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AN APPROXIMATE ANALYSIS .

OF THE 4

BUCKLING CF IMPERFECT SPHERICAL SHELLS* ;

by

Barry I. Hyman §

Department of Civil, Mechanical, and Eavironmental Engineering §
The George Washington Univursity i
Washington, D.C. !

ABSTRACT ;

An approximate method is presented for predicting elastic z
collapse of complete spherical shells subject to uniform ex- %
ternal pressure. The shell contains an imperfection in the §
i

form of an isolated flat spot and the snap through behavior of § 5
[

the flat spot recion is analyzed. The existence of higher ’%
modes is demonstrated and the effect of various choices for %
the stiffness coefficients at the edge of the flat spot is g
investigated. é
P

:;é

*
The work reported here was supported by the Naval Ship
Research and Development Center through Contract N00014-66-C0154.
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The effect of small imperfections on the elastic buckling

strength of complete spherical shells subject to uniform ex-~

ternal pressure has been well demonstrated both theoretically
and experimentally in recent years. Several general purpose
computer programs have the capability of analyzing a shell of
revolution with arbitrary meridian and one of these programs [1]
has been used to calculate buckling pressures for spherical

shells with isolated flat spots. The predicted results agreed

' Fyrd XY sl obi Ty . s e st
v et SRR R R RS T, 0 e it Lb R

well with the experimental results reported in [2]. An anal~

ysis which is valid for spherical shells with arbitrary axi-
symmetric imperfections is presented in [3), while a Rayleigh-
Ritz analysis of the effect of an isolated flat spot is given

in [4]. 1In addition, an assessment of "imperfection sensitivity"

" N Wty A ";J N
e ety A G e RO ettt

of spherical shells is provided in [5].

The extension of any of these approaches to include asym-
metric imperfections, such as that associated with the inter-~
action of neighboring flat spots, would encounter serious

computational difficulties. An indication of the complexities

that would be involved is provided by [6], in which a clamped

2
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r
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ks
3
A
eyt
E
¥
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3
F
"

shallow cap with an asymmetric imperfection is analyzed. An
alternative approach to the development of numerical solutiois
to the exact equations of asymmetrical large deflection shell

theory, would be a search fér approximate solutions which might

'.*V




-/ provide an estimate of the collapse strength albeit at the
expense of an accurate representation of details of the stress

distribution. The first step in this search is described in

this paper.

; Another extension of the problem of the elastic collapse
of the imperfect spherical shell would be the inclusion of ]

local plastic effects in the flat spot region. The importance

I L

of local yielding sn the collapse strength of imperfect spheri-

cal shells has been studied in [7) using the finite element

method. However an approximate analysis which does not require

s AL AR R,

extensive computer time would be a significant aid in practical
d¢ "1gr work

The specific probl~i to be analyzed in this paper is the
axisymmetric elastic collapse of externally pressurized complete

spherical shells possessing a local flat spot. The flat spot

By e SN o S S A SR o s

region is modeled as a shallow éap which is elastically sup-
ported around its edge by the "remainder" of the shell. This

is the same problem studied in [4] using the Rayleigh-Ritz method.
The method to be described in this paper is an extension of that

used in [8] for the analysis of clamped spherical caps and

L WA o B B A AN, e

studied in more detail in [9]. It was shown in [9) that points

on the load-deflection curve of the cap can be determined simply

son bl o G £

by solving a quadratic equation. It is felt that this method,
because of its inherent simplicity, would be suitable for later

generalization to either the problem of multiple, nonisolated,

PR ———Ee L
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flat spots or the elastic-plastic problem if it can ke shown
to yield a satisfactory solution to the isolated flat spot
elastic problem.

