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ABSTRACT

An approximate method is presented for predicting elastic

collapse of complete spherical shells subject to uniform ex-

ternal pressure. The shell contains an imperfection in the

form of an isolated flat spot ind the snap through behavior of

the flat spot region is analyzed. The existence of higher

modes is demonstrated and the effect of various choices for

the stiffness coefficients at the edge of the flat spot is

investigated.
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"INTRODUCTION

The effect of small imperfections on the elastic buckling

strength of complete spherical shells subject to uniform ex-

ternal pressure has been well demonstrated both theoretically

and experimentally in recent years. Several general purpose

computer programs have the capability of analyzing a shell of

revolution with arbitrary meridian and one of these programs [1]

has been used to calculate buckling pressures for spherical

shells with isolated flat spots. The predicted results agreed

well with the experimental results reported in [2]. An anal-

ysis which is valid for spherical shells with arbitrary axi-

symmetric imperfections is presented in [3], while a Rayleigh-

Ritz analysis of the effect of an isolated flat spot is given

in [4]. In addition, an assessment of "imperfection sensitivity"

of spherical shells is provided in [5].

The extension of any of these approaches'to include asym-

metric imperfections, such as that associated with the inter-

action of neighboring flat spots, would encounter serious

computational difficulties. An indication of the complexities

that would be involved is provided by [6], in which a clamped

shallow cap with an asymmetric imperfection is analyzed. An

alternative approach to the development of numerical solutiois

to the exact equations of asymmetrical large deflection shell

theory, would be a search for approximate solutions which might

2
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provide an estimate of the collapse strength albeit at the

expense of an accurate representation of details of the stress

distribution. The first step in this search is described in

this paper.

Another extension of the problem of the elastic collapse

of the imperfect spherical shell would be the inclusion of

local plastic effects in the flat spot region. The importance

of local yielding cun the collapse strength of imperfect spheri-

cal shells has been studied in [7] using the finite element

method. However an approximate analysis which does not require

extensive computer time would be a significant aid in practical

dc xgr work

The specific problor to be analyzed in this paper is the

axisymmetric elastic collapse of externally pressurized complete

spherical shells possessing a local flat spot. The flat spot

region is modeled as a shallow cap which is elastically sup-

ported around its edge by the "remainder" of the shell. This

is the same problem studied in [4] using the Rayleigh-Ritz method.

The method to be described in this paper is an extension of that

used in [8] for the analysis of clamped spherical caps and

studied in more detail in [9]. It was shown in [9] that points

on the load-deflection curve of the cap can be determined simply

by solving a quadratic equation. It is felt that this method,

because of its inherent simplicity, would be suitable for later

generalization to either the problem of multiple, nonisolated,

3
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Y) flat spots or the elastic-plastic problem if it can be shown

to yield a satisfactory solution to the isolated flat spot

elastic problem.

In Ref. [9] it was shown that the snap through analysis

of the clamped spherical cap exhibited higher mode solutions.

It was postulated in [9], and confirmed independently in [10],

that these higher mode solutions can be of significance in

explaining the snap through behavior of the clamped cap,

particularly when these higher modes merge with the lowest

branch of the load deflection curve. The existence of higher

mode solutions for the imperfect spherical shell problem will

be investigated in this paper.

Also to be studied in this paper is the question of the

choice of stiffness coefficients at the edge of the flat spot

region. Since the flat spot region will be studied with the

use of an approximate analysis, it is appropriate to also consider

the use of approximate stiffness coefficients to represent the

behavior of the "remainder" cf the shell.

4
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7 DERIVATION OF GOVERNING EQUATIONS

Shown in Fig. 1 is the spherical shell of nominal radý.us a

an, i:..,ickness h, with a loca', flat spot of radius R0 > a ex-

tendt' .,• ový-.r a os circle of radius R. The shell is subject to

unifc.:.; extern,.'. c,.essure q. Diagrams of the flat spot region

and the remainder of the sphere are shown in Fig. 2 which also

defines tlie positive directions for the force and moment re-

sultants, HR and MR, and the horizontal and vertical displace-

ments, u and w, in the flat spot region.

