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ABSTRACT

The general topic of the work reported in thic thesis is the use of :
algorithms for parameter estimation in a digital signal processor. The ]
work evolved from the current trend toward sampled, digitized data systems.
Such an algorithmic approach to the estimation problem follows naturally
when principal components of the overall system are digital.
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The general parameter estimation problem is treated in way of intro-
duction. This estimation scheme is then extended to the specific case of
signals in the presence of additive gaussian noise. It is shown how an
estimation which seeks to minimize the square error for an interesting
class of cases leads to a correlator receiver.
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The respouase of such a receiver to two important classes of signals,
monochrome pulse and linear frequency shift pulse, is developed. Quantiza-
tion of this receiver response makes it possible to treat the data in a
, digital system. The effects of quantization on the input and data repre-
, sentation within the digital system are discussed.
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' Algorithms for performing the decision functions associated with a

. maximum likelihood estimator are outlined and presented in general terms.
The factors important to comparing various algorithmic approaches are
defined and discussed. These factors, cycle repeat count and f:gme,1e6§th,
are analogous to certain aspects of communication systems.
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The confidence intervals for various algorithmic paramefbn estimation
approaches are developed and the results of computer simulation qf';he
system presented. The confidcnce interval on estimates of echc delay time
are shown to be dependent on the ratio of received signal energy to noise
ratio. It is demonstrated that the error in estimation can be quite small
In relation to the pulse length even for the monochrome pulse’ <o
4 . /

3 An air traffic control search radar i{s used as a spec&?ic example
3 of how estimation algorithms may be used in practice. The measures of

algorithm performance can be related to specific system requirements when ;
] . such a model is used. ;
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CHAPTER 1

INTRODUCT1ON

1.1 Statement of the Problem

This thesis outlines digital schemes for parameter estimation in
the general problem of processing signals with unknown parameters in
the presence of noiga, Such digital estimation algorithms are a
natural consequence of the current trend toward sampled, digitized
data systems. The exposition considers several algorithmic approaches
to the estimation problem. Differences between the schemes such as

processing time requirements, sensitivity to noise, and biases are

discussed.

1.2 Importance of the Problem

The reception problem of signals with unknown parameters in
roise occurs for M-ary communication and communications links for
which an unknown and varying phase is impressed upon the transmitted
signal. Some examples of this latter situation are digital
communication systems without phase reference, digital communication
over fading channels, channels with varying transmission medium
conditions, and channels exhibiting multi-path propagation.

A corresponding problem arises in the radar case when a target
is present so that the pulse is reflected. Signal sttenuation and
asgsociated phase shift will result, even for a point target. If the

radar application is to be useful, the value of time delay, phase, and
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reflected signal amplitude are in some sense unknown at the receiver.

In addition, the returned signal may suffer a frequency shift. The

radar system further differs from the communication channel in that

detection and estimation must often be combined. This occurs whenever
no a priori knowledge of <he presence of a target exists,

The application of digital schemes for accomplishing the required
parameter estimation follows naturally when other components of the
receiver are digital in nature. Sampled and quantized data is
frequently processed in lieu of analog inputs for convenience. The
use of signal correlators and fast digital Fourier transform (FFT)
gystems in recent years gives added emphasis to digital parameter
estimation systems as does the widespread use of digital data recording.

For reasons of flexibility, it is often desirable to use a
general purpose computer for accomplishing the digital processing.,

Such a computer and its associated algorithms can be used tc perform
parameter estimation as well as to provide control functions for data
acquisition or recording. Modifications in signal types can be treated
in such a system by algorithm revisions. In addition, the possibility
of self modifying systems exists in a general purpose computer due to
the inherent flexibility of such machines [11].

The use of digital computers in the correlation and detection of
signals has been extensively repo:ted in the literature [2, 25, 29, 37].
Also array processing of signals in various interfering background
situations has been treated [42). Schlachta et al and Leth-Espensen
have addressed the problem of time domain tracking of radar targets

using a general purpose digital computer [9, 31].
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1.3 Scope of the Problem

The basic intent of this thesis is to present a representative
set of algorithms for signal parameter estimation. The general
detection problem is discussed and a model radar system is presented
as an example. The nature of correlation functions is treated to
demonstrate the types of errors introduced by noise.

Algorithms for parameter estimation for pure tone and frequency
modulated (chirp) pulsed signals are treated. In addition, these
signals, modulated in a pulse with rectangular or Gaussian envelope,
result in correlation functions which are amenable to detailed analysis.

Some discussion of the implications of alternate algorithms

on data rates and errors is included, as are some applicaticns areas

of interest.
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CHAPTER 1I

3 ANALYSIS OF ESTIMATION

2.1 Introduction
In this chapter the general problem of estimation of signal
parameters is discussed. The parameter estimation problem occurs in

the three broad areas: digital communications, radar, sonar or

et B S 0 g

seismology, and pattern recognition and classification. The discussion

L\

here will concentrate on the communication and radar areas.
A model of the general estimation problem is shown in Figure 2.1
and consists of the following four components [35].
a. Parameter Space. The parameter space defines the
totality of values which may be assumed by the
source. This space for example, may consist of all
possible states in a binary communication system or
all allowed target dopplers in a radar application.
b. Probabilistic Mapping from Parameter Space to
Observation Space. This is the probabilistic law

that maps a selected value from the parameter space

onto the observation space.,
¢c. Observation Space. The observation space is the !
set of all outcomes of the mapping of a parameter :

onto an observation. This will generally be a

)
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finite dimensioned space. An observation will

WYX

be denoted by a vector R.

(LS

d. Estimation Rule. After observing an outcome ﬁ; we 3
1 shall want to estimate the value of the parameter a.
This estimate may be denoted as 4 (R). 3

In the communications problem, the a priori prob llity of }

selection of a specific value of the parameter from the arum~*er space

is generally known. That is, the probability distribution of . .2

unique messages is known, perhaps uncertainly. If it is possible :o

E determine the conditional observation density p(ila) a method of

detection optimization is available [30, 35]. This conditional

% observation density p(R|a) will be describable if the effect of the

’ channel on the parameter a is known. In most cases, the assumption

of additive noise is valid, that is,

R(t) = x(t) + n(t), (2.1)
where n(t) is the additive noise. Then, x(t) is the pure signal
input to the channel, and R(t) the measured channel output. It is
now necessary to consider a cost function C(3,a). This function is
dependent on the value of both the parameter a and its estimated value

4. The cost function defines the "seriousness' of an error in the

R bl

estimation of the parameter a. The error is (a-a). The choice of

the cost function is dependent on the situation of interest. One

E practical way to assign the cost function is in terms of the

magnitude of the error (Figure 2.2a). Another form which is often

used because of its mathematical tractability is to consider the i

e e
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squared error (Figure 2.2b). 1In some situations, small errors are
inconsequential, but errors above a certain value are equally serious.
Such a cost function is shown in Figure 2.2c.

To avoid mathematical difficulties most authors use the squared
error cost function [13, 15, 32, 35]. The exposition herein will
concentrate on this form of the cost function as well and it will be
shown that this form of cost function is equivalent to an important

general problem in estimation, This function is

C(4,a) = (a-a)?. (2.2)

In typical radar applications, the a priori probability density
of the parameter a is generally not known. This situation is often
treated by assuming a uniform probability density over some allowed
range of the parameter. For example, the target is assumed to be
equally likely at all ranges over which a radar receiver is designed
to cperate. Obviously, this state of affairs is not generally the
case but is reasonable in light of complexities imposed by multi-

target requirements, the effect of clutter and other operational

factors.

2.2 Bayes Estimate

The average cost of the errors in estimation is

-]

R (a) = f C(d,a) p(R|a)dR. (2.3)

-

This is termed the conditional risk. The average risk is derived by

averaging over all values of a,

- bad
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R (a) = f f C(4,a) p(R,a) dadR. 2.4)
«=00 -0

The Bayes estimation procedure is that procedure which minimizes the

TR

average risk Ra' Then, for the cost in Equation (2.2), the average

risk is

A Mt (s laS e

R (a) = f f (a ®)-a)? p(a,R) dadR 2.5)

From basic mathematical statistics, [16],

s sl oA 2 A RAE im0

p(a,R) = p(a]R) p@). (2.6)

Equation (2.5) then reduces to 2

R (a) =f{f[a(§)-a]2 p(a|R) da} p(R)dR . 2.7)

This function will henceforth be denoted as Rms(a), the mean

Aot U L

square cost. Since the function in braces is clearly non-negative,

we may minimize Rms(a) by minimizing the inner integral. Find the

minimum of the inner integral by differentiating with respect to

. iy R
PULU TR AN S OO - i

a(R) and setting the result equal to zero.

F §
d = 2 — :
a—j [A(R)-al” p (a|R) da (2.8) ]
2 =2 f ap(a|R)da +238(R) f p(alR) da .

i
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The second integral is obviously equal to 1 we then have 3
o
. ams(i) = f ap(a|R) da |, 2.9)
= E
where ﬁms(R) is the estimate which minimizes Rm s(a). This term is the
mean of the a posteriori density. Similar results may be found for ‘
other cost functions. A general extension of Equation (2.9) occurs 4
for the cost function
c(d,a) = £(a) (4-a). (2.10)
The Bayes estimate is [29], *
‘ f a f(a) p (alﬁ) da i
AR = = : (2.11)
_ f f(a) p (al-f{.) da gj
=
The Bayes estimate of the absolute value criterion in Figure 2.2a
is the minimum of
Rig ™ f [la~a@®)|] p(a|R)P(R) dR da. (2.12) {
=
The result of carrying out the calculation is shown in Equation (2.13) ’
351, §
4 abs(R) ® 3
p(a|R)da = f p(a|R) da. (2.13) "
' - 2abs (R)
Hence, the Bayes estimate for an absolute value criterion is the
median of the a posteriori density.

[
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Similarly, the uniform cost function shown in Figure 2.2c
leads to a Bayes estimate which is the maximum of the a posteriori
density [35].

Two properties of the Bayes estimate for a large class of cost
functicns are presented below without proof. The properties are due
to Sherman and are useful in justifying the use of the mean square
estimate for general problems for which the exact cost function may
lead to unsolvable mathematics [33].

a. Property 1. If the cost function C(3,a) is

a symmetric, convex upward function and its

a posteriori density p(a|R) is symmetrical
about its conditional mean, the estimate that
minimizes the risk is identical to ams' Here
Qms is the conditional mean.

b. Property 2. In the case where the cost
function 1s a symmetric, nondecreasing
function, an a posteriori density p(a]ﬁ)
which is symmetrical about the conditional

mean, is unimodal, and satisfies the condition

lim c(d,a) p@|R) = 0 (2.14)
leads to a best estimate which is again ams'
The proof of these two pgoperties is available in the literature

[36].
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Whenever it is desired to estimate more than one parameter, a
straightforward extension of the above presentation is possible. Such
‘ . a situation occurs in the typical radar situation in which both the *
5 range to the target and its velocity must be estimated. We then
3 3
define the error vector ;
E a; (R) - a, !
& - _ _ - E
= a - = - 4
Ef aE(R) a, (R) a, a(R) - a , /2.15) ;
3 R - &
_ For the mean square error criterion, the cost function is: 4
ok,
c@_ (R) = ; a. (R (2.16)
€ €
=] i :
and the associated risk is then 1
-} ©
= a (R R.A R dA
Rms f IC( el )) p(R,A) dR dA
-00 =00 .
or
o m 3
—_— - k - 2 —— -
Rms = f p(R)de Z (é‘i(R)-Ai) :]p(A]R) da . (2.18)
20 2o i=]
It can be seen that to minimize Rms’ we may minimize each error term 3
separately. Hence, for the multi-parameter estimation problem, the
Bayes criterion may be applied to the parameters on a one-~by-one basis.
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2.3 Maximum Likelihood Estimation
3 ]
3 In situations where the a priori distribution of a is not ;
§ . known, the estimation problem is best treated as the estimation of a ;
i non-random parameter. Using the Bayes c¢riterion for this case falls f
E to lead to useful results [35]. Some other measures of the quality {
§ of the estimate are therefore considered. The first of thase i« %
P
3 the expectation of the estimate: 3
-]

: - £ - — !
3 E [AR)] = j &(R) p(Rla) dR . (2.19) 3
g The possible values of the expectation can be grouped into E
3 three classes [35]. ?
% 1. If E [AR)] = a, for all values of a the estimate ;
E is said to be unbiased. 4
3 2. If E [A(R)] = a+B, B independent of a, the estimate 2
£ 4
1 is said to contain a fixed bias. It is always 3
% possible to obtain an unbiased estimate from such 3
; ]

a biased estimate. Z

3. If E {E(ﬁ)] = a + f(a), the estimate has an
unknown bias. Because the bias depends on the 3
unknown parameter we cannot readily remove its

effect from the observation.

Lol s ald

The expectation of an estimate is not very satisfactory since

it can lead to large errors if the a posteriori density hax a large }

second moment.