In Ref. [9] it was shown that the snap through analysis

of the clamped spherical cap exhibited higher mode solutions.
It was postulated in [9], and confirmed independently in [10],

that these higher mode solutions can be of significance in

Ot b 2 e bl o 2 B

explaining the snap through behavior of the clamped cap,

¥

particularly when these higher modes merge with the lowest

branch of the load deflection curve. The existence of higher

bt SR LEE g

mode solutions for the imperfect spherical shell problem will

be investigated in this paper.

o2 bk e Fd o

Also to be studied in this paper is the question of the

choice of stiffness coefficients at the edge of the flat spot

E:
3

region. Since the flat spot region will be studied with the

PEAPFL 0 RS

use of an approximate analysis, it is appropriate to also consider
the use of approximate stiffness coefficients to represent the

behavior of the "remainder" cf the shell.
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DERIVATION OF GOVERNING EQUATIONS

Shown in Fig. 1 is the spherical shell of nominal radius a
and t.ickness ), with a loca’ flat spot of radius R, > a ex-
tending over & nruz circle of radius R. The shell is subject %o
unifc:» external :-ressure q. Diagrams of the flat spot region
and the remainder of the sphere are shown in Fig. 2 which also
defines ti»e positive directions for the force and moment re-
sultants, HR and Mg, and the horizontal and vertical displace-
ments, u and w, in the flat spot region.

It is assumed that elastic collapse of the shell is caused
by snap through of the flat spot, and that the large deflections
which accompany snap through are confined to the flat spot
region identified in Fig. 2; then the deformation of the remainder
can be characterized by linear theory. This is the same assump-
tion made in [4]. Evidence of the validity of this assumption
is provided in [1] and [3] where plots of the displacement as
obtained by numerical solution of the exact nonlinear equations
show that, even at the pressures corresponding to snap through
collapse, the displacements of the remainder are within the
range of linear theory.

The total potential energy can be expressed as

I=1 +1, . (1)

where Hl represents the total potential energy of the flat spot,
and I, is the total potential energy of the remainder.

g S A S Al 0L, AL AT it
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For symmetrical deformaticns % the flat spot, considered
as a shallow sphericai shell subject to uniform lateral pressure q,

the total potential erergy is

3 R . 2
M, = —TER" " (0 e 2. 2(1-vie,] (22) + (viw)
1 320-v8) o 1 20 2
2 R
- 2(1~v) dw d'w } rdr - 2nq f wrdr (2)
r dr dr? d 0
where
a—- + % + = (a—) + %6- glr" (3)
du u u dw
e I* + T (a'") + ‘R‘E ar (4)

are respectively, the first and second invaciants of the

middle surface.strains and

am —— S S oA LS o & WA T

2
2. . 4w ., 1aw
V.-W—a—r?'*"r—a-f (5)

The approximate method to be used in this paper involves
setting e, =0 in equation (2). This assumption was used by
Nash and Modeer in [8] for the analysis of clamped spherical
caps, and was interpreted by Nash and Modeer as being equi=-
. valent to the assumption that the radial membiane force in
the shell is constant. The snap througﬁ pressure of clamped caps,
computed using this assumption, was shown in [9] to¢ be within

about 158 of the exact values as long as the geometric parameter

2. . 1/4 1/2 ' .
A= 203(1-v7)] R/ (2Rgh) was less than A = 5. Since
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Bushnell [11] has shown (see his Figure 6) that for A > 5, the
imperfect sphere will fail due to bifurcation of the flat spot

region into the asymmetric mode, it is felt that setting

e, = 0 for the elastically supported cap (flat spot region) will '

introduce no more than the 15% error obtained in the case of

the clamped cap. In fact, the relaxation of the clamped con-

. ditions at the edge of the cap is likely to make the assumption

of constant radial membrane force a more realistic approximation

than it is for the clamped cap. Figure 5 in Reference [l] lends

support to this argument.

Denoting the displacements at the intersection of the flat
spot region with the remainder by up and wg (see Figures 1 and 2),

the total potential energy of the remainder can be written as [4]
' 1 dw, _ 1 .
I, =2mR [ 5 M (a;/R 3 Hp up ] (6)

If the following relations are used

(7)
1 Ry

where the subscripts 1 refer to membrane quantities and the

' aubscripts 2 denote the effects of bending, then equation (6)

can be written as

(8)
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where the principle of reciprocity has been used to set

1 1
H, u = H, 1
2 R, Ry 2 R) R,

Assuming that linear shell theory is adequate for describing

the behavior of the remainder, Hp and M, can be expressed in
2

terms of stiffness coefficients as

Hp, = K11 U, * K1z (a-
N l' dw
Mg = K21 g, * K22 (EE’R (9

From membrane theory, we have

R, =" g% - qa/2 (10)

up = - qa(1-~v)R/Eh , ‘ (11)
1

Utilizing equations (2), (9), (10) and (11) together with

the assumption that e, = 0 allows equation (l) to be written as

R 12e,2 2

I = TEh Fa 1_ + (V2w) -
12(T~v?) 0 _‘2'h

2
2{1-v) dw d“w
T a"f;;f’ rdr

R

. 2 2 -
- Ky, (uR; 2 . 9—53%%—213»+ qa “R2 ] :(12)

