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TECHNICAL REPORT SUMMARY

The objective of this project is to combine a number of recent
advances in finite element theory and computer technology for analyzing
cavities and structures in rock. This computer program applies to general
three-dimensional structures, considers nonlinear material properties includ-
ing homogeneous deformations and inhomogeneous deformations duc to joints,
anisotropic and time-dependent material propertoes, gravity loading, and

sequence of construction or excavation.

During the first half of this contract, work has been aimed at pro-
ducing a user-oriented computer program. The work of writing the program was

divided into three areas:

a. Input
b. Execution and output

€. Material properties

The Input Section automatically generates the continuum part of the finite
element mesh, including joint elements, allows the user to add other elements
(beam, shell, truss) to the mesh, plots the result, reduces the bandwidth and
reads loads, material properties, and other quantities necessary to the cal-
culation. The Execution Section forms the glotal stiffness matrix and solves
equations of equilibrium for displacements by an implicit method. The material
properties are represented by subroutines within the Execution Section, which
are written in a modular form so that if the general equations of nonlinear
elasticity, viscoelasticity, viscoplasticity, or plasticity do not suit a
particular problem they may be easily modified. This work is now complete
except for linkage among the various sections to be checked out and for the

efficiency of some operations to be improved.

iii
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One of the guidelines for this project was that no major new research
was to be done. Accordingly, the program uses existing finite elements, a
proven form of the equation of equilibrium, existing material property descrip-
tions, and an existing bandwidth reducer. However, a small amount of new work
was done. A new joint element was developed and an existing concept for
automatic mesh generation was greatly extended. Also, a fcrm of Cholesk|
decomposition was modified for efficient use of multibuffering, resuiting in
substantial improvement in efficiency of snlving equations of equilibrium using

peripheral storage.

During the first six months of this study, some new work was reported
by other ARPA/Bureau of Mines contractors which has been incorporated in the
program. Among these are some creep data obtained by W. A. Wawersik of the
University of Utah and strength/deformability data for faults by R. E. Goodman,
F. E. Heuze, and Y. Ohnishi of the University of California, Berkeley.

The technical work reported below is divided into four main parts.
Section 3 describes the equations of equilibrium and the types of finite elements
available in the program, including the new joint element. Section 4 describes
the properties of rock including anisotropy, rate effects, joints, and homogen-
eous inelasticity. Section 5 describes the computer program. Most attention is
given to the processing of input data and to optlons available to the user for
mesh generation, sequential excavation, or construction, automatic bandwidth
reduction and plotting of the mesh. Some logical flow diagrams are given.
Section 6 describes some example problems which have been solved during the

checkout of the program.

During the second half of this project work will concentrate on
applications of the program to field situations in which measurements are

available for comparison with results of analysis,

iv
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SECTION 1

INTRODUCT I ON

The purpose of this contract is to combine a number of recent
advances in finite element theory and computer technology into a computer
program for analyzing structures and cavities in rock. This computer program
applies to general three-dimensional structures, considers nonlinear material
properties including homogeneous deformation and inhomogeneous deformation due
to joints, anlsotropic and time-dependent material Properties, gravity loading,
and sequence of construction or excavation. Since the program is intended for
practical analysls and design, great effort has been made to foresee diffi-
cultles In using it. For example, much tedious work, which formerly was done
by the user, has been eliminated by sophisticated mesh generators and a band-
width reducer. Also, since many prospective users may have access to small
or medium-sized computers but may still wish to solve large problems
(4000-6000 equations), the program uscs up-to-date multibuffering techniques
for accessing peripheral storage units, thus dramatically reducing computer run
time for out-of-core problems. Finally, an attempt is made to lengthen the
useful life of the program by making it simple to add new elements and to
expand the material Property description and by making the program efficient

for and compatible with a wide variety of computers.

The purpose of this report is to discuss what the computer program
now does and what it will do when the present contract is complete. Most of
the description is given from the standpoint of a prospective user. Mesh
generation, the types of elements available, the types of loading and construction
which may be done, and the material properties and joints which are available are
described. Assurance that the program is working properly is given by comparing
analytic solutions for one-, two=, and three-dimenslonal problems with the finite
element solutions to the same problems. The theory underlying the present finite
element formulation is also described. Also, the structure of the code is

indicated by logic diagrams.
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The work which will be done in the second half of the contract period
involves application of the code to actual mining situations. During this
phase, general features of the program such as the Joint element and the
material property representations will be refined. Parameters will be
selected for specific field conditions and an attempt will be made to match

field data with calculations. The sites have not yet been selected.

To summarize, this report describes a finite element computer program
which incorporates a number of good features which are not all available in any
other program. By means of comparison with analytic solutions, evidence is given
that the program is consistent with the assumptions under which it was formu-
lated and written, and that it contains no programming errors. The task of
demonstrating that it accurately represents field conditions is left to the

second phase of the contract.
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SECTiON 2 '

~

PHYSICAL ASPECTS OF ROCK AND SUPPORT SYSTEMS
WHIiCH THIS PROGRAM REPRESENTS

L.
This section describes the scope and specific goals of the bFESént
coiputer program. These are representation of gravity and live Ioading:\
properties of homogeneous rock including anisotropic, inelastic and Visp&u;
effects, properties of jointed rock, excavation and construction, anh'geometry
of cavities and support systems.

To illustrate the capability of the program three typical problems
are described below. These problems have not actually been solved Qithtthe
present program, but they cuuld be solved at any time. The first is idius~
trated in Figure 2-1. A section of tunnel is to be excavated in a region
containing a major joint. The properties of the joint are assumed to be known.
The rock adjacent to the Joint is assumed to be homogeneous and to hav; viscous
properties which can be represented by a visco-plastic model. In Step 1, the
tunnel has not yet been excavated. Stress in the rock is computed by applying
static overburden to the edges of the finite element mesh. Then the tunnei is
excavated by removing appropriate elements. At each stagé of the excavation,
the tunnel roof is propped by truss and beam elements. Eventually, the .
tunnel is fully open and the finaj Supports are installed. Each stage is
associated with an elapsed time, during which the rock flows in a visco-
plastic manner. At each intermediate stage and at a stage the user defines

to be final, the Stresses in the rock and in the support elements are printed.

The second problem is iifustrated in Figure 2-2. A bank is to be
excavated in a rock such as shale‘having nonlinear, anisotropic stress/strain
properties and an anisotropic fracture criterion. In Step 1, the in situ states
of stress are computed by applying gravitational forces in a step-by-step
fashion throughout the grid. in cubsequent steps, elements are removed in any
sequence the user desires. Between excavation steps the remaining rock will
be checked for fracture which would correspond to spall and sliding in an
actual field situation.
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The third example is an extension to three dimensions of the first
example. The final stage in the calculation, at which the section of tunnel
under consideration is fuliy excavated, is illustrated in Figure 2-3. Notice
that the piane of the Jjoint is not parallei to the axis of the tunnel. This
probiem is one of the iargest and most difficuit which the code is intended to
handie.

Several important questions remain unanswered. First, how much do
such analyses cost in terms of computing time and engineering preparation and
interpretation? Second, are sufficient fieid data avaiiable for noniinear and
anisotropic properties of the rock and for the properties of the joints to be
accurately modeled? Part of the answer to the first question can be found in
Section 6 of the present report in which the computer times for soiving
simpie checkout problems are given. More information on costs wiii be forth-
coming at the end of this project. It appears at present that sufficient
fieid data are not availabie for accurate modeling. Hopefully, the deveiop-
ment of anaiytic tools such as the present program wiii stimulate the
necessary measurements.
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SECTION 3
APPLiICATION OF FINITE ELEMENT THEORY

This section discusses the present formulation of equations of
equilibrium. The provisions to extend this formulation to large deformations is
also described. Then the types of elements, including truss, beam, plane strain
and axisymmetric, three-dimensional and thick sheii eiements are described. in
add!tion, a new eiement for representing slip and debonding along pilanar joints
Is described.

3.1 SOLUTION OF MONLIHEAR EQUATIONS OF EQUILiBRIUM

The matrix equation of equilibrium for a structural system with
material nonlinearity is:

K(yu = p (3-1)
where the Instantaneous stiffness matrix (K) is a noniinear function of the
displacement vector (u). P is the vector containing external loads. There
exist numerous methods of soiving the above system of nonlinear equations. In
general, these methods can be divided into two ciasses: I terative methods and
Incremental methods.

iterative methods apply the total load initially and approach the
solution by modifying the stiffness matrix and/or modifying the locd vector.
Modification of the stiffness matrix in generai acceierates the convergence
but is computationally costly. The optimum may he achieved by occasionai
stiffness reformulation.
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In incremental methods the lcads are applied in several steps and an
incremental form of the Equation 3-1 is solved.

i égn+| (3-2)

where

v -u
n+l “n+l “n

oy = Pre - Bn
It is important to note that the stiffness matrix Kn can only be formed based
on the displacement vector from the previous step v which creates some
step-wise error. in this simple incremental technique the step-wise errors
can accumulate and lead to considerable total error. To prevent this accumula-
tion of the step-wise error, a modified form of the load vector is used.

En ¥n+ gn+| ) En (3-3)
where
Poey = Total load vector at the end of the (ne1) th step
£, = Vector of the internal resisting forces at the end of the

nth step

By using this method of load vector correction the equilibrium is satisfied at
the beginning of each incremental step and thereby the accumulation of the
step-wise error is prevented. Satisfaction of equilibrium is assured in spite
of errors or approximations in the stiffness matrix and, therefore, the reformu-
lation of the stiffness matrix is not required at every step. However, the
error in each step is directly dependent on the approximation of instantaneous

stiffness matrix.




R-7215-2299

An alternative method is to apply the total force from the beginning,
in which case the ioad in Equation 3-3 wiil be

n ® Peotal (n=1,...,N)

I't should be noted that the appiication of the total loads makes this method
equivaient to an iterative scheme with ioad vector correction which was
previously discussed. However, the loads in generai have a specified history
dictated by the sequence of application, sequence of construction and excava-
tion, and the time phenomenon associated with the viscous materiai properties.
In most practical probiems, the specified history of ioading is a series of
step functions. This is true in case of construction and excavation which can
be considered as a discontinuity in force-dispiacement reiation and an abrupt

change in the instantaneous stiffness matrix.

An efficient scheme is to appiy the totai of the step-wise loading
at each stage and then carry out several iterations with occassional stiffness
reformuiation to acceierate the convergence. This scheme is summarized in the

following steps.
For each step:

a. Compute y = Up-) * 8u (for first step; u, = 0)

b.  Compute the strains (g,) or strain increments (Agn) using the
derivatives of the shape functions for each eiement which have
been initialiy computed and stored

c. 1. For. time-independent materiais compute the stress (gn) and
the instantaneous stress-strain relations (Qn) (see section on

material properties)
2. For visco-elastic elements

I.  Compute stresses g = ¢ (g - Eg-l) where C is

< 'Sn
the elastic stress-strain matrix, €, Is the totai strain
and cc is the totai creep strain

=n~1

10
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il. Using the stresses, compute gg which is the total
creep strain at the end of the time step (see section on

material properties)

ifl. Compute effective stress

d. Compute the internal resisting forces from the stresses (effec-
tive stresses for viscoelastic elements). If it is stiffness

update cycle, compute stiffness matrix.

e. Solve Equation 3-3 to obtain 8y .- Compute vy -IrAun+|",

f. If a specifiéd number of iteration has been reached or if
vy <e (e is aspecified quantity), go to Step g; otherwise,

go to Step a and repeat the iteration.

g. . Apply the next loading step and go to Step a. |

3.2 EQUATIONS OF EQUILIBRIUM FOR LARGE DEFORMATIONS

The method of large deformation finite element analysis to be used in
the present computer program was initially introduced by Sharifi and Yates,

Reference 3-1,

The matrix equations of equilibrium (or motion) are derived from an
incremental virtual work expression and the original configuration of the finite
element system is taken as the reference configuration. This choice of the
reference state eliminates the need for updating of the coordinates of the
nodal points which is computationally a costly operation.

1
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virtual work expression is

The incremental
- L §,. SbE o= S, . sAn, .dV

o o

f (t, * at,) fAundAo
(3-1)

N

+f as, . sbety dV
\ i) o

o
where
U = Componenf of disp\acement vector
by, ™ incremental component of displacement vector
T = .Compenent of traction vector
Aty = \ncremental comﬁohent of traction vector
.Sij ~ Component of Piola gtress tensor
AS‘j = \ncremental compOnent of Piola stress tensor
AeU = Linear component of \hcremental strain tensof
Aﬂ‘j = MNonlinear component of incremental strain tensor
The stresses and traction are referred to0 the area and the coordinates
of the original configuration
9 - + R . C
B} buy g * BU§ Uy, ‘Auk it uk R (3-52)
n -
anyy " Buy 8%, ] (3-5b)
h element can be

ments within eac

mental displace
f the displacemen

ues O ts through

cre

The total and in
nodal point val

expressed in terms of the

shape functions

12
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u = HUY, | . (3'63)
o - i e

where H is the”Vector of the shape functions and gi and AU, are the

vectors .of the total and |nc.emental displacements of the element nodes.

Without loss of generality the remalning part of this section will
be devoted to the derivation of the appropriate matrices for the two-

]

dimensional quadrilateral element.

