations of forming 

the global stiffness matrix and effective load vector, the efficiency gained 

by performing these complicated operations is essential. 

The element numbers assigned by the mesh generator and the user 

are revised such that 

min(LM(l))  for the nth element < 

min(LM(l))  for the n + 1th element 

where 

LM(l) - Array of degree of freedom members for the element 

Element data are stored sequentially on peripheral storage units such that 

the data for Element 1 is at the head of the unit, jnd then in sequence 

Element Number -  1  <  ...n, n+1...  < NUMEL 

where 

NUMEL ■ Total number of elements 

In order to modify the effective load vector F,  to obtain the 

matrix C of stress/strain coefficients and to obtain element stresses and 

strains, an array containing the previous loads  F,  the displacements u and 

the incremental displacements du  is brought into core as shown in Figure 5-15, 

Also required are data stored on the element data tape such as the strain/ 

displacement transformation matrixes and LM arrays for the elements of 

Interest. As shown in Figure 5-lii, all degrees of freedom to which Element n 

contributes are found in a sequence of F, u, du array one bandwidth (MBAND) 

long. Thus It is possible to process to F, u, du ?rray by reading the 

element data tape only once. 
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ELEMENT DATA TAf'E 

FIGURE S-H. OPERATION ON FORCE, DISPLACEMENT AND INCREMENTAL DISPLACEMENT ARRAYS 
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is added to Block nn. Now Block nn is completely prepared and is moved out 

of core while Block nn + 1 is brought into core. Block nn + 1 is filled in 

the same way as Blocks nn - 1 and nn, which is by passing sequentially through 

the element data array. When all direct contributions to Block nn + 1 have 

been made and all data which contributes to Block nn + 2 has been stored on 

unit T2,  the data stored on unit Tl  is read into core and added to 

Block nn + 1. This block is now completely prepared and is transferred to 

peripheral storage. 

SIMULATION OF THE CONSTRUCTION AND EXCAVATION SEQUENCE 

The construction and excavation sequence will be represented by 

modification of the material properties of the elements involved.  Initially 

elements will be assigned to the regions to be constructed or excavated later. 

A flag will indicate the time of the addition or subtraction of each element. 

In case of excavation, the elements of that region will have the appropriate 

material properties and will contribute to the global stiffness of the system 

up to the indicated time, beyond which the contribution of these elements to 

the global stiffness of the system will be zero. The reverse of this procedure 

will be applied to the elements of the regions to be constructed later. All 

these operations will be performed in the element package. 

SELF-LOADING 

The initial state of the system will be assumed to be stress free. 

Then the dead load, if any, will be applied in a specified number of increments 

prior to the application of the external load.  It is necessary to apply the 

self-loading incrementally due to the fact that the system is, in general, 

nonlinear. 
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5.2 EXECUTION PHASE OF PRQGP/M 

The execution phase of the program is summarized in Figures 5-16 

through 5-21.  The control Iinq program is BMCALC, Figure 5-16.  The first 

main operation is to form the effective load vector and global stiffness 

matrix, which is performed by Subroutine KFORM, Figure S-17. The assembly 

of the global stiffness from the element stiffnesses is performed by Sub- 

routine BSTIF, Figure 5-l8.  Subroutines FWRT, TDRUM and FILLFU transfer datn 

from peripheral storage to core. 

5.2.1  MULT I BUFFERING TECHNIOUE 

Multibufferino is a technique whereby central processor wait time 

for all binary Read/Write operations involving the peripheral storaae of data 

is minimized.  (Formatted I/O operations such as card reading, punching, and 

printing are not included in this discussion.)  The reason for using multlbuf- 

fering techniques is that data moves faster between core locations than between 

peripheral storage and core. 

The problem which multibuffering overcomes is the standard I/O 

feature of higher level progrHmming languages, such as FORTRAN, which raqufre« 

that when an I/O operation (READ or WRITE) is initiated, computation cea.es 

until the I/O operation is completed. This feature assures the user that data 

he may wish to use is in core before he tries to use it.  The amount of time 

the program must wait for completion of I/O operations depends on (1) the 

access time and (2) the data transfer time. These times depend on the type 

of peripheral device being used and the amount of data to be transferred. 

