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I. INTRODUCTION AND BACKGROUND

The purpose of this thesis is to discuss somne.mathemat-

ical models of land combat that can be used to gain insight

into tactics in a riverine ambush.

Lanchester-type models of combat and the theory of -

stochastic duels are used to determine the ambush outcomes

at each stage in terms of the casualties sustained by the

opposing forces. TIhese models are used to estimate the con-

sequences of different tactics for both. the ambusher and

ambushee. For each combination of tactics of the ambusher

and ambushee, an entry for the payoff matrix of a general,

two-person game is generated. This game is then solved to

determine the optimal tactic for each side.

In a land aieush, because of the surprise element in

the ambush and bbcause of the favorable terrain for the

ambushers, defensive cover is initially minimal. As the

engagement progresses, the ambushee seeks whatever cover•

is available and gradually improves his situation. -The

attachers, on the other hand, have a relative secure posi-

tion that remains constant until the contest ends or until

they choose to break off the engagement. The ambushees

generally enter the contest by ongaging in area fire, be-

cause of their lack of preparation for the immediate con-

flict. However as the battle unfolds, the defense maneuvers,

attempts to locate the attackers, rushes the opponent's posi-

tion if possible, and gradually switches from area fire to

4



aimed fire. The ambushers, on the other hand, engage in

aimed fire throughout, although its net quality deterio-

rates with time (Ref. 1].

In a riverine ambush, the situation is somewhat differ-

ent. First of all, due to the boat's superstructure, the

ambushee does not need to seek cover elsewhere. He can

stay right in his position and fire back at the ambushers.

Secondly, since the ambushers have to choose the point of

ambush close to the river, consequently they make themselves

easy to be identified by the ambushees staying on the river,

therefore the latter can enter the contest by engaging in

aimed fire almost immediately from the start. Thirdly, due

to the boat's maneuverability, the attackers do not enjoy

the advantage of using aimed fire as effectively as in the

case of a land ambush.

Nevertheless, in both types of ambushes, one is expected

to get involved with the same basic factors of major impor-

tance which are so closely related to the general principles

of guerrilla warfare that it is found necessary first to

present some of these military thoughts before attempting to

formulate the main problem. Needless to say, it is these

principles that based upon them the commanders of both sides

make their logical decisions at each stage of the fighting.

A. BASIC GUERRILLA TACTICS

Besides the political essence which is the vital char-

acteristic of any guerrilla movement, the basic guerrilla

5



tactics are expressed operationally in the Communist's

habitual refusal to accept combat unless vistory is certain.

For the guerrilla fighters, one of the two insuring factors

in the effort to try to be a winner in any engagement is

accurate intelligence of both the enemy and the terrain.

The second fajtor is the ability to concentrate secretly

and vastly superior forces at the point of contact so that

enemy units would be annihilated "one by one".

It is well remembered that, centuries ago, Sun Tzu al-

ready wrote: "Now war is based on deception. Move when it

is advantageous, and create changes in the situation by

dispersal and concentration of forces" (Ref. 2].

Today, Red China's ten principles are again the simple

rules derived from the same basic thought but so effectively

applied by the Communist Vietnam in its effort to try to

take over the South that it is found worth-while to mention

in this discussion some of them, especially the ones closely

related to a riverine ambush.

First among the ten principles of the Chinese Reds is

"...strike at scattered and isolated enemies, and later

strike at the powerful enemies." Foremost in consistency

and c1ronology was the North Vietnam's application of this

axiom, which might be called the tactics of digestion with-

out indigestion, a principle which was proportionate to the

means at hand. The North Vietnam instructs the local Viet-

cong to attack the outposts, the patrolling boats before

they try to attack the main bases.

6



The North Vietnam's forces also try to apply the fourth

principle: "In every battle, concentrate absolutely superior

forces.."' This they usually do almost in every engagement,

either small or big. An ambushed boat is also the subject

of this axiom.

Consistently choosing its own conditions of battle, the

North Vietnam adheres to the fifth principle: "Fight no un-

prepared engagements. Fight no engagements in which there

is no assurance of victory." If they ambush a boat, they

often choose to ambush from the right place and at the right

time such as at the bends of the rivers and when the tide

is low.

The North Vietnam's warriors are alao subjected to the

sixth principle which is "fear no sacrifice, fatigue" and

to the seventh principle: "Strive to destroy the enemy while

he is in-movement" [Ref. 31.

B. COUNTER GUERRILLA TACTICS

Before entering into the discussion of the mechanics of

killing the Communist Guerrillas, it is found necessary to

mention is passing that, here again the political aspects

such as follows are sine qua non:

1. Win the people. The bulk of this fight for the

minds and hearts of the people must be a political fight,

a fight waged by all means of the propaganda machine and

most important of all, by the super examples of the true

leaders from the highest levels to the lowest levels with

7



over-all emphasis on the high levels since only great

leaders can produce great subordinates and not vice versa.

Then the mechanics are:

2. Indoctrinate thoroughly the troops in the technique

of political warfare and they must be familiar with their

part in the war. The best potential counter-guerrilla force

in any part of a country is a force from that part of that

country.

Strange as it may be, tactics have always taken a rather

back place to political, psychological, and intelligence

factors in guerrilla wars that have been won [Ref. 41.

Military field tactics used against guerrillas are not

unusual in any way. They are somewhat similar to the con-

*I ventional operations with some variations.

Besides the all-out importance of the general theory of
counter-guerrilla war such as to destroy the enemy lines of

external support and to destroy the enemy's mobility, suc-

cessful operations against guerrillas in small unit opera-

tions will often be the result of successful patrols and

form an essential element of counter-insurgent warfare.

Routine patrolling seldom produces positive results.