A w»'a&.ﬁ‘mmx‘;mma.:‘.mu.mm‘u’m.ﬂw:".am&‘;mmwamm‘.mid:ar.-w.ﬂwunmuwmmumm‘.\m.w.&.«'m:»cmm::.w
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| Setting the first variation of equation (12) with respect to .
% u and w equal to zero yields the two governing differential %
3 equations [8] ;
: 3
: e, = - 8°n%/12 (13)
,: viv + 82720 = g - 3%_ (14)
3 0

: where 8 is a constant of integration. The associated con-

ditions at r = R are

b S R A
$EAe g S e TN I F e B L st

nry

WR = (15)

Z
e, + 4oL (k) - Ky, @ -Ky v +aal =0 a8

2
a°w aw R dw 1 . :
R(;-z)n + V(a?)n"' ) [KZZ (a‘E)R + ¥ (Kzl i
- 12’ u'RZI = 0 (17)

WA s S RN il e R et

where

D = En3/12(1-v?).
SOLUTION
The general solution to equation (14) is [8]
w=C,J,(Br) +C +‘2(g-?—L2) (18)
10 2 :B‘i R,

where those solutions which are unbounded at r = 0 have been

i B g e Kl 0 o3 BN Y 5 A2 i et 1t

suppressed and C, and C, are constants of integration. Then

u is determined from equations (3), (13) and. (18) as
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. /]
2,2 2.2 4
=-8"h"r 1 . 2 8°r 2
wm R o e B 5260 - g (en)a, )
Cyq 4 a2 2 3 2 :
1% 2 r 28 r q . 287 E
~ 5=, + 7 (@ - P+ E- @ - 2 (9 ;
g%p 2 168 P Ky sg’r, © %o ;
Jo, Jl' 32 appearing in the above equations are the Besse) %
functions of zeroth, first and second order. It is con~ E
venient at this time to non-dimensionalize the equations by ;
1L introducing the following parameters i

DER D 1y W

p = xr/R

PR (05 T DT I LTI

™
‘

(P15 NE TUPER

<
F
|

2

120~vA)RY/a%?  ote: A% =0t (397
0

= uR/h2

2

o i A oo AN ekt

. 6 2 1/2 -
3 - a K

&

o
L}

[12(1-v3)1374 (a)l/z <
Eh2 h 22

3 ) 2,,1/4 1/2
E * _ [12(1-vT)]17" "6 .a
3 Ry, = 2L 0 ) g,
2,,1/4 1/2
% 12(1-v©)1] 0 ,a
Ka = 1‘“1"§H“"“"(H’ K21

5 eI As b e Pt e

o CIEER T e 0 0 2 N Al AR D

C, = Cy/h : (20)

e 10
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Then equations (18) and (19) transform to

* hd 292 262 a
w=C, J (xp) +C, + [ - (3] (21)
170 2 an12(1-v4 1Y 7 Ry

i S AMES R EOREIR S

; %2 L2
. u = % {- - cl §— [le(xp)- Jo (xp) T, (xp) ]

400 3, (x0)C) e4pz )’
+ + a_
%2 [1211v3) 172 T gaavd) R

RO I TR Y Tt g 3

3 4.2
: - 4848 can (22)

Y X

; i The boundary conditions (15) - (17) become, in nondimensionalized

2 ! form 3
- |i & §§
i - 3
‘s wloay = 90 (23) i
| w2y 11/2 o* % dw 12(1-v ) |2
| = x% - 4002 (24) ;
5 2),1/2 :
1 dw [12(1-v )] * o = ]
1 . { i +V G5+ oKy 5+ 7 (K7 Kpplugh =0 (29) ;

The imposition of the first of these boundary conditions ieads é
directly to the following expression for c; §

2 202 :