-

Substituting the Equation 3-6 into Equation.3-5 will result in
the following expressions for the straln increments in terms of - the nodal

.ponnt displacements

B 1P H’x AQX + (H.x Qx) (H,x Ayx) +;(ﬂ,* Qy)- (ﬂ,x égy?“
Ae, . = H, AU + (H, U H,o 8U.) + (H, U H, AU

o T By S W) B e () ()

(3-7)
=] + +
Begy = Moy By B 00+ (0D (00 + (1 u)
(Hog 00y) * (o L)y 00) + (. ay)
The above equations can be written as matrix form
b = B(I+E) oy = Bay

(3-8)

where I is the identity matrix and

13
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EX
X Agx
€ = € AU = (3-9)
= Yy - AU
3 =y
Xy
H, 0
-x -
U H, U, H
B = |0 Hy E=["" 8 (3-10)
gx H,y L’y tlvy
Hy tl’y

B is the usual strain-displacement matrix for infinitesimal deforma-
tion and E is the large deformation contribution.

The linear and geometric stiffness matrices and the load correction
vector are

~T ~
ke = [ & cBov (3-11)
v
m
kg = f BT s B dv (3-12)
Kg B & 2ev
Vm
-7
f = [E 3 dv, (3-13)
m

where Vo is the area of each element in original configuration, and C s

the instantaneous stress-strain relation

a3 = Cace (3-14)

AU = R~-F (3-15)

14
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It is important to note that for the computation of the above matrices
only the derivatives of the shape functions H,x and H,y at original geometry
of each element is required. Therefore, these derivatives at integration

points, can be computed in the first part of the program.

3.3 STRUCTURAL FINITE ELEMENTS

A description of the structural elements incorporated in this computer
program are given here. The beam and thick shell elements have linear elastic

properties. All other elements are capable of representing nonlinear properties.

3.3.1 THREE-DIMENSIONAL TRUSS ELEMENTS

The truss element is the conventional space truss member which can
resist compression or tension along its axis. It can also be used to model
bolts. The truss member is subject to three translations at each end of the
member as shown in Figure 3-la. The member stiffness matrix is of order
6 x 6. The material and geometrical properties are defined by the tangent

Young's modulus, and the cross-sectional area of the element.

3.3.2 THREE-DIMENSIONAL BEAM ELEMENTS

The three-dimensional beam element is subject to three translations
and three rotations at each end of the member. The generalized forces and the
generalized displacements associated with the six-degrees-of-freedom (DOF) at

each end are shown in Figure 3-1b.

The geometrical properties of the beam element are specified by an
axial and two shear areas and three principal moments of inertia, two associated
with bending and one with torsion. Young's modulus and Poisson's ratio are

required to define the material properties of the beam element.

The element stiffness matrix is of order 12 x 12 and is obtained
from the classical beam theory including the effects of the shear deformations.

15




R-7215-2299

[ ‘e Pay
Y UFY
,//’ L)
-
’ .-
T ne—— - 'y
n ;
- ©)
'l"h. 1"1_ ".__1-
..-l' #-.".
m——e P
In Ix
1
F|A::::;;7t:)
Y120 Py,
. ———— e X
AJA2121

(a) THE THREE-DIMENSIONAL TRUSS ELEMENT

AJR2122
(b) THE THREE-DINCNSIONAL BEAM ELEMENT.

FIGURE 3-1. TRUSS AND BEAM ELEMENT
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A provision for the member end boundary conditions accounts for
hinges and other rejeases.

3.3.3 TWO-DIMENSIONAL PLANE STRAIN AND AXiSYMMETRiC ELEMENTS

Quadriiateral isoparametric eiements wiii be used in the computer
program. For a general quadriiaterai element, as shown in Figure 3-2, the
focal and giobal coordinate systems are reiated by

4
X=5 h, x
=1 171 (3-16)
4
y=2I hy
=1 171
where the interpoiation functions are given by
h] = 1/4 (1-5) (l-t)
Ny = 1/4 (145) (1-t) (3-17)
h3 = 1/4 (1+s) (]+t)
The same interpoiation functions are used in the dispiacement
approximation.
' uy (s,t) = ¢ hy Uyy + hg o3 + he ay
where
2
h (i~s€)
h6 = (l'tz)

hS and h6 are the incompatibie interpolation functions.

17
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a. GLOBAL SYSTEM

b. LOCAL SYSTEM

FIGURE 3-2. TWO-DIMENSIONAL 1SOPARAMETRIC ELEMENT
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For two-dimensionaj analysis the strain-dispiacement equations are

xy ay P "L hy Ui t2 hi.x Uy 1 HS.Y“' * hG.Yaz 4 h5.’(“3 5

h6.x°k
(3-i9)
Or Equation 3-19 can be written in matrix form as
Hx 0 Ux
E = By = (3-20)
0 n,y Uy
H,y »X

ments and four coefficients of incompatible displacement functions by a
3 x i2 matrix. The submatrices in Equation 3-20 are given by

Hug = Iy oy by y g, Mg xs g, x0 g ]

2 » h (3-21)
ﬁ!y [h«' ,y hz’y h3’y h4,y S.Y’ hG,Y]
The eiement stiffness matrix is given by the foliowing equation:
ko= fv 8 ¢ 8 av (3-22)

19




A R-7215-2299

where C 1Is the stress-strain matrix. The above equation is integrated
numerically

ko X gl (3-23)

This stiffness matrix which Is 12 x 12 is reduced to 8 x 8 by elimination of
the four incompatible modes before assembling in the global stiffness matrix.

3.3.4 THREE-DIMENSIONAL ELEMENT

For an arbitrary eight-point brick element shown in Figure 3-3, the
appropriate displacement approximations are

8
ue= I Ui *Me%a t Mottt %

u = ¢ uy‘| + hg qy] + h]o uyz + h]] Gya (3'2'0)

Uy + hgagy +Mgagz *hyy oy

20
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FIGURE 3-3.

EIGHT-POINT THREE-DIMENSIONAL ELEMENT

21

-



R-7215-2299

where

hy=1/8 (1 +€) (1 4n) (1 +¢)
hy = 1/8 (1 -€) (1 +n) (1 +¢)
hy=1/8 (1-€) (1-n) (1 +¢)
hg =1/8 (1 +£) (1 -n) (1 +¢)
hg = 1/8 (1 +€) (1 +n) (1 - ) (3-25)
hg=1/8 (1-€) (1 +n) (1 - %)

+

hy=1/8 (1 -¢) (1-n) (1 -¢)
hg=1/8 (1 +&) (1 -n) (1 -¢)
hg = (1 - &)
o= (1 - n?)

h" =(1- Cz)

The first eight are the standard compatible interpolation functions. The last
three are incompatible and are associated with linear shear and normal strains.
The nine incompatible modes are eliminated at the element stiffness level by
static condensation.

3.3.5 THICK SHELL ELEMENTS

The thick shell element described here was initially developed by
Wilson, et al., Reference 3-3.

This shell element is a 16-node curved solid element shown in
Figure 3-4. Each node has three unknown displacements. Therefore, if the
shell is considered as a two-dimensional surface there are six unkiowns per
point. It is apparent that this type of formulation avoids the problems
associated with the sixth degree of freedom--the normal rotation Is set to
Zero when certain finite elements are used in the idealization of shells.

22
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FIGURE 3-4. THREE-DIMENSIONAL THICK-SHELL ELEMENT
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The locations of the nodes are defined by the orthogonal, right-
handed coordinate system (x, y, z) which is referred to as a global system.
Within the element a local coordinate system (£, n, ) has been chosen such
that &, n, £ vary from -1 to +1; (0, 0, 0) is located at the centroid of the

element.

The local and global coordinate systems are related through a set
of interpolating functions:

B

X = X

=1 17
16

y=t hyy, (3-26)
i=]

16 ;
2=3 4
s 1714

24
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where
hy =180 +g) (W +n) (W +¢g) (E+n- 1)
hp = 1/8 (1 -¢) (1+n) (W +g)(-€ +1n-1)
hy = 1/8 (1-€) (1= n) (1 #g)eg = n-1)
hy =B +E) (1-n) (145) (€-n-1)
hs =18 (148) (1en) (1-2) (g4n-1)
hg =1/8 (1-8) (1+n) (1 -¢g)(-g+n-1)
(3-27)
hy =18 (-8 (0en) (N -g)t-n-1)
hg =1/8(1+g) (1 -n)(1-¢)(-n- 1)
hg =178 (1 -e) (140 (149
o " 14 (1 -€)(1-n?) (147
hy =18 (0= (1-n) (g
= VA +£) (0 -nd) (149
3= A8 (1en)(1-g)
g =480 -€) 0 -nd) (1-¢)
b =178 (1 -89 (1-n)(1-g)
e =1/8 (14 £) (1 -n?) (1 -¢g)
The displacements within the element are assumed to be of the follow-
ing form:

16
1 1 i']

16 +h + h +hyga, * hy a (3-28)
5 My ot Mg ayp t g agy * by ayy + by g

16 +h + h)na,, + hy, ¢
i " E M Vzg t Mg agy g agy ¥ g agy ¢+ hyg oy 4 by g

25
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where

E(1-£2)

=n (1-nd)

=
—
(o]
[l

= - 2
hg = (V-1 (3-29)
hyg = &n (1 - £2)

b,y = nE (1 - n?)

The motivation for addition of the interpolation functions |7 to
h2| Is to Increase the capability of the element in producing closer approxi-
mations to the exact displacements under simple loadings, thereby increasing
the convergence to exact solution. The incompatible Interpolation functions
to h2] have zero values at the nodes and produce Incompatibilities in

|7
displacement field along the interelement boundaries.

3.4 JOINT FINITE ELEMENT

The joint element is intended to represent the rock joints, faults,
interfaces and similar discontinuities in continuum systems. The joint
eiement has the capability of representing the main characteristics of the
deformation behavior of the rock joints such as deboﬁding and slip. The
term debonding means the ability of separation of the two blocks of continuum
adjacent to the joint surface which were initially in contact. Subsequent
contact can also deveiop by the movement of the two blocks towards each other.
The term slip means the.relative motion along the joint surface or fault when

the shearlng force exceeds the shear strength of the joint.

Previous attempts have been made to develop discrete elements to
~represent the joint behavior. Goodman, Taylor and Brekke (Reference 3-2)
developed a simpie rectangular, two-dimensional eiement with eight degrees
of freedom. This element has no thickness, and therefore the adjacent blocks

26
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of continuum elements can penetrate into each other. Zienkiewicz, et al.,
(Reference 3'4) advocate the use of continuum .isoparametric elements with a
simple nonlinear material property for shear and normal stresses, assuming
uniform strain in the thickness direction. MNumerical difficulties may arise
from ill conditioning of the stiffness matrix due to very large off-diagonal
terms or very small diagonal terms which are generated by these elements in

certain cases.

To avoid such numerical problems a new joint element is developed
betow, which uses relative displacements as the independent dégrees of freedom.
The displacement degrees of freedom of one side of the sliplsurface are
transformed into the relative displacements between the two.sides of the slip

surface. The transformation relations are as follows:

T B
Ui = Uxy T Buy
uT. = uB + Au
yi yl yi
T B
uxj = uxk-+ AuxJ
uT. = u + Au
YJ yk

The superscripts T and B refer to the top and bottom elements
with respect to the slip surface respectively. As shown in Figure 3-5, those
degrees of freedom of the upper element which are on the slip surface are
transformed but the degrees of freedom of the lower element are the original

displacement quantities.

27
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T 3
|_|xi uxl.+ Auxi
T B
., = + 4
Yy T Uy T Ay
T B
uxj uXk + Auxj
uT = 8 + Au
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FIGURE 3-5.

GEOMETRY OF JOINT ELEMENT
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The joint element is assumed to have the relative displacements as
the degrees of freedom. For example, in a two-dimensional problem the joint
element will have four degrees of freedom (Figure 3-6). The relative normal

and tangential displacements, Aun and Aus, are assumed to vary linearly along
the element as follows

Au = h.Au_. + h,Au .
n i ni Jj on

J
(3-30)
Au_ = h.Au_, + h,Au .
s i si Jjs]
where the hi and hj are the linear interpolation functions
s Lre=
hy o=zl -¢)
] (3-31)
hj = E(]*‘E)
and Au ., Au_., Au ., and Au_, are the nodal point values of the relative
ni nj Si Sj

displacements. The joint element is assumed to have only two strain com-
ponents; €, = normal strain, and e, = shear strain. These two strain

components are related to the relative displacements through the following
relations.

(3-32)
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FIGURE 3-6. COORDINATE SYSTEMS FOR JOINT ELEMENT
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The substitution of Equations 3-30 and 3-31 into Equation 3-32 resul ts
in the strain-displacement relation for the element

Au

nl
€, 1 (1 - £) 0 (1 +¢) 0 du (3-33)
e 2t (1 - ¢) 0 (1 + ) bau
n)
Lu‘J
e = BaU

[

The stresses and the strains are related through the following
material property matrix C.

n Can Cns|¥En
E (3-34)
%s Csn Css)l=s

In general the above stress/strain relationship for rock joints is
nonlinear, the details of which are given in Section 4.

The stiffness matrix for the joint element is formed in n-s
coordinate system;

T o
Kk, = J, 8'ceav (3-35)

3
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and transformed to the X=y coordinate system as fol lows

T

x
L}
-

ke T (3-36)
where T is the transformation matrix containing the direction cosines.

