BOLT BERANEK AND NEWMAN

CO NS ULT I NG

INC

D EV ELCPMENT +« R E 5 EARCH

#

-,

BBN Report No. 2304

LINEAR PREDICTION AND THE SPECTRAL ANALYSIS OF SYEECH

© by

e s‘ John I. Makhoul
- Jared J. Wolf
®p)

<H

[ﬁo

=

=}

Technical Report
Submitted to:

Advanced Research Projects Agency
1400 Wilson Blvd. Repraduced b
09'0 e y
Arlingtgn, Vir gtnia 22209 NATIONAL TECHNICAL
INFORMATION SERVICE

U S Depurtmunt of Commarce
Springfisld VA 20190

Attention: Dr. L. G. Roherts

This research was supported.by the Advanced Research

Projects Agency of the De artment f Defense under
Contract No. ANC

W
”’%ﬁmwl?nmhd

31 August 1972



. T Aty %m_ .xﬁw‘tgss‘/“f}\ T %_;;‘4 .

Unclassified

Secunty Classiitcation

DOCUMENT COMTROL DATA-R & D

Novnrets cdas ddication of titdc ody of b ttact aad ade i e tatiote nnest e ptercd whea e ovoradl report ool fied)

nul:.B-\AlT{'N(.BAC Tivity gc(‘ur,mr.éa ‘“t\’?”m” @ KEPORT 5t CURIT Y CLASSIE IC AYION
olt Beranex and Hewman Inc. s

U
50 Moultor: Street ”,cmﬁflaSSLfled

Cambridge, Massachusetts 02138

vV REPORY 11T €

Linear Prediction and tha Spectral Analysis of Speech

4 DESCR'PTIIVE NOTES (Typt of report and, inclusive doten)
Technical Report
s AU THORIS) (Frrst name, middle vittial, {43t name)

1) John I. Makhoul
+ Jared J. Wolf

% RACPORT DATC 74, TOTAL NO OF PAGES D NO OF REFS
>
31 August 1972 237 55
88 CONTRACT OR GHANT NO 20 ORIGINATOR'S REPORT NUMBE R(S)

DAHC15-71-C-0088

b, PROJEC T NO -

- BBN Report No. 2304

N 'k OTHER REPORT NOIS) (Any other numbers that may be assigned
this report)

none

10 DISTRIBUTION STATFMENT

Distribution of this documen* is unlimited.

11 SUPPLEMENTARY NDTES 12 SRONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
1400 wWilson Blvd. ’
Arlington, Virginia 22209

.

17 ABSTRNCTY ™

This report gives a detailed treatment of the use of linear
pred.ction in speech analysis. New concepts are developed arnd more
€amiliar concepts are seen in a new way. The Covariance and Auto-
correlation methods are derived in the time and frequency domaias.
Both methods are shown to be derivable from a more general concept,
that of generalized aralysis-by-synthesis, where a nonstationary
two-dimensional spectrum is approximated by another model spectrum.
Linear prediction analysis is a special casc where the model spactrum
1s all-pole. Also, under the assumption of stationarity the general
Covarianze method .educes tc the Autocorrelation method. The nor-

its usefulness as a voicing detector anéd as a dete¢ "miner of the
optimum Jumber of predictor coefficients are discussed. The applica-
tion of linear prediction tc pitch extraction and formant ar.alvsis is
carefully examined. Specific issues discussed include the adequacy
of an all-pole model for formant extraction, pitch-synchronous and
pitch-asynchronous analysis. window’'ng, preenphasis, and formant
extracticn by peak picking.

malized error is defined. Its relation to the cepstral zero}qﬁ?frency;-h‘

DD Form 1473 iract b ) Unclassified .

S/N Q1Gi-807-u811

Secanty Classification

sl s N e A A A bR s at et Epek o o e L e ) .

PILS T PN 2 T PRTY

Sl A,

8 N Y AR s S R AN LA 4V A s M AT 8 A A I RAVESACL 55 LI oS A M, 4ok P




PEAFIR AT,

e AT Rl s

48

s

pPae ot o oy e o
E3 ot EEh T AF R iBART

TR eI

- o

~

Unclaggified

ecunty Classification

KEY WORDS

LINK A

LINK B

Liw &

ROLE wT

nGLE wT

ROLCK

wY
———

Linear Prediction

Predictive Coding

Prony's Method

Time-Domain Analysis

Spectral Analysis

Nonztationary Spectral Analysis
Two-Dimensional Short-Time Spectra
Speech Analysis
Analysis-by-Synthesis

Generalized Analysis-by-Synthesis
Inverse Filtering

Signal Processing

FFT Pruning

Cepstral Analysis

Minimum~Phase Sequences

Voicing Detection

Pitch Extraction

Formant Extraction

Windewing

RD VL1473 teaca \b

REANE R EA AL AN RN !

Security Cinxarfization

L-31e09

i e KR S T ey 5 s 2 1y S o TR 5
7 it by 4 LT R B by £ b saad e R PR SRS < e e ; it aia)



SRR S S SRS Sl SN A0 L Y it N N i T e s et

- - - o ———— = e e e e e 0 vt PRV

BBN Report No. 2304 31 August 1972

e B AR W . fomi— By e S e~ 4m o 48 & e meenim

LINEAR PREDICTION AND THE SPECTRAL ANALYSIS OF SPEECH

by

John I. Makhoul

Jared J. Wolf

Bolt Beranek and Newman Inc.
50 Moulton Street

Cambridge, Mass. 02138 %

%

g

=

This research was supported by the Advanced Research ?%
Projects Agency of the Department of Defense under %
Contract No. DAHC-71-C-00G88. 5




Fly

Ui T o B

™

et

SR 0 gEm ey gER R e

\r ISR AT ML AT A YW T
=n

e e —— : e e PR TN R s B T e S
Report No. 2304 _ Bolt Beranek and Newman Inc.
ABSTPACT

This report gives a detailed treatment of the use of linear
oredicticn in sr.eech anslysis. HNew concepts are developed and
more familiar ccncepts ars seen in a8 new way. The Covagriance
and Autocozrelation methods are derived in the time and frequency
domains. Both methods .re shown to be durivable from a more gen-
eral concept, that of generalized analysis-by-synthesis, where a
nonstationary :wo-dimensional spectrum is approximated by another
model spectrum. Linear prediction analysis is a special case
where the model spectrum is ali-pole. Also, under the assumption
of stationarity the general Covariance method reduces to the
Autocorrelation method. The normalized error is defined. Its
relatiun to the cepstrai zero quefrency, its ucefulness as a
voicing detector and as a determiner of the optimum number of
predictor coefficients are discussed. The application of linear

prediction to pitch extraction and formant analysis is carefully

"examined. Specific issues discussed include the adequacy of an

all-pcle model for formant extraction, pitch-synchronous and
pitch-asynchronous analysis, windowing, preemphasis, and formant

extraction by pea}l picking.
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CHAPTER I

INTRODUCTI Cuy

l.. <istorical Cverview

One of the most imr-crtant methods of speech analysis has
been the use of the shc -~time spnrctrum, This has been accom-
plished in different we and :o 4*:fevent ends wuring the past
25 years, The first maj¢ bre«it » s . was the invention cof the
sound spectrograﬁh (Koenig, Dunn . lacey, 1946) which is still
used extensively for the spectral analysis of speech. In 1960,

G. Fant published the classic Acoustic Theory of & w=ecs Production

which laid the foundations for many of the different methods of
speech analysis that followed. As a direct result of the signifi-
cant advances that occurred in understanding the acoustics of
speech production, and with the aid of high-speed digital compu-~
ters, the method of analysis~by-synthesis was given new impeatus

at M.I.T. (Bell, Fujisaki, Heinz, Stevens and House, 1961). A
bank of 36 band-pass filters was used in their analysis. Another
landmark was the pitch-synchronous analysis of voiced sound.; as
reported by Mathews, Miller and David (1961) at Bell Labs. They
actually used analysis-by-synthesis on the spectrum of a single
pitch period obtained by a Fourier analysis of the sampled wave-
form. In 1964, A.M, Noll introduced the cepstrum for the purpose
of pitch extraction. The cepstrum was later used as the basis for

a formant tracking system (Schafer and Rabiner, 1970). This very
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brief review gives a representative cample of the ideas ana metho-

dologies that have had a ¢- .inite effect on the types of speech

analysis that many speech researchers have chosen to nursue. A

SRR L

more complete review can be found in Flanagan (1972). .

¥

1.2 Linear Predirtion

The past two years have witnessed a surge oi irterest on the

part of the speech community in a method of analysas lknown alter- o

EADCLAEA Y S C A S g

nately as predictive coding, linear prediction, Prony's method,

inverse filtering formulation, etc. This surge of interest has

been also accompanied by an air of cenfusion. Two main reasons

LSk R D L bl A )

for this confusion are:

(1) A lack of exposition on the similarities and differen-

ces between different formulations.
(2) A resurfacing of some of the probLlems (e.g. windowing,

preemphasis, etc.) associated with accepted methods fer

computation of short-iime spectra.

We shall attempt, in this report, to deal with these prob-

lents by relating a few of these formulations to each other. .

Let vs first discuss what these formulations have in common.
As far ac we can ascertain, all the nethods we have inspected have
exactly one thing in conmon: they all assume that at a particular
instant in tine, a sreech sample s(nT) can be aporoximated by a

linearly weighted summation of the past p samples, where » is

e, e e ke o — e e ame e -
- 2 R Y i St ous b o 28 AV A e s o A s oy
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sor.e integer.

P
s (nT) = Z ay s {nT-XkT)

orx S

R
£
0

n k "n-k ’ (1-1)

where T is the sampling interval, n is the sample number, and a,_,
lsk=p, are the weights. =quivalently, given p samples of a speech
signal, the following sample can be predicted approximately by a
linear summation of the p known samples. Hence the term "linear
prediction", Henceforth we shall use the temm "linear prediction"
as a generic name for any method that makes an assumption equiva-

lent to that in (1-1).

The problem at hand, as put forth by linear prediction, is
to compute a set of predictor coefficients ap such that (1-1)
holds optimally over a specified period of time, It is in compu-
ting the set of coefficients ay that different formulations of

linear prediction have evolved.

The asaumption in (1-1) could be made for any signal, be it
speech or not. The reason that this assurption works well for
speech is that it is based on a model of speech production which
has been shown to work quite well in analysis-synthesis systems

(Fant, 196C). Basically, the model assumes an all-pole transfer

e R e e ) B e i ik AT ST G s et S~

e o v . -

R,
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function of the combined effects of the glottal sou.ce, the
vocal tract and radiation. These poles can be ccriputed by
sclving a polynomial in z with coefficients a, . A more detailed

description of this model is given in Chapter II,

Theoreticallv there exist an unlimited number of ways in
which to compute the coefficients ay . However, we shall initially
limit our discussion to three formulaticns which we feel to be
representative of the possible methods of analysis. and which
raise some interesting issues. We shall describe briefly each of
the formulations and give representative references on each with-
out attempting to give a complete bibliography. The three methods

will be given mnemonic names for ease of reference.

Exact Method

This method assumes that:

(a) The signal is defined for exactly 2p consecutive values.
(b) A speech sample can be predicted exactly from the past
p camples, and that

(c) This holds for the trailing p consecutive samples.
These assumptions are represented by the following set of equations:
= Sn, n=0'1'-oo'p-l. (1-2)

ay Shek
k=1




By L T 5 LI ETE S
AT i : ”

Report No. 2304 Bolt Beranek and MNewman Inc.

These are p equations in p unknowns which in general can be

solved for the coefficients a

e A o 8 ohn 0 A

K’ 1=k=p.

Covariance Method

This method assumes that:

(a) The signal is defined for p+N consecutive values,

where N is some integer.

728 WE ORg 6 O aar @R

{b) 2 speech sample can be approximately predicted from ‘

the past p samples, and that ;

o,

(c) This holds for the trailing N consecutive samples.

(d) The total-squared error between the real signal and
its predicted value is minimized over th.: N consecu-~
tive samples. (Some prefer to use the mean=-squared

error instead of total-squared error. The difference

in this case is a division by a constant N which does

not affect the results of minimization.)
The minimization of error results in the following set cf equa-

tions (detailed derivation is shown in Section 3.1) -

:
s
3
<
H
£
i
H
i
i
k3
4
Ed
*
%
El
3
3

P
Zak ¢ik = ¢io, i=l'2'o-.'p (1-3) E
k=1 z
N-1 E
whe ¢ip = E: Spmi Sn-k ° (1~4) ]
n=0 3

§
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Again we have p equations in p unknowns which can be solved to

okl i Gl e K

: obtain the coefficients a 1=ksp. 7The coefficients ¢ik form a

: covariance matrix, hence the name "Covariance Method." Equa-

tions such as (1-3) are known in least-squares terminology as the

norxmal equations of the process (Hildebrand, 1956, p. 260). In

this case we shall cail (1-3) the Covariance normal equations,

/T XTI

or alternately the Covariance normal matrix equaticn.

Autocorrelation Method

The assumptions made in this method are:

(a) The signal is defined for all time such that it is
identically zero outside a portion of the signal N
samples long, whare N is some integer, This is
equivalent to multiplying the speech signal by a
finite window of length N.

(p) Each sample can be approximately predicted from the

past p samples, and that
(c) This is true for all time.
{(d) The total-squared error between the actual signal
and its predicted value is minimized for all time.
The minimization of error results in the following set of equa-

tions {the derivation is given in Section 3.1):

P
Y a Rygy) = Ry s i=LeZseeesp (1-5)
k=1
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N-1-]i]

where Ri = }: N sn+lil. (1-6)
n=0

Again (1-5) forms p equaticns with p unknowns to be solved for

the coefficients 3y o

The Ri are autoccrrelation coefficients of the signal. The
caefficients Rli-kl form a special matrix which we shall call the

autocorrelation matrix (as opposed to the covariance matrix in

the Covariance method). Also, we shall call equations (1-5) the

Autocorrelation normal equations or alternately the Autocorrela-

tion normal matrix equation,

As we shall see in Chapter IV, there are other possible for-
mulations for the Covariance and Autocor:elation methods., Tie
assumptions made above do not all apply in the other formulations,
However, all Covariance-type formulations have (1-3) in common,
and all Autocorrelation-~type formulations have (1-5) in common,

but (1-4) and (1-6) will not necessarily apply.

This concludes our brief description of each of three formu-
lations for linear prediction., Now, we shall relate the work of
some researchers to these three methods. The so-called Prony's
method (Hildebrand, 1956, p. 378) or the exponential approximation
method is equivalent to the Exact method for N = p and to the

Covariance method for Nzp. A paper by Atal and Hanauer (1971),
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which deals comprehensively with applications of linear predic-

tion in speech unalysis and synthesis, makes use of the Covarianbe.;v
method, The Autocorrelation method can be traced back to the v
classic work by Wiener on linear prediction (Wiener, 1966). -
Itakura and Saito (1970) using a maximum~likelihood methcd with

a statistical model of speech production, devive a fomaulation

whict is equivalent to the Autocorrelation method, The digital ‘

inverse filtering formulation given by Markel (1972) is also equi-

valent to the Autocorrelation method. Markel's report contains

early references on the subject and explores formant tracking aé
an applicaticn. Weinstein and Oppenheim (1971) have used linear
prediction in a homomorphic vocoder, and it seems from their

paper that they used the Autocorrelation method also.

It should be pointed out that linear prediction has had ei-
tensive applicaczions in otherx fields. For example, Flinn (1972)
gives references on seismic and acoustic applications. We quote
from the intrecduction to the special issue cn the M.I.T. Geophysi-

cal Analysis Group Reports in Geoghzsics (Treitel and Robinson,

"The applications {of predictive decomposition] to ]
seismic exploration deal with the model in which :
a section of seismic trace is given as the convo-
lution of a random spike series with a minimum- |
delay waveform." ’

As we shall see, the problem in the analysis of voiced speech ‘

is very similar except instead of a random spike series (i.e.

. . . .
e 2 - . BN T . L — < . e . B =
et s a2 LT W L N
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impulses) we have a quasi-periodic impulse series., These seismic

applications have used the Autocorrelation method of linear pre-

Goorin}

diction,

In this report we shall investigate in detail the properties

of the Autocorrelation and Covariance methods of linear predic-
tion. The E:act method will not be discussed in any detail be- i

cause it does not seem to have wide applicability in speech analy-

Wowe]  Gowd Gl

e

s.s (see Section 2.2)., Of all three methods of linear prediction,

P

we believe that the Auvtocorrelation method gives the speech re-

3earcher a more intuitive feel for the properties of linear pre-

diction in terms cof traditional concepts such as Fourier trans-
formation and analysis—by-synthesis. On the other hand, the
Covariance method offers new and exciting possibilities in the

analysis of speech as a nonstationary signal.

1.3 Chapter Swmaries

Basic to the workings of linear prediction in specech analy-
sis is an appreciation for the underlying speech production model.
The all-pole discrete model is described in Chapter II, with a
critical evaluation of its adequacy for different applications
of speech analysis. The main parameters of the model are the
predictor coefficients. These coefficients can be computed from
the speech signal by one cf the methods of linear prediction.

The time-domain derivation of the Covariance and Autocorrelation

AR G B BN Gs8 G ot P Gmr  Sow guoy
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methods and methods of computing the predictor coefficients are

the subject of Chapter III. The stability of the resulting linear

predictor is also discussed.

Although linear prediction has become popular as a time-
domain analysis, we show in Chapter IV that linear prediction can
be considered equally validly, and perhaps better understcod, as

a frequency-domain analysis. (In reality, linear prediction is

an autocorrelation~domain analysis, which can be approached either
from the time or frequency domain.) The formulations for the
Covariance and Autocorrelaticn methods given in Section 1.2 are
shown to be as special cases of more general formulations. We

introduce the concept of generalized analysis~by-syntinesis where

the 2D-spectrum (two-dimensional spectrum) of a nonstationary
signal (i.e. its statistics change with time) is to be approxima-
ted by another 2D-spectrum, where the error to be minimized is
proportional to the integral of the ratio of the original spec~
trum to the approximate spectrum., In the special case when the
approximate spectrum is all-pole, the generalized method reduces
to the general Covariance method of linear prediction, If, in
addition, the signal is assumed to be stationary, the Covariance
method reduces to the Autocorrelation method. The general Co-
variance and Autocorrelation methods thus derived are each divided
further into a direct and an indirect method, depending on whether

the autocorrelation coefficients are computed from an infinite

20
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Gk e R L o
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but windowed signal, or from a finite and unwindowed portion of

RO Bkt

the signal, respectively. The formulations given in Section 1.2

-

are then relabelled as the indirect Covariance and direct Auto-

correlation methods,

TIP3, St P

In order to better understand the manner in which linear pre-

diction operates, we analyze in Chapter V one of the methods in
detail, namely the direct Autocorrelaticn method. We examine

the manner in which the all-pole spectrum approximates the signal
spectrum, and the relation between the all-pole transfer function

and the signal transfer function, especially as the number of

poles is increased indefinitely. The remainder of the chapter is
devoted to a detailed analysis of the normalized error, its re-
lation to the zero quefrency (zero coefficient cf the transform
of the log spectrum), and its possible usefulness as a voicing
detector and as a determiner of the optimum number of predictor

coefficients to be used for certain applications,

Finally, in Chapter VI, we study how linear prediction can:
be useful in pitch extraction and formant analysis. Specific

igsues discussed include the adequacy of an all-pole model for

& W

formant extraction, pitch~synchronous and pitch-asychronous analy-

sis, windowing, preemphasis, and formant extraction by peak picking.

In this report we have attempted tc be as analytical as pos-

sible, but without losing sight of the applied world. The theoc.
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is seen as a solid basis on which to build a better understanding
of how best to apply linear prediction to the analysis of speech.
Thus, instead of flocding the reader with examples of when a par-~
ticular method works, we have analyzed in detail situations
where that method fails, in order to give a better appreciation

of the processes involved.
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CHAPTER II

DISCRETE MODEL OF SPEECH PRCDUCYION

We mentioned in Section 1.2 that the reason linear predic-
tion works well in the analysis of the speech signal, is that it
is based on a model of speech production which agrees, to a
large extent,; with existing theories of speech production (such
as Fant, 1960), and which has proven to be a good practical model
in speech synthesis. Here we shall describe this model of speech
production (in the discrete domain) and relate it to the three

methods of linear prediction described in Section 1.2.

2.1 Speech Production Model

Speech is produced as & result of the excitation of a time-
varying vocal tract shape. The speech signal is in general a
nonstationary process, i.e. its statistics change with time. The
nonstationarity is a result of changes in the excitation as well
as in the vocal tract shape. If both the excitation and the vo-
cal tract shape remain fixed, the resulting speech signal can be
considered to be staticiary. Foxr example, uttering the vowel [a]

at a constant pitch and intensity level produces a signal that is

stationarv. Keeping the vocal tract shape fixed for {[a] and chang-

ing the pitch with time (such as going up a musical scale) pro-
duces a signal that is nonstationary. 1In general, given that

some process is the output of a linear system, the process is sta-
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tionary if the system is time-invariant and the input (or exci- i

tation) is stationary. If either the input is nonstationary or

e

the system is time-varying, or both, the output process is non-
stationary. The importance of the question of stationarity of

the speech signal will become evident later.

For the purposes of modeling speach production, we approxi- -

matz the continuously-varying vocal tract shape by a discretely-

varying vocal tract shape, i.e. a vocal tract whose shape changes
at discrete time intervals. Such a time interval shall be called

a "frame". Within a frame, the vocal tract shape is considered

to be fixed and can be modeled by a linear time-invariant filter.
This model of speech production has been used effectively in
speech synthesis systems. In linear prediction the linear filter

is restricted to be all-pole.

Thus, the model of speech production used in linear predic-

tion consists of the following three assumptions:

(1) Within a short interval of time (on the order of
10-25 msec) the human vocal tract is assumed co be fixed in shape.

We shall refer to such an interval as a "frame".

(2) Within any frame, we assume that the transfer function
of the combined effects of the glottal flow, the vocal tract (includ-
ing the oral and nasal cavities) and the radiation characteristig,
can be modeled by a linear time-invariant all-pole filter with

either a sequence of impulses or whitz noise (or a combination
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of both) as input (see Fig. 2-~1).

(3} The speech signal can be considered as the output of
such an all-pole filter whose coefficients change at discrete in-

tervals of time (on the order cof 10 msec).

Below we shall focus our attention on a single frame where
the all-pcle filter is assume.' to be time-invariant. Fig. 2~la
shows a schematic of the mcdel in the frequency domain. The comp-
plex variable z is defined by:

es‘I‘ = e (g+jw)T

z =
where 3 = o+jw is the Laplace operator,
w = 2nf 1is the radian frequency in rad/sec,
o is the damping factor in rad/sec,
T = % is the sampling interval in seconds,
and fs ° is the sampling frequency in Hz.

(A brief presentation of z~transforms and their interpretation
in terms of traditional Fourier series is given in Appendix A.)
Figure 2-la is interpreted as follows: Speeci is either voiced,
friceted, or both. (Throughout this report we shall assume that
aspiration is a kind of frication.) Vciced speech is produced
by applying a sequence of impulses, spaced at the pitch period,

to a digital filter of the form:

16
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A
) = ®{(z) (2-2)

where ay l<ks<p are the filter cozfficients,

A is a multiplicative gain factor that controls the signal

amplitude,

p
and H(z) = 1- z: ay 2k (2-3)

is the inverse filter.

The output of the filter §(z) is s{(nT), the speech samples. Fri-
cated speech is produced by applying a sequence of white noise
samples, spaced T seconds apart, to a filter of the form §(z).
Voiced fricatives are produced by a combination of voicing and
frication. The filter g(z) represents the combined transfer func-
tion of the glottal flow, the vocal tract and radiation. The poles
of the filter §(z) can be determined by solving for the roots of

the polynomial in z in the denominator cf S(zj.

Representing the z-transforms of s(nT) and u(nT) by S(z)

and U(z), respectively, we can write from Fig. 2-la:

S(z) U(z) §(z)

__Au(z) (2-4)

1

17
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‘ation {(2-4) can be rewritten as:

p
S(z) = S(z) z: a, z7" A ulz) . (2-5) B
k=1

[ SRS

taking the inverse z-transform of (2-5) we obtain:

e

s (nT)

p
2J a, s(nT-kT) +A u(nT)

-~

[

where 7, the sampling interval, has been omitted in (2-6) but A

is still implied, Ny
Equation (2-6) is the time-domain countegpart to (2-4), and it

represents the speech production model in the discrete time do- 'f
main. a schematic of the time-domain model is shown in Fiq.2-1b.
It should be clear that the systems in Figs, 2-1la and 2-1lL are i

equivalent.

o i oy
LS

2.2 Use of the Model in Linear Prediction

Note from (2-6) that except for contributions by the in-

put u{nT), the signal s(nT) is produced by a Jinear summation of

[t} oo
Sssrmn b

the past p c=mples. In trying to fit the model of Fig, 2-1 to a

[ —
| WS

real speech signal we encounter the problem of not knowing what

the input signal u{nT) looks like. For example, we don't know

¢ nmmrmee
e
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a vriori whether the speech signal is voiced or unvoiced. FEven
if we know that the signal s{nT) is likely to be voiced, we do
not know the exact times of occurrence of the impulses in u(nT).
Therefore, in linear prediction we first let u(nT) be an unknown
{actually, the Exact meti:od described in Section 1.2 assumes that
u(nT}z0) and assume that (l-1) holds, i.e. we assume that s(nT)
can be approximated by a linear summation of the past p samples.
Afteyr the determination of the coefficients ay l<k<p, we can
then determine A by enerygy considerations, and we can also make
certain statements about u(nT). (ilormally, u(nT) is of interest
only for voiced sounds since it gives information concerning the
periodicity (pitch) of the speech signal.) Indeed, after scme
knowledge of the position of the pitch pulses in time, one could
use that information to get a better estimate of the coefficients

al L]
K

As mentioned above, the Exact method of linear prediction
assumes that v (nT)=0 for all n. 1In general, this is not a good
assumption for speech unless one is sure, for example that there
are no pitch pulses (in a voiced segment) during the time interval
corresponding to the 2p speech samples needed for the analysis.
For this reason one does not expect very good results using the
Lxact method of analysis. We know of no researcher who has used

this method to analyze speech in any extensive manner,

19
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On the other hand, both the Covariance and the Autocorre-
lation methods of analysis (see Jection 1.2) admit that linear
prediction produces an error which they proceed to minimize in
the least-squares sense. The differance between the two method.
lies in the definition of what the signal is and in the region
of error minimization. This difference can be interpreted “n
terms of the stationarity of the speech signal. In the speech
production model given in Section 2.1 the vocal tract was modeled
by a linear time-invariant system for a single frame of speech.
Within that frame, the signal s(nT) in Fig. 2-1 can still be
either stationary or nonstationary depending on the input u(nT).
As we sh:1ll see in Chapter IV, the Autocorrelation method assumes
the signal s(nT) to be stationary, while the Covariance method

assures the signal to be nonstationary within a singles frame.

2.3 Adequacy of the Model

Je have mentioned that methods of linear prediction im-
plicitiy rely on the all-pole model of the vocal tract, glottal
flow and radiation. The question is to what extent this model
is adequate and for what applications. We shall compare this
mcdel with standard models of speech production described in

Fant (1960) and Flanagan (1°©63).

Fnr nonnasal sonorant sounds, the transfer function of the

vocal tract is generally known to have only poles (resonances)
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and no zeros {(antiresonances). Therefore, for these sounds an
all-pole model of the vocal tract is adequate. On the other
hand, for nasal and fricative sounds the transfer functicn of
the vocal tract is considered to have zeros as well as poles.
This means that the zeros are being approximated by poles in the
linear prediction model. MNow, these zeros lie within the unit

circle in the z-plane (Atal and Hanauer, 1971, p. 638), and each

L

zero can be replaced theoretically by an infinity of poles. This

Ll oL #- it

is done by noting that a zero (l—az-l) inside the unit circle

(i.e. |al<l), can be expanded (by long division into 1) as:

1-az ! = 1 . (2-7)

1ia2272,. ..

l+az

Wow, one could argue that the effect of a zerc can be approxi-
mated by a finite number of poles and, hence, an all-pole model
would also be adequate for nasal and fricative sounds. However,
it is not clear how the poles that are approximating the zerocs
interact with the genuine joles {formants). What is likely to

happen is that in trying to apply the all-pole model to nasals

and fricatives, the antiresonances in those sounds will have the
effect of shifting the positions and bandwidths of the formants
as computed from the model. ({This effect is discussed in Sec-
tion 6.2.) For example, consider a particular all-pole transfer

function (computed by some linear prediction method) which appro-

21
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ximates that of the vocal tract for, say, a nasal. Not only is

it unclear how one would go about locating the zeros (if any), but
the computed positions and bandwidths of formants close to those
zeros will be different from the "actual" values. In other words,
if one is interested in locating tae positions of the anti-for-
mants as well as the formants in a nasal or fricative, then lincar
prediction may not be adequate. This can be important for appli-
cations such as speech recognition. On the other hand, if one is
interested in using the results of the analysis for speech syn-
thesis then the all-pole model is quite adequate. The reason for
this lies partly in the fact that the human perceptual system is
much more sensitive to the location of a pole than to the loca-
tion of a zero (iatsuda, 1966; Flanagan, 1965, p. 215). Ancther
reason may be that the human ear is sensitive to the general en-
velope of the spectrum, and it does rot matter in what manner

that spectrum was generated. As we shall see in Chapter IV, linear
prediction guarantees a good spectral envelope fit to a short-
time spectrum. Speech synthesizers that have used all-pole fil-
ters to generate sounds that normally contain zeros show that an
all-pole model is quite adequate for speech production (Schafer
and Rabiner, 19270; Atal and Hanauer, 1971; Klatt, 1972) although
Mermelstein (1972) reports that an all-pole formulation intro-
duces a noticeable decrease in naturalness. (The adequacy of an

all-pole model for the purpose of speech recognition will be

22
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discussed in Section 6.2.)

There remain the effects of radiation and glottal pulse
shape. The effect of the radiation at the mouth and nostrils can
be approximated by a zero at d.c. (Flanagan, 1265, p. 33), or in

z~-transform notation: (:l--z-l

). The spectrum of the glottal vol-
ume velocity is characterized by a large number of zeros (Flanagan,
1965, p. 44; Mathews et al., 1961), bhut the general shape of the
glottal spectrum can be approximated by two or three poles.
Mértony (1965) found that the slope of the glottal spectrum be-
tween 500-3000 Hz varies between -12 and -18 dB/octave, depending
on the individual. The net effect of the zero due to radiation
and one of the poles approximating the glottal source can be ap-
proximated (in the z-plane) by a pole on the negative real axis
inside the unit circle (Atal and Hanauer, 1971). (The effect

on the spectrum of such a pole is described in Appendix A.)

Hence, roughly speaking, the combined effects nf radiation and
glottal source can be approximated by twc or three pales. There-
fore, the linear prediction model seems to be adequate. It

should be noted that the perceptual effect dve to the glottal
source is generally associated with the naturalness of speech

and the characteristics of the speaker. 1Its effect on the identi-
fication of speech sounds does not seem to be of major importance

{Flanagan, 1965, p. 199).

23
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2.4 Determination of the Number of Poles p

In the linear prediction model of speech production shown
in Fig. 2~1 the transfer function is assumed to have a certain
number of poles p. Ideally, the value of p should change from
one speech frame to another depending on the number of poles
needed to represent each sound. In order to get an idea on the

order of magnitude of p we shall take a specific example.