It is assumed that elastic collapse of the shell is caused

by snap through of the flat spot, and that the large deflections

which accompany snap through are confined to the flat spot

region identified in Fig. 2; then the deformation of the remainder

can be characterized by linear theory. This is the same assunp-

tion made in [4]. Evidence of the validity of this assumption

is provided in [E] and [3] where plots of -he displacement as

obtained by numerical solution of the exact nonlinear equations

show that, even at the pressures corresponding to snap through

collapse, the displacements of the remainder are within the

range of linear theory.

The total potential energy can be expressed as

where T1 represents the total potential energy of the flat srot,

IJ• and 12 is the total potential energy of the remainder.



For symmetrical deformaticns o, the flat spot, considered

as a shallow spherical ,Phe~l subject to uniform lateral pressure q,

the total potential energy i1

H Eh3 R 2 12 22
2[ - 2(-ve 2  h- + (VW)

2 Rr2(-v) - dr w rdr- 2q f wrdr (2)
r dr 0

where
2

e du u 1 dw r w (3)Ur r IT Fr + iR0 -• 3

udu u dw 2 dw= + •• o (4)

0

are respectively, the first and second invariants of the A

middle surface.strains and

d 2w + I2 dw
2.. =~ d (5)

dr

The approximate method to be used in this paper involves

setting e2 = 0 in equation (2). This assumption was used by

Nash and Modeer in [8] for the analysis of clamped spherical

caps, and was interpreted by Nash and Modeer as being equi-

valent to the assumption that the radial membrane force in

the shell is constant. The snap through pressure of clamped caps,

computed using this assumption, was shown in [9] tco be within

about 15% of the exact values as long as the geometric parameter
1/4 1/2

A - 2!3(1-v2 )J R/(2R0h) was less than X = 5. *Since

6
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Bushnell [11] has shown (see his Figure 6) that for X > 5, the

imperfect sphere will fail due to bifurcation of the flat spot

region into the asymetric mode, it is felt that setting

e - 0 for the elastically supported cap (flat spot region) will

introduce no more than the 15% error obtained in the case of

the clamped cap. In fact, the relaxation of the clamped con-

ditions at the edge of the cap is likely to make the assumption

of constant radial membrane force a more realistic approximation

than it is for the .clamped cap. Figure 5 in Reference [11 lends

support to this argument.

Denoting the displacements at the intersection of the flat

spot region with the remainder by uR and wR (see Figures 1 and 2),

the total potential energy of the remainder can be written as [4]

H 1 dw, 1 (6)
i2 24RM[7MR a•a HR uR

R

If the following relations are used

HRI HR1 + HR2
uRUR + 21(7

1 2

where the subscripts 1 refer to membrane quantities and the

subscripts 2 denote the effects of bending, then equation (6)

can be written as

2 R R 1UR 1 (8) R"•'J ½ HR2 UR2

7 8
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K where the principle of reciprocity has been used to set

R2 R1 = HR1 UR2

Assuming that linear shell theory is adequate for describing

the behavior of the remainder, HR and can be expressed in
2

terms of stiffness coefficients as

HR2 + K11 .K1  (dw)
2 '2 + rR

+ K2 (9)
X2 MR~ uR 2K 2 2 (Pr) (9

From membrane theory, we have

qa 7l-(/a)2 (10)HR• " 2 - qa/2 (0

U - qa(l-vR/Eh (11)UR1

Utilizing equations (2), (9), (10) and (11) together with

the assumption that e 2 = 0 allows equation (1) to be written as

$Eh3  R 2e 22 2(-) dw d2w
17(1-0) [-h- + (V w) - r- dwr--] rdr

0 h r dr~7 d

R dw 2 dw- 2¶q 0 wrdr +irR[K ,),+ (K2 1 - K) M-) UR
0 R R 2

2 C a2 (l-v) R

" KI " lUR2 2Eh uR2



Setting the first variation of equation (12) with respect to

u and w equal to zero yields the two governing differential

equations [81

e- - 2h2/12 (13)

v w + 0-v2. • - (14)
D R

where 0 is a constant of integration. The associated con-

ditions at r - R are

w o (15)

el + 2Bh [(K21- K1 2 )(-- R 1K(l uR2 + qa) = 0 (16)