Thus, as the amount of peripheral storage increases, the time spent waiting 

for completion of I/O operations increases and for large volumes of data 

the I/O time may control overall run times. Multibuffering minimizes the 

wait time of these I/O operations by allowing computations to proceed at the 

same  time data  transfer from peripheral  storage is occurring.     This requires 

standard FORTRAN I/O operations to be replaced. This is possible on most 

large scale scientific computers by the use of special machine-dependent 
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C ENTRY J 

YES 

CALL ALLOC TO 
ALLOCATE CORE 
AND SET UP FILES 

SET DECOMP FLAGS 
FOR INCORE/OUT- 
OF-CORE SOLUTION 

± 
SET FLAG IF 
GLOBAL [K] IS 
TO BE COMPUTED 
AT THIS STEP 

CALL KFORM TO 
PREPARE LOAD 
VECTOR AND [K] 

IF [K] WAS REFORMED, 
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DECOMPOSE, ELSE 
BACK-SUB ONLY 

GENERATE RESTART 
TAPE IF REQUIRED 

C RETURN 

1 
CALL RESTRT TO 
SET UP CURL AND 
FILES TO RESUME 

AAA669 

FIGURE 5-16. PROGRAM BMCALC—CONTROLS MAIN OPERATIONS OF THE 
COMPUTATION SECTION 
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»«- 

RE*D  ILEMCNT   0*T* RECORD     jl 

SET FIRST *W) l*ST OOF 
POINTERS   FOR  THIS   ELEMENT 

REAO PREVIOUS STRESSES 

CAU   FILIFU  TO   Mu 
LOAD  VECTO'. «R.-'V 

^3^ 

vis 

i 
SIT   (R)  10 IIRO 

zu— 

m 

> 

WRITI STRESS NISTOR« 

AA«ti« 

FIGURE 5-17.  SUBROUTINE KFORM—CALLS SUBROUTINES TO COMPUTE THE LOAD 
VECTOR AND GLOBAL STIFFNESS 
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100 

CALL FWRT TO MOVE 
COMPLETED PART OF 
LOAD VECTOR TO 
OUTPUT 

CUL  OLOAO 
ADDS DEAD LOADS 
TO LOAD VECTO:. 

I 
CALL ELSTRN 
FOR INCREMENTAL 
STRAINS 

n T CALL CONECT 
FOR STRESSES 

T 
WRITE STRESS OUTPUT I 

CALL ELLDVC 
LOAD VECTOR 
CORRECTION ] 

WRITE NEW 
STRESS HISTORY u 

AAM68 

FICURL 5-1/.  (CONTINUED) 
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0 
M IS WITH ILlrtlN. DATA 

CALL HOVCUD TO NOVC [k] 
TO STIFFNCSS ARMV 

© 

C CNTRV 

I 
•KANCN ON 
IIIMINT TV« ^—r 
0 

THICK SMCLL ILliOITS 

U| IS ON CLCNCNT DATA 
FILC (S UCOKOS) 

CALL FILIN TO READ 
«LOCKS OF Ik] 

CALL noVtwo TO NOVC Ik] 
TO STtFFNCSS ARRAY 

© 

CALL AOOTOR TO AOO CLtNCNT 
[k|   INTO  GLOBAL   (k) 

0 
1-0. ;-0. AND J-D CLlHtNTS 

CALL CLSTfF TO CCNCRAU 
tLCNCNT r ).  CALL STATCO 

CALL NOVCWD TO SIT UP 
STIFFtUSS ARRAY 

© 

URITC  (k]  TO 
TIN^ORARV FILE 

FOR RCST OF THICK- 
SHELL ELEMENT  (k) 

ÄÄ^%% / 

FIGURE 5-18. SUBROUTINE BSTIF—LOHPUTER ELEMENT STIFFNESS [k] AND ADOS 
TO GLOBAL [k] 
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COHPUTE NUHtSER OF 
WORDS WHICH CAN BE 
MOVED 

HOVE  WORDS  FROM 
FWORK TO F,  u OUTPUT 
BUFFER AND RESET 
POINTERS 

NO COPY  IS TO OUTPUT 
FILE.    WRITE BUFFER 
TO F,    •,  du FILE. 
SET WRITE  FLAG. 