Q a
[ - (5] (26)
2[12(1-v2))3/2 ~ 2 T~ 'Ry

1 *
4] Cy = = €} Tt -

p.
C

11
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.
Substituting equations (21), (22) and the nondimension-

alized form of (ll) into the remaining two boundary conditions

(24) and (25) results in

* 2 * 2 _ :
Bl(cl) + (B,+B,0) C; + Dy + DyQ + DQ" = 0 £27)
~
* 2 * 2 _ . "iag
B4(Cy) ™ + (Bg+BLQ) C; + D, + DQ + DcQ” = 0 - (28)

where the Bj«+eBgr Dy...De coefficients do not explicitly .

involve the pressure parameter Q and are listed below:

3/2
_ [121-v¥))

480°>

* o

[le(x) - Jo(x)Jz(x)] x2 Kll .

2 *
2(1-v )le(x)Klz

2 ei" R

o
]

2
_ =2(1-v“)H *
3T 7 Jo(X) Kyq

. 3/4
2
B, = L2UvIL (520 - 3 (07,0017 K],

2 1/4 *
B, = 1;31;53_1_ [(1-v)3; (%) = xT (x) = 67, (x)K;5)x

174 033 (x)K.
Bg = —2[121~v%)) T 212

x2
1/2 2,
p. = J2200v T 2 UKy g a2 2
1 12 62 203 : 4(l-v2) R

+ 2039 Ky, )
o]

. 12
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j
2021 (1=v) 62 » éj
Dy = 6 {2~ U8 g, -2 2 F12 3
i
221" 5 i
-v b
D, = 6~ K 3
3 244 11 g
o e’ ;
-1 {(l=v ) — 4
[12(1-v¥)) E
5
| 2 ,a * §
. (o] q
= 20 07(14+v) _ q_uyvi* 0~ * ke 4
, [12(1-v°)] - ' 3
| 07K} 2
2x [12(1-v®)] &
The reciprocity theorem was used to set K;1 = - K;2 in the
derivation of the above expressions.
If equation (27) is multiplied by B,, equation (28) by
Bl’ and then the two resulting expressions subtracted from
each other, the following equation for c; is obtained:
c* Bl(D4+DsQ+DGQz) - 34 (D1+D20+D3Qz) (30)
=
1 (B4B,-ByBg) + (B4B3~B;Bc)Q
This is then substituted back into equation (27) to obtain,
after some lengthy algebra,

4 3 2
GJQ + G3Q + GZQ + GlQ + Go = 0
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where

i
h
:
Y
E 4
b

b :
_ _ 2 _ _ . :
G, = (Bln6 B,D,) By + (81D6 3403)(3433 ByB)B, %
2 ‘
+ (3433-5136) Dy §
Gy = 2 (ByDg-B,D,) (B,D~B,D;) B, é
§ . + (BlDS-B4D2)(B4B3-BlBG) By §
+ (BIDG-B4D3) [2828334-B1(3286+B3Bs)] 5 é
5
,’ ' - 2 - _ ';
és + DZ(B4B3 3136) + 2D3(B432 8135)(3433 BlBG) ;
3 _ _ o2 4
; G, = 231(Bln4-34nl)(BlD6 B4D3) + (Blns B,D,) “By gg
i
I
+ (8,D4=BD)) (B;B3=B)Bg)By E
i + (9105-3402) [2323334-31(3236+B335)] E
1. 3
+ (BID6-34D3)(B432-8185)82 3
2
+ 01(3433 3136) + 202(3432 BlBS)(B4B3 3136)
: + D,(B,B.,~B.B, )2
‘ 3'%472 "1%s ;
4 ) + (8104-8401) [2828384-81(8286+B385)]

14
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Hence, the equation for determining Q is a quartic, as com-

pared to a quadratic equation for Q in the case of the clamped

Tred ALty

cap. However, by utilizing equations (29) it is found that

SN e A Fa

L/
’
. F

.
This leads to G, = G; = 0 so that equd%ion (31) does in g
fﬁct simplify to a quadratic in Q %
6,0 +6, = 4 &
Q" *+6Q+G = 0 (34)
&
with é
9'%
2 2 §
G2 = Tl Bl + T1T233 + '1‘2 D3 2
2 ' g
G, = 2B,T,T, + T,T,B, + T,°D, + B,TI,T, ‘ ‘E
2
G, = T,2B, + T,T.B, + T,%D (35) .
0 371 27372 2 "1 ?
i
where ; é
i
i
Ty = ByDg = ByD, ;
Ty = ByBy = BB ;
B,Dy = B,D;y (36)
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Since the Gys Gl' Go coefficients are homogeneous in Tl' Tyr T3,

