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ABSTRACT

The general topic of the work reported in thic thesis is the use ofalgorithms for parameter estimation in a digital signal processor. Thework evolved from the current trend toward sampled, digitized data systems.
Such an algorithmic approach to the estimation problem follows naturally
when principal components of the overall system are digital.

The general parameter estimation problem is treated in way of intro-duction. This estimation scheme is then extended to the specific case ofsignals in the presence of additive gaussian noise. It is shown how anestimation which seeks to minimize the square error for an interestingclass of cases leads to a correlator receiver.

The response of such a receiver to two important classes of signals, Jmonochrome pulse and linear frequency shift pulse, is developed. Quantiza-
tion of this receiver response makes it possible to treat the data in adigital system. The effects of quantization on the input and data repre-
sentation within the digital'system are discussed.

Algorithms for performing the decision functions associated with aP maximum likelihood estimator are outlined and presented in general terms.The factors important to comparing various algorithmic approaches aredefined and dircussed. These factors, cycle repeat count and frame-lefigth,
are analogous to certain aspects of communication systems.

The confidence intervals for various algorithmic paramet' estimationapproaches are developed and the results of computer simulation of' the
system presented. The confidcnce interval on estimates of echo delay timeare shown to be dependent on the ratio of received signal energy to noiseratio. It is demonstrated that the error in estimation can be quite small jin relation to the pulse length even for the monochrome pulse'

An air traffic control search radar is used as a spectfic example
of how estimation algorithms may be used in practice. The measures ofalgorithm performance can be related to specific system requirements when
such a model is used. P
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CHAPTER I

INTRODUCTION

S1.1 Statement of the Problem

This thesis outlines digital schemes for parameter estimation in

the general problem of processing signals with unknown parameters in

the presence of noise. Such digital estimation algorithms are a

natural consequence of the current trend toward sampled, digitized

data systems. The exposition considers several algorithmic approaches

to the estimation problem. Differences between the schemes such as

processing time requirements, sensitivity to noise, and biases are

discussed.

1.2 Importance of the Problem

The reception problem of signals with unknown parameters in

noise occurs for M-ary communication and communications links for

which an unknown and varying phase is impressed upon the transmitted

signal. Some examples of this latter sicuation are digital

communication systems without phase reference, digital communication

over fading channels, channels with varying transmission medium

conditions, and channels exhibiting multi-path propagation.

A corresponding problem arisea in the radar case when a target

is present so that the pulse is reflected. Signal attenuation and

associated phase shift will result, even for a point target. If the

radar application is to be useful, the value of time delay, phase, and
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reflected signal amplitude are in some sense unknown at the receiver.

In addition, the returned signal may suffer a frequency shift. The

radar system further differs from the communication channel in that

detection and estimation must often be combined. This occurs whenever

no a priori knowledge of the presence of a target exists.

The application of digital schemes for accomplishing the required

parameter estimation follows naturally when other components of the

receiver are digital in nature. Sampled and quantized data is

frequently processed in lieu of analog inputs for convenience. The

use of signal correlators and fast digital Fourier transform (FFT)

systems in recent years gives added emphasis to digital parameter

estimation systems as does the widespread use of digital data recording.

For reasons of flexibility, it is often desirable to use a

general purpose computer for accomplishing the digital processing.

Such a computer and its associated algorithms can be used to perform

parameter estimation as well as to provide control functions for data

acquisition or recording. Modifications in signal types can be treated

in such a system by algorithm revisions. In addition, the possibility

of self modifying systems exists in a general purpose computer due to

the inherent flexibility of such machines [11].

The use of digital computers in the correlation and detection of

signals has been extensively reported in the literature [2, 25, 29, 37].

Also array processing of signals in various interfering background

situations has been treated [42]. Schlachta et al and Leth-Espensen

have addressed the problem of time domain tracking of radar targets

using a general purpose digital computer [9, 31].

I
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1.3 Scope of the Problem

The basic intent of this thesis is to present a representative

set of algorithms for signal parameter estimation. The general

detection problem is discussed and a model radar system is presented

as an example. The nature of correlation functions is treated to

demonstrate the types of errors introduced by noise.

Algorithms for parameter estimation for pure tone and frequency

modulated (chirp) pulsed signals are treated. In addition, these

signals, modulated in a pulse with rectangular or Gaussian envelope,

result in correlation functions which are amenable to detailed analysis.

Some discussion of the implications of alternate algorithms

on data rates and errors is included, as are some applications areas

of interest.
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CHAPTER II

ANALYSIS OF ESTIMATION

2.1 Introduction
In this chapter the general problem of estimation of signal

parameters is discussed. The parameter estimation problem occurs in

the three broad areas: digital communications, radar, sonar or

seismology, and pattern recognition and classification. The discu3sion

here will concentrate on the communication and radar areas.

A model of the general estimation problem is shown in Figure 2.1

and consists of the following four components [351.

a. Parameter Space. The parameter space defines the

totality of values which may be assumed by the

source. This space for example, may consist of all

possible states in a binary communication system or

all allowed target dopplers in a radar application.

b. Probabilistic Mapping from Parameter Space to

Observation Space. This is the probabilistic law

that maps a selected value from the parameter space

onto the observation space.

c. Observation Space. The observation space is the

set of all outcomes of the mapping of a parameter

onto an observation. This will generally be a

I
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finite dimensioned space. An observation will

be denoted by a vector R.

d. Estimation Rule. After observing an outcome R, we

shall want to estimate the value of the parameter a.

This estimate may be denoted as a (R).

In the communications problem, the a priori prob 1.1ity of

selection of a specific value of the parameter from the 2ara•w.,er space

is generally known. That is, the probability distribution of ..s

unique messages is known, perhaps uncertainly. If it is possible to

determine the conditional observation density p(R Ia) a method of

detection optimization is available [30, 35]. This conditional

observation density p(tRa) will be describable if the effect of the

channel on the parameter a is known. In most cases, the assumption
of additive noise is valid, that is,

R(t) = x(t) + n(t), (2.1)

where n(t) is the additive noise. Then, x(t) is the pure signal

input to the channel, and R(t) the measured channel output. It is

now necessary to consider a cost function C(3,a). This function is

dependent on the value of both the parameter a and its estimated value

a. The cost function defines the "seriousness" of an error in the

estimation of the parameter a. The error is (i-a). The choice of

the cost function is dependent on the situation of interest. One

practical way to assign the cost function is in terms of the

magnitude of the error (Figure 2.2a). Another form which is often

used because of its mathematical tractability is to consider the
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squared error (Figure 2.2b). In some situations, small errors are

inconsequential, but errors above a certain value are equally serious.I]
Such a cost function is shown in Figure 2.2c.

To avoid mathematical difficulties most authors use the squared

error cost function [13, 15, 32, 35]. The exposition herein will

concentrate on this form of the cost function as well and it will be

shown that this form of cost function is equivalent to an important

general problem in estimation. This function is

2
C(a,a) = (a-a)2. (2.2)

I typical radar applications, the a priori probability density
of the parameter a is generally not known. This situation is often

treated by assuming a uniform probability density over some allowed

range of the parameter. For example, the target is assumed to be

equally likely at all ranges over which a radar receiver is designed

to operate. Obviously, this state of affairs is not generally the

case but is reasonable in light of complexities imposed by multi-

target requirements, the effect of clutter and other operational

factors.

2.2 Bayes Estimate

The average cost of the errors in estimation is

R R(a) f J C(a,a) p(CRa)dR. (2.3)

This is termed the conditional risk. The average risk is derived by

averaging over all values of a,
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R(a) f f (a,a) p(R,a) dadR. (2.4)

The Bayes estimation procedure is that procedure which minimizes the I
average risk R . Then,for the cost in Equation (2.2), the average

risk is

Ra(a)= [a (R)-a]2 p(a,R) dadR (2.5)

From basic mathematical statistics, [16],

p(a,R)- p(aIR) p(•R). (2.6)

Equation (2.5) then reduces to

Ra (a) - [(R)'-a] p (aIR da) p(-R)d . (2.7)

This function will henceforth be denoted as R (a), the mean
ms

square cost. Since the function in braces is clearly non-negative,

we may minimize Rms (a) by minimizing the inner integral. Find the

minimum of the inner integral by differentiating with respect to

a(R) and setting the result equal to zero.
CO

ESC [~R)-a]2 p (aIl) da (2.8)
a- C

=-2 f ap(aIR)da +2a^CR) f p(ali) da
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The second integral is obviously equal to 1 we then have
0o

a (R) f ap(all) da , (2.9)

where • (R) is the estimate which minimizes R (a). This term is the
ms ms

mean of the a posteriori density. Similar results may be found for

other cost functions. A general extension of Equation (2.9) occurs

for the cost function

c(a,a) = f(a) (a-a) 2 . (2.10)

The Bayes estimate is [29],

T a f(a) p (ajI) da

(R (2.11)

I f(a) p (aI) da

The Bayes estimate of the absolute value criterion in Figure 2.2a

is the minimum of

oo

Rb = f[Ia-a(')I] p(alR)p(R) dR da. (2.12)

The result of carrying out the calculation is shown in Equation (2.13)

[35],

a abs(R) 0

p(al)da p(a[R) da. (2.13)

aabs (R)

Hence, the Bayes estimate for an absolute value criterion is the

median of the a posteriori density.
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Similarly, the uniform cost function shown in Figure 2.2c

leads to a Bayes estimate which is the maximum of the a posteriori

density [35].

Two properties of the Bayes estimate for a large class of cost

functions are presented below without proof. The properties are due

to Sherman and are useful in justifying the use of the mean square

estimate for general problems for which the exact cost function may

lead to unsolvable mathematics [331.

a. Property 1. If the cost function C(S,a) is

a symmetric, convex upward function and its

a posteriori density p(aIR) is symmetrical

about its conditional mean, the estimate that

minimizes the risk is identical to ms . Here

a is the conditional mean.
sms

b. Property 2. In the case where the cost

function is a symmetric, nondecreasing

function, an a posteriori density p(ajR)

which is symmetrical about the conditional

mean, is unimodal, and satisfies the condition

lim c(a,a) p(ali) = 0 (2.14)

leads to a best estimate which is again as"

The proof of these two properties is available in the literature

[36].
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Whenever it is desired to estimate more than one parameter, a

straightforward extension of the above presentation is possible. Such

a situation occurs in the typical radar situation in which both the

range to the target ard its velocity must be estimated. We then

define the error vector

a1 (R) - a1
a (R) a2 (- a2 a(R) -a .2.15)

For the mean square error criterion, the cost function is:

k
c(a 21 -a (2.16)'i

and the associated risk is then

Rs f fC(a (R)) p(R,A) dR dA
ms

or

R = p(R)dRd (a, -Ai) 2]p(CI) d!. (2.18)ms jA i i

It can be seen that to minimize Rm, we may minimize each error termms

separately. Hence, for the multi-parameter estimation problem, the

Bayes criterion may be applied to the parameters on a one-by-one basis.

J
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2.3 Maximum Likelihood Estimation

In situations where the a priori distribution of a is not

known, the estimation problem is best treated as the estimation of a

non-random parameter. Using the Bayes criterion for this case fails

to lead to useful results [35]. Some other measures of the quality

of the estimate are therefore considered. The first of thase i.

the expectation of the estimate:

.00E [g(R)] j J a(R) p (Ra dR. (2.19)

The possible values of the expectation can be grouped into

three classes [35].

1. If E [(&R)] = a, for all values of a the estimate

is said to be unbiased.

2. If E [a(R)] f= a+O, $ independent of a, the estimate

is said to contain a fixed bias. It is ah'aya

possible to obtain an unbiased estimate from auch

a biased estimate.

3. If E !(-R)] = a + f(a), the estimate has an

unknown bias. Because the bias depends on the

unknown parameter we cannot readily remove its

effect from the observation.

The expectation of an estimate is not very satisfactory since

it can lead to large errors if the a posteriori density has a large

second moment.
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A second measure of quality is the variance of estimation

error, It seems reasonable to require a good estimate to have a

small variance. One commonly used estimate which satisfies this

condition is the maximum-likelihood estimate. In this procedure,

it is desired to maximize the so-called likelihood function p(R~a).

This estimate is a good estimate but not nacessarily the best

:stimate possible by all criteria.

One useful form in which this estimate occurs is in terms of

the log likelihood function ln [p(CRa)]. Since the logarithm is

monotonically increasing, maximizing ln [p(Rj a)] insures

maximization of p(R1a). When conditions of differentiability are

met, the maximum of ln [p(Rja)] can be found by solving the equation

So !0
{ Ba 0 ' (2.20)

This maximum likelihood estimate corresponds mathematically to the

limiting case of a maximum a posteriori estimate in which the prior

knowledge approaches zero [35].