Because of the terrain, vegetation, and enemy tactics,

modifications of normal techniques may be necessary. Patrol

need to be all purpose: prepared to fight, ambush, pursue,

and reconnoiter [Ref. 51. These activities are applied to

the infantry troops as well as to the riverine patrolling

*18
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crafts. However, for a patrol boat, it is more likely that

she is subject to the ambushes than to anything else, there-

fore she should be well prepared in advance for such things

as course, speed, special equipment, action if ambushed and

method of attack.
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II. FORMULATION OF THE PROBLEM

A. SCENARIO

Two homogeneous forces, a Blue .force and a Red force

were engaged in combat.

The Blue force was a patrol boat with many missions to

carry, one of which was to patrol along an assigned river.

This patrol had the purpose of trying to discourage the

Red force's attempt to move men and supplies from the sanc-

tuary areas, along or across the river, into the areas of

operations. Another purpose of this kind of patrol was to A

protect the Blue force's supply and operations route either

from the sea to the inland bases or between the inland bases

themselves.

The Red force was the ambushing force whose purpose was

to harass the Blue force's patrolling mission by trying to

inflict to it as many casualties as possible.

The river in question was an imitation of the CUA-LON

and BO-DE rivers in the NAM-CAN region in the southermost

part of South Vietnam (Fig. 1). The river therefore was

about three hundreds meters wide in the average. This

meant that if the boat sailed close to one side of the

river, she would be relatively safe from the ambushers

rockets fired from the other side of the river although she

was still well within the effective range of the rockets.

The river was deep and navigable at all times even when the

tide was low. It also had relative steep banks all along

it even at tha many bends where it changed directions

10
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sharply. These two factors suggested that the patrol boat

could always sail close enough to either side of the river

if she chose to do so.

According to past experiences that took place in the

joint U.S.-VIENAMESE operations SEAFLOAT and SOLID ANCHOR

during the years 1968-1970 in the NAM-CAN region, the Red

force usually chose to set up the ambush at the bends of

the river. There were several reasons which supported this

decision.

First of all, at the bends of the river, since the cur-

rent was relatively stronger than at the other places, the

boat'- maneuverability was greatly limited, therefore the

boat'6 overall command to direct the counter-attack would

become less effective.

Secondly, if the ambushers chose to ambush from the

outside of the bend, they would enjoy the boat's minimum,

return fire power since right after the first firings, the

boat would have to turn, hence to face her stern to the

ambushers. It was logically assumed that onboard the boat,

the guns were mostly distributed along her port and her

star-board side.

Thirdly, at the bends of the river, the area was much

broader in the outside than in the inside, consequently

when the ambushers needed to disperse their force and ran

away they would find the pursuing fire much less devastating.

Fourthly, since at the bends of the river, there usually

were some small canals near-by, the ambushers would be able

12
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to hide or to evade rather quickly and safely once they

wanted to break contact with the boat.

B. GENERAL FORMULATION

The problem is divided in two main parts.

The first part consists of finding the optimal strategy

before the ambush for the two players, namely player A or

the Blue force and player B or the Red force.
The second part consists of finding the optimal strategy

after the initial ambush for the same two players, namely,

the patrol boat and the ambushers, assuming that both sides

had used a certain set of pure strategies before the ambush.

However, since the Red force has only two obvious strategies,

i.e., either engage the enemy or break contact, this part

deals mainly with the Blue force's strategies.

In all these two parts as wel.l as in any military con-

flict between two opponents, the outcome or payoff depends

on their decisions. Furthermore, a player does not know his

opponent's strategy when he makes a decision. Therefore,

each player must evaluate his opponent's capabilities, which

in turn depend on the opponent's evaluation of the first

side's capabilities, and these evaluations must be based on

such essential elements as intelligence, fire power, survival

probabilities and so on.

In a military conflict, the participants have opposing

objectives - e.g., an attacker wishes to maximize the damage

done to a defender's targets, while the defender wishes to

minimize these same damage (Ref. 61.

13



Several. game-theoretic models are used to gain insight

into optimal tactics for both sides in a pre-formulated

scenario.

Several different modelling metho&9logies are used to

generate the payoff matrix entries in these qames. In the

first instance, deterministic Lanchester-type equations of

warfare are used to determine the consequences of various

alternative tactics for both sides. Othe;>modelling meth-

odologies using probabilistic approachep such as stochastic

models are also used for the same purpose. Then a solution

to the game would give instructions to each participant how

be-,t to choose from his available alternatives in order to4

best attain his objective.

Now, there are many ways to define and measure the com-

bat .;ffectiveness applied to the outcomeor payoff of a

military conflict.

According to Philip Hayward [Ref. 7], the only way uf

"measurifig" the effectiveness of an organization, cf what-

ever kind, is through the analysis of data on its perfor-

mance under actual operating conditions. To obtain meaning-

ful results from such analyses is often a difficult task,

it is particularly difficult for an army combat unit, for

the simple reason that the organization performs the tasks

for which it was created only at rare intervals. If one

wishes to measure or, more precisely, estimate P(S), the

probability o! success in combat operations, for a particu-

lar combat unit,.enemy, environment, and mission, one must

14



find a number of cases filling the requirements and compute

the frequency of success. Since historical records of com-

bat are rarely compiled with this end of view, the research

effort involved would be of formidable magnitude, particu-

larly since the task would have to be repeated for each

different situation. Furthermore, the results would apply

only to combat units of the past, the effectiveness of new

and untried organizations would remain unknown.

For these reasons, the problem of greater practical

interest is the extent to which one can "predict" combat

effectiveness on the basis of the empirical data, theory,

and expert judgment available at the time.

Moreover, the most common measure of effectiveness ap-

plied to the outcome of a military engagement in guerrilla

and counter-guerrilla operations has been the casualty

ratio. A military commander today is presumed to be jus-

tified in sustaining heavy casualties to his own-force if

proportionately larger casualties are inflicted on the

enemy, while a commander who suffers losses without in-

flicting greater harm on the adversary is judged a poor

commander, regardless of the relative importance of the

engagements in the overall conflict.