2(Ai - 28‘) 2(A3 + 82) (A‘ - 28‘) (A3 + 82)

L 2(A2 + 2e|) (A3 + 82) (A2 + 28|) (
k = '3 3-37)
2(A, - 28B.) 2(A, + B.)
. 1 1 3 2
Symmetric
2(A2 + 282)
where
2 b2 B (s B
AI = cssa + cnn ] 'nsa
2 2 2 2
Ay = C b+ c 2 B. C.(a° - b )
A3 = (cnn - css) ab
a = L =
L% i
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SECTION &4

REPRESENTATION OF PROPERTIES OF ROCK, INCLUDING ANISOTROPY,
INELASTICITY, RATE EFFECTS AND
PROPERTIES OF FAULTS OR JOINTS

The first part of this section describes homogeneous properties of
rock which are available in the AA computer program. As used here, '*homogennous'
refers to properties which can reasonably be averaged over several feet, which
is a typicai dimension of a finite element in applications to mining engineer-
ing. Inhomogeneous properties of rock masses, such as those caused by fauiting.

are treated by a separate procedure which is described in the second part.
The topics which are covered beiow include the following:
a. Inefasticity
1. Variable modulus
2. Variable modulus with perfect plasticity

3. Variable modulus with perfectly plastic fracture

criterion and strain hardening cap

b. Apisotrogz

1. Variabie modulus with anisotropic fracture criterion

based on the hypothesis of Jaeger (plane geometry only)

2. Variable modulus with anisotropic yieid criterion based
on the hypothesis of Hilli

c. Rate Effects (lsotropic Oniy)

1. Creep (series of Keivin elements)

2. Viscoplasticity (based on work of Perzyna)
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d. Joint Properties

1. Diiatant

2, londiiitant

b1 HOMOGENEOUS PROPERTIES

These models, which are also summarized in Table k-1, afford some
materlal descriptlions which probably cannot be cffectiveiy used at present
owing to the lack of exparimental data on rock from particular mines. As
analysis Increases In effectiveness, It is expectec that more data wilii be
routineiy obtalned, thus enabling more sophlsticated material models to be
used. Advantages and disadvantages of these modeis are summarized in
Tabie 4-2, Typicai laboratory properties for rocks are shown In Figure 4-1.

TABLE 4-1., SUMMARY OF AVAILABLE MATERIAL PROPERTIES

Material Characteristics
¢ ()
(7 N N
¢ h) < <
N o 9 D
Type of Modei & J.‘P \® \? ¢
h () f OQ '\‘,
0 NN o o’ &
i ‘9 N N \
Constant elastic moduii X 0 X 0
Variable moduli X 0 X,0
Elastic/plastic (flixed
statlc yleld surface)
Constant moduli X 0 X 0
Varlabie moduil X 0 X 0
Cap modei X X

X options or 0 optlons may be used simultaneous'y, but
X and 0 optlons may not be mixed, except where noted.
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TABLE 4-2. ADVANTAGES AND DiSADVANTAGES OF EACH MODEL

Advantages

A. Elastl

Disadvantages

c-ldeally Plastic

Simpie to fit to data

Approximates most features of data

G = Const. G = G(P_) and assocliated
flow rule theoretically correct

8. Vv

May not fit all available data

Cannot match triaxial test

Other treatments of G can lead
to possibie paths of energy
generation

For nonassocliated flow rule no
general uniqueness theorem

arfable Moduli

Best fit of data

Oniy model with repeated hysteresis
within fallure enveiope

ideal for finite element

Computationally simple

Reiatively easy to fit

C.

Restricted to near-proportional
loading (in shear)

For nonproportional loading paths
no uniqueness theorem

Additional quantity must be stored
at each grid point

Cap Model

Satisfles all rigorous theoretical
requirements

Reasonably good fit of data

Effective control of dilatancy

Indirect approach needed to fit
data

Reiatively complicated

Additional quantity, the strain
hardening parameter, must be
stored at each grid point

Viscoelastic

D.
Simple to fit to data
Approximates features
of data for some rocks
€.

Requires sophisticated testing
to define viscous coefficients
for multi-axial loading.

Does not account for deterioration in
strength with time

Viscoplastic

Approximates some features of
data including shear strength,
stick-siip phenomenon

Requires sophisticated testing
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The programming of the material property subroutines is arranged to
provide maximum flexibiiity and ease In changing properties. This Is done by
performing each separate function in the material properties description by a
separate subroutine. Thus “e.arate subroutines are provided for the following
purposes:

Computing variable moduli

Computing derivatives of the yieid functions with respect
to its arguments.

Testing for yleiding or fracture
Adjusting stresses for viscoelastic relaxation.
Adjusting stresses for viscoplastic relaxation.

Transforming straln Increments to princlpal axes of orthotrophy
and transforming the matrix of stress/straln coefficlents to
the global axes.

There is considerable interdependence between the inelastic and anisotropic
capabilities. Vherever possible this Interdependence is used to economize on
programming. Logic diagrams for each subroutine In the homogeneous material
property package, are given in Appendix A,

.11 INELASTICITY FOR 1SOTROPIC MATERIALS--VARIABLE MODULUS

Inelasticity In Isotropic materiais Is represented through variabie
bulk and shescr moduli and throvgh plasticity theory. The bulk moduius B
Is assumed to depend on the current value of elastic volumetric strain v and

u .
its previous maximum value Y max

FOR LOADING (0 > u 2z up, )
8§ = (um - Bo) exp (&%) (4-1)
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FOR UNLOADING OR RELOADING (0 < p < u,_x)
= - L -
B B, + (B su)(uz) (4-2)
where
u
max
(eo + (8 ao)( 2 )
Bu = the lesser of
s
m
FOR LOADING OR UNLOADING/RELOADING IN TENSION (u < 0)
8 = B ("-3)

Appiication of this modei to a granitic rock is iilustrated in
Figure 4-2. Speciflc parameters for this rock are

7.6 x 106 psi

1.205 x 10° psi

0.0275

=
-—
[ ]

0.05

The shear modulus G is also assumed to depend on p and Mmax

FOR LOADING (0 < < u)

6 =6 - (6 - 6,) exp (ﬁg) (4-4)
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FOR UNLOADING/RELOADING (0 < i < e
G = Maximum previous Qalue of & . ) (4-5)
FOR LOADING OR' UNLOADING/RELOADING IN TENSION (u < 0)
o *e e e

o

Application of this model to cracked ahé=uncracked granitic rocks’

is illustrated in Figure 4-3. Specific parameters for these rocks are:

6 . h.35 % ]06 psi

G =
G = 0
o . \'\
= 0.00
H3 2 )
a The incrémental stress doij is related to the incremenis: com-

v porient of elastic strain de?j bé'the following expression:

Y
b )

S o

- a
Q
“ N

| 2 =) e e . _ i
(B - 3-6) dekk"sij_* ZG(d_.Eij)_ ._;(‘o /)

where

0 if i#j;=1 if i=]j

(o]
it

L)

Theoretical guidance on the appropriate functions for B .and G
is provided by Walsh (References 4-7, L-8), who postulates that the effective -
modulus differs from the intrinsic modulus due to cracks and pores. As these .
are closed by increasing pressure, the effective modulus tends toward the '

consolidated value. Walsh's work contains parameters which are not retained

1
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in the following empirical expressions for the effective bulk modulus. How-
ever, the basic concept is retained. Also, the present model for the effective
shear modulus merely follows Walsh's concept. The idea of coupling the shear
stiffness fo volumetric strain is proposed in Reference 4-9 and carries the
danger that energy might be extracted from the model by hydrostatic com-
pression, followed by shearing, followed by releasing the pressure and finally
by releasing the shear. This danger is avoided by assuming that friction
prevents cracks from reopening during unloading so that the largest value of

G reached on loading is retained during subsequent unloading/reloading.

Under these conditions a material may dissipate energy in shear during

loading and unloading cycles but can never produce additional energy.

b.1.2 INELASTICITY FOR ISOTROPIC MATERIALS--VARIABLE MODUL! WITH PLASTICITY

The present adaptation of plasticity theory is based on work of

References 4-9 through 4-13. The model consists of a yield criterion

flo,., L) = 0 (4-8)

where L is a function of plastic strain,

and a plastic flow rule in which f is regarded as a potential function

deP. = A i (4-9)
1] aoij

Theincremental stress is related to the elastic component of incremental

strain by Equation 4-7. Defining

de€. = de,. - deP, (4=-10)
ij ij iJ

h3
i



R-7215-2299

Substituting Equa.ions 4-9 and 4-10 into Equation L4-7 leads to

s -op of - of =
dcij = A(dekk A 3022) 5ij + ZG(deij A 30..) (4-11)
ij
where
2
A = - -
B 3 G

If the yield criterion is satisfied, the stress state must lie on the surface

defined by f in Equation 4-8. The mathematical statement of this constraint

is

do., + =—dL = 0 (4-12)

Substituting Equation 4-11 into 4-12 permits solutions for A

A(dekk) fgg + 26 deijfij

(4-13)
Mfeg * 26 F,F +R

A =

where R s a strain-hardening function to be defined below.

Substitution of Equation 4-13 into L-11 expresses the stress increment in

terms of the strain increment.

b
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Specific functional forms have been assumed for f. These contain

empirical constants whose values can be selected to match data for a specific
material. The forms are

Polynomial 1 in o

i

4
. n=-1 =
‘/Jz E‘l a J; 0 Jy > b
fl(oij) - (4-14)
Vi

= 0 J

Polynomial 2 in oij

fb e

j ] (h"S)

-
v
o

fylo;

‘/:q-(a|+a2) =0 J <0b
Cap_(to be used with Polynomial 2)
fl, = (9, - v)2 + PZ(JE -q) = 0 (4-16)
in which
Vo= Lo+ PE(L) X' (L) (4=17)
Q@ = w1t Pt wn? (4-18)
and
AII-(I-%)2]+C L s B
X(L) = (b-lga)
A+C L > B
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X'(L) = (4=19b)

The hardening parameter, L, is

L = f (Jl. ﬂ)‘,;dz (4-20)
where
T &
g = w1 - (4-21)
\F; -
'P - op L
5 ) ) () i
The hardening parameter R s
2 (af) (af2 4 (31’2)2 (afz)2
R = + + (""23)
(f V——)Z aol) 302 303
where
Ty g 03 are prircipal stresses
and

The ap parameters and stress/strain relations produced by the cap
model are shown in Figures U-4 through 4-6. Data on strength for granite
containing various degrees of cracking are shown in Figure 4-7, which illus-

trate the adequacy of the assumed fracture criteria.

13
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FIGURE 4-4. CAP MODEL
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The incremental stress/straln equations are expressed in matrix form

as follows:
{do} = [C]{de) (4-24)
where dc is the total increment of strain., The C matrix thus contains

general ized tangent modull and can be used in forming the element stiffness

matrices. For the models descr’bed above, the C matrix is as follows:

51




[-a)
(-2
o~
o~
]
W
-
o~
~
»
&

TR TN HIRR I et o
€€ 144 [}
€f ¢4 t o¢ [ £e
) 3o ) = 4 0404 - 4
veade s e
Ja9ym
e -
2 .
e
T ] -9
2 - e
i - S ., 31 433umig
TR T )
Ry 5l ]
s - €, Skl -
AmNocv w7 T - e = = Idl.r ol k>
32 - 98 ey 120 . g Tt e )
1-';«" nu-ﬂ.'- .nr 1 e 1r .o.,-.t.u- T Q o3 . .T -9 e
“test e g hal 1T 2 BT SEEPS [ Rt SURPH T AT S| 7092 - 0)
(4 Lo ] f,, g ., (4 9 []
= e s Lol . {4 EETTT {3 - m e R
B 1 1 ("*992 ¢ s 902 ¢ 4 ) ("'est o 1)(*me « o) % e ) N
h—

=)

52



R=-7215-2299

The C matrix Is clearly composed of eiastic and Inelastlc parts

C = ¢®-¢P (4=26)

The €% and cP matrices are computed separately. The reason for this is
efficiency in treating isotreplc and anisotroplc materlais with the same
Fortran statements.

In weakiy nonlinear probiems it is possible to avoid time-consuming
reformulation of the stiffness matrix by introducing nonlinearity through
the load vector. The method is an extension of the equiiibrium equations
given in Reference 4-29. In the foliowing equation, time is used as a
parameter. Number of load step couid be used Instead.

At time 1, ‘he totai change in compiimentary strair energy is
equal to the change in compi imentary work done by nodai point forces.

1=t =t
Zof '<c>T (da}T v = 2‘6 <w>_ {d”r (4-27)
1= voO =

where

<z>, {dg} = Eiement strain and stress Increment

<u>, {dP} = odai displacement and force vector
v = Volume of finite element
T = Arbitrary instant of time

The strain/dispiacement reiation s
{e} = [B])(u)

or <> = <u(s]’ (4-28)
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The stress increment in an elastic/plastic material may be expressed by
rewriting Equation L4-24 as follows.

{do} = [C]{de} - {dop} (4-29)

elastic correction

where now C = (:e

Substituting Equations 2-28 and 2-29 into Equation 2-27,

1=t

T 1=t
Z:o ‘[/ol <u>_ (B] {[c][a]{du}T - {dop}T}dv = Z-;o <w>_ {dP}T (b-30)

Noting that <w>_ may be eliminated from both sides and that

f 617 [c1(Blev = [K] (4-31)
vol

where [K] s the elastic stiffness matrix, Equation 2-30 may be rewritten as

T=t=At
_ T
) X ([K]{du}T ‘(/ol (8] {dcxp}T dV)

1=0
(K] (81" th (b-32)
+ [K]{du}, K - f B] {do dv = {r} -32
bt vol { p}At =0 i

where {du}, , {do } equal change in u and o during the interval
At Piat P
t - At to ¢t.