The Cramer-Rao bound of the variance of any estimate will now

be stated without proof [7, 12].

If a(R) is any unbiased estimate of a, then

Var [a(R) -a] (E(L in p(R a)]2) (2.21)

Or, equivalently:

Var [(R-) -a] fa2 ln p(R'a) (2.22)
kL aa 2 ..



if the following conditions are assumed to be satisfied:

21 CR1a2) and 32p tRja)

exist and satisfy basic conditions of integrability.

This bound in essence states that any estimate is limited in

its precision by the a posteriori variance. Cramer has shown that

the equality holds when a(R) is a sufficient statistic for the

estimate of the parameter a [7].

2.4 Signal Parameter Estimation

The above discussion may be extended readily to the estimation

of signal parameters. For example, in M-ary digital communications

one of a finite number of symbols or message blocks is chosen for

transmission. Associated with each of the M messages ml, m2 .... mH

is a transmitted waveform 81 (t), 82 (t) .... 8,4 (t) (Figure 2.3). These

waveforms are corrupted by an additive noise. Initially, we consider

all channel noise as white Gaussian noise nw (t) with power-density

spectrum

N *
S(w) 0

The received waveform will then take the form

r (t) - SOk(t) + nw(t)

when message k has been transmitted. Without loss of generality,

this result may be stated as

q(t) k(t) + n(t)

!• • -•• . ,= .•... . • ... • • ,•• -• • • -• =•. -f -- • •.. . o•, .. . ... -• -,•.. . • • • . .. . -. -= =. ...k
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Figure 2.3 The Estimation of Known Signals in the Presence
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where n(t) is the noise component in the signal space. Letting the

time functions, n(t) and q(t) be denoted by vectors we then get:

q s+r

The random vector r (r 1 , r 2 .... rm) is represented by M

independent Gaussian variables, each with zero mean. The variance
2 N

is r - . The joint probability density function of vector2"

in such a case has spherical symmetry.

21 -_n12 /2N 2
fU(n) (2ra 2) /2 e

= (¶N)M/2 e -nl2/No " (2.23)

The likelihood function p (RIa) then becomes
2

pq (q•mi) = M2 e fln /N0  (2.24)
(7rN0)

However, when a specific message mi is sent,

il

and

n q - si

Equation (2.24) can then be written as:

2
q e 2

(IT 0)~~

A
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The log likelihood function is given by:

ln C- (I mi] ln(r)M2N (2.25)

It is this function which is to be maximized if the a posteriori

probability is to be maximal. The first term on the right in

Equation (2.25) is a constant and therefore need not be considered
2

in the maximization. The term iq -ii is the square of the vector

q . Hence,

2 M 2- " (qk k (2.26) :

"M 2 S 2 -

k-1 - k'

q 2 + 1gi12 - 2 9S

where 1Si1 is the energy of the signal El and

q " fi q(t) S i(t) dt•

2

The signal energy Ei and the terms q , NO are constants in

the decision function. It is desired, therefore~to maximize

2j

I(g's) h- q + Ei 2 f q (t) Si (t) at .

The desired result is then
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CO

Max [I(g,s)] "Max f q(t) Si(t) dt] (2.27)

where the symbol + is used to denote implication.

This result is of the form of a convolution integral,

CO

O() q(t) Si (t+T) dt.

The function O(T) has its maximum value at T=0.

The estimation procedure consists of impressing the received

signal on a bank of correlators, one for each of the m signals

transmitted, the output of which is sampled so that T - 0. The

decision is made in favor of the signal for which the output is

largest. Figure 2.4 summarizes such a parameter estimation scheme

for the M-ary digital communication receiver. The parameter to be

estimated in this case is which of M possible messages transmitted

was received.

It can be seen from Equation (2.26) that this estimation

procedure minimizes the square error, hence, corresponds to a Bayes

estimate for a square cost function. No assumption as to a priori

probabilities for messages mi1, m2 .... mk has been made.

The presence of a phase reference for such a scheme is a

requirement since the output of the various correlators must be

sampled at time t such that T 0. O
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SAMPLE AT
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Figure 2.4 Summary of Maximum Likelihood Estimation
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In practice, each message exists only for a finite duration of

time T. The message may be preceded or followed by another. A

specific message, however, is defined only for some finite time

interval; hence, the limits of integration on the convolution

integral may be changed so that

-T

4(T)- q(t) si(t - T) dt. (2.28)
:-T

2.5 The General Radar Problem

In the radar estimation problem, a number of parameters may

be estimated. Confining the discussion to estimation of echo delay

time (t ) and target velocity dependent echo frequency shift (v),
0

a similarity to the above estimation problem can be seen.

Define the signal as

S(t) a(t) cos [Wot - $(t)] (2.29)

wh-re w = 27rfo and fo represents the carrier frequency,

a(t) - the amplitude function with time t, and

0(t) - the phase function with time.

Going over to complex notation, we may write

S(t) = Re {((t)} , (2.30)

the real part of a complex function defined as follows:

i[wot -

V(t) - a(t) e
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The signal ý(t) is transmitted and the received signal may be

written as

V(t - to) ,

00
where t - 0 is the time origin of the transmission and to0 the round

trip delay time. The observed receiver input can then be written

as

- to - T)

where T is the time difference between the round trip delay time t 0

and the observation time.

To estimate to, we must contrive a means of detecting the

instant when T - 0.

If the target from which the echo is received is in motion,

the reflected signal will be shifted in frequency by the doppler

shift frequency fd given by

2v fo
f o v f fd f 0 (2.31)

where fo " the transmitted frequency,

v = radial component of target velocity, and

c - velocity of propagation in the medium.

The received signal will therefore be one of an infinite set

of signals corresponding to all allowed radial target velocities.

To estimate V, the target velocity dependent echo frequency

shift, or fd' the doppler dependent frequency, using a maximum

likelihood procedure requires that the echo signal be impressed on an

| i
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infinite number of correlators, each corresponding to a different

target radial velocity. In practice this impossible sittation is

approximated by correlators corresponding to specific velocities

or by uniformly spaced frequency shifted references.

ii

I
_t

I
I



CHAPTER III

AMBIGUITY AND RESOLUTION

3.1 Noise Free Resolution

In Chapter II, it was demonstrated how an application of

estimation criterion leads to a receiver which incorporates a

convolution principle, a correlator. This result could equivalently

have been expressed in terms of a matched filter receiver [21]. In

the absence of channel and receiver noise, the response of the

receiver to a signal can be completely described in terms of the

correlation function.

Referring to the previous discussion of M-ary communications,

it can be seen that two distinct situations occur. The first of

these is the case for which

q Sk + nw(t) =s

and
Go

O(T)qksl" s k(t) si(t-T) dt,

for i k.

This result is in the form of an autocorralation function

4i

co

•(~i , f e(t) si(t-T) dt. (3.1)
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Some properties of the autocorrelation function are stated

below from the literature [21, 22, 28]. These properties are of

value in the formulation of estimation schemes.

a. The autocorrelation function is an even function. That is,

• (• ii *( -)ii(3.2)
b. Its value at the origin is the maximum value in magnitude.

0(011 > locoii 1, for T .0 (3.3)

c. Its first derivative is expressed as

0M f si(t) s '(t-T) dr. (3.4)

In the unmatched case,

-CO
0 ¢(T)ks s ; S(t) s (t-T) dr, (3.5)

where 1 0 k.

This a correlation between two signal waveforms which are

assumed not identical. When the M messages are selected to be

orthogonal, all unmatched correlations will result in zero mean

receiver output and the output of the matched correlator will be

clearly distinguished. The result presented in Equation (2.27)

insures, however, that all cross correlation outputs will be less than

that for the matched correlator for any choice of signals. This

result agrees with the description of a correlation in terms of

"closeness of fit."
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The consequence of these observations for a noise free receiver

is that there is no ambiguity in the estimation. If, for example, the

phase is not known, the maximum output of the receiver will occur at

time such that, T = 0 on the correlator which is matched to the

transmitted waveform. In estimating the time of arrival in the

absence of noise the resolution is determined solely by limitations

due to measurement errors. This result is a direct consequence of

the second property of the autocorrelation function; the zero time

delay response corresponds to the maximum value of output.

3.2 Noise Effects

The estimation problem as stated includes an additive noise

which for the linear estimator proposed remains as an additive effect

on the output of the correlators. The correlator outputs will all

exhibit time dependent random fluctuations about the response

anticipated and the decision process will yield an uncertain result.

Properties of the estimation scheme presented so far only insure

that the most likely decision will be in favor of zero time delay and

the correlator matched to the transmitted message.

It follows directly that members of the message space (mi, m2 ...

mk) which are similar to one another in the sense of correlation

integral will be difficult to distinguish in the presence of noise.

Similarly, if the time delay is to be estimated, waveforms

for which secondary maxima of the autocorrelation function approach

the peak value of this function will result in poor resolution of t.
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An extensive effort has been devoted to finding signal sets

which satisfy various criteria of resolvability [19, 23, 30, 39],

Many factors must be consi-dered in the selection of such signal sets,

not the least of which is the feasibility of implementatioia.

3.3 Echo Delay Resolution in Radar

It is possible to define a number of meaaures of range

resolution and the one which is chosen here is the delay resolution

constant (3]. This constant is:

-& W (3.6)

where W is the effective bandwidth.
e

This measure does not depend either on the transmitted pulse

length or specific signal characteristics. A long duration pulse can

have large bandwidth if the signal has rapid and/or irregular changes

in its structure.

3.4 Velocity Resolution in Radar

Define the frequency function

where F[P(t)] is the Fourier transform of the complex time function

for which

S(t) - Re{4(t).

For a doppler frequency fd deucribed in Chapte: II as

2vf
0

d o

• I
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the received spectrum may be represented as

This formulation leads to a velocity resolution constant of

c
AV 2f T

o e

where T is the effective duration of the transmitted signal [3].
e

Again the resolution measure is not dependent on the detailed
structure of the signal but rather on the generalized form of T

e

A surface described by the absolute value noise free correlator

output for all values of echo delay and doppler frequencies is often

referred to as the uncertainty surface for such an estimation scheme.

Throughout this thesis, the absolute value of the noise free

correlator output IY(T,v)t will be referred to as the uncertainty

surface in keeping with the notation of Woodward [39]. This is to

distinguish from the square of this response

2

which is known as the ambiguity function.

Some representative un'ertainty surfaces for common signals

are shown in Figure 3.1.

It will be shown in subsequent chapters that the attainable

resolution, in contrast to the above resolution constants, is a

function of the strength of the received signal in relation to noise

and depends on the type of processing of the data. The resolution

constants AT, Awv are useful, however, in determining how near one
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Figure 3.1 Uncertainty Surfaces for Representative Signals.
(a) Linear Swept Chirp Pulse With Rectangular
Envelope (b) Monochrom~e Pulse With Rectangular
Envelope (c) "Noise" Waveform.
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another two signals can be in time delay and velocity dependent

frequency and still be distinguishable to a maximum likelihood receiver.

31
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CHAPTER 1V

DIGITAL SYSTEMS

4.1 The Generalized Decision Process

The required structure of a maximum likelihood receiver has

been developed from fundamental estimation criteria. Recalling the

receiver, we note that the major system components are as indicated

below:

a. Correlators for each possible transmitted

waveform or an approximation to this when an

infinite number of echo frequencies can occur.

b. A decision making system which chooses the largest

from among the correlator outputs. In the

absence of a phase reference, the decision must

be made in terms of the largest correlatur

output within an allowed time or phase interval.

If digital systems are to be used for any part of the receiver,

one may ask which of these two components is amenable to such an

implementation. A considerable amount of work has been devoted to

using digital schemes for accomplishing the correlation. Some

concepts reported in the literature are:

a. Sign correlators in which both the received

signal and reference signals are represented in

terms of two state samples (2j.
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b. Digital multipliers in which both the

received signal and reference signals

are quantized and represented by multi-

state digital words [38]. A discussion

of this type of system appears in

Appendix A.

c. Fast Fourier transform algorithms applied

to sampled and quantized received signals [6].

d. Matched filter techniques using digital

filters in conjunction with sampled and

quantized inputs [37].