Since the purpose of this study is to provide military

commanders with a realistic planning model, the casualty

ratio will be accepted as a measure of effectiveness so

that an optimum strategy can be chosen among the reasonable

and available strategies without further justification.

S.. •• . , • , . l -_ i _ • 15i i ~



Consequently, an optimal strategy for a player is defined

as the strategy that gives the player the highest casualty

ratio which is the ratio between the casualties suffered

by his enemy and the casualties suffered by his own force.

16



III. BEFORE THE AMBUSH

A. A GAME OF STRATEGY

Before the ambush, the patrol boat's Captain can influ-

ence the outcome of the ambush by his behavior and he is

interested in the outcome of the situation. The Commander

of the ambushing forces can also influence the outcome by

his behavior and he too is interested in the outcome of the

situation. Thus the two players in this game would have to

try to collect all available informations as accurate as

possible about the terrain, about his own forces' capabil-

ities as well as about all their possible courses of action.

The set of players is I ={ Boat, Ambushers }

1. Strategies

Considering past combat experiences and all the in-

formations mentioned above, it is assumed that each player

has a finite number of strategies as follows (Fig. 2h:

Aboat denotes the set of stategies of the patrol boat's

Captain

Aboat boa~0 t' Ab oat' ba~0 t)

where:

Aboat Sail the boat in the middle of the river

goat - Sail the boat close to the outside of the bend

of the river

•oat " Sail the boat close to the inside of the bend

of the river

17



Aambush denotes the set of strategies of the Commander

of the ambushing forces
Aamus "{ AUs
ambush ambush' Aambush

where:

A' - ambush from the outside of the bend of thei Aambush

river

A2mu ambush from the inside of the bend of theambush

river

2. Elementary Outcomes

For this game, the following outcomes are mutually

exclusive:

el E the boat gets hit and the ambushers survive

Se2 B the boat gets hit and the ambushers are destroyed

e - the boat is intact and the ambushers survive

e. the boat is intact and the ambushers are destroyed

Note that the above outcomes are considered to be

extremely general. One does not consider the special cases

such as the payoffs of each side due to each player's re-

spective strategies at each stage of the game after the

ambush. Nor does one consider the strength as well as the

fire-power of each side which may result in just one out-

come, e.g., one side may be wiped out in just a few seconds

after the ambush is started as one may see in the later

parts of this study.

3. Outcome Functions

Let the probability of the outcomes ei be Pi where

1, , 2, 3, 4, one has the set of all mixed outcomes p:

18
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Aambush

4-

Figure 2. The Players' Strategies.
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P (PI, PI, P3 PO

Based on the author's past combat experience and

judgments, the probabilities of the following individual

outcomes resulted frcm all possible combinations of courses

of action of eac.i player are assigned as follows:

a. Sail the boat in the middle of the river

(1) Get ambushed from the outside of the bend of

the river

Probability (boat gets hit) 0.8

Probability (ambushers survive) = 0.8

(2) Get ambushed from the inside of the bend of

the river

Probability (boat gets hit) = 0.8

Probability (ambushers survive) = 0.4

b. Sail the boat close to the outside of the bend of

the river

(1) Get ambushed from the outside of the bend of

the river

Probability (boat gets hit) - 0.9

Probability (aanbushers survive) = 0.7

(2) Get ambushed from the inside of the bend of

the river

Probability (boat gets hit) - 0.1

Probability (ambushers survive) = 0.4

c. Sail the boat close to the inside of the bend of

the river

20



(1) Get ambushed from the outside of the bend of

the river

Probability (boat gets hit) 0.1

Probability (ambushers survive) =0.9

(2) Get ambushed from the inside of the bend of

the river

Probability (boat gets hit) 0.9

Probability (ambushers survive) 0.3

Therefore, one can get the following probabilities table for

the outcome functions p

Aboat Aambush P1  P 2  P 3 P4

A' Am 0.64 0.16 0.16 0.04Aboat ambush

•Ak~oat A2.bush 0.32 0.48 0.08 0.12

A't Al 0.63 0.27 0.07 0.03• Aboat Aambush

Aboat 2 0.05 0.05 0.45 0.45

oat ambush
A3 Al~ 0.09 0.1 0.81 0.09

_oat A 0.27 0.63 0.03 0.07

4. Preference Relations and Utility Functions

A player's subjective probabilities are numerical

representations of his beliefs and information. His

utilities are numerical representations of his tastes and

preferences [Ref. 8].

Now, as a matter of fact, the patrol boat'S Captain

would like his boat not to get hit and whether getting hit

or not, he would like to wipe out the ambushing enemy.

21



Furthermore., since he. still has other missions to carry be-

sides his main mission of patrolling along the river, he

would consider the fact that his boat gets hit and his

enemy destroyed as equal preference to the fact that his

boat is intact and his enemy can survive.

As for the ambushers, it is natural that they would

prefer above all to hit the boat and to survive. Further-

more, since they are limited in numbers and their main mis-

sion is to harass the enemy as often as possible, they would

prefer to survive after the ambush even at the price of not

hitting the boat.

These feelings, expressed by the two players, define

the following preference relations and utility functions:

The patrol boat's Captain

Preference relations: ex < eg e~ < e4

Utility functions: 0 5 5 10

The ambushers

Preference relations: ek < e2 < e3 < el

Utility functions: 0 1 6 10

s. ayoff Functions

The outcome functions and the utility functions de-

termine the following payoff functions table for all pos-

sible sets of pure strategies.