R2
d2w + dwRw dw +1 (KR(=) + + MK
dr R R R 2

-K12) UR 1-0 (7
S 2

where

D - Eh 3/12(l-v 2

SOLUTION

The general solution to equation (14) is [81

2 2
w - C1JO(or) + C2 + r(- 210) (18)

where those solutions which are unbounded at r = 0 have been

suppressed and C1 and C2 are constants of integration. Then

u is determined from equations (3), (13) and. (18) as9L



- 24 "r {C1 2 q [J 1
2 (or) - J 0 (or) J.,Ar)]

r 4  222 3 2
ClCA r2(} +20• + r D 2r (19)

2Dw 160 "0 80 R D 0~

J 0  J1' J2 appearing in the above equations are the Besse!.

functions of zeroth, first and second order. It is con-

venient at this time to non-dimensionalize the equations by

introducing the following parameters

p r/R

i0 w/h

Q V'3 (l-v2)Z 2
2Eh 2

x= OR
64 1211-v)R /a 2h2  [Note: X4 e 1 2

2 0
p uR/h 2

o2 1/2
ll E [12 (1-v1 ]H/ •' l

, 2 -[12 (1-v 2 ] 3/ 4  1/2
K22 h2 'K2 2

K [12(1-v 2 1] /e a1/2
12 Eh K12

,2 - [12(11v 2) 12 1/40 a1/2
21 Eh K2 1

* Cl/h

c2 C 2 /h (20)

10



Then equations (18) and (19) transform to
W C* Jo(P + Ce + 2 , 2 "20 2Q (0 )] (21)

x2 *2 X2
r2- _ cl z- [ 1 2(xP)- Jo (xP)j2 (xP)]

404Q J.2 (xP)C 1  4 2

x [12,1_v 2 )]H/ 2  48(1-v 2)

- ,..., (22)
X4

The boundary conditions (15) - (17) become, in nondimensionalized

form

Wp =o (23)

{[2 21V)]12 * * d 1/2(*
( 2 o v_] KI[p }

= x2- 4Q0 2  (24)

___ 2w OK2  + 2(IK* - K1 h 2  0 (25)
dp2  d22 [12 (1-v 2 ) 1 2 ]*1

The imposition of the first of these boundary conditions leads

directly to the following expression for C2

C , • .(x ..,-I--r--2 .,I2e2Q (26)

C)

11
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Substituting equations (21), (22) and the nondimension-

alized form of (11) into the remaining two boundary conditions

(24) and (25) results in

*2 ~ *+ + 2
Bi(C*) + (B2 +B3 0) C + D1 + D2Q + D -Q 02)

*2 1 D62 3 1(28)

B4 (CI) + (B5 +B6 Q) C1 + D4 + D5 Q + = 0 (28)

where the B1... B6, D1 ... D6 coefficients do not explicitly

involve the pressure parameter Q and are listed below:
23/2

12 (1-v 2 2
B1 0 12(I-v2 ) J(x) 2  11

2

x2 *

3/4 22i

4 [J 1
2 (x) - Jo(x)J 2 (x)]x K1 2

[1(1-v 2) 1/4 
•

B- [(l-V)J (x) - xJo(x) " OJ(x)K2]x I
5 e 1 o 22

1/4 03 J 2 (x)KI 2
B6 = -2[12(1-v 2) ] 2

2 1/2 (1-v2)K* 4 2D 1 - ("1v )••1 a 2 -
112 0 20 3 4(1-v 2) ) -

+ 2(-) K12
0

* 12



'11 Z4

1/2
(12(1-V H *____ -

___ __ __ __1/2

D3 4 K
24x

S 1/4 (1111+v1 + 1" 2 1 * (14 2

[12 (1-"v2 1 0

2a K
+ e K*

+0 22
02 2  + ) K2 2 3D 5 174[ 2 (I V))K12 + x K22]"

[12(1-v ) X
07K12 19

D6 = )1/4 (
2 4 i - 2

2x [12 (1-v .