Performing the indicated summation, assuming stress to be constant

throughout the element and defining

T
E, = X [Kl{dul, (4-33)
=0
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we have

T . i TS :
ety - (o dog} v o= 3 - geb,, o (o] {op}t-At Vo (b-34)
For small increments of stress and time in a step-by-step integration, the .

second term on the left hand side is neglected.

The expression which is used for {E} in the computer program is
derived as follows. The recoverable work done on an element is equated to

the elastic strain energy stored in the element by the following equation.

7 <w{E) = Leolc)en (4-35)
or ,, |
(€} = [BT][C]{e}V (4-36)
Thus Equation 4-34 may be rewritten
R ) S o
[Kldul,, = ), - [ ]{ICJ{e}t_M {Op}t-m}v -37)
Following Equation 4-29 N
[, of of
do;; = (Adekkdij + 26 deij) - (A T 5,5+ 26 T)A (4-38)
or . . D
3 - 4P (e
doij = Adekkdij + 26 dgij doij (4-39)
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where
af af
. Ade G d~,
kk 3o ij 0.,
dof. = a2 s 4 g 2f bl - ) if f=0
ij 3a ij 90, . af 3f y af af
kk 1] A T 5"——1' 26 3 3—
kk g % %%; (4-40)
= 0 if f<0

After each integration step, Aui is given; deij is found.

Based on deij "and stress at previous time, f is checked
and ddij is calculated according to whether material is
elastic or plastic by adding contribution for elastic part

to contribution from plastic part.

Stiffness is always based on elastic, parameters, i.e., X, G.
Plasticity is introduced through updating of stress increment.

Hence, there is need to update stiffness matrix.

4.1.3 INELASTICITY FOR ANISOTROPIC MATERIALS--THEORY OF JAEGER

The fracture of anisotropic rocks is the subject of several failure
theories. The Walsh-Brace theory (Reference 4-14) assumes that failure is
tensile in nature and that it is influenced by the presence of preexisting
cracks. Some of the cracks are assumed to be small and randomly oriented
while others are long and have preferred directions. Extension of the cracks
is postulated to occur when the Griffith criterion (Reference L-15), as
modified by McClintcck and Walsh (Reference 4-16) to account for friction on

the crack faces, is satisfied.

In contrast, Jaeger (Reference 4-17) assumes the material to fail in
shear either along a single plane of weakness or within the matrix material

according to a Mohr-Coulomb type of failure criterion of the form

T = a_ - oa (4-38)
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+

where
& = Shear stress on plane of fracture
o = Normal stress on plane of fracture
ag 3 = Cohesion, angle of friction

The theory is expressed in terms of principal stresses by an axis rotation
as follows

2ao - 2a]o3
o - oy = (4-39)

l, 2
a, - a] + 1

Improved agreement with experiment is obtained if 3 is assumed to vary

3, = a - ajcos (2(5 - B)) (4-40)

where

B = Counterclockwise angle from the direction of the major prin-
cipal stress (o]) to the direction of the bedding planes

§ = The orientation of B at which a is minimum. Usually
assumed to be equal to 30 deg

The angle B is shown in Figure 4-8 along with angles relating it to global
directions in the finite element formulation. McLamore and Grey (Refer-
ence 4-18) have obtained satisfactory agreement between experimental

data on strengths of slates and shales using a modification of Equation 4-25
as follows:

a, = a, - a3[cos 2(¢ - 8)]" for o0 < E < B
(b-41)
a, = a, - aglcos 2( - 8)]" for B < < 90°

Some of their results and those of Brace and Walsh are illustrated in

Figure b-9,.
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The present application of the hypotheses in Reference 4-18 is
limited to plane geometry. It does not take into account the effect of the
intermediate principal stress which is shown in Reference 4-19 to play an

important role in fracture of some types of rocks. More work is needed to
remove these restrictions,

The first step is to determine the magnitude of the principal
stresses 0., 0, and their direction as specified by 6, the counter-
clockwise angle from the +X global axis.

o, + 0 - Y 2
o  , w 2T (_xx_y.z) .o (4-h2)
)2 2 2 Xy
1 -Zox
0 = 5 Arctan (—————)L- (4-43)
o, 9,

Bilinear stress/strain relations are specified by the user in terms
of Young's moduli and Poisson's ratio in directions parallel and perpendicular
to the bedding planes (oriented at o relative to global axes). Thus,
experimental data is required from specimens cut orthogonal to bedding plane
and at angles other than 900. The computer program transforms the various
E and v to the principal directions of stress and modifies them to account
for fracture. These parameters, E‘, Y120 130 Ez, Vays Va3 etc., are
assembled into a matrix relating incremental stress and strain in principal
stress axes. The relationship between incremental stress and incremental
strain expressed in the principal axes of anisotropy (principal stress axes)
is shown in Equation 2-24 where C is given by Equation L-Lhk. The matrix is
then transformed through the angle © into global coordinates for inclusion
in the element stiffness matrix. An illustration of the bilinear Young's

modulus approach is superposed on data in Figure 4-10.
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E, 0 - V23V35) Eylvy, + V13Y3,) Eylvy3+ V12Y3)
Ea(vyy + vy3v3)) B2l = viva)) Eylvyg + V21Yy3)
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P
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INELASTICITY FOR AlISOTROPIC ROCK-~THEQRY OF HILL

Hill (Reference 4-9) lias proposed a

materials whose form is compatible with the
described above.

yield criterion for anisotropic

isotropic plasticity theory
If the stress components are expressed in the principal
axes of anisotropy (not necessarily principal stress axes)

» the yield criterion
can be expressed by

f( AFER J?) = 0 (4-45)
where
[N - - 2 o 2 - 2
Jolle C1(°cc °nn) i c2(°nn °££) * c3(°cc °EE)
2 2 2
Cuce * Cootp + ooy

J? = C7occ = Csonn + c9°gg

62



R-7215-2299

in which it is assumed that the %, n, £ axis system coincldes with the princlpal
direction of anisotropy. f may be used as the potential function described

above. Adaptation of this theory to rock is described in Reference 4-20.

The elastic behavior of the material may be prescribed to be either
isotropic or anisotropi-. If it is isotropic, the quantities B and G may
be used. If i+ is anisotropic, Young's moduli and Poisson ratios El’ Vg
v|3, etc. are specified in the principal directions of anisotropy. The C
matrix (Equation 4-24) which relates incremental stress to incremental strain
is thus initially expressed in the principal axes of anisotropy and is sub-

sequently transformed to global directions of the finite element mesh.

L,1.5 RATE EFFECTS--VISCOPLASTICITY

This method of incorporating rate sensitivity equations is based on
Perzyna's elastic-viscoplastic model (Reference 4-21) which is a generaliza-
tion of an earlier model proposed by Hohenemser and Prager (Reference 4-22).
An adaptation of the cap model described above for viscoplasticity is described

in Reference k-23. The present model is taken from Reference 4=-24.

A linear elastic, rate independent region is bounded by a static

yield criterion
f(Jl, Jé) < 0 (4-4e)

within which Hooke's Law applies. If the static yield criterion is satisfied

or exceeded

J!) 2 o0 (4-47)

FUy, 9)) >

l’

A viscoplastic strain rate is assumed to develop according to the following

flow rule.

(L]
I

vo(f) =L

ij - 3G . (h"%s)
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where
¢(f) = A function of the static yield criterion f
F = Assumed potential function. Presently, a nonassociated

flow rule is used in which F = Jé and differentiation

is performed with respect to the stress deviators c;j

Y = Empirical viscoplastic parameter

It is assumed in the present work that

o)) = (" (4-49)

-

for

Ll
[ ]
M=
[+1]
3
[ 4N
-— 3
[ ]
o
w
o
[ 4N
K
v
o

f = (4-50)

If f <0, elastic inviscid stress/strain relations apply.

Making use of Houke's law

8., + 26 &%, (4-51)

g = Aekk ij ij

and expressing the elastic deviatoric strain rate by

Q! _ ol - Up' o
Eij = Eij Eij (4-52)
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for the case where f 2 0, the stress rate may be expressed by the following

equation,
‘[J' o!
. ) - 2 li
Aekkéij + 2G Elj Y fz-——-- -1 » Jl > b
RGN A
nw]
T (4-53)

\’J' ot

) 2 _ iJ

'f time is considered the Integration parameter and the time step is At,

the Incremental stress is

J I o! ‘
2 i -
° VY2

The absence of plastic volume strain is due to choosing a nonassociated flow

rule in which J; does not appear In the plastic potentlal.

Some exampie calculations, which are summarized in Tables b-3 and 4=y,
are shown in Figures 4-11 through 4-13, Comparison with some data for a
tonalite is shown in Figure 4=14. The comparison illustrates the ability of
the model to represent increase ir strength with strain rate and its inability
to represent noniinear behavior Prior to ylelding. It cén be shown that the i
effects of viscoplasticity can be accounted for entirely by a correction to the
foad vector (Reference 4-24). The technique is similar to that described ‘above
for rate-lIndependent plasticity and to that descrlbed beiow for viscoelasticity.
An Iimportant consequence of this is that time-consuming reformulation of the

stiffness matrix Is avolded.
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TABLE 4-3. SUMMARY OF EXAMPLE CALCJLA1IONS

| Stress Ratio, ' Strain Rate,=
Case Type of Loading l 03/0l in./in.-sec
1 Proportional loading | 0.293 200.00 y
2 ‘ Proportional loading 0.293 | 2,00
3 | Proportional loading 0.293 ‘ 0.20
4 Proportional loading 0.293 l 0.0?
5 | Proportional loading 0.200 f 0.20
6 ‘ Proportional loading 0.100 0.20
7 Uniaxial strain 0.293 0.02
8 ’ Uniaxial strain 0.293 0.20
9 Uniaxial strain 0.293 2.00
10 441 Uniaxial strain 0.293 | 200.00

*“For proportional loading, these are elastic strain rates.

TABLE 4-4., PROPERTIES USED IN PRESENT EXAMPLES

Properties
Bulk modulus B = 1.5x 106 psi
Shear modulus G = 106 psi
Cohesion a = 1450
Angle of friction a, = -0.1
Viscoplastic coefficient y = 1.0
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L,1.6 RATE EFFECTS--VISCOELASTICITY

The total strain is defined to be the sum of instantaneous elastic
and viscoelastic parts. The strain is further divided into shear and volumetric
components, which are treated separately as follows:

x _ e Y c }
Eij = Eij Gij €k = (Eij) + (E;j) (4-55a)

Sk = (skk)e+ (skk)c (4-55b)

In the computer program the user may choose to have either elastic or visco-

elastic shear deformation and to have either elastic or viscoelastic volumetric
deformation.

Kelvin, Maxwell and three-parameter fluid models are available as
shown in Figure 4-15. To simplify the following discussion, no distinction is
made between volumetric and shear components. The creep rate and creep strain

at t+ At may be expressed as follows:

KELVIN
t-':c + a EC = a.o (15'568)
1 2
e = ¢ exp(-a,at) + a2(1 - exp(-a,At)) (4-56b)
t + At t SXPLT % 3 P
where a, = %- and a, = %-, E and n are the spring and dashpot constants
respectively.
MAXWELL
e€ = alé + a,0 (4-57a)
c p— - i,
S aar = Spt [(Eptra) o al°t] (k-57b)
h = = and a -l
where a, 2% 5
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FIGURE 4-15. VISCOUS MODELS AVAILABLE IN THE
PRESENT COMPUTER PROGRAM
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THREE-PARAMETER FLUID

The creep strain of the three-parameter fluid is divided into two

1c 2 \
components ¢~ and “e® which represent the creep strain in a Kelvin model
and dashpot
c lc, 6 2c¢
M R (4-58a)
1 c 1c a,
S 00 T O eXP('alAt) *o, 5? (1 - eXp(-al At)) (4-58b)
2.c - 2c At
Tteat T fraacta ot (4-58c)

2

These models are illustrated in Figure 4-15. Various aspects of their proper-
ties are discussed in Reference 4-35. Equations 4-56a, -57a, and -58a are in

suitable form for application to a time-marching integration procedure.

Typical creep and creep recovery data for several rocks are shown in
Figure 4-16. Application of a Kelvin model to one of the rocks is shown in
Figure 4-17. By suitably varying the parameters 3, and a,s a range of
behavior can be reproduced. To assist the inexperienced user in selective

coefficients for these models, the following guidelines are offered.

The finite element adaptation of these models uses the initial
strain approach to writing the equilibrium equations based on the change in

internal energy.

U =f oTe dv -I pTu ds (4-59)
vol S

The stress/strain relations are in terms of a matrix C of elastic stress/

strain coefficients

{o,} = [clje, + de - €| (4-60)
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lr (displacement)
2.2

(mae) No. 2
[ r
2.0t r"’ (eraep) i
; =1
1L}
1.4k
| 4
l.z-j
1O 1T 1019 20 21 22 ) 24 25 26 54'565"0_“
1967 Jan 1967 Jume

(a) CREEP AND CREEP RECOVERY (SLATE)=--REFERENCE L4-28

{ |6 hours
0 5 10 15 20 25
Time, sec x 10°

=

(b) CREEP UNDER CONSTANT STRESS AND RECOVERY CURVES-~-REFERENCE 4-30
(AFTER REFERENCE 4-31)

FIGURE 4-16. EXPERIMENTAL DATA ON VISCOELASTIC PROPERTIES OF SEVERAL ROCKS
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TIME, 10° SEC

COMPARISON BETWEEN PRESENT CREEP MODEL AND EXPERIMENTAL DATA
(REFERENCES 4-30, 4-31)
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where

{c.} = Stress at t

Total strain (including creep) at t = t,

-~
™
o
—
]

~—
(=N
™
—
n

Strain increment (including creep) during At =t - t

Accumulated creep to t = t,

—
(4]
on
e
I

An error is conmitted in Equation 4-60 in that de contains both elastic and
viscous components, whereas it is treated as if it were entirely elastic.