Generally for males, the average number of formants in a
5 kHz bandwidth is five. For example, for the sound [a] the vocal
(oral) tract can be approximated by & tube open at one end and
closed at the other. If the length of the tract is 17 cm then the
(2n-1)c

7 A where

c=340 meters/sec is the velocity of sound in air, and L=17 cm is

natural resonances of the tube will occur at Fn=

the vocal tract length. Thereiore in a 5 kHz region we have tae
five formants 500, 1500, 2500, 3500, and 4500 Hz. Since each
formant comprises a pair of complex conjugate poles, the number
of poles necessary to represent such a vocal tract is 10. [Atal
and Hanauer (1971, p.630) derive the same number from a different
point of view.] Now, we mentioned in Section 2.3 that two or
three poles are adequate to represent the effects of the glottal
flow and radiation. Therefore, the value of p should be approxi-
mately 12 or 13. However, we have so far neglected one other

factor which should have an effect on the value of p, and that is

24
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the fact that the poles are realized digitally. This has

a side effect which is discussed below.

Theoretically, the number of resonances of the vocal tract

is infinite. Analog formant synthesizers emploving a fixed num-

formants by what is known as the higher-pole correction (Fant, 1960).
However, this higher-pole correction is not necessary in digital
formant synthesizers because of the periodic fregquency response

of a digital formant network (Gold and Rabiner, 1568). As a re-
sult, the 10 poles necessary to represent the vocal tract transfer

function in a 5 kHz bandwidth can be realized digitally without

the need for compensation. On the other hand, the above reasoning

-

3 E ber of rormants (usually 5) must compensate for higher frequency
cannot be applied validly tec digital implementation of the poles

i representing the glottal flow and radiation. The periodicity of i
the digital network response is equivalent to an aliasing effect

which can cause an error in the response of a single low-frequency

pole by as much as 4 dB at 5 kHz (see Appendix A). On the average,
the error is on the order of 2 dB at 5 kHz {(Gold and Rabiner, 1968).

This is true for each of the two or three poles representing the

A A S EREM R 2t

Wil

glottal flow and radiation. Therefore, in order to compensate

iy

for this cumulative error one must introduce at least one extra

pole. The value of p now becomes approximately 13 to 14.
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’

The above estimate for p assumes that the signal was sam-
pled at 10 kHz. For other sampling frequencies the value of p

is roughly equal to:

p = 2Nf + Nr (2-8)

where Ne is the number of formants expected in a frequency range
equal to half the sampling frequency, and N, is the number of
real poles needed to represent the effects of the glottal flow
and radiation. We have seen above that N, is approximately equal
to 3 or 4, independent of the sampling frequency. For nonnasal
sonorants, formants occur at the rate of about one formant per

1 kHz of bandwidth (for male speakers). Therefore, (2-8) reduces

to:

p = fs (kHz) + Nr (ncnnasal sonorants) (2-9)

where fs is the sampling frequency in kHz, and N is equal to

3 or 4.

Equaticns (2-8) and (2-9) assume that the vocal tract can
be approximated adequately by a number of poles, In particular,
(2-9) .. useful mainly for nonnasal sonorants. Other sounds,
such as nasals and fricatives, are hest represented by a combina-
tion of zeros and poies. Below, we shall discuss nasals as an

example of sounds with zexocs as well as poles.
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Nasal poles correspond to the resonances of the nasal tract,
while the zeros are due to the coupling to the mouth cavity. For
an uncoupled nasal tract, there are no zeros and the average spac-
ing of nasal formants is about 800 Hz for a male speaker. (Com-
pare this with 1000 Hz for vowels; the difference is due tc the
fact that the nasal tract is longer than the oral tract.) These
formants usually have higher bandwidths than vowel formants be-
cause of greater losses in the nasal cavity. From (2-8) we con-
clude that the number of poles needed to represent the uncoupled

nasal system is approximately:
- 14 -
p = l.2fS {kHz) + Nr' (2-10)

The velar nasal [fq] can be reasonably approximated by an uncoupled
nasal tract up to 5 kHz, and (2~10) would be applicable. 9n the
other hand, {m] and [n] have important antiformants in that fre-
guency range. Each antiformant causes one of the nasal formants
to split into two formants, thus forming what might be called a
"formant cluster" (Fujimura, 1962). A nasal formant cluster, then,
consists of two formants and one antiformant in the same region.
In the frequency range up to 3000 Hz, [q] has four formants; [m]
is obtained when the second formant is replaced by a cluster con-
sisting of two formants and one antiformant, and {n] is obtained
when the third formant is replaced by a similar cluster (Fujimura,

1962). The position of the antiformant with respect to the two

27
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il

formants in the cluster is quite variable, depending on the spea- :

ker and the phonetic context. If every antiformant happened to

coincide with one of the two formants in its cluster, then (2-10)

would still apply. However, in general, that is not the case;

indeed the opposite is true. More importantly, a small shift in

s R i G A S S B S e

the positicn of a zero with respect to neighboring poles has dras-

[

- tic effects on the shape of the spectrum. This is important since

linear prediction is basically a spectral matching process. .

In trying to estimate a theoretical value for p in the case o

where zeros (or antiformants) exist, we attempted to approximate

- a spectral antiformant (complex conjugate pair of zeros) by a L
: number of poles. We found that we needed at least 10 pcles (10

kHz sampling) to get a rough spectral match to a single anti-

formant that is typical for nasals and fricatives. This nur'er ‘4
% would have to be added to (2-10) in order to get a good estimate

for what p should be to represent a rasal whose zero does not f
interact with neighboring poles. The number would have to be

decreased with increased interaction. In the limit when the zero '
cancels a pole, (2-10) would avply as is. Since there is no a

ri priori way to determine the position of a zero with respect to

neighboring poles, there is no way of getting a good theoretical
estimate for p. However, practical estimates for p do exist de-
pending con the application. In Sections 5.6 and 6.2 we shall '

argue that, although the "optimum" value for p depends on the

28
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type of sound as well as the individual speaker, a suboptimal

TR,

- iy ol i
m - i m '. %’ m m “ m

value is usually adequate for many applications.
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CHAPTER III

LINEAR PREDICTION ANALY¥SIS

In this chapter we shall derive in the time-domain the Covar-
: i;nce and Autocecrrelation normal equations (1~3) and (1~5) and
suggest algorithms for computing the predictor parameters. Given
3 the normal equations, the minimum squared error is defined. The
stability of the linear predictor, an important issue for specch
synthesis, will then be examined for the three fo.mulations of

linear prediction. We then take a look at some autocorrelation-

doumain prceperties of linear prediction. A method for the computa-

tion of the gain factor A in S(z) will be specified.

3.1 Derivation of Covariance and Autocorrelation Normal Equations

Following the linear prediction speech production model des-

cribed in Section 2.1 and represented by (2-6), we shall assume
that a sampled speech signal s(nT) at time t=nT can be approxi-
mately predicted by a linear weighted summation of the past p

samples. Let this approximation to s(nT) be s(nT). We have:

p

S, = Z 3y S,y ¢ (3-1)
k=1

where e 1<k=p, is a set of real constants representing the pre-
dictor coefficients, and p is some integer whose value is deter-

mined as described in Sections 2.4 aand 5.6.
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Let the error between the actual value and the predicted value

be given by enr where:

®n ¥ %n T Sy
|2

=8, " ¥ 3 Spoy - (3-2)
k=1

The problem is to find Ay o 1=k=p, such that the error e, is mini-~
mized in some sense over the desired range of signal samples.
Both the Covariance and Autocorrelation methods employ a least-
squares minimization procedure since it leads tc a mathematically

attractive solution. Denote the total-squared error by E, de-

fined as:
_— 2 _ o= 2 -
L_Zen.-z:wn 502 . (3-3)
n n

The range over which the summation in (3-3) applies and the defi-
nition of S, in that range is of importance. Indeed, this is cx-~
actly where the difference between the Covariance and Autocorrela-
tion methods lies. However, let us first minimize E without
specification of the range of the summation. Substituting (3-1)
in (3~3) we obtain:

p

A - 2 -

B=Yls, - ) a8, 7. (3-4)
n k=1
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The problem reduces to finding the condition that minimizes the
total-squared error E with respect to ay ; 1sk=p. This condition
is obtained by setting to zero the partial derivative of E with

respect to each ) s

| %
dE _ T - _ - -
f == ) s, Z a, sp_,) (-s,_;) =0, (3-5)
: a. p—
n =1
p
or, E:snsn-i - |8 Spux Spej = 0r 1Sisp. (3-6)
n L k=1

Rearranging terms and interchanging summations we obtain:

p
Z ay an_k Sp.; = an s,_ir lsisp.  (3-7)
k=1 n n
i Equations (3-7) are known as the normal equations, For any defi-
f% nition of the signal Spr (3-7) forms a set of p equations with p

i unknowns which can be solved for the predictor coefficients ay .
Now, we shall derive the Covariance and Autocorrelation normal

' equations from (3-7).

Co- ariance Normal Equations

Referring back to the assumptions of the Covariance method

,é in Section 1.2, the summation over n in (3-3) and hence in (3=7)

fg’ must go over N consecutive signal samples., Without loss of

generality, we let the range of surmaticn over n be: n=0,1,...,N-].

32
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e

G

We can now write (3-7) as:

i p

Z a b, = 950 s i=1,2,...,p (3-8)
I &
- N-1
% wher" ik = Z nei Snok (3-9)
- n=0

Note that (3-8) and (3-9) are identical to (1-3) and (1-4), and

- pt

the derivation of the Covariance normal equations is complete.

From (3-8) and (3~9) we note that values of Sy for n=-p,...,~1,

0,,...,N=1, must be known. Therefore the sigi:al Sh must be de~

fined for p+N consecutive values, as stated in Section 1.2,

Autocorrelation Normal Equauions

From the assumptions in Section 1.2 we can define the signal
S, as follows:

some sampled signal, n=0,1,...,N-1,

s, = (3-10)

0, otherwise.

The windowed signal Sn is defined for all n: -=<n<+~, Equation

(3~7} becomes:

z ax Z n=k Sn-3i ~ Z S5p sn...i , l=isp . (3-11)
k=1 =~ n=-o
33
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Substituting m = n-i in (3-11) we obtain:

(-]

p [~}
Z Z *m Smeiek T Zsm Speq ¢ ISLSPe (3-12)

M=

By definition, the autocorrelation function Ri of the signal Sp
'

is given by

oo

Ry = 2: Sn Sn+li]® (3-13)

= e OO

and R. =R, . (3~-14)

Therefore, (3-12) reduces to:

P
yak R!i‘-kl = Ri, i=l'2'0co;p~ (3-15)

Now, since S, is defined in (3-10) to be identically zero for

n<0 and nz®, (3-13) reduces to:

N-1-]i]
Ry = Sn Sn+|il
n=0

(3~16)

Equations (3-15) and (3~16} are identical to (1-5) and (1-6),

ané the derivation of the Autocorrelation normal equations is

complete.
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3.2 Computation of Predictor Parameters

In each of the three formulations of linear prediction pre-
sented in Section 1.2 (egqs. 1«2, 3~8, 3-15), the predictor coef-
ficients ay r l<k=p, can be computed by solving a set of p equa-
tions with p unknowns. There exist several standard methods for
performing the necessary computations, e.g. the Gauss reduction
cr elimination method and the Crout reducticn method (Hildebrand,
1956, pp. 428~434)., These methods are general and can be used
with the Exact, Covariance and Autocorrelation formulations. How=
ever, we note from the Covariance and Autocorrelation normal equa-
tions {3-8) and (3-15) that the matrix of coeffiuiznts in each
case is a covariance matrix. 7The cuvefficients ik in (3-8) form
a typical covariance matrix and the coefficients R!i-kl in (3-15)
form a special type of covariance matrix known as an autocorrela-
tior matrix. A covariance matrix is symmetric an¢ in general
positive semidefinite, but in practice these covariance matrices
are usually positive definite. Therefore, (3-8) and (3-15) can
be solved more efficiently by the squara~ront method (Kunz, 1957,
pp. 222-225), This method also requires about half the storage
of the general methods. A similar method that does not employ
the square root operation has been reported by Wilkinson and
Reinsch (1971, pp. 9-30). Further reduction in storage and com-
putation time is possible in solving the Autocorrelatinn normal

equations because of their special foim. Equation (3-15) can be

T e NP IR v ot 1 007 5 SV f PRGN S 71~ CR - e S
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expanded in matrix form as:

rR = 4 h 4 3 i

: i)
Ry Ry Ry ... R la R, 4]
1 }
Ry Ry Ry oo Ro_5l Jag| = | Ry (3-17) 1B
s !
3 H i
1 . . . . . . ! 3
; S - : : : L
: !
2 R - R i T Y ;
§ p-i “p-2 ‘p-3 Ro ] ®p

- - - s . /

Note that the p x p autocorrelation matrix is symmetric and the
: elements along any diagonal parallel to the principal diagonal

are identical. This type of matrix is also known as a Toeplitz

matrix (Grenander and Szegd, 1958). Equation (3-17) can be solved
recursively by Robinson'’s method (Robinson, 1967b, pp. 274-279)
which is a reformulation of a method by Levinson (1947). A flow
chart for this method is given by Markel (1272). Robinson's meth-

od assumes the celumn matrix on the right hand side of (3-17) to

%
]
g
;§

= be a general column matrix. By making use of the fact that this

7 column matrix comprises the same elements found in the autocor-
relation matrix, another method emerges which is twice as fast as

i; Robinson's. This faster method has been derived by several people

and was reported recently by Itakura and Saito (1971). A deriva-

tion and a flow chart of the Fast Autocorrelation method can be
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s

found in Appendix B of this report. This derivation employs the
theory of orthogonal polynomials in z, as developed by Grenander

and Szegd (1958).

Figure 3-1 shows a comparison between the Gauss elimination

method, the square~-root method, and the Fast Autocorrelation
method, in terms of sterage and computation. The computation is

representec¢ by the total number of multiplications and divisions

needed for the solution. (Each square root in the square-root

method is represented by 3 computations,.,) The formulas for the

Gauss and square-root methods were taken from Ralston (1965, pp.

401, 410, 452, 462). The formulas for the Fast Autccorrelation

method were derived from the flow chart in Appendix B, For p=l4,
the computation comparisons between the Fast Autocorrelation

method, the square-root method and the Gauss elimination method,

are in the ratio of 1 : 3.2 : 5.3, while the storage requirements
are in the ratioof 1 : 3.8 : 7. These values must of course be

taken as approximate. It shouid be pointed out that the solution

§

|

H

!

of the normal equations for the predictor coefficients a, is usu- %
h g

ally only a small fraction of the total amount of computation é
that is involved in the analysis. For example, in order to com~ %
pute the autocorrelation coefficients from the signal, it takes é
&3

on the order of pN computations, where N is the number of samples o

g

in the signal. For a 10 kHz sampled signal, N couald be anywhere

between 100 and 30vu depending on the application and the method

37
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Storage Computation
Vo
2

Gaussian Elimination

o

B (2p%+6p-2) X

Square-Root Method g(p+l) %(p2+6p+11) |

Fast Autocorrelation Method 2p p(p+l)

Fig. 3-1. Approximate storage and computational requirements ‘
for three methods of solving p simultaneous linear b
equations. The column under computation shows the v
total number of multiplications and divisions re-
quired. A square-root is represented by 3 compu-
tations.

e
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of linear prediction used. If N=150 in the Autocorrelation

method, then it takes 10 times as much computation to compute

o B~ B

the autocorrelation coefficients as to compute the predictor co-

[ o

efficients using the Fast Autocorrelation method.

3.3 Minimum Total-Squared Error

=

The predictor coefficients a, are determined such that the

sl

total-squared error E in (3-4) is minimized. After computation
of the coefficients a; using one of the methods mentioned in
Section 3.2, one should be able to compute the minimum total-
squared error Ep by substituting for the computed coefficients

ay. in (3-4). (Note that there is no error criterion associated

o B o R 2o

with the LCxact method.) Thus:

ey
t
L}
o
o ——
[}
o]
1
Mo
[*)
W
2]
=
!
~
LA
™

Substituting (3-7), the condition for the minimization of E, and

collecting terms, we obtain the minimum total-squared error Ep:

39
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p
= 2 _ AW -
E, —Z s Ay ) Sy sn - (3~18)
n k=1 n

In particular, for the Covariance method, n ranges from 0 to l-1. !

Thus, substituting (3-9) in (3-18) we obtain the minimum total-

squared error in the Covariance method: -
p

Ep = 400 ~ E: a, ¢y - (Covariance Method) (3-19)
k=1

I e i s B L

In the 7 itocorrelation method n ranges from -« to +«, Substitut-

ing (3~13) in (3-18) we have:

p
E = RO - E: ay RP . {Autocorrelation Method) (3-20)

We chall have the chance in Chapter V to discuss the be-
havior of this minimum error in the Autocorrelation method as a
function of p and the autocorrelation function. In particular,

we shall be interested in the normalized error Vp defined by:

v = __P__ - energy in the predictor error samples
B R, energy in the speech signal (3~21)
p
Vp =] - }: a Ty o (3~-22a)
k=1
where Rk
Xy, = —ﬁ5~ , for all k, (3-22b)
40
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and the samples ry will be known as the normalized autocorrelation

function. (Levinson (1947) uses the notation V, Markel (SCRL lon.,
1671) uses n, and Atal and Hanauer (1971) use € for the normalized
error. We have chosen the letter V because of the possible use-
fulness of the normalized error in thk~ indication of voicing.)

Note that dividing (3-15) by R, and using (3-22b) we obtain:

P

k=1
Equation (3~23) says that the predictor coefficients can also be
computed using the normalized autocorrelation samples r, . From
{3-22b) and the fact that I, is an autocorrelation function we

have:

and lrkl < 1, for all k. (3-24)

The signal total energy Ro can vary widely for different signals,
which might cause round-off problems in trying to solve (3-15) in

a digital computer with only integer arithmetic capability. 3

Fer such cases it would be useful to normalize the autocorrela-
tion coefficients first by using (3-22b), and then sclve fcr the

ak's using (3~-23).
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3.4 Stability of Linear Predictor

Given a frame of speech samples, the coefficients aj of the
linear predictor shown in Fig., 2-1 arc determined as described
in Section 1.2, 3.1, and 3,2, The all-pole transfer function
§(z) is then completely specified except for the multiplicative
constant A, which will be discussed in Section 3.5. One impor-
tant question now is the stability of the filter §(z). This
can be crucial if the recursive filter is to be used for speech
synthesis. We know from Fig. 2~1b and (2-6) that §(z) is reali-~
zable, Therefore, the condition that S(z) must satisfy for sta-
bility is that all the poles should lie inside the unit circle.
The poles of S(z) are simply the roots of the denominator poly-
nomial H{z), defined by (2-3), which depend completely on the
values of the coefficients ay . Of the three linear prediction
formulations described in Section 1.2, only the Autocorrelation
method guarantees the stability of §(z), i.e. for any stable
signal, the poles of §(z) always lie inside the unit circle., [This
result is well known from inverse filter theory and from the theory
of orthogonal polynomials (see for example, Grenander and Szegd,
1958, pp. 40-41).}] The implication for using the predictor coef-
ficients in speech synthesis is clear: The coefficients a,. can
be used directly for uynthesis without having to check for the

stability of the predictive filter since that is guaranteed in

the Autocorrelation method,

42
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In the Exact method and Covariance method the stability of
8(z) cannot, in general, be guaranteed. However, in practical
situations, the stability of §(z) can be improved in the Covari-
ance method by increasing the number of samples in the frame;
this is done by increasing N since p is normally fixed. This can-
not be done in the Exact method since the number of samples is
fixed at 2p samples. Atal and Hanauer (1971) describe a method

for correcting the positions of the poles which lie outside the

unit circle.

The above discussion assumes accurate computation of the
predictor coefficients a . For a 36-bit computer with floating-
peint arithmetic, this has proved to be no problem. However,
for computers with half as many bits or less per computer word,
and with integer arithmetic capability only, round-off effects
may produce coefficients which result in an unstable §(z), even

with the Autocorrelation metnod (Markel and Gray, to be published).

3.5 Autocorrelation Analysis and Computatic- of Gain Factor A

There are several ways to determine A, the gain factor in
§(z), depending on the application. The criterion we shall use
in computing A is the following: The total energy in tbe impulse
response of §(z) must equél the total energy in the signal in the
frame of interest. This criterion is good for speech recogni-

tion applications, but may have to be modified for vocoder appli-

ke Ghie @ish NS I TNE GNP B g Bk G Be Beed el B B BEDD

cations. We shall determine the total energy in the impulse

P
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response of §(z) from the autocorrelation function ﬁa correspond-

-5

o —

ing to the impulse response.

The impulse response is easily specified from (2-6) by set-

[Np—

ting S, = §n and u, = 5n0' the input impulse: \
p -Ji
5, = Z a 8, , +A 8., (3-25) l'
k=1 L3
l, n=n, l
where Som = (3-26)

0, otherwise -

B mrany
e

Note from (3-25) that | ]

Qn = 0, n<o0, (3-27) ’

S = A, (3-28)

p 2

A _ S - z

and s = Z a 5, » nzl. (3-29) !
k=1

By definition, the autocorrelation function R, is given by:

Ry = E: S, Sp+j ¢ for all i. (3-30)

n=e=o

S

We know that ﬁ-i

for i=0, From (3-27) and {3-30) we have: .

rY

= ﬁi ; therefore it is sufficient to compute R, lf

E———
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2 = = > -
R, Z 5, S..; ¢ i20. (3-31)

Now, for izl, n+i2l in (3~31). Therefore, we can substitute n+i

for n in (3-29) and then substitute for the resulting §n+i in
(3-31):
hod P
Ry = an Zak n+i-k ¢ 11
n=0 k=1
p oo
- l) ~
B Z ay Z 8n ®n+i-k
k=1 n=0
P
R, = Z: a Rpjy| o lsice . (3-32)
=1

Equation (3-32) is true for all i#0. fzo is determined from (3-27)

through (3-30) as fcllows:

~ A2
RO = E: Sh

P
2  wan A ~
A+ Lak Z Sin Sm4k *
k=1 mel-k
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% Since Sp = 0, m¢0 , we have: iJ

!

2 P ° I

i R o= a2 .4 YR 3
Ry = & Zak }_Jsm Stk

A k=1 m=0 H

i

: b

: R .—_A2+§"a R (3-33) €]

£ 0 a k %k ° L

k=1

é Equations (3-32) and (3~33) compietely determine the autccorrela-~

—

tion function of the impulse response of 5(z).

Now, the total energy in the impulse response of §(z) is

given by ﬁo. If we set ﬁo equal to the total energy of the sig-

o f 1
] H

nal, which we will denote by RO' theu A can be determined from !

(3-33) if R,, lsksp, are also known. Atal and Hlanauer (1971, !

ey
| SP———Y

p. 653) describe a recursive method for conputing ﬁk' 1<k=p, from

(3-32) with §0 nermalized to 1. (We assume here that the coeffi-

-y
———

cients a, are known,) As we shall see in Section 3.51, there is

a much simpler method for computing ﬁk in the Autocorrelation

i H
LSS |

method. The only parameter that has not been specified mathemati
cally vet is RO' the total eneray in the sigral. In the Autocor- }
relation method this is done simply by summing the square of the —1
sample values for all time, The problem in the Exact and Covari-

ance methods is to specify the sample range whose total energy F?

is to be computed. A reasonable specification includes the trailing

# e

p samples in the Exact methed and the trailing N samples in the

Covariance method. N
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Note that since (3=-32) is of the same form as (3-15), the co-

#q

efficients a, can be uniquely determined from ﬁi' D=isp. Actually,

for & given A, there is a one-to~-one relationship betwecn the im-

é; pulse response of S(z) (which is completely determined by a;,) and
; the correspending autocorrelation function. We mentioned in

- Section 3.4 that the stability of S(z) is guaranteed if the coef-
éé ficients a, are computed from (3-15). One might conclude that the
" stability or §(z) is automatically guaranteed if the coefficients
33 are ccmputed from (3-32)., This is true under one condition: tihat
T the autocorrelation coefficients be derived from a stable systen.
= In other words, let us assume that the ccefficients a, were com-
; puted using the Exact or the Covariance method, and th¢s the re-
>

sulting S{z) was unstable. Then, one could comp .te the autocor-

relation function ﬁi as mentioned above. Solving for the coef-

ficients again using (3-32) will give values identical to the
oricinal coefficients'and S(z) remains unstable. The reason that
the stability of §i2) is guaranteed in the Autocorrelation method
is that the autocorzzlation coefficients R, were derived from a

stable system, namely the windcwed speech signal,

3,51 A Svecial Case: The Autocorrelation Method

We already noted that (3-32}) and (3-15) are of identical form,
except thrat in (3-15) the range of i is limited. Therefore, both

~ .
autocorrelation functions R; and R; ohey the same matrix =quation

47
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(3-17). From the properties of (3-17) we conclude that ﬁi and

R, are related by the following equation:

R, = ¢ R, , O=isp , (3-34) o

where ¢ is a constant to be determined.

In order to conserve energy between the impulse response of
§(z) and the actual sagnal, we must have ﬁO = Ry, as mentioned
above. From (3~314) we conclude that ¢ must egqual L, and we have

the important result in the Autocorrelation method that:

R, = R; , 0Sisp. (3~35)

This says that the first p coetficients (other than ﬁo} of the
autocorrelation function corresponding to the anproximate spec-
trum, as computed from §(2), are identical to the fixst p coef~
ficients ot the autocorreleztion functiorn 2% the actual signatl.
The rest of the coefficients ﬁi are determined by (3-32), The
problem of linear pradiction using the Autocorrelation methed
can be stated in a new way a5 follows: Find a transfer funcition

such that the first p values of its autocorrelaticn function are

equal te the first p values of the signal autocorxrelatiorn fungtion,

and such that (3-32) spplies,

44

T Sl pe i LIMS S5 e Yo m e Sorerimmundianne s S



LR Rk

R

- bt - = V. i e,
'*%?%ﬁ&fﬁw@ﬁawwwaaiﬂﬁfwﬂﬁf?ﬁﬁf»ﬁiw#m»~&E =~

AT R L e
- ) >y
TN AR R
..~
kLo
e
o

gt O DR

- - - e ———— e T et

Report No. 2304 Bolt Beranek and Newman Inc.

i

Substituting (3-35) in (3-33) we have:

”

E
AT = Ry - E: ay Rk . (3-36)
k=1

The right~hand sides of (3-36) and (3-20) are identical.

Therefore,

H]
oo}
[
<3
o]
]
o)
o
’—‘
]
Ml
o)
~
2
-

(3=-37)

ani A2 is equal to the minimum total-squared error. From (3-37)

and (2-2) we have:

Stz) = , (3-38)

where Ry is the total energy in the signal and V_ is the normal-

ized error defined by (3-22).

The above findings will be very useful in discussing other
properties of the Autocorrelation method in Chapter V, where we
shall analyze the properties of the2 normalized error V_ and the

behavior of diifecrent parameters as the number of predictor co-

efficients p+~.
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CHAPTER IV

SPECTRAL ESTIMATION AND ANALYSIS-RY-SYNTHFSIS

In Chapter III the Covariance and Autocorrelation methods
of linear prediction were derived from a time~domain formulation.
In this chapter we shall show that the same normal equations can
be derived from a frequency-domain formulation. It will become
clear that linear prediction can be considered equally validly

as either a time-domain or a frequency-domain type of analysis.

First, the Autocorrelation method is reinterpreted in terms
of an inverse filter formulation. This leads directly to linear
prediction analysis in the frequency domain. The Autocorrela-
tion method@ is rederived from the spectral domain by approximating
the signal short-time spectrum P(w) by an all-pole power spectrum
P(w). An error criterion between the two spectra is defined and
minimized. The results are interpreted in terms of traditional
methods of spectral analysis-bv-synthesis. The Autocorrelation
method is then reformulated in terms of a direct and an indirect
method by relating to the corresponding methnds of estimation of
power spectra. An analogous reformulation of the Covariance
method is derived from a gencralized method of analysis-~b:-svn-
thesis where the signal is assumed to be nonstationary and the
two-dimensional short~time power spectrum Q(w,w') is to be

approximated by an all-pole two-dimensional spectrum é(w,w').
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Py ]

A very brief introduction to nonstationary spectral analysis is

included. !

4,1 Inverse Filter Formulation

Prveaecd ot

The linear prediction error e, was defined by (3-2), and

—

is repeated here for convenience: §

A s e 3

D
e

]

{n
=]

t

]
o

[}
e}
=

.

(3-2)

L e

Since the signal Sy is defined for all time, then e, is also de-
fined for all time. Therefore, we can take the z-transform of
(3~2) by multiplying both sides of the ecuation by z " and sum-
ming over all n (see Appendix A for definition of z-transform).

The result is:

p
Rz) = 5() [1- ) a 27
k=1

S(z) H(z), (4-1)

where E(z) and S(z) are the z-transforms of e, and s,+ respec-

el

tively, and H(z) = l-§ a; z-k was already defined in (2-3) as
k=1

Bl ettt

the inverse filter.
From (4-1)}, the error signal e, can be interpreted as the output

of a filter H(z) whose input is S,+ as shown in Fig. 4-1.

:
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P
Sﬂ*‘*’fﬂz) = L—EZak z_k—-—>e
k=1

Fig. 4-1. The error sequence e_ as the output of an in-
verse filter H{(z).
Therefora, another way to view the error minimization problem in
Section 3.1 is to solve for the parameters ay of the inverse fil-
ter i1(z) which will minimize the energyZei in the output error
signal, for a given value of p. This isnwhat Markel calls the
inverse filter formulation (Markel, 1972).

Bquation (4-1) can be solved for S(z) to obtain:

_ EB(z) _ E(z)

S(z) = 3 P
1 —E:ay 27K
k=1

(4-2)

(4-2) is an exact equation. According to the speech production
model described in Section 2.1, if the signal S, is the vocal
tract response due to a single pitch pulse, then the transfer
function S(z) can be approximated by an all-pole filter g(z) gi-

ven by (2-2) and shown below:

(2-2)

A
L k
l - E: ak z
k=1
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Comparing (2-2) and (4-2) we conclude that E(z) is approximated

by ancther function

i

E(Z) A ? i
[3 -~ k) [ 3 3 ~ [ e
which corresponds to a time-domain approximation e, given by: ;
i

€n = A S (4-3) |

where § _ is the Kronecker delta defined by (3-26). g
én is just an impulse of magnitude A. Mow, in order to conserve !

energy between én and e, we must have

w o]

Late ) e |
24 e = e, . (4-4) 2
n:-oo n:-oo

After the minimization of the total-squared error, the right-

hand side of (4-4) is equal to the minimum total-squared error
Ep given by (3-20). The left-~hand side of (4-4) is determined f

easily from (4-3), and we have:

, p
A=Ep=RO-ZakRk.
k=1

&
The result is identical to (3-37) which was derived by energy g

conservation between the signal Sh and the impulse response of

§(z).

The above analysis assumed that the vocal tract was excited
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by a sin,le pulse. The same results would be obtained if one -

ot

assumed a white noise source excitation.

e
Py ——

4.2 Error Minimization in the Spectral Domain

L

In this section we shall show that the Autocorrelation nor-

| e

mal equations (3-15) can also be derived completely in the fre-

: guency domain. Before we proceed, we shall define the power spec-

trum of a transfer function Y(z) as the magnitude squared of Y(z)

evaluat=2d on the unit circle, i.e. z = erT. Y(z) evaluated at

z = JUT will be denoted by Y(w), so that the power spectrum is
given by:
Power Spectrum = Y (@) ¥(w) (4-5)

where the over-bar denotes complex conjugate.
Let the power spectrum of S(z) be denoted by P(w), and of S(z) by

P(w), then:

2
18(w)]|? = 5 A , (4-6a)

. 2
l_z{;ake—jka
k=

P (w)

(4-6b)

and Plo) = |Stw)|? .