3 any factor common to T,, T,, T; can be cancelled. Substituting

from equaticns (29) into equations (36) yields

2 * 2

]
3
: = K. o(1+ 2k" 2g* 2 :
[12(l-v )] * 2 :
T, 5 {J (x) (1<111<22 + 2K ,°)
26 £
i
S e, 0 -ox 301 ;
) 1 X Jo %
2,,1/2 E
_[12(1-v9)] 2 2% _ a * :
T3 = 5 x° [x K12 (ﬁm) B(l+v)K11 :
20 0
- 0% (3 )(x + 2.9 (37)
11K 22 12

5/4
where the common factor [12(1-v2)] [le(x)~ Jo(x)Jz(x)]/246 ’

has been cancelled.

L e, P e e LR AL M

The load-deflection curve for a given shell (6, a/Ro,v) is
obtained as follows: For a given value of the strain parameter

X, the coefficients Bl,Bz,B3,Dl,D2,D3,'I'l,'rz,'r3 are evaluated using

36 Wity st Tl

equations (29) and (37). Then the coefficients GZ’Gl'GO are
found from equations (35). From equation (34), two values of
the pressure Q are found. For each value of pressure, the con-
stants C; and C; are determined from equations (26) and (30).
Note that as a consequence of the relations (33), equation (30)

reduces to

x  TL04T,
Cl = —;i,-z——' (38)
16
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* * :
With Cl and Cy determined, the displacements w and p are given

as functions of position p by equations (21) and (22).
In order to generate the load-deflection curve it is coa-

venient to introduce the average deflection parameter
2R
= 2[12(1 \2’ )] /  wpdp (39)
0

Though w does not inzclude the deflections of the "remainder"
of the shell, it is still a suitable parameter for locating
ch, the first local maximum on the Q vs. w curve. Utilizing

equations (21) and (26), w can be expressed as

= [12(1 2)11/2 * 1 2920
w= 02 TR L S L (40)

Thus, for each value of x, the two values of Q and their
associated v-lues of w determine two points on the load-
deflection curve. The lowest branch of the load deflection
curve is generated by letting x increase from zero to the
value x, which makes G12 - 4GzG0 vaﬁish. Those values of
X > Xy for which Gl2 - 4G2G0 is positive define points on the
higher mode loops (see Ref. [9]).

As in [9] it is possible to obtain relatively simple ex-
pressions for the "fully snapped through" state (the configura-
tion after snap through for which there is no middle surface
strain) by considering the limiting values of Q and w as x + 0.

The roots of equation (34) are

= [ Z _ 1/2
Q1 2 ( G & (Gl 4G260) ]/2G2 (41)

’
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Combining equations (29), (37), and (35), it is seen that for

x << 1, Gg is of the order x8 while both G1 and G, are of the

order of xG. Thus

lim Ql =0

x-0

lim Q, = lim (-5—) (42)
%x+0 X+0 2

Evaluation of the limitihg value of the ratio in the above

equation leads to

. - 96
lim Q. = : (43)
x+0 . 2 stle§

It can also be shown that for x << 1, equation (40) reduces to

* + * k * 2 *
w =35 { - 3} Q

* * % Y)
[K11(1+v) + e(hllnzz+ 2K12)]

so that utilizing the above expressions for the limiting values

of Q, it is seen that

lim ©, = 0
X+0 1
* * % *2 *
_ -3 [Kll(3+v)+ 6(K11K22+ 2K;,) = 32K, ,/6] 4
lim w, = — { * — 73 - 3} (44)
x-+0 SKll [Kll(l+v)+ 6(K11K22+ 2K12)]