\d

¢

;

3

g

b

3
t
¥

U

3
i; -

AL S P L L L d !+~ F ol 4 e M K




T T s E e Ty TR O RIS 3T BN T

ot P T TN AR R ORIV, AT R IR
O == = he

PR T

e = el S AT RS R AT R AV A

14

A second measure of quality is the variance of estimation
error. It seems reasonable to require a good estimate to have a

. small variance., One commonly used estimate which satisfies this 7

condition is the maximum-likelihood estimate. In this procedure,

VIR RTINS FTRT S

it is desired to maximize the so-called likelihood function p(ﬁ]a).
: This estimate is a good estimate but not nacessarily the best

4 zstimate pcssible by all criteria.

g
L g WSy im

One useful form in which this estimate occurs is in terms of

the log likelihood function 1n [p(E]a)]. Since the logarithm is E
monotonically increasing, maximizing 1n [p{R|a)] insures

maximization of p(R|a). When conditions of differentiability are

met, the maximum of 1ln [p(i]a)] can be found by solving the equation

A 2l Do y

3 {In [pRla)I}, ,
da y (2.20)

This maximum likelihood estimate corresponds mathematically to the

limiting case of a maximum a posteriori estimate in which the prior

knowledge approaches zero [35].
The Cramer-Rao bound of the variance of any estimate will now
be stated without proof [7, 12].

If a(R) is any unbiased estimate of a, then

Var [A®) -a] > (E{[i’-—l“a—%@—f‘l]z}) (2.21)

Or, equivalently:

2, = N1
Var [A®) -a) > {_E[a In o a)}} , (2.22)
oa
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if the following conditions are assumed to be satisfied:
- 2
op (Rla 9 Rla
and
da aaz
exist and satisfy basic conditions of integrability.
This bound in essence states that any estimate is limited in
ita precision by the a posteriori variance. Cramer has showmn that

the equality holds when A(R) is a sufficient statistic for the

estimate of the parameter a [7].

2.4  Signal Parameter Estimation

The above discussion may be extended readily to the estimation
of signal parameters. For example, in M-ary digital communications
one of a finite number of symbols or message blocks is chosen for
transmission. Associated with each of the M messages My, Myesoelly,
is a transmitted waveform Bl(t), Bz(t)....BM(t) (Figure 2.3). These
waveforms are corrupted by an additive noise. Initially, we consider
all channel noise as white Gaussian noise nw(t) with power-density

spectrum

N
. o
SnCW) =3 .

The received waveform will then take the form

r(t) = 8, (t) +n_(¢)
when message k has been transmitted. Without loss of generality,

this result may be stated as

q(t) ~ sk(t) + n(t)
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Figure 2.3 The Estimation of Known Signals in the Presence

of Additive Noise
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where n(t) is the noise component in the signal space. Letting the

time functions, n(t) and q(t) be denoted by vectors we then get:

q=8s+r.
The random vector ;'(rl, r2....rm) is represented by M

independent Gaussian variables, each with zero mean. The variance
N
is r2 = 52 . The joint probability density function of vector r

in such a case has spherical symmetry.

- 1 -2 2
£ () = —==75— -|n|“/20
n (zﬂcz)ulz e N
1 -2
=—=—  |a]"/N_ . (2.23)
(“NO)M/Z e o

The likelihood function p(R|a) then becomes

1 —
(nN )M/Z eInl /No (2.24)
[o]

Py (q]m)) =

However, when a specific message m, is sent,

q-= 8 +n

and

;{ga-sio

Equation (2.24) can then be written as:

2
— 1 - —
- @n,) = —==== _-[qd -8 /N .
q i (ﬂNo)M/Z e i 0
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- The log likelihood function is given by: k
z
’ ln[p—- @lm,| = m[—l———-l- ls -5 Iz] (2.25)
q i (“NO)MIZe N, i :
It is this function which is to be maximized if the a posteriori E
probability is to be maximal. The first term on the right in
: Equation (2.25) is a constant and therefore need not be considered 3
F in the maximization. The term |q - ;il is the square of the vector
T-5, - § 2
q-38 = (q -8, ) (2.26)
1 g-l L i
j M M M :
2 2
; = Y q°+ ; s, “ -2 E: q, S
i_ k=1 ¥ SN SN ;
2, 01=12 ,=.%
] = [q?+ [5,)*-23-5,,
1 2
3 where ]S il is the energy of the signal E, and
3 ® 1
q°5; = I q(t) s,(t) dt .
,; 2o
The signal energy Ei and the terms q2, No are constants in
the decision function. It is desired, therefore,to maximize E
a. i
‘ T
3 I(g,s) = ~ e Iq’ +E, - 2 q(t) Si(t) de | . §
;. ° -«» :
The desired result is then
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Max [I(g,s)] *Max[j q(t) 8, (t) dt] R (2.27)

-00

where the symbol + is used to denote implication.

This result is of the form of a convolution integral,

<o

o(t) = j q(t) 8, (t + 1) dt.

o
The function $(t) has its maximum value at T=0.

The estimation procedure consists of impressing the received
signal on a bank of correlators, one for each of the m signals
transmitted, the output of which is sampled so that T = 0. The
decision is made in favor of the signal for which the output is
largest., Figure 2.4 summarizes such a parameter estimation scheme
for the M-ary digital communication receiver. The parameter to be
estimated in this case is which of M possible messages transmitted
was received.

It can be seen from Equation (2.26) that this estimation
procedure minimizes the square error, hence, corresponds to a Bayes
estimate for a square cost function. No assumption as to a priori
probabilities for messages Myy Myeoee My has been made.

The presence of a phase reference for such a scheme is a

requirement since the output of the various correlators must be

sampled at time t such that T = 0,

,;
3
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Figure 2.4 Summary of Maximum Likelihood Estimation
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In practice, each message exists only for a finite duration of
time T. The message may be preceded or followed by another. A
specific message, however, is defined only for some finite time
interval; hence, the limits of integration on the convolution
integral may be changed so that
-T

d(T) = j q(e) s, (t - 1) dt. (2.28)
27

2.5 The General Radar Problem

In the radar estimation problem, a number of parameters may
be estimated. Confining the discussion to estimation of echo delay
time (to) and target velocity dependent echo frequency shift (v),

a similarity to the above estimation problem can be seen.

Define the signal as

S(t) = a(t) cos [wot - &(t)] (2.29)

where w, = 21fo and fo represents the carrier frequency,

a(t) = the amplitude function with time t, and
¢(t) = the phase function with time.

Going over to complex notation, we may write
S(t) = Re {y(t)} , (2.30)

the real part of a complex function defined as follows:

ilw t - ¥(t)]
Y(e) =a(t) e ° .
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The signal Y(t) is transmitted and the received signal may be

written as
‘p(t - to) ’

where t = 0 is the time origin of the transmission and to the round

trip delay time. The observed receiver input can then be written

as

e -t -1,
where T is the time difference between the round trip delay time t,
and the observation time.
To estimate to’ we must contrive a means of detecting the
instant when T = Q.
If the target from which the echo is received is in motion,

the reflected signal will be shifted in frequency by the doppler

shift frequency fd given by
2v fo
fd = s V fd - fo s (2.31)

where fo = the transmitted frequency,

v = radial component of target velocity, and

c = velocity of propagation in the medium.
The received signal will therefore be one of an infinite set
of signals corresponding to all allowed radial target velocities,
To estimate v, the target velocity dependent echo frequency

shift, or fd’ the doppier dependent frequency, using a maximum

likelihood procedure requires that the echo signal be impressed on an

e bl Lain’ i

Ll Syt b gty b

Sk a2 bl v




infinite number of correlators, each corresponding to a different
target radial velocity. In practice this impossible sitvation is
approximated by correlators corresponding to specific velocities

or by uniformly spaced frequency shifted references.

23
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3 . CHAPTER III

AMBIGUITY AND RESOLUTION

3.1 Noise Free Resolution

In Chapter II, it was demonstrated how an application of
estimation criterion leads to a receiver which inccrporates a
convolution principle, a correlator. This result could equivalently
have been expressed in terms of a matched filter receiver [21], In
the absence of channel and receiver noise, the response of the
receiver to a signal can be completely described in terms of the
correlation function.

Referring to the previous discussion of M-ary communications,
it can be seen that two distinct situations occur. The first of
these is the case for which

qk = 5, + nw(t) = sk

and

¢(T)qksi = I 8, (t) s, (t-1) dt,

for 1 = k.
This result is in the form of an autocorralation function

- -]

¢(t)ii = j si(t) si(t-T) dt. (3.1)
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Some properties of the autocorrelation function are stated

below from the literature [21, 22, 28]. These properties are of
L value in the formulation of estimation schemes. 3

a. The autocorrelation function is an even function. That is,

¢(T) gy = 0C-T)yy (3.2)

E b. 1Its value at the origin is the maximum value in magnitude.

TR
P

90y, > |¢(r)ii |, forT#0. (3.3)

el Tt ol s

c. Its first derivative is expressed as

w 1
' - ' (e 3
¢ ()4 j 8, (t) s, '(c~T) dt. (3.4) ;
:: -0 ;j
a In the unmatched case, g
<b(‘r)qksi = f 5, (t) s, (t-T) dt, (3.5)

- !

where 1 # k.

This a correlation between two signal waveforms which are
assumed not identical. When the M messages are selected to be
orthogonal, all unmatched correlations will result in zero mean
receiver output and the output of the matched correlator will be
clearly distinguished. The result presented in Equation (2.27)

insures, however, that all cross correlation outputs will be less than

L O B it e e B N Aasal

that for the matched correlator for any choice of signals. This
result agrees with the description of a correlation in terms of

"closeness of fit."
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The consequence of these observaticns for a noise free receiver
is that there is no ambiguity in the estimation. If, for example, the
phase is not known, the maximum output of the receiver will occur at
time such that T = 0 on the correlator which is matched to the
transmitted waveform. In estimating the time of arrival in the
absence of noise the resolution is determined solely by limitations
due to measurement errors. This result is a direct consequence of
the second property of the autocorrelation function; the zero time

delay response corresponds to the maximum value of output.

3.2 Noise Effects

The estimation problem as stated includes an additive noise
which for the linear estimatcr proposed remains as an additive effect
on the output of the correlators. The correlator outputs will all
exhibit time dependent random fluctuations about the response
anticipated and the decision process will yield an uncertain result.
Properties of the estimation scheme presented so far only insure
that the most likely decision will be iIn favor of zero time delay and
the correlator matched to the transmitted message.

It follows directly that members of the message space (ml, LYER
mk) which are similar to one another in the sense of correlation
integral will be difficult to distinguish in the presence of noise.

Similarly, if the time delay is to be estimated, waveforms

for which secondary maxima of the autocorrelation function approach

the peak value of this function will result in poor resolution of «t.
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- An extensive effort has been devoted to finding signal sets

which satisfy various criteria of resolvability {19, 23, 30, 39].
L Many factors must be considered in the selection of such signal sets,

not the least of which is the feasibility of implementation. ;

Tl

3.3 Echo Delay Resolution in Radar

Sy ALY

; It is possible to define a number of measures of range
7 resolution and the one which is chosen here is the delay resolution

constant [3)]. This constant is: E:

1

e

where We is the effective bandwidth.
; This measure does not depend either on the transmitted pulse
length or specific signal characteristics. A long duration pulse can

have large bandwidth if the signal has rapid and/or irregular changes é

in its structure.

3.4 Velocity Resgolution in Radar

Define the frequency function

PP P IR PR E TR R Y

bt i G O

V() = Fly)) ,

where F[y(t)] is the Fourier transform of the complex time function

T

; for which

o ol

s(t) = Re{y(t)} .

TN N ¥

For a doppler frequency fd devcribed in Chapter Il as :
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the received spectrum may be represented as

WE, - £) = YY)

This formulation leads to a velocity resclution constant of

C
v =555 >
o e

where Te is the effective duration of the transmitted signal [3].
Again the resolution measure is not dependent on the detailed
structure of the signal but rather on the generalized form of Te.

A surface described by the absolute value noise free correlator
output for all values of echo delay and doppler frequencies is often
referred to as the uncertainty surface for such an estimation scheme.

Throughout this thesis, the absolute value of the noise free
correlator output |Y(T,V)| will be referred to as the uncertainty
surface in keeping with the notation of Woodward [39]. This is to

distinguish from the square of this response

2
[Y(t,v)|
which is known as the ambiguity function.

Some representative uncertainty surfaces for common signals
are shown in Figure 3.1.

It will be shown in subsequent chapters that the attainable
resolution, in contrast to the above resolution constants, is a
function of the strength of the received signal in relation to noise
and depends on the type of processing of the data. The resolution

constants AT, Av are useful, however, in determining how near one
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Figure 3.1 Uncertainty Surfaces for Representative Signals.

(a) Linear Swept Chirp Pulse With Rectangular
Envelope (b) Monochrorme Pulse With Rectangular
Envelope (c) "Noise" Wavefora.
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another two signals can be in time delay and velocity dependent :
5 frequency and still be distinguishable to a maximum likelihood receiver. J
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CHAPTER 1V

DIGITAL SYSTEMS ]

4.1 The Generalized Decision Process

The required structure of a maximum likelihood receiver has

been developed from fundamental estimation criteria. Recalling the

PR J0 TSP T

receiver, we note that the major system components are as indicated
below:
a. Correlators for each possible transmitted
waveform or an approximation to this when an
infinite number of echo frequencies can occur. |
1 "b. A decision making system which chooses the largest
, from among the correlator outputs. In the

absence of a phase reference, the decision must

oy Lwtad e diaacs e e o

3 be made in terms of the largest correlatour

: output within an allowed time or phase interval.
If digital systems are to be used for any part of the receiver, é
3 one may ask which of these two components is amenable to such an

3 implementation. A considerable amount of work has been devoted to

using digital schemes for accomplishing the correlation. Some

concepts reported in the literature are:
a. 8Sign correlators in which both the received
signal and reference signals are represented in

terms of two state samples [2].
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% b. Digital multipliers in which both the %
F received signal and reference signals ;
% . are quantized and represented by multi- jz
E state digital words [38). A discussion

of this type of system appears in
Appendix A.
c¢. Fast Fourier transform algorithms applied
to sampled and quantized received signals [6].