The payoff functinns are obtained from the general

formula

Hi (a&, al, ... , an) -ui (p(a 1 , a,, so*#

22
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where is. the utility function

p(a 1 , a2, ... , an) r is outcome function

a = (a,, a., *a*# an) is pure strategy vector

One can notice here that if:

(sl, S2 ... , sn) is mixed strategy vector

then the outcome function for mixed strategy vector is

p(s, s1 ... , sn) p(a1, a2 , ... , an)ia at,a I * an

, ~st(a,) ... sn(an•!:n nn)

and the payoff function for mixed strategy vector is

Si*• ui [p(sl, S2 , ... ,Sn)

ui[p(al, a 2 , ... , an)]
A a1 ,a21.* .a

s 1 (al)... sn(an)

= Hi(a 1 , ... , an)si(al)...sn(an)
al ,**. an

It can be seen from the payoff function table that

there is no optimal pure strategy for either of the two

players. This is in fact a non cooperative two-person non-

zero sum game.

Aboat Aambush Hboat Hambush

1 1 0.80+0.80+0.40 = 2.00 6.40+0.16+0.96 = 7.52

1 2 2.40+0.40+1.20 = 3.00 3.20+0.48+0.48 = 4.16

2 1 1.35+0.35+0.30 = 2.00 6.30+0.27+0.42 = 6.99

2 2 0.25+2.25+4.50 = 7.00 0.50+0.05+2.70 = 3.25

3 1 0.05+4.05+0.90 - 5.00 0.90+0.01+4.86 - 5.77

3 2 3.15+0.15+0.70 = 4.00 2.70+0.63+0.18 = 3.51

23



6. Conclusion

Thus the game looks as follows:

G ={ 1, C, Ai, Hi

where I ={ Boat, Ambushers I C
Aoa { P]t2
boat Abot' at' boat

A{ A'ms A2 Az
aambush ambush

and the Hi are as specified in the payoff function table.

Due to dominance, this game can be described by the

following payoff table:

Red force

2

2 (2, 6.99) (7, 3.25)
Blue force

3 (5, 5.77) (4, 3.51)

Let consider a pair of mixed strategies (x, l-x) and

(y, l-y), i.e., the two players use their second and first

strategy with probability x and y respectively. The ex-

pected payoffs are then

Hblue(xy) = 2xy + 7x(l-y) + 5(l-x)y + 4(l-x)(l-y)

= 4 + 3x + y(l-6x)

Hred (x,y) = 6.99xy + 3.25x(l-y) + 5.77(1-x)y + 3.51

(!-x) (l-y)

- 3.51 + 2.26y + x(O.26 - 0.48y)

From these expressions, when x 1/6, the Blue force

can secure an expected payoff of 4.5 for itself regardless

24



*! u•at the ppoaent does A-e Red force can in the same

S'my, sake its ei•pectc3 •yoft equau to 4.73 by choosing

S13J24.

vote that it the Red force knows that the Blue force

is a i rate pessimist, bound to use a minimax strategy,

it em put this kowledge to profitable use. From the

Rtaw (1/6, y) 3.55 4 2.18y

tLe Mad form will see that by choosing y=l, it can increase

its execlet payoff to 7.73. The Blue force may, however,

arS~v A Ae same way and get higher expected payoff. There-

for i.t may be risky, to depart from the minimax strategy.

Ths. since x 1/6 and y = 13/24 for the minimax

stxzat• , it is assumed that the Blue force would mostly

me its thir& strategy, i.e., sail close to inside of the

bead az that the Red force would use it' first strategy,

i..e., absh from the outside of the bend. Therefore this

set of pure strategies is assumed to be the starting point

for the two forces after the initial ambush.

D. A•IThITIVE SOLUTION: A STATISTICAL DECISION THEORY

P2OBLEM

A more sophisticated approach to the solution of the

abov problem is to model it as a statistical decision

theory problem. In this approach, one would try tb find

how best one could make one's own decision among the avail-

able courses of action according to one's own principle.
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Thus, in this case, one player would become a decision

maker and his opponent's courses of action would be con-

sidered as the states of nature that the decision maker

is goint to encounter.

The decision maker, without knowing the outcome of the

engagement x as well as the state of nature w, must make a

decision the consequences of which will depend on the out-

come of the engagement as well as on the state of nature.

Based on past combat experiences and/or judgments, it is

assumed that there exists a probability distribution Fw(x)

on the space of the states of nature whose value is

specified for each outcome x and that there exists a

utility function u(r) on the set of the rewards r.

In this approach, the patrol boat's Captain will be

treated as the decision maker. Tables 1, 2 and 3 will

summarize all the data necessary for him based on which

he could make various decisions according to his-own

principles which in turn may depend on the different

military situations in which he is taking part.

Now, in this type of decision problem, it has become

standard to specify for each reward r e R the negative of

its utility, rather than its utility, and to call this

number the loss. Hence, for each state of nature w cfl

and each action a c A, the loss t(w,a) is defined by the

equation:

(wa) = - (w,a)
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For any decision d e D, the expected loss or risk p(w,d)

is specified by the equation:

p(wd) I(wa) drw (d(x)=a)

Table 4 and 5 give the loss function and all possible

decisions available for the decision maker, namely, the

patrol boat's Captain. Among all these decisions, only the

decisions which are not inadmissible are admissible. A de-

cision d within a class of decisions D is called inadmis-

sible if there is another decision d' e D such that

k(w, d') Z £(w, d) fcr all w e n

and L(w, d') <.I(w, d) for at least one w c

All admissible decisions functions for the problem of

a riverine ambush are d,, d1  d, d d2 7 and de,.

The principles of choice and the corresponding decision

functions (Figs. 3 and 4):

1. Principle of Insufficient Reason or Laplace

According to this principle, for each d i D, find

the average loss £(d)-l/n 21(wi, d) and d which minimize
im 1

i(d). Therefore the decision that the boat's Captain would

make is decision d., which can be stated as: take action a,

when the desired outcomes are x, and x, and take action a,

when the desired outcomes are x 2 and x4.