We shall call P(w) the linear prediction or approximate spectrum

and P(w) the actual or signal spectrum. Methods for computing
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A
P(W) and P(w) are given in Appendix C.

Making use of Parseval's theorem (see Appendix A), the

total-squared error E can be represented bhy:

o« v /’T

T 2
= 57 J[ [E(w) ] duw
n=-o -n/T

g

i

i

i

I

i

‘ = :[/TPe(w) dw , (4-7)
; A
i

|

|

i

i

o]
i
7]
(4]

o N ¥
|

N
Sl

where Pe(w) is the error power spectrum.

¥rom linear system theoxw, we have from Fig. 4-1:

P_(w) = Plw) |H()]® , (4-8)

where H(w) is equal to H(z) evaluated for z = erT.

Substituting (4-8) in (4-7) we have:

w{?
P(w) H(w) B(w) dw, {4-9)

t=
H
S

-x/T
m/T ) r p

_ _T _ -jkwT _ jkwT

= 57 [ P{w)il Z ay e Ll Z ak e dw.
-4 /T k=1 k=1 .

Following the same procedure in Section 3.1, E is minimized by

setting —o- = 0, lsisp :
1
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I
3 id ? k / 2 kwT '
)E _ T _ ~JiwT|, jkwT\ _ _JjiwT{,_ ~jkw = G
—%ai = 57 -/.P(w) e (1 }[;ake e \1 a.e dw=0 1
-1/T k= k= ’
,i;
coo
'ﬂ'/'.1 ~ p '
T . .
or 5 f P(w){cos (iwT) —V a, cos{(i-k)wT}|dw = 0. !
i o, .
-u/T k=1 od

Interchanging integration and summation we have:
P T /T /T

k=1 ~T/T -n/T

(4-10)

We know that the autocorrelation function R(kT) is defined as

the inverse Fourier transform of the power spectrum, i.e.

/7
R, = = pw) eI a,, (4-11a)
-1 /T
n/7 .
“.
or Rk = %F Plw) cos(kw?) dw. (4-11by
~1/T

(4-11b) follows from (4-lla) because the power spectrum is a
real and even function of frequency. Substituting (4-11lb) in

(4-10) and noting that R_y = Ry, ve have:

P

k=

56

Zakl_% f P(w) cos{(i-k)wT}dw| = %r' fP(tu) cos (iwT) dw, 1l=isp.

~-12)
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which are the same Autocorrelation normal equations as (3-15).

X T RPN X

The minimum total-squared error Ep can be obtained by using
{4-10) and (4-11l) in (4-9). The answer can be shown o be erjual

to

| SAMINY B "

(4-13)

]
o]

1]

o=

N

[}

vl

(]

1
oy
gl

oY)
K

=
g

which is identical to that given in (3-20) and (3-37).

Ty

The above derivation shows that, in the Autocorrelation

method, the predictor parameters a, can be determined if only

the signal power spectrum is known. In fact all that is needed ¢

are the first p coefficients of the autocorrelation function, f

which can be computed either from the time signal (Section 3.1)

or from the power spectrum as was shown above. The latter state-

ment will be the basis for other formulations of the Autocorre-

lation method which are based on the idea of estimating the first {

p values of the autocorrelation function (see Section 4.4).

1 7

4.3 The Spcctral Envelope and Analysis-by-Svnthesis

We shall now interpret the minimization of error in the

SR sl

Autocorrelation method in terms of the estimation of the spec-

RS,

i

tral envelope and in terms of analysis-by-synthesis.
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be written as:

H(z) = —> .
Sz}
A
and H{w) = ——— . (4-14)
S(w)
Substituting (4-14) in (4-9) we obtain:
2 TT/T
E= 57 Plw) . (4-15)
-7 /T Io(w)I

|§(w)|2 is the approximate power spectrum P(w) as defined in

(4-6a), and (4-15) reduces to:

2 /T
E = g‘-;- Plo) qu. (4-16)
' das] P(m)
-H/ L
Therefore, minimizing the total-squared error E is equivalent

to the minimization of the integrated ratio of the signal power

spectrum P(w) to its approximation S(w).

Another way to look at

this is that if one is interested in anproximating a power spec-

trum P(w) by an all-pole spectrum P(w) then (4-16)

measure that can be used in optimizing the approximation.

is an error

We al-

ready know that this error can be minimized analytically resulting

in the Autocorrelation normal equations (4~12) which can he solved

for a, the parameters of the sought-for approximate spectrum B(w).
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Ty R

The guestio:n, then, is what are the properties of the error mea-

sure in (4-16), and are these propertics commensurate with our

®IEN

stated goals? This is discussed below.

The model of speech production described in Chapter II

approximates the transfer function of the glottal flow, the vocal

&Gt Bet

tract and radiation by a single all-poie filter £(z) which is

excited by a combination of sequences of impulses and white noise.

NS
mi

Due to the nature of the excitation we conclude that ﬁ(m) attempts

'M-D‘
et

to approximate the envelope of the signal power spectrum P (w).

One important consideration in estimating the spectral envelope

Pt

is the determination of an optimum value for p, the number or

poles in the all-pole approximate spectrum B(w). This subject is

e

| 4t

discussed in Section 5.6. However, assuming that somehow we

Mm\:’
Wby e

know this nptimal value of p, there remains the question of whe-

ther the error measure in (4-16) will result in a good estimate

PRy
N g,
et

of the spectral envelope. We note from (4-16) that spectral

values of P(w) that are greater than the corresponding values

Cn N R
R ’.
==

in P{(w) will contribute to the total error in a significant man-

ner, while spectral values of P(w) that are rauch smaller than

oA
s
| £

the: corresponding values in ﬁ(w) will not affect the total error

L TR
| x|

significantly. This means that, aftcer the minimizaticn of error,
we expect a better fit of P(w) to P(w) where P(w) is greater

than P(w) than where P(w) is smaller. For example, if P(w) is

59
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the power spectrum of a quasi-periodic signal (such as a sonorant),
then most of the energy in P{w) will exist at the harmonics aad
very little energy will reside between harmonice. The er:-r wmea-
sure in (4-16) insures that the approximation cf P(y) to P({y) 218
far superior at the harmonics where the energy is greater, than
between the harmonics whexe there is very little eneigy. Since
§(w) is expected to be a smooth spectrum (this is insured by
choosing an appropriate value for p), we conclude that minimiza-
tion of the error measure in (4~16) results in an approximate
spectrum ﬁﬁu) that is a good estinate of the spectral envelope
of the signal power spectrum P(w). It should be clear from the
above that the importance of the goodness of the error measure

is much more crucial for veiced sounds than for unvoiced sounds
where the variations of the signal spectrum frcm the spectral

envelope are much less pronounced.

Ancther important property of this estimation procedure is
that, because the contributicne to the total error are determined

by the ratio of the two spectra, the matching process should per-

form uniformly over the frequency range of interest, irrespective

of the shaping of the speech spectral envelope. This property is
reminiscent of the analysis-by~synthesis method of spectrai re-
duction develcped at M.I.T. (Bell, et.al,, 1961), and was used
by Paul et al. (1964) for the automatic reducticn of vowel spec-

tra, and by Fujimura (1962) for the analysis of nasal consonants.
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A recent improvement in convergence strategy was introduced by

Olive (1971) using a Newton-Raphson technique. Also, a pitch-

@wren b

synchronous analysis-by-synthesis was developed by Mathews et al.

in 1261. The general idea behind the reduction of spectra using f

R
N
Prrmarciong
” g

analysis-by-synthesis is that one has a spectral model consisting

iy
. el

of poles and zeros, and the problem is to vary the positions of

these poles and zeros such that some error criterion between the

s TPy

Sotuw rrdty
Wy

model spectrum and the signal spectrum is minimized. The error

measure that was normally used is given {in our notation) by:

PYEP
[N |
N w4 e

&
& romadain g
. -l

2
E' = [ﬁ(w) loggiﬂl G, (4-17)
J

A P(w) {

where W(w) is a weighting function, P(w) is the model spectrum, ,

b

@ toarainy
® x-

and the integration is over the frequency range of interest. 1In

r.ny cases the weighting function W(w) was set equal to 1, and :

B rloman §
¢ r* 0

the integration was always approximated by a summation over dis-

"

crete frequencies. The positions of poles and zeros of P (w)

o ataa.
¢

wese varied wch that the evror E' was minimized.

@ e SNSRI Al s e

ol

It is - that the Autcocorrelation method of linear pre-

»how ol

diction can . sad =s & method of analysis-by-synthasis where
the model spectrum P{w} consists of poles only and the error mea-
sure is given by (4-148). The error measures in (4-16) and (4-17)

are similar in that the contributions to the total error are

61
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proportional to the ratic of the two specta. UWe have already
mentioned that this fact makes the matzhing process perform uni-
formly over the frequency range of interest (assuming W(w) in
(4-17) to be constant). However, the error measure I in lincar
prediction ha': two advantages over LE': (1) The minimization of
E in (4-16) can ke done analytically and the resulting Plw) is
computed simply by solving a set of simultaneous linear equations,
while the minimization of E' has to be done iteratively and also
approximately in that a sumuation is used instead of an integra-
tion. (2) FE is a superior error ncasure to R' if a spectral en-
velope is desired. This is clear if you note from (4-17) that
contributions to the total orror E' are made equally whether
P(w)>§(w) or P(w)<§(w), which means that energv at the harmenics
(in voiced sounds) and the lack of energy becween harmonics con-
tribute equally “o the total ervror. This, of course, will not
lead to a good spectral envelope. Bub then, traditionai ana-
lysis-by-synthesis mcthods have generally used already smoothed
spectra, in which case it is probably of little consequence which
error measure is used. The elegance of the linear prediction
method is that it performs th2 smoothing (for a well-chosen p)

as well as the analysis-by-synthesis type cf computation All at
once by simply solving a set of simultaneous linear equations.
The price that one has to pay is that the approximate spectrum

P(w) can have only poles.
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By virtue of the above properties of linear prediction, it
follows that any smoothing of the signal spectrum beforec the

application of linear prediction is not only 2 waste of time, but

may also introduce errors in the estimation of the predictor mara-

meters. For example, preprocessing the speech signal by homo-
morphic analysis (Weinstein and Oppenheim, 1971) is unnecessary
if one is interested in using linear prediction; better results

would be obtained by using linear prediction on the original

signal.

Figure 4-2 shows an example of the Autocorrelaticn method
of analvsis performed on a 25 msec portion of the vowel [2] in
the word "potassium". A Hamming w’ndow was used on the signal
and the predictor had 14 poles. P (w) seems to bz a good esti-
mate of the spectral envelope of the signal power spectrum P(w}.

(See Appendix C for mathods of computing P(w) and Blw).)

4.4 Reformulation of the Autocorrelation Mathod

We have shown above that the Autocorrelation method of 1li-
near prediction can be viewed as a process of spectral matching
or approximation, where the envelope of the signal power spec-
trum P(w) is approximated by an all-pole power spectrum §(w) gi~
ven by (4-6a), and the error measure to be minimized is given
by (4-16). So far ir this report we have assumed P{(w) to be a

short-time spectrum obtained by taking the power spectrum of a

63
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Fig. 4-2. Original spectrum P(w) and linear prediction
spectrum P(w) with p=14 for the sound [2] in
the word “potassium.”
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windowed signal. However, there is nothing in this chapter that
restricts P(w) to be defined in that particular manner. In ge-
neral, there are two basic methcds for the estimation of the po-
wer spectrum from a knowledge of a finite portion of a stationary

signal (see Blackman and Tukey, 1958):

1. Direct Method - The power spectrum is estimated hy:

MN-1 2
Pw) = }[:w(nT) s(nT) e IMWT| (4-18)

n=0
where s(nT) is the original signal whose power spectrur is desired,
and w(nT) is a window function that is defined to be zero for
n<0 and nzl. (A discussion of window functions is given in Sec-
cion 6.2.) The spectrum defined by (4-18) is also known as the
short-time spectrum, and it is the method we have used thus far

to estimate the power spectrum of s short portion of the signal.

2. Indirect Method - The estimated power spectrum is com-

puted as the Fourier series of a windowed apparent autocorrela-

tion function:

M
P(w} = Z D(kT) R{kT) e~ IKHT , (4-19)

k=~

where D(kT) is an even window defined to be zero for |k|>M, and
R(kT) is the apparent autocorrelation function, which is com-

puted from the signal. The word "apparent” is used to indicate

65
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that R(kT) is not a true autocorrelation function since it is
defined over a finite portion of the signal. We shall give two
methods for the computation of R(kT), vielding functions which

will be labelled ﬁél’ and &(2).

K
N-1-|k]|
(a) ﬁél) = ﬁfﬁfr E: Sn ®n+lkl . |x|=M. (4-20)
n=0
N-1
(b) §é2) = }E; Sn Sn+lk| , [k |=m. (4-21)
n=

In (4-20) the signal s(nT) is assumed to be known for N consecu-
tive samples while in (4-21) s(nT) is assumed to be known for

N+ samples. The signal is undefined outside these ranges. Note
that we must have M<N, and for a stable spectral estimate of a
noisy signal, M is usually taken to be a small fraction of !'. Cee
Blackman and Tukey (1958) for a thorough analysis of this suh-

ject.

Sometimes a single estimate of the power spectrum as des-
cribed above may not be stable enough, i.e. the variability of
the estimate with respect to the "true" spectrum is large. The
stability can be improved (with a corresponding decrease in fre-
quency resolution) by averaging over several estimates of the
power spectrum taken over several (possibly overlapping) portions

of the signal. The averaging can be alternately performed on
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o B 1

the autocorrelation function. One must be < ful, however,

that the basic assumption of stationarity still holds for the

wened

total signal span whoie power spectrum is being estimated.

o |

In speech research, the direct method of spectral analysis

has been used almost exclusively. The method is computationallyv

4

R,

efficient and has proved to be quite adequate for many speech

applications. Using the indirect method for computing the power

t;.mr:

spectrum is relatively inefficient, and may not be cost-effec-

}

tive for many applications,

At
L Lo ooy

Having computed the estimated signal power spectrum P (w)

Ll Y]
urnead

by one of the methods described above, we can compute the para-

meters of the approximate power spectrum ﬁ(w) from the Auto.Zrre-

Sl

lation normal equations (4~12), where . : autocorrelation coeffi-

v

cients Rk are computed from P(w) by using (4-11). But if the

coefficients R, can be computed directly from the time signal

{ et

there is no need to estimate P(w) in the first place. Indeed,

using the direct method, we have already shown how to compute

g

Rk from the windowed signal {see (3-16)). In the indirect method,

from (4-19), the coefficients Rk are equal to:

= D, R, , (Indirect Method) (4-22)
Ry = Dy Ry

where ﬁk is either equal to ﬁél) in (4-20) ~x to iéZ) in (4-21).
The introduction of an autoccrrelat.on window D, may produce

some distortion in estimating Ry . One method cf avoiding the

Lo B D T L T
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use of such a window is to let R, be the average of several
values of ﬁk computed from overlapping portions of the signal.

I1f we replace s8(nT) by s(nT+iT) in (4~20) and (4-21), we can say
that iél) and ﬁéz) are functions of time t = iT, and they can

be dencted by ﬁél&iT) and iéziiT). Similarly ﬁk at time t = iT
will be denoted by ﬁk(iT). The index i can be varied and the re-
sulting values of the apparent autocorrelation can be averaged,

yielding an estimated Ry . This can be written as:
(iT). (4-23)

Alternatively, thce number of values averaged could ke made to

depend on the index k of R Thus,

k‘
M-1-|k|

R, = !v‘t'-"lDET z 5, (i) , Msk, 0sksp. (4-24)
i=0

In (4-24) more values are used in computing Ry, for low values of
k than for large values of k. This is not unreasonable since
the low-order autocorrelation cocfficients are more important
in determining the general shape of the spectrum, and therefore

their values should be more "accurate" or stable.

The definitions for R, given by (4-20) and (4-21) are only

two of several possible definitions. For example, two other
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similar definitions are obtained by inversion of the time axis.

This is done by substituting the index (n-|k|) for (n+|k]) in

S

(4-20) and (4-21). Also, §k(iT) would be obtained r, 2=placing

s(nT) by s(nT-iT) in (4-20) and (4-21). In that case, ﬁk in

-

(4-21) becomes equal to

Lwoe |

-~

Rk = ¢0k r O0<k=p ,

where ¢ik are the covariance coefficients defined in (3-9). 1In

emain [ s

fact, if we substitute ﬁk for Rk in the equation for the minimum
total-squared error in (3-20), then (3-19) and (3-20) become iden-

tical. Also, (4-24) for !l = p+l reduces to:

.MJ

p-|k| n-1 :
? R, = 1 s s j
5 X p+1-]Kk| n-i ®n-i-|k]| i
i=0 n=0
ﬁ p- | k|

1 . 0sks .
" ptI-TK] Zo bi, ik P (4-25)
i=

Lo

which is the average of the novariance coefficients zlong each of

o]

the diagonals in the covariance matrix LTI (including the vector

"
' -L:-ir ‘

¢0k)‘ One way to look at the operation in (4-25) is that it is

averaging out the nonstationarity inherent in the covariance ma-
trix sk (see Section 4.8), resulting in a stationary autocorre-
lation matrix. As we shall see below, the Covariance method and
the indirect formulation of the Autocorrelation method share the

property that the stability of the linear predictor cannot be
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guaranteed.

TP P T T EE  N O

Henceforth, we shall talk about the direct or indirect

TR

g Autocorrelation method as referring to whether the coefficients

Rk are computed from a windowed signal or from an apparent auto-

patcL]

correlation function ik’ respectively. Note that although the

indirect method may be inefficient for computation of the power

spectrum, the same is not true for the computation of (p+l) !

values of ﬁk'

4.4 Stability of Linear Predictor

In Section 3.4 we stated that of the different formulations

PP Y ST TR TV YT
8 A PR Ao B IS PR A

of linear prediction, only the Autocorrelation method guarantees
tlhe stability of the linear predictor, i.e. all the poles of 5(z)
are inside the unit circle. This statement must be amended now

to read: only the direct Autocorrelation method guarantees the

stability of the linear predictor. The reason for this restric-

tion is that the coefficients Rk are guaranteed to be those of

an autocorrelation function only in the direct method. 1In th:

indirect method, the coefficients R, are only estimates of some

autocorrelation function, as can he seen from (4-20) to (4-24).
These estimates may or may not form part of an autocorrelation

function. In order for the coefficients Rk to be those of an

autocorrelation function tiey must form a set that is positive-

definite (Papoulis, 1965, p. 349). HMore formally, given an
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arbitrary set of constants L 0=<k=p, the coefficients Rk’
0<|x|<p, form a nositive-definite set if and only if the following
condition holds (Papoulis, 1965, p. 349; Grenander and Szegd,

1958, pp. 17-19):
i i
T, = Z Z Ry U G 20+ Osisp , (4~26)
n=0 m=0

where Ti’ 0<=is<p, are known as Toeplitz forms, and the ovei-bar
denotes complex conjugate.
In particular, (4-26} should be true fcr i = p, and for the con-

stants u equal to the impulse response of the inverse filter
D -k
H(z) = l-gglak z 7. Let
1, k=0,

= (4-27)

u
k -ak' lSkSp >

Substituting (4-27) in {(4-26):

p P P
Ts = R -2: Rmam~§: %n Rn-E: s
m=1 n=1 m=1

But the terms in square brackets are zero, due to tl . Autocorre-
lation normal equations (4-12}.

Hence,

p
T, = Ry - Zak R = E, 20, (4-28)
k=1

WO R G T TENS 3&‘%
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and the Toeplitz form Tp is equal to the minimum total-squared
error EP which must be greater or equal to zero. Although (4-28)
is a special case of (4-26), it can be shown tnat (4-28) is a
necessary and sufficient condition for the set of coefficients
R to be positive-definite, and hence result in a stable S (z)
(see Appendix B). Therefore, in order to test for the stability
of the linear predirtor, given a set of coefficients Rk: Com-
pute the predictor parameters aj from (3-17) and check for the

condition (4-28).

Another method to check for the positive-definiteness of
the coefficients Rk is to make sure that the corresponding power
spectrum is nonnegative for all frequencies (Papoulis, 1965,

p. 349). But in order to do that, R, must be defined for all k.

k

Such a definition can be arbitrary for |k|>p. A convenient way

of extending Rk is to make it periodic with period 2p, i.e.

= R (4-29)

Rps2p = B
We can now apply the disciete Fourier transform (Gold and Rader,
1969, p. 162) to R and obtain the discrete power spectrum P(nw,):
2p-1
P (nw,) =Z Ry e IknW,T (4-130)
k=0

LN
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Since Rk is discrete, real, even and periodic in 2p, P(nw,) is
also discrete, real, even and periodic in 2p. Therefore, it is
only necessary to compute n+l values of P(nu,), e.g. Osnsn. If
these values of P(nw,) are all greater or equal to zero, we con-
clude that the set of coefficients Ry is positive-definite and

that E(z) will be stable.

Suppose now that we have used one of the above methods (or
any other method) to check for the stability of S(z) and found
it to be unstable. The problem is what to dc about the coeffi-
cients Rk to improve the stability of §(z). One method is to use
a window D, as shown in (4-22). The narrower the effective win-
dow widch, the more stable S(z) is likely to be. A superior and
highly recommended method is to take the averaye of ﬁk for se-
veral overlapping porticns of the signal, as shown in (4-23) and
(4-24). 1Increasing the value of M in those equations ircreases

the stability of §(z). A value of Map is usually sufficient.

Note that the methods that have been suggested for improving
the stability of the linear »redic.or have the side effect of de-
creasing the frequency resolution in the corresponding power spec-
trum. Indeed, in the direct Autocorrelation method, the stability
of the linear predictor is guaranteed by multiplying the speech
signal s(nT) ' - a finite window: a process that results in loss
of resolution in the signal power spectrum. However, for mcst

applications this lcss of resolution is not critical.

73




T

TR

:
E
E

Report No. 2394 Bolt Beranek and Newman Inc.

4.5 Nonstationary Spectral Analysis

So far in this chapter we have discussed the spectral ana-
lysis of speech by means of the Autocorrelation method of linear
prediction. The main assumption underlving the whole diccussion
was that the predictor coefficients ay s l<k=p, are computed from
a portion of the signal that can be considered as stationary. 1In
the direct method, this stationarity was enforced by windowing
the speech signal and concidering the resulting infinite signal
which has a well-defined, time-independent power spectrum and auto-
correiation. In the indirect method, stationarity was enforced
by assuming first that (3-17) holus, and then proceeding to esti-
mate the autocorrelation coefficients. The averaging operations
in (4-23) and (4-24) are only valid under the assumption of sta-

tionarity.

As we shall s=e¢ in this section, the Covariance method as-
sumes that the portion of the signal from which the predictor

parameters are computed is nonstationary. It should be made clear

that we are not discussing the stationarity of the running speech
signal as such, but rather the stationarity of a single frame
from which we wish t¢ compute the predictor parameters. Both the
Covariance and the Autocorrclation methods assume that the run-
ninv speech signal is nonstationary. This is evident l., the fact

that the predictor parameters change from one frame to the next,

1‘I.ﬁ
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as was assumed in the model for speech jroduction in Chapter II.
liowever, within a single frame, the Autocorrelation method assumes
that the signal is stationary while the Covariance method assumes

that the signal is nonstationary.

Just as in Section 4.2 we derived the Autocorrelation nor-
mal equations in the firequency domain, we shall do the samc to
derive the Covariance normal equations. The only difference is
that here we shall assune the signal to be nonstationary, in which
case the power specirum is a function of time. owever, before we
do the derivation we¢ shall give some background information on
spectra’. analysis of nonstationary signals. 7For references on
the subject see, for example, Papoulis (1965, Ch. 12) and Bendat

and Piacsesan (1966, Ch. 9).

The autocorrelation R(t,t'} of a nonstationary process is
a function of two time variables t and t'. A stationary process
is then a spenial case where the autocorrelacion becomes a func-

ticn of oniy the time lag t'~t, i.e. RP(:'-t). If we let

T=t'-t (4-31)

be *he time lag, ther R(t'-t}) = Z{'} for a stationary process,
and R(t,t') = R{t,%+T) fcr a nonstationary process. Here we shall
assume that t, t' and T take on discrate values only. For example,

if we let T = kT, then R(KT)! would be an autocorrelaticn function

I
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whichh we have seen repeatedly in this chapter.

The power spectrurt of a nonstationary discrete process
is defined as the Fourier series transform of the auvtocorrela-

tion R(t.t+7T):

o

P(w,t) = Z R(t,t+1) e %7, (4-32)
T==»

Note that the spectrum P(w,t) is a function of time t. Tor a

stationary process the autccorrelation is a function of 1 only,

and from (4-32) we see that the power spectrum becomes P(w),

which is time-independeat. 1In speech analysis, P(w,t) can he

viewed as the running short-time spectrum (e.g. such as a spec-—

trograph might produce). However, what is important in the Co-

variance method is that we wish to consider the spectrum P{w,t)

to he changing in time within a single frame of the signal, and

that we wish to represent this change in some manner. This can

be donec by taking the Fourier transform of P{w.t) with respect

to time t. The result is a freguency correl ".. . function which

i3z the generalized (nomstationary) spectrum. It is defined by:

o]

I (w,Q) =Z P(w,tie 19F, (4-33)

t=-w

IN'w,Z) is also known as a douh.e frequency soectrum. Since it
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i3 defined as a twoc-dimensional transform, we shall call T(w,.))

the 2D-~spectrum. (The summation in (4-33) is for all tima. How-

ever, we are only interested in t varying over a small range,
namely that corresponding to the frame of interest. Therefore,
just as we are interested in a short~time spectrum P{w,t) we are
also interested i~ < shurt-time 2D-spectrum I'(w,Q). That is, the

short~time analysi. <+~ to be performed in two dimensions )

From (4-22) and (4-33) we have:

0

-
MNw,0) = E: Zd R{t,t+1) e

t==c T=~ox

-3 (wT+t) (4-34)

It can be shown that R(t,t+t) can be computed from T (w,Q) by a

two-dimensional inverse Fourier transform:

; /T n/T
2 r s 1
ve Y [ JlwT+t)
Rit,ts1) = i?} J o Tle,2te dw a8 (4-35)
-1/T =-w/T

where T is the sampling interval. ‘llote that I {w,?) is periodic

in w and 2 witn period egual to the sampling radian frequency

ws=%1. Although P(w,t) is real and even with respect to w, T(w,2)

is in general cemplex. It has the properties:

F(w+nws,9+mws)=r(w,9) , =®<n,m<os, (4-306)

I (~w,N) =T (,) ’ (4-37,

and F(w,-Q) =r(w,) , {4-38)
77
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where the over-har denotes complex conjugate. Theref .-2, T (w,2)

15 even with respect to w and hermitian with respect -:

For a stationary process we know that the spectrum is time-

independent, i.e. P(w,t)=P(w). From (4-33) we have

I (w,2) =P (w) }_ eTint
t=-x
=2xP(w) z: uo(Q~nws) ' (4-39)
n=~

where uo(x) is the impulse function defined by:

uo(x)=0, x#0 ,

and _[.uo(x)dx = 1. (4-40)
—»

Note that the impulse function uo(x) is different from tl.2 unit

impulse (or unit sample) Gnm defined in (3-26). Equation (4-39)

says that for a statiocnary di..crete process, the 2ZD-spectrum

consists of a set of periodic "line masses" with density 21P(w),

where P{w) is the power spec’rum of the process. iIn the w,Q

plane these line masses are parallel to the 02-axis.

In orxder to make the analysis kelow mors cconvenlient we

shall redefinc the 2D-spectrum so that Q(w,w') is the double

78
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2

LoF Ll

4

L]

transform of R(t,t'). We substitute for t from (4-31) into (4-34),

and let :

o

o

€

w' = w-N. {(4-41)

H

ooy

Then we interchange t and t' and make use of the relation

CRCEAR - Aok L i ke L Ly
PN e " EA -
B k¥

R(t,t') = R(t',t). (4-42)

et
Wras.

Equation (4-34) then reduces *o

it
[e4] [=2]
.- - - )
;; Q(wr‘l") = 5-‘ Z P(t,t') e J(wt w't )- (4-43)
.- tlo=—ew t=-x
;‘
2 The inverse relation is:
- 2 /T w/T
1. - ] —ptg!
ar R(t,t') = gﬂ j Q(w,w') qj(wt w'th) dw dw'. (4-44)
-;s "TT/T "'/T
1
3 The 2D-spectrum Q(w,w') is related to the 2D-snectrum T'(w,) bv
1 the relation
2 N
1 T O{w,0') = I'(w,o-uw'). (4-45)
Q(w,w') is periodic and hermitian in w and w'. It cbeys the re- {
lations ;
i
3
Q(w+nws,m'+mws) = Q{w,w') , -w<n,mi=, (4~46) ;
0~w,~e') = Qw,u"), (4-47)
and 0w ,w) = Qlw,w') .
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For a stationary process:

Q(w,w?) = 27P(w) }: uo(w-u'—nws). (4-49)
n=—o
Just as for T(w.?) in (4-39), O(w,w') consists of a set of perio-
dic line masses with density 27P(w). In the w,w' plane these
lines would he diagonal lines compared to vertical lines in the

w,2 plane.

We have introduced in this section two 2D-spectra, [ (w,”)
and 0(w,w'). T©{w,?) was introduced first as a more intuitive
definition of the 2D-spectrum starting from a time-varying power
spectrum. However, as we shall sce in the next section, the Co-
variance normal equations are easily derived by working with

Q{w,w') and R(t,t’) directly.

In the Autocorrelation method, P’.} was considered to be
the short~-time spectrum for the particular frame of interest.
Several methods for estimating P(w) were mentioned in Secticn 4.4.
llowever for the purposes of linear prediction, it was found that
the estimation of a number of autocorrelation coefficients sufficed.
Similarly, in the Covariance nethod we shall _onsider Q(w,w') to
be the short-time 2D-spectrum for the frame of interest. Iiow-
ever, as we shall see shortly, we nced not estimate Q{w,w'). All

that is needed for tha computation of the predictor parameters

is the estimation of a set of nonstationary autocorrelation

x W iA gRARE-
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coefficients.

[P N

Cd Ty
o

4.6 Generalized Analysis-by-Synthesis and the Covariance Method

In Fig. 4-1 the signal s(nT) is passed through the inverse

L4
3

filter li(z) giving as output an error signal e(nT). Both s(nT)

4

arinerpn.

and e(nT) are now assumed to be nonstationary. The total enerqgy

E in the error signal is given by Re(O'O)' where Re(t,t') is the

nonstationary autocorrelation of the error signal e{nT). From

LalB i ave et )
P J

(4-44) we conclude that:

Loy
8.
v,

’ 2 /T w/T
T ={§; Jf 0, (w,w') du du', (4-50)

\ -t/T -u/T

s

Cas i i
& e }

where Qe(w,m') is the 2D-spectrum of the error signal. From li-
near system theory (Panoulis, 1965, p.443), we can write for

Fig. 4-1:
Qg (w,0") = 0lw,u') Hlw) Hle"), (4-51)

where Q(w,w') is the 2D-spectrum of the signal s(nT). and H(w)
has the same interprestation as before. Therefore, tne total

energy in the error signal is given by:

Mk o &

I T I g
ta
1]

/T w/T
Q(w,w')H(w) H{w')de dw'. - (4-52)
-n/T -n/T

2

(Compare (4-52) with (4-9) for the stationary case.)