PACK REMAINING LOAD 
VECTOR TO START t)F 
PIMM 

T 
RETURN H *A«6S8 

FIGURE 5-19.  SUBROUTINE FWRT-MOVES DATA FROM LIVE LOAD VECTOR (FVORK) 
TO F. u. du OUTPUT BUFFER AND TO u OUTPUT FILE 
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CNO-FILC NEW 
TCHPORANV  DRUM 

i ■ 
T 

OPEN TEMPomr rue   | 

|  MAD TCMfOHAHY fig 

CALL ADO TO K TO 
ADO INTO CURRENT 
IM BLOCK 

SWAP TEHPORARY 
DRUM UNITS ] 

I 
IF OVERFLOW. WRITk TO 
NEXT TEMPORARY DRUM 
FILE 

RETURN D 

MARK OLD 
TEMPORARY 
"AVAILABLE' 

AAMM 

nm, 5-JO. «^«nM^gi m at*™ M WH.«.«.FLO«, M, 
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c ENTRY D 
i 

COMPUTE HUHbER OF WORDS 
NEEDED TO FILL FWORK 

I 
COMPUTE NUMBER OF 
WORDS REMAINING 
IN r, u. du BUFFER 

MOVE WORDS FROM 
BUFFER INTO LOAD 
VECTOR ARRAY 

(ü0L0 ♦ du) *  uNEW 

ADO LIVE LOADS, 
IF ANY. TO LOAD 
VECTOR (F) 

ISSUE READS FOR NEW, 
F, u, du BUFFER. AND 
SWAP BUFFERS 

IF FWORK IS 
FULL. RETURN 

FIGURE 5-21. SUBROUTINE FILLFU—ADDS LIVE LOADS TO LOAD VECTOR. UPDATES 
DISPLACEMENTS, FILLS BUFFER AREA WITH F, u, di* ARRAY 
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staten.nt, or subroutines. These interface rout.nes are .eneral.y different 

on .ach .3chlne mi,  un.ess care is exercised, a progra. may bec0me .achine 

ependent. TM, danger is avoided in the present application of .ultibuffer- 

ing by iso.ating a,, I/O state^nts in one subroutine which .ay easily be 

-nod.fied when moving the program to a different machine. 

A general multibuffering scheme to perform computations on a set of 

data stored on peripheral devices is shown in Figure 5-22. This scheme 

wh.ch is incorporated in the present computer program, requires either ihe 

amount of main storage used for buffers to be increased or the size of each 

buffer to be decreased relative to the buffer size that might be used with 

standard FORTRAN i/O procedures.  Since most of the main storage is already 

use in determining buffer sizes, the latter alternative is employed. Extensive 

testing and previous experience have shown that, although the number of I/O 

operations increases, multibuffering results in substantial overall reduction 

«n computer run time for a given problem.  Savings Increase with the problem 

size and thus the volume of data on peripheral storage Increases. 

5.2.2  BAND SOLVER 

The solution of large structural systems requires the solution of 

a set of linear simultaneous equations of the form 

where 

if)    -  [K] {u} (5.5) 

(F)  Is a vector of applied loads 

M     Is a vector of unknown displacements or. as In the present 

case, displacement Increments 

(K)  is the global stiffness matrix.  In the present case It is 

banded and positive definite 
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INPUT       ll        r 
FROM / \S 
PERI FERAL 
DEVICE 

U0 
I > 
COMPUTATION OCCURS IN 
1 PAIR OF BUFFERS AS 
DATA TRANSFER OCCURS 
N OTHER BUFFERS 

> 

^(70; 

INPUT OUTPUT 

OUTPUT TO 
PERI FERAL 
DEVICE 

CORE BUFFERS 

a. 

b. 

c. 

d. 

e. 

f. 

9- 

h. 

1. 

J. 

k. 

I. 

m. 