2. Minimax Principle or Von Neumann and Morgenstern

Principle

According to this principle, for each d c D, find

sup L(wd)-and then find d° c D which minimizes this max.
wea
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Outcome function Boat's action

a, a 2  a3
a(w,d)=r Sail close to Sail in the Sail close to

the inside of middle of the the outside
the bend river of the bend

wi
Ambushers from
the inside of r4 r 3  r
the bend

w2
Ambushers from
the outside of r2  r 6  r.
the bend

Table 1. Outcome Function.

Outcome of the engagement

Probability X1 x x x
Distribution Boat gets hit Boat gets hit Boat s in- Boat s in-

& ambushers & ambushers tact & am- tact & am-
Fw(X) survive destroyed bushers bushers

survive destroyed

W,
Ambushers
from the in-
side of the 0.1 0.4 0.2 0.3
bend

w
AirbusAers
from the
outside of 0.2 0.2 0.35 0.25
the bend

Table 2. Probability Distribution.
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Result r Utility (u(r)

r• 0.5

r2  0.2

r3  -0.1

r• 4-0.2

r• -0.3

r6 -0.5

Zero utility: status quo

Range of utility = 1.0

Table 3. Unility Function.

Action
Loss function

i(w,a)= a1  a1  a5
-lOu (a (w,a)) +5

w7 6 0

w2 10 8

Table 4. Loss Function.
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The minimax loss v is

v= inf mp £(w, d) = sup I(w, d*)

dcD wc we

Thus the decision the boat's Captain would make if

he follows this principle is decision dminimax = (1/3 d21,

2/3 d 19 ) which can be stated as: One out of three times, use

decision d2, and two out of three times, use decision d1,

which suggests to take action a, when the desired outcomes

are x,, x2 and x4 and to take action a3 when the desired out-

come is x

3. Principle of Minimax Regret or Savage

According to this principle, instead of working with

the loss L(w, a), compute the regret g(w, a) = L(w, a) - inf
aeA

L(w, a), then apply Minimax Principle to (n,A,g).

Thus, if following this principle, the boat's Captain

would take decision d~avage = (4/27 d1,, 23/27 d21 ).

4. Principle of Pessimism-optimism or Hurwicz

According to this principle, choose a number 0<4a(l

such that

asup L(w,d) + (1-0) inf L(w,d) - L (d)
wen wcQ

then find d which minimizes I (d). a is called degree of

pessimism. Thus if a - 0.8, the boat's Captain would make

decision dHurwicz which happens to be dminimax in this case.

If a a 0.2, he would make decision d,1 which suggests to

take action a, all the time.
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5. Bayes Principle

Let P or prior distribution be a probability dis-

tribution. on n then compute the Bayes risk p(p,d)

p(P,d) = EB {t(w,d)} t $(w,d)dP(w)
P

then find d* which minimizes p(P,d). Thus according to this

principle, there are an infinite number of decisions which

depend on the prior distribution and which form a Bayes Risk

functional p*(P). Suppose P = (1/5, 4/5) then this principle

suggests to use decision d, which states that the boat's

Captain should always take action a, (Fig. 4).

6. Conclusion

It can be seen from Fig. 4 that when the prior P

has the value for the probability of w2 greater than 73/127,

it is suggested that the boat's Captain should always take

action as which is to sail his boat close to the outside of

the bend. The reason is that the patrol boat's Captain is

assumed to prefer the outcome of the engagement to be x.

wihich is the situation where the boat is intact and the

ambushers are destroyed.

In any case, for the boat's Captain, only action a2

and as are worth consideration. Under no circumstances

should he take action a, which is to sail his boat in the

middle of the river.
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IV. AFTER THE INITIAL AMBUSH: SOME COMBAT MODELS

A. GENERAL NOTIONS

Military experience has long suggested that the outcome

of an enigagement - as opposed to a war - is dependent on the

interaction between weapon characteristics and the tactics

employed [Ref. 9].

Several different modelling techniques are used to fore-

cast combat outcomes when different tactics are used. -These

techniques combine the weapon system performance with the

tactics. Specifically, this study considers deterministic

and stochastic models applied in insurgent and counter-

insurgent warfare.

Deterministic Lanchester-type models of warfare are

commonly considered to deal with the losses on opposing

sides when large numbers of combatants are involved and

when various assumptions about the loss rates are made.

Although not mathematically correct, solutions of the de-

terministic equations are frequently interpreted as expected

numbers of surviving combattants (Ref. 10].

However, Snow (1948) (Ref. 111 indicated that the ex-

pected value solutions imply underlying probability distri-

butions and suggested a stochastic analysis of Lanchester's

equations. Snow and Morse and Kimball [Ref. 12] have

shown that in simple cases at least, the difference-

differential equations applicable to the probabilistic

treatment give a good approximation to the Lanchester's

equations, especially for small t.
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Another interesting approach to the stolastc iBoms is

the theory of stochastic duels which is con ith the

microscopic features of combat such as individual kill prob-

abilities, time between rounds fired, awmition limitatios

cover, concealment, surprise, mobility, and so forth. Iis

is a sharp distinction to Lanchester's theory which aggrejates

all these effects (Ref. 13).

Now, for the patrol boat, after the initial ambush, them

are several available courses of action or tactics to be

employed. In the patrol boat Captain's planning horizon,

these tactics depend on how he judges the general situatio•.

i.e., how he estimates his enemy's strength such as force

size, type of weapons and fire-power. They also depend an

the various mathematical models of combat used to find the

outcome of the fighting.

Thus, depending on different combat situations and dif-

ferent combat models which in turn depend on the- assq.ions

made according to the models themselves and to the tactics

being used, one can have various solutions to the problem

at hand.