Defining the strain/displacement transformation matrix B as

{e} = [B]{u} (4-61)

The strain energy for an element is
U = ddf I BICBAV u + I (e - € )T CBdV u (4-62)
o c
vol vol

Defining
T -
Ivo] B'CBdV = k (4-63)

where K is the element stiffness matrix and performing a variation with

respect to the generalized displacements u results in

kdu = P -F (4-64)

where

)
i
b\
0
—i
[=1
wn
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I't is significant that the element stiffness matrix consists entirely of
linear elastic terms. Thus, the assemblage stiffness matrix needs to be
formulated only once, resulting in great economy of computing. It is neces-
sary to store the components of the creep strain at t, for use in the next

step.

This approach has been adapted to finite element for rock and
concrete (Reference '-26). Some experimental work which has been performed
on rock is compared in Reference 4-27 with a series of Kelvin models.
Reference 4-28 discusses methods of accounting separately for volumetric and

deviatoric creep strains.

L.,2 MATERIAL PROPERTIES OF JOINTS

This section describes the properties which may be assigned to joints.
These properties consist of the shearing and normal stiffnesses of the joints.
They correspond physically to the stiffness and strength of fault gouge, to
the roughness of the joints and to the angles of slip surfaces relative to the
principal plane of the joint. They are classed as dilatant if shearing pro-
duces joint expansion or contraction or nondilatant if shearing and normal
displacement are uncoupled. The properties are specified by the user in
natural coordinates which may be directions parallel and perpendicular either
to slip surfaces or to the principal plane of the joint., In either case,

transformation to global directions is automatically performed by the program.

As in the case of homogeiieous material properties, the joint prop-
erties are controlled by subroutines CONECT and ELPL through modular subroutines.
Presently, these contain built-in joint properties. As more data become
available on properties of joints and the present joint material properties
become obsolete, the present model may easily be modified without disturbing

the main program or any of the other material properties.
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b.2.1 NONDILATANT JOINTS
This class of joints

is the simplest to model mathematically since

there is no volume change due to shearing strains, and therefore the shear

and the normal components of deformation are uncoupled and the stress-strain

relations are as follows:

(4-65)

However, Cnn and CSS are nonlinear functions.

In stress-deformation relationship in normal direction, three
distinct stages can be recognized (see Figure 4-18) .

a. Separation, C =¢ =0 when ¢ > 0
nn SS n

b. Crushing of the surface irregularities or the compression of

the material in the fault or jjoint, if any Cnn = E

c
c \ .
(en < en < 0). For smooth surfaces this case does not exist,

c
therefore Cn 0.

c. Contact, ¢
nn

[}
m

c
fe (Cn < Cn)

It is important to note that very high values can be assigned to Ef without

any numerical problems with the special joint element described in Section 3.

The tangential stress-strain relationship is assumed to be elastic-
perfectly plastic using a Mohr-Coulomb yield criterion:

C. = @ 0. < c+ 0 tan ¢
$S S n

(4-66)

C = 0 o = ¢+ 0_ tan ¢
Ss S n

where ¢ and ¢ are the cohesion or the angle of friction.
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ﬂ
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FIGURE 4-18. NORMAL STRESS-STRAIN RELATION FOR JOINTS
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k.2.2 DILATANT JOINTS

Ditatancy of rock joints and faults are very complex to model
mathematically; however, to include a measure of dilatancy, the procedure

developed by Goodman, Dubois, and Brekke (Reference 4-36) is used here.

Further data are available from Reference 437,

It is assumed that the deformation in p-q coordinate system shown
in Figure 4-19 is nondilatant. The angle vy between the p direction and the
joint surface is, therefore, defined to be a material property of the joint.

The stress-strain relation in n-s coordinate is:

2 2
C C"+¢C S c -C SC
°n) |Cqq op 5 (Caq = Cop! “n
) ) (4-67)
o (C_=-c¢_) sc (c s“+c co (e
s qaq PP qaq PP s
where
C = cos ¥
S = Sin ¥y

h.2.3 DEMONSTRATION OF JOINT ELEMENT

The example problem in Figure 4-20 demonstrates the behavior of the
present joint element. The problem consists of a plane systém of three solid
blocks and three joint planes. The system is restrained at the bottom and is
subjected to lateral pressure P and vertical pressure 2P. The joints are
assumed to be filled with nondilatent material having the properties shown in
Figure 4-20. The blocks are assumed to have the isotropic.elastic properties
shown in Figure 4-20. The material in the joints is represented by joint
elements which are shown as their shaded strips. Ambiguity with respect to
nodal displacements would arise at the point of the wedge-shaped block if the
joint elements were to extend to the point. Ambiguity is avoided by stopping

the elements short of the point. This is a good approximation to a physical
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system if the joint elements extend infinitesimally close to the point. In the
present example, the gap is made large to illustrate how the difficulty is
avoided. The blocks are represented by plane strain elements.

Results of the present example are shown in Figures 4-21 and 4-22.
Figure 4-21 shows how the vertical displacement varies as a function of hori-
zontal distance from the centerline. Each curve in Figure 4-21 corresponds
to a different distance below the top surface. Figure 4-22 shows the wedge in
its final position.
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FIGURE 4-21. VERTICAL DISPLACEMENTS FOR EXAMPLE WEDGE PROBLEM
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|\ /T
|\ [ ]
\\ [ ]

FIGURE 4-22. FINITE ELEMENT MESH IN THE DISPLACED CONFIGURATION FOR
WEDGE PROBLEM IN FINAL EQUILIBRIUM STATE
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SECTION 5

DESCRIPTION OF THE COMPUTER PROGRAM

This section describes the computer program in terms of features
which are apparent to the user, such as automatic mesh generation, and in
terms of its logical structure. The first part of the section describes the
steps which the user takes in order to prepare the input data. The mesh
generator, bandwidth reducer and plotting capability are described. The

motive and logic diagrams for element renumbering are also described.

The second part of this section describes the execution part of the
computer program in terms of logic diagrams. Subroutines are described which
control the computation, form the global stiffness matrix and compute the load
vector, form element stiffnesses and other operations. Also described is the
technique of multibuffering whereby data is transferred between core and per-
ipheral storage units at the same time that computations are being performed
in core. This technique greatly improves the efficiency of the program for

problems where large blocks of data are stored on peripheral memory units.

5.1 PROCESSING OF INPUT DATA

The sequence in which input data are processed is shown in Figure 5-1.
There are three basic phases. The first consists of generating continuum
(two- or three-dimensional) and joint elements and plotting the results. The
second phase consists of adding other elements (beam, thick shell, bar, etc.)
manually, reducing the bandwidth, shuffling the element numbers so that they
appear in the order of contribution to the global stiffness matrix, and
plotting the final mesh. The third phase consists of reading additional data

such as material properties and loads.

MESH GENERATOR

The automatic mesh generation scheme incorporated in the program
requires the user to provide a coarse mesh which the program refines by

subdivision under the control of the user. The main goal is to minimize the

. 87.




WYYI04d ¥3LNdWOD LNIS3I¥d IHL 40 NOILYOJ INdNI 3HL 40 SNOILYYIdO “1-§ 3¥N914

(o)
25
o~
o
]
[¥a
—
o~
N~
!
-4

6L9nvv C 1103 )
1 _ 1

3¥0J OINI NIva 3dvl T IREWe
1¥V1S3y¥ aN0IIS 3IHL WoMs EILLALLS VROV L 00 W4
ViVa 1¥V1ISI¥ 3JHL W3IISNvyL — LWl NN 40 D ETaW) O
* ARIDEHOYIY SEMIETTE WISHnNEY

3dv¥1
JILINOWW ¥ NO 1¥VLIS3IY V ¥0d
03033V ViVa 3IHL 1TV 3L09M

¢ LHVLS3Y QN0I3S ) |||"ﬁ
VIND 1M )0d
TR I ImeneEy ‘mIe el og
( 1IX3 TwNI3 ) (¢ 11x3 ) AWINEOTIV VN L0 04  TioN
) 3 ML TV 4N e DN TTANIS
L s!sAwwv 40 s1Ins3y 1nding | 3dvi i

14v1S3% GNOI3IS ¥ 3Lvay) WIS FHL A0 EEid T

T |
I

WO EYHTLD A W dfier )
B WML NI TR

llll+||ll

[ mobivanaies sty wnciete |

F )

— —

ML TNV N e

WYEROEd FHL 40 Linig
TEHE LY LT Bal Bl 1]
FISiTd 38 0L F3JwL 5L

—3
1] L

W AT TRl ST RN
EEEAL G SEATE 40 W I
8y SIS 40 YNl =

TiTD 20 @

CRITEIN=S
AT LIVMOLNY TN By
EimliME WIVE A0 B LTS

LRI 4178 Wl SWiminIsI0 [}
Viva ONv SIN3IW3I3 ¥O

NV SIN aan 100
UL SNINEIND VAV e ONY LNI04 TVOON OLUVI3Y 3L
TV 40 NOILVIND IHL ONV HSIW

4 03¥1S30 ML 40 NOILVEINID

HETW TN Bl 1074 |

Viva IN3IW3I3

IEALLd
T 0L WE TeeiE
L e TR T

88

O

SURIETTE WVIE OMU NiR
DRIMIIM0T vivl WIIaE @

WL Agulaled TINIEWM =

“ETWIEd TRl ININEaS
=W WLER il T

T

HIND W3NS 1T AEE Sk

01 9WIMEDIYY wivD INBNTIE

NSl iWiES OV 3T

g

3400 OUNI
NIVE 3IdVL 1¥VISIY IHL WOud
VIV L¥V1IS3¥ 3IHL ¥IISNVYHL

4

C VIS ISulds )

nﬂ.r&q TRLVEINTS

EL RN e T T
A6 TEEEDN LA Wil D) TIOWLRES

THVirve Tul ey weesvio LT
THINIEITM vivd Wi




il o | S

R-7215-2299

the input preparation on the part of the user. The method uses the key
diagram concept described in Reference 5-1; the remainder of the present

mesh generation scheme is new and original work.

The subdivision of the given, coarse mesh to obtain the final, fine
mesh is carried out by subdividing each one of the mesh units, as ''zones,'
within the coarse mesh in the following manner. Consider the simple case
of a general, two-dimensional mesh, in which the basic mesh unit or zone is
a parabolic quadrilateral as shown in Figure 5-2. Assume that the x and y
coordinates of the four corner mesh points, 1, 2, 3, and 4, as well as those
of the four midpoints, 5, 6, 7, and &, are known. The x and y coordinates
of an arbitrary‘point P within this zone can then be expressed conveniently
in terms of the coordinates of the eight points through the use of the local,
curvilinear coordinates, £ and n, whose values range from -1 to +1 on

opposite sides as indicated in Figure 5-2. Thus, one can write

8-
X = ;E% Nixi

g (5-1)
y = 21 Ny,

|=

in vhich Ni's are the so-called "isoparametric shape functions' expressible

in terms of the curvilinear coordinates as follows:

Ny = s (-8 - +n+)
Hy = =g (-0 +nE-n+1)
Ny = g0 +00+n)(g+n-1)
N, = 1}-(1»«5)(1 -n;(e-n-l) 1)
Ny = 3 (-8 -nd ,
Ng = 71 -8 -nd)
Ny = 5 (1= 6D+ )
Ng = 3 (1 =90 +n)
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FIGURE 5-2.

QUADRILATERAL ZONE, WHISE SHAPE AND COORDINATES ARE
EXPRESSED BY PARABOLIC SHAPE FUNCTIONS

90




R=7215-2299

Thus, for a certain set of values of the curvilinear coordinates, or ''natural
coordinates,' the corresponding Cartesian coordinates can be easily found
from Equations 5-2, Consequently, to subdivide the zone into a 4 x 4 mesh,
for example, and establish the Cartesian coordinates of the twenty-one new
mesh points, one merely substitutes into Equations 5-1 twenty-one times,

each time with a different combination of values of & and n which are

incremented successively by 0.5.

This technique can be used to treat each one of the zones in a
given, coarse mesh of any configuration. The only restriction that has to be
observed is that the number of subdivisions between any two adjoining zones
must match. This is to satisfy the fundamental connectivity requirerent of
the finite element method. To satisfy this continuity requirement and to
facilitate the preparation of the input that defines the basic coarse mesh,

it is convenient to introduce the so-called ""key diagram.'

A key diagram, in general, is a rectanguiar grid resembling a
checker-board. It has no physical dimensions. |Its purpose is to present,
or define, the connectivity of the zones in the coarse mesh and to facilitate
defining the position of a mesh point in the form of row and column numbers
in the coarse mesh. Another purpose of the key diagram is to help define the
extent of subdivision of a zone, for, to satisfy the aforementioned connec-
tivity, a newly introduced mesh line has to extend across all the Zones

located in the same row or column in the key diagram.