R P SV
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Replacing the formula for H(w) in (4-52) we obtain:

o /T /T P . p et
E s(%;) Jf Jf Qlw,w') 1-2: ay e-kaT 1- ake3 w de dw'. _ﬁ
-1/T -n/T k=1 k=1 y ‘
(4-53) !
In order to minimize E we take gg = 0, l<isp.
1 g
The result of the differentiation is: )
L y2 AT m/T g R - , |
;ﬁ) 0w,u') e‘jle+ejlw T_ akej(-1w+kw )T
-n/T -n/T k=1

p
_ j(-kw+iw')é] dw dw' =0,
e

k=1

J

Using (4-44) and the property that R(t,t') = R(t',t) we obtain

p
Zak R(~iT,-kT) = R(-iT,0), 1sisp. (4-54)
k=1

We shall call (4-54) the generalized normal equations.

The minipum total-squared crror T, can be obtained Ly using

i

(4-42), {(4-44) and (4-45) in (4~53). The answer can be shown

to be equal to:

1%
L_ = R(0,0) -Zak R (-kT,0) . (4-55)

k=1

82




S N A e i e B R A R At e

e — S HeEr [ e e SN, T MFSRS
g
!
Report No. 2304 Boit Beranek and Newman Inc. g
H
4
For the special case when the signal is stationary,
R(t,t') = R(t'~t), (4-54) reduces to the Autocorrelation normal
equations (4~12), and {4-55) reduces to (4-12).
What we shall show later in this section is that the Co-
variance normal equations (3-8) are the same as (4-54) with the
nonstationary autocorrelation ccefficients R(iT,kT) being approxi-
§ mated by the covariance coefficients dix defined in (3-9). Tirst
- we shall interpret the above results :n terms of generalized ana-
i lysis-by-synthesis.

4.61 Generalized Analysis-by-Synthesis

Following a procedure analogous to that in Section 4.3, we

can write from (4-52) and (4-14):

% /T /T
f f Qw,0') 4y de'. (4-56)

A R (i}
_"/T _n/T d(m) S(m )

2
AT
E={m‘r

We shall define the 2D-spectrum of the approximate transfer fune-
tion 5(z) as
Qwrw') = Sw) Sw"). (4~57)

Substituting in (4-54) we have:

2 /T «/T '
= | Q,0) qu gqu'. (4-58]
1]
33
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‘he interpretation of (4-58) is analogous to that of (4-16)

except that here the signal 2D-spectrum Q(w,w') is being approxi-
mated by an all-pole 2h-spectrum Olw,0'). (Note that the 2D~
spectrum is in general complex.) For a stationary signal, 9(w,n')

is given by (4-4%), and
Dlw,w") = 0lw,w) = 15w % = Bw). (4-59)

Substituting (4-59) and (4--49) in (4-58) we obtain:

2 /T
AT f P(w)
E = —= dw,
=T J i’(w)
-7/7

whizh is identical tc {4-16). Therefore, (4-16) is a special
case of (4~58) when the signal is stationary. In Section 4.3

we showed that the miaimization of (4-16) can be considered as

a method of analysis-by-synthesis. Vhat we have in the minimi-
zation of (4-58) is a method of generalized analysis-hy-synthesis
where thz signal is in general nonstationary. The properties
given in Section 4.3 als> apply to generalized analysis-by-syn-
thesis. We note that the minimization of (4-58) results in the

generalized normal eguatirns given in (4-54).

4.62 Reformulatiocn of the Covariance lMethod

All formulations of the Covariance method must now obhey
(4-54), where the nonstationary autocorrelation coefficients

R(t,t') are to be estimated in some fashion from the speech signal.

N .
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The development here will be anzlegous to that given in Section
4.4 for the Autocorrelation method. We shall define two basic
formulations of the Covariance method: the direct and indirect
method. In the direct method, the coefficients R(t,t') will be
computed from an infinite signal that has been windowed by a mov-
ing window. In the indirect method, R(t,t') will be ~2stimated
from a f£inite unwindowed portion of +he signal. (Tne words "di-
rect" and "indirect" refer to whether -..e 2D-spectrum is computed
directly from the signal, or indirectly through an estimated aute-

correlation function.)

1. Direct !ethod

We shall define a nonstationary (time-varying) short-time

spectrum P(w,t) as:

- .2
P{w,t) =| Z wi(t) s{t-t} e J¥T (4-6Ca)
T=—w
(N-1)T .
- Z w(t) s(t-t) e 7| (4-60b)
=0

where s(t) is the original signal, and w(t) is a window function
ihat is defined to be zero for 1<0 and T=NT. This definition of
Plw,t) is consistent with the definition of P(w) in (4-18) for

the stationary (time-independent) case. F(w,t) can be plotted
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4
3 i
3 .
: as a function of time in a manner similar to a spectrogram. '
{
: Equation (4=-60a) can be expanded as: -
i x [+} I
3 - : .
’ P(w,t) = Z w(x) s(x~t) e JNXY w(y) s(y~t) ed WY
o .
-] -]
= }n E: w(x) w(y}) s(x~t) s(y-t) e-Jw(x-y). (4-61) i
. .

= Q0 y:—w

Setting x-y T , (4-61) reduces to:

p (U.)rt)

]

E: Eﬁ w{x) w(x-t) s(x~t) s{x~t~t) e-ij. (4-62)

T== x=—(p

By comparing (4-62) and (4-32) we conclude that:

R(E,t+7) = Z wix) wix-1) s(x-t) s(x-1-t). (4-63) Y

X=we0

In order to obtain R(t,t') we set 7 = t’-t in (4-63):

(-]

z: wix) wix~t'+t) s(x~-t}) s(x-t'j. (4~64)

x=.b® i

R(t,t")

Since w(x) = 0, x<0 and xzyNr, (4-64) can be written as:

(N-1)T
E: wix) wix-t'+t) s{x~t) s{x-t') . (4-55)
=0

R(t,t?)

NS . et _coerniia e R e
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Setting t = =iT and t°' = -kT in (4-55), we obtain:

N-1
R{=iT,-kT) = Z Yn Yn-ivk Snei
n=0

Snek* {4-66)
Equation (4-66) shows how to compute R(-~iT,-kT) for use in ihe
norrnal equations (4-54) to solve for the predictor coefficients

ay . The coefficients Wy represent the sampled window function,

We note from (4-65), (4-66); and (4~54) that t varies between
-pT and -T. From (4-60b) we see that, corresponding to -pTst=-T,
the time~varying spectrum P(w,t) can be ctomputed p consecutive
times, and after each computation the window is moved one sample
interval T. While the Autocorrelation method represents the pro-
perties of a single spectrum ia each frame, wue Covariance method

represents the properxties of p consecutive spectra in each frare.

2. Indirect Method

In this method the 2D-spectrum is computed from an estirated
nonstationary autocorrelation function ﬁ(t,t') that Is computed
from a finite unwindowed portion of the signal. Although several
formulations cculd be defined, we shall give only one which is
analogous to (4-21) in the indirect Autocorrelation method. Let
us approximate the nonstationary autocorrelation i(iT,kT) by:

N~-1

R(iT,kT) = an+i 3h4k ! l1<i ,k=p. (4-67)
n=9
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e p R e




Report No, 2304 Bolt Beranek and Newman Inc.

Then R(-iT,~kT) is approximated by:

N-1 ; t
R(~iT,~kT) = }: s s Sp » lsiks. (4~68)
n=0 ~[

But the right-hand side of (4-68) is equal to the coefficients :

¢ik defined by (3-9). Therefore,

R(-iT,~kT) 055
(4-69)

and R(-i?, ©) %40

Substituting (4-69) in (4-54) we obtain:

P
E: a biy = b5, 13i=p,
k=1

wnich is identical to the Covariance noxrmal equations /3-8). Also,

substituting (4-69) in (4-55) results in an expression for Ep that

is identical with (3-19).

Ye nave shown that the Covariance method can be derived from
a frequenr.~~domain frrmulation where the short-time 2D~gpectrum
of a nonstaticnary signal is to be approxir.ced by an all-pole
2D-spectrum. Under the assurption of a statioacry signal, the
generalized formulation reduces to the Autocorrelation method.
The particular formulations presented in Chapters I and III can
now be seen to be the direct Av.ocorrelation and indirect Covari-

ance methols,
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CHAPTER V

THE AUTOCORRELATICN METHOD AND Tilg NORMALIZED ERROR

In Chapter IV it was shown that the Autocorrelation and Co-
variance methods of linear prediction can be considered to be
methods of spectral analysis~by-synthesis, where the short-
time spectrum P(w) (or 2D~-spectrum Q{w,w')) is approximated by
an all-pole spectrum P (w) {(or 2D-spectrum Qlw,w')). We have al-
so seen that in order to determine the parameters a,. of B(u) or
Olw,w'), it was sufficient to know only a limited number of auto-
correlation coefficients R(kT) or R(j?,kT); it was never neces-
sary to know either P(w) or Q(w,w'). However, in order to study
how P(w) (or Glw,w')) approximates P(w) (or Q(w,w’)), one must
be able to compute the signal spectrum P(w) (or Q(w,w')). This
is most easily done in the direct method (where the signal is de-
fined for all time) by using (4-18) in the direct Autocorrelation
method and (4~60) in the direct Covariance method. Since it is
simpler to deal with one~dimensional rather than two-dimensional
spectra, we have chosen to study the direct Autocorrelation method

in detail. Moreover, in this way we take advantage of the body

of knowledge that already exists in speech research.

In this chapter we shall examine analytically the manner in
which the ali-pole spectrum P (w) approximates the signal spectrum

P(w). For the reasons ctated above, thiés will be done for the

89
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direct Autcocorrelation method only. We believe that much in-
sight into linear prediction in general can be gained by analy-

2ing this one method in detail.

First ve examlﬁe the properties of the approximate spec-
trum §(w) and the transfer function §(z) when compared to the
signal spectrum P(w) and transfer function S(z). Of particular
interest is the analysis as p+= when S (nT) bL=comes the minimum-
phase sequence corresponding to s(nT). Different methods for
computing the minimum=-phase sequence for an arbitrary sequence’
are described. MNext comes the analysis of the normalized error
and its behavior as a function of different spectral shapes.
The normalized error is related to the zeroth quefrency of the
cepstrurm and is interpreted in terms of the ratio of the geoﬁet—
¥ic mean to the arithmetic mean of the spectrum. Properties.of
the zeroth quefrency follow from this analysis. Then, the use-
fulness of the normalized error as a voicing detector is dis~
cussed, Of importance are tne properties of the first autocérre—
lation coefficient Rl' The chapter ends in a brief discussion’
on the role of the ncrmalazed error in determining the optimum
number of predictor coefficients in estimating the spectral

envelope.

5.1 Properties of the Approximate Spectrum P({w)

¥

In Section 3.5 we derived a relation between the autocor-

relation function Rk ¢f the windowed speech signal and the

~
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Ll
autocorrelation function Ry of the impulse response of the trans=-
fer function S(z) defined in (2-2). This relation is given by

(3-35) and is presented here with a change of subscripts:

A

R = Ry o

0s<ks<p. (5=1)

We know that the autocorrelation function has a one-te-cne rela-
tionship with the power spectrum via the Fourier transform. Thus,
Rk and ﬁk are the inverse fouriex transforms of P(w)} and ﬁ(m), re-
spectively (see 4-1lla). From (5-1) we see that as the number of
predictor coefficients (or poles) p increases, ﬁk and Rk will be
equal over a larger range, resulting in a better fit of §(w) to

~

P(2). In the limit, as p*®, Ry becomes identical to R, for all

k, and henc: the power spectra P(w) and P(:) become identical:

B(w) = Pw), (5-2)

as p*« .

One may not be interested in getting an exact replica of P(w),

but (5-1) and (5-2) give one a better understanding of the approxi-

mation” process.

rrom (4-12} we have the minimum total-squared error

N

Ep = A“. Substituting for E_ in (4-16) we have:
n/T
"2'-77[ Pl) qu = 1. (5-3)
—n/TP(“)
Equaticn . ., is independent of p, the order of the linear pre-
dictor. In particular, we know from (5-2) that as p+o ,

Pi{w) = P{w}, In that case, (5-3) becomes an identity. 1In
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Appendix B we show that (5-3) is a special case of a more general e
result, namely that the polynomials Ho(z), Hy(2),..., Hp(z),... f

form a complete set of orthogonal polvnomials with weight P(w),

where Hn(z) = H(z) for p=n, and H(z) is the inverse filter

.l

defined in (2-3).

Pt
| SR,

5.2 Properties of the Transfer Function S(z)

From (4-6) we have P (w) = |§(m)|2, and P(w) = |S(w)|2,
where S(z) is the z-transform of the speech signal s(nT) and §(z)
is the corresponding transfer function of the speech production
model according to linear prediction. We wish to explore how J

§(z) might relate to S(z}. We have the definitions:

N
S(z) = 2: s z 0, {5-4)
n=0

and 5_(z2)

A
, = P ,
3 p —k
3 l—f a, z K
=1

where (5-5) is identical to {2-2) except that S(z) and the gain

(5-5) .!

factor A have been subscripted to indicate the order of the pre-

‘Q dictor. The subscripts will be used only when necessary for \
Y ‘
g disambiguation. Note that the upper limit on n in (5-4) is now -
}3 N instead cf (N-1); this was done here for convenience. ?E
v .
*
3 In light of (4-6) and (5-2), it is natural to ask how the o
: H
|
!
J
3 92
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transfer functions §(z) and S(z) are related as p*w. Since

- o] ~

|S,, (w)|“= lS(w)lz, it might seem that S, (2} will be equal to S(z).
However, this is not true in general, As p+», §w(z) = S(z) if

and only if the windowed signal is minimum-phase, i.e. $(z) has

no zeros or poles outside the unit circle. We know in general
that the speech signal is nonminimum-phase; it sometimes has
Zeros outside the unit circle due primarily to the glottal wave-
form (Flanagan, 1965, p. 140). We also know that g(z), in the
direct Autocorrelation method, is always minimum-phase: all the i

pcles are inside the unit circle and there are no zeros. Further-

W anaa maw a

0N e

more, there is a unique minimum~-phase sequence whose spectrum is

identical to P(w). Since §m(z) is minimunm-phase and its spectrum

ﬁw(“) is identical to P(w), we conclude that §w(z) is the trans-

fer function of the minimum-phase sequence corresponding to the

signal s(nT). §w(z) can be written as:

. : 3 . Caleimd

§ (z) = ® = Z 5 1 (5-6a)

[}

M
Z b, 2" = Blz) , (5-6b)
n=0

where b (nT) = shﬂﬂ as p+~, ard it is ceaual to the minimum-

phase sequence corresponding to the signal s(nl), M is an integer

| l to be determined, and B(z) is the z-transform of b(nT) and is
&
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equal to §m(z). Below we shall describe how to comrute the se-
quence b{(nT)., Of particular interest in Section 5.3 will be the

computation of A, which from (5-6) is eaual to

A, = by . (5-7)

This is shown by long division of A, into 1- Z =k
K=

1ak 2
and equating terms in (5-6a) and (5-¢€b).

The determination of the minimum-phase secuence b (nT)
is equivalenrt to the classic problem of factorization of the
spectru P{w) into

P(w) = B(w) Blw) , (5-8)

whetre b{(w) is tc be minirmum~-phase. Kolmogorov (1939) gave the
general solution of this factorization problem. Fejér (1915)
gave another solution for the special case of rational spectra,
We shall give algorithms based on both methods. Our major source
for this analysis is the 1954 Ph.D. thesis of Robinson, which was
reprinted in Geophysics (Robinson, 1967a). The Fejér method can
be found also in Grenander and Szegd (1958, pp. 20-26). A third

method based on linear prediction will then be described.

A - Feijér Method

The Fejér method assumes only that the expression for P(w)
is known. However, in our problem we also know S(z). The

method described below is an adaptation of Fejér's with S(z)
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assumed to be known.

Substituting z for erT

in P(w), we obtain

P(z) = S(z) s(z™H) , (5-9)

which from (5-8) must also equal:

o rh i et = SA# s v manes

P(z) = B{z) B{z™H) , ' (5-10) g
Without loss of generality we shall assume that the samples Sy and |

Sy of the signal are non-zero. (This can always be insured by
defining the signal properly.) The polynomial S(z) in (5-4) has

N zeros, hence it can be written as:

u v
_ -1 -1 -
S(z) = S ” (l--czk z ) | I (1-8, z 7) , (5-11)
k=1 k=1
where @, are the roots inside the unit circle,

Bk are the roots outside the unit circle,
and u+v=N ., {5~12)

(We shall ignore cases with roots exactlv on the unit circle,

S Ony S WK B N owt DN P PEM Da Wi BN e

R

since they would rarely occur for an actual signal.) It is

e

clear from (5-11) that S(z %) will have u roots a.t outside the
k

unit circle and v roots B;l inside the unit circle. Therefore,

S

P(2) in (5-9) has a total of 2N roots, N roots inside the unit

circle, and their reciprocals outside the wnit circle. We conclude

L TR
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from (5-10) that B(z) must have N roots. Therefore, M=N in (S5-6b).

We wish to have all the roots of B(z) be inside the unit

circle, hence

N
B(z) = bz ™ -
Ago n {5=13)
u -1, o -1 -1
= b0~T1' (l-ay 2 )‘]]‘(1-sk z ), (5-14)
k=1 k=1

The roots of B(z) can ke computed from the roots of S(z). There
still remains the computation of bo. Since the power spectra

of B(z) and S(z) are identical, they must also have identical
autocorrelation functions. 1In particular RN’ the Nth autocorrela-

tion coefficient must be the same for both. From (1-6) (with N~1

replaced by N):

Ry = So Sy = 1)0 bN . (5-1.5)
By equating the coefficients of 2~ ¥ in (5-13) and (5-14), we have

- -l -

b = » N (5"'17)

From {5-11), (5-14) and (5-17), the specification of B(z) is

96
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complet«. From (5-6), B(z) = §m(z), and we have now determined
the tra..fer function S(z) as p*®, Note in (5~-13) that the
sequence b (nT) is of equal length to s(nT), and b{nT) = 0 for

n<0 and n>.,

faw.utational Considerations

The main problem in “inding §m(z) is computing the N
rorr - ‘. 8(z). Fo. 25 msec of 10 kHz sampled speech, N=250.
Finding the roots of a 250~ or even a 1l00-degree polynomial is
a major undertaking. Tc say the least, the method we have just

outlined is highly impractical, The main reason for the above

RYSTOTS

discussion was to show that although S,(z) has an infinity of
poles, it can be written as a polynomial with a finite number of
zeros. Also, the minimum-phase sequence b(nT) has the same

length as the original sequence s(nT).

B~ Cepstral Method - (Kolmogorov Method)

Although Kolmogoro did not use the word "cepstrum"
tc refer to the Fourier transform of the logarithm of the spectrunm,
the operation itself was used. A more recent analysis of this .

subject can be found in Cppenheim and Schafer (1968). We shall

IV JWw

make use of the latter reference helow.

The problem again is to compute the minimum-phase
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sequence b(nT) corresponding to the speecn sequence s(nT). The
z-transform of b(nT) is §m(z). Below we shall drop the subscript
« and simply use §(z) as the minimum-phase transfer function cor-
responding to S(z).

Let the cap:zivum c(nT) of S(z) be defined as:
u/t

c, ;v ’[. logIS(wH2 ejan dw
- /T
/T
= %? log P(w) e:]m”T dw . {5-18)
-7/7

The cepstrum &(nT) of §(z) can be similarly defined. Since
|§(m)|2 = IS(w)I2 (the spectra are identical), we conclude that
En = Cpe e note from the properties of the spectrum and (5-1R8)
that , is real and even.

Let the complex cepstrum c¢'{nT) of S(z) be defined as:

/T
ey = % log S(w) eIMT gy, (5-19)
~-1n/T

»~
S(w) can be written as:

Sw) = |8(w) ] &I¥(®?
= Is(u)| 3% | - (5-20)
Therefore, log S(w) = log|S(w)| + j&(w). (5-21)
98
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PP

Log|S(w)| is an even function of frequency and 6(w) is a

s bans

continuous odd function of freauency. fTherefore, cg is a f

a :
r241 function. Furthermore, since S$(z) is minimum~phase we :

have (Oppenheim and Schafer, 1968):

From (5-21), (5~19) and (5-12) we conclude that the even part §
c

~t n .

of °n should be equal to -5 3

T il o

N

1l 1 ;
1l = ' ' = = :
Even [Cn] 5 [Cn + Cl_n] ¥ Cn ’ s

b tam s

' " - 5-23
or chtel =c . (5-23)

T RN Ta v 2 o 0 N Foan

From (5-22) and (5-23} we have:
0, n<o,

n

The sequence b(nT) is then computed from c'(nT) as follows:

© .
S{w) = exp Z ch e InuT (5-25)
n=0
n/%
and b = 3= S(w) eI™T gy | (5-26)
1 /T
|
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Equations (5-18), (5-24), (5-25) and (5-26) specify the segquence
of computations needed to find the minimum-phase sequence b (nT).
Of particular intexest is the value of b0 which from (5-26),

(5-25) and {5-24) is equal to:

!
:
§
]
S
K
%

bo ) ecé _ ec0/2
or b2 = U (5-27)
This result will be important in the next section.
Computational Considerations
The power spectrum P(w) = [S(w){2 is a continuous function

of fraquency and so is log P(w). The cepstrum c(aT), which is

the inverse transform of log P(w), is potentially infinite in

extent. In practice, the cepstrum becomes negligibly small at
high cepstral values (or quefrencies). Therefore, P(w) must be
computed to have enough resolution such that no cepstral aliasing

occurs. This criterion is realized by trial and error.

We shall give the whole algorithm in wmachine-implementable

form. We assume that we are given the sequence s (nT).

(1) Take the FFT of s(nT) with enough zeros appended to
give sufficient spectral resolution, giving S(w) at
a finite number of equispaced frequencies.' Let this
number be M.

(2) Compute M values of C(w) = logIS(w)|2°

L AT RIS s o

[S—

-
e o

—

[

I3
| S

L3R A2 X EINEKY,

¢
. 8
rr"
w_u‘ﬂd

e UL T P T o [ PR ST (N ST e - VA SN L B VAL FERTWRARINAS SO T R PSR P TP - YIUULEN [ PURYE TN, Y. 1SRRI et Tt

n

o L

S 27 SN b

AR 08 BER 0 AR APt B P TG



O i et R e R SR R - S S U Sl b A NI o S EE 2 GURA NS DOt AL Lo B i o TR L s e dgil B w'-mmw
3

TRy EY

ey e o ey N

Report No. 2304 Bolt Beranek and Newman Inc.

(3) Take the inverse M-point FFT of C(w) to obtain
M points of c(nT).

(4) Compute c; frca c, as follows:

Note the differences between {5-28) and (5-24). The changes are

f%co L, n =0,
% S, . 0<n<§- '
e =¢ : . (5-28)
§ Z M2 P70
ﬁ \ 0 ' §<n5M-l .
)

necessary in order to deal with a finite instead of the theoreti-

cally infinite sequence.

(5) Take the FFT of cﬁ , to obtain log §(w) = log Is(w) |+ ?
jo({w} at M frequency values.
(6) Compute S(w) = |S(w)]| cos(6(w)] +j |5(w)| sinfo(w)].

{7) Take the inverse FFT of §(w) to obtain b{nT).

M must be greater than N, the number of samples in the sig-
nal. A value of M = 2N gives good results for a windowed signal
with large N{(%“250). b{(nT) should come out to be zero for n>N,

but, in practice it will have small values in that region.

Another occasional source of problems in this method is

when one of the values of P{w) approaches zero, the logarithm

approaches ~», For a spaech signal this problem is most likely

121
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to occur when the d.c., value is zero. This problem will be dis-

cussed further in Section 5.4 in ccnnection with the computation
of Coe

C < Linear Prediction Method

From (5-6), the sequence b(nT) can be obtained by long divi-
sion of A_ into 1-53 akz"k . However, one must first know A,
as well as ay for gii k. This, of course, is not possible, but
one can make an approximation to gm(z) by considering §p(z) in
(5-5) for a large value of p. The computation cf the predictor
parameters ay is then possible by the Fast Autocorrelation method
(see Appendix B), and Ap is ccmputed from (3~36). Dividing Ap

154 -
by l-gzlakz k gives a polynomial whose coefficients approximate

the minimum-phase sequence b(nT).

Figure 5-la shows a windowed signal s{(nT) of duration 25.6
msec (10 kHz sampling rate)., The mininum~phase sequence b (nT)
corresponding to s(nTl) was computed by two methods: the cepstral
method and the linear prediction method. Figure 5-1b shcws the
approximation to b(nT) as computed by the cepstral method using
512-point FFT's (256 zeros were appended to s(nT)). Figure 5~lc
shows the approximation to b(nT) as computed by the linear pre-
diction method with p = 250, All the figures are normalized to
the same maximum amplitude. For a given accuracy, the cepstral

method is more efficient than the linear prediction method.
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PROT N

L PANAN a4 vaih

s (nT) V\J\j\/\a—
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Fig. 5-1 Computation of the minimum-phase sequence
b (nT) corresponding to the windowed signal
s{nT).

(2) s(nT) - 25.6 msec, 10 kYz sampled speech.
(b) Cepstral method using 512-point FFT.
(c) Linear Prediction method using p=250.
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N~
v

5.3 Analysis of the Normalized Error

- A

We mentioned in Sectioa 5.1 that as p*=, P(u) beccmes iden-
AN
t .
tical to P(w). In this section we shall examine this pxocess of
.
approximation by analyzing the behavior of the normalized ndni-

mum total-squared error V_, or simply the normalized errnr. -

P

The normalized error was defined in Section 3.3 as the wmini-
4

mum total~squared erxror divided by the energy of the sigunal s(aT):

A Y

2
E A
v, = T% = 'ﬁ% . (5-29)
. p
or &p =1 - leak Ty s (5-30)
Ry
where r, = F; {(5-31}

are the normalized autocorre . ition coefficients, which‘have the
property that lrklsl, for all k. The sum ;iikrk on the right-
hand side of (5-30) cannot be negative sinée the choice ak=0,
lsk=p, would reduce Vp. This is not possible because Vp is al-

ready a minimum. Therefore, Qiakrkzo must always hold and fol,
=1 n
By an argument similar to the above one can show that V lSV

[

pti p
and l:ience that Vp is a monotonically decreasing function of p.

0., The latter

As p+x, Vp approaches a minimum value V_ = minZ

condition is true because Vp is a normalized squared erroxr and

therefore szo. lience,

O=v <1 ., 5-32
p ( )

o

-
N
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This result will be shown in a different way later.

FPigure 5~2 shows normalized error curves as a function of

n for the unvoiced fricative [s] in the word "list" and the vowel
(2] in the word “potassium”. The speech signal was lowpassed at
4.5 kHz and sampled at 10 kHz. Each of the two error curves de-
creases monotonically towards its own asymptote Vmin as p=»*=,
The largest single drop in both error curves occurs for p=l.

Thus v is indicative of the eventual levels of the error curves.
It is instructive to examine the behavior of V; for different \

sounds. From the flow chart in Appendix B we note that for p=1,

Therefore, 2
v1 =] - (ig) =1 - ry . (5-33)
From (4-1lb) we have:
T/T
R, = &
0~ 7w P(w) dw (5-34)
-n/T
/T
and Ry = %F P(w) cos (wT) dw . (5-35)
-n/T

Ry is the integral of the spectrum, which is equal to the total
energy in the signal. Rl is the integral of the cosine-weighted
spectrum, The cosine weighting is shown in Fig. 5-3. Low frequen-
cies are weighted positively, high frequencies are weighted nega-

tively, while mid frequencies do not contribute much to the value

ies
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0.02

— e awn oo e e s s . w s [ e w—n vy o = vns ane]

Vmin

0.01 H A
0] 2 4 6 8 10 12 14 16 18 20

NUMBER OF POLES p

Fig. 5-2. Normalized error curves for [s] in the word
"list" and [2] in che word "potassium®.
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Fig. 5-3. Cosine weighting in computing R,.
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Fig. 5-4. A plot of Vlslori, the normalizzd

error for p=l.
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of Ry. So, what is important in determining the value of Ry is
the energy balance between low and high frequencies. For ex-
ample, sonorants usually have most of their energy concentrated
at low frequencies, resulting in a value of R, very close to RO.
Typically rl>.85 for sonorants, and from (5-33) V1<.25. On the
other hand, unvoiced frication has the enerqy either distributed
over the whole frequency range or is more concentrated at high
frequencies. Typical values of R; are such that =+3<ry<.5, with
negative values being more likely for strident fricatives. <“his
results in a Vl>'75' Note that it is the absolute value of ry
that is important in determining the value of Vi Figure 5-4
shows a plot of V, as a function of ry. If most of the energy
in the spectrum is concentrated at high frequencies then ry be~
comes close to -1 and vy becomes very small, In general, any

particular spectrum and its mirror image (low and high frequen-

cies interchanged) have identical values for Vl.

Above we tried to make three points: 1) One can get in~-
sight into the general level of the normalized error curve by
exanining the behavior of Vl' 2) The value of Vl depends on
the absolute value of the normalized first autocorrelation coef-

f cient rl=Rl/R0. 3) The value of Rl depends on the relative
anergy distribution in the spectrum. 1In order to get more insight
into the behavior of the normalized error curve, we must exaiiine

VD as p varies, This requires that we examine the autocorreclation
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function since Vp is a function of only the autocorrelation co-
efficients Rk' 1=k=p. This can be seen from (5-30) and the fact

that the predictor coefficients are computed from the autocorxrela-

tion coefficients by solving {3-17). The expression for Vp in
terms of the autocorrelation coefficients becomes very compli-
Cated as p increases, and very little insight can be gained in ‘
that direction. On tne other band, we know that there is a one-
to-one relationship between the autocorrelation function and the
spectrum., Therefore, an alternate course is to examine Vp as a
function of the spectrum., This relation could be obtained from
the results of Section 5.2 on minimum-phase sequences, but we

shall give a mecre direct derivation below., The expression for

V_ will be in terms of ;C' the zeroth coefficient (quefrency) of

p

the cepstrum corresponding to P{(w). An expression for Vnin then

follows directly.

Substituting ﬁ(w) for P(w) and En for S, in (5-18), and i

letting n=0, we obtain: '

w/T
80 = %f log B(w) dw . (5-36)

o 4o
(LIRS

80 is just the integral of the logarithm of the approximate spec-

rum B (w). 80 is a function of p since P(w) is a function of o8
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The apprcximate spectrum P(w) in (4-6a) can be rewritten as:

3 a2
Pl(w) =
() p ot 2
- =]
! I 1 2, e
k=1 (5-37)
A2
p
P 2
l I l+|zk| -2[zkrcos(wT)+zkisin(wT)]
k=1

where zy = 2. + jzki' 1<k=p, are the poles of the transfer func-
tion §(z), and Z) and 2, ; are the real and imaginary parts of
the poles, respectively. Since the logarithm of a product is
equal to the sum of the logarithmis of its elemerts, (5-~37) can

be substituted in (5-36) to obtain (after interchanging integra-

tion and surmation;:
p /T
2 _¢°T
P YL
=] -n/T

30 =-log A log (1+lzk|2-2[zkrcos(wT)+zkisin(mT)})dw.