Initiate read of data into (1) 

Test for completion of Step a data transfer 

Initiate read of data into (2) 

JÄsrnron data in (,) storin9 rMuus of 

Initiate write of data in (3) 

Test for completion of Step c data transfer; if incomplete 
stop computation until completed. incomplete, 

Initiate read of data into (1) 

Perform computation on data in (2) storing results in (4) 

Test for completion of Step e data transfer 

Initiate write of data in (4) 

Test for completion of Step g  data transfer 

Loop to Step c until all data has been processed 

Test for completion of final buffer operation 

FIGURE 5-22.  TYPICAL OPERATION OF MULT I BUFFERING TECHNIQUE 
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Many methods of obtaining a solution to Equation 5-5 are available. A 

frequently used method Is the Choleskl Decomposition Method. Defining 

[K] - [L] [D] [L] (5-6) 

where 

[L]  Is a lower triangular matrix with onet, on the diagonal terms 

[D]  Is a diagonal matrix 

then substituting Equation 5-6 Into Equation 5-5 

if)    = m   [D] [L]T {u} 

and defining 

{z} - m it]1 {u} 

Equation 5-7 becomes 

{F}    -    [L]   {Z} 

(5-7) 

(5-8) 

(5-9) 

There are many algorithms for solving Equations  5-8 and 5-9.    The 

algorithms used   In this code are (Reference 5-4). 

L, 
U 

m=l i m 

).     »    K..  - V   D    L? 
J JJ       h    "1    jm 

1-1 

m=i 

i     >    J     (5-10) 

(5-11) 

(5-12) 

J D. 
J 

n z 
m=J+1 mj    m (5-13) 
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where 

n   = Total number of equations 

f,j = Row and column indices 

The use of Equations 5-10 and 5-11 to obtain the [L]  and  [D] 

matrices in the most general case of a block-by-block solution is illustrated 

in Figures 5-23 through 5-25.  Figure 5-23 shows a typical banded stiffness 

matrix with the arrangement of the terms in each core block. Although shown 

as a two-dimensional array, the actual locations of storage may be consecutive. 

Figure 5-2^ shows a method of assigning core storage to allow the double 

buffering scheme of Section 5.2.1 to be used. The indicated Scratch Core 

area may be of any size (it must be at least four words in length) and is 

used as a buffer area to save columns of the reduced stiffness matrix needed for 

for reduction, i.e., decomposition of fut   stiffness blocks. All I/O opera- 

tions between the scratch area of core and peripheral devices use the technique 

of Section 5.2.1. Thus storage and retrieval of intermediate data required for 

the computation of [L]  and  [D] may in the optimum case be performed at 

core speed.  Onl^ a single output buffer is shown in Figure 5-2^. This presents 

no contradiction to the double buffering scheme. Figure 5-25 shows that 

between initiation of the write and storage of new data in the output buffer 

many calculations are performed. Tests have shown that this calculation time 

is greater than the data transfer time thus allowing a single output buffer 

to be used.  Figure 5-25 shows the sequence of operations in decomposing the 

stiffness matrix. The generation of {Z}  (from Equation 5-12) may be per- 

formed at the same time  [L]  and [D]  are generated. 

After completing decomposition of the stiffness matrix and generating 

the {Z} matrix, the displacements {u} are computed by Equation 5-13. 

Figure 5-26 shows the sequence of operations in computing the {u} matrix. 
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NEQB NEQB 

SYMMETRIC (UPPER BAND TERMS NOT STORED) 

O's   (NOT  STORED) 

NEQB 

K11 K22    K33 
K21 ^2 
K31 K42 

^1 KS2 
K51 K62 
K61 K72 

11 I     ^1     KN2    ^3 

NEQB — 

K^ K55    K66 
K5^ K65 

hk K75 
K 

I 

;<! K( 35 

KNi«    KN5    KN6    I 
BLOCK  1 BLOCK 2 

AA4699 

FIGURE 5-23.     METHOD OF STORING STIFFNESS MATRIX USED   IN PRESENT PROGRAM 
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INPUT STIFFNESS BUFFER #1 

INPUT STIFFNESS BUFFER #2 

OUTPUT STIFFNESS (REDUCED) 
BUFFER 

SCRATCH CORE AREA 

FIGURE 5-24.  CORE BUFFERS FOR STIFFNESS MATRIX DECOMPOSITION 
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INITIATE READ OF FIRST 
STIFFNESS BLOCK INTO 
SUFFER II 