Figure 5-3 illustrates the generation of a simple finite element
mesh representing a dam and part of its foundation. The domain has been
blocked into three zones which are connected as shown in the accompanying
key diagram. The final mesh is the result of subdividing the first and the
last zone into two subdivisions and the second into three subdivisions in
the vertical direction, and all three zones into three subdivisions in the

horizontal direction.
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FIGURE 5-3. KEY DIAGRAM AND RESULTING FINITE ELEMENT MESH FOR A
DAM AND FOUNDATION
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The Input to the program for this particular example would consist
of the following: '

a. A statement that the key diagram, or the original coarse mesh,
is 3 by 1.

b. The rectangul ar coofdinates of the given, eight mesh points
and those of the single midpoint that define the lower boundary

Ooh a curve,

c. Three material numbers to associate the first two Zones wi th

concrete and the third with the soil medium.

d. The three numbers, 2, 3 and 2, that specify the number of sub-
divisions in the vertical direction, and the number 2 for

the horizontal direction.

The computer Program would assign the material number for a zone to al] of
the elements that are created in the Zone, and number the nodal points and
elements in the final mesh column-wise, from the top to the bettom, from the
lef't toward the right by referring to the key diagram. The curved mesh 1ines
in the third zone are meant only to émphasize the fact that nodal points are
generated on a second degree curve because of the nature of the shape func-
tion; the actual mesh line is always a straight 11lne between two neighborirg

mesh points.

In the previous example, if the user is not satisfied with the
refinement of the final mesh or with that in any one of the zones, he can
quickly ierun the problem by modifying the four integers mentioned In Item 4
without having to change any of the data mentloned In the first three ltems
whlch define the given, coarse mesh. This is perhaps the most lmportént

feature of this partlcular mesh generation scheme,
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Aside from being used to define an edge of a zone on a curve, a
midpoint can also be used to imply a mesh grading. The mesh shown in
~Figure 5-4 i§ the result of specifying the three midpoints, MI’ MZ‘ and M3,
purposely off-centered and toward the edge of the circular hole. Midpoints
M] and M2 ‘are there merely to form the edge of the hole on a curve. In
this particular example, number of subdivisions of 5 and 5 in the vertical
direction (in the key diagram) and of 16 in the horizcntal direction were

specified.

Another feature that makes the scheme versatile and powerful is
the provision for the user to prescribe a zone as void mereiy by assigning
zero for the material number of that zone. With this provisionr, one can
easily generate a mesh around a notch or a cutout.  The mesh around a tunnel

shown in Figure 5-5 is such an example.

The final feature to be mentioned here is the program's ability to
join any two edges in the key diagram. This makes it possible to produce the
meshes shown in Figures 5-6 and 5-7. The user may prefer the type of mesh
shown in Figure 5-7 over that shown in Figure 5-5 for the radiating pattern
of the mesh lines which makes it easier to make a finer mesh around the

edge of the tunnel,.

The same scheme can be used to generate a thrce-dimensional mesh.
The necessary changes are to replace the two-dimensional shape function and
key diagram by their three-dimensional counterparts, and to .introduce the
third Cartesian coordinate. The basic ''zone'" or '"block'" in this case is a
general, six-sided body with parabolic edges. It has eight corner nodes and
twelve midpoints as shown in Figure 5-8, and the Cartesian coordinates at an
arbitrary point P within the block having the natural coordinates £, n
and . are expressible in terms of the Cartesian coordinates of the twenty

controlling points as follows:

94



L DO AR Wm_* e B e .

' /
R~7215-2299
/
- EVENTUALLY
KE
D,XGRAM “” BECOMES NODAL
POINT 177
EDGE OF CIRCULAR HOLE
3
.
=
b i
]
L | L} 8. '-l -PJ-'_r .
: DISTANCE CIN)" ’ oL LRI
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FIGURE 5-8. THREE-DIMENSIONAL ZONE WHOSE SHAPE AND COORDINATES ARE
EXPRESSED BY PARABOLIC SHAPE FUNCTIONS
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20
X = N.x
= i
20
Yy = z Niyi (5'3)
i=1
20

vwhere, for corner points,
1
Ne o= g 0+ 660+ nn)( +ga)(ge+nn+ gz 2) (5-4)
and for midpoints,

N, = % (1 - 52)(1 & nin)(l + cic) for points with £ = 0

N, = %‘(1 > Cii)(l = nz)(l + cic) for paints with n,o= 0

N, = %‘(1 + 5;5)(1 + nin)(l - cz) for prints with ¢, = O

As before, zero can be used as material number to imply void or cavity, and
a midpoint can be so specified as to imply a curved edge as well as a mesh
grading along the edge. Instead of joining two edges, one can now join any
two interfaces as long as the meshes on them are compatible. Some three-
dimensional meshes automatically generated in this manner are illustrated
in Figures 5-9 and 5-10,
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BANDWiDTH REDUCER

The computer time required to perform a computation is approxirateiy
proportionai to the square of the bandwidth. Thus it is Important to alm
for a minimum bandwidth when numbering nodai points. However, when the finite
eiement mesh is generated automaticaiiy by the technique described above,
no attention whatever is paid to minimizing bandwidth. The user can infiuence
the bandwidth to some extent by judicious choice of key diagram. Neverthe-
iess, it Is very iikely that the bandwidth so generated wiii not be optimum.
The situation wiii often be made worse when eiements are added manually,
To heip alieviate this difficuity and thus encourage the user to use the
automatic mesh generator, a bandwidth reducer is inciuded in the present

computer program,

The function of the bandwidth reducer is shown in Figure 5-11, The
INPUT NODAL POINT configuration is typicai of the mesh which wouid be gen-
erated automaticaiiy for which the maximum difference in nodai point numbers
for any eiement is 31. This configuration was submitted to the bandwidtih
reducer. The result, after 2 sec of computation time by the bandwidth
reducer is the REDUCED NODAL POINT configuration, for which the maximum
difference in node numbers is 6. That this configuration is not optimum is
shown by the IDEAL configuration for whichk the maximum difference is 5. Thus,
the technique is not uptimum because it does not aiways converge to the
minimum bandwidth in the computer time which the user has seiected. Aiso,
the techrique operates on nodal point numbers rather than on degree of
freedcm numbers. Thus, when severai types of elements are mixed, the con-
figuration corresponding to minimum difference in node numbers does not
necessariiy correspond to minimum bandwidth.

Logic diagrams for the bandwidth reducer are shown in Figures 5-12
and 5-13.

ELEMENT NUMBERING .

In addition to renumbering nodai points to reduce the bandwidth of
the giobal stiffness matrix, the elements are numbered in the order f their
contribution to the global stiffness matrix. In this way, the strain/
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INPUT NODAL PO!NT CONFIGURATION

MAXIMUM NODAL POINT DIFFERENCE = 31

REDUCED NODAL POINT CONFIGURATION
MAXIMUM NODAL POINT DIFFERENCE = 6
SOLUTION TIME = 2 SECONDS

IDEAL CONFIGURATION
MAXIMUM MODAL POINT DIFFERENCE = §

AAMGSY
FIGURE 5-11, EXAMPLE OF BANDWIDTH REDUCER
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PUT ROV 1
o
ROV ISTOPL

FIGURE 5-12. PROCEDURE USED IN BANOWIDTH REDUCER (REFERENCE 5-2)
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5 DETERMINE THE MAXIMUM BANOWIOTH AND THE TWO

NODES CAUSING THE MAXIMUM BANOWIDTH

CAN THE HIGHER NUMBERED
NODE BE INTERCHANGED WITH A

LOWERED NUMBERE) DNE TO REOUCE
THE BANDWIDTH?

CAN THE LOWERED NUMBERED
NODE BE INTERCHANGED WITH A
HIGHER NUMBERED DNE TO RE-
OUCE THE BANDWIDTH?

CAN THE HIGHER NUMBERED NOD
BE INTERCHANGED WITH A LOWER
NUMBERED NODE AND STi\LL

HAINTAIN THE SAME BANLWIOTH

CAN THE LOWZR NUMBERED NODE
BE INTERCHANGED WITH A HIGHER
NUMBERED NODE AND STILL MAINTAIN
THE SAME BANDWIDTH?

NO FURTHER INTERCHANGES ARE POSSIBLE
EXIT

PERFOPH THE INDICATED NODE INTERCHANGE

Y

MODIFY TME *'IS" TABLE TO REFLECT THE CURRENT

FIGURE 5-13.

INTERCHANGE

AAMGS9
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PROCEDURE USED IN BANDWIDTH REDUCER (REFERENCE 5-3)
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stiffness matrixes can be retrieved from peripherai storage in the least
time. Since the element data are used in the basic operations of forming
the giobal stiffness matrlx and effective load vector, the efficiency gained

by performing these complicated operations is essentiaj.

The element numbers assigned by the mesh generator and the user

are revised such that

min(LM(1)) for the nth element <

min(LM(1)) for the n + 1th element

where

LM(1) = Array of degree of freedom members for the element

Eiement data are stored sequentially on peripherai storage units such that

the datg for Eiement 1 is at the head of the unit, and then in sequence

Element Number = 1 < ... n,n+1 ... < NUMEL

where

NUMEL = Totai number of elements

In order to modify the effective ioad vector F, to obtain the
matrix C of stress/strain coefficients and to obtain element stresses and
strains, an array containing the previous ioads F, the displacements u and
the incremeatai dispiacements du is brought into core as shown in Figure 5-15,
Aiso required are data stored on the eiement data tape such as the strain/
dispiacement transformation matrixes and LM arrays for the elements of
interest. As shown in Figure 5-14, all degrees of freedom to which Eiement n
contributes are found in a sequence of F, u, du array one bandwidth (MBAND)
iong. Thus it is possibie to process to F, u, du array by reading the

eiement data tape oniy once.
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ELEMENT n
MIN [LM(1)] = DFE,
MAX [LM(1)] = DFE,

NUMEL

ELEMENT DATA TAPE

FIGURE 5-14, OPERATION ON FORCE, DISPLACEMENT AND INCREMENTAL DISPLACEMENT ARRAYS
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In order to assemble the globa]'stiffness,méfrix, which

) . is stored
ih blocks, ‘Block nn is brought

into core as shown in ngure_S‘fS?ilAt the
same ﬁime, data from Element n ;fstmade available from tHé,e]éhehfvdété tape.
Elgmeﬁf n fits entirely into Blockrpn, Elements n, nn +f1, etc. a}e__, ,
processed-so long as LN ' - .

oo

DfE] > DFK2 E
and _ mi
DFE2 < DFK2 ’ .. .

In this event, element stiffness is directly added to the appropriate rows and
columns of Block nn. |If - N

- ' Y 8

DFE] > pFK2 . - a S .
and . ) . :

:DFE2 > DFK, ,_ 1 -

it signifies that Element n contributes to Block nn and to Block nn + 1.
In this event, those contributjons which can be made

to Block nn are made,
and the stiffnesses and LM

arrays of those elements which contribute also -
to Block nn + 1 are written t2mporarily on storage unit

T1 for subsequent
insertion into Block nn + 1.

Elements are processed and their stiffnesses
are added to Block nn and or accumulated on T1 untif

DFEJ > DFK2
This signifies that Block nn.of the global stiffness matrix

is prepared except
for data stored on unit T0,

which contains element data overlapping
Blocks nn - 1 and nn. This data is read into core and that part for which

DFE, < DFK, .
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is added to Block nn. Now Block nn is completely prepared and is moved out

of core while Block nn + 1 s brought into core. Block nn + 1 is filled in
the sawe way as Blocks nn = 1 and nn, which is by passing sequentially through
the element data array. When all direct contributions to Block nn + 1 have
been made and all data which contributes to Block nn + 2 has been stored on
unit T2, the data stored on unit T1 is read into core and added to

Block nn + 1. This block is now completely prepared and is transferred to

peripheral storage.

SIMULATION OF THE CONSTRUCTION AND EXCAVATION SEQUENCE

The construction and excavation sequence will be represented by
modification of the materjal properties of the elements involved. Initially
elements will be assigned to the regions to be constructed or excavated later.
A flag will indicate the time of the addition or subtraction of each element.
In case of excavation, the elements of that region will have the appropriate
material properties and will contribute to the global stiffness of the system

up to the indicated time, beyond which the contribution of these elements to

the global stiffness of the system will be zero. The reverse of this procedure
will be applied to the elements of the regions to be constructed later. All
these operations will be performed in the element package.

SELF-LOADING

The initial state of the system will be assumed to be stress free.
Then the dead load, if any, will be applied in a specified number of increments
prior to the application of the external load. It is necessary to apply the
self-loading incrementally due to the fact that the system is, in general,

nonlinear,
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5.2 EXECUTION PHASE OF PROGP/M

The execution phase of the program is summarized in Figures 5-16
through 5-21. The controlling program is BMCALC, Figure 5-16. The first
main operation is to form the effective load vector and global stiffness
matrix, which is performed by Subroutine KFORM, Figure 5-17. The assembly
of the global stiffness from the element stiffnesses is performed by Sub-
routine BSTIF, Figure 5-18. Subroutines FWRT, TDRUM and FILLFU transfer data

from peripheral storage to core.

5.2.1 MULTIBUFFERING TECHMIQUE

Multibuffering is a technique whereby central processor wait time
for all binary Read/Write operations involving the peripheral storage of data
is minimized. (Formatted /0 operations such as card reading, punching, and
printing are not included in this discussion.) The reason for using multibuf-
fering techniques is that data moves faster between core locations than between

peripheral storage and core.