% d. Matched filter techniques using digital

e

filters in conjunction with sampled and
quantized inputs [37].

Alternately the output of analog correlators may be sampled
and quantized. In either case, the output of the correlator bank
will exist in some digital form which can then be input to a digital
decision process. In some cases, the digital result is converted :
again to analog form for further processing, but this exposition §

will concentrate on those systems in which the decision making

function is digital in nature. Specifically, decision algorithms

B e a1

implemented on a general purpose computer are treated.
The input to the decision algorithm is of necessity a sampled,

quantized representation of the output of each correlator. For systems

PTG UNTITIE. LT SN N

with known time origin the samples correspond to tnat time for which

IO

T = 0., Otherwise, it will be necessary to provide the algorithm with
sufficient data points from 2ach correlator output so that the
decision as to wmaximum correlation within an allowed time span can be

made. For generality, the system without a time reference will be
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treated in what follows and the result can be easily seen to apply
for systems with such a time reference.

The decision process can then be summarized as:

From the totality of sample points which

define the correiator output select the one for which

the value of correlation is maximum. Report the

corresponding value of T as the echo delay time estimate

and V as the estimate of target doppler dependent

frequency shifc.

Additional complicating factors occur in the radar case since
it is possible to have a multitude of echnes in the total receive
interval. The effect of an ill-defined time origin for a specific
echo as well as interactions between closely spaced events must be

accounted for in a practical system.

The situation is similarly complicated in certain communications

applications where multi-path propagation or distributed scatterers

are involved.

4.2 Single Monochromatic Carrier Band Pulse, Rectangular Envelope

Consider as an example of a radar application a system which
transmits a single monochromatic pulse with rectangular envelope of

duration T.

The transmitted signal will then be:

S (t) = cos 27 fot 0<t<T (4.1)

= 0 otherwise,
or
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ju t
Y(t) = e ° ’
where wo = 2ﬂf°, and f° the carrier frequency.
The delayed, doppler shifted echo signal is then

jan (fo-v) (t-1)
V' (t-T) = e '

where v is the doppler frequency shift and T the delay to~t. Here to
is the true echo delay time.,

As a measure of the "distance' between the waveforms, consider
the integrated square of the magnitude of the difference in accordance

with Urkowitz [3]:

e? - flw«:) - v (e [Pt

| w(er|? ae - 2 re[ ¥¥ 20" (e-1) ae

=2 [ | ue? ae
J2T(E V)T 2mVt
-2 Re{e ° J u(t) u*(t-‘t) ej dt).(4.2)

To minimize the difference for * # 0 it suffices to minimize the
magnitude of the last term. The integral in the last term is defined

as the combined correlation function:

<€

jarv
Y (t,v) -I u(t) u*(t-'r) e dt, |T| <T (4.3)
=0 otherwise ,
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For the monochrome pulse,

u(t) =1, 0<t<T1T

=0 otherwise ;

hence Jll. ‘
sin TVT (1 -7 ) E

Y(1,v) = = , lt] <1 3

and i
sin TVT (1- J—;—'—) 3

MK | |, Tl < T, (4.4) .

™

where Equation (4.4) is the uncertainty function. Note that, in going

from Equation (4.2) to Eguation (4.3), the rapid fluctuations due to

RS TRREY

the carrier are rejected. A plot of IY(T,V)] is.shown in Figure 4.1.
A physical realization of a receiver for a carrier band signal
is shown in Figure 4.2. The input to the digital decision algorithm
consists of sampled values of correlation output. There is a sample
for each target doppler dependent frequency reference for each echo

delay interval. The inputs to the digitizer arrive in the order: ?
X(Tl 3\)1)’ X(Tl,\)z),... X(Tl,\)m)’... X(rzsvl)sO"x(Tns\)m)’

where

X(Ti,vj) = |Y(Ti,vi) + nil, and n, the noise component at Ty

The effect of the digitizer is to represent the value of analog

voltage in terms of a finite number of binary digits. The binary

N
F]
FEl

[
4
i
<

digits which represent a specific value of X (T,V) comprise a digital 3

i
H
Bl

datum which is subject to manipulation in a programmed automaton. The

process of quantization is shown pictorially in Figure 4.3. All values
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Figure 4.1 Uncertainty Surface for Monochrome Pulse of
Duration T Rectangular Envelope
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Figure 4.3 Quantization of an Analog Waveform

OUTPUT
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Figure 4.4

Input-Output Characteristics of a Quantizer
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3 of the analog waveform which are within a resolution interval of one
another will map into an identical binary representation. Typical

input-output characteristics of a quantizer is shown in Figure 4.4.

The selection of number of correlators and the sampling rate of

the correlator output time function is determined by operational

Lo s R b i K AT

requirements., As previously detailed, there is no theoretical limit

T T TR TR

on the resolution possible in the absence of noise other than that
imposed by system limitations. As the resolution is increased,

1 however, the number of samples X(T,v) presented to the digitizer per
unit time increases correspondingly. Furthermore, the number of

binary digits required to represent the sample increases.

+
o et bl 7 el 0 e ad Lo B aa ot b S bt

A fards

i

As an example of this latter situation, we note from Figure 4.1

el oar

that the uncertainty function of the monotone pulse is a monotonically

decreasing function in the vicinity of the peak X(0,0) with both T

O AT B T SR AT

and Vv,

) e e e ks e £

Substituting v= 0 in Equation (4.4), we get

[ESERITLW

%¢r, 0| = |- £l (4.5)
For a sample interval such that samples are spaced Ts’ the

percentage of difference between noise free samples is:

T 1,
|¥r,0] - [re-r,0]] = 2 . (4.6) x

it L S

A digital representation of X(7,0) must therefore contain a

k C i3

sufficient number of binary digits, so that

e Wkt
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T
a(i+1) -a(l) 37, (4.7)

where a(i + 1) and a(i) are digital states.l

Similar arguments can be applied to the correlator épacing for
doppler dependent frequency. The sampling theorem according to
Hartley, Gabor, and Shannon, however, states that any signal
essentially limited to an interval of time T and a bandwidth W contains
2WT degrees of freedom [20]. There exist 2WT samples of the signal
waveform which contain all of the information of the original signal.
This fact places an upper bound on the number of samples required in
a receiver of finite bandwidth.,

The development in Section 3.1 demonstrated that the maximux
a posteriori probability always occurs at T = 0 on the correlator
matched to the doppler dependent frequency. With a maximum
likelihood receiver, one can do no better than to select as the
estimate of frequency the one corresponding to the maximum X(Ti,vi).
Figure 4.5 shows the effect of added noise on the correlator output.
It can be seen that the noise introduces uncertainty into the
measurement of X(T,v) with the result that, for large values of noise
power in relation to signal power, the observation of the maximum
X(Ti, vi) leads to a poor estimate of the parameters T and v .

The discussion thus far has ignored the fact that the signal

energy at the receiver is unknown. This omission in no way alters the

lthe interval need not be uniform. Here, we will assume that
values of X(T,v) are uniformly distributed (X; 0 < x < 1). For this
case, it can be shown that, for optimum operation in a mean square
sense, the quantization steps should be uniform [27].
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decision rule as can be seen by noting Equation (2.27). It will be
shown later that the value of signal energy is important in determining
the accuracy of the estimate, however. The ratio of signal energy to
noise energy at the receiver will be a function of range dependent

signal attenuation, medium characteristics, target strength to list

the major factors.

4.3 The Effect of Continuous Observation

In the foregoing treatment, the transition from the theoretical

form of the correlation operation

¢(T)qksi = ‘[ sk(t) si(t-r) dt (4.8)
to the practical form -
T
¢(-r)qksi = jr sk(t) 8y (t-1) dt |r|< T
-T
=0 |t]> T

for a signal of duration T has been made without conceptual difficulty.
The implication, however, is that we have prior knowledge of the
interval of echo delay during which the signal is to occur. In many
practical systems, however, this knowledge is denied the observer.

In a typical application, T will take on a range of values
determined by system design. The thecry insures that for all of these
values of T,the peak a posteriori probability will still occur when
T = 0, Considering the majority of applications, it is found that the

ideal situation of a single echo in the totel listen period is unusual.

Generally other echoes are observed from ground clutter, other aircraft,
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etc, Each of these echoes leads to a system response where
IT - ti] < T, where ty is the echo delay time associated with target i.
Figure 4.6 shows a receiver response to a two target case when the
frequency is matched to the correlator.

For the multiple echo case, we will wish to note the peak in
some time interval 2T. The problem then is one of knowing the originr

of the time interval. Figure 4.7 shows the effect of impressing a

threshold on the correlator output. It can be seen that those samples

surpassing the threshold roughly define the time interval for which
T < T, The threshold must be selected high enough to avoid very
many noise related correlator outputs which appear as false targets.
The process of thresholding can be done either by analog means or

in the digital processing. By assuming that the noise is stationary,
the threshold reduces to a time invariant one.

Thresholding may also be used to reduce the number of samples
presented to the digitizer. Since only samples which surpass the
threshold are transferred to the digital processing, a means must be
included to identify the datum in time and doppler frequency.

In many radar applications, no prior certainty as to the
presence o1 a target exists., The effect of a threshold then is to
preclude noise events surpassing the threshold value. The process of
estimation is intimately tied to that of detection in such a system.
And, no matter how the threshold value %s chosen there will be some

cases for which a nolse event is classified as a target, or a target is

overlooked. In analogy to detecticn theory, the threshold is so chosen
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as to give maximum performance against a target vith a false alarm
rate in keeping with system objectives.

The peak value of the uncertainty function in the absence of
noise is proportional to the echo energy. This can be seen when T = 0
ie substituted in Equation (4.8) when the echo is matched to a signal
replica. The amplitude of the peak can be used as a rough measure of
the strength of an echo for this reason. It is a rough measure since
it reduces to the limit of no relationship to echo strength when the
peak is of noise origin solely. In referring to Figure 4.7, it can
be seen that the time duration over which the uncertainty function
exceeds the threshold is determined by the peak value of the matched

correlator output.

4.4 Linear Swept F-M Puise of Duration T

In some situations which will be described shortly, it is
advantageous tc transmit a signal for which the frequency varies
linearly over the pulse duration. The complex modulation function for
this signal is

2
w(t) =3B, pcp< (4.9)

=0 elsewhere,

B is measured in radians/secz. It can be seen that

u(t) u*(t-1) = 0 for |t] > T. (4.10)

Then, from Equation (4.2) write
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i (t,v) = f SIBES B(e-T)Y g2me |
T |
N ! 2 2
i - fej[-Bt + B(e-1)" + 2mve] |
' :
3Bt? f -2j [BT-~mv]t ;
T :

ejBt2

. [ =23 (BT-V)+ _ -2j(Br-nv)r].
23 (BT~1v) e

Expressing the exponentials in terms of cos (+) + j sin (°)

and obtaining the squared magnitude, the result is

SE TR I T LT

sin(BT-TVv) (1L -

e = | Ty

22 -2 e <.

(4.11)

This function is plotted in Figure 4.8 for a signal for which ;
B= T/sec.2 The "ridgeline" defining the peak response as a function
of time defines approximately a straight line in the time/frequency é
doma‘n. The details of this ridgeline response aregiven in Appendix B. 1

Considering only that portion of the uncertainty surface which

exceeds a value half the peak value,

fr(r,v] > . 5a,
where A is the peak value, it is possible to obtain an insight into
; the resolution of such a signal. In Figure 4.9, the values of

|Y(T,v)’ satisfying this criterion are shown projected onto the

time/frequency plane.
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Figure 4.8 Uncertainty Function of Linear F-M Pulse
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It can be seen from this figure that it is possible to attain
good resolution in time in spite of a long pulse by choice of sweep
rate. This is an important property of this type of signal since it
is often advantageous to transmit a long pulse and thereby a large
amount of energy. The problem of resolving targets lying along the
ridgeline is a difficult one, however. Also, the combined resolution
of time delay and frequency is limited and the maximum time resolution

is dependent on independent knowledge of target velocity.
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CHAPTER V :
ESTIMATION ALGORITHMS
5.1 Introduction 4
In Chapter III and Chapter IV the theory and response
1 characteristics of a maximum likelilhood estimator were developed.
1

3 The nature of the decision process necessary to implement such an

3 estimator in a digital system was presented. In this chapter, the

saber b Uthandd o 2

logic functions previously stated are expanded in the form of

algorithms to be executed in a general purpose computer, The concept ;

of the general purpose programmed automaton is presented as background.

Various measures of algorithm performance are investigated

ol i s S o 20 Lk

in this chapter and subsequently studied in a model application in
8 Chapter VI,

5.2 The General Purpose Programmed Automaton

The functicn of a pregrammed automaton is to operate on a set

of data according to a list of instructions. Both the data and

3 instructions exist in the form of a finite alphabet or representation.