INITIATE READ OF NEXT 
STIFFNESS BLOCK INTO 
ALTERNATE CORE BUFFER 

WAIT FOR READ TO 
COHPLETE 

YES 

0* RETREIVE t COLUMN OF 
REDUCED STIFFNESS FROM 
SCRATCH CORE 

I 
MODIFY ALL TERMS OF 
THE PRESENT STIFFNESS 
BLOCK WHICH THE 
PRESENT COLUMN OF RE- 
DUCED STIFFNESS TERMS 
APPLY 

STORE PRESENT COLUMN 
OF REDUCED STIFFNESS 
IN SCRATCH CORE 

6 

REDUCE NEXT COLUMN OF 
PRESENT STIFFNESS 
BLOCK-PLACE RESULTS 
IN OUTPUT STIFFNESS 
BUFFER 

1 
WAIT FOR WRITE 
TO COMPLEU 

YES 

STORE PRESENT COLUMN 
OF REDUCED STIFFNESS 
IN SCRATCH CORE 

INITIATE WRITE OF 
REDUCED STIFFNESS 
BLOCK FROM OUTPUT 
BUFFER 

5 ««97 

FIGURE  5-25.     SCHEMATIC  DIAGRAM OF STIFFNESS MATRIX DECOMPOSITION 
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INITIATE READ OF TATA 
INTO ALTERNATE BUFFER 

EVALUATE |u( FOR 
CURRENT BLOCK 

A 

WAIT FOR READ 
TO COMPLETE 

BACKSPACE INPUT TAPES 

INITIATE READ OF LAST 
BLOCK OF DATA 

BACKSPACE IKPUT TAPES 
2 RECORDS 

R-7215-2299 

9 
ISSUE WRITE OF 
PRESENT BLOCK 

SAVE IN SCRATCH CORE 
THOSE VALUES OF juj 
NEEDED TO REDUCE 
NEXT BLOCK 
(< 1 BANDWIDTH) 

FIGURE 5-26.  SCHEMATIC DIAGRAM OF SOLUTION VECTOR EVALUATION 
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SECTION 6 

COMPARISON WITH CLOSED-FORM ANALYTIC SOLUTIONS 

6.1     SAMPLE  PROBLEMS 

To  Investigate the numericel eccurecy of the present computer program 

end to determine the Computer time required to solve problem» of verlou» size 

end conplexlty, several example problems have been formulated and their 

numerical  solutions conpared with closed-form, analytic solutions.    One-,  two-, 

and three-dimensional   linear elastic solutions are considered as well at one- 

and two-dimensional elastic/plastic and two-dimensional  visco-elastic solu- 

tions.    These are listed in Teble 6-'. 

Problem 1--Stress Around a Circular Hole 

The geometry of Problem Mo.   1   Is  illustrated  in Figure 6-1.    The 

finite element mesh is Mlustrated in Figure 6-2.    The solution  is shown in 

Figure 6-3 in terms of principal  stresses at    I - 5.7 and ii2.10.     It does not 

depend on  the meterial  properties of  the plate. 

Problem 2-Stress and Displacement  in an Elastic 
"ITTrar-Walled Cylinder Under   Internal Pressure 

The geo«try of Problem Ho. 2 It Illustrated In Figure 6-«i. The 

finite element m.sh is also shown. The solution Is shown In Figure 6-5 In 

terns of radial  and tangential  »tresses. 

ft^m V-Stress  in an Elastic. Perfectly Plastic 
"TRTTT-UiMed Cylinder under   Internal Pressure 

The geometry of Problem Ho. 3 Is the »em» a» ihel of Problem No. 2 

end I» shown In Figure M.    For thl» problem, an additional material properly, 

the M»»e» yield criterion,  i» »pecifled a» follow»: 

f   .    fOJ- e, < 0 *"" 

The analytic »olutlon i» »hown In Figure 6-6. 
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TABLE C-l.    PROBLEMS SOLVED BY FINITE ELEMENT 
AND CLOSED-FORM METHODS 

Nuiwber Dttcripilon 

I Sircis around a 
circular hola 

Clotad-Form 
Gaometry Hafrlal  Property Solution 

Two-dimensional       Elaftic 
(plan«») 