The reciprocity theorem was used to set K21 - KI2 in the I
derivation of the above expressions.

If equation (27) is multiplied by B4, equation (28) by A

B1, and then the two resulting expressions subtracted from ]
each other, the following equation for C is obtained:

BI(D 4+D5Q+D6Q 2 )_B(D+DQ+DQ 2 )
C1  1 24 B15  ) 6 41 2 3Q (30)-BB B4 B3 -BlB6 )Q"1 5) + (B 3Q 6)0 -Q

This is then substituted back into equation (27) to obtain, :

after some lengthy algebra, I

G4Q4 +G 3 Q3 +G 2Q2 + GQ+G - 0 (31)

4-,3Q. .-.



where

2

(B D6 -B 4 D3 ) B1 + (BID6 -B 4 D3 ) (B4 B3 -BEB6 3

+(B4B -BB 6 ) D3

G3= 2 (BED 5 -B 4 D2 ) (B1D6 -B 4 D3 ) B1

+ (B Ds-B 4 D2) (B4B3 -BIB 6 ) B3

+ (BID6-B 4 D3 ) [2B2 B3B4 -BB (B2 B6 +E3 B5 )]

+ D2 (B4 B3 -BIB6 ) + 2D 3 (B4 2 -BB5) (B4B3-BIB 6 )

G2 . = 2B 1 (BID4 -B 4 DI) (B1D6 -B 4 D3D + (BID5-B4D2) 2B

+ (BID4-B 4D1 )(B 4B3 -BIB6 )B3

+ (B1 D5 -B4 D2 ) [2E 2 B3 B4 -BI (B2B6+B3B5 ) ]

+ (B D6-B 4 D3 ) (E4 B2 -BIB5 )B2

+ D1 (B4 B3 -B 1 B6 )2 + 2D2 (B4 B2 -B 1 B5) (B4 B3 -B1 B6 )

+ D3 (B4 B2 BIB5 ) 2

G1 - 2B 1 (B1 D4 -B 4 D1 ) (BID5 -B 4 D2 )

+ (B1 D4 -B 4 D1 ) [2B2 B3 B4 -BI(B 2 B6 +B3 B5 ) ]

+ B2 (B1 D5 -B 4 D2 ) (B4 B2 -BIB 5 )

14



+ 2D1 (B4 B2 -B1 B5 ) (B4 B3 -P 1 B66 + D2 (B4 B2 -B1 B5 )

GO 0 (B1 D4-•4D 1 )2 B1 + (B1 D4 -B 4 D1 ) (B4 B2 -BlB5 )B 2

S+ D 2BB4 B2 _BB5 ) 2 (32)

Hence, the equation for determining Q is a quartic, as com-

pared to a quadratic equation for Q in the case of the clamped

cap. However, by utilizing equations (29) it is found that

B1 D6 - B4 D3 D 0

B4 B3 - BIB6  S 0 (33)

This leads to G4 = G3 = 0 so that equation (31) does in

fact simplify to a quadratic in Q

GQ+ GQ+ G =0 (34)
2 1 0.

with

22G =T B 22 1 + TT 2 B3 +T 2 D 3

+ + 2G1 2BTT 3 + T3 T2 B3 + T2 D2 + B2 TIT2

G • 2 B + T2 T3 B2 + T2
2 D1  (35

where A

T1 .B 1 D5 - B4 D2

2 B4 B2  B B5

T3  B1 D4 - 24 D1  (36)

15



Since the G2 , Gi, Go coefficients are homogeneous in T 11 T2 , 3

any factor common to T1, T2 , T3 can be cancelled. Substituting

from equations (29) into equations (36) yields

TK (1+v) * 2 * * * 2
T 1K (+ -2K 1 2  11 22+ 2K12 )