Alternately the output of analog correlators may be sampled

and quantized. In either case, the output of the correlator bank

will exist in some digital form which can then be input to a digital

decision process. In some cases, the digital result is converted

again to analog form for further processing, but this exposition

will concentrate on those systems in which the decision making

function is digital in nature. Specifically, decision algorithms

implemented on a general purpose computer are treated.

The input to the decision algorithm is of necessity a sampled,

quantized representation of the output of each correlator. For systems

with known time origin the samples correspond to that time for which

T 0. Otherwise, it will be necessary to provide the algorithm with

sufficient data points from each correlator output so that the

decision as to maximum correlation within an allowed time span can be

made. For generality, the systc.n without a time reference will be
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treated in what follows and the result can be easily seen to apply

for systems with such a time reference.

The decision process can then be summarized as:

From the totality of sample points which

define the correlator output select the one for which

the value of correlation is maximum. Report the

corresponding value of T as the echo delay time estimate

and V as the estimate of target doppler dependent

frequency shifc.

Additional complicating factors occur in the radar case since

it is possible to have a multitude of echoes in the total receive

interval. The effect of an ill-defined time origin for a specific

echo as well as interactions between closely spaced events must be

accounted for in a practical system.

The situation is similarly complicated in certain communications

applications where multi-path propagation or distributed scatterers

are involved.

4.2 Single Monochromatic Carrier Band Pulse, Rectangular Envelope

Consider as an example of a radar application a system which

transmits a single monochromatic pulse with rectangular envelope of

duration T.

The transmitted signal will then be:

S (t) - cos 27 f t 0 < t < T (4.1)
a 0 otherwise,

or
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jW t
e e

where W = 21Tfo and f the carrier frequency.
0 0 0

The delayed, doppler shifted echo signal is then

J 21T (fo-V) (t-T)

-e

where v is the doppler frequency shift and T the delay to-t. Here to

is the true echo delay time.

As a measure of the "distance" between the waveforms, consider

the integrated square of the magnitude of the difference in accordance

with Urkowitz [3]:
0o

e f o1-t ) * (tT) Idt

-2 fI 1(t)I2 dt -2 Ref ~P(t)IP'(t-T) dt

=2 JiUMt) dt

-2 Re(e J u(t) u*(t-T) e dt).(4.2)
f

To minimize the difference for T 0 0 it suffices to minimize the

magnitude of the last term. The integral in the last term is defined

as the combined correlation function:

00

Y(t,v) f u(t) u*(t-T) e dt, ITI < T (4.3)

-0 otherwise,
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For the monochrome pulse,

u(t) 1 , 0< T

- 0 otherwise

hence

Y(T'V) =r ITI < T

and

IY(¶,v) I = Is(n I I,(1--r I, < T (4.4)

where Equation (4.4) is the uncertainty function. Note that, in going

from Equation (4.2) to i,-uation (4.3), the rapid fluctuations due to

the carrier are rejected. A plot of IY(T,v)l is.shown in Figure 4.1.

A physical realization of a receiver for a carrier band signal

is shown in Figure 4.2. The input to the digital decision algorithm

consists of sampled values of correlation output. There is a sample

for each target doppler dependent frequency reference for each echo

delay interval. The inputs to the digitizer arrive in the order:

X('r ,V1), X(r1 2)'.... X(r1,V ),... X(r ,v ),...X (T ,V)'
112 lm 21 1nm.

where

X(Tiovj) IY(Ti,vi) + nil, and ni the noise component at

The effect of the digitizer is to represent the value of analog

voltage in terms of a finite number of binary digits. The binary

digits which represent a specific value of X(T,V) comprise a digital

datum which is subject to manipulation in a programmed automaton. The

process of quantization is shown pictorially in Figure 4.3. All values
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TI

Figure 4.1 Uncertainty Surface for Monochrome Pulse of
Duration T Rectangular Envelope
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Figure 4.3 Quantization of an Analog Waveform
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Figure 4.4 Input-Output Characteristics of a Quantizer
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of the analog waveform which are within a resolution interval of one

another will map into an identical binary representation. Typical

input-output characteristics of a quantizer is shown in Figure 4.4.

The selection of number of correlators and the sampling rate of

the correlator output time function is determined by operational

requirements. As previously detailed, there is no theoretical limit

on the resolution possible in the absence of noise other than that

imposed by system limitations. As the resolution is increased,

however, the number of samples X(T,V) presented to the digitizer per

unit time increases correspondingly. Furthermore, the number of

binary digits required to represent the sample increases.

As an example of this latter situation, we note from Figure 4.1

that the uncertainty function of the monotone pulse is a monotonically

decreasing function in the vicinity of the peak X(0,0) with both T

and V.

Substituting v- 0 in Equation (4.4), we get

IY(•, o•) - 1'T (4.5)T"

For a sample interval such that samples are spaced Ts, the

percentage of difference between noise free samples is:

T
IIY(T,o)l - IY(T-Ts,0)ll - - (4.6)

A digital representation of X(r,0) must therefore contain a

sufficient number of binary digits, so that

I
I!

I.
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T
a (i +1)-a (i) T. (4.7)

where a(i + 1) and a(i) are digital states. 1

Similar arguments can be applied to the correlator spacing for

doppler dependent frequency. The sampling theorem according to

Hartley, Gabor, and Shannon, however, etates that any signal

essentially limited to an interval of time T and a bandwidth W contains

2WT degrees of freedom [20]. There exist 2WT samples of the signal

waveform which contain all of the information of the original signal.

This fact places an upper bound on the number of samples required in

a receiver of finite bandwidth.

The development in Section 3.1 demonstrated that the maxticw%.

a posteriori probability always occurs at T - 0 on the correlator

matched to the doppler dependent frequency. With a maximum

likelihood receiver, one can do no better than to select as the

estimate of frequency the one corresponding to the maximum X(Ti,vi).

Figure 4.5 shows the effect of added noise on the correlator output.

It can be seen that the noise introduces uncertainty into the

measurement of X(T,v) with the result that, for large values of noise

power in relation to signdl power, the observation of the maximum

X(Ti, Vi) leads to a poor estimate of the parameLers T and v .

The discussion thus far has ignored the fact that the signal

energy at the receiver is unknown. This omission in no way alters the

1 The interval need not be uniform. Her~e, we will assume that
values of X(T,V) are uniformly distributed (X; 0 < x < 1). For this
case, it can be shown that, for optimum operation in a mean square
sense, the quantization steps should be uniform [27].
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Figure 4.5 Typical Monochrome Signal Correlator Response
Showing the Effect of Noise
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decision rule as can be seen by noting Equation (2.27). It will be

shown later that the value of signal energy is important in determining

the accuracy of the estimate, however. The ratio of signal energy to

noise energy at the receiver will be a function of range dependent

signal attenuation, medium characteristics, target strength to list

the major factors.

4.3 The Effect of Continuous Observation

In the foregoing treatment, the transition from the theoretical

form of the correlation operation
Go

cr)q S(t) si(t-T) dt (4.8)

to the practical form

T

S r (t) S (t-T) dt JT'< T

0 o ITl > T

for a signal of duration T has been made without conceptual difficulty.

The implication, however, is that we have prior knowledge of the

interval of echo delay during which the signal is to occur. In many

practical systems, however, this knowledge is denied the observer.

In a typical application, T will take on a range of values

determined by system design. The thtory insures that for all of these

values of T,the peak a posteriori probability will still occur when

T - 0. Considering the majority of applications, it is found that the

ideal situation of a single echo in the totel listen period is unusual.

Generally other echoes are observed from ground clutter, other aircraft,
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etc. Each of these e.2hoes leads to a system response where
IT - til < T, where ti is the echo delay time associated with target i.

Figure 4.6 shows a receiver response to a two target case when the

frequency is matched to the correlator.

For the multiple echo case, we will wish to note the peak in

some time interval 2T. The problem then is one of knowing the origir

of the time interval. Figure 4.7 shows the effect of impressing a

threshold on the correlator output. It can be seen that those samples

surpassing the threshold roughly define the time interval for which

T < T. The threshold must be selected high enough to avoid very

many noise related correlator outputs which appear as false targets.

The process of thresholding can be done either by analog means or

in the digital processing. By assuming that the noise is stationary,

the threshold reduces to a time invariant one.

Thresholding may also be used to reduce the number of samples

presented to the digitizer. Since only samples which surpass the

threshold are transferred to the digital processing, a means must be

included to identify the datum in time and doppler frequency.

In many radar applications, no prior certainty as to the

presence oi a target exists. The effect of a threshold then is to

preclude noise events surpassing the threshold value. The process of

estimation is intimately tied to that of detection in such a system.

And, no matter how the threshold value is chosen there will be some

cases for which a noise event is classified as a target, or a target is

overlooked. In analogy to detecticn theory, the threshold is so chosen

A
-1•

Il
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Figure 4.6 Maximum Likelihood Receiver Time Response for

a Multiple Target Situation
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Figure 4.7 Samples for a Multiple Target Situation, for
Thresholded Analog Output
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as to give maximum performance against a target vith a false alarm

rate in keeping with system objectives.

The peak value of the uncertainty function in the absence of

noise is proportional to the echo energy. This can be seen when T - 0

is substituted in Equation (4.8) when the echo is matched to a signal

replica. The amplitude of the peak can be used as a rough measure of

the strength of an echo for this reason. It is a rough measure since

it reduces to the limit of no relationship to echo strength when the

peak is of noise origin solely. In referring to Figure 4 . 7 , it can

be seen that the time duration over which the uncertainty function

exceeds the threshold is determined by the peak value of the matched

correlator output.

4.4 Linear Swept F-M Pulse of Duration T

In some situations which will be described shortly, it is

advantageous to transmit a signal for which the frequency varies

linearly over the pulse duration. The complex modulation function for

this signal is

j Bt2u(t) e, 0 < t < T (4.9)

M 0 elsewhere,

2B is measured in radians/sec2, It can be seen that

u(t) u =(t-t) 0 for T. (4.10)

Then, from Equation (4.2) write

: . - j|-- - -. . ~-
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T

Y(rV) -f e ~ ejBt) ei t dt

S e[-Bt2 + B(t-T)2 + 27rVt]d

S~TI: J '1

.• = ejBT2  f. e-2i[Bt-•]t dt
2 Ti

JB • j (BT-Trv)+

2j (BT-7Nv) -e

Expressing the exponentials in terms of cos (.) + j sin (.)

and obtaining the squared magnitude, the result is

sin(B'-T)C. - I T1 (I IT
IY(T,v)I T BT-VI ,T.

(4.11)

This function is plotted in Figure 4.8 for a signal for which

2
B = T/sec. The "ridgeline" defining the peak response as a function

of time defines approximately a straight line in the time/frequency

domain. The details of this ridgeline responsearegiven in Appendix B.

Considcring only that portion of the uncertainty surface which

exceeds a value half the peak value,

IY(T,V)I _ • 5A,

where A is the peak valae, it is possible to obtain an insight into

the resolution of such a signal. In Figure 4.9, the values of

IY(T,v)l satisfying this criterion are shown projected onto the

time/frequency plane.
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It can be seen from this figure that it is possible to attain

good resolution in time in spite of a long pulse by choice of sweep

rate. This is an important property of this type of signal since it

is often advantageous to transmit a long pulse and thereby a large

amount of energy. The problem of resolving targets lying along the

ridgeline is a difficult one, however. Also, the combined resolution

of time delay and frequency is limited and the maximum time resolution

is dependent on independent kmowledge of target velocity.

I

I2



so1
CHAPTER V

ESTIMATION ALGORITHMS

5.1 Introduction

In Chapter III and Chapter IV the theory and response

characteristics of a maximum likelihood estimator were developed.

The nature of the decision process necessary to implement such an

estimator in a digital system was presented. In this chapter, the

logic functions previously stated are expanded in the form of

algorithms to be executed in a general purpose computer. The concept

of the general purpose programmed automaton is presented as background.

Various measures of algorithm performance are investigated

in this chapter and subsequently studied in a model application in

Chapter VI.

5.2 The General Purpose Programmed Automaton

The function of a programmed automaton is to operate on a set

of data according to a list of instructions. Both the data and

instructions exist in the form of a finite alphabet or representation.

A realization of a programmed automaton is the digital computer. Such

a computer operates on data in the form of digital states by means of

2a set of instructions, i.e., a program.

2 The digital states may or may not be describable in terms of a
binary representation. The binary computer is used universally
although systems with a different number of primitive states are not
ruled out.
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The term "general-purpose" as applied to automata describes a

capability to perform any mapping whatsoever by revision of the

pxogram. In the literal sense of the definition, no realizable

automaton is truly general-purpose since a mapping rule may be of such

complexity as to overpower the storage capability of the machine.