The points (Ql,Ei) and (Qz,ﬁé) for x = 0 represent respectively
the no load and "fully snapped through" states.
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' STIFFNESS COEFFICIENTS *
The solution of the problem cannot be obtained without éj
knowing the stiffness coefficients KIl, Kiz, KSZ' Essentially i%
j exact expressions for the stiffness coefficients of exter- gé
i naily pressurized spherical shells including the pressure %%
Zf é effect were dexrived hy Bushnzall [12]. Bushnell's expressions ;%
i for the stiffness coefficients of the "remainder" of a spheri- :§
f cal shell were simplified by Koga and Hoff [4] in their flat é
é spot analysis for the case of an almost complete "remaiﬂder." %
This corresponds to assuming that the flat spot is small in %
1 extent (R/a << 1), an assumption which has already been used %
3 in equation (10) of this paper. The stiffness coefficients %
f used in [9] are: E
| K1 = 75'2'; 0-eh (,* ¢ 1%
3
" K;Z = Z—o—; [ (l+°) M2 (RoI;~IyR,) - (3-'2'-9-)1/2 (IgI;+RRy) ]
* a* 2,12 2, .2 :
é Koo = = 3;; {(1-Q%) (Ry™ I, ) %
v a-v? -y iR, 2+ 1,2) /6% |
+ 2[1-Q(1+v)] (l;Q)l/z (Rllo- ROIl)/e %
211 1-9, /2
: = 2[1+Q(1+v) ] (=) (RgRy+ I, T,)/0 ) (45)

19
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where

| 12 1/2
0¥ = (1200 (587 T (miR g 1,1 + (1200 B3 (1 R - R T))
212 2 a2,
+ - a0h T %+ 1,000
2
8y = (1-v3 (1-0%) (&% + 1,%)7/0?
' 1-0 1/2 2, 1.2,
+ 2[1-Q(1+v) ] (1+Q) (=5=) (RyIy= RyI4) (Ry7+ I,7)/6
1/2

1+Q

- 2[040(1+v) ] (1-0) (132 (RlR + Io1) (Ry 2+ 1,270

+ (1-20) (140) [(IR))? + (RyI;)21/2

1/2

2
+ 2QR0I0R111 (1-Q%) (R.I

2
I, (IO - Ry (46)

1.2y
o¥o (R 0

+Rl

R, and Io in the above equations are the real and imaginary
parts respectively of the Hankel function of the first kind
of order zero. Similarly Ry and Il are the real and imaginary
par:s of the Hankel function of order one. The argument of

the Hankel funccion is

o 1/2
=6[Q +i (1- Q)] (47)

If equations (45) are used in the expressions for Bl,...,T3
fequations (29) and (37)], it is readily apparent that the

coefficients Gyr Gyy G0 in equation (35) will involve the load Q
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in an extremely complicated fashion. However the very simple
'explicit involvement of Q in equation (34) can still be used

to advanpage in obtaining a solution as follows: rirst, Bl""
T, are evaluated by setting Q = 0 in equations (45)-(47). Then
when a value of.Q is determined from equation (34) this value
is 'used to re-evaluate the stiffness coefficients from equa~
tions (45)-(47). This iterative procedure is continued until
successive values of Q agree. Then the solution procedure
continues with the determination of w. There is of course no
guarantee that the iteration process described above will
converge, Iterative solutions for clamped caps do encounter
convergence difficulties in the neighborhood of ch, and in
fact the pressure at which this loss of convergence occurs is
often defined as Qr (see Ref. [9] fcr a more detailed discus-
giop of this.) On the other hand, the advantage of extending
the technique of [9] to the subject problem of this paper is
that the complete load-deflection curve (including higher modes)
can be generated without recourse to iterative solutions and
their associated convergence difficulties. If the iteration
process described above does lead to convergence difficulties,
the drastic simplifications due to the use of the approximate
solution for the flat spot region are negateé. Hence it is
appropriate to consider using less exact stiffness coefficients’
and in particular, stiffness coefficients which allow the loadi

deflection cuscve to be generated without resorting to iterative

techniques.
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The reason that the use of equations (45) for the stiffness
coefficients requifes iteration to generate the load-~deflection
curve is that the coefficients in equation (34) depend upon the
loading parameter Q. If stiffiness coefficients which are inde-
pendent of Q are used instead of equations (45), then the coef~
ficients in equation (34) will be independent of d, and a
closed form solution for Q is immediately obtainable. One such
set of stiffness coefficients is obtained by setting Q = 0 in