The problem which multibuffering overcomes is the standard 1/0
feature of higher level programming languages, such as FORTRAN, which requires
that when an 1/0 operation (READ or WRITE) is initiated, computation ceaces
until the 1/0 operation is completed. This feature assures the user that data
he may wish to use is in core before he tries to use it. The amourt of time
the program must wait for completion of /0 operations depends on (1) the
access time and (2) the data transfer time. These times depend on the type
of peripheral device being used and the amount of data to te transferred.
Thus, as the amount of peripheral storage increases, the time spent waiting
for completion of 1/0 operations increases and for large volumes of data
the 1/0 time may control overall run times. Multibuffering minimizes the
wait time of these 1/0 operations by allowing computations to proceed at the
same time data transfer from peripheral storage is occurring. This requires
standard FORTRAN 1/0 operations to be replaced. This is possible on most

large scale scientific computers by the use of special machine-dependent
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CALL ALLOC TO
ALLOCATE CORE
AND SET UP FILES

l

y

CALL RESTRT TO
SET UP CORE AND
FILES TO RESUME

SET DECOMP FLAGS
FOR INCORE/OUT-
OF-CORE SOLUTION

s

SET FLAG IF
GLOBAL [K] 1S
TO BE COMPUTED
AT THIS STEP

y

CALL KFORM TV
PREPARE LOAD
VECTOR AND [K]

y

IF [K] WAS REFORMED,
SET DECOMP FLAG TO
DECOMPOSE, ELSE
BACK-SUd OnLY

y

GENERATE RESTART
TAPE IF REQUIRED

C

RETURN )

FIGURE 5-16.
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PROGRAM BMCALC--CONTROLS MAIN OPERATIONS OF THE

COMPUTATION SECTION



R-7215-2299

‘ ENTRY »

REWINO FILES CONTAINING
ELEMENT DATA, GLOBAL
[x], INTEANAL ForCE
VECTOR

y

PEAC LOAD (),
OISPLACENENT (u),
INCRENENTAL OISPLACEMENT
(du), OR PART THEREOF
INTO €

vES
K )

SET [x] 10 2er0

J

OPEN ELEMENT OATA FILE;
RESERVE ARRAY FOR PREVIOUS
STRESSES; RESERVE ARRAY
FOR CURRENT STRESSES

y

INITIALIZE CONTROL VARIABLES
FOR CURRENT LOAO STEP

y

IF LIVE-LOAD STEP,
OPEN LIVE-LOAOS FILE

O——%

REAQ ELEMENT OATA RECORO

‘ YEs

SET FIAST ANO LAST 0OF
POINTERS FOR THIS ELEMENT

y

-
READ PREVIOUS STRESSES “

CALL FILLFU TO FILL
LOAO VECTOR ARMAY

WRITE STRESS MISTORY

AANGEY

FIGURE 5-17. SUBROUTINE KFORM--CALLS SUBROUTINES TO COMPUTE THE LOAD
VECTOR AND GLOBAL STIFFNESS
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CALL FWRT TO MOVE
COMPLETED PART OF
LOAD VECTOR TO
ouTPUT

I CALL DLOAD
ADDS DEAD LOADS
TO LOAD VECTO!.

y

CALL ELSTRN
FOR INCREMENTAL
STRAINS

y

CALL CONECT
FOR STRESSES

)

WRITE STRESS OUTPUT

y

CALL ELLDVC
LOAD VECTOR
CORRECT fON
=—

3
GLOMAL (k] TO me
COMPUTENT @

WRITE NEW
STRESS HISTORY

AALG68

FIGURE 5-17. (CONTINUED)
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PROCESS

CLEMENT (n) wwicw

owe F i

PREVIOUS GLOBAL [u]
LK

i

MRITE CUNRENT GLOmAL

%] mock 10
PINIPHERAL $TORAGE
S k] mocey . v
ARG ZORO Tg . Tus

AANG)Y
FIGURE 5-17. (cowTimuep)
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BEAM ELEMENTS

(&) 1S WITH ELEMENT DATA

C ENTRY

y

SRANCH ON
ELEMENT TYPE

=

THICK SHELL ELENINTS

(k] 1S ON ELEMENT DATA
FILE (S RECOADS)

T o~

R-7215-2299

1-D, 2-0, AND 3-0 ELEMENTS

CALL MOVEWD T0 MOVE [k])
TO STIFFNESS ARRAY

CALL FILIN TO READ
BLOCKS OF (&)

CALL ELST!F TO GENERATE
ELEMENT [+). CALL STATCO

y

y

CALL MOVEWD TO MOVE (k)
T0 STSFFNESS ARRAY

CALL MOVEWD TO SET UP
STIFFNESS ARRAY

CALL ADOTOK TO ADO ELEMENT
(&) %0 GLOBAL [k]

WITE (k] 10
TEMPORARY FILE

FOR REST OF THICK-
SHELL ELEMENT [k]

L AETU J

MbE?

FIGURE 5-18. SUBROUTINE BSTIF--COMPUTER ELEMENT STIFFNESS (k] AND ADDS
TO GLOBAL (k]
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C o )

COMPUTE NUMBER OF
WORDS WHICH CAN BE
MOVED

15 WRITE ¢
PROGRESS FOR
Fi u, du OUTPUTY
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YES

(i

WAIT 'TiL wmITE DONE ]

MOVE WORDS FROM
FWORK TO F, u OUTPUT
BUFFER AND RESET

POINTERS
—

NO

YES

KA

COPY 1S TO ouTPUT
FILE. WRITE BUFFER
TO F, «, du FILE.
SET WRITE FLAG.

PACK REMAINING LOAD
VECTOR TO START OF

FWORK
Y

RETURN

k658

FIGURE 5-19. SUBROUTINE FWRT--MOVES DATA FROM LIVE LOAD VECTOR (FWORK)
TO F, u, du OUTPUT BUFFER AND TO u OUTPUT FILE



OPEN TEMPORARY FiLE

—

READ TEMPORARY FiLE

R-7215-2293

CALL ADD TO K TO
ADD INTO CURRENT

FIGURE 5-20, SUBROUTINE TORUM--AD
PREVIOUS BLOCK OF [k]

&)

(k) sLock

END-FILE NEW v
TENPORARY DAUN IF OVERFLOW, WRITE TO MARK OLD

s L NEXT TEWPORARY DAUN TEMPORARY

FILE YAVAILABLE"
SWAP TEMPORARY
DRUM UNITS
C RETURN )
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C ENTRY )
,l

COMPUTE NUMBER OF WORDS
NEEDED TO FILL FWORK

IF FWORK IS
FULL, RETURN

y

COMPUTE NUMBER OF
WORDS REMAINING
IN 7, u, du BUFFER

y

MOVE WORDS FROM
BUFFER INTO LOAD
VECTOR ARRAY

y

(ug o + du) = uyey
ADD LIVE LOADS,

IF ANY, TO LOAD
VECTOR (F)

YES

ISSUE READS FOR NEW,
F, u, du BUFFER, AND
SWAP BUFFERS

FIGURE 5-21. SUBROUTINE FILLFU--ADDS LIVE LOADS TO LOAD VECTOR, UPDATES
DISPLACEMENTS, FILLS BUFFER AREA WITH F, u, du ARRAY
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Statements or subroutines. These interface routines are Jeneraily different
on zach machine and, uniess care is exercised, a program may become machine
dependent. Thie danger is avoided in the present appiication of multibuffer-
ing by isolating ali i/0 statements in one subroutine which may easiiy be
modified when moving the program to a different machine.

A generai muitibuffering scheme to perform computations on a set of
data stored on peripheral devices is shown in Figure 5-22. This scheme,
which is incorporated in the present computer program, requires either the
amount of main storage used for buffers to be increased or the size of each
buffer to be decreased reiative to the buffer size that might be used with
standard FORTRAN i/0 procedures. Since most of the main storage is aiready

used in determining buffer sizes, the iatter aiternative is employed. Extensive

testing and previous experience have shown that, aithough the number of i/0
operations increases, muitibuffering resuits in substantiai overail reduction
in computer run time for a given probiem. Savings increase with the probiem
size and thus the volume of data on peripheral storage increases.

5.2.2 BAND SOLVER

The solution of iarge structurai systems requires the solution of
a set of iinear simuitaneous equations of the form

{F} = [K] {u) (5-5)
where

{F} is a vector of applied loads

{u} is a vector of unknown displacements or, as in the present

case, displacement increments

{K} is the giobai stiffness matrix. in the present case it is
banded and positive definite
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( X \
Dl |IC -] 3 D
INPUT COMPUTATION OCCURS IN
FROM 1 PAIR OF BUFFERS AS OUTPUT TO
PERI FERALS DATA TRANSFER OCCURS » PERIFERAL
DEVICE IN OTHER BUFFERS DEVICE
D] 2 |C ] D
\ /
INPUT OUTPUT
CORE BUFFERS
a. Initiate read of data into (1)
b. Test for completion of Step a data transfer
€. Initiate read of data into (2)
d.  Perform computation on data in (1) storing results of
computation in (3)
e. Initiate write of data in (3)
f. Test for completion of Step ¢ data transfer; if incomplete,
stop computation until completed.
9. Initiate read of data into (1)
h.  Perform computation on data in (2) storing results in (4)
i. Test for completion of Step e data transfer
J. Initiate write of data in (4)
k. Test for completion of Step g data transfer
1. Loop to Step c until all data has been processed
m. Test for completion of final buffer operation

FIGURE 5-22. TYPICAL OPERATION OF MULTIBUFFERING TECHNIQUE
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Many methods .of obtaining a solution to Equation 5-5.are available. A
frequently used method is the Choleski Decomposition Method. Defining =

K] = [L1 [03 (L' - L (5-6)

where
[L] is a lower triangular matrix with ones on the diagonal terms

[D] is a diagonal matrix
“then substituting Equation 5-6 into Equation 5-5

{(F} = 11 01 " fu v - (57
and defining

' . T

{z} = "tp) (L)' {u} (5-8)
Equation 5-7 becomes

{F} = [ {2} (5-9)

There are many algorithms for solving Equations 5-8 and 5-9. The
algorithms used in this code are (Reference 5-4).

-1
q _-5: , i
Lij = T[Kij 2 Lim O LJ.m] i > j (5-10)
J m=1 J
D, = K -Eo L2 (5-11)
J Jb & m im
j=1
Z, = F, - Lim Zm (5-12)
m=1
gL (5-13)
v, = = . U 5-13
J Dj m= J+1 mj m
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where

=}
]

Total number of equations

Row and column indices

iyJ

The use of Equations 5-10 and 5-11 to obtain the ([L] and [D]
matrices In the most general case of a block-by-block solution is illustrated
in Figures 5-23 through 5-25. Figure 5-23 shows a typical banded stiffness
matrix with the arrangement of the terms in each core block. Although shown
as a two-dimensional array, the actual !ncations of storage may be consecutive.
Figure 5-24 shows a method of assigning core storage to allow the double
buffering scheme of Section 5.2.1 to be used. The fndicated Scratch Core
area may be of any size (it must be at least four words in length) and is
used as a buffer area to save columns of the reduced stiffness matrix needed for
for reduction, i.e., decomposition of fut stiffness blocks. All 1/0 opera-
tions between the scratch area of core and peripheral devices use the technique
of Section 5.2.1. Thus storage and retrieval of intermediate data required for
the computation of ([L] and ([D] may in the optimum case be performed at
core speed. Only a single output buffer is shown in Figure 5-24. This presents
no contradiction to the double buffering scheme. Figure 5-25 shows that
between initiation of the write and storage of new data in the output buffer
- many calculations are performed. Tests have shown that this calculation time
| is greater than the data transfer time thus allowing a siﬁgle output buffer
to be used. Figure 5-25 shows the sequence of operations in decomposing the
stiffness matrix. The generation of {Z} (from Equation 5-12) may be per-

formed at the same time [L] and [D] are generated.

After completing decomposition of the stiffness matrix and generating
the {Z} matrix, the displacements {u} are computed by Equation 5-13.