In practite, the definition is extended to those machines capable
r

of performing rather complex mappings which are used in a role where

provisions of easy program modifications are required.

Modern general-purpose programmed automata consist of the

following basic elements:

a) A memory unit in which both the data words and

instruction words are retained in one or another

accessible form.

b) An arithmetic unit which accomplishes the various

operational functions involved in the manipulation

of data.

c) A control unit which serves as the timing and

sequencing unit. The control unit generally

accomplishes its function in a sequential form

performed during a machine cycle.

d) Input-output units through which information

exchange to other media occurs.

Instructions which define the mapping are the detailed rules

which govern the operations of the digital computer. The mapping,

aside from the minute considerations for a specific machine is an

I1
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algorithm describable in a generalized way. Algorithms are stated

in the form of higher level language statements or perhaps flow

diagramn.

Attempts at using machine translation to go from man compatible

formulation of an algorithm to the specific machine instructions to

accomplish the mapping have resulted in the development of higher

level languages. Among languages of this kind are FORTRAN, PLl,

COBAL, SAKO and others. A language development stemming from a major

international undertaking is the Universal Algarithmic Language

ALGOL 60. The advantage of this formulation is that clear and

concise statements of algorithm functions can be made. This language

has been used extensively in the literature to present algorithms

in a machine independent form. Generally, the language is not

directly applicable to any machine without extension.

In the following descriptions of the various algorithms, the

syntactic intent of ALGOL 60 is adhered to [26]. Since the algorithms

are intended only to convey techniques, no attempt at completeness

has been made.

5.3 Nature of the Input to the Estimation Algorithm

In keeping with the previously stated method of obtaining

samples of the correlator response as shown in Figure 4.2, we now

make the following assumptions:

a) For each time sample there are samples for

all correlators. All correlators are assumed

samples at the same instant.
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b) The correlators are always sampled in the same

sequence and these samples are presented to a

"digitizer in a fixed order.

c) Only samples of IX(¶i,vi)I > nj, where ni is a pre-

selected threshold value, are transferred to

the computer. See Figure 4.2 and Figure 4.7.

The foregoing assumptions are made quite arbitrarily and may

not apply in all situations. This method of treating the data is

treated as a representative example only and other methods could be

adopted as well.

These samples are transferred to the computer memory unit by

some input means and initially we assume that all data is available

in memory when the estimation algorithm is activated. They appear

in the computer memory as a triple array.

integer m, i max ;

integer array t[l:m], f[l:m], x[l:m],

where max is the total number of samples to be processed. The content

of t[i], f[i], x[i] correspond to the ith datum sample time, doppler

dependent frequency, and X(t,f), respectively.

The order of the samples is maintained in the process of

thresholding and this fact can be used to simplify the algorithm.

Figure 5.1 shows how the samples are transferred into the data array.

On inspection of the sample transfer process it can be seen that all

samples corresponding to a single sample time ti are continguous in

the data array.
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The algorithm to select the largest value of X(ti,fi) from all

samples then follows naturally. This procedure is outlined below:

procedure MAX (x,t,f,i, Testimate, Festimate)

integer m, Tectimate, Festimate; integer array x,t,f;

conment: MAX selects the largest value of m samples

and returns the corresponding values of time

delay and frequency as the estimate of these

parameters.

begin

integer xtestvalue, i;

xtestvalue: = Testimate: - Festimate: - 0;

for i: - 1 step 1 until m do

if x[i] >xtestvalue then

begin Testimate: = t[i]; Festimate: = f~iJ;

xtestvalue: x[i]

end

end MAX

This example of an algorithmic approach to the estimation

procedure demonstrates a characteristic of all digital systems, that

of uncertainty introduced by the digitization process. Two values of

correlator output X(ti, f) and X(tk~fe) differing by less than a

resolution interval cannot be logically distinguished without imposing

an arbitrary criterion. The criterion in the case of this algorithm

has been chosen in such a way that the first of a number of peaks

of equal value is defined as the maximum.
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5.4 Meacures of Algorithm Performance

In the design of algorithms, various approaches can be taken.

One therefore nee'• some performance measures for algorithms on the

basis of which a choice between various techniques can be made. Some

of the criteria may be mutually exclusive to some extent and this

leads to trade-off in light of specific requirements.

The algorithm described in Section 5.3 is both direct and

simple. Each data sample is tested only once. In addition, it is

possible to deal with the data as it is presented. Both of these

characteristics are important in a processor and are defined as

measured below:

a) Define the Cycle Repeat Count C as the mean number

of references to a datum X(t,f) during the algorithm

execution for purposes of logic testing.

b) Further we define the Frame Length F as the count

of data points (samples) prior to thresholding

required for logical completeness of the algorithm.

In the afore described procedure, to find the maximum x(tf)

each datum is processed on a one-at-a-time basis; hence, F-1, C=l.

In a real time process such as that of signal parameter estimation,

the frame length determines the minimum waiting time after a

significant datum is available until a decision can be attempted.

Consider now the case of multiple returns. For each signal,

the echo delay time tk and doppler dependent frequency shift V are to

be estimated. In the case where tht returns are well separated in
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time, we note the first sample which passes the threshold and select

the maximum x(t,f) for all samples within a time span equivalent to

twice the pulse length. Repeating this process for all returns

completes the algorithm. The formal statement of this scheme follows:

procedure MULTMAX (x, t, f, m, tout, fout, xoutn, TpTs)

integer m, n; irteger array x, t, f, tout, fout, xout;

value n, TP, Ts; real TP, Ts;

comment, MULTMAX selects the largest value of samples within

a 2Tp interval with time spacing Ts and outputs the

parameters x, t, f of this sample as xout, tout,

fout. This process is repeated for all m samples

input. A maximum of n estimates can be output.

begin

integer Testimate, Festimate, xtestvalue, k, low, i;

k: = 0; i: = 2

A: xtestvalue: = 0; low: = t[i] -1; i = i - 1;

for i: = i + 1 while (t[i]-low)< 2* Tp/Ts)A (i< m) do

B: if x [i]> xtestvalue then

begin Testimate: = t[i); Festimate: = f[i];

xtestvalue: x[iI

end

k: = k + 1;

if k > n then LISTOVI FLOW;

tout [k]: - Testimate; fout [k]: - Festimate;

xout [k]: = xtestvalue;

if 1 U m tLo A

END MULTMAX
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In this procedure, Ts is the time interval between successive

time samples and Tp the pulse length T. The value of the cycle

repeat count is C - 1. The data points can be processed as they are

generated on an as available basis. Hence, F - 1, but the final

estimate is not available until all samples in the 2T interval are

processed.

Consider now the effect of a noise event which exceeds the

threshold in the absence of a signal. This situation is depicted

in Figure 5.2. An algorithm which considers all samples in a time

interval 2T as belonging to the same event does not account properly

for such an occurrence. The most serious error is in splitting up

the signal related samples in such a way that the estimation rule

stated in Section 4.1 is violated. One may ask if it is ever

possible to design an algorithm which can properly account for the

effects of noise. The noise effects cannot be eliminated totally

for any system which is realizable, that is, a system which must rely

on a finite processing time and bandwidth [21]. It is possible,

however, to apply the logic capability of the computer to circumvent

some of the noise problems. The sampling theorem asserts that time

samples spaced at 1/2W are independent as far as a noise limited to

the bandwidth W is concerned [32]3. Therefore, noise samples spaced

so that

3 Strictly speaking, a time limited signal of finite bandwidth
cannot exist. Losses in practical systw3 limit the maximum frequency
and one considers such a signal as both time and band limited.
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5a 2W

are independent. When the threshold is set so that the probability

Pe Pr (Xn > n) is small, the probability that a independent samples

of 8 will surpass the threshold is given by the binomial distribution

f(a) = (8) P (1-P•)8-,

where

For example, the probability that two of three successive

independent noise samples exceed the threshold is

f(2) - 3 P2 (IP).

We can take advantage of this characteristic of noise-only

threshold surpassing events to build a degree of noise immunity

into the algorithm. The procedure to accomplish such a test is

presented formally below:

boolean procedure NOISE (low, tcurrent)

value lov, tcurrent, ; integer low, tcurrent;

comment NOISE is a logical function which has the

following logic values for delt where

delt - current time - time origin for this echo:

FALSE if delt - 0, 1, or 2, cr if (2 or 3) of first

3 time samples were present.

TRUE otherwise.
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It is assumed that sample spacing is sufficient to insure

noise independence.

begin

integer delt; boolean array a [1:2];

delt: = tcurrent - low; NOISE: - FALSE;

if delt = 0 then a [1]: - a [2]: - FALSE;

if delt > 3 then NOISE: - a [l]va[2];

if (delt = l)V(delt = 2) then a[delt]: - TRUE;

END NOISE

This routine enters into the estimation algorithm by way of

calls to this logic function at statement labeled B:. The revised

structure will then take the form:

B: if NOISE (low, tii]) then o to A;

if x[i] > xtestvalue then

bgin Testimate: - t[i]; ......

The inclusion of this type of a test for noise events

corresponds to a somewhat higher threshold. The apparent increase in

the threshold value will be large when Ts approaches the pulse length

T and decreases as Ts/T becomes small. On the average, for a number

of trials,

- Ts/2T

where An is the change in threshold implied by imposing the above

requirement.



* 62

Another measure of algorithm performance is the degree of

immunity to biases. The preceding algorithm gives essentially an

unbiased estimate of the parameter of interest. Some bias is

introduced, however, by the fact that the received signal energy

is unknown at the outset. Figure 5.3 shows that for low energy

signals the test interval commences at a time considerably later

than that corresponding to -T on the signal envelope. The estimate

therefore will contain a number of samples taken after the signal

has died out. Noise events occurring later than the signal envelope

can compete with the signal and may lead to estimates of appreciably

higher echo delay time than warranted by the signal echo delay

resolution constant. In spite of this, the estimate will yield only

very occasionally to biases in estimation because the probability of

a noise-only event exceeding the peak of the correlator output is

small for realistic values for the threshold.

Having described the algorithms for estimating the time delay,

we now go on to analyze the quality of this estimate. It has been

shown in the literature that the maximum likelihood estimate for

additive white Gaussian noise is an unbiased estimate [35, 39].

In addition, this estimate is based on a sufficient statistic and

hence the Cramer-Rao bound of the variance stated in Equation (2.23)

is satisfied with an equality [7]. The estimate is the minimum

variance unbiased estimate and we can describe its quality by the

variance alone. Alternately, the confidence interval on the estimate

is adequate to describe the error in estimation.

1

Si



63

(a)

REGION OFX )*-ALGORITHM TEST -41
I I
I I

Th

-T ti T

t

LOW SIGNAL ENERGY CASE

REGION OF (b)
SALGORiTHM TESTX~r,O),.,i \ .

ThT
-T III T

t

HIGH SIGNAL ENERGY CASE

Figure 5.3 Effect of Received Signal Energy on Algorithm Bias



64

Consider the matched response of a correlator to a monochrome

carrier band pulse as developed in Section 4.2. From Equation (4.5),

we get
Sr,O,) 1 1 - L [

T

for a monochrome pulse with rectangular envelope. However in the H

presence of noise, the envelope output will be

E(t) = 1J-- + n (t)• + n s(t) (5.1)
T C S

where nc and ns are the quadrature noise components. In the case

where

[1 IT I >>n Mt and n (0)) (5.2) IT (c s '

•()=[1 l + n (t) for almost all t [21].I
T c

This situation corr -ponds to those values of

X(T,O) > n,

where the threshold n has been chosen so as to give a very low

probability of noise only events. The noise on the output of the

envelope detector is approximately additive when only samples which

exceed the threshold are considered.

The probability that any sample taken at T will exceed the

correlator output at T 0 due to the noise is then,
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P [X(-Ci,0) > X(0,0)] -

P {[X('ri,o) - X(0,o))> 01 - P(W > 0) , (5.3)

where W - X(TiO) - X(0,0). I

The probability densities corresponding to X(Ti,0) and

X(0,0) have equal variance but different mean values.

Define i° = E[X(0,0)], the mean value of X(0,0), and

P= E[X(Ti'0)]" The noise events corresponding to these two samples

are independent hence uhe mean values and variances add [16].

2The variance of the random variable W will then be 2a and

the mean value will become:

i-Jo= o (1- hI4 ) -0 = - (5.4)

Since all noise samples are assumed to be independent, the

probability of any sample in an interval {T,-TL < T < T

exceeding that at T = 0 is given in terms of normal statistics.