A realization of a programmed automaton is the digital computer. Such

a computer operates on data in the form of digital states by means of

3 a set of instructions, i.e., a ptogram.2

2The digital states may or may not be describable in terms of a
binary representation. The binary computer is used universally

although systems with a different number of primitive states are not !
ruled out.
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TOT T

The term "general~purpose" as applied to automata describes a
; capability to perform any mapping whatsoever by revision of the ¢
: o piogram., In the literal sense of the definition, no realizable

automaton is truly general-purpose since a mapping rule may be of such

oo s o

complexity as to overpower the storage capability of the machine.
£ In practice, the definition is extended to those machines capable
of performing rather complex mappings which are used in a role where 3
provisions of easy program modifications are required. 3

Modern general-purpose programmed automata consist of the f

following basic elements:

a) A memory unit in which both the data words and

instruction words are retained in one or another

b e R e K

accessible form.
3 b) An arithmetic unit which accomplishes the various

operational functions involved in the manipulation

of data.

¢) A control unit which serves as the timing and

T
RN T NPV ALY

sequencing unit. The control unit generally

accomplishes its function in a sequential form .

performed during a machine cycle.
d) Input-output units through which information
exchange to other media occurs.
Instructions which define the mapping are the detailed rules
which govern the operations of the digital computer. The mapping,

aside from the minute considerations for a specific machine is an
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algorithm describable in a generalized way. Algorithms are stated
in the form of higher level language statements or perhaps flow
diagramn.

Attempts at using machine translation to go from man compatible
formulation of an algorithm to the specific machine instructions to
accomplish the mapping have resulted in the development of higher
level languages. Among languages of this kind are FORTRAN, PL1,
COBAL, SAKO and others. A language development stemming from a major
international undertaking is the Universal Algarithmic Language
ALGOL 60. The advantage of this formulation is that clear and
concise statements of algorithm functions can be made. This language
has been used extensively in the literature to present algorithms
in a machine independent form. Generally, the language is not
directly applicable to any machine without extension.

In the following descriptions of the various algorithms, the
syntactic intent of ALGOL 60 is adhered to [26]. Since the algorithms
are intended only to convey techniques, no attempt at completeness

has been made.

5.3 Nature of the Input to the Estimation Algorithm

In keeping with the previously stated method of obtaining
samples of the correlator response as shown in Figure 4.2, we now
make the following assumptions:

a) For each time sample there are samples for

all correlators. All correlators are assumed

samples at the same instant.
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b) The correlators are always sampled in the same
sequence and these samples are presented to a
digitizer in a fixed order.

c) Only samples of |x(Ti,vi)| > n, where n is a pre-

selected threshold value, are transferred to
the computer. See Figure 4.2 and Figure 4.7.

The foregoing assumptions are made quite arbitrarily and may
not apply in all situations. This method of treating the data is
treated as a representative example only and other methods could be
adopted as well.

These samples are transferred to the computer memory unit by
some input means and initilally we assume that all data is available
in memory when the estimation algorithm is activated. They appear

in the computer memory as a triple array.

integer m, i max ;

integer array t{l:m], £[1:m], x[1l:m],
where max is the total number of samples to be processed. The content
of t[i], £[1i], x[1] correspond to the ith datum sample time, doppler
dependent frequency, and X(t,f), respectively.

The order of the samples is maintained in the process of
thresholding and this fact can be used to simplify the algorithm.
Figure 5.1 shows how the samples are transferred into the data array.
On inspection of the sample transfer process it can be seen that all
samples corresponding to a single sample time t, are continguous in

the data array.
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é The algorithm to select the largest value of x(ti’fi) from all
, samples then follows naturally. This procedure is outlined below:
. procedure MAX (x,t,f,a, Testimate, Festimate)

integer m, Testimate, Festimate; integer array x,t,f;

comment : MAX selects the largest value of m samples

and returns the corresponding values of time

delay and frequency as the estimate of these

parameters.

o P e 3 P o it

begin
integer xtestvalue, i;

; xtestvalue: = Testimate: = Festimate: = 0; ?

for i: = 1 step 1 untilm do
if x[1i] > xtestvalue then
begin Testimate: = t[i]; Festimate: = f[i]; i
xtestvalue: = x[i]
end
end MAX
This example of an algorithmic approach to the estimation
procedure demonstrates a characteristic of all digital systems, that
3 of uncertainty introduced by the digitization prccess. Two values of
correlator output x(ti, fj) and x(tk,fe) differing by less than a ;
resolution interval cannot be logically distinguished without imposing

an arbitrary criterion. The criterion in the case of this algorithm

has been chosen in such a way that the first of a number of peaks

of equal value is defined as the maximum.
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5.4 Meagures of Algorithm Performance

In the design of algorithms, various approaches can be taken.
One therefore nec:'s some performance measures for algorithms on the
basis of which a choice between various techniques can be made. Some
of the criteria may be mutually exclusive to some extent and this
leads to trade-off in light of specific requirements.

The algorithm described in Section 5.3 is both direct and
simple. Each data sample is tested only once. In addition, it is
possible to deal with the data as it is presented. Both of these
characteristics are important in a processor and are defined as
measured below:

a) Define the Cycle Repeat Count C as the mean number

of references to a datum X(t,f) during the algorithm
execution for purposes of logic testing.

b) Further we define the Frame Length F as the count

of data points (samples) prior to thresholding
required for logical completeness of the algorithm.

In the afore described procedure, to find the maximum x(t,f)
each datum is processed on a one-at-a-time basis; hence, F=1l, C=1.
In a real time process such as that of signal parameter estimation,
the frame length determines the minimum waiting time after a
significant datum is available until a decision can be attempted.

Consider now the case of multiple returns. For each signal,
the echo delay time tk and doppler dependent frequency shift v are to

be estimated. In the case where the returns are well separated in

S ke S
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time, we note the first sample which passes the threshold and select

the maximum x(t,f) for all samples within a time span equivalent to

twice the pulse length. Repeating this process for all returns

completes the algorithm., The formal statement of this scheme foilows:
procedvre MULTMAX (x, t, £, m, tout, fout, xout,n, Tp,Ts)

integer m, n; irnteger array x, t, £, tout, fout, xout;

value n, TP, TS; real TP, TS;
comment, MULTMAX selects the largest value of samples within
a 2Tp interval with time spacing T8 and outputs the
parameters x, t, £ of this sample as xout, tout,
fout. This process is repeated for all m samples
input. A maximum of n estimates can be output.
begin
integer Testimate, Festimate, xtestvalue, k, low, i;
k: =0;1i: =23
A: xtestvalue: = 0; low: = tfi] -1; {1 = 1 - 1;
for i: = 1 + 1 while (t[i]-low)< 2% Tp/Ts)A (i< m) do
B: if x [i]> xtestvalue then
begin Testimate: = t[i]); Festimate: = f[i];
xtestvalue: = x[1i]
end

k:

k + 1;

if k > n then LISTOV; FLOW;

tout [k]: = Testimate; fout [k]: = Festimate;
xout [k]: = xtestvalue;

if i#mgotoA

END MULTMAX
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In this procedure, Ts is the time interval between successive

time samples and Tp the pulse length T. The value of the cycle
repeat count is C = 1, The data points can be processed as they are
generated on an as available basis., Hence, F = 1, but the final
estimate is not available until all samples in the 2T interval are
processed.

Consider now the effect of a noise event which exceeds the
threshold in the absence of a signal. This situation is depicted
in Figure 5.2. An algorithm which considers all samples in a time
interval 2T as belonging to the same event does not account properly
for such an occurrence. The most serious error is in splitting up
the signal related sanples in such a way that the estimation rule
stated in Section 4.1 is violated. One may ask if it is ever
possible to design an algorithm which can properly account for the
effects of noise, The noise effects cannot be eliminated totally
for any system which is realizable, that is, a system which must rely
on a finite processing time and bandwidth [21]. It is possible,
however, to apply the logic capability of the computer to circumvent
some of the noise problems. The sampling theorem asserts that time
samples spaced at 1/2W are independent as far as a noise limited to

the bandwidth W is concerned [32]3. Therefore, noise samples spaced

so that

3Strictly speaking, & time limited signal of finite bandwidth
cannot exist., Losses in practical systens limit the maximum frequency
and one considers such a signal as both time and band limited.
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Figure 5.2 Effect of Noise-Only Event on the Estimation
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L

Ts 2 W

]

are independent. When the threshold is set so that the probability
Pe = Pr (Xh > n) is small, the probability that a independent samples
of B will surpass the threshold is given by the binomial distribution

B
£(0) = (u’ p” (1-p€)3'°‘, 3
where

-
a (B-0)!la! ° 5
For example, the probability that two of three successive
independent noise samples exceed the threshold is
£(2) = 3 2.2 (1-P)
£ g’ °

We can take advantage of this characteristic of noise-only
threshold surpassing eveats to build a degree of noise immunity
% into the algorithm. The procedure to accomplish such a test is
; presented formally below:

boolean procedure NOISE (low, tcurrent)

value low, tcurrent, ; integer low, tcurrent;

comment NOISE is a logical function which has the

following logic values for delt where
delt = current time - time origin for this echo:
FALSE if delt = 0, 1, or 2, or if (2 or 3) of first
3 time samples were present.

TRUE otherwise.
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It is assumed that sample spacing is sufficient to insure ;
noise independence. E
S integer delt; boolean array a [1:2]; é
; delt: = tcurrent - low; NOISE: = FALSE;

if delt = O then a [1]: = a [2]: = FALSE;

if delt > 3 then NOISE: = a [1l}val2];

X if (delt = 1)v(delt = 2) then a[delt]: = TRUE;
END NOISE

This routine enters into the estimation algorithm by way of

- calls to this logic function at statement labeled B:. The revised

structure will then take the form:

RSP PP R V.S BOL. )

B: if NOISE (low, t[i]) then go to A;

e,

if x[i] > xtestvalue then
begin Testimate: = t{i];.....,

] The inclusion of this type of a test for noise events

corresponds to a somewhat higher threshold. The apparent increase in

PRI PRV LN R LU IV SRR )

the threshold value will be large when Ts approaches the pulse length

T and decreases as Ts/T becomes small. On the average, for a number

of trials,

Caldedtciaks

(B « oot

where An is the change in threshold implied by imposing the above

requirement. :
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Another measure of algorithm performance is the degree of
immunity to biases. The preceding algorithm gives essentially an
unbiased estimate of the parameter of interest. Some bias is
introduced, however, by the fact that the received signal energy
is unknown at the outset. Figure 5.3 shows that for low energy
signals the test interval commences at a time considerably later
than that corresponding to ~T on the signal envelope. The estimate
therefore will contain a number of samples taken after the signal
has died out. Noise events occurring later than the signal envelope
can compete with the signal and may lead to estimates of appreciably
higher echo delay time than warranted by the signal echo delay
resolution constant. In spite of this, the estimate will yield only
very occasionally to biases in estimation because the probgbility of
a noise-only event exceeding the peak of the correlator output is
small for realistic values for the threshold.

Having described the algorithmé for estimating the time delay,
we now go on to analyze the quality of this estimate. It has been
shown in the literature that the maximum likelihood estimate for
additive white Gaussian noise is an unbiased estimate [35, 39].

In addition, this estimate is based on a sufficient statistic and
hence the Cramer-Rao bound of the variance stated in Equation (2.23)
is satisfied with an equality [7). The estimate is the minimum
variance unbiased estimate and we can describe its quality by the
variance alone. Alternately, the confidence interval on the estimate

is adequate to describe the error in estimation.
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Consider the matched response of a correlator to a monochrome

carrier band pulse as developed in Section 4.2. From Equation (4.5),

we get

a0 =1-d2l

T

for a monochrome pulse with rectangular envelope. However in the

presence of noise, the envelope output will be

€(t) =‘\/[1- J-;":—L + nc(t)]2 + nsz(t) , (5.1)

where n, and n_ are the quadrature noise components. In the case

where

(- L2y v () and njee) (5.2)

€)= 1 - l%;-] + nc(t) for almost all t [21].

This situation corr -ponds to those values of

X(1,0) > n,
where the threshold n has been chosen so as to give a very low
probability of noise only events. The noise on the output of the
envelope detector is approximately additivg when only samples which

exceed the threshold are considered.

The probability that any sample taken at Ti will exceed the

correlator output at T = 0 due to the noise is then,
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P [X(1,,0) > X(0,0)] =

P {[X(Ti,O) - X(0,0)]> 0} =P(W>0) , (5.3)
where W = X(Ti,O) - X(0,0).

The probability densitles corresponding to X(Ti,O) and
X(0,0) have equal variance but different mean values.

Define My = E[X(0,0)], the mean value of X(0,0), and
uy = E[X(Ti,O)]. The noise events corresponding to these two samples
are independent hence i‘he mean values and variances add [16].

The variance of the random variable W will then be 202 and
the mean value will become:

u Il

cu o= a-dEly oy -
T T e e (5.4)

Since all noise samples are assumed to be independent, the

probability of any sample in an interval {T,-T, < T < T }

L
exceeding that at T = 0 is given in terms of normal statistics.
Here, T is the value of T defining a confidence interval on ¥ . The
parameter T is the estimate of time delay.

Woodward derives the variance of the estimate of time delay
assuming a large signal-to-noise ratio [39]). This result is shown
in Equation (5.5). Due to the assumpiions, this equation can only be
expected to be valid asymptotically as the signal-to-noise ratio

become large.
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From Woodward, the variance of the estimate of time delay is

0n% = -1—2 , (5.5)

T  Rg

where R is the signal-to-noise ratio, 2E/N° and B = 2m/T,

Therefore, the variance o. :* * estimate is
2
OAZ _ No T
T 2g.4n?
and
0%2 = —"l— . (506)
2E .
2T N_
o
The confidence interval on this estimate can be defined and is
P(-Z o2 < T< zo?) = P(T < zo?) - P(T < - zo;), (5.7)

due tc the normality of the distribution. Here Z is a real constant.
For the 90 per cent confideance interval, this result is
equivalent to
P(]T| < Zo?) = 0.95 (5.8)

which gives
0.524 T

VZE/NO

Z = 1.645,]|t| &

from tables [16].