B. FIRST SOLUTION: A DYNAMIC COMBAT MODEL

One of the extensions in the development of the Lanchester

theory of combat is a model of dynamic combat which incorpor-

ates the effects of mobility and range-varying attrition rates

on the outcome of an engagement.
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1. l Stte�ies

After tke initial ambush, although the ambushers or

tb. led force ha-e already lost their initial advantage,

tby art•e w xtheless assua.d to go on with the fighting in

thb *opa of inficting more damage to the boat until either

the a=ez of their casualties approaches the order of n

V 3orcent or the boat breaks contact.

As for the anbushees or the Blue force, from their

positicz close to the inside of the bend of the river, the

pat-rol boat's Captain, according to past combat experiences

an/or judgments of the military experts, is assumed to

have three options:

a. Engage the ambushers with small arms by turning

around and keeping the boat close to the inside of the bend

oi the river (course A - Fig. 5) as many times as necessary

until either the enemy breaks contact or the number of his

casualties approaches the order of m percent. It the enemy

breaks contact, then the patrol boat would use artillery

for p ninutes. The number of tube of artillery available

onboard the patrol boat at this moment is g.

b. Engage the anbushers wit1h small arms in a, ex-

cessive way by turning artlad and going straight to land

r;ight in front of the enemy, thus causing the enemy toq

abandon his hiding and break contact (cour•e s - Fig. 5).

The patrol boat then uses rtiillery for p minutes. The

number of tube of artillery available aboard the patrol

boat at this moment is g.
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c. Turn left and try to break contact by going

straight ahead then use artillery for p minutes once out

of the effective firing range of the enemy. The number

of tube of artillery available onboard the patrol boat is

again g.

2. The Model

Bonder has developed the extensions of Lanchester

equations to investigate the effects of mobility and range

dependencies of weapon systems. He has done this by formu-

lating a model which considers mobility and the influence

of range on the attrition-rate coefficients. The attrition

equations of this model are given by:

dx
- = -a(r)y (1)
dt

dy
= -b(r)x (2)

dt

where:

x = number of Blue force survivors at time t

y = number of Red force survivors at time t

a(r) = Red force weapon attrition rates or kill rates

or the rate at which a single y unit destroys

a single x unit

b(r) = Blue force weapon attrition rates or kill rates

or the rate at which a single x unit destroys

a single y unit.

By the chain rule

dx dx dr dx

dt dr dt dr
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where v is .the speed of the Blue force and r is the range

from static Red force to mobile Blue force, equations (1)

and (2) become

dx
v - = -a(r)y (3)

* dr

dy
v - = -b(r)x (4)

dt

when v v(r) and the ratio of attrition rate constant

a(r) = ka g(r)

b(r) = kb g(r)

equations (3) and (4) have the following solution [Ref. 14]

after being transformed into second order differential

equations with initial conditions x(r = rO) =x and

y(r = rO) =Yo

x(r) xO cosh O(r) -f 0ayo sinh O(r) (5)
kb

y(r) yo cosh O(r) - bx sinh O(r) (6)
•ka

where 0(r) \[k g(r)
rO v(r)

Three forms of kill rate were considered by Bonder. They

are:

r
Linear form: a (r) = ka(l - - ) for r <, Re

"for r > Re

r
Quadratic form: aq (r) ka(l - )2

•Re
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Cosine form: a (r) = - [1 + cos (-fl
c 2

Cosine7 Linear
"a Quadratic

Range r Re

When v is constant and has a positive sign if the

Blue force decreases the range between the forces and has

a negative sign if the Blue force increased the range and

when both weapon systems have same effective range Re with

opening range of the engagement R., the solutions to the

equations (5) and (6) with linear attrition-rate coefficient

are:

x(r) xo cosh O(r) + a yo sinh 0(r) (7)
rkb

y(r) Y. cosh O(r) + xO sinh 0(r) (8)

where 0(r) -- k--- (Re - r)' - (Re - Ro1•]
2v

With quadratic and cosine attrition rate coefficient,

equations (7) and (8) still valid but the 0(r) become

respectively:
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a b

0(r) = - (Re - r)3 - (Re - RO) 3 ]
3vRe2

kakb Re\Iiak fit
0(r) - (RO - r) + ek [sin(!)-sin-

2v 2wv e

3. The Assumptions

The above Lanchester-type equations and the riverine

fighting after the initial ambush are based upon the follow-

ing assumptions:

a. Two opposing forces are engaged in a fight.

Units on each side are identical but the rate of attrition

caused to the opponent may be different for each force.

b. When no artillery is used and when neither side

tries to break contact, each unit on either side is within

effective weapon range of all units of the other side.

c. Each unit is informed about the location of the

remaining opposing units so that when a target is destroyed,

fire may be immediately shifted to a new target.

d. Fire is uniformly distributed over remaining

units.

e. If the Blue force decides to turn around fol-

lowing course A or B (Fig. 5), it would choose to turn

around at the range between forces and it would turn right

away with no time lost.

f. The fight begins right after the initial ambush

and this starting time also coincides with the moment when

the Blue force starts to return fire.
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g. The range between the two forces increases or

decreases uniformly, i.e., the Blue force would increase or

decrease its speed following the courses A ,jr B or C in

such a way that the relative speed of the Blue force with

respect to the Red force is always constant.

h. The attrition rate coefficients of both forces

have a linear form when the Blue force follows either

course A or B or C.

i. When the Red force breaks contact, due to the

terrain conditions onshore, the Blue force has to use the

artillery while the Red force cannot return fire anymore.