H [12(1-v2l/ H* *2
T2 = 2( 2 x3 {Jl(x)(KIIK2 2 + 2K

2 1 22 1*22)
202 •

K
-T [(l-v)J1 (X) -.x J 0 (x)]1

[1(-2  1/2[12(1-• 2 2 *
T [x K1 2 - (-) 0(1+v)KII

20 1
2 * * 2

e2 (2-)(KIK2 2 + 2(37)
R 0 11 2K 12 )"I •5/4

where the common factor [12(i-v 2 )] -2 [ - J (x)J2(x) ]/246

has been cancelled.

The load-deflection curve for a given shell (0, a/R0 ,v) is

obtained as follows: For a given value of the strain parameter

x, the coefficients B1 ,B2 ,B3 ,DI,DD 3 ,T1 ,T2 ,T 3 are evaluated using

equations (29) and (37). Then the coefficients G2 ,G1,G 0 are

found from equations (35). From equation (34), two values of

the pressure Q are found. For each value of pressure, the con-
* *

stants C1 and C2 are determined from equations (26) and (30).

Note that as a consequence of the relations (33), equation (30)

reduces to

, TIQ+T 3
C = T2  (38)

16
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With C1 and C2 determined, the displacements w and p are given

as functions of position p by equations (21) and (22).

In order to generate the load-deflection curve it is coa-

veni(nt to introduce the average deflection parameter
S=2[2(1-V2 ]J/

2( 2(1-1 I wpdp (39)0 0

Though 7 does not include the deflections of the "remainder"

of the shell, it is still a suitable parameter for locating

Ocr' the first local maximum on the Q vs. U curve. Utilizing

equations (21) and (26), i can be expressed as

21/2
= [12(1-v ) ] a W- 1 20 2 Q a (40)02 1 2 4 )2 R4o

Thus, for each value of x, the two values of Q and their R

associated vplues of U determine two points on the load-

deflection curve. The lowest branch of the load deflection

curve is generated by letting x increase from zero to the

value xM which makes G, - 4G2Go vanish. Those values of
22

x > xM fnr which G, - 4G 2 G0 is positive define points on the

higher mode loops (see Ref. [93).

As in [91 it is possible to obtain relatively simple ex-

pressions for the "fully snapped through" state (the configura-

tion after snap through for which there is no middle surface

strain) by considering the limiting values of Q and • as x ÷ 0.

The roots of equation (34) are

2 1/2 Q

', -G[ I (GI2 " 4G2 G0 )I/]/2G 2  (41)

17
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!

Combining equations (29), (37), and (35), it is seen that for

x << 1, GO is of the order x while both G and G are of the
6order of x Thus

lim Q1 0
x+0

Glimr 2 limr G (42)
x÷0 x-o - 2

Evaluation of the limiting value of the ratio in the above

equation leads to

-96
ln Q2 = -62 (43)
xe0 5Kl 0

It can also be shown that for x << 1, equation (40) reduces to
•* * 1 *22 *

_ o2 [KII(3+v)+e(KIIK2 2 + 2K1 2 )- 32K1 2 /0] 4
32 [KII(I+V) + O(KII* 22+ 2K1 2) ]

so that utilizing the above expressions for the limiting values

of Q, it is seen that

lira 1=0
X+0

lim-3 [KI 1 (3+v)+ e(KIIK22+ 2K.2)- 32K12/1 .4

x10 5KII [KI (1+v)+ e(KIIK2 2 + 2KI)] 3

The points (Q,1 I;) and (Q2 1U2 ) for x = 0 represent respectively

the no load and "fully snapped through" states.

:1 18
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STIFFNESS COEFFICIENTS

The solution of the problem cannot be obtained without
* * *

knowing the stiffness coefficients Kll, K1 K22. Essentially

exact expressions for the stiffness coefficients of exter-

naily pressurized spherical shells including the pressure

effect were derived by Bushnell [12]. Bushnell's expressions

for the stiffness coefficients of the "remainder" of a spheri-

cal shell were simplified by Koga and Hoff [4] in their flat

spot analysis for the case of an almost complete "remainder."