Here, TL is the value of T defining a confidence interval on * The

parameter f is the estimate of time delay.

Woodward derives the variance of the estimate of time delay

assuming a large signal-to-noise ratio [39]. This result is shown

in Equation (5.5). Due to the assumptions, this equation can only be

expected to be valid asymptotically as the signal-to-noise ratio

become large.



66

From Woodward, the variance of the estimate of time delay is

a^ = 1 (5.5)
2'

where R is the signal-to-noise ratio, 2E/N and B f 27r/T.

Therefore, the variance o.L estimate is

2
0 ̂ A2 0

2E.47 2

and

0a 2 ffiT (5.6)

0

The confidence interval on this estimate can be defined and is

P(-Z O^A < t < Z = P) P(T < W") - < - Zo), (5.7)
T T T

due to the normality of the distribution. Here Z is a real constant.

For the 90 per cent confidence interval, this result is

equivalent to

CPQ[ < ZA) = 0.95 (5.8)

which gives

Z = l.645,I¶I <0.524 T

from tables (16].

The behavior of this confidence interval as a function of

signal-to-noise ratio R is graphed in Figure 5.4 (Curve b). In

order to assess the actual behavior of this estimate at low signal-

to-noise ratios the simulation system described in Chapter VI was

used to obtain an experimental measure of the confidence interval. i
I:
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These results are also plotted in Figure 5.4 (Curve a.), and it is

seen that, in the large signal case, the experimental results do,

in fact, converge to the theoretical function. In obtaining these

results a sampling interval Ts much smaller than the pulse length was

used. Other results which show the effect of sampling time interval

and threshold are presented in Chapter VI.

Thus far the estimation algorithm considered has been the

one resulting from minimization of the likelihood function as shown

in the work leading to Equation (2.21). This result was for a

general known signal in aliditive white Gaussian noise but did not

make use of the signals treated herein explicitly. Hence, some other

estimation algorithms were considered. It was anticipated that the

power of the computer could be used to advantage to improve the

accuracy of the estimate for the small class of signals studied.

Algorithms which do in fact provide better accuracy in a mean square

error sense have been identified. These algorithms lead to a biased

estimate of the time delay but it will be shown that the bias is

small for realistic signal-to-noise ratios.

Instead of finding the peak value of the correlator it is

possible to use the power of the computer to perform more complex

estimates. As an example of such an algorithm, consider the estimate

m Ti~X(i,10)

T u (5.9)

m X(Ti, 0)
i-l
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where m is the number of time samples in the 2T time interval. It is

apparent that such an estimate is less prone to errors caused by

isolated noise events.

The variance of this estimate is

A X(ti,0) .

Var(T) - Vat - Var (5.10)
X(riO) @3

ri

where W and V are defined as the numerator and denominator terms

respectively.

When the T i's are chosen so that the time samples are indepen-

dent in terms of the noise, Equation (5.10) becomes

Var (T) = Var , W, V both normal.

The variance for the quotient of two random variables is detailed

in Appendix C. It is shown there that this estimaute has a mean value

P w 11W° +w GV1 <W(.1

where p is the correlation coefficient of y,x.

In the limit where the second term on the right is very small,

the estimate Z X (iO0

PW/V" • X(Tl'O) "•~" iA

ii
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Otherwise, this estimate is a biased one. The experimentally

measured confidence interval of this estimate as a function of

signal energy is shown in Figure 5.4 (Curve c). This estimate has

a smaller confidence interval than the estimate on the basis of

peak correlator output. Since the maximum likelihood estimator is

optimized on the basis of maximum a posteriori probability, the

above finding appears contradictory.

In fact, the estimate based on the peak correlator is the

minimum variance unbiased estimate. The variance of a biased

estimate cannot be shown to be limited by the Cramer-Rao bound of

the variance [35]. The biased estimates studied in this thesis are

applicable to only a limited class of signals, and, therefore, lack

the generality inherent in the maximum likelihood procedure.

Another estimation algorithm suggested by the work of Hudson

consists of fitting a pair of regression lines to the data points

[17]. The method is outlined in Appendix C along with a method for

finding the confidence interval for the ordinate of intersection for

two regression lines. The complex nature of this algorithm seems

to preclude its use in a real time system as is dealt with in this

thesis. Also, since the confidence interval given by the method

of Equation (5.9) is quite small, the gain to be realized by going

to greater complexity is questionable.

Other estimation schemes can be conceived but will not be

treated here. One method which warrants brief consideration, however,

is a scheme which not.-s the first and last threshold exceeding events

4

----------------------------------------~-'/--
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in a fixed time interval and halves this interval to obtain an

estimate of echo delay time. The sensitivity of this proc dure to

noise is very high since the data which is most noise-like is used

to generate the estimate.

5.4 Simultaneous Estimation of Frequency and Echo Delay

It has been shown how a computer algorithm may be used to

estimate signal parameters when echoes are distinct in time. Such

echoes must be spaced at intervals of at least 2T seconds where T

is the transmitted pulse length. In many application areas, this

time separation cannot be assumed. For a time limited signal,

overlap of returns in time implies interaction in the frequency

domain. Only in the 1l-ary digital communication case where the

signals are selected to be orthogonal can this frequency interactioni

be ignored.

Two echo signals which overlap in time will also interact in

frequency. In general, two distinct situations can be identified, .1
one will be dealt with in this thesis. When the echoes differ

sufficiently in frequency due to differences in target velocity,

the interaction between these signals will be small. In keeping

with the literature, echo signals differing by at least 2Av,

where Av is the velocity resolution constant,

1'I

AV= c
2foTe

o ei



72

will be considered as essentially unchanged in the character of the

matched response exceeding the threshold n [3]. Figure 5.5 shows

the uncertainty surface for two monochromatic r-f ,ulses of duration

T which are clearly distinguishable.

A convenient way to represent the uncertainty surface for

multiple returns is by a section parallel to the T,V plane such that

IY '%,v)l 0.5 (5.12)

The planar section for this case represented by Equation (5,12)is

shown in Figure 5.6 in heavy shading. The remaining parts of the

respective response function is shown in light shading. The

frequencies f1 and f 2 in Figure 5.6 are the matched frequencies for

toe two responses.

The affect of noise is to deform the uncertainty surface and

therefore to distort the area representing.

X(T,V) - IY (T,V) + n(O,aN2 )I - 0.5 ''.13)

where the effect cf the noise n is no longer negligible. In additin,

the prior uncertainty of receiver signal energy for the two echoes

requires a threshold n which does not satisfy the requirement of

Equation (3.13) ior at least one of the e-cho signals.

In studying rigure 5,6, the similarity to the previous

estimation of returns clea y separated in time as outlined in

Algorithm 5.2 is apparent. Ech echo is characLerized by a peak

response on thz matched correlator at a Ti such that aL. related

reipnnse is aistributed vIthin



It

73

4m

0

u w
0°. €,

I- -- u'$4

AC



74

f

f2......

tt-t2
ti t2

Xl(ri,wji) .

Figure 5.6 Overlapping Monochrome Responses

A
-4



75

Ti T <t < Ti + T•

For the monochrome pulse for which each matched response is

along a fixed frequency, a method of extending Algorithm 5.2 appears

straightforward. If the total ', -quency range were to be divided

into regions 1/T cycles wide, eac . hese could be treated

separately with only minor revision of the algorithm. The special

case of a response falling astride this arbitrary division must then

be treated by properly grouping data during subsequent processing.

If this is the method of attack, it should be noted that samples

should be taken at frequency intervals less than l/T cycles. This

precaution insures that a peak response occurring at a doppler

dependent frequency not corresponding to the sample frequency will

be detected. For example, if

f = 1/2 T,r

where f is the frequency at which the sample is taken, thenr

Y(O, f sin (7/2). 0.63.r 7/2

Hence, the sample corresponds to a signal input of 63 per cent of

the actual received signal, or the effective signal-to-noise ratio

is reduced with associated increased uncertainty in the estimate.

The spacing of the frequency shifted reference signals is often

dictated by limits imposed by complexity, but a reference spacing

which insures that the response is
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Y (0,f) f Y (0,0) -0.12

requires frequency shifted references spaced 1/2T.

The algorithm needed to accomplish the parameter estimation

for overlapping returns in this way is presented in Appendix D

(Algorithm D.1). It can be seen that this algorithm does not

properly treat signals such as a linear chirp signal for which the

response does not occur primarily along a constant frequency. An

algorithm which is applicable to such signals as well as the

monochrome case is a more general one and can be expected to yield

readily to changes in signal characteristics.

The nature of the response of a correlation receiver to

overlapping chirp signals is shown in Figure 5.7. The corresponding

samples in the frequency/time domain are shown in Figure 5.8.

Referring to Figure 5.7, it can be seen that samples

correspondi g to two echo signals can be seen to form clearly

distinguishable clusters. The first event encountered is associated

with an echo delay time t1 and doppler dependent frequency fl" All

other samples associated with this target lie along a line in the

frequency/time plane, the equation of which is dependent on the

signal characteristics. The expected spread of the sample points

about this line in frequency can be derived directly from the

equation of the signal uncertainty function. It was previously

shown that, for a large class of linear frequency modulated signals,
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the effective width in frequency at constant T, is l/T, where T

is the pulse duration. Also, the trace of the main lobe of the

response has constant slope in the time-frequency plane, for values

of time delay near the median value. These results suggest a method

for treating the general chirp signal case. Given any sample

X(ti, fj at ti, the corresponding sample at ti+I is

XXi ft+ 2)+
X(ti+1 , fj + A+ )

The quantity Af/At is the incremental change in frequency

with time which is a function of the signal characteristics. The

monochrome signal will have

Af
At =

The uncertainty C is introduced by the fact that neither the

sample at tI nor that t1+1 are in synchronism with the signal. If

the sample at tI lies on the ridgeline of the uncertainty surface

and near its peak value, then C is on the order of

S2T

in frequency.

In processing the correlator samples, the first sample to

exceed the threshold will be most effected by noise. In addition,

the non-linear behavior of the FM ridgeline response will cause

samples far removed from the peak to exhibit a frequency bias.
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Consider the probability density of sample values in the frequency

ordinate, this density function will have its peak value approximately

on a straight line in the frequency/time domain as delay time

increases from the peak of the response. For large values of time

delay, however, the density function will be shifted and the

maximum probability will no longer coincide with the straight line

which defines the ridgeline response near X(O,v). The probability

distribution

(v-vj)

F(v - v) = (x

where v is the straight line extrapolation of frequency of the

ridgeline response near X(O,V), is shown in Figure 5.9.

Distributions for various signal-to-noise ratio cases are shown.

In referring to this figure it can be seen that large signal-to-noise

ratios, for which the first sample to exceed the threshold is far

removed from the peak of the response, lead to significant biases

in initial frequency. Since the first sample of any echo response

is used to define the line about which clustering of samples is

anticipated, errors introduced by the ridgeline non-linearity must

be accounted for by increasing the clastering aperature e. In

practice, a value for C, such that e l/T, will insure that samples

are properly gro..ped in most cases.

tI
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The general algorithm then is easily derived and is:

From all samples lying in the vicinity of
a straight line in the frequency/time
plane in an interval of time 2T and within
+ I/T cycles of the frequency ordinate,
select the one with maximum amplitude.
Report the corresponding values of ti and
fj as the echo delay time and velocity
dependent frequency, respectively.

The functioning of such an algorithm is shown as a general

flow diagram in Figure 5.10. The algorithm is detailed in

Appendix D (Algoritnn. D.2). The following observations follow

directly from an exaz''.ation of this diagram.

a. All points associated with a single uncertainty

surface are sorted from the total number of samples

in a time interval 2T and processed to yield an

estimate. Although samples can be processed as they

arrive, only samples lying along a line in the

time/frequency domain can be used fruitfully iniJ
arriving at an estimate. For this reason, the

frame length F is

F ; W/lAf

b. Samples corresponding to other echo returns

occurring in the 2T interval must be passed

over on the basis of some type of test. The

samples therefore must be treated a number of

times leading to a cycle repeat count

C • K/TMf
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where K is the mean number of echoes over-

lapping in a 2T time interval. When Af is

1/2T as previously described.

C= 2K

c. Samples which have been found to bel.ong to

the set of samples defining a specific echo

must be somehow marked as being of no further

interest. Such marking can be done in a number

of ways without requiring additional data

storage. In the algorithm shown, this is

accomplished by setting the corresponding

value of X(tV, fj) equal to zero, a unique

value for this datur, never occurring otherwise.