(5-38)
Since all the poles of S(z) are guaranteed tc be inszide the unit
circle, we have Izk|<l, lsks=p. For this special case, the inteqral
in (5-38) is equal to zero (Gradshteyn and Ryzhik, 1963, p.542).
(For lzklzl, the integral multiplied by %F is equal to lag!zklz.)
Therefore:

A _ 2
Co = log Ap

]

1 E_. -
og E, {(5~39)
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The zeroth coefficient of the approximate cepstrum is egual to

the logarithm of the minimum total-squared error. Substituting

(5-3%8) in (5-29) we obtain the desireAd resultg
(5-40)

{Note that R, = R

0 0 for all p.)

From {5-2) we know that as p+», P(w) becomes equal to P(wj.

Substituting P (w) for ﬁ(w) in (£-36) and the result in (5-40),

we obtain an expression for the mininum normalized error Vmin=vm’
eco
Vmin = ﬁg‘ ' (5-41)

where Cg is the zeroth coefficient of the signal cepstrum, and

R, is the energy in the signal.

Equation (5-41) can also be derived from the results of

Section 5.2, From (5-29), (5-7) and (5-27) we have:

% bg o
v . =V = _: = e— 3= -e_._. .
min © Ro RO Ro

Also, since the impulse response §n corresponding to S(z) is

minimum~-phase, and 30 = A_ from (3«28), we have:

P
Ly A2 ~
A s 0
v =_R=_.0..=.e._. .
p ~ ~ ~
k, R, Ry
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It is instructive to write (5-41) as a function of P (w):

/T 1
exp %J‘ log P{w) duil
- -7/T
Vain = 27T . (5-42)
%-Ff P(w) du
-n/T

It is clear from (5-42) that Vmin depends completely on the shape
of the signal spectrum. Similarly, from (5-40!}, Vp depends com-
pletely on the shape of the approximate spectrum. This fact is
very important in interpreting the behavior of the normalized
error curve for the spectra of different sounds. For example,

in Fig. 5-2 the error curve for the unvoiced fricative [s] is
much higher than that for the vowel {z)]. On the whcle, unvoiced
sounds have a high error curve while voiced sounds have a much

lower error curve. This property of voiced :'ersus unvoiced

sounds has been observed before (Atal and Hanauer, 1971; larkel,
SCRL Mon. 1971), and Vp has been suggested as a possible para~-
meter for the detection of veoicing. However, with our result
showing that the error curves are dependent only on the shape of

the spectrum, it is clear that what makes this apparent dichotomy

between voiced and unvoiced sounds has nothing to do with the fact

of voicing itself, but rather with the shapes of the spectra cor-

responding to these sounds.
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By examining the behavior of Viin in {5~42) one gains ins? ¢
into how the error curves change for different shapes of the
trum. For example, it .s easy to show that if the spectrum is per~

fectly flat, then Vﬁ = 1, and the error curve is the highest

in
pnssible. On the other hand, if all the energy is concentrated

in certain regions of the spectrum and the rest of the spectrum
contains zero energy, then Vmin = 0, and the error curve is the
lowest possible, Speech sounds lie somewhere between these two
extremes. In general, voiced sounds (especially sonorants) have
most of the energy concentrated in one region at low frequencies,
resulting in low error curves. Unvoiced sounds, on the other hand,
have the energy more evenly distributed across the spectrum, re-
sulting in higher error curves. However, this property cannot be
relied upon all the time. As an example, Fig. 5-5a shows the errorxr
curve for the burst [k] in the word "“concentration". The exror
curve is low although the sound is unvoiced. 1In this case, this was

due to the fact that the [k] spectrum had a single sharp peak where

most of the energy was concentrated (see Fig. b%-5b),

An interesting way to look at Vmin in (5~42) is to view it as
the ratio of the geometric mean to the arithmetic mean of the

spectrum, where the notions of the geometric and arithrmetic means
have keen extended to the continuous case., This becomes clear if
one assumes that the spectrum P{w) is approximated by a staircase

spectrum with N distinct values P, over the frequency range EE
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and 7 . In that case, (5-42) reduces to:

5 N /N
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k=1 k=1 (5-43)

Such a ratio has been useful in acoustic signal processing in

getting bounds on the difference between averaging logarithms

versus taking the logarithm of the average of measured data samp-

g% which is the ratio of a geometric mean to an arithmetic mean.
les (Cox, 1966; Hershey, 1972). {(This difference is simply the
i

logarithm of Vmin in our case.) It is well known that the ratio
ir (5-43) is equal to 1 if all the data are equal, and the value
decreases as the sprcad of the data increases. A larger spr«ad
is equivalent to heavy concentrations in certain regions and a

simultaneous lack of energy in the other regions of the spectrunm,

i.e. the spectrum has a large dynamic range.

In order to get a better feel on how V . varies with dif-

ferent spectral shapes, we shall compute the ratio in (5-42) for

single-pole model, and (e¢) a double-pole model. Below, we shall

T T NN e, 2250 0y T ————— .
- PSRt A SRR 2R L T e T

refer to the ratio in (5-42) simply as V; it is the ratio of the

geometric mean of a function to its arithmetic mean.
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A. Two-Level Model

The two-level model is shown in Fig. 5-6a. The spect&um
consists of two levels: a high level labeled H, and a low level
labeled L. 1In Fig. 5-6a, for y = 0 or y = 1 , the spectrum is
flat and from (5-42), V = 1, For Ocy<), 0<v<l. Therefore, for
fixed H and L, there must exist some Y for which V has a minimum

value Vm’ We shall find this value of vm as a function of H and L.

From (5-42) and Fig. 5-6a:

oy log H + (1-y) log L)
yH + (1-y) L
Yy, can be shewn to be equal to:
yp = —— - 2, (5-45)
log d d-1
. (5--46)

where 4 = T

will be known as the dynamic range.

Substituting (5-45) and (5~46) in (5-44) we obtain Vm' the lower

bound on V:

Vo= Y e(I=Y) (5-47)

where y = l%grﬂ . (5-48)

{5~-47) is the expression for the lower bound on V for a particular

value of the dynamic range d.

the dynamic range D in dB, where
116

Figure 5-6b shows a plot cf Vm ver-us
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= — H .
D =10 loglo d = 10 log10 T e (5-49)
For example, for a dynamic range D = 20 dp, we read from Fig. 5-6b
that the lower bound on the value of V for any two-level spectrum

with dynamic range of 20 4B is 0.12,

In terms of the value of V, it is clear from the properties

of the integrals in (5~42) that the two-level model in I'ig. 5-6a
also applies to any othcer spectral shape that has only two values
(levels). 7The importance of the twe-level model o other multi-
valued spectral shapes is in providing a lower bound on V for all
other shapes. This is made explicit by the following lemma and
theorem.,

Lemnma Let H and I, be the highest and locwest spectral values
for any spectrum with total energy Ro. There exists a
unique two-level spectrum, such as shown by Fig. 5-6a,

whose two levels are H and L and whose total energy is

equal to RO. This two-level spectrum has:
R0 -L
H -L

Theorem 13 For a given H, L and R,, the value of V for the two-

0'

level spectrum determined by (5-50) is a lower bound

on the value of V for any spectrum with maximum and

minimum values H and L, ana total energy RO.

The derivation of (5-50) is straightforwaxd. However, the proof

of the theorem is more involved and will not be given here. The
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method of prcof is to make a perturbation to the shape in Fig. 5-6a,
keeping R0 constant, and preving that the resultant spectrum has a
higher V than that for the original two-level spectrum.

Another way to state Theorem 1 is to say that for a
certain dynamic range D and energy RO' the two-level spectrum
gives the minimum value for V. Moreover, we have seen that for a
particular dynamic range D there is a particular two-level spectrum
determined by (5-45) which gives a value Vi that is a lower bound
for all two-level spectra with dynamic range D. This leads us to

the following theorem:

Theorem 2 : The walue given by Vin in (5-47) is an absolute lower
bound on the value of V for any spectrum with a given

dynamic range D.
By equating the value of y in (5-50) and (5-45) one can solve for
Ry, resulting in the following corollary:
Corollary : A spectrum with maximum and minimum values, H and L,
and total energy RO given by

R = H=L (5-51)

H
log T
has an equivalent two-level spectrum as determined by

(5-50) whose value for V is given by Vi in (5-47).

How close the value of V for a particular spectrum comes to Vm
depends on how well that spectrum can be approximated by a two-level
spectrum and how close R, is to the valuve given by (5-51). As
an example of the latter conditicn, if the dynamic range b = 20

to 30 dB, then the total energy R, must be approximately 7-8 dB
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below H for (5~51) to apply. For actual speech spectra, if H and ,

L are those of the spectral envelope then the general shape of the

Ao s

curve in Fig, 5-6b applies, though the actual values of V are

peasa

usually higher than those in the figure. 2as a general statewent |J

one can say that the value of the normalized error decreases as the

)
S O RS TN s 125 N AN _aSronthr st AL T, M.;J

spectral dynamic range increases.

TR TR TR0 W
PR

B. Single and Double~Pole Models z)

The two-level model concentrated on the effect of the spec-
tral dynamic range on the value of V. Here we shall exaiine the !

effect of the general slope of the spectrum on the value of V, !
ﬁ First we shall derive V for an arbitrary pair of poles, then

N AL I s SRR AL o 39 5 5 3B et St ae T,

we deal with special cases. Let the two poles be at z=a and z=b,

(1-az~ %) (1-bz~ 1)

both inside the unit circle. The transfer function for the two 5
4

poles can be represented by 4
*

C

! A

X(z) = — lal<1,|bl<1. (5-52) i g

1

§

S S Y

The impulse response corresponding to X(z) is given by x(nT),

) SRR S IR

the inverse z-transform of X{(z). It can be shown tnat:

0, n<0 ,

X, = (5-53)
a.]._ (an+l-bn+l) , nz0.

The total energy R0 can be obtained from (5-53) as:

(ool

Ro=gxi
n=0 (5-54)

i+ab

(1-ab) (1-a%) (1=b%)
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In computing V from (5-42) we also need the numerator, which is

c
equal to e 0. Following a derivation similar to that in Section 5.2

(equations 5-36 to 5-392) we conclude that Cp = 0 for X(z), and

o
hence e = 1, Therefore,
. 2 2
v = 1 _ (i-ab){i-a”) (1-b") . (5-55)
iio 1+ ab

(5-55) is true for any pair of poles inside the unit circle.

Complex~Conjugate Pair of Poles: Here b is the complex conjugate

At e IR, LA A et SR TRtk At 8 SCHIT B s i M A LU L T 00 20 150 B NI s et s ek o 2 VLR

of a, b = &, Therefore,

 soiots B oo S wvncovs SRR emecs SR <=voue RS -~ B —— I — - B -~ I — -

1-r? 4 2 é

V=== L+ r° ~ 2r° cos(2uwT)] . (5-56) i

i+r ;

where r = |al = |b] 3
£

and wT = angular position of a or b. ,é

o il

Double Real Poles: a = b, both real.

PR WSS

2 3 3

2 1

veJ1-b) | (5-57) :

{ 1+b ;

i

ﬁ Single Real Pole: a = 0, b is real. g

:‘é

2 ;

ﬁ V = 1-b° . {5-58) 4

3

. L . {

’ Note that b could be either positive or negative. Recall that a 4

b

l positive real pole corresponds to the usual real pole in the analog E

domain, while a negative real pole in the z-plane behaves like a g

i pair ot complex conjugate poles at half the sampling frequency (sce |
% 121
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Appendix A). The spectrum of a negative real pole is just the
mirror image of the spectrum of a positive real pole. Wkile the
spectrum of a positive real pole slopes down at approximately

6 dB/octave, that of a negative real pole slopes up at the same
rate. Note, however, that the value of V in (5-58) is the same
whether the pole is positive or negative. The same goes for the
double real poles in (5-57).

Using linear prediction we approximated the spectra of
several sounds from a single male speaker by single and two-pole
spectra. The speech signal was low-pass filtered at 4.5 kHz and
sampled at 10 kHz. The results showed that most sonorants were
well approximated by a complex pair of poles with a Q (ratio of
frequency to bandwidth of resonance) of between .5 and 2. The
frequency of the resonance ranged from abcut 200 to 700 Hz for
different sonorants. [t] bursts were approximated by a complex
pair of poles at around ? kHz with a Q of 1.5, (llost of the high
frecuency energy in the burst had been filtered out.) The frica-
tive [¥)] was also modeled by a complex pair at about 2700 iz with
a Q of 2, On the other hand, the fricative [s] was approximated
by two real poles: on2 negative and one positive, When the ap-
proximation was restricted to a single pole, the pole was nega-
tive and positioned around the real frequency 1000 Hz (i.e, the

pole is at 5 kHz with a half bandwidth of 1000 Hz).
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The values of V in (5-56) for complex pairs of poles with
low Q is quite close to that for a double pole in (5-57) at the
same frequency. Therefore we shall give the values of V in
(5-57) for different frequencies. This is shown as a graph in

Fig. 5-7. For sonorants, values of V are seen to range frcm about

«01 to .1. Also shown in Fig. 5-7 is a graph of V in (5-58) for
a single real pole (positive or negative) with real frequency as
the abscissa., The value for [s] would be on that graph around
1000 Hz. 1In order to convert between real frequency and the value

of b in {5-57) and (5~58) use the formula

Ibl = e'-O'T - e-z‘ﬂfrT

where fr is the real frequency and T is the sampling interval
(in this case T = 100 psec).

These graphs have two main properties. First, at any one
frequency, V is less for a double pole than for a single pole.
This is to be expected since the spectrum of the double pole has
a larger dynamic range than that of the single pole, and we have
learned that, other things being equal, a larger dynanic range
results in a lower V. Second, for each of the two curves, as the
frequency of the pole increases, V increases. Again, this is to
be expected since as the pole frequency increases the dynamic

range of the corresponding spectrum decrcases which causes an

increase in V.
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This concludes our exposition of the behavior of Vmin as

a function of different spectral models. For real speech spectra
Vhin must be computed from (5-42) in an approximate mannzr. This
is discussed in the next section where we deduce properties of

the zeroth quefrency Cye

5.4 The Zeroth Quefrency '
c

It is clear from (5-41) that V = SR“ depends completely on
0

the zercth quefrency Cy and the total energy R, of the signal.

Therefore, alli the properties of V that were discussed in Section
5.3 are actually a reflection on the properties of Cyo Ve shall
not repeat these properties here, but we would like to examine

another possible usefulness of cq in speech analysis.

Given two signals such that one is a constant multiple of the é
other, their cepstra are identical except at the origin (i.e. at
co). This prererty led Mersereau and Oppenheim (1972) to suggest
the possibility of using €, as a measure of signal amplitude. They
presented plotg of Cqy for several utterances and compared them with
plots of log Ry. They noticed that the two curves had similer gross

features except that for some fricatives g had definite peaks

while log Ry did not. These differences between o and log R, can
be easily explained from the properties of V. 1Indeed, the differ-
ence between ¢, and log R, is simply given by

log V = o * log Ry. (5-59)
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This difference can be measured in dB if we take 10 leglo V in i
which case: §E!
()
: i
or V(dB) = cy(dB) - Ry(dB) , (5-60) i
U
I
¢ where V(dB) is V measured in dB, Ro(dB) is the energy measured in i
i
A dB, and coidB)= 4.3400. Since Vsl must always hold, log V is §J i
3 always negative (or equal to zero). Therefore, } 3 :
1 CyidB) = Ro(dB) . (5~61) | é
!

How much co(dB) is less than RO(dD) depends on the shape of the
spectrum., From the analysis in Section 5.3 it is clear that .
¢, (dB) could be as much as 20 dB less than RO(dB) for certain
sonorants, On the other hand, for some fricatives that differ:nce
could be as low as 3 or 4 dB. This is why, reiative to the gen-
eral trend of c, versus log RO' scre fricatives were marked by

E sharp peaks. From our experience, even within the sonorants them-

selves V(dB) varied by as much as 10 dB.

Our conclusion is that the zeroth quefrency o indeed does

carry information ccncerning the energy in the signal, but that

e

information is coupled with other information about the general

L

shape of the signal spectrum. The energy information can be

e c

F factored out by dividing e 0 by RO' leaving the information on the
c

spectral shape, and that is simply V. o (more accurately e 0) is

—— ——
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a measure of the geometric mean of the spectrum, while Ry is a f
measure of the arithmetic mean. Thus, the informatici: that ¢y ’
carries about R, is the <ame information that a geomctric mean

carries about the corresponding acithmetic mean, no less and no

more. The relation between the two means is represented by V.,

Computational Considerations

If Sy is to be computed for a speech signal using a digital ;
computer, then the integral of the loy spectrum must be approxi-
mated by a summation. This is uvsually no problem, unless one of
the spectral values happens to be zero. %his is rost likely to
happen at d.c. especially since many people remove the d.c. com=-
ponent from the signal before computing the spectrum. The prob-
lem, of courge, is that the logarithm of zero is normallv consid-
ered to be ~», Anything added tc -« keeps the sum at -« and S
will have the value ==, This result is incorrect since we know

that the integral of the log spectrum for any signal with finite

non~-zero energy must always be finite. The fact that the spectrum
P(w) is zero at one point (causing log P(w)*=-~) does not mean that

the integral of log P(w) is also infinite. As a simple illustra-

tion, it can be vexrified that

£
.llog wdw =€ log € - € , (5-62)
0
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Note that at w=0, log w+=-=, but the integral in (5~62) is finite
for an arbitrarily small e. In particular, as e€»0, the integral
approaches zcro, and thus the fact that the logarithm is infinite

at w=0 did not contribute to the integral at that point.

It should be clear that the above problem in computing Cq
arose only because we are approximatirg the integration by a
sunmation. Indeed, if the integral in (5~62) is to be approxi-
mated by a summation and the value at w=0 is used, the same pro-
blem would occur. If we assume that this problem is likeiy to
arise only at d.c., then a good solution is to remove the d.c.
from the signal and then ignore the spectrum at d.c. in computing

CO.

5.5 Detection of Voicing

In Section 5.3 we pointed out the possible usefulness of
the normalized error Vp as a voicing detector. This could be
implemented by setting a threshold on the normaiized error 7or
a particular value of p. If Vp is less than the threshold, the
sound is judged to be voiced; otherwise it is judged to be un-
voiced. For speech recorded in a quiet room using a high cuality
system, we have found that the normalized error can be used in
this manner a large portion of the time for the detection of
voicing, (More precisely, it is useful in differentiating sono-

rants from nonscnorants. In the cases cf stops and fricatives,
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oocie B ot -~

the normalized error does not work particularly well as a

voicing detector.) It should be reiterated that this behavior K

[ oo

of the normalized error has nothing to do with the fact of

[ 23 wx

voicing itself, but rather with the shapes of the spectra cor-

resgonding to voiced vs. unvoiced {(or sonorant vs. nonsonorant) i

f".
ii sounds. We will peint out some of the common conditions under |
i% which the rormalized error works less than ideally as a voicing

detector.

&

Background lioise = During stop gaps and other periods of silence,

the signal being analyzed is the background noise. During these

&N

periods, irrespective of how low the noise level is, the normal-

ized error curve could be low or high, depending on the shape of

ooy |

the noise spactrum. If the noise spectrum is rather flat, the

Wi 4

error curve will be high and the spectrum will be judged to be

unvoiced, lowever, in many real life situations there is a

o QU <oess

heavy energy concentration at very low frequencies, which causes
the error curve to be low and may cause the spectrum to be
judged as voiced. A possible solution is to high-~passg the speech

signal to get rid of these low frequency components (which are

P

! g usvally below 256 Hz), but this filtering would also filter out

z% the low frequency components in all other sounds vo an undesirakle

: extent. A better solution would be to detect periods of silence
from energy considerations (e.g. RO) and then avoid making a

voicing decision based on Vp during these periods.
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Telephone Speech - The telephone is an example of a medium for

extznsive vocal communication which distorts the speech signal
in many ways. For example, the energy below 300 liz and above 3
kliz is filtered out. This keeps nuch of the formant structure
relatively untouched, but it filters out much of the enerxgy for
sonorants and fricatives. This, in addition to other important
factors (such as noise), reduces the spectral dynamic range of
the signal. The overall effect on the normalizecd error is that
it becomes higher. TFor some vowels the normalized error can be
as much as an order of magnitude higher. The result, of course,
is that it becomes more difficult to use the normalized error

to differentiate between voiced and unvoiced sounds.

Effects of Preemphasis - Preemphasis is often used in speech ana-

lysis to compensate for the spectral slope of voiced sounds, which
falls at 6 dB/octave or more. In the digital domain, preemphasis
is conveniently accomplished by differencing the signal (i.e. sub-
tracting adjacent samples). We shall go into some detail on *+he
properties >f differencing and its effects on the normalized exror.

Some of tlese properties will be useful in the next chapter on

formant extraction.

Let the first difference of the signal s, be defined by:

N - = (5-
Si = Sp = Sp.y = dls)) {5-63)
130
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where sﬁ is the differenced signal and a* is an operator that
takes the ith difference of its argument,

Taking the z-transfcrm of (5-63) we obtain:

§'(z) = (1-z"1) s(2) = D(z} S(z) (5-64)

~1

1-z (5-65)

ft

where D(z)

is the differencinc operator in the frequency domain., It intro-
duces a digital zero at z=1, which corresponds to zero frequency.

The power spectrum of the differenced signal is:

Pr(w) = |87 (]2 = |D(w)|? P(w)

[t}

1 - e 39T|2 prw)

4 sinz(ﬁg) P(w) , (5-66)

where |D(w)] = 2 sin

wT -
-2') (5-67)

is the magnitude of the frequency response of the differencing

operator. Therefore, the effect of differencing in the time do-

the spectral response of the zero z=1l. Figure 5-8 shows a plot
of |{D(w)| in (5-67) versus wT. {wT = m corresponds to half the
sampling frazguency, which would be 5 kHz for a 10 kHz sampled
signal,) Also shown }n Fig. 5-8 is a plot of the transfer func-
tion for the analog zero at zero frequency. The analog zero

corresponds to differentiation in the continuous time domain.

! main is to multiply the power spectrum by 4 sin2 (9%-‘), which is
%
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Analor,
Zero

\Dinital
! Zero

N,

e, e = wT

0 T 2n

Fig. 5-8 The freqguency response of a dipital zero at z=1
as compared to tne correspondings analor zero
at zero frequency.

The response of the anaiog zero climbs at 6 dB/octave for all
frequencies. The response of the digital zero climbs at 6 dB/
octave at low frequencies, but becomes flat at wT = 7, BRetween
uT = g and wT = 1 (which corresponds to the octave 2.5 kHz to
5 kHz) there is a rise of only 3 dB. At wT = 7w, the digital re-

sponse is 3.92 4B lower than the analog response.

Therefore, differencing greatly attenuates the energy at
very low frequencies and enhances the energy at high frequencies.
These major effects on the shape cf the spectrum have strong
effects on the normalized error curves., As an example, Fig. 5~9
shows the error curves for the same two signals shown in Fig.' 5~2,

except that in this case the signals were preemphasized by
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Fig. 5-9. Normalizad error curves for the same two sounds
as in Pig. 5-2, except that the speech signals
ware praesphacized by simple differencing.
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differencing. The error curve for the unvoiced fricative [s]

became lower while that for the vowel (@] became much higher, so

=

much so that the [®) curve starts higher than the [s] curve, but

[ —

as p*~, V

min for [2] becomes lower than Vm.

in for [s]. (This neans

™ PN b

that the two curves must have crossed at some point. In this

c_

case the curves cross at p = 122.) In general, preemphasis causes

Pis SR RO 1

a marked increase in the value of the normalized error for sono=-

 —

rants. The effects of preemphasis on unvoiced sounds such as

Py
| SO——

stop bursts and fricatives are less predictable; the normalized

error could go either up or down depending on the particular

 —

spectrum. These effects can be understood better by examining

how the autocorrelation coefficient Ry is affected by differencing

G

the signal, and then using Fig. 5-4 to make statements about the

1
~-

- ¢

behavior of Vy, which, as we have argued before, is a good indi-

cation of the general level of the error curve.

=)

As we pointed out in Section 5.3, Ry is the result of a co-

sine weighting on the spectrum which weights low frequencies posi-

4 v
| S

tively and high frequencics negatively. Since preemphasis attenu-

Cc=

ates low frequencies and emphasizes high frequencies, the effect

is to lower the value of Ry relative to Y i.e. to lower x. g}
From Fig. 5-4, decreasing ry couid either increase or decrease V, L
depending on the value of ry and how much it decreases. Most Efl

sonorants have rl>.9, and differencing causes a decrease of between

o
o mmm

.1 and .7 so that the resulting ry is still greater than zero.

-

——e
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From Fig, 5~4 we see that Vl always increases for this case, For
sounds such as [s] where r1<0, decreasing ry decreases Vl. How=
ever, for other unvoiced sounds where 0<r,<.5, decreasing ry could
either increase or decrease Vl depending on how much ry is de~-
creased. The general impression that one gets upon monitoring the

normalized error is that preemphasis by differencing makes the

normalized error an unreliable measure of voicing.

Computing the values of the autocorrelation function for the
differenced signal (e.g. in order to see the effect of differencing
on rl) is possible from the autocorrelation of the undifferenced
signal. Let Ri be the autocorrelation function of the differenced

signal. Then, bv definition:

R! = Z stst (5-68)

= e OO

Substituting (5-63) in (5-68) we obtain:

(- -]
R, = E: (s, = s,.1) (S4x = Spek-1)
n=e [

[- -3

= Z (sn Sn+k - sn sn+k-—l - Sn-l Sn+k + sn-l sn-i*}c-l)
n=-co
SR - R 3 =Ry ¥Ry
L}
and Ry = 2R, - R 3 = Ry (5-69)
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I

; ' B
; ! or Rk = -[(Rk+1 - RR)-(Rk - Rk-l)]
: = ~[d(R,)-a(R)] |
3 +1 k N
£ ' 2 5-70
% | and R, = -d (Rk) . (5-70) I
% (5-70) says that the autocorrelation of a Jdifferenced signal is ’

|
equal to the negative of the second difference of the autocorrela- &

tion of the original signal. This result is analogous to the

——

analog domain property that the autocorrelation of a differenti-

* ated continuous signal is equal to the negative of the second

A

£ derivative of the autocorrelation of the original signal (see for

4 example, Papoulis, 1965, p. 317). As an example, r; for the dif-

| st
Nt

3 ferenced signal is equal to:

L]
v Ry [rrmr;

: S [ i ] ] (5-71)
3 R, I-r)

3 (Remember that R_, = R, for all k.)

= Co =

5.51 Using r; as a Voicing Detector

<

A It has become clear that what makes the normalized error a

A
»y
gl

E good voicing detector for high quality specech is the fact that
most voiced sounds have a high energy concentration at low fre-

3 quencies while unvoiced sounds have the cnergy more spread out

e led D

L or partly concentrated at high frequencies. This spectral bal-

ance, when disturbed (e.g. by preemphasis) causes the normalized rl

=
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error to be an unreliable voicing detector. We have explained
some of the recasons for this above, where we appealed to an analy-
sis in temms of ry and its effect on Vie In particular, we ob~-
served that for a differenced signal ri<rl, while the value for
Vl had no such consistent relation. This suggests the use of ry

as a voici .g detector.

For an unpreprocessed signal, ry should work as well as the
normalized error. From the limited data we have examined for a
single male speaker, rl>.8 for voiced sounds and rl<.6 for unvoiced
sounds worked very well as a voicing detactor. Furthermore, when
the speech signal was preemphasized by differencing we noted that
ri was always less than Tis but the amount changed with the particu-
lar sound. Front vowels exhibited a large drop as might be expec-
ted. (For example, cne [i] sound had r; = .95 and ri = ,2,) How-
ever, most sounds remained separable between voiced and unveiced,
although we do not expect the reliability to be as high as with
ry. If preemphasis is performed before the signal is digitized
then one could just use ri. However, if thc signal is to be dif-
ferenced digitally, one need not use ri; ry would still be avail-

able and relatively cheap computationally; all that is needed is

to compute R, and Ry frcm the original signal before it is dif-
ferenced.

There is nothing sacred or magical about using the normalized

error or r; as a veicing detector, especially if the signal was
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processed in some special way. In that case one could perform a
suitable weighting on the spectrum and get a measure that would
correlate well with voiced or unvoiced sounds. r, uses a cosine
weighting; this is only one of an infinite number of different
weightings that could be used. Furthermore, no single method for
the detection of voicing will work all the time. It is normally
advisable to have at leagt two methods at hand, and the two should

be based on different properties of the signal.

5.6 Optimum Number of Predictor Coefficients

It was stated in Section 4.3 that for certain applications we
wish to approximate the envelone of the signal spectrum P(w) by
an all-pole spectrum ﬁ(w) whose parameters are the nredictor coef-
ficients ay i<k=p. Also, wve were assured that by minimizing the
error in {4-16) we obtain a spectrum ﬁ(w) which (for some p) is a
good estimate »f the spectral envelope of P(w). The question that
remains is for what value(s) of p will S(w) indeed be a good spec-
tral envelope. We know that such a value of p (or range of values)
must exist, because for very low values of p, §(w) is a very crude
fit to P(w), while as p+=, P (w) becomes identical to P{w). Some-
where in between there should be a value of p that would be satis-
factory for a good envelope fit, In Section 2.4 we obtained a
rough idea of what p should equal for some sounds from theoretical

considerations. Here we shall give an empirical method to determine
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e =

the optimum value of p for each soun

Figures 5-2, 5-5 and 5-9 show error curves corresponding
to different spectra. Ekach of the error curves starts at 1 for

p=0 and monotonically decreas¢s to .ts own V

. -'AX). 4
mip 35 P Also,

each of the curves exhilits what might be called the "knee" of
the curve. This is a region of the curve after which the curve
slopes very slowly towards its asymptote. For example, in

Fig. 5-~2, starting at p=7 for [s] and at p=1l1l for ([=2], the error
curve falls off gently. Our physical explanatiorn fc¢. r-.s "knee"
is that aronnd that value of p the approximate spe . -ui ﬁ(w) is
the optimum approximation to the envelope of the signal spectrun
P(w), A lower value of p results in a grosser approximation to
the spectral envelope while a larger value of p will superimpose
fine structure information oa the spectral envelope. This ex-
planation is based on the properties of the error measure (4-16)

which were discussed in Section 4.3.

Therefore, for each frame of the signal one cculd find the
knee of the erxor curve and choose the optimal value of p as that

place where the error curve kegins to fall cff slowly towards its

3

Il
-
3
b,
i‘

asymptote. This method is, of ccurse, quitéAapproximate. It
should be clear that the optimal value of p will vary a gocd deal

depending on the particular scund. For many applicatione this

process is cumbersome and a fixed value of p would be more desir-

able. In general, increasing p beyond its optimal value has a
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a less drastic effect than if p is decreased. Therefore it is 5? .
ici i xed . Lo
usually sufficient to set p to a fixed value that is the upper d
1 4
limit necessary to describe the spectral envelopes of the dif- Ll
ferent sounds in the signal. For speech signals bandlirited to )
5 kliz and sampled at 10 kilz, a value of p between 10-14 is chosen {} ?
depending on the application. This agrees with the speech pro- L i
duction considerations of Section 2.4, 3
In Sectiun 6.2 the above results will be extended to other [ gi
by
linear prediction methods, and will be useful in determining the 1 :
t] 3
value of p which leads to accurate formant information, L P
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CHAPTER VI

FORMANT ANALYSIS

AND PITCH EXTRACTION

In an analysis-synthesis system based on linear prediction,
the synthesis part of the system is normally based on the speech
production model shown in Fig. 2-1. We have discussed in Chapters
III and IV several methods for the computation of the predictor
parameters., In Chapter V we discussed methods for the detection
of voicing. One important remaining parameter is the pitch T,
for those sounds judged to be voiced. Ve definec pitch to be the
time interval between consecutive glottal pulses. The instanta-
neous fundamental frequency Fy is then defined as the inverse of
the pitch, Fog = %. The first gection in this chapter discusses
briefly methods of pitch extraction (estimation) based on linear
prediction. It should be emphasized that the discussion in this

chapter applies to both the Covariance and Auvtocorrelation methods

of linear prediction.