The behavior of this confidence interval as a function of
signal-to-noise ratio R is graphed in Figure 5.4 (Curve b). 1In
order to assess the actual behavior of this estimate at low signal-
to-noise ratios the simulation system described in Chapter VI was

used to obtain an experimental measure of the confidence interval.
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These results are also plotted in Figure 5.4 (Curve a.), and it is
seen that, in the large signal case, the experimental results do,
in fact, converge to the theoretical function. In obtaining these
results a sampling interval Ts much smaller than the pulse length was
used, Other results which show the effect of sampling time interval
and threshold are presented in Chapter VI,

Thus far the estimation algorithm considered has been the
one resulting from minimization of the likelihood function as shkown
in the work leading to Equation (2.21). 1his result was for a
general known signal in additive white Gaussian noise but did not
make use of the signals treated herein explicitly. Hence, some other
estimation algorithms were considered. It was anticipated that the
power of the computer could be used to advantage to improve the
accuracy of the estimate for the small class of signals studied.
Algorithms which do in fact provide better accuracy in a mean square
error sense have been identified. These algorithms lead to a biased
estimate of the time delay but it will be shown that the bias is
small for realistic signal-to-noise ratios.

Instead of finding the peak value of the correlator it is
possible to use the power of the computer to perform more complex

estimates. As an example of such an algorithm, consider the estimate

%
7,.X(1,,0)

R} i"Hi

)

i=

A
T =

’ (5.9)

X(t,, 0)
1 i

T T ST TCON T Teaen

el o i

3 i

Sho et ria

[




TR TR T oAy T

TR

69

where m is the number of time samples in the 2T time interval. It is
apparent that such an estimate is less prone to errors caused by

isolated noise events.

The variance of this estimate is

Zri X(1,0)

Var(f) = Var 1 = Var {%} , (5.10)
Z x('ri,O)
i

where W and V are defined as the numerator and denominatnr terms
respectively.
When the Ti's are chosen so that the time samples are indepen-

dent in terms of the noise, Equation (5.10) becomes

Var (T) = Var {%- » W, V both normal.
The variance for the quctient of two random varlables is detailed

in Appendix C. It is shown there that this estimute has a mean value

u o.U.. |O 0o,
o v [Ty Py

v W% W
where p is the correlation coeificient of y,x.

In the limit where the second term on the right is very small,

3
the estimate ZX(T:L ,0)

i
Py = 1
X(Ti,O)
i

~
= T.
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Otherwise, this estimate is a biased one. The experimentally
measured confidence interval of this estimate as a function of
signal energy is shown in Figure 5.4 (Curve c¢). This estimate has
a smaller confidence interval than the estimate on the basis of
peak correlator output. Since the maximum likelihood estimator is
optimized on the basis of maximum a posteriori probability, the
above finding appears contradictory.

In fact, the estimate based on the peak correlator is the

f minimum variance unbiased estimate. The variance of a biased
estimate cannot be shown to be limited by the Cramer-Rao bound of
the variance [35]. The biased estimates studied in this thesis are

T applicable to only a limited class of signals, and, therefore, lack
the generality inherent in the maximum likelihood procedure.

Another estimation algorithm suggested by the work of Hudson
consists of fitting a pair of regression lines to the data points
[17). The method is outlined in Appendix C along with a method for
finding the confidence interval for the ordinate of intersection for
two regression lines. The complex nature of this algorithm seems
to preclude its use in a real time system as is dealt with in this

thesis., Also, since the confidence interval given by the method

of Equation (5.9) is quite small, the gain to be realized by going
to greater complexity 1s questionable.
Other estimation schemes can be conceived but will not be

treated here. One method which warrants brief consideration, however,

is a scheme which not:s the first and last threshold exceeding events

b o, e i ek e i
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3 in a fixed time interval and halves this interval to obtain an

estimate of echo delay time. The sensitivity of this proc¢ dure to

i
noise is very high since the data which is most noise~like is used %i
!

to generate the estimate.

5.4 Simultaneous Estimation of Frequency and Echo Delay

It has been shown how a computer algorithm may be used to

n b s bests e W

estimate signal parameters when echoes are distinct in time. Such ;3
echoes must be spaced at intervals of at least 2T seconds where T
é is the transmitted pulse length., In many appiication areas, this iz
time separation cannot be assumed., For a time limited signal,

overlap of returns in time implies interaction in the frequency
domain, Only in the M-ary digital communication case where the 7

signals are selected to be orthogonal can this frequency interaction

be ignored.

O ]

e 5 s s
el gl g el L sl

Two echo signals which overlap in time will also interact in
1 frequency. In general, two distinct situaticns can be identified,
one will be dealt with in this thesis. When the echoes differ

sufficiently in frequency due to differences in target velocity,

S b

the interaction between these signals will be small. 1In keeping
E with the literature, echo signals differing by at least 24v, 33

1 where Av is the velocity resolution constant,

Av =




TS A,

will be considered as essentially unchanged in the character of the
matched response exceeding the threshold n [3]. Figure 5.5 shows
© the uncertainty surface for two monochromatic r-f pulses of duration

T which are clearly distinguishable.

A convenient way to represent the uncertainty surface for

multiple returns is by a section parallel to the T,V plane such that

¥ {t,v)| = 0.5 (5.12)

The planar section for this case represented by Equation (5.12)is
shown in Figure 5.6 in heavy shading. The remaining parts of the
g respective response function is shown in light shading. The
- frequencies fl and f2 in Figure 5.6 are the matched frequencies for
tire two responses.

The =2ffect of noise is to deform the uncertainty surface and

therefore to distort the area representing.

X(T,v) = |¥ (t,v) + n(O,ON2)| = 0.5 €.,13) ]

where the effect cf the noise n is no longer negligible. In additiom,
the prior uncertainty of receiver signal energy for the two echoes
requires a threshold n which does not satisfy the requirument of
Equation (5.13) rfor at least one of the acho signals.

In studying ¥igure 5.6, the similarity to the previous
estimation of returns clea‘ 'y separated in time as outlined in
Algorithm $.2 is apparert. Each echo is characterized by a peak
response on the matched correlator at a T, such that al. related

i
reuponse is aistributed within

et ki al a s Aa e s - macia .._.-_J» P
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T, ~T<t<T1,+T.,

i i

~ For the moncchrome pulse for which each matched response is
along a fixed frequency, a methed of extending Algorithm 5.2 appears

straightforward. 1If the total . :quency range were to be divided

into regions 1/T cycles wide, eac. . .hese could be treated

separately with only minor revision of the algorithm. The special

case of a response falling astride this arbitrary division must then

be treated by properly grouping data during subsequent processing.

If this is the method of attack, it should be noted that samples

should be taken at frequency intervals lesa than 1/T cycles. This E
precaution insures that a peak response occurring at a doppler ‘
dependent frequency not corresponding to the sample frequency will

be detected. For example, if
fr =1/2 T,

where fr is the frequency at which the sample is taken, then :
. sin (1/2)_ 2
Y (0, fr) o) 0.63. 3
Hence, the sample corresponds to a signal input of 63 per cent of
the actual received signal, or the effective signal-to-noise ratio
is reduced with associated increased uncertainty in the estimate. 3

The spacing of the frequency shifted reference signals is often

dictated by limits imposed by complexity, but a reference spacing %

which insures that the response is
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Y (0,£) 2 Y (0,0) - 0.12

requires frequency shifted references spaced 1/2T.

The algorithm needed to accomplish the parameter estimation
for overlapping returns in this way 1s presented in Appendix D
(Algorithm D.1)., It can be seen that this algorithm does not
properly treat signals such as a linear chirp signal for which the
response does not occur primarily along a constant frequency. An
algorithm which is applicable to such signals as well as the
monochrome case is a more general one and can be expected to yileld
readily to changes in signal characteristics.

The nature of the response of a correlation receiver to
overlapping chirp signals is shown in Figure 5.7. The corresponding
samples in the frequency/time domain are shown in Figure 5.8.

Referring to Figure 5.7, it can be seen that samples
correspondi ¢ to two echo signals can be seen to form clearly
distinguishable clusters. The first event encountered is associated

with an echo delay time t; and doppler dependent frequency f All

1
other samples associated wita this target lie along a line in the
frequency/time plane, the equation of which is dependent on the
signal characteristics. The expected spread of the sample points
about this line in frequency can be derived directly from the

equation of the signal uncertainty function. It was previously

shown that, for a large class of linear frequency modulated signals,

R TE
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the effective width in frequency at constant 1, is 1/T, where T
is the pulse duration. Also, the trace of the main lobe of the

response has constant slope in the time-frequency plane, for values

of time delay near the median value. These results suggest a method

for treating the general chirp signal case, Given any sample

X(ti, f,) at t,, the corresponding sample at t is

] i i+l

Af

X( At

tiips fj + 22 4e)

The quancity Af/At is the incremental change in frequency
with time which is a function of the signal characteristics. The

monochrome signal will have

Af
-A-E=0.

The uncertainty € is introduced by the fact that neither the

sample at t, nor that t are in synchronism with the signal. If

i i+1

the sample at t, lies on the ridgeline of the uncertainty surface

i
and near its peak value, tken € is on the order of
£ = i.%f
in frequency.
In processing the correlator samples, the first sample to
exceed the threshold will be most effected by noise. In addition,
the non-linear behavior of the FM ridgeline response will cause

samples far removed from the peak to exhibit a frequency bias.
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Consider the probability density of sample values in the frequency
ordinate, this density function will have its peak value approximately f ]
on a straight line in the frequency/time domain as delay time

increases from the peak of the response. For large values of time

delay, however, the density function will be shifted and the

PRI RS IS

maximum probability will no longer coincide with the straight line

1 which defines the ridgeline response near X(0,v). The probability 4
] distribution z
4 (V’\’j) !
PO -v) = ) £(K)

is—o0 }

Pl

where vj is the straight line extrapolation of frequency of the
ridgeline response near X(0,v), is shown in Figure 5.9.
Distributions for various signal-to-noise ratio cases are shown.

In referring to this figure it can be seen that large signal-to-noise

ratios, for which the first sample to exceed the threshold is far

¢ Rttt b e ez e 3 L ok J e et me s b LA

removed from the peak of the response, lead to significant biases

in initial frequency. Since the first sample of any echo response

is used to define the line about which clustering of samples is

] anticipated, errors introduced by the ridgeline non-linearity must

be accounted for by increasing the clustering aperature €. In
practice, a value for €, such that € = 1/T, will insure that samples

are properly gro.ped in most cases. D
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he general algorithm then is easily derived and is:

From all samples lying in the vicinity of
a straight line in the frequency/time
plane in an interval of time 2T and within
+ 1/T cycles of the frequency ordinate,
select the one with maximum amplitude.
Report the corresponding values of ty and
f; as the echo delay time and velocity
dependent frequency, respectively.

The functioning of such an algorithm is shown as a general

flow diagram in Figure 5.10. The algorithm is detailed in

Appendix
directly

a.

D (Algoritmm D.2). The folliowing observations follow

from an exa: ‘~ation of this diagram.
All points associated with a single uncertainty
surface are sorted from the total number of samples
in a time interval 2T and processed to yield an
estimate., Although samples can be processed as they
arrive, only samples lying along a line in the
time/frequency domain can be used fruitfully in
arriving at an estimate. For this reason, the

frame length F is
F = WAE .

Samples corresponding to other echo returns
occurring in the 2T interval must be passed
over on the basis of some type of test. The
samples therefore must be treated a number of
times leading to a cycle repeat count

C = K/TAf ,

% N
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3 where K is the mean number of echoes over-
lapping in a 2T time interval. When Af is

1/2T as previously described.

C=2K.
c¢. Samples which have been found to belong to
the set of samples defining a specific echo
must be somehow marked as being of no further
interest. Such marking can be done in a number i
of ways without requiring additional dxta ;

storage. In the algorithm shown, this is

it S e i i
I

accomplished by setting the corresponding

value of X(ti, f.) equal to zero, a unique

3
value for this datur: never occurring otherwise.

The significance of the cycle repeat couut and frame length
will be related to a specific example in Chapter VI. It can be
seen that an algorithm which must repeatedly treat the same datum
requires more time than one for which C = 1, all other factors being i
equal.

This situation comes about due to the fact that the samples
are interspersed in their ovder.

By a suitable transformation, it is possible to separate the

samples as they are received. Referring to Figure 5,11, it is seen

that the operation

' i

ti = "i - (fi¢) ’
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SAMPLES CORRESPONDING SAMPLES CORRESPONDING
TO TARGET %) TO TARGET "2

Figure 5.11 Separation of Data Points by Transformation
Algorithm
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E where
B ;
A ;

maps all data points belonging to a single echo onto the
J neighborhood of a point in the one-dimensional space {t'} defining

the £ = 0 projection of the echo samples within + 1/T cycles of

the line defined by the first sample of the signal envelope possibly i
] belong to the same event. The grouping in the space {7'} must be

made over an interval

{e'5(c ' - 8/T) Se' < (e )" +5/D},

where S = At/Af = 1/¢ and to' is the mapping of the first sample
from the echo response in question. Note that this algorithm is
no longer completely general since for the monochrome signal,$ + = . i
This is the price which must often be paid in the design of more

efficient algorithms. Generality can be retained if this special

R T PR TP S R N

case is recognized and the projection is then to the t = O ordinate.