This corresponds to assuming that the flat spot is small in

extent (R/a << ), an assumption which has already been used

in equation (10) of this paper. The stiffness coefficients

used in [9] are:
* A* 1/2 2 2

KII o (I-Q2) R +I

1 1/0

=A* 1 (+0 1/2 - 1/2
12 * (R0 11-I 0R1 ) -(2) (I 0oI+RoRI) ]

0

K* A" 1/2
22 - 0  0

0

l2_ 1 / 2+ 1V2)102 (RI2 + I12)/02

+ 211-0(1+v)] 3+%1/2 (RII0 RO1I)/6

2~~~ ~ 01•1• 0 1•• /

- 2[l+Q(1+v)] (=e) (R0 R1 + o10Il)/8 (45)

19
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where

A (1+2Q) (1-) /2(R 1 R0 + IiI0) + (1-20) (=P) 1/2(IR 0- R1 )

21/2 2 2
+ (v-l)(1-Q). (R1  + I1 )/0

A0  -)(1-v Q2 ) (R1 + 122/1 2

l-Q) 1/2 2 2.

+ 2[1-Q(+v) ] (+Q) .(=-) (R1 10 - R0 II) (RI 2 + 112)/6

2[l+Q(l+v) ] (l-Q) (RR0/+ Iil) (R+ 121 ]

+ (1+2Q)(l-Q)[(RoR1 ) 2 + (1012) 1/2 )]/

2 2+ (1-2Q) (l+Q) [((0R1) + (R01I) 1/2

+ 2QR 0 1 0 R1 11 - Q2 (RoI0 (R1 2_ 1 2

+ RI 1 (102- R02 H (46)

R0 and 10 in the above equations are the real and imaginary

parts respectively of the Hankel function of the first kind

of order zero. Similarly R1 and I1 are the real and imaginary

parts of the Hankel function of order one. The argument of
A

the Hankel function is

1/2
z = M[0 + i (1- 0')] (47)

If equations (45) are used in the expressions for B1,...,T3

[equations (29) and (37)], it is readily apparent that the

coefficients G2 , G1 , Go in equation (35) will involve the load Q

2
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in an extremely complicated fashion. However the very simple

explicit involvement of Q in equation (34) can still be used

to advantage in obtaining a solution as follows: kirst, B1 ,...

T3 are evaluated by setting Q = 0 in equations (45)-(47). Then

when a value of.Q.is determined from equation (34) this value

is used to re-evaluate the stiffness coefficients from equa-

tions (45)-(47). This iterative procedure is continued until

successive values of Q agree. Then the solution procedure

continues with the determination of i. There is of course no

guarantee that the iteration process described above will

converge. Iterative solutions for clamped caps do encounter

convergence difficulties in the neighborhood of ncr' and in

fact the pressure at which this loss of convergence occurs is

often defined as Qcr (see Ref. [9] for a more detailed discus-
i*I

sion of this.) On the other hand, the advantage of extending

the technique of [9] to the subject problem of this paper is

that the complete load-deflection curve (including higher modes)

can be generated without recourse to iterative solutions and

their associated convergence difficulties. If the iteration

process described above does lead to convergence difficulties,

the drastic simplifications due to the use of the approximate

solution for the flat spot region are negated. Hence it is

appropriate to consider using less exact stiffness coefficients*

and in particular, stiffness coefficients which allow the load-

deflection curve to be generated without resorting to iterative

techniques.
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The reason that the use of equations (45) for the stiffness

coefficients requires iteration to generate the load-deflection

curve is that the coefficients in equation (34) depend upon the

loading parameter Q. If stiffness coefficients which are inde-

pendent of Q are used instead of equations (45), then the coef-

ficients in equation (34) will be independent of Q, and a

closed form solution for Q is immediately obtainable. One such

set of stiffness coefficients is obtained'by setting Q = 0 in

equations (45)-(47). The resulting stiffness coefficients are

the shallow shell approximation to the stiffness coefficients

obtained by Baker and Cline [13] in terms of Thomson functions.
J

Since the effect of the external pressure on the stiffness of
the "remainder" is ignored in these expressions, the results

will become inaccurate if the loading on the complete sphere

approaches the buckling load of the "remainder," i.e., as 1.