J. When the Red force breaks contact, its force

would be dispersed right away, therefore causing the Blue

force to use area fire with its artillery. The Blue force

artillery attrition rates become time dependent and vary

exponentially with negative time while the Red force weapon

attrition rates become zero. Thus, the Lanchester-type

equations become in this case:

dx
- a 0 (8)
dt

dy
- -b(t)xy -k~e'txy (9)dt

Therefore x = xo

where xo is a constant and equal to the number oi tubes of

artillery of the Blue force at the time the Red force breaks

contact.
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Figure 5. The Strategies After the Am~bush.
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Equation (9) becomes

y (t) dy t
S - = -kb xO I e-t dt

y 0

or log y(t) =log yo + k' xo (et - 1)

Finally: y(t) = yo ekb xo (et - 1)

in which Yo = initial number of survivors of the Red

force at the time it breaks contact

and = Blue force artillery attrition rate at

"the time the Red force breaks contact

k. When the Blue force breaks contact by following

course C, it would increase its speed up to 1.5 v.

4. The Input Data

a. The Attrition Rates

As analysis of the model proceeds, it is deter-

mined that the values given in the literature for attrition

rates are too high. A battle fought with either side having

an attrition rate of 0.04 as used by Schaffer would be over

in a couple of seconds. Further investigation of Schaffer's

value reveals that he has used a small target approximation

with a value of 0.1 ft 2 for the exposed area of a rifleman.

This is an extremely small value and could not be justified

by any analysis. An attempt is made to use Barfoot's har-

monic mean (Ref. 15] of the Lanchester attrition rate

coefficient:
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E [T]

where T is time to destroy target

(ta-h+tf (tm-tf) 1-P(hlh)BIT) t t+tl+th+------+ [ .. + P(hlh)-p]

P(KJH) P(him) P(KjH)

whetre (Ref. 163

ta time to acquire target

t, = time to fire first round after target acquired

S- time to fire a round after sensing hit on previous

round

tm - time to fire a round after sensing miss on previous

round

tf -time of flight of projectile

P(KIH) - probability of kill given a hit

A special case assumes that:

(1) target acquisition time negligible t* 0

(2) tlith=tmetul/v where v a rate of fire

(3) independent rounds P(hjm)-P(hih-p-single

shot hit probability then

ka - v P(KIHI)p

a

a - length of target in one dimensional space

-ri variance of impact point

Suppose that a - 0.5 ft, a = 9 ft, v 1 10 rounds/

minute, P(KIH) = 0.25 then p- 0.02 and ka - (10)(0.25) (0.02)

- 0.05 therefore, the values are still unrealistic.
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In order to get around this problem, values of
2.10-5 and 2.10-6 are chosen for Blue force attrition rates

coefficient for small arms (bk) and the value of 0.02 is

chosen for Blue force attrition rates coefficient for

artillery.

b. The Casualties

Although H. K. Weiss (1953) has noted that one

of the deficiencies in the original Lanchester theory is

that engagements that continue until one side is wiped out

are rare and retreat begins when the number of casualties

approaches the order of 10%, in this problem of a riverine

ambush, according to combat experiences in Vietnam, it is

assumed that the Red force would break contact when n = 20%

and the Blue force would break contact when m = 25%. Further-

more when the Blue force breaks contact, it would run away for

good without using any artillery.

c. The Artillery

It was assumed that the patrol boat had g = 4

tubes of artillery with the effective range of 2000 meters.

They are assumed to be intact through-out the fighting and

to be used for a period of p - 20 minutes.

d. The Speed

v - 7 knots 3.5 meters/second

5. The Output Data

Numerical results for the model are obtained from

the three computer program written in FORTRAN IV language;

this program is shown on pages 67, 68, 69, 70. These
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programs give the Blue and Red force strengths for every ten

meters of either increasing or decreasing force separation

when both forces use small arms. They also give the Red

force strength when Red force breaks contact or when Blue

force starts to use artillery. The casualty ratios between

Red force and Blue force were obtained from these terminal

force strengths.

Eight different cases are considered.. The results

are summarized in Table 6.

6. Discussion of Results

Table 6 shows the effects of attrition rate coeffi-

cients, initial force strengths and the strategy used on the

outcome of the engagement, namely, the casualty ratios be-

tween the Red force and the Blue force.

Within this model, it appears that the third strategy

offers the best solution to the patrol boat's Captain. How-

ever, when the attrition rates have the values around 10-

which are relatively high, there is not much difference be-

tween the outcomes in all three strategies. Therefore, it

would be better for the boat to use the second strategy

since in this strategy, the effects of psychology were not

considered. These effects were accomplished when the am-

bushers suddenly saw something big and made with steel

coming right in front of them, firing at them of such volume

and accuracy that they would rather seek cover by running

away than continue to firo their weapons.
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When the attrition rates have the values around 106

which are normal then there is a difference between the three

strategies. Although in this case the third strategy is

again the optimum strategy, the second strategy is neverthe-

less worth-while to be seriously considered. There are three

reasons for this consideration. First of all, it would

boast the morale of the boat's crew as well as the morale of

the unit to which the patrol boat belongs. Secondly, the

casualty ratios are higher than the ones in the first strategy

and thirdly, as mentioned above, the effects of psychology

and suppression are no less important.

The Blue force would try to break contact in all

strategies when case V is the current situation. However,

since all three casualty ratios have the same value which

is in favor of the Red force, the second strategy seems again

to be the best solution to the patrol boat if the three above

considerations are taken into account.

C. SECOND SOLUTION: A STOCHASTIC MODEL

4 In the probabilistic development of the Lanchester theory,

some of the desired results are the following:

1. the probability of m, n survivors at time t

2. the probability that one side wins

3. the expected number of survivors

However, when the original force strengths M and N are

of any realistic size, the solutions become too complicated

I to be of direct practical use [Ref. 10]. Therefore, this
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model can be applied to the problem of a riweriso a

when both sides, the red force and the Riue force. ww

artillery or rockets with the a tia that Ube& eitber

side can score a direct hit, it would put out of ctica x

per cent of his opponent force.