Once this transformation is accomplished, the data points
are clearly distinguished as belonging to a specific echo response.
The value of t' can then be used to address "bins" which are S/2T
in extent. All data points will then be sorted by t' into
physically distinct storage cells and tests can be made immediately
to see if the current sample exceeds a previous sample with
approximately the same t', Figure 5.12 shows how new samples must
be tested against entries in the t' space. A maximum of four tests

must be accomplished to test for all points in the vicinity of t'

- e S - - j
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s *
- . :
; k;
: 3

FIRST SAMPLE

NEW SAMPLE
/ TEST AND ;

UPDATE

2 L — 4 — | TEST | TEST , X , — _, !
f ' ;
iz \'i:l/f ti t :

St by anbid

NEXT SAMPLE ' ;
™~ TEST AND
% /f?'/ \ UPDATE

- 3  TEST , TEST |, TEST | TEST |, X |, —

: g
ti-a ties o Y2 t-) TR

IS

E N
3 Figure 5.12 Tests of Data Points in the t' Space, Worst
3 Case Example
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within a + 1/T interval. The average number of tests, as shown in
state 2 of Figure 5.12, to find a match will be about two since
the data points have maximum probability of occurrence at the center
of the response ridgeline.

To reduce the number of storage cells needed in the t' domain,

we note that previous entries in this storage which were made at

(c°+2T) < t:i .

where ti is the current time sample, can no longer be updated by
future samples and can therefore be transferred to the output matrix
and the storage space reused. This leads to a folding in the t'
domain which is easily accomplished by using modulo arithmetic to
generate the address of the target storage cell. Associated with
each entry in the t' domain is the value of to corresponding to it
and these data points are transferred to the output matrix either
through tests by new data or at the end of all processing.

This algorithm is detailed in Appendix D (Algorithm D.3).

Note that each sample is processed once as available; hence,

However, the processing to be accomplished by the algorithm is
rather complex requiring multiplication, modulo arithmetic, and
multiple tests of the t' storage elements. For some machines, the
additional complexity may not be warranted due to slower execution

of the arithmetic functions.
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Although the data points can be processed on a one-at-a-time

I

basis, there is, in a typical application, a need for temporary

AN

. buffering of the input samples as they are received from the

digitization process. This precaution insures that, at times when

{1

many samples arrive within a short time interval, no data will be

Laa ki

lost, The programmed automaton processes data at a fixed upper data

AN ) il

rate in a serial fashion and, while it may be able to maintain the

required data rate on the average, periods of excessive data transfer

ALY

from the signal processor can be anticipated. ]
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CHAPTER VI

ILLUSTRATIVE EXAMPLE OF RADAR ESTIMATION

6.1 A Track-While~Scan Radar

In order to relate the previously develoned concepts to an 3
actual situation, a ground control radar application will be treated.
The choice of system chosen for the model is somewhat arbitrary but
conforms generally to the model systems described by Swerling [34].
Table 6.1 gives the periinent parameters for the system. This a
1 C band radar which continuously scans a 360 degree sector using a

linear F-M signal. The beamwidth and scanning rate insure that a

T AT LA TPa Py

target is illuminated with 6 pulses per scan. Tracking of targets

Sk Vi S NE

is to be accompanied by computer algorithms but, for the initial
treatment, no prior knowledge of the target is available. This

situation corresponds to the case where the system is just tuined

on for targets newly arriving in the search area.

The system descrited should be able to handle a maximum of
1000 aircraft in the total search area. Aircraft are separated by
10 minutes flying distance or in altitude in such a way that up to

four aircraft going in different directions can occur in a pulse

e mals o amn Lk N £ s ok A it e i

length, although this is rarely the case. Other systems accomplish
aircraft recognition, altitude measurements, and terminal monitoring.

Maximum allowed target speeds are Mach 1, or 750 knots.
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From Section 4.4, it follows that this system will have a

resolution in echo delay of 4 usec and in target velocity of

75 knots which is adequate to distinguish even low speed aircraft
from clutter. Some means must be included for removing the effect of
clutter from the maximum likelihood detector since this will lead to
unacceptably high false alarm rates at essentially an uninteresting
frequency. Such schemes have been reported in the literature and
will not be expanded on here [24].

Given the resolution of 4 lisec and 75 knots, it follows that

samples will occur at the rate of

40/4usec interval = 10 MHz rate.

These analog values must be thresholded and A/D converted at a
maximum of 10 MHz although the data points surpassing the threshold
will arrive in bursts cosresponding to target related echoes. This
A/D conversion rate is well within current state-of-the-art
technological limita and presents no problem. Eight bit quantization
at a 10 MHz conversion rate is commercially available.‘

Eight bits of quantization are deemed adequate for this system.
The frequency samples are taken at half the frequency resolution
spacing; hence, the maximum error will be 12 per cent. A one bit

error of 8 digital states is equivalent to this error. Eight bits

bCo-putcr Labs at Greensboro, North Carolina distributes a
10 MHz A/D converter for television digitization of 8 bits ~
Model H5-810.

e mEme . i
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Pulse Length sevveevcsssocssocscosssasee T
Carrier Frequency eeoeseoseeceesessarcesse £
Bandwidth .ecveeovecvsencecsssoscosnasss W
F-M Frequency Shift Rate ..ee-eseseessse B
Horizontal Beamwidth ...ccti0ctecvesseree b
Scan Rate sieeseeccrocrsvsvsccrscsssscsee W
Pulse Repetition Rate .eceovescssocsosse £
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= 36 Jsec.

= 5600 MHz

250 kHz

1.185 x lolo/secz.

[}

= 3,6°

"

10 rpm

[}

100 pps

+ 750 knots

TABLE 6.1 PARAMETERS FOR MODEL RADAR APPLICATION
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provide for 255 states or thirty times the nominal number required.
This provision is added since the echo energy is unknown at the
outset and therefore the peak value of the correlator outjut will not
be known. Automatic gain controls in the analog ejuipment may be

used to compensate for changes in echo level with range but multiple

targets at approximately the same range cannot be adequately

compensated for, Variations in target strength will cause variations

in echo levels aside from purely range determined behavior.
Assuming that the 1000 aircraft are distributed about evenly
throughout the search area, there will be 10 aircraft in the beam
at once. In the worst case, this will lead to an average of two
frequency responses for each of 18 time increments for each aircraft

or 360 samples per pulse. There are 100 pulses per second and,

therefore, the sample throughput upper 1limit will be

36,000 sample/sec = 36 KHz throughput.
In this worst case situation, theltime allowed to process each sample
is 28 usec,
Due to the nature of civilian air traffic regulations, the
echoes from the various targets will be clearly distinguished in

echo time delay and frequency, hence, satisfying the requirements of

resolvability previously stated.

6.2 Processing Implications of the Model

In the context of this proposed model of a radar system, it is
now possible to analyze the effect of the various measures of

algorithm performance.
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The cycle repeat count and, to a lesser extent, the frame
length are of importance i such a system since very short times are
allowed for proce:: .~g each datum, When the probability of over-

lapping returns is very small Algorithm D.2 will have

c=2, F = W/AE.

Sisce thore are 40 froquency references, ithe frame length

F = 40, or Ts = 4 usec,
The frame leustl +73 not an impor:zant factor since more than 4 uUsec
will be needeu to process each datum, In this situation where
overlapning returns are rare, this algcrithm will be faster on most
machines than an algorithm involving data transformations since there
is less aritimetic computation.

When aircraft are restricted to flight in traffic corridors,
the probability of overlapping returns will be higher. The cycle
repeat count will then be larger on the average for Algorithm D.2
than for a transformation algorithm. The transformation algorithm
(Algoritanm D.3) will on many machines, exhibit a higher data
throughput rate for this case.

The parameters, accuracy of the estimate, and estimation bias
primarily interact with system objectives and cannot be analyzed in
the context of the estimatioa problem alone. One importent area
where these effects must be considered is in the design of tracking
algovithms. So far, in this thesis, we have dealt only with the

maximum likelihood estimation in the liwmit of no a priori knowledge.

In tracking a target, however, previous estimates are important.
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Recalling the Bayes estimate developed in Chapter I, it is

possible to arrive at a solution of the general M-ary communications

sroblem when the a p;iori density s known. Consider the cost

function
C (3,a) = '?i’-a)z.

The Bayes estimate for t%.is problem reduces practically to the

1 estimator shown in Figure 6..! [35]). The solution is for an additive

white noise only but can be extended to the case of "colored" noise

by the addition of a whitening filter [21]}. The radar system model

el

used here assumes a maximum likelihood estimator for targets for

o A R R
UM RT

which no prior knowledge exists, but subsequent estimates on the

1

basis of which tracking is performed must make use of the previously E

estimated velocity and range.

A

Kk i hia” i

The multiple echoes received from a target on each sweep of

the search radar are used to refire the estimate of velecity and

range. In addition, the statistical nature of target strength as

T

treated by Swerling requires multiple pulses to maximize the

(IR

probability of obtaining at least one useful detection per sweep ([34].

Target strength fluctuations can be severe.

The possibility of purposeful degrading of performance in

such a system will now be treated briefly.

The model requires a

maximum sample throughput rate of 3% kHz, a large data rate for even

high speed cemputers. It is possible that unusual combinations of

PRSI PRURTCAE SPP R Y W

high data vate near the maximum range of the system, unuasually complex :

tracking requirements, and other control function requirvements will
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3

exceed the processing capability of the computer within the 10 Msec

3 time allowed for each pulse. In this case, instead of causing the

i ks b

system to fail altogether, it is possible to make the decision to

Lt b Pl b

: not process the data from the next pulse and to finish the pending

Lo sl

operations instead. The overall system performance will be degraded
but by an anticipated amount. Thus, the logic capability of the

computer can be used to advantage in this phase of the system operation.

i s o St Al

Another aspect of real systems is demonstrated by the provision
for a large range of signal amplitudes to account for differences in

target strength and target strength variation due to motion, aspect,

G g Rl i )

TRITR T T R

and type. In addition to requiring a large number of binary states

i L B

in the digitization process, the effect of a fixed threshold alluded

to previously must be considered. Taking a monochrome pulse as an

example,

: | v(o,v) |= |SARDE |, 6.1)
or

hash i vl

where F{Y(t)] is the Fourier transform of the complex time function

e 0L

describing the pulse., Figure 6.2 shows the frequency response to a
rectangular envelope of the maximum likelihood receiver for a

monochrome pulse. Note that, in addition to the principal peak at

v = 0, there are auxiliary peaks at

3T 5T
r 5.t 3
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For signals with high energy, these peaks can exceed a fixed

: threshold and lead to spurious target indications. It 1s possible to

avoid this problem by pulse shaping. For example, the Fourier

transform of a Gaussian shaped pulse is also “aussian, that is,

monotonically decreasing from the peak. There are no secondary -

maxima in this case., The time response on the matchad correlator is

the autocorrelation function of this pulse envelope and some of the 3

characteristics previously developed for rectangular envelopes must

3 be somewhat revised.

3 Another method of pulse shaping is one of time weighting of :
E the sample amplitude for the reference signals. One common method si
é is the process of Hamming weighting to reduce the magnitude of i
s secondary peaks in the correlator response. When the transmitted 3
3 pulse is similarly modulated, a system with bilateral weighting :

results. Figure 6.3 shows the effect of bilateral Hamming weighting

on the magnitude of secondary maxima in a linear FM correlator

i :
response. ¢

Rt i A i R e

6.3 A Simulation System i

In order to test the functioning of the algorithms described,
a general purpose computer was used to generate samples and to 3

perform the algorithm functions.

Ay vkl

In addition, the computer was used

to compile statistical results and to assess the effect of the various

sources of error. No attempt was made to simulate the rate at which 3

A

samples must be processed nor to include the effect of antenna

rotation and auxiliary inputs for aircraft height.
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The simulation was carried out on a Systems ‘Engineering : 3
Laboratory Model 840 computer. This is a general, purpose computer
3 \,\ o
2 (4

with approximately 32,000 storage registers, hard&ére floating point

arithmetic unit, and 24 bit word length. Perisbéral devices used

S iy S b b et gl

with the computer were a printer, card reader, and Cal:Comp plotier,
The plotter was used to generate many of the plots in 5his thesis.
This machine was programmed in Fortran IV,‘é'Eigher level ;
language which is well suited to array processing and arithmetic
computations. The algorithms described herein were converted to the

Fortran language maintaining algorithmic intent since. the machine

3 described does not have an Algol processing capability.

Z Data samples were generated by combining thé eterministic
value of the uncertainty function with band limite& noise. For such :
a noise, samples separated in time by

1 4

T 2 3%

S

are independent. Also, samples in the frequency domain spaced 1/T

: are independent. A subroutine was used to generate random deviates

XA N

from a population exhibiting a distribution

n(u,ONZ) .

Tests of this algorithm show that it exhibits this characteristic

e st 3D S8,

to within 1 percent for numbers less than about 4.5 with a somewhat
reduced fit at values beyond this limit. The pseodorandom sequence of

numbers generated did not repeat in the interval covered by a

ke mdet SedNa

particular test.
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Since frequency samples were taken at intervals of 1/2T,
adjacent samples were not independent. Such samples were generated
i by selecting a random sample with the next sample being selected so
: as to be correlated with the first. All subsequent samples were :
chosen with this correlation between neighboring samples. 1In this %

way, samples separated by 1/T Hz are independent. The ." corithm

sk it

used to generate these correlated samples is presented in nppendix D

(Algorithm D.4).