Figure 5-26 shows the sequence of operations in computing the {u} matrix.
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L-—NEQB——-—T——NEQB——-—-
1
" R °
z K1y
S i "'lq
£ K 'l
g ?l 2
a : : : L SYMMETRIC (UPPER BAND TERMS NOT STORED)
S ™

Kit Kz Kg3 Kyy Kgg Keg

21 K3 Ky Kes

K31 Kip Ko, K5

K . K K
z n Kso 74 Kgs
5 Kg1 Kz
2 K,, K
z 61 72
m . .
l KNI KN2 KN3 KNlo KNS KN6

BLOCK 1 BLOCK 2 AALE99

FIGURE 5-23. METHOD OF STORING STIFFNESS MATRIX USED IN PRESENT PROGRAM
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INPUT STIFFNESS BUFFER #1

INPUT STIFFNESS BUFFER #2

OUTPUT STIFFNESS (REDUCED)
BUFFER

SCRATCH CORE AREA

FIGURE 5-24. CORE BUFFERS FOR STIFFNESS MATRIX DECOMPOSITION
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RETREIVE 1 COLUMN OF
®-> REQUCEO STIFFNESS FROM

INITIATE REAO OF FIRST
STIFFNESS BLOCK INTO
BUFFER #1

WAIT FOR REAO TO
COMPLETE

INITIATE REAO OF NEXT
STIFFNESS BLOCK INTO
ALTERNATE CORE BUFFER

SCRATCH CORE

y

MOOIFY ALL TERMS OF
THE PRESENT STIFFNESS
BLOCK WHICH THE
PRESENT COLUMN OF RE-
OUCEO STIFFNESS TERMS
APPLY

WILL FEE=
SENT E0Cipa

—1 PRESENT STIFFNESS

OF REDUCED
LV FFRESS: sy
Futusi Blegas
BF TRl JTiFF-

STORE PRESENT COLUMN
OF REOUCEO STIFFNESS
IN SCRATCH CORE

R-7215-2299

COEFLETRD Faam
BUTPET BUFFLR

WAIT FOR WRITE
TO COMPLETE

REOQUCE NEXT COLUMN OF

BLOCK-=PLACE RESULTS |
IN OUTPUT STIFFNESS
BUFFER

I THEN 0 i

Taf oFiFFREss
i

STORE PRESENT COLUMN
OF REOUCEO STIFFNESS
IN SCRATCH CORE

INITIATE WRITE OF
REQUCEO STIFFNESS
BLOCK FROM OUTPUT
BUFFER

O o

FIGURE 5-25. SCHEMATIC DIAGRAM OF STIFFNESS MATRIX DECOMPOSITION
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BACKSPACE INPUT TAPES

y

INITIATE READ OF LAST ISSUE WRITE OF
BLOCK OF DATA PRESENT BLOCK

Y
WAIT FOR READ
TO COMPLETE
-y
> BACKSPACE INPUT TAPES
2 RECORDS
1]
y

INITIATE READ OF PATA
INTO ALTERNATE BUFFER

Y

EVALUATE {u} FOR
CURRENT BLOCK

y

SAVE IN SCRATCH CORE
THOSE VALUES OF {u}
NEEDED TO REDUCE
NEXT BLOCK

( <1 BANDWIDTH)

IS PREVIOUS
WRITE COWPLETED

WAIT FOR WRITE
TO COMPLLTE

FIGURE 5-26. SCHEMATIC DIAGRAM OF SOLUTION VECTOR EVALUATION
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SECTION 6
COMPARISON WITH CLOSED-FORM ANALYTIC SOLUTIONS

6.1 SAMPLE PROBLEMS

To investigate the numerlical accuracy of the present computer program
and to determine the computer time required to solve problems of various size
and complexity, several example problems have been formulated and their
numerical solutions compared with closed-form, analytic solutions. One-, two-,
and three-dimenslonal linear elastic solutions are considered as well as one-
and two-dimensional elastic/plastic and two-dimensional visco-elastic solu-
tions. These are listed in Table 6-!.

Problem 1--Stress Around & Circular Hole

The geometry of Problem Ho. 1 is illustrated in Figure 6-1. The
finite element mesh Is illustrated in Figure 6-2. The solution is shown in
Figure 6-3 in terms of principal stresses at 0 = 5.7 and 42.1°. 1t does not
depend on the material properties of the plate.

Problem 2--Stress and Displacement in an Elastic
\FTck-WaTled Cylinder Under Internal Pressure

The geometry of Problem No. 2 is illustrated in Figure 6-4. The
finite element mesh is also shown. The solution is shown in Figure 6-5 in
terms of radial and tangentlal stresses.

Problem 3--Stress In an Elastic, Perfectly Plastic
Thick-Walled Eyllnacr Under Internal Pressure

The geometry of Problem lo. 3 is the same as that of Problem No. 2

and |s shown In Figure 6-4. For this problem, an additional paterial property,
the Mises yield criterion, is specified as follows:

f = /3; -a, 50 (6-1)

The analytic solution is shown in Figure 6-6.
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TABLE 6-1.

Dcscrletlon

Stress around a
circular hole

Stress in a thick
walled cyiinder
under internal
pressure

Stress in a thick
walied cyiinder
under internal
pressure

Stress in 8 rein-
forced thick
walied cyiinder

Stress concentra-
tion around @
cylindrical hole
in a semlinfinite
body

PROBLEMS SOLVED BY FiNiTE ELEMENT
AND CLOSED-FORM METHODS

Goonntgx

Two-dimensional
(plane)

One-dimensionai
(axisymmetric)

One~dimensional
(axisymmetric)

One-dimens ional
(axisymmetric)

Three-
dimensionai

i3

Material Property

R-7215-2299

Ciosed-Form
Solution

Elastic

Elastic

clastic, perfectly
plastic

Viscoelastic

Eiastic

Reference 6-1

Reference 6-2

Reference 6-2

Reference 6-3

Reference 6-4
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lll-—'i:n

|

1

o= | PSI

R= 1IN l
L > R (ANALYTIC SOLUTION)

L= 10 IN. (FINITE ELEMENT SOLUTION

FIGURE 6-1. PROBLEM 1--STRESSES AROUND A CIRCULAR HOLE
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SQUAREPLATE(20 IN, X 20 iN, )
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FIGURE 6~2. FINITE ELEMENT MESH FOR STRESS CONCENTRATION AROUND
CIRCULAR HOLE
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FIGURE 6-3. COMPARISON BETWEEN PRESENT FINITE ELEMENT SOLUTION AND ANALYTIC

SOLUTION FOR PROBLEM 1, STRESSES A
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FIGURE 6-5.
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COMPARISON BETWEEN PRESENT FINITE ELEMENT SOLUTION AND ANALYTIC
SOLUTION FOR PROBLEM 2, THICK ELASTIC CYLINDER SUBJECT TO0

INTERNAL PRESSURE
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Problem L--Stress in a Visco-Elastic, Reinforced
Cylinder Under Internal Pressure

The geometry of Problem No. 4, shown in Figure 6-7, is similar to
that of Problems 2 and 3. The main difference is a steel reinforcing ring
around the outer circumference. The material of the cylinder is assumed to be

governed by a Maxwell-type law as follows:

o = ZG(s;j) exp (-t/B) (6-2)
where
E;j = Component of deviatoric strain tensor
G = Elastic shear modulus
t = Time in units of B = n/G where n = viscoelastic parameter)

Volumetric deformation of the cylinder and all deformations of the reinforcing
ring are assumed to be linearly elastic inviscid. The variation of radial and

circumferential stresses are shown as functions of radius and time in Figure 6-8.

Problem 5--Three-Dimensional Stress Conggntration Around a
Cylindrical Hole in a Semiintinite Elastic Body

The geometry of Problem No. % is illustrated in Figure 6-9. The
stress distribution around the hole near the stress free face (X] - X, plane)
is appropriate to plane stress, while in the interior there is axial stress
along the axis of the hole. The finite element mesh is shown in Figure 6-10.
The loading condition selected for this example is uniaxial stress parallel
to the Xz-axis. Thus the faces parallel to the X2-p plane are stress free as
is one face parallel to the XZ-Xl plane. The finlte element solution is

compared with the anaiytic solution in Figure 6-11,
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per/e

(a) AXIAL DISPLACEMENT ON THE STRESS FREE FLANE p = 0 (NOTICE THAT THE
FINITE ELEMENT SOLUTION WHICH ENCOMPASSES A FINITE DOMAIN DIVERGES
FROM THE ANALYTIC SOLUTION, WHICH CONSIDERS AN INFINITE DOMAIN, AS
THE FINITE BOUNDARY IS APPROACHED)

MA727

T T T T T
-
A 4ot
3o
<
<, _'E
°N a i
—-I— __.
IL 1 I i | | | | | 1 | I 1
. 5.3 T3 T3 ) i3 7.5 7.5

L= i
(b) AXIAL STRESS AT EDGE OF THE HOLE
FIGURE 6-11. PROBLEM 5-=THREE-DIMENS IONAL STRESS CONCENTRATION (REFERENCE 6-4)
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(d) TANGENTIAL STRESS AT EDGE OF HOLE (SPRING LINE)

FIGURE 6-11,
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6.2 COMPUTING TIME REQUIRED FOR SOLUTION

The computing time required to soive Problem 5 and several small
problems on a Univac 1108 with 65,000 words of core is shown In Tabie 6-2.
More data on time to solve various sizes of problems will be gathered during
the second phase of the contract.
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APPENDIX A
LOGIC OIAGRAMS
FOR MATERIAL PROPERTIES

Loglc Jiagrams for subroutines in the material property package

are shown below. Subroutine CONECT connects the package tn the maln program.

Subroutine ELPL controls all the other subroutines.
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FIGURE A-1,
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FIGURE A-2. SUBROUTINE ELPL CONTROLS MATERIAL PROPERTY SUBROUTINES, TRANSFERS

AXES FOR ANISOTROPIC MATERIALS, PERFORMS TESTS FOR STRAIN
SPLITTING AND ITERATION.
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ISOTROPIC MATERIAL

ANISOTROPIC MATERIAL
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FIGURE A-3.

SUBROUT INE ELAST--ELAST FORMULATES C-MATRIX USING COEFFICIENTS FOR
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FIRST PLASTIC STEP

= aia-
Ci5 = (€55)orig - -
WHERE C;: IS C MATRIX

MODIFIED’ FOR PLASTICITY

Y

RETURN

FIGURE A-4. SUBROUTINE PLAST--THIS SUBROUTINE MODIFIES C MATRIX
GENERATED BY SUBROUTINE ELAST IN ORDER TO ACCOUNT FOR
PLASTICITY. THE BASIC QUANTITIES FOR THIS MODIFICATION
ARE DERIVATIVES OF THE YIELD FUNCTION WITH RESPECT TO
THEIR ARGUMENTS AND ARE COMPUTED IN YLDFUN.

A-6



L e e .

T — e T SRR —_

R-7215-2299

STARTY

SET IREG » 0

IREG = O IMPLIES MATERIAL
IS INITIALLY ASSUMEO ELASTIC,
IF YIELDING OCCURS ON PLASTIC
SURFACE, fREG IS SET TO t,

IF YIELOING OCCURS ON CAP,
IREG 1S SET 70 2.

y

COMPUTE STRESS INVARIANTS
€41 ANO CJ2

(CI1--15T STRESS INVARIANT;
(C42)2--2N0 INVARIANT OF STRESS
OEVIATOR; YCOF{1) TO YCOF(9)--
COEFFICIENTS OEFINING ORIENTA-
TION ANO OEGREE OF ANISOTROPY.
THESE ARE ALL EQUAL TO t FOR
|SOTROPIC MOOEL. )

y

ITYPE = YCOF(20)

ITYPE--A FLAG TO OISTINGUISH
OIFFERENT TYPES OF PERFECTLY
PLASTIC YIELO SURFACES.

¥ TiELh
FER LT il [

] i L i L LELETE
i N 2. o ENI Rais AN P £LL AT L
FRE TR DAY sRTrmEnTies
i SupaErnin
LN
L e w T
R E W = VERLIEE as mpep)
1]
SFILIT L i L AW @ Lot ewPL RS ERETRE
l|.1-1||||-.| e 1

i
I” = =F BIErN) Il ?I%I.mrlfrtuuul
e LR [T
LI LT

PRl L ]' - 'F#':"rl::'! " Al SURiH i | SRALN ERian b

Tran o mbpb vy v w80 F100 Fom CaWr LT LT :”';,_:ﬂ',"'“,
s rin® ip o« st
LI = L NI

. kg TP mALEL Ljmid by i
..|-,..ul_.A.| o _

Fow L. au

= b

Tl = FUDPL 88 [l PRACTEM |0 i F oew
FAv = wlLLE BF Lob @b sR218aliFirm
.l; e Ak B gL BN par '
L Wil il e Lie e e R ]

Anbbhh
RET1PH
FIGURE A-5, SUBROUTINE TSTYLD--COMPARES CURRENT STATE OF STRESS WITH YIELD
CRITERIA TO DETERMINE WHETHER YIELDING OCCURS
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FIGURE A-6.
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SUBROUTINE YLDFUN--TH|S SUBROUTINE CALCULATES THE DERIVATIVES
OF THE YIELD FUNCTION WITH RESPECT TO THE STRESS COMPONENTS,
THE YIELD FUNCTION WHOSE DERIVATIVES ARE COMPUTED IS DETERMINED
BY THE INDICES IREG (SET IN (TSTYLD) AND ITYPE (SET BY INPUT))
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FIGURE A-7. SUBROUTINE INCSTR--INCST

R COMPUTES ELASTIC AND PLASTIC
STRAIN INCREMENTS)
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ICHECK = 1
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CALCULATE

J1, ‘/E ANO

STRESS OEVIATORS

L

CALCULATE STATIC
MISES YIELO CRITERION
(SEE EQUATION 2-50)

CALCULATE STATIC

YIELO CRITERION

FROM POLYNOMIAL

(SEE EQUATION 2-50)
—_—

Wi

SLCOND PAEL FOM &
FATERIAL WMICH YIELDED
BN FIRST PASS

}

VISCOPLASTIC RELANATION
TOO LARGE. SEY FLARG FON
EPLITTING STRINS AWD
REPEATING FOR TH's pofUfuY

FINST PALS |

T Yis

| ITERAT = O | [ " J ves RETURN

| CALCULATE STRESS

WCLAXAT 10N DUE TO

i VISEOPLASTICITY
RETURN ¥
| ICHECK = 3 —
AALS60
FIGURE A-9. SUBROUTINE VPLAST=--THIS SUBROUTINE 1S USED FOR A VISCOPLASTIC

HMATERIAL.

IT CALCULATES THE STATIC YLELD CRITERION, DETERMINES

WHETHER YIELDING OCCURS AND, IF YIELDING OCCURS, MODIFIES THE
STRESSES TO ACCOUNT FOR VISCOPLASTIC STRESS RELAXATION.
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CALCULATE LATERAL STRAINS
dey, FOR UNTAXIAL
ST ESS -;:MENTS
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FIGURE A-10. SUBROUTINE COMPUT--COMPUT CALCULATES STRESS INCREMENTS AND ADDS
THEM TO OLD STRESSES TO OBTAIN NEW STRESSES. STRAINS CORRESPONDING
TO ZERO STRESSES (PLANE STRESS, UNIAXIAL STRESS) ARE COMPUTED.
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