The significance of the cycle repeat coutt and frame length

will be related to a specific example in Chapter VI. It can be

seen that an algorithm which must repeatedly treat the same datum

requires more time than one for which C - 1, all other factors being

equal,

This situation comes about due to the fact that the samples

are interspersed in their order.

By a suitable transformation, it is possible to separate the

samples as they are received. Referring to Figure 5.11, it is seen

that the operation

t =t- (fi4) ,
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where

At

maps all data points belonging to a single echo onto the

neighborhood of a point in the one-dimensional space {t'} defining

the f 0 projection of the echo samples within + l/T cycles of

the line defined by the first sample of the signal envelope possibly

belong to the same event. The grouping in the space {T'} must be

made over an interval

{t'-(t - SIT) < t' < (to' + SlT),
00

where S - At/Af w 1/0 and t0' is the mapping of the first sample0

from the echo response in question. Note that this algorithm is

no longer completely general since for the monochrome signal,O -

This is the price which must often be paid in the design of more

efficient algorithms. Generality can be retained if this special

case is recognized and the projection is then to the t - 0 ordinate.

Once this transformation is accomplished, the data points

are clearly distinguished as belonging to a specific echo response.

The value of t' can then be used to address "bins" which are S/2T

in extent. All data points will then be sorted by t' into

physically distinct storage cells and tests can be made immediately

to see if the current sample exceeds a previous sample with

approximately the same t'. Figure 5.12 shows how new samples must

be tested against entries in the t' space. A maximum of four tests

must be accomplished to test for all points in the vicinity of t'
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within a ± I/T interval. The average number of tests, as shown in

state 2 of Figure 5.12, to find a match will be about two since

the data points have maximum probability of occurrence at the center

of the response ridgeline.

To reduce the number of storage cells needed in the t' domain,

we note that previous entries in this storage which were made at

(to + 2T) < ti,

where ti is the current time sample, can no longer be updated by

future samples and can therefore be transferred to the output matrix

and the storage space reused. This leads to a folding in the t'

domain which is easily accomplished by using modulo arithmetic to

generate the address of the target storage cell. Associated with

each entry in the t' domain is the value of t corresponding to it
0

and these data points are transferred to the output matrix either

through tests by new data or at the end of all processing.

This algorithm is detailed in Appendix D (Algorithm D.3).

Note that each sample is processed once as available; hence,

C=1, F=1.

However, the processing to be accomplished by the algorithm is

rather complex requiring multiplication, modulo arithmetic, and

multiple tests of the t' storage elements. For some machines, the

additional complexity may not be warranted due to slower execution

of the arithmetic functions.



89

Although the data points can be processed on a one-at-a-time

basis, there is, in a typical application, a need for temporary

buffering of the input samples as they are received from the

digitization process. This precaution insures that, at times when

many samples arrive within a short time interval, no data will be

lost. The programmed automaton processes data at a fixed upper data

rate in a serial fashion and, while it may be able to maintain the

required data rate on the average, periods of excessive data transfer

from the signal processor can be anticipated.

?I



CHAPTER VI

ILLUSTRATIVE EXAMPLE OF RADAR ESTIMATION

6.1 A Track-While-Scan Radar

In order to relate the previously developed concepts to an

actual situation, a ground control radar application will be treated.

The choice of system chosen for the model is somewhat arbitrary but

conforms generally to the model systems described by Swerling [34].

Table 6.1 gives the pertinent parameters for the system. This a

C band radar which continuously scans a 360 degree sector using a

linear F-M signal. The beamwidth and scanning rate insure that a

target is illuminated with 6 pulses per scan. Tracking of targets

is to be accompanied by computer algorithms but, for the initial

treatment, no prior knowledge of the target is available. This

situation corresponds to the case where the system is just tuined

on for targets newly arriving in the search area.

The system described should be able to handle a maximum of

1000 aircraft in the total search area. Aircraft are separated by

10 minutes flying distance or in altitude in such a way that up to

four aircraft going in different directions can occur in a pulse

length, although this is rarely the case. Other systams accomplish

aircraft recognition, altitude measurements, and terminal monitoring.

Maximum allowed target speeds are Mach 1, or 750 knots.
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From Section 4.4, it follows that this system will have a

resolution in echo delay of 4 Usec and in target velocity of

75 knots which is adequate to distinguish even low speed aircraft

from clutter. Some means must be included for removing the effect of

clutter from the maximum likelihood detector since this will lead to

unacceptably high false alarm rates at essentially an uninteresting

frequency. Such schemes have been reported in the literature and

will not be expanded on here [24].

Given the resolution of 4 usec and 75 knots, it follows that

samples will occur at the rate of

40/4Usec interval = 10 MHz rate.

V.ese analog values must be thresholded and A/D converted at a

maximum of 10 MHz although the data points surpassing the threshold

will arrive in bursts corresponding to target related echoes. This

A/D conversion rate is well within current state-of-the-art

technological limits and presents no problem. Eight bit quantization

at a 10 MHz conversion rate is commercially available. 4

Eight bits of quantization are deemed adequate for this system.

The frequency samples are taken at half the frequency resolution

spacing; hence, the maximum error will be 12 per cent. A one bit

error of 8 digital states is equivalent to this error. Eight bits

4Computer Labs at Greensboro, North Carolina distributes a
10 MHz A/D converter for television digitization of 8 bits -
Model HS-810.
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iV

Pulse Length ........................... T - 36 lusec.

Carrier Frequency .................. f i5600 MHz
0

Bandwidth ... ............. .............. W 250 kHz

F-M Frequency Shift Rate ............... B 1.185 x 1010/sec2

Horizontal Beamwidth ................... b 3.3.6'

Scan Rate ...... ............... ......... . 0 rpm

Pulse Repetition Rate .................. f = 100 pps
r

Target Velocity Maximum ................ v = + 750 knots

TABLE 6.1 PARAMETERS FOR MODEL RADAR APPLICATION

A
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provide for 255 states or thirty times the nominal number required.

This provision is added since the echo energy is unknown at the

outset and therefore the peak value of the correlator out:,ut will not

be known. Automatic gain controls in the analog eqýuipment may be

used to compensate for changes in echo level with range but multiple

targets at approximately the same range cannot be adequately

compensated for. Variations in target strength will cause variations

in echo levels aside from purely range determined behavior.

Assuming that the 1000 aircraft are distributed about evenly

throughout the search area, there will be 10 aircraft in the beam

at once. In the worst case, this will lead to an average of two

frequency responses for each of 18 time increments for each aircraft

or 360 samples per pulse. There are 100 pulses per second and,

therefore, the sample throughput upper limit will be

36,000 sample/sec 36 KHz throughput.

In this worst case situation, the time allowed to process each sample

is 28 psec.

Due to the nature of civilian air traffic regulations, the

echoes from the various targets will be clearly distinguished in

echo time delay and frequency, hence, satisfying the requirements of

resolvability previously stated.

6.2 Processing Implications of the Nodel

In the context of this proposed model of a radar system, it is

now possible to analyze the effect of the various measures of

algorithm performance.

3I



94

The cycle repeat count and, to a lesser extent, the frame

length are of importance 2.. such a system since very short times are

allowed for proce,..g each datum. When the probability of over-

lapping returns is very small Algorithm D.2 will have

C 2, F W/Af.

Si:,ce there are 40 ficquency references, the frame length

F - 40, or TS = 4 psec.

ThE frame le~':L "i not an impoilant factor since more than 4 Usec

will be needeu to process each datum. In this situation where

overlapring returns are rare, this algcrithm will be faster on most

machines than an algorithm involving data transformations since there

is less arithmetic computation.

When aircraft are restricted to flight in traffic corridors,

the probability of overlapping returns will be higher. The cycle

repeat count will then be larger on the average for Algorithm D.2

than for a transformation algorithm. The transformation algorithm

(Algorlthm D.3) will on many machines, exhibit a higher data

throughput rate for this case.

The parameters, accuracy of the estimate, and estimation bias

primarily interact with system objectives and cannot be analyzed in

the context of the estimation problem alone. One important area

where these effects. must be considered is in the design of tracking

algorithms. So far, in this thesis, we have dealt only with the

maximum likelihood estimation in the limit of no a priori knowlodge.

In tracking a target, however, previous estimates are important.
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Recalling the Bayes estimate developed in Chapter I, it is

possible to arrive at a solution of the general M-ary communications

?roblem when the a priori density !s known. Consider the cost

function

C (3,a) - -.- 2.

The Bayes estimate for ,!A;U problem reduces practically to the

estimator shown in Figure 6.. [35]. The solution is for an additive

white noise only but can be extended to the case of "colored" noise

by the addition of a whitening filter [21]. The radar system model

used here assumes a maximum likelihood estimator for targets for

which no prior knowledge exists, but subsequent estimates on the

basis of which tracking is performed must make use of the previously

estimated velocity and range.

The multiple echoes received from a target on each sweep of

the search radar are used to refine the estimate of velocity and

range. In addition, the statistical nature of target strength as

treated by Swerling requires multiple pulses Lo maximize the

probability of obtaining at least one useful detection per sweep [34].

Target strength fluctuations can be severe.

The possibility of purposeful degrading of performance in

such a system will now be treated briefly. The model requires a

maximum sample throughput rate of 36 kHz, a large data rate for even

high speed comptiters. It is possible that unusual combinations of

high data rate near $he maximum range of the system, unusually complex

tracking tequirements, and other control function requiremsnts will
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exceed the processing capability of the computer within the 10 Msec

time allowed for each pulse. In this case, instead of causing the

system to fail altogether, it is possible to make the decision to

not process the data from the next pulse and to finish the pending

operations instead. The overall system performance will be degraded

but by an anticipated amount. Thus, the logic capability of the

computer can be used to advantage in this phase of the system operation.

Another aspect of real systems is demonstrated by the provision

for a large range of signal amplitudes to account for differences in

target strength and target strength variation due to motion, aspect,

and type. In addition to requiring a large number of binary states

in the digitization process, the effect of a fixed threshold alluded

to previously must be considered. Taking a monochrome pulse as an

example,

SY(O v) - Is I, (6.1)

or

Y(0,v) = F(t),

where F[O(t)] is the Fourier transform of the complex time function

describing the pulse. Figure 6.2 shows the frequency response to a

rectangular envelope of the maximum likelihood receiver for a

monochrome pulse. Note that, in addition to the principal peak at

V 0, there are auxiliary peaks at

3T + AT + 7T
2 2 2 .
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For signals with high energy, these peaks can exceed a fixed

threshold and lead to spurious target indications. It is possible to

avoid this problem by pulse shaping. For example, the Fourier

transform of a Gaussian shaped pulse is also Uaussian, that is,

monotonically decreasing from the peak. There are no secondary

maxima in this case. The time response on the matched correlator is

the autocorrelation function of this pulse envelope and some of the

characteristics previously developed for rectangular envelopes must

be somewhat revised.

Another method of pulse shaping is one of time weighting of

the sample amplitude for the reference signals. One common method

is the process of Hamming weighting to reduce the magnitude of

secondary peaks in the correlator response. When the transmitted

pulse is similarly modulated, a system with bilateral weighting

results. Figure 6.3 shows the effect of bilateral Hamming weighting

on the magnitude of secondary maxima in a linear FM correlator

response.

6.3 A Simulation System

In order to test the functioning of the algorithms described,

a general purpose computer was used to generate samples and to

perform the algorithm functions. In addition, the computer was used

to compile statistical results and to assess the effect of the various

sources of error. No attempt was made to simulate the rate at which

samples must be processed nor to include the effect of antenna

rotation and auxiliary inputs for aircraft height.

S•-II
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The simulation was carried out on a Systems 'Engineering

Laboratory Model 840 computer. This is a general purpose computer

with approximately 32,000 storage registers, hardware floating point

arithmetic unit, and 24 bit word length. Periphdral devices used

with the computer were a printer, card reader, and Cal Comp plotL•'r.

The plotter was used to generate many of the plots in this thesis.

This machine was programmed in Fortran IV, a'higher level

language which is well suited to array processing and arithmetic

computations. The algorithms described herein were converted to the

Fortran language maintaining algorithmic intent since, the machine

described does not have an A.I.gol processing capability.

Data samples were generated by combining the deterministic

value of the uncertainty function with band limited noise. For such

a noise, samples separated in time by

1
TS -2W

are independent. Also, samples in the frequency domain spaced I/T

are independent. A subroutine was used to generate random deviates

from a population exhibiting a distribution

n(U,GN
2 ) .