In the various tests of the estimation algorithms 2ll samp.cs

were generated at once and stored in a data huffer. Tests included

%

verification of algorithm logical completeness, frame length, and

Ll A LN B i

3 cycle repeat count. The confidence intervals for the various

f estimation schemes were experimentally obtained using this system.
é In experimentally obtaining the confidence interval on the
estimate of echo time delay, both the time origin of the sampling
3 schedule and the additive noise were generated using pseudorandom

3 number sequences. The distribution of time origin was selected to

be uniforrly distributed so that

(to -~ T~ 1/2 Ts) :_tl < (to - T+ 1/2 Ts),

where to is the true echo time delay, T the pulse length, and Ts

the sample interval; t is the first sample generated, The additive
noise is an approximation to a Gaussian process with u = 0,

0% = 1.0.

One topic of investigation using this simulation system was

the effect of sampling frequency f3 = %;; on the accuracy of the
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estimate generated by the algorithms of interest. The results of
this investigation for various values of sampling frequency are shown
in Figures 6.4 and 6.5. To obtain these curves, 500 trials were made
at each data point. The number of occurrences of estimates within

a 0.01T interval was recorded. This histogram of occurrences was

the input to an algorithm which computes the sample mean, sample
variance, and two higher moments of the distribution. The sample
standard deviation was then used to define the confidence interval
for those trials which could be assumed normally distributed. This
ig the case for the peak estimate and the estimate based on the
quotient when the signal-to-noise ratio is large.

The confidence interval for the quotient algorithm at low
signal-to-noise ratios was obtained by printing the histogram and
counting the number of cells from the theoretic mean needed to
include 30 percent of the occurrences. This interval was found to be
very nearly identical to the confidence interval obtained by assuming
a normal distribution for the error and using the standard deviation
obtained by using the statistical algorithm mentioned above,

Also investigated was the extent of the bias of the quotient
algorithm. The results of this study are shown in Figure 6.6. The
bias is noticeable only when the sampling frequency f8 is small.

Even in this case the actual bias is small in relation to the
confidence interval on the estimate. It is unlikely that this bias

will ever be of significance in a practical system.
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The effect of impcsing a threshold on the data is shewn in ]

]
-4
-4
-

Figures 6.7 and 6.8. This threshold is in terms of the correlator
- ) output variance and assumes that this noise effect is additive and k
Gaussian. Hence, a threshold of n = 4 corresponds to a voltage

threshoid equivalent to the system mean voltage cutput

£28 w0 (A herwids LY B ok Rinbtlomd

£x0,0 = £ oy,

(o]

adabavd,

E Although all of these experimental results were for a mono-

chrome pulse with autocorrelation function

I
%€ il g la wubite st

. _J_T_L)z.F;
[¥(t,0) | (1 TN,

they are applicable as well to the ridgeline response of the linear
] FM pulse. In this case, however, the confidence interval is in

3 terms of the ridgeline instead of simply the pulse length. For this

e L bl el

reason the confidence interval must be scaled by the slope of this

s i

ridgeline in the frequency/time domain and the result is:

jT,v] = |T] x S,
™ 90% conf monochrome 90%

where S is Af/At for the ridgeline response. The equivalence is only

approximate because the FM ridgeline response does not define a

fo
e i P e s, A AW o ot . L it

straight line in the frequency/time domain and it deviates somewhat
from the linear decrease from the peak characteristic of the

monochrome, rectangular pulse.
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The simulation system demoustrated the feasibility of performing

R e )

parameter estimation using algorithms described in this thesis., In

TR YR

pelr

addition, the sensitivity of various algorithms to sampling rate and

TP

gty o

signal-to-noise ratio was derived experimentaily. Some of the results
: obtained are useful in the design of actual systems since they allow
é prediction of the estimator perfcrmance. For example, by referring

to Figure 6.4 and Figure 6.5 it can be seen that for low sampling

RTETRY)

rates, the proper choice of processing algorithm is as significant

TR ST

% a factor as exact sampling rate. For an initial sampling rate such é
% that Ts = 0.5T, replacing the peak estimate by the quotient algorithm 2
§ is about as effective in reducing the estimation error as is %
T increasing the sampling rate by a factor of ten while retaining the ;

peak estimate. The relative merit of these alternatives is a
function of the system design and the decision cannot be made until

the respective costs are known. The results presented provide the

N T Yo e T L L e

basis for system tradeoff studies and system performance prediction.
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CHAPTER V11

SUMMARY AND CONCLUSIONS

7.1 Statement of the Problem

The general topic discussed in this thesis is the use of
algorithms for paraveter estimation in a digital signal p-ocessor.
The work evolved from the curreat trend toward sampled, digitized
data systems, a trend supported by new developments in small digital
logic units and the widespread use of programmed automata for system
control,

Such an algorithmic approach to the estimation problem

follows naturally when principal components of the overall system

are digital,

7.2 Approach

The approach chosen was to analyze the nature of the estimation

problem and then to relate the results of this general analysis to the

algorithm functions to be performed. The characteristics of the

maximum likelihocd estimator were treated and some specific algorithms
presented to show how the logic tests can be performed in a computer.

In order to limit ihe scope of the work, the specific cases

treated were the monochrome and linear FM carrier band pulse radar

sagnals. For these signals, the problem of estimating target

velocity dependent frequency and echo delay time were chosen as

oarameters to be estimated. Algorithms to accomplish the estimation
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were developed and analyzed on the basis of some measures described
in terms of a specific model.
A model of a civil ground control radar was used to assess the

effect of performance measures for the more general algorithms.

7.3 Conclusions

It was concluded that digit schemes and the associated
algorithms are applicable to a general class of parameter estimation
problems. The multi-parameter estimation problem was treated for
simple signals and performance measures found. The difficult
estimation problem of overlapping FM returns was reduced to a simple
problem in pattern recognition on a computer.

The high data rates associated with a multi-target radar case
were shown to be within reascnable processing capabilities in a
sequential algorithm and a means for selective degradation of the
system performance was identified.

In noting the general nature of the algorithms proposed, it
can be anticipated that a class of such algorithms will be applicable

to a wide variety of parameter estimation problems.

7.4  Suggestions for Further Work

This thesis concentrated on establishing the form which
parameter estimation algorithms may take. The types of signals
treated were simple ones for which a considerable body of data has
been developed. The algorithms are extendable, however, to more
complex signals and it is for these that the arithmetic capability

of the computer may be best suited.
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Some possible applications of such schemes are in situations

; in which the signal is very noise~like and may, in fact, be unknown E

until transmitted via an independent data link. Such a situation

arises in the use of large seismic arrays used for nuclear test ban

monitoring [15].

i b it i s R

The treatment in this thesis has avoided the complications

TR T

ikt i

resulting from overlapping signals when these are near one another 5
in frequency. This case of interacting signals occurs frequently i
in communication over a scatter channel, in aircraft tracking when /
the target cannot be considered a point reflector, and in sonar
sounding equipment used for sub-bottom profiling. An investigation
of how the flexibility of the computer may be used to improve

estimation in these cases is warranted.
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1 APPENDIX A

QUANTIZED CORRELATION FUNCTIONS

As an example of a digital correlation system, the quadrature
correlation function will be briefly discussed.

The analytical model of a quadrature correlation function is
shown in Figure A.l. This correlator makes use of pairs of samples

for both the reference signal and the signal to be processed. The

s Ut bl e e

quadrature correlation requires pairs of samples S i(Zst) and § i(ZmTS)
every 2Ts seconds. The real values signal s(t) has g‘(t) as its

Hilbert transform.

T

For sample correlation the correlation function is

LE g

M/2 ::
1 2 »
¢1(MTS) - M Z [si(Zst)g(ZstH Si(Zst)g(ZmTS)] , (A.1)
m=1
where Ts is the sampling period and M the number of samples at this

sampling rate which define the signal duration. The sempling period

Ts is that required by sampling theory to adequately describe a band
limited signal.

Similarly,
M/2
a 1 A A
¢i (MTS) =N Z [Si(ZmTS) g(ZmTS)+ Si (?.m'l‘s) 8(2m'1‘s) 1. (A.2)

m=i :

b st A

dtastilin
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The envelope output from such a correlator is then

2 2
€t = Yo, qmg) + 8, o)

In referring to Equation (A.1l) and comparing this with the

aralog correlation functicn,
T

¢(1) = f q(t) 5, (t-1) dt,
=t

it can be seen that the sampled correlation function replaces an
integral by a summation. The summation can be accomplished digitally
by the use of shift registers, binary multi-stage address, and a
digital multiplier unit.

Ackerman has shown that the correlation accuracy, in the limit

of many digital state representation approaches that of the analog

correlator when the sampling rate [1]

f =
8

rﬂra
[]
o) =

S

Figure A.2 shows the sampled correlator output variance as a
function of sampling rate. It can be seen from this presentation
that the errors incurred in digital correlators is due to the
digitization error discussed in Chapter V. This error can be made
sufficiently small so that the effect of noise received with the
signal will be the controlling factor.

Instead of generating the reference signal si(t) and then its
samples, the samples themselves can be stored in digital form. In

referring to Figure A.1, it can be seen that these two techniques are
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L

equivalent. Once the samples have been determined, they need only

be recalled from a memory unit in the proper sequence.
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APPENDIX B

NON-LINEARITY IN THE LINEAR FM RIDGELINE RESPONSE

The uncertainty function for the linear FM pulse with

rectangular envelope is

l3|) sinf (Bt-mv) (1~ 1%4~)T]

lter,v)| = Q- 0 T . (B.1)

If we limit our discussion to positive values of T and make the

substitution

B = [(Bt-m) (- 7)1,

Equation (B.l) becomes

rew] = a-3o| E®) (8.2)

To find the equation of the ridgeline, we take the derivative
with respect to v and equate this to zero. It is obvious that removing

the absolute value signs does not affect the location of the zeros in

the first derivative. Hence,

d T,4d sin(B8
L ewi= a-1H S S0 (8.3)

d u
whick is of the form v [ ;-} .
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Equation (B.3) yields:

. %v_ [Y(r,v)] = (- ) (BT=1v)cos (B) (m-nT)-sin(B) (=1)
(Bt-nv) %
- -5 Te ﬂv)cos(B)(T-T)+Bin(B)] (B.4)

T

(Br-nv)

Equating this result to zero and clearing terms, the result is

given by: 2
(BT-ﬂv)cos(B)(T-T)+sin(8)
(Bt-nv) >
or
1 { T T i
- —_— tan[ (BT-Tv) (1~ T ) T] - (Bt-mv) (1~ T )T ).
(Bt=v)
(B.5)
One condition under which the tangent is equal to its argument §

is when the argument is zero. Hence,

(Br-nv)(l—-;- )T =0,

which is, however, not a valid root.
In order to investigate other roots of Equation (B.5), a peak
finding algorithm was employed to trace the character of the principal

response ridgeline. The general behavior of this response is graphed

provmwARTE Ay ST

{
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% in Figure B.1l. It can be seen from this figure that the ridgeline ?
2 £
g is essentially linear in the vicinity of the peak. The equation %
N of the near peak response is %
§ The deviation becomes pronounced for large values of the é
5 parameter T . J
i Substituting the value of the ridgeline function in Equation %
(B.1) yields the value of the peak output with delay time. This
% behavior deviates from the purely linear decrease observed in the :

monochrome case, Figure B.2 is a graph of this response

characteristic. 3
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APPENDIX C J
MISCELLANEOUS MATHEMATICS 3
] C.1  Quotient of Random Variables ;a
i

;. Consider the case .
. T,X(1,,0) '3

] T -‘;‘ i 4 , (c.1)
X(z,,0) 3
i 1 ;
where ?
F X(Ti,O) = Y(’ri,O) + Ni . ":
Y(Ti,O) is purely deterministic and Ni is n(O,O‘NZ). )
Then, ! ﬁ
3 ;3
] . Y, T, (¥(t,,0) +N,) !
3 Var(t) = Var . i - . (c.2) © 3
k- i3
:, T @(r,,0) +N) ¥
3 i "
When the sample spacing is such that all samples Ni are o
4 independent, then Var (T) takes the form ﬁ
F 1/2 .
f o = dw/v = [Var (w/v)]’ ‘ w,v both normal. ; %
By inspection, for an autocorrelation function of the form ! »

i

i3

2E ,_ lz| 3

o P

~ [ sE 10

=T IN —4n) s Ky - 4n, 1

) ) g1

¢ !
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where n is the threshold applied to X(Ti,O). The normalization term
?.E/N° is the value of Y(0,0).

Also,

w v N
i
Then, from Haugen [14],
2 2
v lo c oo |1/2
~wilw v WV
o 8 ——|—t —= - 2p (.3)
w/v M, " 2 u 2 KMy ’
W v
or, more exactly,
o | O 2 9 cw2
o [ —— Zp <+
wiv U 2 TN 2
v uv wv uw
°v4 O’w30' 0w20v2 1/2
+8 —L- - 16p Y +3 + eees . (C.4)
M 4 H 30 H 2, 2
v w oV w'v
Also,
My % % ow cV2
u B —— 1 + — —- p — l+ — -, .o .
W R T R T2

If second and higher powers in the last term are ignored,

u ou |o po

W v W v W
u = - + —re— T - . (C.S)
w/v M, By {Hy M,

The random variable Z = W/V will be approximately normal in

the case where the coefficients of variation ow/ and ov/ both

Hy by

are less thar about 10 percent.
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In Equations (C.4) and (C.5), the correlation coefficient

E[ (w-1) (v-uv) ]

Cov. (w,v) _

. (c . 6)
wv O'WO'v

/1]
wv

Then,

BlG-H)@-HIT = E [ ) T vy ) v]
I X

=E [Z T vi2 + Z z Tvvl, (c.7)
i K

where k is a dummy index of summation used to distinguish between
the numerator and denominator terms.