Referenca 6-1 

Strass In a thick 
Mal lad cylindar 
undar  intarnal 
prastura 

Ona-dlnentlonal 
(axlSymmetrie) 

Elastic Reference   6-2 

Sircii  in a thick 
wallad cylIndar 
jndar intarnal 
pressure 

One-dimensional 
(axisymmatric) 

Elastic, perfactly 
plastic 

Referenca 6-2 

Strass in a rain- 
forced thick 
wallad cylinder 

One-dimensional 
(axisymmatric) 

Viscoalastic Reference 6-3 

Stress concentra- 
tion around a 
cylindrical hola 
In a sami infinlca 
body 

Thraa- 
dinansional 

Elastic Reference 6-* 
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r 

R ■ I IN. 

L» R (ANALYTIC SOLUTION) 

L - 10 IN. (FINITE CLENCNT SOLUTION 

FIGURE 6-1.  PROBLEM I—STKESStS AROUND A ClftCUUR HOLE 

J 
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SQUARE PlATt (20 IN. X 20 SN. I 

i 

FIGURE 6-2. FINITE ELEMENT HESH FOR STRESS CONCENTRATION AROUND 
CIRCULAR HOLE 
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O.'t- 

0.2 

— EXACT SOLUTION 

A PRESENT FINITE 
ELEMENT SLLUTION 

1.2 M      1.6 
r/R 

1.8       2.0 

FIGURE 6-5.  COMPARISON BETWEEN PRESENT FINITE ELEMENT SOLUTION AND ANALYTIC 
SOLUTION FOR PROBLEM 2, THICK ELASTIC CYLINDER SUBJECT TO 
INTERNAL PRESSURE 
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Problem ^--Stress   in a Visco-Elastic,  Reinforced 
~ Cylinder Under   Internal   Pressure 

The geometry of Problem No.   k,   shown   in  Figure 6-7,   is  similar  to 

that of Problems  2 and 3-     The main difference   is  a steel   reinforcing  ring 

around  the outer circumference.     The material   of  the cylinder  is assumed  to be 

governed by a Maxwell-type   law as  follows: 

0..    =    2G(e:j)  exp   (-t/B) (6-2) 

where 

e.. = Component of deviatoric strain tensor 

G   = Elastic shear modulus 

t   ■ Time in units of B = n/G  where n ■ viscoelastic parameter) 

Volumetric deformation of the cylinder and all deformations of the reinforcing 

ring are assumed to be linearly elastic inviscid. The variation of radial and 

circumferential stresses are shown as functions of radius and time in Figure 6-8. 

Problem 5""Three-Dimensional Stress Concentration Around a 
Cylindrical Hole in a Semiinfinite Elastic Body " "" 

The geometry of Problem No. 5 is illustrated in Figure 6-9.  The 

stress distribution around the hole near the stress free face (X. - X„ plane) 

is appropriate to plane stress, while in the interior there is axial stress 

along the axis of the hole.  The finite element mesh is shown in Figure 6-10. 

The loading condition selected for this example is uniaxial stress parallel 

to the X.-axis.  Thus the faces parallel to the X.-p plane are stress free as 

is one face parallel to the X2-X1 plane. The finite element solution is 

compared with the analytic solution in Figure 6-11. 
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(•) AXIAL DISPLACEMENT ON THE STRESS FREE PLANE p - 0 (NOTICE THAT THE 
FINITE ELEMENT SOLUTION WHICH ENCOMPASSES A FINITE DOMAIN DIVERGES 
FROM THE ANALYTIC SOLUTION. WHICH CONSIDERS AN INFINITE DOMAIN AS 
THE FINITE BOUNDARY IS APPROACHED) IWIMIH, AS 

(b) AXIAL STRESS AT EDGE OF THE HOLE 

FIGURE 6-11.  PROBLEM S--THREE-DIMENSIONAL STRESS CONCENTRATION (REFERFNCE 6-*.) 
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( ■ t/a 

(c) TANGENTIAL STRESS AT EDGE OF HOLE (CROWN) 

(d) TANGENTIAL STRESS AT EDGE OF HOLE (SPRING LINE) 

FIGURE 6-11.  (CONTINUED) 
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6.2 COMPUTING TtHE REQUIRED FOR SOLUTtON 

Th« computing tim« required to »olve Problem 5 end severe I »mail 

problem» on « Univec 1108 with 6S.000 word» of core I» «hown In Teble 6-2. 