For other applications, such as formant-based synthesis and
speech recognition, it is desired to estimate the formants of the
vocal tract as well., The formants are estimated from the poles
of §(z) in the speech production model. The extent to which the

formant values thus obtained reflect the actual resonances of the

We discuss the adequacy

vocal tract depends on several factors.,
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oo

of the all-pole model for formant extraction {(estimation), the ¢

E effect of the number of poles p in $(z), the dependency on the i
% specific method of linear prediction used, and the importance of -
é the signal frame width and frame positioning. The last factor {;
% is discussed in terms of pitch-synchronous and pitch-asynchro- ét
% nous analysis. A discussion of windowing is included in pitch- U
E asynchronous analysis.

Finally, we discuss peak picking of the linear prediction

b s A
A v =

spectrun as a means of formant extraction. Preemphasis of the

speech signal and computing the spectrum along a contour inside

from
N —
A

the unit circle are suggested as two efficient and effective me-

thods to improve the performance of peak picking in formant fi

extraction. \
P
N
6.1 Pitch Extraction
P
v ¥
If we assume that the model in Pig. 2-1 1s accurate for the Lo

production of voiced speech, then by passing the speech signal :
s{nT) into a filter that is the inverse of §(z), we should ob- '
tain a signal that is clcse to u(nT), which consists of a se~
quence of impulses. Except for the gain factor A, the filter
H(z) defined in (2-3) is the inverse filter to g(z). From Fig. 4-1
we see that passing the signal s{nT) through the filter H(z) pro-

| duces the error signal e(nT). Therefore, e(nT) should be related

to u(nT) by a multiplicative constant for any one frame of speech,
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i.e, e(nT) = A u(nl). The errxor signal, then, should e:hibit
impulses corresponding o the pitch pulses. The separation of Do
these pulses in time would then be the pitch period, whose in-

verse is the instantaneous fundamental freguency FO‘

After the predictor coefficients a, are computed by any de-
sired method, the error signal e(nT) is obtained from the origyinal
signal by using {3-2), which is repeated herec:

p

e, =s, - _‘ak Spek * (6-1)

k=1

rolviing RN vt SRS axccows QY <eriadh | A

osapn |

e, is simply the difference between tho original signal and the

oo

predicted signal. It is a measure of the inaccuracy in assuming

. a linear prediction model. In the direct Autocorrelation nethod I

B S S U B R, W

> the original signal is usually windcwed before the coefficients
are computed. In that case (6-1) could ke applied either to the

wvindowed signal or to the original signal., In the direct Auto-

e euwtPer 3 4 s

correlation methed windowing is necessary in orcdexr to obtain better !

o

estimates of the coefficients 8y However, once this is done, the

2 computed ccefficients a, are supposed to apply to the original

Y . W avr M et SN adm

F signal as well.
4

Although the coefficients a) are computed from a specific

{} frame of the signal, one could compute (6~1) for a time interval

A L el s e et Fe eV

that is larger than that used for computing thec coefficients ap.

I

143

ot A% a8 AT P e o P 2 ot n B

"

R P A A AR A BT A RNK

kb, L




RERISARAT A R A AT R R RERSEIIRIE L A RIS - T AR T i IR |
!

; Report No. 2304 Bolt Beranek and Newman Inc. ;

|

3

% In a quasi-steady~-state situation, the same coefficients a,

E should continue %o apply to a portion larger than the frame used

% for the analysis.

E Figure 6~1 shows examples of error signal analysis using .

% the direct Autocorrelation method for four types of voiced speech O

%; segments. Each example shows three sicgnals, each 25.6 msec long. -

; s{nT) is the original signal. The predictor coefficients a, are 3

2 computed from a Hamming-windowed s(nT), then the error signal e(nT) ’

in the figure is obtained by applying (6~-1) to the original un- .

windowed signal s(nT). R, (nT) is the autocorrelation of e(nT).

In Fig. 6-1, e(nT) is normalized with respect to the maximum
error in the frame. Also, the first p values of e(nT) have been
set to zero since e(p?) is the first value ve conmpute. Re(nT) is
normalized with respect to the maximum value in the frame other
than Re(G), which is known to be greater than all other autocorre-
lation coefficients. In fact, Re(O) 1e nct shown in the examples

in Figq 6‘]-:

In comparison with ¥ig. 6~1, Fig. 6-2 shows the error auto-

correlation functions for the same four frames, except that the

9

exvor signal is chteined f£rcm the windowed signal. The computa-

——— g,

tions were pgsxformed in the freguency derain as Ffollows:

=)
A
»]

R,(nT) = 2= | Bew]? 3T gy , (6-2) _
2 J |
"'TI‘/T 1}
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R, (nT) ;}},M%Mmm‘w—

. ']
(AT}~ d APty Dhirtmag /e ¢
1] ' )
(a) IS { . ‘: ] !
. P SN *
R Yo .
S(NT) o woeah ol AN
o ® 4 -:“‘ ’ Ll
M, " ., { ° ey A r
nT L ' 4
(msec) ¢ 10 20
Re (nT) i A N g oo rromme—
. 4
) . ., e
(b) e(nT) ot 'yt onnt i W neasy 08 et
. g. ..f H .' d -

i
‘ M W N,
s(nT) o WS Vw 'V\M

nT L i 1.
{(msec) C 10 20

Fig. 6-1. Analysis of error signal for pitch extraction.
(a) The vowel [2] in “potassium”.
(b) The liquid [r) in "rubidium".
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coarn,

R (rT) - ,_-'.‘4";,, mw)’mwm—-

e (nT) -—,!V‘an vwwwm

(c)

s (nT)- 'yf\/\\,, Vgﬁrﬁderk'\~__/J,\‘

nT L 3 1
(msec) ¢ 10 20

. L)
.
I . L

'|,' ..

S
Re(nT) ." S 'F'.“:' o .0 ' " "& [‘ I.V;fh*""

»\-I\r.:

b 4 st
., .

v ".
[N 0\'\ o . ,y ! u
Slat e n, 11' T O wle e
e(nT) — “'a el ﬁ Syt L ’ v ' ’ . D ..1"
AR ".nf' fﬂi'q prbeety

{d)

S (n'I') M’-—/\o

nT L ; N
(mnsec) 0 10 20

Fig. 6-1. (Cont'd) Error signal analysis for pitch
extraction.
(c} The [2)-[s] transition iun "potassium”.
(d) The voicing in the voiced stop [b] in
*rubidium®.

146

Bolt Beranek and Newman Inc.

——

o ¢ o

s Y v N

B RPN Y T VY VU DY} R 2 XY JH LR FO O S 7 er X T g~ ] o= iy Ty ey

S

&
Eb\\u\zﬂ& fa i



F‘?@AV&‘W’J’QUJ Rl ?5-05‘&7‘7'7-'5:7“ PRI o s 2 i DRSS e (Y B Al e A i v i R e gl
S S PP AN o A it S o

™

= S /& =2 I::S

Report. No. 2304 Bolt Beranek and Newman Inc.

s

(@) SRS Sstenmy

(b) a’g’e,:\.g, K w»,w,:,.;w  verksaeproae

(d) 'K. .:‘v.: ‘l r"r‘ :o“‘

Fig. 6-2. Error autocorrelation functions R, (nT) for the
same four frames shown in Fig.6-1, except thac
the error signal here is obtained from the
windowed signal.
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and |Ew 1% = s ]? juw
P (w)
= 3 ’ (6-3)
A° P(w)

where P(w) is the power spectrum of the windowed signal, P(w) is

the power spectrum corresponding to §(m), and A2

is the minimum
error in (3-37). P(w) and P(w) are computed via the FFT, as des-
cribed in Appendix C., Then, (6-~2) is computed by an inverse FFT.
(Note that if the speech signal is N samples lon¢g, then one should

append at least an equal number of zeros and compute 2N-point FFT's,

ir order to obtain the complete autocorrelation function,)

We mentioned earlier that the error signal e{nT} for a voiced
sound should exhibit impulses that correspond to the pitch pulses.
The error signal in Fig. 6-la shows a typical case where the pro-
minent peaks can be associated with pitch pulses. The correspond-
ing error autocorrelation function shows a sharp peak at a lag
egqual to the pitch period, Although Fig. 6-la is quite typical
for many voiced sounds, there exist a number of important excep-
tions. Fig. 6-1b shows an error signal with more than one peak
within a single pitch period. (The prominent peak is associated
with excitation due tc closing of the glottic while the secondary
peak in the middle of the pitch period can be associated with ex-
citation due to the opening of the glottis.) The error autocorre-
lation in Fig., 6-1lb still shows a prominent peak at the pitch

period.
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An important case is shown in Fig, 6-lc during a vowel-con-
sonant transition. As the voicing decays, the pitch pulses seemn
to disappear. The samc is true during consonant-vowel transitions.
During both types of transitions the sound is clearly voiced, yet
the error signal does not show any prominent peaks that could be
associated with pitch pulses. Fig. 6-1d shows the same phenomenon
during the voicing in a voiced stop. (Note that e(nT) in each ex-
ample has been normalized to the maximum error in that frame. Tha;
is why e(nT} in Fig. 6-1d seems to be excessively farge compared
to the other examples; in reality it is not.) The above-mentioned
cases have in common the fact that the signal is not rich in har-
monics as is normally the case during sustained vowels. Another
way of stating this is that the signal tends to become sinusoidal
in nature in those cases. This is very evident for s(nT) in
Fig. 6~1d., Now, the linear prediction model works very well for
sinusoidal signals. In fact, a pure sine wave can be generated
digitally with each sample being equal to a linearly weighted
summation of the preceeding two samples, and this can go on inde-
finitely in time. Therefore, for a sine wave, the linear predic-
tion error signal would be zero for all time (except for the very
first sample), and there would exist no pulses to delineate pitch
periods. The implication for cases such as in Figs. 6-lc and
6-1d is that the error signal ceases to be a good source for nea-

suring pitch. All is not lost, however, because pitch can now be

149

%

ke 2




:54

il arnds LA G e ah e b Rt 8

$ukbicale

Report No, 2304 Bolt Beranek and Newman Inc.

estimated from the signal s(nT) itseif, since it is quasi-sinusoi- iu
dal. This can be done by any number of ways, including peak
picking of the signal itself or its autocorrelation. (Note in
Fig. 6=1d that although e(nT) is very erratic, the autocorrclation
R.(nT) still exhibits a peak at the pitch period.) It is clear
from Fig. 6-2 that the autocorrelaticn of the error signal ob- L
tained from the windowed speech signal can also be used for pitch

extraction. b

- -

In summary, pitch can be extracted in most cases from either
the error signal or its autocorrelation, In cases where the speech
signal is not rich in harmonics, pitch can be extracted directly
from the speech signal or its autocorrelation. The combination
of methods to use depends on the properties of the signal as well

as on the specific application.

The examples shown in Fig. 6-1 were obtained using the Auto-
correlation method. The same sounds when analyzed using the Co-
variance method did not show any significant deviation in the
error signal or its autocorrelation. This was also true for all

the sounds we have examined thus far.

6.2 Formant Analysis

In an analysis-synthesis system using linear prediction, where
the synthesizer is of the form shown in Fig. 2~-1b, it is necessary

to know the values of the predictor coefficients ay but it is
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not necessary to know the poles of the filter §(z) which is shown
in F'g. 2-la and given below (except perhaps to check for possible

instability of the filter):

(6-4)

However, for applications such as speech recognition and formant
synthesis, it is necessary to compute the poles of 8(z) in order
to be able to deduce the formants of the vocal tract. The poles
of S§(z) can be computed by setting the denominator of §(z) in
(6~-4) to zero and solving the resultant polynomial equation in

z for its roets. (We have successfully used a variation on the
POLRT routine in the IBM Scientific Subroutine Package, 1968. The
variations included elimination of ail double precision computa-
tions, raising error tolerances, and modifying the starting point

for each root to be a random point on the unit circle.) Since

the coefficients a, are real, some or none of the roots are real

s, 1

can be achieved by setting each root z, = e . Where Sp = O * jwk
is the corresponding pole in the s-plane. If the root Z, = 2p, +

jzki' then: )

z
i
w = f  arctan 2;;‘ (6-5)
f 5
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is the sampling frequency.

] In the s-planc the poles will also be either real or in complex

conjugate pairs.

If the speech spectrum can be approximated by poles only,

then the formants can be obtained from the poles of S(z) by noting

A formant consists of a pair of complex conjugate poles.
A formant normally has a high ratio between its frequency
and bandwidth. Complex conjugate poles with very wide
bandwidths can be regarded as contributina to general
spectral shaping only.

The frequency range of a particular formant is usually
known,

Peak picking can be performed on the approximate spectrum
as a double check on the formant values.

Continuity of formant values from one spectral frame to

ancther can always be invoked, keeping in mind that very

fast formant transitions do exist in speech.

The extent to which the formant values thus obtained reflect the

actual resonances of the vocal tract depends on at least the

following factors:

a)

b)

Adeguacy cf the all-pole model.

Number of poles p.
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c) HMethod of analysis (e.g. Autocorrelation or Covariance
method) .

d) frame width: number cf samples in cne frame of the sig-
nal; and frame positioning (e.g. whether pitch synchro-

nous or asynchronous, etc.).

Ideally, these factors would be taken into consideration separately
for each frame of interest. However, this can be very expensive
computationally, so in practice, tradeoffs are made between cost
and reliability of the desired results. We shall discuss briefly

the above-mentioned factors and point out some of these tradeoffs.

We wish to emphasize here that the discussion below applies
to the Covariance as well as the Autocorrelation method, unless spe-

cifically stated otherwise,

6.21 Adequacy of the All-Pole Model

This issue has already been discussed in Section 2.3. We
have argued there that the all-pole model seems be quite ade-
quate for speech synthesis. The question here is the adequacy of
the model for formant extraction. For the purposes of speech re-
cognition, for example, one would ideally want to be able to com-
pute the transfer function of the vocai tract. This means that
the antiformants as well as the formants may be needed. It is
reasonable to assume that the all-pole model would be adequate for

formant extraction of vowels. (This assumption is based on another
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assumption, nemely that the glottal spectrum and radiation can be
approximated by poles only.) However, for sounds such as nasals
and fricatives, who§e speactra are known to have antiformants, the
all-pole model might not yield accurate results for the resonances
of the vocal tract. Figure 6-3 shows the signal spectrum and the
linear prediction spectrum (p=14) for the second [n] in the word
*anyone" for a male speaker. The problem in looking at a spectrum
iike this is in deciding where the formants and antiformants are.
There is no good way of making this decision in general, unless
one has some knowledge about the system that produced the signal
whose spectrum is under analysis. In fact, the spectral fit in
Fig. 6-3 is very adequate, and it is quite reasonable to assume
that some all-pole system has those characteristics. However,
from our knowledge of the acoustics of the human speech producticn

system, we know that if the spectrum in Fig. 6-3 is that of the

sound [n], it must have zeros as well as poles. But even if we
knew this, how would the linear pradiction all-pole approximation
help us in determining the values of the formants and antiformants?
Sone of the poles will correspond approximately to nasal formants,
which can be obtained as described earlier in this section, but we
know of no simple manner in which the antiformants can be determined
from the poies of the linear prediction spectrum. The problem is
that the same poles must approximate the effects of both the for-

mants 2nd the antiformante. This is clear from the fact that the
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Fig. 5-3. Signal spectrum and linear prediction spectrum
(p=14) for the second [n] in the word "anyone".
Period of analysis is 25 megec.
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linear prediction spectral matcring process performs equally well
at all frequencies irrespective of the shape of the speech spec~-
tral envelope (see Section 4,3). Another consequence is that the
p~eicions and more so the bandwidths of the extracted formants
will often be very different from their "actuel" values, depending
on the position of each formart with respect to the antiformants.
Formants that are far from the nearest antiformant are well appro-
ximated, while those that are close to an antiformant are often
poorly approximated. A formant that is close to an antiformant
can appear as a very wide-bandwidth peak which might go undetected.
With nasals, the first formant is normally well approximated since
it is separated f£from the nearest antiformant by at least one other
formant. Other extracted fnrmants may or may not be reliable de-
pending on the speaker and the particular sound (i.e. in generail
unreliable). For example, in Fig., 6~3 the first and second for-~
mants seem to be adequately approximated. The third peak at 2.6 kliz
is probably the fourth nasal formant. Between the second and
fourth formants there should be a formant cluster, i.e. a cluster
of two formants and one antiformant (see Section 2.4). ‘he anti-
formant may be around 1.8 kHz, but it is no. clear where the two

formants are exactly.

Analysis of fricatives run into the same problems as nasals,
if one is interested in determining the zeros as well as poles,
At least the first two formants are heavily damped for all frica-~

tives, due to neighboring antiformants. Pronounced formant peaks
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at mid to high frequencies (2.5 ~ 6 kliz) occur for [s] and [&]
only (Heinz and Stevens, 196l1); these fornants are usually attain-
able by linear prediction. Also, certain stop bursts, especially
that of [k], are well represented. llowever, there is always the
problem of pairing the formant peaks with the formant numbers,
i.e. whether a particular peak corresponds to the third formant
or the fourth formant, etc. This problem can be particularly

important in speech recognition.

We have assumed in much of the above that one is interested
in extracting most of the formants and antiformants for a parti-
cular sound, However, for speech recognition, all of this might
nct be necessary. For example, given a relatively weak voiced
soynd with a formant structure, such that the first formant is
very low, and the spectral transitions to and from this sound are
abrupt, one can safely recognize that as a nasal much of the time.
Formant transitions to or from this nasal could then be used to
determine the place of articulation cf the nasal. All this can
be done without knowing whether there are zeros or not in the
spectrum under analysis. Similar considerations exist for the re-
cognition of fricatives. However, a major problem arises with
nasalized vowels., The intr.oduction of zeros into a vowel spectrum
can be disastrous. Thie reason is that we depend heavily on the
exact positions and the bandwidths of the extracted formants for
the recognition of the vowel, and the introduction of zeros plays

havoc with the real formant frequencies and bandwidths., We know
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oY no good solution for this problem usina the linear prediction

rodel.

In the above we bPave seen that the linear prediction model
is inadequate for the extraction of foimants and antifornants
from a spectrum containing zeros as well as poles., In these cases
one could use othef methods such as analysis-by-svnthesis that
includes zeros as well as poles in the approximate spectrum. Of
course, one must first know whether the spectrum 3 likely to have
zeros or not. This can be done from separate censiderations, such
as we have suggested above forxr the recognition of nasals., Therc~
fore, one must first perfora some form of class recognition on
the sound under analysis. If that sound is recognized to be, say,
a nasal or a fricative, then the alternate analysis-by-synthesis
method can be used. Similarly, if a vowel is next to a nasal, one
can assume that the vowel might be nasalized, then resort to the

other method to determine formant positions more accurately.

6.22 Optimum Number of Poles p

Assuming that the all-pole model is adequate for a parti-
cular speech segment, the confidence and accuracy in relating cer-
tain poles of the linear prediction model to actual resorances of
the vocal tract depends to a good extent on the total number of
poles p. If the value of p is too small, there rmay not be enough

pcles to represent all the resonances in the frequency range of
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interest. On the other hand, if p is too large, there will he
extraneous poles which might be mistaken for formants of the vo-
cal tract, It is clear that between the two extremes, there nust
exist some value (or rarge of valucs) of p which is optimal for
the accurate extraction of formants. In fact, the value of p
should be set such that the linear prediction transfer functicn
§(z) approximates the transfer function of the vocal tract (in-
cluding the effects of the glottal flow and radiation). We have
seen from the last two chapters that this approximation occurs in
the power spectral domain. WHamely, the lincar prediction spectrum
E(w) (or 2D-spectrum 5(m,w')) approximates the signal spectrum P (w)
(or 2D-spectrum Q(w,w')). In particular, we want tihe linear pre-
diction spectrum to approximate the envelope of the signal spec-
trum. (Hereafter, the word "spectrum" will refer to both the one-
dimensional stationary spectrum used in the Autocorrelation nethod,
and the two~dimensional nonstationary spectrum used irn the Cova-

riance method.) What we are claiming is the following:

A value of p that results in an optimal spectral

envelope fit, also results in an optimal number A
of poles many of which can be related, with good (6~7)
confidence and accuracy, to the resonances of the

vocal tract.

That is, the optimal value of p gives the best confidernce and ac-

curacy relative to that obtained by other values of p. The remaining

question is how to find this optimal value for p.

159

4
NTENRN &\mﬁ

N

v a e e Tl R et ao

PRy

Aot AT P SRR L e SRR d

1Y

E!:




OREAK LAY a2 S AL

222N IR AN PSR X TR

£ Sl

Report No. 2304 Yolt Beranek and Newman Inc.

The reader is referred to Section 5.6 where the optimal p
is deduced from the normalized error curve. There, the discussion
was restricted to the Autocorrelation method. Here we shall ex-
tend the results of Section 5.6 to the Covariance method as well.
We shall define the normalized error Vp in the Covariance method

as equal to

P
Vp = gg; =1 -Z a, ;;;—); (Covariance Method) (6-8)
k=1
where Bp is the minimum total-squared error in (3~19), and ¢00
is the energy in N samples of the signal. We have found that the
behavior of Vp in the Covariance method is very similar to that
in the Autocorrelation method. In both methods the error curve
exhibits a "knee" after which the curve slopes down at a slow
rate. The optimal value of p is that poiut where the error curve
begins to fall off slowly. This method has becen corroborated by
informal observations. Illowever, we have seen that the bandwidths

of the resulting formants were less ac«urate and more variable

than the formant freguencies.

Statement (6~7) ané the above procedure for finding the op-
timal value for p are correct only if the all-pole model is ade-
quate. For purposes of speech synthesis this is generally the
case. However, as we have seen above, if relatively accurate
formant (or antiformant) information is needed, tken the all-

pole model is not adequate for sounds witnh antiformants, such as
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nasals and fricatives. In these cases it is not clear how one

0
!

would choose an optimal value for p, if such a value exists. Ve

shall illustrate this problem by an example. Figure 6-4 shows

R

the normalized erroxr curve for the nasal [n] in the word "nickel"
by the same speaker associated with Fig. 6-3. (The analysis was
done using the direct Autocorrelation method, but the discussion

here also applies to the Covariance method.) The point after which

Y

the error curve slopes down slowly is around p=12. For this value

Yy

of p we show the approxirate and signal spectra in Fig. 6-5. Only

the first and fourth formants appear in the approximate spectrum.

% Ty

In the signal spectrum one can clearly see in addition two other

formants between the first and fourth. In order for these two 3
cther formants to appear in the approximate spectrum we must in-

Crease the value of p. From Fig. 6-4 we see that at p=18 there

is a noticeable decrease in the error curve fror. the value at p=12.

Ve interpret such a change in the error curve as recflecting a ‘
correspondingly noticeable change in the approximate spectrum.

This change is evident in Fig. 6-6 where the two formants between

the first and fourth are now evident in the approximate spectrum.
Unfortunately, this caused side effects around the first formant
and at high frequencies. The position of the first peak moved

closer to that of the firs% harmonic and another wide bandwidth ;

pole was introduced next to it; it is no longer clear where the

first formant really is. At frequencies higher than 3 kHz it
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Fig. 6-4. Normalized error curve for [n] in the word 5
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Fig. 6-5. Approximate spectrum (p=12) and signal spectrum
for [n] in the word "nickel".
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Fig. 6-6. Approximate spectrum (p=18) and signal spectrum
for [n] in the word "nickel".
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Covarianca method for [n] in the word “nickel".
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looks as if we have three extra peaks, which most probably do not
correspond tc actual resonances of the nasal tract, since that
region of the spectrum is at the noise level. 1In summary, in or-
der to have the linear prediction spectrum show the formants evi-
dent on the signal spectrum, there are two problems: (a) one must
scmehow determine the necessary value of p, and (b) even if that

value of p is known, the results of the formant extraction may or

may not correspond to resonanccs of the speech production rechanism,

depending on the particular sound.

6.23 llethod of Analysis

From a purely theoretical point of view, the assumptions un~
derlying the Covariance method are superior to those underlying
the Autocorrelation method. The Covariance method assumes that
the signal in the frame of interest is nonstationary, while the
Autocorrelation method assumes that the signal is statiomnary.
Speech is a nonstationary process and therefore the assumption
of nonstationarity is superior to that of stationarity. However,
in any single frame of interest, the signal can be considered to
be quasi-staticnary. In that case, the assumption of stationarity
is not a bad one, but the assumption of nonstationarity is still

a better ore.

It can be shown that if a signal is generated from an all-~

pole source, the Covariance method can recover these poles exactly
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by using only a finite number of samples of the signal (Portnoff,
Zue and Oppenheim, 1972). The same is not true for the Autocorre-
lation method unless the : nite signal is considered. lHowever,
very good approximations to the poles can be obtained from only

a finite portion of the signal, Our experience with real speech
has been that if the period of analysis is on the order of a pitch
period or greater, the poles resulting from both methods are very
close to each other. For example, Fig. 6~7 shows the linear pre-
diction spectrum (using the Covariance method) for the same con-

ditions as those of Fig., 6-6.

Another point of comparison is in how the two methods conpare
in an analysis-synthesis system, Thus far we have not made such
a comparison. llowever, Atal (personal communication) claims that
the Covariance method produces higher quality speech in an analysis-

synthesis system,

6.24 Frame VWidth and Position

In the speech production model in Section 2.1, we defined a
frame as an interval of time within which the human vocal tract
can be assumed to be fixed. This interval is usually on the order
~f 10-25 msec. A specific choice for a frame width and position

depends on several factors:

(a) The type of signal to be analyzed.
(b) The application for the analysis.

(c) Whether one uses the direct or indirect methoa of analysis.,
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Vie shall be discussing thes above three factors interchangeably,

but first we must explain what we mean by the direct and indirect
method of analysis. In Section 4.4 the terms "direct" and "indi-
rect” were applied to the Autocorrelation method to refer to whe-
ther the autocorrelation coefficients were computed from a windowed
signal, or from an apparent autocorrelation function which was conm-
puted from a finite porticn of an unwindowed signal, respectively.
In Section 4.6, the Covariance method was reformulated in an ana-
logous manner into a direct and an indirect method. Therefore, the
term "direct” implies that the signal has been appropriately win-
dowed, i.e. the resuliting signal is infinite in extent but is zero
outside the frame of interest, while the term "indirect" refers

to the fact that a finite unwindowed frame of the signal is used

in the analysis without making any assumptions about the signal
outside that frame. It so happens that the two popular nethods
defined in Chapter I are the direct Autoccxrrelation and indirect
Covariance .iethods. tHowever, we wish to eaplazize here that the
issué of direct versus indirect analysis i Indegendent of the issue
of Aucocorrelation versus the Covariance mechod which we have al-
ready discussed. One important issue that faces the direct method

is a proper choice cf the window to be used in each case.

There are instances during the analvsis of a speech utterance
when the frame position and width are critical factors and must be

chosen judiciously. For example, in analyzing a stop burst, it
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is best to have the frame positioned to include the burst and

ke

nothing more. During rapid transitions (such as certain vowel- ;

nasal transitions), the frame width should be small enough so that

the sharp transition can be detected. In general, the frame width

TR TTRTTM o BRI

and position should be chos&n such that the assumption that the vo-

kik1s
-

cal tract is fixed during that time interval remains valid. Y

[3
For fricatives, the frame width and position are not critical é

AHEaas o
AP

factors in the analysis. Thus, any "effective" frame width on

£l

the »rder of 10-<5 msec can be used with generally similar results.,

{The effective frame width is discussed in Section 6.242.) On the

ST I T T RIS

other hand, for sonorants, the frame width and position can be imn- ¥

st LI Y

portant factors, depending on the particular application for the

SRS

analysis. Below, we shall restrict the discussion to the analysis

AT T LA R 4w W Forn L

of sonorants, It is hoped that from the metnod of presentation

one can extrapolate the results to other situations. We shall

e T

differentiate between two major types of analiysis: pitch-synchro-

nous and pitch-asynchronous.

6.241 Pitch-3ynchronous hnalysis

Pitcn~gsynchronous analysis implies that one is somehow able
to detect pitch, and then delineate each pitch period for analysis.

(For example, one could perform a pitch-asynchronous analysis and

detect pitch pulses, as in Fig. ¢-la, then reanalyze intervals

between adjacent pitch pulses.) Let us assume for the moment that
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the frame of analysis is defined to be the whole pitch period. L
This case is of special interest because a pitch period represents
(approximately) the impulse response of the combined effects of
the glottal source, the vocal tract and radiation. The word _
"approximately"” was uced because the signal in a pitch period in-

cludes contributions (though small) from past vocal tract exci- o
tations whose effects have not completelv decayed as yet. These -
contributions increase with increased pitch (i.e. shorter pitch

period, as for females and children) causing the approximation !
to be worse, This is a basic loss of information that cannot be

recovered without adding some compensatory information. We shall L
resort to the frequency domain to explain what we mean by the last
statement. The impulse response under discussion is theoretically

infinite (though practically it dies within 30 msec), and its

power spectrum is a continruous function of frequency. The power

spectrum of the response due tc a perindic train of unit pulses,

at a rate of FO pulses per second, contains energy only at multi-

ples of the fundamental, i.e. at f=nFo. This discrete spectrum

has an infinity of possible envelopes. Two of theése envelopes are

the impulse response spectrum and the spectrum of a single pitch

period. In other words, the pitch period spectrum is guaranteed

to be ecqual to the impulse response spectrum only at nultiples of

Fo. To the extent that the pitch period spectrum is not equal to

the impulse response spectrum for f;nFo, ve say that information
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has been lost, It is easy to sce that as F, increases, the loss

of information is likely to increase. It is in this sense that
fewale or children's speech (with iiigher pitch), relatively speaking,
contains less information about the response of the articulatory
mechanism than does male speech (with lower pitch). This loss of
information is irrecoverable unless extra information is supplied

from an indepenc=it source. We shall arguc that linear prediction

supplies extra information which hopefully recovers part of the P

information lost. ;

Given the spectrum of a single pitch period, the problem is
to estimate the spectrum of the impulse response. In linear pre-
diction the information takes the form of an assumption abcut the
nature of the impulse response spectrum, namely that it is all-pole.
To the extent that the all-pole model is correct, we have succeeded
in adding the needed compensatory information. Thus, recovery of

lost information is bound to be more successful with vowels (which

are well modelled by poles) than with nasals (which are best mo-

delled ky a combination of poles and zeros). Supplying additional

GEE SO et (W BWY Gen B e gD BE OED Oen Ben M |

information by judiciously assuming a model is the basic idea and

power behind the general methcd of spectral analysis-by-synthesis.

Linear prediction is a special case of analysis=bv-synthesis where

the assumed model is restricted to be all-polc.