The term involving the double sum becomes
E Z Z Ti ViV = Z Z Ti E(vi vk)
i+ k i 4 k

but the samples are chosen to be independent; hence,
T E(vivk) = TiE(vi)E(vk) =0 .
The covariance is given by:

2, 2
E(ZTiYi)- Z‘[i oy - (C.8)

Therefore,
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’ 2
ZTiON

p =
> 2 11/2 2 11/2
Y S R

i

, zi K 1
3 " (&iz )1/2 NZ VT (c.9)

i

3 where n is the number of terms summed.
This result insures that when a large number of samples are
taken, the numerator and denominator are essentially uncorrelated

and the result from Equation (C.5) becomes

M oy
w/v My uv2
u
d uv

where € is a measure of the bias of the estimate. When € is very

small in relation to uw/uv, the estimate can be considered essentially

unbiased.
F Writing this term as
C)'V2
€= u 7 Mo
v

it is seen that the situation where the coefficient of variation

cv/uv is small, the 2stimate is unbiased.
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For the case of large n and small coefficient of variation,

[y
|14
<|s
[
[}
(=N
[
]
(ad
"
("%
o
[
[xg
1]
(2N
[+
n
=

'ﬁ" ’ Uw/v ’

where

This results in the following:

3=

w ~
uw/v = uv T for ov/uv < 0.1

(o]

When the threshold n is set so that n = AGNZ, then ZE/N°

must be greater than 9.

C.2 Estimation by Intersgecting Linear Regression

Consider the totality of sample points corresponding to a
single unique event at the correlator ocutput; by knowing the noise
free response of the system, it is possible to perform a least
squares fit on the data applying either linear or pclynomial
regression analysis. For the signals treated, this functional form
consists of two linear segments. By fitting these two segments
using linear regression, the abscissa of their join point will
constitute the estimate sought in an estimation algorithm. Hudson

develops the method of minimizing the total mean square error between
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two regression curve segments and the data points [17]. Since it is

not known at the outset which points are to be considered when

performing the two regressions, a method must be developed for
optimizing the process of fitting the regression lines to the data.
Kastenbaum reports the confidence interval on the abscissa

of the join point for two linear regressions [18]. This result is

2 2 2.2 2
X [(b1~b2) -t"§ (bl’b2>]—2X[(a2-al)(bl-bz)-t S(az’al)(bl’bz)]

+ [(aymap)bee?s? (c.11)

ay0a) 2

where the linear regressions Yl = al+b1x and Y2 = a2+b2x intersect

3 at X. In Equation (C.11l), S ... are the sample

s S
(32 ’al) (Dlvbz)
: standard deviaticns of samples grouped to select a;, 85, bl’ b2. The
parameter t is the appropriate level of the student distribution for
ny + n,

sampies used to generate the two regressions.

- 4 degrees of freedom, where n, and n, are the number of
By assuming that, on the average, the regression lines will
have equal and opposite slope and X is x = 0, Equation (C.11)
becomes, after replacing the sample variance with the underlying

variance,

2_2

2 2 2 2 2
X“[{2b°-t °N ]-2X[-t oN] + [~t cN ] =0,

Then, replacing b by ZE/TNo get,

2
2 8E 2_2 2 2_2
X [TZN 7 =t Iy ]+X[2t cN]—[c oy ] =0,
2
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APPENDIX D
AN 4

TR TP

MISCELLANEOUS ALGORITHMS 1

D.1l Algorithm For Estimation, Simple Monochrome Case

procedure D.1 (x,t,f,m,tout,fout,xout,n,T,Ts) :

3 integer m,n; integer array x,t,f,tout,fout,xout; value n,T,Ts;

ey oiitoad e

real T,Ts; comment: D.1 selects the largest value of samples within

a 2T interval with time spacing Ts and outputs the parameters of

correlatioa value, time delay, and frequency as xzout, tout, fout. E
§ This process is repeated for all samples. The frequency domain is i

divided into regions 1/T cycles wide. It is assumed that references

are spaced %-T. A maximum of n estimates can be output. The
3 parameter q below is the number of 1/T frequency increments in the
total range of permitted frequency shifts,

integer array Testimate [l:q], Festimate [l:q], xtestvalue [1l:q],

low [1l:q]; integer k,i,j;

Lt

k:=0;

for i:=1 step 1 until q do xtestvalue [i]:=low[i]:=0; ,
for j:=1 step 1 until m do :
begin ”‘

je=£[1)/2; if low [3})=0 then
begin low [j]:=t [1], xtestvalue [j]:= x[i];

Testimate [j):= t[i]; Festimate [j]:= t[i] end
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else if (t[i]-low[j]) > 2T/Ts then SSetE(tout,fout,xout,low,
; Testimate, Festimate, xtestvalue,k,j)

else if x[1] > xtestvalue [j] then

e

begin xtestvalue [j]:=x[i]; Testimate [j]:=t([i];
Festimate [§]:=£[1] end

end:

ot eiiodtu

for i:=1 step 1 until q do

if low [1]#0 then SSetE(tout,fout,xout,low,Testimate,Festimate,

xtestvalue, k,n,i)

T T I TT

end D.1

procedure SSetE(t,f,x,1,T,F,X,k;n,1)integer array t,f,x,1,F,T,X;

: integer k,n,i;
comment: This procedure transfers the contents of a temporary
working array to an output array with tests for output array overflow.
begin k:= k+l; if k > n then OVERFLOW else

begin t[k]):=T[1]; £f[k]:=F[1i]; x[k]:=X[1i];
3 1[1]:=0 end

i ) e

I

end SSetE

D.2 Algorithm For Treating the Linear FM Case, Direct Method.

procedure D.2(x,t,f{,m,tout,xout,n,T,Ts,5,Eps)

integer m,n; integer array x,t,f,tout,fout,xout; value n,T,Ts,

S,Eps; real T,Ts,Eps;

comment: D.2 searches in the time/frequency domain for samples which
lie within +Eps of a line defined by the first new sample and the
incremental frequency shift S. Data points once processed have their

value of x(i) set to zero. A total of n estimates can be output.
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begin

integer Testimate,Festimate,xtestvalue,low,i,j,k; real z, Delt; k:=0;

for i:=1 step 1 until m do

A: if x[1] # O then
begin lows=t [i]; J:= [i];
B: Testimate:=t[i]; Festimate:=f[1]; xtestvalue:=x[1i];
C: x[i]:=0;
for ji= 4+1 while ((t[1]-low) < 2*T/Ts) A § = m do
ifx[§1#0 then begin Delt:=t[j]-low; x:= Delt* S;
i£(£[4] = z-Eps) A (£[3] = Z+Eps) then
begin if x[j] > xtestvalue them go to B: go to C
end
end
k:=k+1l; SSetE(tout,fout,xout,low,Testimate,Festimate,xtestvalue,
k,n,l)
end of loop A;

end D.2

D.3 Algorithm For Treating the Linear Case, Transformation Method.

procedure D.3 (x,t,f,m,tout,xout,fout,n,T,Ts,S,Eps)

integer m,n; integer array x,t,f,tout,fout,xout; value n,Eps,

T,Ts,S; real T,Ts,Eps,S;

comment: D.3 projects samples in the time/frequency domain onto a

linear space by performing the transformation

M = -
Tests are made in the t' space and estimates are output whenever a

new datum test is made or at the end of all processing. The parameter

y mike v
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q below is the number of intermediate storage units needed to span
; a 2T time interval.
g begin
integer q,i,j,k,kk; integer array Tprmx [l:q}, Tprmt{l:q],
Tprmf [1l:q); Tprml [1:q); kk:=0;
3 for i:=1 step 1 until q do Tprml [1]:=0;
for 1:=1 step 1 yntil m do z
{ 3= (£[41-£011/5)/Ts; ;
for ki= §,3-1,3+1,1-2,3+2 do
1 begin k:= MOD (k,q);
1f Tprnl (k] =0 then go to A else
1 (xl1]-Tprax (k1) § 2#1/Te then
begin Tprmx [k]: = x[i]; Tprmt [k]: = £[i]; ;
Tprmf [k]: = £{4)
ena;
go to B
g SSet E(tout,fout,xout,Tprml,Tprmt,Tprmf,Tprmx,kk,n,k)
F A: end ; 4
ki = MOD(4,q); Tprmllk]: = Tprme[k]: = t[i]; Tprmflk]:= £[1];
F Tprmx [k]: = x[i]
for 1:= 1 step 1 until q do

if Tprml [i] = O then

SSetE (tout,fout ,xout ,Tprml, Tprmt ,Tprmf , Tprmx,kk,n,k)

end D.3
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D.4 Algorithm for Generating Correlated Gaussian
Pseudorandom Numbers

procedure BVnorm(mul,mu2,varl,var2,rhol2,old,new)

real mul,mu2,varl,var2,rhol2,old,new, value mul,mu2,varl,var2,rhol2;
comment: BVnorm generates a random variable with mean mu2 and
variance var2 which is correlated with a previous sample, old. The
correlation between samples is rhol2. The parameters mul and varl
are the mean and variance from the distribution which lead to the
first sample and are used to scale the input value so that it can
be treated as belonging to a normal distribution with mean 0 and
variance 1.

begin

real temp,x; temp:= (old-mul)/SQRT(varl); GAUSS(1,0,01);

comment : The routines SQRT and GAUSS are assumed to be standard
library functions the first of which returns a value equal to the
positive square root of the argument and the second is a routine
which sets the parameter x equal to a sample from a distribution
which is normal and has mean zero and variance one;

new :=rhol12*temp+SQRT(1-rhol2#%2); new:=(new*SQRT(var2))-+mu2

end BVnorm
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APPENDIX E

ALGOL 60 LANGUAGE REFERENCE

The algorithm language (ALGOL 60) is the product of an
international conference which included the United States. The
language has been adopted widely for the purpose of disseminating
algorithm intent in publications. It has not found wide acceptance
in the United States as a programming language but is used in the
literature.

The language exists in three kinds of representations:
refereace, hardware, and publication. The reference language is in
terms of a rigidly and comprehensive syntax which must be adhered
to in the hardware or publication implementations. For reasons of
variations in card codes, preferred type fonts, and national
differences in usc, the language provides for variations in
representation within the reference language syntax.

Table E.1 provides a compilation of symbols provided by the
reference langusge and as implemented herein for logical consistency
and in keeping with available typographic symbols.,

The language consists of named or unnamed procedures within
which variables are declared, processes are defined, and various
repetitive operations and tests are accomplished. All variables
must be declared and these may be subscripted. For example, the

declaration

. Lot o el i,
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real array a[l:3, -6:100, 0:2]

declares the variable a as a triple subscripted floating point
array where the bounds on the subscripts are shown. Note that
negative or zero subscript values are allowed.

Arithmetic operations and relational tests make no distinction

: between floating point or integer variables. Integer variables are

used primarily to represent quantities which can only take on

AL i e A e e Sl ot N

distinct values, but there is little restriction to use.

PETI

il N

The language contains a number of standard operations, some :

T

of which are tabulated in Table E.2 along with the logical functioning .

5 of these. Operators, declarations, and some other predefined symbols

are distinguished by underlining or, where possible, bold face type.

Variables may have similar character representation but are presented

without underlining or in italics.

Interested readers arz referred to Reference 26 for a complete

R RPN

] description of the language.
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TABLE E.1 SUMMARY OF ALGOL 60 SYMBOLOGY

» Plus or addition / , division
» minus or subtraction *%  exponentiation
» multiplication
RELATIONAL OPERATORS
» less than 2 , greater than or equal to
» less than or equal to > , greater than
, equal to # , not equal to
LOGICAL OPERATORS
-, not >3, implies
A, and £ , equivalent
vV, or
OTHER SYMBOLS
s replacement begin...end , statement bracket
, arithmetic parentheses TRUE , logical value a Va
, subscript bracket FALSE , logical value a Aad
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bl e Autanloan, wonelt b

ek

el 38 A e i

aprLadn i

PR TS

bt

B L aots S

et s bt e




PR e A 04 0 oot e LA e e i A O G I A R 4 S S TR EeERR

138

LI O ek e vl a ot

TABLE E.2 ALGOL 50 EXPRESSIONS

~

1 DECLARATIONS

procedure; integer; real; boolean; integer array; real array; value

COMPOUND STATEMENT

begin (statement) H (statement) 3 (statement) ; end

A compound statement may be used wherever a statement can occur. 3
TRANSFER OF CONTROL TYPE STATEMENTS

go to <1a£;1)__; _(e:at;-ner:t-> —; _-<1;£e1) : (statement) ;

f~ — — = TRUE— — ==
if (logical expression) then (statement) H (statement) 3
L — e -] —_— 3

LOOP STATEMENTS

for (variable) := (for 1ist) step (variable) until ( variable) 5
do (statement)
t for ({variable) := (for 1ist) while (logical expression)

do (statement )

~for example-

for q:=1 step 5 until 25 do alq] := b[q]

This example starts with q equal to 1 and steps in units of

5 until the value 25 is exceeded.

a
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3
b
3
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