Hore dete on time to solve various sixes of problems will be gethered during 

the second phese of the contract. 
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APPENDIX A 

LOGIC DIAGRAMS 
FOR MATERIAL PROPERTIES 

Logic Jlagrams for tubroutin«» In th« material property package 

are »hown below. Subroutine CONECT connect» the package to the main program. 

Subroutine ELPL control» all the other »ubroutlnet. 
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START 

•-0 {LtMCNT 

^2 * 4(i " 0 

»-0 tLCNfNT 
NSIZ - k 
«COROC«  $TM$$  AND 
STMII, iNcmmwT 

* 
] 

CAU Ml SOT TO 
CHANCE  ClOtAl 
VAIUCS TO 
AHISOTWHC AUS 

)-0 ElCMtNT 
KSIZ ■ 6 

T^Z 
AXISYHI IltMtNT 
NSIZ > t 

ZT 

OIVIOI STRAIN Mcanm 
«O CAll tin  roR EAtn 
DIVISION TO OtTAIN 
WIUTION AT END OF STEP 

CALL ANISOT TO 
CHANGE FROM 
AN ISOTROP IC TO 
61 ORAL AXIS 

2-0 STRESS 
REORDER STRESS 
CONDENSE 
C MATRIX 

I 

C2-» STRAIN  I (  Tr~ 
REORDER STRESS  I  I     0T"" 

RETURN RETURN RETURN _I 
FIGURE A-l. CONECT-SUBROUTINE CONECT L 

MATERIAL PACKAGE ELPL INKS MAIN LINE PROGRAM TO 
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CtAii mm TO mmm n      L   vt! 
p«iiicirAi mm otittcTioiii     PT^T 

AA4692 

FIGURE A-2.  SUBROUTINE ELPL CONTROLS MATERIAL PROPERTY SUBROUTINES TRANSFERS 
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SPLITTING CHECK 

KTUKN D 
CALl TSTYIO FOR FACTOR WHICH IS 
TO BE PRINTED FOR THIS ELEMENT 

C RETURN J 
««93 

FIGURE A-2   (CONTINUED) 
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YES 

I 
ISOTROP IC MATERIAL 

11 B + i»/3 G 

C12 ' B - 2/3 G 

C13 " C12 " C21 = C31 
C22 = C33 = Cll 
C23 = C32 = C12 

NO 

C55 " C66 Ä G 

AN ISOTROP IC MATERIAL 
D = 1 " E6E9 " E2E5 - E3E8 E2E6E8 E3E5E9 

Cll '^ E6E9)/D 

C12 = lt(E2+ E3E9)/D= C21 

C13=E1(E3+E2E6)/D=C31 
C22 " Ei»(l   " E3E8)/D 

C23 = EA(E6 + E5E3)/[) = C32 
C33 = E7(l E2E5)/D 

'kk = E 10 

YES 

£ 
RETURN 

LTT: 
NO 

C55 = E11 
C66 = E12 

FIGURE A-3.  SUBROUTINE ELAST—ELAST FORMULATES C-MATRIX USING COEFFICIENTS FOR 
EITHER ISOTROPIC OR ANISOTROPIC MATERIALS GENERATED BY ELFUN 
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START 

1 
AT THIS STAGE, C CONTAINS 
ELASTIC OR VARIABLE MODULI 

i 
FC. = 

J 

D = 

NSIZ 

NSIZ 
E  VC 

'  J 

NO 

D = D + X 

THIS MAY OCCUR ON 
FIRST PLASTIC STEP 

D = 1 

5 
C"ij = (Clj)0rIg 

a.a, 
i j 

WHERE Cjj IS C MATRIX 
MODIFIED FOR PLASTICITY 

i 
RETURN 

FIGURE A-i».  SUBROUTINE PLAST—THIS SUBROUTINE MODIFIES C MATRIX 
GENERATED BY SUBROUTINE ELAST IN ORDER TO ACCOUNT FOR 
PLASTICITY. THE BASIC QUANTITIES FOR THIS MODIFICATION 
ARE DERIVATIVES OF THE YIELD FUNCTION WITH RESPECT TO 
THEIR ARGUMENTS AND ARE COMPUTED IN YLDFUN. 
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START 

S£T   IKEG - 0 

IREO - 0 IHPLIES NATERIAI. 
IS INITIALLY ASSUMED ELASTIC. 
IF YIELDING OCCURS ON PLASTIC 
SURFACE, I»EC IS SET TO I, 
IF YIELDING OCCURS ON CAP 
IREC IS SET TO 2. 