9 Thus, the use of the Baker and Cline stiffness coefficients

will not permit the present analysis to reduce to that of a

perfect sphere as ( 1) 1. On the other hand, the analysis.
0

will become more accurate as (a_) departs further from unity,
0

i.e., as the flat spot becomes "flatter." Such an analysis

sorves to complement the imperfection sensitivity study of
aHutchinson (51 which loses accuracy as R departs from unity.

0

As indicated above, the involvement of Q in equations

(45)-(47), not only explicitly but also in the argument of

the Hankel functions, leads to concern regarding convergence
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of any iteration process. This led to consideration of a set

of stiffness coefficients which are independent of Q. Another

approach to simplifying the problem while still retaining the

effect of Q on the stiffness coefficients is to obtain asymptotic

values for the stiffness coefficients for large values of 0.

By taking the limit as 8 e =, equations (45) reduce to

Kll -

K12=1

* 1/2Kphrc [2(s-Q)h (48)

These stiffness coefficients are the counterpart of those which 1

were originally derived by Nachbar [14] for internally pressurized
i spherical shells. Nachbar's original derivation was based on

the assumption that the edge angle of the "remainder" is close

to n/2, i.e., that the "remainder" is very nearly hemispherical.

However no such restriction is required to derive equations (48)

from equations (45), a.I since equations (45) are valid for an

almost complete "remainder" (R/a << 1), so are equations (48).

This raises an interesting point regarding the interpretation of

the parameter

4'2 R 2 2

In most previous work (1j) is considered as fixed, so increasing

Sis associated with increasing (R) and hence a less shallow

"remainder." However it is clear that (a) can be kept fixed and
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increasing 0 can then be interpreted as corresponding to a

thinner "remainder." This latter interpretat.on, which is used

in this paper, makes it possible to utilize equations (48) for

other than nearly hemispherical "remainders."

Since equations (48) were derived by taking the limit as

o e •, the validity of using these expressions for the subject

problem where the range of interest is 0 < 6 has to be examined.

It was shown by Cline [153 in his study of the effect of internal

pressure on the behavior of spherical shells that the influence

coefficients rapidly approach their asymptotic values at relatively

small values of 6. In fact Cline proposed that the asymptotic

values of the influence coefficients be used for e > 3. For

externally pressurized spherical shells, Bushnell [12] showed

that when Q > 0.5 the influence coefficients become infinite at

values of e which depend on Q. However, according to Bushnell,

the stiffness coefficients for externally pressurized spherical

shells are well behaved and non-zero for all e. It is reasonable

then to assume that the stiffness coefficients for externally

pressurized spherical shells possess asymptotic behavior as

0 ÷ which is similar to that of influence coefficients for

internally pressurized spherical shells, i.e., the asymptotic

form given by equations (48) are sufficiently accurate when

0>3.

The use of equations (48) instead of equations (45) repre-

sents a drastic simplification in the form of the coefficients
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in equation (34). However these coefficients will still involve

terms in which Q is raised to a non-integer power and a closed

form solution for Q will not be obtainable. While the iteration

procedure required. to solve the governing equation is likely

to be more stable than when equations (45) are used, there still

cannot be any guarantee of convergence.

The asymptotic stiffness coefficients can be simplified

even further by neglecting the pressure effect (setting Q = 0

in equations (48)). The expressions then reduce to the well

known Geckeler [16] form. However whereas the Geckeler stiff--

ness coefficients have previously been thought to be restricted

to nearly hemispherical "remainders," the systematic derivation

of these expressions from equations (45) shows that they are

applicable to any sufficiently thin 'remainder." The use of

the Geckeler stiffness coefficients allows equation (45) to be

solved directly via the quadratic formula. The use of these

coefficients can be expected to lead to inaccuracies when either

8<3 or- i 1.