Tests of this algorithm show that it exhibits this characteristic

to within 1 percent for numbers less than about 4.5 with a somewhat

reduced fit at values beyond this limit. The pseodorandom sequence of

numbers generated did not repeat in the interval covered by a

particular test.

S. . .. i
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Since frequency samples were taken at intervals of 1/2T,

adjacent smples were not independent. Such samples were generated

by selecting a random sample with the next sample being selected so

as to be correlated with the first. All subsequent samples were

chosen with this correlation between neighboring samples. In this

way, samples separated by I/T Hz are independent. The .- frithm

used to generate these correlated samples is presented in ,.ppendix D

(Algorithm D.4).

In the various tests of the estimation algorithms all samples

were generated at once and stored in a data buffer. Tests included

verification of algorithm logical completeness, frame length, and

cycle repeat count. The confidence intervals for the various

estimation schemes were experimentally obtained using this system.

In experimentally obtaining the confidence interval on the

estimate of echo time delay, both the time origin of the sampling

schedule and the additive noise were generated using pseudorandom

number sequences. The distribution of time origin was selected to

be uniforrly distributed so that

(t - T - 1/2 Ts) tI < (to - T + 1/2 Ts),
01 0

"where t is the true echo time delay, T the pulse length, and Ts

the sample interval; t1 is the first sample generated. The additive

noise is an approximation to a Gaussian process with V 0,

02 a 1.0.

One topic of investigation using this simulation system was

the effect of sampling frequency f . on the accuracy of the
Ts
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estimate generated by the algorithms of interest. The results of

this investigation for various values of sampling frequency are shown

in Figures 6.4 and 6.5. To obtain these curves, 500 trials were made

at each data point. The nuvber of occurrences of estimates within

a 0.01T interval was recorded. This histogram of occurrences was

the input to an algorithm which computes the sample mean, sample

variance, and two higher moments of the distribution. The sample

standard deviation was then used to define the confidence interval

for those trials which could be assumed normally distributed. This

is the case for the peak estimate and the estimate based on the

quotient when the signal-to-noise ratio is large.

The confidence interval for the quotient algorithm at low

signal-to-noise ratios was obtained by printing the histogram and

counting the number of cells from the theoretic mean needed to

include 30 percent of the occurrences. This interval was found to be

very nearly identical to the confidence interval obtained by assuming

a normal distribution for the error and using the standard deviation

obtained by usirg the statistical algorithm mentioned above.

Also investigated was the extent of the bias of the quotient

algorithm. The results of this study are shown in Figure 6.6. The

bias is noticeable only when the sampling frequency f is small.
S

Even in this case the actual bias is small in relation to the

confidence interval on the estimate. It is unlikely that this bias

will ever be of significance in a practical system.

J 4
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The effect of imposing a threshold on the data is shown in

Figures 6.7 and 6.8. This threshold is in terms of the correlator

output variance and assumes that this noise effect is additive and

Gaussian. Hence, a threshold of n - 4 corresponds to a vo?.tage

threshold equivalent to the system mean voltage output

=2E
<x(0,0),s = N 4

0

Although all of these experimental results were for a mono-

chrome pulse with autocorrelation function

IY(tO)I - N
0

they are applicable as well to the ridgeline response of the linear

FM pulse. In this case, however, the confidence interval is in

terms of the ridgeline instead of simply the pulse length. For this

reason the confidence interval must be scaled by the slope of this

ridgeline in the frequency/time domain and the result is:

IT T~=[I x S,
FM 90% conf monochrome 90%

where S is Af/At for the ridgeline response. The equivalence is only

approximate because the FM ridgeline response does not define a

straight line in the frequency/time domain and it deviates somewhat

from the linear decrease from the peak characteristic of the

monochrome, rectangular pulse.
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The simulation system demonstrated the feasibility of performing

parameter estimation using algorithms described in thia thesis. In

addition, the sensitivity of various algorithms to sampling rate and

signal-to-noise ratio was derived experimentally. Some of the results

obtained are useful in the design of actual systems since they allow

prediction of the estimator performance. For example, by referring

to Figure 6.4 and Figure 6.5 it can be seen that for low sampling

rates, the proper choice of processing algorithm is as significant

a factor as exact sampling rate. For an initial sampling rate such

that Ts = 0.5T, replacing the peak estimate by the quotient algorithm

is about as effective in reducing the estimation error as is

increasing the sampling rate by a factor of ten while retaining the

peak estimate. The relative merit of these alternatives is a

function of the system design and the decision cannot be made until

the respective costs are known. The results presented provide the

basis for system tradeoff studies and system performance prediction.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

7.1 Statement of the Problem

The general topic discussed in this thesis is the use of

algorithms for paraweter estimation in a digital signal r-ocessor.

The work evolved from the curreat trend toward sampled, d~gitized

data systems, a trend supported by new developments in small digital

logic units and the widespread use of programmed automata for system

control. Such an algorithmic approach to the estimation problem

follows naturally when principal components of the overall system

are digital.

7.2 Approach

The approach chosen was to analyze the nature of the estimation

problem 9nd then to relate the results of this general analysis to the

algorithm functions to be performed. The characteristics of the

maximum likelihood estimator were treated and some specific algorithms

presented to show how the logic tests can be performed in a computer.

In order to limit Lhe scope of the work, the specific cases

treated were the monochrome and linear FM carrier band pulse radar 2

signals. For these signals, the problem of estimating target

velocity dependent frequency and echo delay time were chosen as

?arameters to be estimated. Algorithms to accomplish the estimation
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were developed and analyzed on the basis of some measures described

in terms of a specific model.

A model of a civil ground control radar was used to assess the

effect of performance measures for the more general al.gorithms.

7.3 Conclusions

It was concluded that digit schemes and the associated

algorithms are applicable to a general class of parameter estimation

problems. The multi-parameter estimation problem was treated for

simple signals and performance measures found. The difficult

estimation problem of overlapping FM returns was reduced to a simple

problem in pattern recognition on a computer.

The high data rates associated with a multi-target radar case

were shown to be within reasonable processing capabilities in a

sequential algorithm and a means for selective degradation of the

system performance was identified.

In noting the general nature of the algorithms proposed, it

can be anticipated that a class of such algorithms w411 be applicable

to a wide variety of parameter estimation problems.

7.4 Suggestions for Further Work

This thesis concentrated on establishing the form which

parameter estimation algorithms may take. The types of signals

treated were simple ones for which a considerable body of data has

been developed. The algorithms are extendable, however, to more

complex signals and it is for these that the arithmetic capability

of the compuuer may be best suited.
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Some possible applications of such schemes are in situations

in which the signal is very noise-like and may, in fact, be unknown

"until transmitted via an independent data link. Such a situation

arises in the use of large seismic arrays used for nuclear test ban

monitoring [15].

The treatment in this thesis has avoided the complications

resulting from overlapping signals when these are near one another

in frequency. This case of interacting signals occurs frequently

in communication over a scatter channel, in aircraft tracking when

the target cannot be considered a point reflector, and in sonar

sounding equipment used for sub-bottom profiling. An investigation

of how the flexibility of the computer may be used to improve

estimation in these cases is warranted.
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APPENDIX A

QUANTIZED CORRELATION FUNCTIONS

As an example of a digital correlation system, the quadrature

correlation function will be briefly discussed.

The analytical model of a quadrature correlation function is

shown in Figure A.l. This correlator makes use of pairs of samples

for both the reference signal and the signal to be processed. The

quadrature correlation requires pairs of samples Si( 2mTs) and §i(2mTs)

every 2TS seconds. The real values signal s(t) has s(t) as its

Hilbert transform.

For sample correlation the correlation function is

M/2

*Y(MTs) j [S (2mTs)g(2mTs)+ S(2mT)(2mT (A.1)

where TS is the sampling period and M the number of samples at this

sampling rate which define the signal duration. The sampling period

T is that required by sampling theory to adequately describe a band

limited signal.

Similarly,

M/2

"M [ (2mT )9(2mT S i(2mT3 )S(2mTS)]. (A.2)

M11
j
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The envelope output from such a correlator is then

E:i •zsT) ON1 (M2•zs + i' (Ts)

In referring to Equation (A.1) and comparing this with the

analog correlation function,

T¢(T) -•Tq(t) Si(t-T) at,

it can be seen that the sampled correlation function replaces an

integral by a summation. The summation can be accomplished digitally

by the use of shift registers, binary multi-stage address, and a

digital multiplier unit.

Ackerman has shown that the correlation accuracy, in the limit

of many digital state representation approaches that of the analog

correlator when the sampling rate [1]

1 W

TS 2

Figure A.2 shows the sampled correlator output variance as a

function of sampling rate. It can be seen from this presentation

that the errors incurred in digital correlators is due to the

digitization error discussed in Chapter V. This error can be made

sufficiently small so that the effect of noise received with the

signal will be the controlling factor.

Instead of generating the reference signal si(t) and then itsii

samples, the samples themselves can be stored in digital form. In

referring to Figure A.I, it can be seen that these two techniques are

I

I
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equivalent. Once the samples have been determined, they need only

be recalled from a memory unit in the proper sequence.

SI

I

I
-1

NI



APPENDIX B

NON-LINEARITY IN THE LINEAR FM RIDGELINE RESPONSE

The uncertainty function for the linear FM pulse with

rectangular envelope is

IY(Tv)I = (l- )B(B.1)

If we limit our discussion to positive values of T and make the

substitution

T

(BT-7T) (1- )T],

Equation (B.1) becomes

IY(T,V)l = (1- ) sin• ) (B.2)

To find the equation of the ridgeline, we take the derivative

with respect to V and equate this to zero. It is obvious that removing

the absolute value signs does not affect the location of the zeros in

the first derivative. Hence,

d t d sin(• )
dV- [Y(T,V)] " (1- l ) dv BT-7Iv (B.3)

d u
which is of the form d v]
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Equation (B.3) yields:

d (BT--rv)cos ([)rT-rT) -sin ( -)-•2-. )

(1 T 'IT(BI-V)cos(8)(t-T)+sin(8)] (B .4)

=y( V (1- 1) (-1,)
(BT-7nv)2

Equating this result to zero and clearing terms, the result is

given by:

(B¶-TrV)cos(O)(T-T)+sin(O) . 0

(B--irv) 2

or

2T T

(BT-rV) {tan(-v)(1- ) ] - (Bt-r)(1- )T I

(B.5)

One condition under which the tangent is equal to its argument

is when the argument is zero. Hence,

(Bt-lVv)(1- ~-)T -0
T

which is, however, not a valid root.

In order to investigate other roots of Equation (B.5), a peak

finding algorithm was employed to trace the character of the principal

response ridgeline. The general behavior of this response is graphed

:-_- f
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in Figure B.1. It can be seen from this figure that the ridgeline

is essentially linear in the vicinity of the peak. The equation

of the near peak response is

The deviation becomes pronounced for large values of the

parameter T .

Substituting the value of the ridgeline function in Equation

(B.1) yields the value of the peak output with delay time. This

behavior deviates from the purely linear decrease observed in the

monochrome case. Figure B.2 is a graph of this response

characteristic.

4
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APPENDIX C

MISCELLANEOUS MATHEMATICS

C.1 Quotient of R--dom Variables

Consider the case

S -• qx•i'°)(c.1)

SX(tiO)

ii
where

X(TiO) Y(Ti,O) + Ni

Y(Ti,O) is purely deterministic and Ni is n(ON 2 ).I

Then,

Ei T(Y(Ti,O) + Ni)

Var(r) = Var (C.2)
S(Y(.r,O) + Ni)1~iI

When the sample spacing is such that all samples Ni are

independent, then Var (T) takes the form

1/2
S=V = [Var (w/v)] w,v both normal. ]

By inspection, for an autocorrelation function of the form

2E Jy)N-(l- '

0

A~

0 0
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where n is the threshold applied to X(Ti,O). The normalization term

2F/N is the value of Y(0,0).

Also,

02 " O2 I~2 'v2 "O2
w nN V a

Then, from Haugen [14],

S%/v PV U L 2 'IV- - V

or, more exactly,

a, w a 2p away aw2
W/V [.2 WV + 2

a v4  a 3a a 2a 2 1]/2
•v' - 16 P ww V +3v w 2: 2 + . . (c .4)
48~-~ 3 2 2

Also,

2 1
!W, ' + [ Z 'v v 1+ + ..