COMPUTE STRESS INVARIANTS 
CJ1 AND CJ? 

(CJI--IST STRESS INVARIANT; 
(CJ2)'—2NO INVARIANT OF STRESS 
DEVIATOR;  YCOF(I) TO YCOF(9l-- 
COEFFICIENTS DEFINING ORIENTA- 
TION AND DEGREE OF ANISOTROPY. 
THESE ARE ALL EQUAL TO I FOR 
ISOTROPIC MODEL.) 

^ 
ITYPE - YCOF(20) 
ITYPE—A FLAG TO DISTIHCU 
DIFFERENT TYPES OF PERFECTL 
PLASTIC YIELD SURFACES. 

GUISH     I 
ECTLY     I 

AAMH 

FIGURE A-5. 
SUBROUTINE TSTYLD--COMPARES CURRENT STATE OF STRF«;«; UITU v.r. n 
CRITERIA TO DETERMINE WHETHER YIELDING OCCSRS " Y,ELD 
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SMRI 

y£s r *-!      1      * 
I     CAUULATE      I 1^ I 
I     »f,/aji     I I >f /aJi - 0 I 

USING CHAIN RULE, 
CALCULATE 3f/90l), ETC 

CALL PLAST (—^ C MATRIX MODIFIED I 
J< 1 FOR PLASTICITY I 

i 
RETURN 

FIGURE A-6. 

THE YIELD FUNCTION WHOSE DERf^flrlJ^^7""5 C»f«MNT$. 
BY THE INDICES ,RE0 ffi  »^ Z XW^? 
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START 

i 
{de}eÄ -  I

Ce£]"1{do} 

i 
{deV = {deltot " {de>eÄ 

RETURN ] 

/ GAUSS-JORDAN \ 
\REDUCTION       / 

F'GU"E A-7- ssr!!T;N
NcE

Rsr,NcsTR coMmEs ELAST,C ANO PL«TIC 
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fii 

CALCULATE STATIC 
MISES YIELD CRITERION 
(SEE EQUATION 2-50) 

START 

(CHECK -   I 

CALCULATE 

J1.   ^/JJ    AND 

STRESS DEVIATORS 

CALCULATE  STATIC 
YIELD CRITERION 
FROM POLYNOMIAL 
(SEE EQUATION 2-50) 

RETURN 

RETURN 

M4M0 

FIGURE A-9.     SUBROUTINE VPLAST—THIS SUBROUTINE   IS USED FOR A VISCOPLASTIC 
MATERIAL.     IT CALCULATES THE STATTC YtELD CRTTERION,  DETERMINES 
WHETHER YIELDING OCCURS AND,   IF YIELDING OCCURS,  MODIFIES THE 
STRESSES TO ACCOUNT  FOR VISCOPLASTIC  STRESS RELAXATION. 
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START 

YcS 

CALCULATE LATERAL STRAIN 
de 

de 

de.  FOR PLANE STRESS ELEMENT 

C32de2 - Cj^dc^/Cjj 

CALCULATE LATERAL STRAINS 
dco,   dc3 FOK UN I AXI AL 
STRESS ELtMENTS 

de, 
C22C23 
C32C33 

'( 

^i 

AA<«665 

FIGURE A-10.  SUBROUTINE COMPUT—COMPUT CALCULATES STRESS tNCREMENTS AND ADDS 
THEM TO OLD STRESSES TO OBTAIN NEW STRESSES.  STRAINS CORRESPONDING 
TO ZERO STRESSES (PLANE STRESS, UNIAXIAL STRESS) ARE COMPUTED. 
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