equations (45)-(47). The resulting stiffness coefficients are
the shallow shell approximation to the stiffness. coefficients
obtained by Baker and Cline [13] in terms of Thomson functions.
Since the effect of the external pressure on the stiffness of
the "remainder" is ignored in these expressions, the results
will become inaccurate if the loading on the complete sphere
approaches the buckling load of the "remainder," i.e., as Q-+ 1.
Thus, the use of the Baker and Cline stiffness coefficients
will not permit the present analysis to reduce to that of a
perfect sphere as (%—) + 1, 6n the othexr hand, the analysis.
will become more accgrate as (%70 departs further from unity,
i.e., as the flat spot becomes 8flatter.“ Such an analysis
scrves to complement the imperfection sensitivity study of
'Hutchinson {5] which loses accuracy as %— departs from unity.
As indicated above, the involvement gf Q in equations
(45)-(47) , not only explicitly but also in the argument of

the Hankel functions, leads to concern regarding convergence

L R RET  LTm y . .
o u TR L5 3 XA 77 T TR SO e et e e e ey o
CRIERIAGINS P Yotie :;‘_,.us,.g..,(-f;‘mﬁ;, L P IR T T
N \
R .

B oris

L e 8

R Pt L At e e

,
et g

3
e

e N AR O Y ke 0 4

Al

e s DN T Y T Ay




&
o
¥ on W !
O —————

of any iteration process. This led to consideration of a set

of stiffness coefficients which are independent of Q. Another
approach to simplifying the problem while still retaining the
effect of Q on the stiffness coefficients is to obtain asymptotic
values for the stiffness coefficients for large values of 6.

By taking the limit as 6 + =, equations (45) reduce to

* 1/2

Kll = [2(1"0)]

* —
Kjg =1

* -0)11/2
Koo [2(1-Q)) (48)

These stiffness coefficients are the counterpart of those which
were originally derived by Nachbar [14]) for internally pressurized
spherical shells. Nachbar's original derivation was based on

the assumption that the edge angle of the "remainder" is close

to NI/2, i.e., that the "remainder" is very nearly hemispherical.
However no such restriction is required to derive equations (48)
from equations (45), a:1 since equations (45) are valid for an
almost complete "remainder" (R/a << 1), so are equations (48).
This-raises an interesting point regarding the interpretation of

the parameter

4 2 2

of = 20-vH B B

In most previous work (g) is considered as fixed, so increasing
6 is associated with increasing (g) and hence a less shallow

"remainder." However it is clear that (g) can be kept fixed and
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increasing 0 can then be interpreted as corresponding to a
thinner "remainder." This latter interpretat:on, which is used
in this paper, makes it possible to utilize equations (48) for
other than nearly hemispherical "remainders."

Since equations (48) were derived by taking the limit as
6 + «», the validity of using these expressions for the subject
problem where the range of interest is 6 < 6 has to be examined.
It was shown by Cline [15] in his study of the effect of internal
pressure on the behavior of spherical shells that the influence
coefficients rapidly approach their asymptotic values at relatively
small values of 6. In fact Cline proposed that the asymptotic
values of the influence coefficients be used for 6 > 3, For
externally pressurized spherical shells, Bushnell [12] showed
that when Q > 0.5 the influence coefficients become infinite at
values of 6 which depend on Q. However, according to Bushnell,
the stiffness coefficients for externally pressurized spherical
shells are well behaved and non-zero for all 6., It is reasonable
then to assume that the stiffness coefficients for externally
pressurized sﬁherical shells possess asymptotic behavior as
6 + « which is similar to that of influence coefficients for

internally pressurized spherical shells, i.e., the asymptotic

. form given by equations (48) are sufficiently accurate when

6 > 3.
The use of equations (48) instead of equations (45) repre-

sents a drastic simplification in the form of the coefficients
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in equation (34). However these coefficients will still involve

WIS

terms in which Q is raised to a non-integer power and a closed

b 4

pSt

form solution for Q will not be obt.ainable. While the iteration

T

procedure required to solve the governing equation is likely

to be more stable than when equations (45) are used, there still

ISR e &ty b TR A

cannot be any guarantee of convergence.