If second and higher powers in the last term are ignored,

w W + v (C.5)

The random variable Z = W/V will be approximately normal in

the case where the coefficients of variation a,1 and a,1 both

are less than about 10 percent.
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In Equations (C.4) and (C.5), the correlation coefficient

Coy. (w,v) .[(w-uw) (v-6v)
P = Pav a=a •a .WV WV

Then,

E[(w-IJw)(v-1I )] E [ v v
VE Vi i Z vk

i k

= E [ iv2 + TivVk] , (C.7)
k

where k is a dummy index of summation used to distinguish between

the numerator and denominator terms.

The term involving the double sum becomes

EZi Z Ti vk Z Z E(v i vk)

i k 1 * k

but the samples are chosen to be independent; hence,

Ti E(vivk) i E(vi)E(Vk) k 0

The covariance is given by:

E( E~i Y 2) Ti aN2 
. (C.8)

i i

Therefore,•:
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= t °NT i aN

yi ii

(ýET12 )1/2 %r(C. .9)

where n is the number of terms summed.

This result insures that when a large number of samples are

taken, the numerator and denominator are essentially uncorrelated

and the result from Equation (C.5) becomes

=1 +
w/v Tv pv2

-+• ,(C.lO)
liv

where e is a measure of the bias of the estimate. When e is very

small in relation to uw/Pv, the estimate can be considered essentially

unbiased.

Writing this term as

a
2

V
1v

it is seen that the situation where the coefficient of variation

av/pv is small, the estimate is unbiased.
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For the case of large n and small coefficient of variation,

Z is distributed as n 11•w y2
z jv 'w/V

where 22 +aPVw2)

This results in the following:

11w
P T for a0/V < 0.1•w/v V v

or > 5.

When the threshold n is set so that = N, then 2E/N°

must be greater than 9.

C.2 Estimation by Intersecting Linear Regression

Consider the totality of sample points corresponding to a

single unique event at the correlator output; by knowing the noise

free response of the system, it is possible to perform a least

squares fit on the data applying either linear or polynomial

regression analysis. For the signals treated, this functional form

consists of two linear segments. By fitting these two segments

using linear regression, the abscissa of their join point will

constitute the estimate sought in an estimation algorithm. Hudson

develops the method of minimizing the total mean square error between

?I
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two regression curve segments and the data points £17]. Since it is

not known at the outset which points are to be considered when

performing the two regressions, a method must be developed for

optimizing the process of fitting the regression lines to the data.

Kastenbaum reports the confidence interval on the abscissa

of the join point for two linear regressions [18]. This result is

X2 [(b 1 -b 2 ) 2_2S2 (bl,b2) ]-2X[(a2-aI)(bl-b 2 )-t2S (a29 a1) (bl,b2) ]

+ [(a 2 -a 1 ) 2 _t2 2 (a2 ,a,) (C.ll)

where the linear regressions Y1 = al+blx and Y2 a 2+b2 x intersect

at X. In Equation (C.1l), S(aa), S(blb 2) ... are the sample

standard deviations of samples grouped to select al, a2, bi, b2 . The

parameter t is the appropriate level of the student distribution for

nI + n2 - 4 degrees of freedom, where n1 and n2 are the number of

samples used to generate the two regressions.

By assuming that, on the average, the regression lines will

have equal and opposite slope and X is x = 0, Equation (C.11)

becomes, after replacing the sample variance with the underlying

variance,

X2 (2b 2 -t2aN2]-2X[-t 2N + [-t 2 2 ] - 0.

Then, replacing b by 2E/TN0 get,

X2 [ 8E2  t 2 0N21 +X[2t 2  2 2

2NN N 0N -

T N2
o
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APPENDIX D

MISCELLANEOUS ALGORITHMS

D.1 Algorithm For Estimation, Simple Monochrome Case

procedure D.1 (x,t,f,m,tout,fout,xout,n,TTs)

integer m,n; integer array x,t,f,tout,fout,xout; value n,T,Ts;

real T,Ts; comment: D.1 selects the largest value of samples within

a 2T interval with time spacing Ts and outputs the parameters of

correlation value, time delay, and frequency as xout, tout, fout.

This process is repeated for all samples. The frequency domain is

divided into regions l/T cycles wide. It is assumed that references

1
are spaced 2 T. A maximum of n estimates can be output. The

parameter q below is the number of I/T frequency increments in the

total range of permitted frequency shifts.

integer arra Testimate [l:q], Festimate [l:q], xtestvalue [l:q],

low [l:qj; integer k,i,j;

k:=0;

for i:-l step 1 until q do xtestvalue [ij::low[i]:-O;

for J:=l step 1 until m do

J:=fti]/2; if low [J]-O then

begin low [J]:mt [ii, xtestvalue [J]:- x[i];

Testimate [j):- t[i]; Festimate [J]:- t~i] end
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else if (t[i]-low[j]) > 2T/Ts then SSetE(toutfoutxoutlow,

Testimate, Festimate, xtestvalue,kj)

else if x[i] > xtestvalue [j] then

begin xtestvalue [J]:-x[i]; Testimate [j]:-t[i];

Festimate [J]:-f[i] end

end:

for i:-l step 1 until q do

if low [i]#O then SSetE(tout,fout,xout,low,Testimate,Festimate,

xtestvalue, k,ni)

end D.1

procedure SSetE(t,f,x,l,T,F,X,k~n,i)integer array t,f,x,lF,T,X;

integer k,n,i;

comment: This procedure transfers the contents of a temporary

working array to an output array with tests for output array overflow.

begin k:= k+l; if k > n then OVERFLOW else

begin t[k]:-T[i]; f[k]:-F[i]; x[k]::-X[i];

l[i]:=O end

end SSetE

D.2 Algorithm For Treating the Linear FM Case, Direct Mlethod.

procedure D.2(x,t,i ,m,tout,xout,n,T,Ts,S Eps)

integer m,n; integer array x,t,f,tout,fout,xout; value n,T,Ts,

S,Eps; real T,Ts,Eps;

comment: D.2 searches in the time/frequency domain for samples which

"lie within +Eps of a line defined by the first new sample and the

incremental frequency shift S. Data points once processed have their

value of x(i) set to zero. A total of n estimates can be output.
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begin

integer Testimate,Festimate,xtestvalue,low,i,j,k; real z, Delt; k:=O;

for i:=l step 1 until m do

A: if x[i] 0 0 then

begin low:-t [i]; J:- [i];

B: Testfiate:=t[i]; Festimate:-f[i]; xtestvalue:-x[i];

C: x[i]:=O;

for J:- j+l while ((t[i]-low) < 2*T/Ts) A j < m do

if x[j ]O then begin Delt :-t[jJ]-low; x:- Delt* S;

if(f[j] - Z-Eps) A (f[j] - Z+Eps) then

begin if x[j] > xtestvalue then go to B: Io to C

end

end

k:-k+l; SSetE(tout,fout ,xout,low,Testimate,Festimate,xtestvalue,

k,n,l)

end of loop A;

end D.2

D.3 Algorithm For Treating the Linear Case, Transformation Method.

procedure D.3 (x,t,f,m,tout,xout,fout,n,T,Ts,S,Eps)

integer m,n; integer array x,t,f,tout,foutxout; value n,Eps,

T,Ts,S; real T,Ts,EpsS;

comment: D.3 projects samples in the time/frequency domain onto a

linear space by performing the transformation

t' -ti fl W1 S),

Tests are made in the t' space and estimates are output whenever a

new datum test is made or at the end of all processing. The parameter I

S!-I
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q below is the number of intermediate storage units needed to span

a 2T time interval.

begin

integer q,ijk,kk; integer array Tprmx [l:q], Tprmt[l:q],

Tprmf [1:q]; Tprml [l:q]; kk:-O;
for i:-il step 1 until q do Tprml [1]O:-0;

for i:inL ep 1 until m do

begin

J:- (t[i)-f[i]/S)/Ts;

for k:- J,J-1,J+1,j-2,J+2 do

begin k:- MOD (k,,q);

if Tprml [k] -0 then go tjo A else

if (x[i]-Tprmx [k]) 6 2*T/Ts then

begin Tprmx [k]: - x[i]; Tprmt [k]: -t[i];

Tprmf [k]: fli]

end;

goto B

end;

SSet E(tout ,fout,xout,Tprml,Tprmt,Tprmf,Tprmxkk,n,k)

A: end

k: - MOD(J,q); Tprml(k]: - Tprmt[k]: - t[i]; Tprmf[k]:- f[i];

Tprmx [k]: - x[i]

for i:- 1 .tep 1 until q do

if Tprml [i] - 0 then

SSetE (tout ,fout ,xout, Tprml,Tprmt,Tprmf,Tprmx ,kk,n ,k)

end D.3
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D.4 Algorithm for Generating Correlated Gaussian
Pseudorandom Numbers

procedure BVnorm(mul,mu2,varl,var2,rhol2,old,new)

real mul,mu2,varl var2,rhol2,old new, value mulmu2,varl var2,rhol2;

comment; BVnorm generates a random variable with mean mu2 and

variance var2 which is correlated with a previous sample, old. The

correlation between samples is rhol2. The parameters mul and varl

are the mean and variance from the distribution which lead to the

first sample and are used to scale the input value so that it can

be treated as belonging to a normal distribution with mean 0 and

variance 1.

begin

real tempx; tamp:- (old-mul)/SQRT(varl); GAUSS(1.0,0•);

comment: The routines SQRT and GAUSS are assumed to be standard

library functions the first of which returns a value equal to the

positive square root of the argument and the second is a routine

which sets the parameter x equal to a sample from a distribution

which is normal and has mean zero and variance one;

new :-rhol2*temp+SQRT(l-rhol2**2); new:- (new*SQRT (var2))+mu2

end BVnorm

14

U



APPENDIX E

ALGOL 60 LANGUAGE REFERENCE

The algorithm language (ALGOL 60) is the product of an

international conference which included the United States. The

language has been adopted widely for the purpose of disseminating

algorithm intent in publications. It has not found wide acceptance

in the United States as a programming language but is used in the

literature.

The language exists in three kinds of representations:

reference, hardware, and publication. The reference language is in

terms of a rigidly and comprehensive syntax which must be adhered

to in the hardware or publication implementations. For reasons of

variations in card codes, preferred type fonts, and national

differences in ubz, the language provides for variations in

representation within the reference language syntax.

Table E.1 provides a compilation of symbols provided by the

reference language and as implemented herein for logical consistency

and in keeping with available typographic symbols.

The language consists of named or unnamed procedures within

which variables are declared, processes are defined, and various

repetitive operations and tests are accomplished. All variables

must be declared and these may be subscripted. For example, the

declaration
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real array a[l:3, -6:100, 0:2]

declares the variable a as a triple subscripted floating point

array where the bounds on the subscripts are shown. Note that

negative or zero subscript values are allowed.

Arithmetic operations and relational tests make no distinction

between floating point or integer variables. Integer variables are

used primarily to represent quantities which can only take on

distinct values, but there is little restriction to use.

The language contains a number of standard operations, some

of which are tabulated in Table E.2 along with the logical functioning

of these. Operators, declarations, and some other predefined symbols

are distinguished by underlining or, where possible, bold face type.

Variables may have similar character representation but are presented

without underlining or in italics.

Interested readers are referred to Reference 26 for a complete

description of the language.
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TABLE E.1 SUMMARY OF ALGOL 60 SYMBOLOGY

+ , plus or addition / , division

- , minus or subtraction ** , exponentiation

* , multiplication i

RELATIONAL OPERATORS V

< ,less than > greater than or equal to

, less than or equal to >, greater than

, equal to not equal to

LOGICAL OPERATORS

-', not , implies

A, and , equivalent

V, or -t

OTHER SYMBOLS

: replacement begin...end , statement bracket

arithmetic parentheses TRUE , logical value a V a

subscript bracket FALSE , logical value a AT

lI
I-
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TABLE E.2 ALGOL 60 EXPRESSIONS
x.1w

DECLARATIONS

procedure; integer; real; boolean; integer array; real array; value

COMPOUND STATEMENT

bein <statement ; <statement); (statement) end

A compound statement may be used wherever a statement can occur.

S~TRANSFER OF CONTROL TYPE STATEMENTS

&0- toa (i~la i) (statement) ;(te):(statement)

r - TRUE -

if (logical expression)---en (statement) ; (statement)
L.. _- FALSE----

LOOP STATEMENTS

fo__r variable (for list) step (variable untLl (variable)

do (statement)

-or-

for (variable) := (foc list) while (logical expression)

do (statement)

-for example-

for q:=l step 5 until 25 doo a[q] :- b[q]

This example starts with q equal to 1 and steps in units of

5 until the value 25 is exceeded.

I7
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