We conclude from the above discussion that if one wishes to

use the direct method of analysis over a pitch period, then the
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window to be used should be rectangular and should rnincide in i

position and width with the pitch period under analysis. 1In

R o Nt P T I DT L

other worls, the camples over a pitch pericd should be left in-

e I I T,

tact. Any window other than rectangular will introduce unwanted Ll

distortion in the signal spectrum and consequently in the li-

L oAt

near prediction spectrurm approximating the impulse response spec- !

trum. i

Thus far we have assumed that the frame for analysis consists
of the whole pitch period. There are applications for which it |
1 is desirable to perform the analysis on only a portion of the

pitch period. The portion of the signal during which the glottis

is closed is of particular interest. It is well known that the

major excitation of the vocal tract occurs at the closing of the
glottis. Thus, Jduring the first portion of a pitch period the ~ ;
glottis is closed. The vocal tract is excited again as the glottis /
opens, but to a lesser degree. The vocal tract resonances are '
different in the closed- and open-glottis conditions. When the

glottis is closed, the subglottal tract is decoupled from the

16, Mo

system ané the resonances are those of the vocal tract proper. i
When the glottis is open, there is coupling to the subglottal .
tract, thus causing changes in the over-all system resonances. ;
In particular, bandwidths te~” to be larger when the glottis is

open. <Coupling to the subglottal tract could also introduce extra

zeros and pcles in the signal spectrum. By analyzing the whole !
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pitch period, nnc is actually averaqing out the closed- and
open-glottis characteristics. The result is often reflected in
variability of the formant bandwidths and, tc a lesser cxtent,
the formant frequencies. Therefore, in order to cbtain accurate
formant information for the vocal tract, it is best to verform
the analysis on the portion of the signal when the glottis is
closed (see Pinson, 1963). 1he problem here is to know vwhan

the glottis is closed in relation to the signal. The only thing
we are sure of is that the glo:tis is closed during tihe first
portion of the pitch period. This interval can be anvvhcre bhe-
tween z2ro to a few milliseconds, depending on the condition of
phonation. Although we cannot be sure of the ylottis condition
it would still be more accurate, on the average, to analvze the
first portion of the pitch period than to analvze the whole pitch

period.

Analyzing a portion «f the pitch period is hest done using
the indirect method. The direct method is bound to give gross
errors (see the discussion on windowing below). We note here
that the indirect Cov<riance method as well as one ¢i the indirect
Autocorrelation rmcthods require a minimum interval of analysis

equal to 2p samples, where p is the number of predictor coeffi-

cients.
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g 6.242 Pitch-Asynchronous Anilysis and Windowing ij
% As "pitch-asynchronous" suggests, the frame width and posi- fi
: tior are here independent of pitch information. This poses no
. serious problems if the indircct method is used, and the results i{ %
L . ]
§ would vary little from those obtained using pitch-synchronous o ' ?
3 Vpob
E analysis, especially if the frame width is on the order of a R
g pitch period or larger. However, if the direct method is to be i } ;

used, the results could vary a great deal depending on the frame . q
width and the window shape used. We shall now discuss the problem
of windowing in the direct method of analysis. The discussion
will be detailed and rigorous because we feel that the subject of

windowing has not been treated with enough rigor in the past,

ST N T I

when applied to speech analysis.

Lo

In discussing pitch-synchronous analysis with the direct
method, we saw that a rectangular window over the whole pitch
period is best, because we are then certain that the signal spen-~
trum~would equal the impulse response spectrum at least at mul-
tiples of the fundamental frequency PO. The best we can hope for
in pitch-asynchronous analysis is that the signal spectrum appro- !
ximate, as well ar , -sible, the spectral values of the impulse !
response spectrum at f=nFO. This is the purpose of windowing.
We shall again resort to the frequency domain to show how our i
objective can be accomplished by proper windowing. For sim-

plicity, the discussion will be carried on for continuous time )
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signals, but the results will apply also to discrete or sampled '

signals.

Let x{(t) be a periodic signal with period < =-%— and Fourier z
0 ;
intearal transform X(f). Let s(t) be the signal obtained by ;

multiplying x(t) by a window function w(t):

e

s(t) = w(t) x(t), (6-9)

Pt

Then the Fourier transform of s(t) is the convolution of the )

{; transforms of w(t) and x(t): -:
% S({f) = W(£)® X(£f)

i = fmf-x) X(1) dx, (6-10) 3
ii o

5 whexe S(f) and W(f) are the Fourier Transforms of si(t) and w(t),

respectively, and the synbol ® represents convolution.
Since x(t) is a periodic signal, its Fourier transform X(f) is a
line spectrum that can be reprasented by

(]

X(£) = Z Z(£) uy(E-nF,), (6-11)

n=-c

Lo B bo o S S

20

where uo(f) is the unit impulse function defined in {4-40),
and 7 (f) is sume envelope fuuction whose valuver are specified

at £ = nFO, but can be arbitrary otherwise. (For example, one
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.
et e

can think of 2(f) as the transform of the impulse response of the

[ —

-

vocal tract, or as the trarsfcrm of a single pitch period. The

two transforms are equal ..~ f=nF,.) -~
Substituting (6-11) in (6-. ° »rforming the integration, and re- ,j
placing n by r, we obtain:
!
) L
S(£) = ) W(E-mFg) z(nry), (6-12) .
IRk
]
© . /;q
= s _ - P11
and S(nF,) = EE: WnF,-mry) 2 (mF,) . (6-13) ] 35
n=-w l ;
b
Our objective is to specify possible window functions such that P

. S(nF,) = Z(nf,), for all n, (6-14) B

o)
or as nearly so as possihle. This is eauivalent to our carlier ’

statement saying that the signal spectrum should equal the impulse

response spectrum at f=nFC. N

If s(t) consists of an integral number of pitch periods, °'i,

[
saadaia gl

then it is well known that ${f) savisfies (6-14). This can bhe

seen by noting that s(t) in that case is equivalent to multiplying

- -
[ S
LA 4z

x{t) by a rectangular window whosc width is equal to ! pitch -

periods. The rectangular window is given by:

s

1 :

——— e e
S LRI

PR

1
T

, 1] = %1,

W(t) = (6"'15) . ‘J

0, ctherwise , LI f
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.& sin(an/Fo)

and W(f) = "Mf/FO . (6-16)
i Susstituting (6-16) in {6-13), we obtain:

(- -]

_ sin[rM(n-m) ] .
S(nF,) = Z . 2.(mF ) . (6-17)

o3

m==cc

Note that the window term in (6-17) is equal to zero for all
values of m except for m=n, when it is equal to 1.

Therefore. {6-17) reduces to
S(nFo) = Z(nFO) , (6-18)

which is identical to (6-14). Therefore, (6-14) is exactly sa-
tisfied fcr a rectangular window whose width is equal to an in-

“tegral nur :r of pitch periods. In particular, it is true for

L 3ot A R R M AR TR s a8 o X R A0 0, Ea A AT A L S 8 Liensnens

The above result clearly satisfies (6-14), which is our ol

A A

jective, but it suffers from one najor drawback, namely that tha 2

window depends on the exact length of a pitch pericd. 7Thus. it uis

really a pitch-dependent window, which is of little use ir yitch-

SR LT PEVIRR

asynclironous analysis. We need a pitch-asynchronous wirsdcv, onc
whose width does not depend on the exact length of the pi=zch

period, and which satisfies (6-14) as well as possibin.
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- l a single pitch period, a result that we already know.
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1
o
k i
We ncte again that what allowed us to reduce (6-17) to (6-18) L]
was the important fact that the window term was equal to zero for 3} ;
all values of m except for m=n, when it was equal to 1. In other . i ;
words, we have W(0)=1, and W(nFO)=0 for all n. If we could find %! % %
window functions such that ¥W(0)=1 and Iw(nFO)|<c for all n, where N § g
| €<<l, then (6~-14) would be approximately satisfied. Going further, g! E %
if |W(f)|<e for all £2F;, then clearly lw(nF0)|<e is satisfied, ij E ?
I IR T

and our objecktive is alsc achieved. A valuc of W(0) different

S ERVAITEPYS

from 1 merely introduces a multiplicative constant to (6-14), which
can be easily corrected for. What is important in specifying a

window is the relative amplitude of W(f) with respect to ¥(0}.

P

Therefore, our only condition that a window function must satisfy

1S:

P e R N POy

]
) e |£l2F, o e<<l, (6-19) o
7 (0) .

e arat

One often nicks ¢<0.02 for good results. This is equivalent to

W(f) being at ieast 34 4B below the peak W(Q) for £>F,. Ve shall

04 Sl At e Bavibr

21,

now give a few examples of window functions that have becen sug- i

oy

gested. These functions have the property that they are even

functions of time. Although this property is not required for

PRSI DS

our application, it clearly does no harnm.

57 R

NSRS

i
There are two major families of window functions that are g

ade s aad P

in use today. 7he first is what we shall call the Cosine familv. 3!
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These functions are raised cosines or convolutions of raised co-
sines. The two most popular Cosine window functions are the

Hanning and ilammin¢ windows (Rlackman and Tukey, 1958, pp. 95-99).

These are given Dby:

Hanning: wH(t) = §%~ l+cos§§ u_y 1~ L%L ’ (6-20)
w w W

Hamming: wh(t) 37%55_ 0.54 + 0.46 cos %&) u_y l-*sl , (6-21)
W

“w

n

where T 2’I‘w (6-22)

is the window size or width, and u_l(x) is the unit-step “unction

defined by:

0 , <G,
u'l(x) = (6-23)
1, x=20.

Both windows in (6-20) and (6-21) have been normalized such that

Ww(0)=1.

The other major family of window functions is what we shall

call the sinc” family, because their Fcurier transforms are of

. n .
sin ¥ . sin X |,
2 t — 3 »d to
the form(,.ﬁx___q , and the function Tx”““lb often referred

as sinc x. This family is generated in the time domain by (n-1)
convolutions of the rectangular window, with the appropriate nor-

malization to keep the window size equal to t'. This family is

st Wi BT SBIRY B s ale W bar GRS S
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represented in the frequency domain by:

1 sin(anTw/n) n

wn(f) 2ﬂfTw/n ’

where n is the order of the window. Thus, wl(f) is the rectan-
gular window, Wz(f: is the triangular, etc. It has been shown

that the corresponding time domain window wn(t) is given by

.-

: {Makhoul, 1970a):

; [n—l]
: (n/2)"
wn(t) = T (n T (n-1)! Z (-1) (k]{ -1:1-}_\. L’fL

-1
2k _ ) o
U_l 1~ n T 13 (6 25)

where n is any positive integer,

(n)= nt
k k! (n-k)!

n-1 _ . . n-1
and —»~} ¥ integer portion of =" -

A window that is of particular interest is w4(t), which is some-

times called the Parzen windo.s, given by:

. _ 8 )3 ] 1 1]V 1 |t

wilt) = 5711 ‘gt uy 1 - ~A4lz - | u - .
w 'w/ w w w

| 3

(6~-26)

In order to see how (6-19) might apply, we shall discuss

three windows : the rectangular, Parzen, and Hamming windows.

— I LT

s

b —

o

[

[
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The three windows are shown in Fig. €6~8, along with a summary

of their spectral characteristics, A plot of the power spectrum
for each window is shown in Fig. 6-9. We shall first discuss

the Hamming window spectrum shown in Fig. 6-9b., We note that

for £22£,, |W,(f)| is at least 40 dB belnw W, (0), and hence (6-19)

will apply with ¢ = .01 if the following condition holds:

1 _1
where £o =3T —-m.-w '
(6-28)
and F, = L
0 T °

(r is the pitch period and ' is the window size.)

From (6-27) and (6-28) we obtain the desired relation:
'> 21 . (Hamming) (6~29)

(6-29) says that in order tc aquarantee that the signal spectrum
be very nearly equal to the impulse response spectrum for f = nFg,
the window size t' rnust be at least twice the pitch period. Since
we know the general range of pitch periods for human voices, it

is easy to satisfy (6-29) most of the timec. As a rule of thumb,
when using a ilamming window, a window size of at least 20 msec

should give good results (this corresponds to 1 = 10 msec) .

The same analysis can be applied to the Parzen window spectrum
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: .
Wyt § walt) $wp(t)
; 2Ty 4 1
3Tw 1.08Tw
1
5
2 > > -
)
i (a) (b) (c)
348 LARGEST SIDELOBE _
WINDOW  |ganowiorh| RELATIVE To | HIGH-FREGUENCY
MAIN LOBE
1 =-13.3dB -
RECTANGULAR| 0.9 fo (1t SIDELOBE) 6d8/0CT
PARZEN 1.8 fo -53.1 dB8 —24 dB/0CT
(18t SIDELOBE)
(4th SIDELOBE)
(d)
Fig. 6=-8. (a) Rectangular window.
(b) Parzen window.
(c) Hamming window
(d) Summary of spectral .zracteristics for the
. 1 1
three windows. t’o = :. = 71,-; .
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0
(a)
10 \
»-20 HA
|w, (6}
L 8 PN r\
-40 ‘ x
o 2 4 3 8 10
R
o\\ 1
(b)
10
-20 \
‘Wh(f)lz.;,o \
(dB) {
ol
- ﬂﬂﬂﬂﬂa/
TN

Fig. 6-9. (a) Power spectrum of rectangular window.

f/fq

(h) Power spectrum of Hamming window.
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: | -50 ——
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Fig. 6-9. (Cont'd)
(c) Power spectrum of Parzen window.
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in Fig. 6-9c, and we obtain the relation:
Tt237 , (Parzen) {6-30)

with ¢ = .01 (40 dB). This means that if the Parzen window is
used, the window should equal .t least three pitch periods if
very good results are desired. Conditions (6-29) and (6-30) can

be relaxed by about 20% with generally adequate results.

Returning to the power spectrum of the rectangular window in
Fig. 6-9a, we see that (6-19) cannot apply with ¢ = .02 (34 dB)

for-%-slo. In fact, the best that can be achicved is an € = .03
0

fox-%'zlc. Tais is had for two reasons: a) ¢ is on the high side,
0
and therefore the approximation will be worse, and b) "%‘210 means

0
that 1'2107, i.,e. the window size is 10 times the vitch period,

which is far greater than the frame size that cur model allows (for
£

good results). The best compromise is = = 0,1 (20 dB) for‘?‘z4,
0

But tkhis € is quite high. The ccnclusion is that the rectangular

window is not a good window for pitch-asvachronous analysis,

One conclusion we can draw from the above discussion is that
the frame width should be on the order of at least 2 pitch periods
if one is to obtain good results with pitch-asynchronous analysis
using the direct method. This explains why analyzing a portion of

a pitch period using the direct method is not recommended.

Below we shall make use of the notion of the "effective" width
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of a window. Although an actual window width is eaual to ', its
effective width is generally less than that, because the signal
somples are weighted by the window. (We are assuming here that
the area under the window is always constant and is equal to 1,
i.e. W(0) = 1,) It is reasonable to assume that the cffective
width of a rectangular window is equal to its actual widtih 1'.

We shall assume further that the effective width of any window is

inversely proportional to ikts bandwidth, From the last two assump-

t.ons, we can define the effective width, Té . of a window to be
equal tos
B
1
-t = [N -

where Bl is the bandwidth of the rectangular window, and B is

tlie bandwidth of the window whose effective width is desireda.
From Fig. 6-8d we see that B, = C.9fF, = Qf% . Substituting for

Bl in (6-31), we obtain:

where B is measured in Hz and Tt in sec.

]
e
For example, the bend::dth cf the Hamming window from Fig. 6-8d

is B = }..33fa = Lf%é

» From (6-31), Té 0.687', and the effec- .

tive width of a Hamming window is about two-thirds its actual

width, We must stress here that {6-31) is but one of manv other
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reasonable definitions.

We have thus far discussed methods of windcwing that would
lead to good results when using the direct method. The question
now is how the direct method compares with the indirect method
in pitch-asynchionous analysis. In order to do cthe comperison
fairly, the "effective" frame width for both types of analysis
should be the same. We have already discussed above how to find
the effective frame width in the direct method. In many formula-
tions of the indirect method, the signali samples are weighted
equally, hence the effective frame width is equal to the actual
frame width. Therefore, if a Hamming wincdow is used, for example,
on a 20 msec frame, the effective frame width is 20 x 0.68 =
13.€6 msec. Therefore, the frame width corresponding to the U
samples in the indirect method should be 13.6 msec. It is rea-

-

sonable to assume that the 13.5 msec frame would be centered with~

in the 20 msec frame.

Given the akove basis for comparison we have found that the
direct Autocorrelation method and the indirect Covariance method
gave practically the same results for the poles of §(z) for effec-

tive frame widths larger than a pitch period.

As a general rule of thumb, the indirect method worls well
for almost any frame size, but the direct method works well only

for a frame size of at least one pitch period, with a precper choice

of window shape.
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6.25 Formant Extraction by Peak Picking

In the beginning of Section 6.2 we indicated how one might

deduc2 formant values from the poles of S(z) in (6-4). We mentioned

tnen that peak picking could be performed on the approximate spec-
trum P(w) as a double check on the formant values. In this section
we shall discuss briefly the possibility of formant extraction by

peak picking alone, avoiding the coaputation necessary to solve a

p-th degree polynomial (where p is usually greater thar 1)),

Most formants show up as peaks in the approximate spectrum
because they usually have a high Q (ratio of frequency to band-
width) . However, there are cases when peaks don't show up very
well, usually because the formant has low Q, and in addition may
be close to another formant with a dominating peak. Below, we
shall discuss two methods for improving the shape of the approxi-
mate spectrum so that peak picking will give good results for most
cases. We should point out here that peak picking has one inher-
ent drawback, namely that the formant values obtained are only
approximately equal to those that would be obtained by finding the
poles of §(z). This is due to the fact that the formant peak does
not occur exactly at the formant fregquency. That difference he-
comes smaller as the formant bandwidth decreases. In addition, the
position of & formant peak is also dependent on the positions of

neighboring formants. However, for many applications, peak picking
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can give adequate accuracy for formant values.

6.251 Preemphasis

One method that usually improves the effectiveness of peak
picking is preemphasis. We have alreauy discussed some of the
properties of preemphasis by differencing in Section 5.5. We saw

that differencing attenuates the energy at vexy low frequencies

and enhances the energy at high frequencies at the rate of approxi-

mately +6dB/octave. The positive effect of this type of pre-
emphasis on peak picking is two-fold: a) Attenuation of the
energy at low frequencies eliminates peaks due to the glottal
source, peaks that otnerwise might be mistuaken for vocal tract
formants, and b) because of the resulting increase in the spec-
tral slope, formants that are overshadowed by neighboring higher
amplitude formants would now appear as peaks. One disadvantage
of preemphasis iz that it causes shifts in computed formant fre-
quencies and bandwidths. This effect is most noticeabhle with the
first formant. However, these shifts are not significant in

general, and can be disregarded for many applications.

We saw in Section 5.5 that preemphasis by differencing is
equivalent to introducing a zero at zero frequency (z=1) in the
signal spectrum. This zero should approximately cancel one of
the low frequency poles, and hence one less pole would be needed

in the iinear prediction all-pole apprcximation. We have
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TETATE TN

found that if a certain value of p is optimal (in the sense given

FRETATOR

by (6-7)) for some signal, then a value of (p-l) is optimal for -

the differenced signal. ;

! We shall demonstrate some of the above properties by an ex-

ample. Figure 6~10a shows the original and linear prediction o

TR TR} R PEXT TSP R Y RO TR

spectra for [w] in the word "anycne" [eniwan]. The analysis was
done using the direct Autocorrelation method on a 25 msec Hamming-
windowed signal, with p=12. The corresponding analysis for the :

differenced signal is shown in Fig, 6~10b with p=11 (p was re-

duced by 1 according to the above discussion). The low frequency
E effect due to the glottal source is evident in Fig. 6-10a but
2 disappears in Fig. 6-10b, The second formant does not form a
K> ' peak in Fig. 6-10a but its peak is gquite clear in Fig. 6-10b.

In order to see the differences in computed formant frequencies

Ny e,
iy \"‘"‘". »

we refer to Fig. 6-1l1. Figure 6-1lla shows the formant frequencies
é obtained by peak picking from 256-~point FFT-computed spectra
-8 (i.e. 128 spectral values over 5 kHz). The value of the frequency
at which a peak occurred was refined by using a parabolic fit to
the three points around the peak. Figure 6-12 shows an example
of such curve fitting. Given three points around the peak, the L

position of the peak can be shown to be at:

) S T P,
BoaZ-un . »

A) + b,

x = %W , (6-32)
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80

- 40
ﬁvr" (a) Y‘

] RELATIVE
-~ ENERGY 30
(dB)
E L] 2C ‘. \l \'l |»'. [ 1
} 10 ‘i l ' “ 1 ll M
Al
[’ 0 1

I ,

FREQUENCY
(kHz)

0 1 2 3 4 5
FREQUENCY
{kHz)
D
40
1
(b) N
30},';wﬁn
seare ([N
ENERGY 20 !
{d8) {
10 ‘“Jv

Fig. 6-10. (a) Analysis of [w] in the word “anyone", using
the Autocorrelation method. Window size is ‘

25 msec, p=l2. i

(b) Analysis of the differenced signal, p=l1. 3
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Original Differenced
Siqgnal fignal
. Differ- -
Original enced n Fn Bn rn Bn
Fl 346 421 1 387 220 420 173
F, - 980 2 1008 272 1013 233
F3 2383 2382 3 2385 75 2382 74
F4 3389 3388 4 3396 225 3393 232
!
(a) (b)
Pir. 0-11 formant values for the sirnal assocliated with Pie,0-10, ;
(a) Formant frecauencies ohtained by neak rickine with N
parabclic internclation.
(b) Formant freaucncies and bandwidiths obtaline: ~om !
the noles of 8(z). .
A v )
v

/L‘

Fig. 6-12 Refininm of peak estimation by varabolic curve (
fittine. (xr,ym) arc the coordinates of the .
hysothesized peak. , :
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1Rl |
2 g
11 ‘
f where Ay =¥y~ Y_q+ ]
; ’ and by =y -y, -

ti The peak-picked formant frequencies shown in Fig, 6-1lla are to be

compared with those obtained from the poles of §(z) and shown in

Fig. 6~11lb, where the formant bandwidths are showr in addition.

gi These formant values are computed from the poles of §(z) as

S follows: :
i W

{ -— n ::
: Fo=ow 1
j lo (6-33)

L.j Bn = n l

3

where wy and o, are computed from (6-5) and (6-6). (The definition

[S——

of bandwidth in (6-33) is not exactly equivalent to the 3-dB defi-

Pt 2. iR T A VA R P VT O

+
Camrrarnsd

L e vt e Ao

nition, but it gives similar results for high-Q formants.)

[

We note from Fig, 6~lla that a peak-picked formant frequercy isg

-

S~
e

closer to the computed frequency in Fig. 6-11b when the formant

Dbt LI

e |

bandwidth is small, as is the case with the third formant in this

example. We also note that the largest relative change in fre-

L e

quency between the formant values for the original signal and

those of the differenced signal occurs for the first formant.

«
e
axer

Although we have not done so here, it is alsoc possible to es-

B M (LIRS S WO R X Ny

timate the formant bandwidths from the approximate spectrum by

simply measuring (with interpolation) the freguency interval between
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the -3 dB points below each peak. Accu_ate values would result

only for high-Q formants.

Although the application of preemphasis to the speech sign.
might improve the results of formant extraction by peak picking,
it involves a distortion of the signal (by differencing in our
case) which has some bad side effects, e.y. the normalized error
becoines useless as a voicing detector /see Section 5.5). We shall
now describe a second method that improves the rasults of peak

picking without affecting the signal in any way.

6.252 Off-Axis Spectrum

We knrow that formants with small bandwidths show up very well
as peaks in the approximate spectrum P (w) because the poles cor-
responding to these formants lie close to the contour along which
the spectrum is computed (the unit circle in the z-plane or the
jw—-axis in the s-plane). Therefore, for those formants whose peaks
do not show up in the spectrum, one could enhance the peaks by
moving the contour along which the spectrum is ccmputed closer to
these formant poles. 1In order to see now this might be done ef-
ficiently and effectively, we shall first define a moure general

linear prediction "spectrum" P(o,w) given by:

Plo,n) = '§(z)'2’ 2z = e(o*'jm)‘l‘

’
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o 1

. 2 H ¥

o - ~ A . ;

o Plosw) = 3 v Z :

RN | _ Sk(o+ju) T 2

{_} 1 ak p :

s k=1 3

~ 14 a
| 2

- 3 3 A . g

. = l p{ ‘ . - (6-34) %

{i 1. 2: ake-koi e-kaT 3

- = / 3

~¢ o = 0, S(c,w) reduces to ﬁ(w) defined in (4-6a). If o is a

St Ve el kAR AT,

Jonstant (o = oo), then (6-34) reduces to:

T . ;
~‘l~.,‘\ L! A A2 ?g
;3:: ‘ P(ao.w) = 5 Tz (6-35) 5
{ 1 - de e~ Ik g
k=1 E

I ;

. where d, = a_¢° , lsksp , (636 :
:f{? and g = e-ooT x 1 -0T, for |o T|<<l (6~37) %

E () g o of ol . :

4

§(oo,w) in (6-35) has the form of a regular spectrum (see Appen=-
dix C on how to compute such a spectrum) computed from a new
sequence of coefficients dk which are obtained by multiplying

¥ the coefficients a, by an exponential, as shown in (6-36) and :

(6~37). Since o0 = 9y de“ines a line parallel to the jw-axis in

A SR B AL ¥k o it

the s-plane, we call §(oo,w) an off-axis spectrum., It is equiva~
ient to computing the spectrum in the z-plane along a circle of

. 1 . . . g .
radius r = ; concentric with the unit circle. An illiustration

of the peak enhancing ability of the off-axis spectrum is presented
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below.

The locations in the s~plane of the first four formants of
the original signal *‘n Fig, 6-11lb are shown in Fig. 6~13., The
off-axis spectrum Zox O, = =21 x 75 (g = 1.048) is shown in
Fig. 6~14. “his is %o be compared with the regular spectrum

shown in Fig. "Ja. The second formant now shcws up as a defi-
nite peak in the ofi-axis spectrum. Alsc, the peaks correspond-
irg to Fy and F, have become sharper (imore peaked), while the Fiq
peak remained about the same. Sharper zzaks, of course, mean that

the new peak-picked formant frequencies are closer to the actual

formant locations.

Onz should be able to estimate the formant bandwidths by
adding :;2 to the 3 dB bandwidths of the peaks in the off-axis
spectrun, This inde=sd gives correct results for Fl' F2 anc F4 in
this case, but not for F3, because F3 now lies to the right of

the oonaxis. ¥or such poles, the estimated bandwidth is obtained

~g
by subtracting the measured 3 dB bandwidth from —;9. Uaiortunately,

there i5 no way to tell whethexr a formant lies tc the right or to
the left of the oo-axis from the off-axis magnitude spectrum. (iNote
that the same is also true for the regular spectrum, except in

that case we alrzady know that all poles must lie to the left of

the jw~axis.) Now we see why the F, peak was about the same in

Figs. 6-10a and 6-14: Fqy is equally distant from the jw-~axis and
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Fig. §-13. Location in the s-plane of the formants shown
in Fig. 6-11b for the original signal.
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Fig. 6-14. The same linear prediction spectrum shown in
Fig. 6-10a except that here the spectrum was
computed inside the unit circle (oo--an7S).
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the oo-axis, as shown in Fig. 6-13. Therefore, the off-axis~
spectrum method has the disadvantage that some bandwidth informa-
tion might be lost. However, it’is easy to see that such band-
width information can be retained by also computing the regular
magnitude zpectrum or a phase spectrunm.

For formant peak enhancement, we wish to use a value of y
which is closer to the poles of interest, on the average, than is
the ju-axis. Since we expect the first four formants to have band-
widths in the range 0-300 Hz, a value of 0, ccrresponding to a
formant bandwidth of 150 Hz (j..e. 95 = =21 x 75) should work well,

We have found this value to be effective.

A line parallel to the jw~axis is only one of many possible
contours that would be cffective in improving the results of for-
mant extraction by peak picking., Ancther possibility is to compute
the spectrum along an arbitrary straight line in the s-plane, (The
corresponding contour in the z-plane is a spiral.) Such a spectrum
can be computed using the chirp z-transform (C2T) (Rabiner, Schafer
and Rader, 1969). This type of contour makes sense in speech ana-
lysis because, generally speaking, formant bandwidtns increase
with frequency. Unfortunately, computing the C2T is quite expen-
sive, and it is not clear that it would be cost-effective. We
would like to point out hers that the cff-axis spectrum would
be a special case where the arbitrary line happens to be parallel

~to the jw-axis. However, in that case, the method described in
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equations (6-35) through (6~37) is much more efficient than

computing the CZT,

6.26 Comparison with the Cepstral Smoothing Method

Schafer and Rabiner (1970) have developed a system for for-
mant analysis by a peak-picking algorithm applied to a cepstrally-
smoothed spectrum (i.e. a low-pass filtered log spectzum}, and in
casz2s where formants were believed to be very close to each other,
they applied the CZT to the cepstrum in oxrder to enhance the
formant peaks and separate the formants. It is of interest to

compare that method to linear prediction.

First, it should be pointed out that applying the CZT to
the cepstrum correspending to the approximate spectrun S(w) is
equivalent to computing ﬁ(o,m) in {6-34) using the CZT, bhecause
§(z) is minimum-phase {Schafer and Rabiner, 1970, Appendix B),
We have szen that the enhanced peaks in the resulting spectrum
correspond to the foimant fregquencies which could be obtained
more accurately by solving for the poles cf §(z). Therefore, nun-
like the method with a cepstrally-smoothed spectrum where the
CZT is useful in obtaining extra information about formant loca-

tions, applying the CZT in linear prediction adds no irnformation.

Another point of comparison is that both types of spectra are
smoothed versions of the original signal spectrum. One method does

it by actually low-pass filtering the log spectrum, and the other
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; by reducing the number of poles of an all-pole approximate spec-

trum, The two types of smocthing are not equivalent, however, be~-

cause in linear prediction the spectral fitting is based on an N
all-pole model of speech which, for non-nasal sonorants, cor-

responds to the usual model of the vocal tract transfer function,

For those sounds, we would expect linear prediction to give a

better spectral fit., Figure 6-15a shows a spectrum of a Hamming

weighted 25 msec of the vowel {a] obtained from 10 k:dz sampled

; telephone speech, and superimposed on it is the smoothed spectrum

obtained by linear prediction with p = 14, Figure 6~15b shows

the corresponding cepstrally-smoothed spectrum, (The cepstrum has
unity weighting up to 1.5 msec and cosine weighting up to 3.0
msec.) Note that a simple peak picking algorithm in Fig. 6-15b
would result in a false third formant at 2 kiiz. Because we know
the spectral characteristics of the vowel [a]l, the third formant

is more likely at 2.8 kHz as shown in Fig. 6-1l5a.