The asymptotic stiffness coefficients can be simplified

1
-3
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3
3
.
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g A en

even further by neglecting the pressure effect (setting Q = 0

3 gty

s e v

in equations (48)). The expressions then reduce to the well
¥nown Geckeler [l6]) forra. However whereas the Geckeler stiff--

ness coefficients have previously been thought to be restricted

to nearly hemispherical "remainders," the systematic derivation
1 of these expressions from eguations (45) shows that they are

applicable to any sufficiently thin ®"remainder." The use of

the Geckeler stiffness coefficients allows equation (45) to be
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solved directly via the quadratic formula. The use of these

coefficients can be expected to lead to inaccuracies when either

0 < 3o0r a1,
0
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RESULTS

A computer program was written Lo evaluate the coeffici-nis
GZ' Gl' G0 of equation (34) and to solve equation (34) either
directly when Gys Gl’ Go are independent of Q or by iteration
when Gz, Gl’ Go involve Q. Solutions were obtained for the
four sets of stiffness coefficients described in the previous
section,

As expected, the use of either equations (45) or (48) did
lead to convergence difficulties, primarily when attempting
to compute values of Q in the neighborhood of unity. One
reason for this can best be seen from an examination of equa-
tions (48) which become imaginary when Q > 1. Hence any itera-
tive process which provides intermediate values for Q which
are greater than unity is doomed to failure. Since one of the
main purposes of undertaking the analysis described in this
paper was to avoid convergence difficulties associated with
iterative solutions of the problem, no attempt was made to
refine the iteration process described earlier in this paper.

The computations revealed the presence of higher mode
solutions and a load-deflection curve for 6 = 6, a/R0 = 1/1.05
which includes a higher mode in the form of an isolated loop
is shown in Figure 3. This result was obtained using the exact

stiffness coefficients [equations (45)] and no convergence

difficulties was encountered. Calculations using equation (48)
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were also conducted for this case and the results for the main
branch of the curve duplicate those shown in Figure 3. No
higher mode solutions were sought with the use of equations (48).
A systematic study of higher mode solutions for other values

of 6, a/Ro and other choices of the stiffness coefficients was
not undertaken, since from the results shown in Figure 3 these
solutions appear to be quite similar qualitatively to the higher
mode solutions for clamped caps [9). The influence of these

higher modes on the snap-through behavior of the imperfect

spherical shell can only be explored by refining the approximate
solution for the behavior of the flat spot region along the
lines described in [17]. .

A comparison of the load-deflection curves for various

choices of the stiffness coefficients is shown in Figure 4 for

AL P A T et 8

6 = 3, a/Ro = 1/1.15. Notice that the effect of neglecting Q

Sow ey

in the stiffness coefficients raises the value of Qure This is
to be expected since the effect of the external pressure on the

*remainder" is to decrcase its stiffness. It is interesting to
note that the asymptotic stiffness coefficients [equations (48)]
yield results which are in excellent agreement with those ob-
tained using the exact stiffness coefficients, even at this small
value of 6.

Curves similar to those of Figure 4 were generated for vari-

The snap through pressures obtained

from these curves are plotted in Figure 5 along with the numerical

results from [1l1].
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It is seen that the approximate solutions
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of this paper give relatively good results when 6 * 3, The
errors increase as 0 increases, particularly for the "flatter"
imperfections. The results show that no significant advantage
in accuracy can be gained by using more accurate stiffness
coefficients for the remainder.

Several errors in the original version of equations (29)
were found as this report was being prépared. They were cor-
rected in the manuscript so eguations (29) are correcf as
presented in this report. However these errors were discovered
too late to be corrected in the computer program. Hence the
results shown in Figures 3-5 are not correct. It is expected
that the qualitative nature of ‘the results shown in Figures 3
and 4 will not be affected by new computations based on the
corrected equations; and that significant improvement in the
accuracy of the results shown in Figure 5 will be achieved as
a consequence of incorporating the corrections in the computer.
These new results will be incorporated into the report prior
to its release and distribution according to the attached list.

Since the results indicate that the use of the simplest
stiffness coefficients (equations (48) with Q = 0) is appro-
priate for this problem, explicit evaluation of the fully
snapped through configuration is possible. Substituting equa-
tions (48) with Q = 0 into equations (43) and (44) leads to

x-+0

- 1 96
’];i:)n W= 572(1F0) (5+2v+ m)
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It is of interest to note that these values are independent of

a/Ro and that the value for Q2 is almost identical to that

obtained in [9] for the 'clamped cap.
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