25
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RESULTS

A computer program was written to evaluate the coeffici.tnis

G2 , G1 , Go of equation (34) and to solve equation (34) either

directly when G2 , Gl, Go are independent of Q or by iteration

when G2 , G1 , GO involve Q. Solutions were obtained for the

four sets of stiffness coefficients described in the previous

section.

As expected, the use of either equations (45) or (48) did

lead to convergence difficulties, primarily when attempting

to compute values of Q in the neighborhood of unity. One

reason for this can best be seen from an examination of equa-
tions (48) which become imaginary when Q > 1. Hence any itera-

tive process which provides intermediate values for Q which

are greater than unity is doomed to failure. Since one of the

main purposes of undertaking the analysis described in this

paper was to avoid convergence difficulties associated with

iterative solutions of the problem, no attempt was made to

refine the iteration process described earlier in this paper.

The computations revealed the presence of higher mode

solutions and a load-deflection curve for 0 = 6, a/R 0 = 1/1.05

which includes a higher mode in the form of an isolated loop

is shown in Figure 3. This result was obtained using the exact

stiffness coefficients [equations (45)] and no convergence

difficulties was encountered. Calculations using equation (48)
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were also conducted for this case and the results for the main

branch of the curve duplicate those shown in Figure 3. No

higher mode solutions were sought with the use of equations (48).

A systematic study of higher mode solutions for other values

of 0, a/R 0 and other choices of the stiffness coefficients was

not undertaken, since from the results shown in Figure 3 these

solutions appear to be quite similar qualitatively to the higher
mode solutions for clamped caps [93. The influence of these

higher modes on the snap-through behavior of the imperfect

spherical shell can only be explored by refining the approximate

solution for the behavior of the flat spot region along the

lines described in [17].

A comparison of the load-deflection curves for various

choices of the stiffness coefficients is shown in Figure 4 for

6 = 3, a/R0 = 1/1.15. Notice that the effect of neglecting Q

in the stiffness coefficients raises the value of Qcr" This is

to be expected since the effect of the external pressure on the

"remainder" is to decrease its stiffness. It is interesting to

note that the asymptotic stiffness coefficients [equations (48)]

yield results which are in excellent agreement with those ob-

tained using the exact stiffness coefficients, even at this small

value of 0.

Curves similar to those of Figure 4 were generated for vari-

.ous values of 0 and a/R0 . The snap through pressures obtained

from these curves are plotted in Figure 5 along with the numerical

results from [11]. It is seen that the approximate solutions
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of this paper give relatively good results when 0 = 3. The

errors increase as 0 increases, particularly for the "flatter"

imperfections. The results show that no significant advantage

in accuracy can be gained by using more accurate stiffness

coefficients for the remainder.

Several errors in the original version of equations (29)

were found as this report was being prepared. They were cor-

rected in the manuscript so equations (29) are correct as

presented in this report. However these errors were discovered

too late to be corrected in the computer program. Hence the

results shown in Figures 3-5 are not correct. It is expected

that the qualitative nature of the results shown in Figures 3

and 4 will not be affected by new computations based on the

corrected equations; and that significant improvement in the

accuracy of the results shown in Figure 5 will be achieved as

a consequence of incorporating the corrections in the computer.

These new results will be incorporated into the report prior

to its release and distribution according to the attached list.

Since the results indicate that the use of the simplest

stiffness coefficients (equations (48) with Q = 0) is appro-

priate for this problem, explicit evaluation of the fully

snapped through configuration is possible. Substituting equa-

tions (48) with Q = 0 into equations (43) and (44) leads to

6 47

lim 12= 2 96
lr 5V2(i+v) (5+20+ )2x•0
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It is of interest to note that these values are independent of

a/R0 and that the value for Q2 is almost identical to that

obtained in [9] for the clamped cap.
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Figure 2. Force and Moment Resultants at Edge of Flat Spot
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