High-pitched speech normally gives rise to problems in for-
T _mant tracking due to the fact that for voiced scunds the spectral

b 3
: # harmonics are widely separated. We have seen in Section 6.2 that

this results in a basic loss of information about the formant
structure, a loss that cannot be recovered even by pitch-synchronous
analysis, unless new information is added. We have also suggested
that the method of linear prediction should perform quite well

(with nonnasal sonorants) because of the fact that we assume an

v ke d e e
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Fig. 6-15. Spectral smoothing of a spectrum of the vowel
(o] obtained from 1G kHz sampled telephone
speech (a) by linear prediction with p=14, and
(b) by cepstral smoothing with unity weighting
up to 1.5 msec and a cosine weighting up to
3.0 msec.
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all=pole model, which amounts to additionel informaticn. In i

cepstral smoothing the cut-off point of the low-pass filter is Lol

PR N SR R AL 7 A5 A8

placed below the pitch peak, which for high-pitched speech can N
mean a further loss of information about the formant structure. i
In linear prediction, the formant locations are less affectued by

the pitch because the harmonics are forced to fit the all-pole | f
model, This is a well-known property cf analysis-by-zynthesis

methods. (Mermelstein (1967) has suggezted a method Zeor smooth-

ing the spectrum by subtracting an approximation to the effects

o nbert UMD L el I v e 115 0% 1O e AN AN

of the fine structure from the spectrum, thus bypassing the

problems that arise from low-pass filtering the spectrum.) ' %

o

Although for nonnasal sonorants linear prediction is expec- j f

ted to give more accurate formant values than the cepstral smooth- P i

3

¥

ing method, the same is not necessarily true for other sounds T %

. . i

such as nasals and fricatives, whose spectra are known to have ;

: antiformants as well as fc:uants., The problems involved have : é
3

p %

been discussed in Section 6.21, g
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CiiAPTER VII

CONCLUSIONS

Linear prediction is an autocorrelation-dcmain analysis.
Therefore, it can be approached either from the time or frequency
domain, Although the actual computations are performed in the
time domain, we chose to derive the most general formulations for
linear prediction from the frequency domain because of tiie domi-
nance of spectral analysis in speech research. We have shown
that all least-squares methods of linear prediction can be derived
from a single general concept, namely that of generalized analysis-
by-synthesis, Here the 2D-spectrum (two dimensional spectrum) of
a nenstationary signal (such as speech) is to be approximated by
another 2D-spectrum, where the error to be minimized is proportional
to the integral of the ratio of the signal spectrum to the approxi-
mate spectrum. This error criterion was shown to be very desirable
for a good spectral envelope fit. In the special case when the
approximate spectrum consists of poles only, the generalized
method reduces to the gereral Covariance method of linear predic-
tion, If, in addition, the signal is assumed to be stationary,
the 2D-spectrum is replaced by the ordinary power spectrum, and
the Covariance method reduces to the Autocorrelation method of

linear prediction.

The linear prediction speech production model assumes the

vocal tract to be fixed in shape within a portion of the speech
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signal (a frame) on the order of 10~25 msec, Within each frame,
the speech signal is assued to be nonstationary in the Covari-
ance method and stationary in the Autocorrelation method, In
general, the assumption of nonstationarity is a better assumption
for speech signals, However, within a frame, the speech signal
can be considered to be quasi-stationary, so the ass umptiorn of
stationarity in the Autocorrelation methed is not a bad one. In
genexal, one would expect the Covariance method to give better
results than the Autocorrelation msthod, especially with analysis-
synthesis systems, However, for other speech applications; the
advantages of one method over the other do not seem tc be sig-

nificant.

In computing the predictor coefficients from a single frame
we defined two basic methods: the direct and indirect methods.
In the direct method, the signal is weighted by a window that is
zero outside the frame, and the resulting signal is considered to
be infinite., In the indirect method, an unwindowed finite portion
of the signal is used. The most popular and useful methods are
the direct Autocorrelation and indirect Covariance methods. As a
general rule of thumb, the indirect methcd works well for almest
any frame size, but the direct method works well only for & frame

size of at least one pitch period, with a proper choice of window

shape. We have developed criteria that a window function must

satisfy in order to give good resuits.
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The direct Autocorrelation method was discussed in detail
because, with this method, it was possible to examine in what
manner the ali-pcole linear prediction spectrum approximated the
signal spectrum., For example, from the normalized error curve
it was possible to set general guidel}nes to help determine the
number of poles in the linear predictiion spectrum that would best
approximate the envelope cf the signal spectrum. As the number
of poles aporoached infinity, the linear prediction spectrum
became identical to the signal spectrum, while the linear pre-~
diction transfer function became the minimym-phase counterpart
to the signal transfer function., Several methods were suggested
for computing the minimum-phase sequence corresponding to the

original signal,

The study of the normalized error in the direct Autocorrela-

tion method led to some interesting and important results. First,

we showed that the normalized error was equal to the ratio of )
the geometric mean of the linear prediction spectrum to its

arithmetic mean. The arithmetic mean of the spectrum is equal

to the energy in the signal, while thé geometric mean is equal

to the exponential of the zero gquefrency component, Cor of the :

cepstrum. Thus, the normalized error measure is a form of nor-~

malization of o with respect to fhe enerqgy in the signal, and
the resulting ratio is « function of only the shape of the spec~-

trum. The properties of the normalized erior are a reflecticn
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of the properties of So* One such property is the usefulness of
the normalized error in the detection of voicing. It was shown
that such usefulness depended completely on the spectral shapes
of the sounds. Any processing of the signal that changed its
spectral characteristics was seen to have a nossxble detrimental
effect on the usefulness of the normalized error as a voicing
detector. Speech preemphasized by diﬁgerencing, and telephone
speech, were given as examples of such processing. Under these
circumstances, it was suggested that the first autocorrelation

coefficient would be a better voicing detector.

Filtering the speech signal by the linear prediction inverse
filter results in an error signal, Forx voiced sounds, this error
signal often shows distinct pulses at the start of each pitch
period. These "pitch pulses" can be used for pitch extraction.
In cases where tl.e signal is not rich in harmonics, e.g. during
sonorant-nonsonorant transitions and for voicing of stcps and
fricatives, pitch pulses are likely not tc be prominent, and
therefore pitch would have to be estimated by some other means,

such as peak picking of the speech signal itself.

Another application of linear prediction is in the estimation

of formants of the vocal tract. These formants are estimated
from the poles of the linear prediction transfer function. We

discussed several factors that influence the extent to which
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extracted formant values correspond to actual resonances of the

vocal tract. We concluded that formant extraction by linear pre-

diction works well with nonnasal sonorants., However, if the trans-

fer function of the vocal tract contains antiresonances as well as ;
resonances, as is the case for nasals and fricatives, then linear

prediction is inadequate for the extraction of the formants and
antiformants.,

Because computing the poles of the linear prediction trans-
fer function is expensive, we discussed fermant tracking by peak
picking of the linear prediction spectrum as an alternate inex-
pensive method., Unfortunately, not all formants are represented
by peaks in the spectrum. Two methods were discussed to render
peak picking more effective. The first method involves preproces-
sing the speech signal by preemphasis. Preemphasis by differencing
was seen to be effective, except that it had some undesirable side
effects, such as shifts in formant positions, especially the first
formant. The second method did not involve any preprocessing of :
the signal. One merely computes the linear prediction spectrum
along a circle inside the unit circle (which corresponds to a
line parallel and to the left of the jw-axis), The resulting "off-

axis spectrum" has proven to be both efficient and effective.

One issue of importance to most types of speech analysis is

the choice of frame width and position. This issue was discussed

B A M EADALIO LR A A

AR AN N A IC S D

.
vl RN s 1 ke B

{
»

. "

SCLINC

S R Vet bee

B R LA Ly 3. SR P P . Y SE NP



S MD Tt s e S o e

AT

Rikigiizssilul

W boidany (3o Ty M) T RN Y LT TR X
WW« T EPIN  WIN E PT O R I

{

T

g B TS AU ST AR ST TR T

S KR AE Vl?

——

Report No. 2304 Bolt Beranek and Newman Inc.

in terms of pitch-synchronous and pitch-asynchronous analysis.,

The latter type of analysis included a detailed discussion of

windowing.
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APPENDIX A

ON THE z-TRANSFORM AND FQURIER SERIES

In this appendix we shall define the z~transform, its in=-
verse, and their relation to Fourier series and the Laplace trans-

form,

A.1 Definition and Properties of z-Transforms

Given a sampled sequence x{(nT), defined for all n, where n
is an integer and T is the sampling interval, the z-transform of

x{nT) is defined as:

[}

X(z) = 2: x(nT) z .

T -

The operator z is, in general, complex and is defined in terms of

the Laplace operator s as follows:

- .
z = 5% = o(0¥IWIT (A-2)
where w = 2¢f 1is the radian frequency in rad/sec,
o is the damping factor in rzd/sec,
T = % is the sampling interval in seconds,
s
and fs is the sampling freguency in Hz.

% (nT} couid in general be complex but is often real in actual

applications,

nte? e Bl




Report No, 2304 Bolt Beranek and Newman Inc.

The inverse z-transfcrm of X(z) is then x(nT) and can be

shown to be egqual to (Gold and Rader, 1969, pp. 26-27):
x(nT) = 2%3§EX(2) 21 4z , (A=3)

where the path cf integration encloses the region of convergence

of X(z).

The relation between s and 2 in (A-2) defianes a mapping
between the s-plane and the z-plane. It is very important to
understand the nature of this mapping for a thorough understand-
ing of z-transforms. The s-plane shown in Fig. A-la has been
divided by horizontal dashed lines into strips of width w:Z; = 2nf
There are, of course, an infinite number of these strips in the
s-plane. According to (A-2), each strip of width 2nfs, as shown
in Fig. A~1, maps intc the entire z-plane. Therefore, the mapping
from the s-plane to the z-plane is an infinity-to-one mapping.

For a particular configuration in the z-plane (see Fig. A-1lb), the
s-plane coasists of an infinity of repeating styrips of identical
configurations. Each pole (or zero) in the z~plane maps into an
infinite number of pcles (or zeros) in the s~plane separated by

w = 2nf_. This is shown in Fig. A-1 for the poles a, b, b, and c,
where the over-bar denotes complex conjugate, As can be seen

from (A-2) and Fig. A-1l, the jw~axis {0=0) maps into the unit
circle z=eij in the z-plane. The left half of the s-plane maps

intc the region inside the unit circle, while the right half of
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the s~-plane maps into the rsgion outside the unit circle. A

v : tical line at o=0, in the s-plane maps intec a circle defined
GLT

; by z=e 0"¢39T A norizontal line at w=w,, as well as lines at
0, +27% in the s-plane, map irto a radial half-line emanating

; from the origin of the z=plane and defined by z = eOTej“’OT°

In particular, the real-axis {w=0) in the s-planc raps into the

positive real half-line {z real and >0) in the z-plane. The »
3 negative real half-line (2 real and <(: of the z-plane maps into

horizontal lines at w = (2k+l) % in the s~plane. These horizon-

tal lines form the boundary lines between strips in the g-plane.

This latter mapping is quite unique in the context of z to s map-

- 3 ping. This can be seen by examining how the poles in the z-plane

shown in Fig, A-1b map into corresponding poles in the s-plane.

Also, we shall concentrate on the center strip in the s-plane

3
¥
2
4
¥

. . -1 m Cos \ .
ranging Zrom - to r . The positive real-axis pole a in the 2~

piang maps into a real-axis pole in the s-plane. The complex

ey

poles b and b in the z-plane map inte corresponding complex
3 poles in the g-plane. However, the negative real pole ¢ in the

z-plane maps into complex pdtles in the s-plane. Figure A=-2c shows

Lo

a 3ingle period of the amplitude frequency respcnse for a single
?% negative real pole in the 2z-plane (zc = -0,6), Compare that with
Fig. A-2a.for a positive real pole (za = 1,7), and with Fig. A-2b

-j;' for a complex conjugate pair of poles (zb = 0.4(1+jV§), ib = 0.4(1-3V3)).
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Fig. A~2, Amplitude frequency responses for the poles
shown in Fig. A-1l.
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]
5
%,
ks
=
v
a
A
5

Also, compare the digital frequency response in each case with

T TR

the corresponding analog (s-plane) response which is the response

TR

of the pcles that are in the center strip :% <w= % in Pig. A-la.

A.2 z-Transform and Fourier Series

: In order to relate z-transforms to Fourier series we let

0=0 in (A-2), resulting in z = erT. Substituting for z in (A-1l)

we obtain:

(-]

-~ .
Xw) = ) x(nT) e JnwT (A=4)
' N=<e=m
. |
where X(w) stands for X(erTl . ‘

The inverse transform of X(w) is obtained by substituting

zZ = erT in (A-2) and taking the path of integration around

the unit circle. The result can be easily shown to be:
! n/T

x{nT) = %F X(w) e dw., (A-5)
~1/T ~.

[

jnuwT

.-
[ SHPI,

Equations (A-4) and (A-5) can be viewed simply as the ordinary

b

}:3 Fourier series transform pair, but with time and frequency inter=

changed. In traditional Fourier series analysis the time function
is normally continuous and periodic while the frequency domain is
discrete (i.e.,, the transform exists only at multiples of the fun-
damental); in other words, the frequency function is sampled. On

the other hand, in z~transform analysis, the time function is

212
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P,
s
. r——

] sampled while the frequency function is continuous and periodic.
I; Therefore, we can make the general assertion that sampling in one
§ )
- domain corresponds to periodicity in the transform domain. We i
li have, as a corollary, that if a function in one domain is both j
j; sampled and periodic, then the transform function must also be é
i i

both sampled and periodic. Another way of stating this is that

if a time function is sampled and its frequency transform is also

SIS PN

sampled, then both functions must also be periodic. Indeed, this

e nat

is one of the principal properties of the discrete Fourier trans-

ot v
-
P

form (Geld and Rader, 1969, Ch. 6}.

We have seen above that the z-transform with o = 0 reduces to

the Fourier series transfcrm. We also know that the Laplace trans-

o ey
e

form with ¢ = 0 reduces to the Fourier integral transform. There-

O
S,

fore, we can sav that the z~transform is to Fourier series what the

B2 R LW 2 S TR P

Laplace transform is to Fourier integrals. This analogy can be

—
Severn 4

very useful in understanding the workings of the z-transform.

ii We shall give one example where the result is obtained by
analogy to Fourier series. Consider a continuous and periodic
function of time x(t) with period T, having a transform in the

ﬁi freguency domain X(%). Then, the energy in one period of the

signal can be obtained from the time domain as well as the fre-

guency domain as follows:




*\

S da ol
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T/2 ©
Energy = % Jr Ix(t)|? at = Z 'x(%“z. (a-6)
~T/2 n=—o

This is a special case of Parseval's thecrem (Lee, 1960, p. 11).
Now, by carefully interchanging time and frequency in (A-6) we

have:
/T e
X% aw =) lxm|® . a7

Energy = g?
-n/T n=e

This says that the total energy in a sampled signal x(n?) can be

obtained by integrating over a period of the power spectrum,

Equation (A-7) can be, of course, also derived directly from (A-4)

and (A-5), but we wanted to demonstrate how one might use the

analogy with Fourier series.
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APPENDIX b

THE AUTOCORRELATION METHOD
AND ORTHOGONAL POLYNOMIALS

The inverse filter H{z) defined in (2-3) is a rfunction of p,
the number of predictor coefficients. Iliere we shall make this

dependence explicit by writing:
p

Ho(z) = 1 - Z a, z7F . (B-1)
k=l

In this appendix we shall use the results of Grenander and Szegd
(1958} to show that Ho(z), Hl(z), veat Hp(z),... form a unique
set of polynomials that is orthogonal oa the unit circle with re-~
spect to the signal power spectrum P(w). This will lead us to
certain properties of Hp(z), and to a derivation of the sclution
to the autocorrelation normel equations (3-17). VVie call this so-

lution the Fast Autocorrelation method.

B.1 Orthogonal Polynomials on the Unit Circle

Let P(x) be a nonnegative and Lebesque-integrable function,

i.e.
B(x) 2 0, all x, (B~2a)
m
and ‘j;(x) dx =< C, (B~2b)
-7

where C is some finite constant.
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3!
Also, let the inverse Fourier transform of P(x) be given by:
3 !
. .
i R = %? ‘[P(x) eIXX 4x . - (B-3) i
I |
E; L
E We form a system of polynomials ;?
E Lt
B

¢0(2). ¢l(z). ooy ¢n(z), cee

4 of the complex variable z which are orthonormal on the unit circle
E z=ed*, with the weight %? P{x). These polynomials satisfy the Lj
¢

following two conditions:

(i) ¢n(z) is a polynomial of degree n in which the coef- ‘

TR KT

ficient of z" is real and positive;

(ii) the inner product (¢n(z),¢m(z)) with respect to P(x)

is given by: {
(¢n(2),¢m(2)) =
" 3
%;_[ ¢n(z) Eg(z) P(x) dx = Gnm' z = e*; n, m=0,1,2,...
I
(B-4)

where the over-bar denotes complex conjugate.
Grenander and Szegd (1958, pp. 12-14, 35-42) have shown that the

set of polynomials {¢n(z)} is uniquely determined by conditions

(i) and (ii). é
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Each polynomial ¢n(z) is given by:

l o l 2 e o e n"l n
I Bi Ro Ry eee Ry, Ry
R R R e R R
- k| -2 -1 0 n-3 n=-2 -
l ¢, (2) (D,.1Py) {B~5)
' 1 z 22 ... "1 27
' RO Rl 200 Rn
' Ry Ry 7T R
g - n - . -
] where D = det(Rj_i)0 . . . (B-6)
I Ron Rien -+ Ry
//
If we let
n

where kn is the coefficient of 2" and zn is the constant term,

then the polynomial ¢n(z) is shown to obey the recurrence relation:

Ko ®na1(2) = kg 2 0,(2) + &, 2" ¢n(2-l) ’ (B-8)

2hgs i )
[
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!
i
i
,
¢

where we have ezssumed that the coeffiqients of ¢n(z) are real.
From (B-8) one can compute ¢n(z) recursively given the following

additional properties:
/

= p ¥ ! .
¢0(z) = Ro (4 / (B 9)
n
D ]
k2 = Bl Z ;12 . (B~10)
"oi=0

B.2 Application to Linear Prediction

If we let x = wT in P(x), and let P(w) be the power spectrum
of a signal with finite energy, then conditions (B-2) are satis-

%ied and Rk are the autocorrelation coefficients, which are real

and even. From (B-5) we see that ¢n(z) must have real coefficients.

Furthermore, by comparing (B-5) and (3-17), the autocorrelation

normal equations, it can be shown that:

n
2

¢, (2) =X‘; Ho(z) , (B=11)

where Hn(z) is the inverse filter defined in (B-1l) and An is *he

gain factor defined in (2-3) and given by (3-37):

2 _ _ n
A, =E =R, - };:_"'l a R, . (B-12)

2 . s
An is equal to the minimum total-squared error Bn‘ From (B-1),

(B-11) and (B-~7) it is clear that:

(B-13)

—
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o

Substituting (B-13) in (B-11) and the result in (B-8) we have:

k k n+l H zn+1

n n+l z (z) =k k

-1

TR ST Y, T

Dividing (B-14) by (k_ k zn+1) we obtain the recurrence relation:

n "n+l

By (2) = 8 (2) + k2™ g 7h (B-15) ;.
where K_ = éﬂii (B~16) 5
n n+l
E From (B-10) we have: :
. 2 2 22 f
kn+1 - kn t Thel ?
2 _ .2 - 22 i
or kn - kn+l n+l
gZ
= kx21+1 1 - §f£ . (B-17)
kn+l

Substituting (B-16) and (B~13) in (B-17) we obtain a recurrence

relation for An: A

2,2 [ 2 _ ,

e Loy

We now show how to compute Kn (Markel and Gray, to be pubtished).

~-{(n+l)

Take the inner prcduct of Hn+1(z) in (B-15) with 2z (The

definition of the inner product of two polynomials is given by

219
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the left-hand side of (B-4}.)

v
(yp (2, 2= ) o Ly ) @I DT by gun
Zn
ﬂr n+l
= %’1?_['1 - Z a, mikeT) I FLGT by g
-ﬂL k=1
n+l
= Rpey ” E: 8 Rpplex (B-13)
k=1

If we let i=p=n+l in the autocorrelation normal equations (3-15),

then (B~19) is equal to zero:
(Hn+1(2) ’ 2-(n+lj =0 . (B-20)

Therefore, from (B-~15) and {B-20) we have:

K =« ‘ (B=-21)
oY S

!

By derivations similar to that given above, and making use of

(B-312), it can be shown that:

K == ’ (B=22)

(n)

where ay are the predictor coefficients corresponding to Hn(z).
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Equations (B-15), (B-18) and (B-22) in addition to the initial
conditions
Ho(z) = 1

(8~23)

2
and AO = Ro ’

give a complete recursive solution for the polynomials Hn(z), and

hence a solution to the autocorrelation normal equations (3-17).

Equation (B-15) can be expressed as a recurrence relation
in terms of the predictor coetficients a . Substituting from

(B=1) in (B-15) we have:

n+l n n
_S L (n4l) -k _ -Z (n) -k -(nel) ) G, (m) K
1l }: a, z 1 a, 'z + Kn 2 1 a)
k=1 k=1 k=1
n+l
or én+l) 2~k 2: (n) -k _ K -(n+l) | o }“ (n) k-n-1
k=1 k=l
n n
- (nj 2~k - (n+1l) -
=Y a2 Z m o zK -k . (B-24)
k=1 k=1

By equating the coefficients of equal power of z on both sides of

(B-24), we have:

(n+l) _ _

an+1 - Kn
(B~25)
aén+1) = aén) + K aéﬁi-k ¢ k=1,2,...,n
221
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T
Al := :

Therefore, the solution for (3-17) is given recursively by (B-23),

{B-22), {(B-.8) and (B~25). A flow chart is given in Fig. B-1l.

=

GRS RN LIl S

I. the computations in (B=-25) are to be done in place, one must

Tor AL ar

E;ﬂ

be careful not to destroy newly computed values as others are

GESER T ba

computed. One solution is to compute ay and a .

1-x at the same

k!

time since

. (n+l) (n)
Bppiek ¥ 2

B

{n)
nti-k ¥ Kp 3 -

Another method is to use an extra array bk where

C ca
e

T W LT S WA I SUTT W S O TIPS T SRS R NS W

b, = a , ;.xr L3k=n, f}"
{ I
then aén+l)= aén) + Kn bén) . . §
éy
In Fig. B-1, AA is egqual to Az, the mininum total-squared er-

ror, at every stage of the computation. Therefore, %ﬁ is equal }}é
to the normalized error Vn’ which is discussed in Chagter v. 1If ilé
the autocorrelation coefficients are normalized with raspect to ilé
R, before applying the algorithm in Fig. B-1l, then AA will be ’I%
equal tc the normalized error at every stage. Normalization cf “J§
the autocorrelation coefficients is especially recommended for i]z
those who are using a computer with only integer arithmetic cap- ’jé
ability. N

-The coefficients Kn in (B-22) are the same as the partial gi

autocorrelation (PARCOR) coefficients of Itakura and Saito (1972). :

1

i
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a,s 1=k=p,
n=p?
is the solution

yNo

ne—n+l

AA «— AA(1l -
k=1

aénL—-~K

al({n)«-— a}({n-l)

n-1
B 2: aﬁn'l) R

K‘*Z)

n=-k

K <«— (B - Rn)/AA

(n-1)

+ K an__k

, 1=ksn-1 .

Fig. B-1 Flow chart for the solution of the autocor-
relation normal equations (3-17). This is
called the Fast Autocorrelaticn method.
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LY

: Since the minimum total-squared error (En = Aﬁ; is always posi-

tive, we conclude from (B-18) that K must obey th2 relation:

B
E IKn|<l . (B=~26)

B.3 Properties of Q_(z)
| o

(a) From (B-ll) and (B-4) we have:

Plw) dw = Gnm' nm=0,1,2,... (B=27)

{Hn(z)} is a complete set of polynomials orthogonal on the unit

circle with A as the normalizing factor for Hn(Z)‘ It should be
remembered that (B-27) holds if and only if the coefficients Ry

in (B-3) are positive-definite (see Section 4.4). This is guaran-
teed in the direct Autocorreiation metheod.

For n = m = p, (B~26) reduces to

n/T
I f PlW) gu =1, (B-28)
T P(w)
~7/T
A2
where P(w) = T—-—R—Tz = |§(w)l2 is the approximate speactrum,
(H {w)
P

Note that (B-28) is identical to (5-3) which was derived in a

different manner.
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{b) The zercs of the orthogonal poly.iomials Hp(z) all lie
inside the unit circle (Grenander and Szegd, 1958, p. 40). 1In
other wcrds, the inverse {ilter Hp(z) is minimum-phase and the
all-pole filter §(z) is stable, as we have observed in Section 3.4.

Again, this is true iff the coefficients R, are positive-definite,

O B o I

A equivalent necessary and sufficient condition is given by
(B=-26) . Another equivalent condition is that the minimum total-

squared errnr be positive,

(c) Since the system of orthegonal polynomials Hp(z) is

1 of degree p can pe represented

complete, any polynomial in z~
as a linear summation of the polynomials Ho(z), Hl(z),...,up(z).
In other words, any recursive filter of degree p can be realized
as a linear summation of minimum~phase recursive filters Hn(z)

with degrees <p.
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APPENDIX C

CUMPUTATION OF SIGNAL AND APPROXIMATE SPECTRA

The signal power spectrum in the direct Autocorrelation method

is given by:

N-1 . 5
P(w) = Z 8 e~ InwT (c-1)
n=0

where s(nT) is the windowed signal.
The approximate or linear prediction spectrum P(w) can be

defined for all methods of linear prediction as:

R 2
P(w) =

A
1 P o 12
1 _22 ak e jkw?
=]

where ay 1=k=<p, are the predictor coefficients and A is the gain

factor,

P(w) and §(m) are poth continunus, periodic, real and even

functions of frequency. The periodicity is equal to % = £_, the

s
sampling frequency. Therefore, it is only necessary to compute
the spectra from zero frequency to a frequency of —%. Also, it
is practical to compute the spectral values at only a finite num~

ber of frequencies. One method of doiny this is to use tha dis-

Crete Fourier transform (DFT) {Gold and Rader, 1969, Ch, 6) which
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can be computed efficiently by fast Fourier transform tecnniques
(FFT) (Cochran, et al., 1967). Computation times for the FFT can
be cut approximately into half by using the fact that the signal
s(nT) is real (see, for example, Makhoul, 1970b, Appendix B).,
Therefore, P(w) is computed at discrete frequency intervals by
taking the magnitude squared of the FFT of the signal s(nT).

g(m) can be computed by dividing A2 by the magnitude squared of
the FFT of the seocuence: 1, S81¢ 850 eeny ~ap. Arbitrary reso-
lution in the frequercy domain can be obtained by simply append-
ing an appropriate number of zeros to the sequence whose FF7T is
to be tzken, If the number of zeros is large compared to the
length of the original sequence (as is normally the case in com-
puting §(w), where the number of frequency values desired is

much larger than ¢!, the FFT algorithm can be pruned (Markel,
1971) resulting in a saving in computation., (Markel's algorithm
is based on a radix-2 FFT. We have implemented a radix~-8 pruned
FFT which saves time only if the number of points in the FFT is
at least & times tha length of the original sequence. For exam-
ple, we have realized a saving of 32% over the regular radix-8

algorithm by computing a 256-point pruned FFT with p = 15.)

A more direct method of computing ﬁ(w) is obtained by noting

that (C-2) can be rewritten as follows:
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p . 2
Plw) = a2/ Z ay e Tkl
=
2 g ) (1=k) 7
o j (i=k) wT}
A E: ai ai e J
k=0i=0
a A2
and P(w) = I} (C-3)
bo + 2é§ bk cos {(kwT)
=)
1, k=0 ,
where ai = {C-4)
-8, ., otherwise ,
¥
\
p=~k
and b, = 20 al al ., k=0, 1,...,p. (C-5)
n:

The coefficients bk are just the autocorrelation coefficients cor-
responding to the inverse filter H(z) = l-éilakz-k.

These coefficients need be computed only once for use in (C-3).
If for every frequency of interest we know cos(wT), then cos(kwT)

can be computed recursively as follows:
cos[(k+1l)wT] = 2 cos(uwT) cos(kwT) -« cos[{k-1l)wT],

Another way of looking at this is to note that if cos(wT) = x,
then cos (kuT) = Tk(x), the Chebyshev poliynomials. These polyno-

mials obey the recurrence relation:
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Typq (%) = 2x Ty (x) = Tk-l‘X)'

with To(x) = 1, Therefore, given 2x, Tk+l(x) can be computed by
a single multiplication and subtraction., If we define a single
computation as equal to a multiplication and an addition (or
subtraction), then if we desire s(w) at M values of frequency,

the total number of computations C needed is equal to:

Cq = g (p+3) + 2pM . (Direct Method)
This is to be compared with

Ce = 2M(log2M+1) (Simple FFT)

for the base-2 regular FFT, For p = 14 and M = 128, Cd/Cf = 1,9.
Cd can be cut approximately in half if each cos{(kwT) is alreaily
stored. However, we know that there exist algorithms which cut
Cf by at least half. So, on the whole, the FFT is approximately
twice as fast as the direct method. But, the efficient FFT zl-
gorithms compute the transform at M equidistant frequency points,
where M is a power of 2. These restrictions do not apply to the
direct method. If one is interest2d in computing s(w) along a
nonlinear scale of frequencies, the direct method may prove to

be more efficient.
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This is a list of most of the symbels used in this report
along with the page number where that symbol is first used or

defined.

Linear predictor coefficient

Gain factor of linear prediction transfer
function 8(2)

Minimum-phase sequence corresponding to s(nT)
Bandwidth of formant n

z-transform of b(nT)

Cepstrum of s(nT)

Cepstrum of s (nT)

Complex cepstrum of §(nT)

Differencing operator

z-transform of differencing operator
Linear prediction error sequence
Total-squared error

Inverse of window width t'

Sampling frequency

Fundamental frequency

Frequency of formant n

z-tx: nsform of linear prediction inverse filterxr
Order of linear predictor

Signal spectrum

Linear prediction cr approximate spectrum
Ooff-axis spectrum

Error power spactrum

Time-varying power spectrum
Two~dimensional signal spectrum

Two~dimensional spectrum of error signal
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nk,“iz(k'r)
R(t,t+1)
S

s_,s(nT)

o3

s'!,s'(nT)

l\no\
sn,s(nT)

S(z)

S(z) ,§p(z)

§n,§(nT)
T

nmin

wn,w{nT)
w(t)
W(f)

$

F(m.ﬂ)

Normalized autocorrelation of signal
Autocorrelation of signal
Autocorrelation of differenced signal
Autocorrelation of impulse response of S (z)
Apparent autocorrelation function
Nonstaticnary autocorrelation function
Laplace operator

Signal to be analyzed

First difference of s(nT)

Inmpulse response of S(2)

z-transform of s (nT)

Transfer function of discrete p-pole linear
prediction speech production model

Linear prediction approximation to s(nT)
Sampling interval
Toeplitz form

Impulse function
Step function

Bolt Beranek and Newman Inc.

40
34
135
44
65
76
16

130
44
17

17
30

3
71

78
177

Excitation sequence for speech production model 17

z-transform of u(nT)

Ratio of spectral geometric mean to arithmetic

mean

Lower bound on V

Vp for p==

Normalized error

Discrete window function
Continuous window function
Fourier transform of w(t)

Complex variable of sampled-data frequency
domain

Kronecker delta

Alternate two-dimensional spectrum

17

115
116
104

40

65
173
173

16

76
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Damping factor (real part of g)

(1) Time lag for autocorrelation

(2) Pitch period

Window width

Effective window width

Covariance coefficient

Polynomials orthogonal on the unit circle
Radian frequency {(imaginary part of s)
Radian sampling frequency

Radian frequency in 2D-spectrum

Radian frequency in alternate 2D-spectrum
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16
75
141
177
184

216
16
71
79
77
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