* 1. The Strategies

After the initial aubush, if the ausk er M the

Red force continue to use artillery to attack the patio!

boat, and if the patrol boat's Ca*tain judges that it wm~d

be better for his side to counter-attack with his atriUmz-.

then he is usually assuned to have two opticoz:

a. Slow down the boat and try to stay in me am

so that the counter-attack can be laundieG- with greatest

accuracy. This return-fire would go cc for a plamaing

horizon of t minutes.

b. Turn left and try to break contact by goin f-ll

straight ahead and at the same tine, use artillery to fire

on enemy position until both sides are out of their wea~cm

systems effective range. In this =ase, due to terrain can-

ditions and also due to types of weapon systems, it is

assumed that the attrition rates do not vary with range a4

that they are small compared with the cries in tlie first

S~strategy.

2. The M)odel

The basic assumptions for stochastic combat formul-

ations are:
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a. The attritioa process is Markov. The )Sarkov

pxc9rty assms that., fr= any instant of time, the be-

havior of the system depeas on the state of the system

at that inst-ant and not on the p'.evous history of the

h. The -o•cess possessr/.i a stationary transition

=Kianisa. A stationary transition echanism assues that

events which occur in a given time interval depend only on

the stat* of the system at the beginning of the interval,

aad on tbe length of the interval - not on the instant at

which the tim int•rval begins.

c. During interval of length At, the probability

of both forces simultaneously losing a unit is negligible

and the probability of =re than one loss t-n a side is

aeglig i~le.-

Let

3(m,nt) probability that there are m,n survivors

after a time interval (o,t)

A(Uin) = Blue force weapon attrition rate which

is equal to kan for square-law attrition

process

R(m,n) Red for:c weapon attrition rate which is

equal to kbm for square-law attrition

process

A(mn)-lt= p~robability of one Blue casualty in in-

terval frcm t to t+At
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B(m,n)At = probability of one Red casualty in in-

j terval from t to t+At

j .Based on the above assumptions, the system can

arrive at state (m,n) after the interval (o,t+At) in three

mutually exclusive ways

a. (m,n) survivors at time t, 0 Blue and 0 Red

casualties in At

b. (m+l,n) survivors at time t, 1 Blue and 0 Red

casualties in At

c. (D,n+l) survivors at time t, 0 Blue and 1 Red

"casualties in At

Observe that:

Probability of no casualty on either side during

* interval from t to t+At = [l-A(m,n)At] [l-B(m,n)At]

1 - IA(m,n) + B(m,n)]At + 0((At) 2 )

Hence, by ignoring term 0((At) 2 ):

P(m,nt+At) = P(m,n,t) [l-A(m,n)At - B(m,n) At]

+ P(m+ln,t)A(m+l,n)At

+ P(m, n+l, t)B(m, n+l)At

Taking the limit of

P(m,n,t+At) - P(m,n,t)
likn
At-'O0 At

one obtains the Komogorov forward or pure death equation:

S~dP (m,n ,t}-- -~n~t) P(m+l,n,t)A(m+l,n)+P(m,n+lt)B(m,n+l)

dt

-[A(m,n) +B (mn) ]P(m,n,t)
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With stochastic square-law attrition process, this equation

becomes:

dP(m,n,t)
- = anP(m+l,n,t)+bmP(m,n+l,t)

dt

-(bin+an)P(m,n,t)

To solve this equation for the case m = M-1, n = N:

dP (M-. ,N ,t)
- = aNP(M,N,t)-[b(M-l)+aN]P(M-l,N,t)
dt

with P(M-jI,O) = 0

one may recall that:

dP (M,N, t)
-- - .- (bM+aN)P(M,N,t)
dt.

with P(M,N,0) = 1

hence P(M,N,t) = e- (bM+aN)t

Therefore, by letting p(t) = P(M-l,N,t), one gets:

dp(t)
- + [b(M-1)+aN]p(t) = Ie-(bM+aN)t
dt

Then, by making the left hand side of this differ-

ential equation exact and after integrating, one gets [Ref.

15]:
aNP(M-1,Nt) =- (l-e-bt) e-b(M-l)+aN]t

b

With similar development, for the case m = M-2,

n = N, one case also have
S1 •. bt

P(M-2,N,t) =- -- ) (e b-)2 e-bM+N]t
2 ,
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3. The-Input and Output Data

For a fixed planning horizon of t = 20 minutes, let

the artillery attrition rates when the boat stays in one

place in the first strategy be ten times greater the

artillery attrition rates when the boat tries to break con-

tact in the second strategy.

In order to obtain what could be considered reason-

able and valid results, values of 0.01, 0.02,.0.04 and 0.08

are chosen for the artillery attrition rates when the boat

stays in one place. These values are chosen from several

which have been used in an analysis of the model on the

computer.

To determine which strategy is optimu, it is decided

to use the ratios between the probability P(M-IN,t) and the

probability P(M,N-l,t). The strategy that has lower ratio

is considered as better than the other.

When M=N=4, P(M-l,N,t) represented the probability

that there are 3 groups left in the 4 group bloc of the

Blue force and the 4 group bloc of the Red force remains

intact. Similar representation for P(M,N-I,t). In some

cases where there is a fluctuation of the values of the

probabilities, it is decided to take the value of the ratio

in the last time incremental step.

Table 7 summarizes the input and output data of

the model.
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4. Discussion of Results

Table 7 shows the effects of the artillery attrition

rate coefficients, initial force strengths and the strategy

used on the outcome of the engagement as measured by the

ratio of elements of the probability state vector, namely

P(M-l,Nt)

P(M,N-lt)

Computations were performed with many. different

attrition rates judgmentaly selected. However, in many

cases, the combat outcomes that resulted were quite in-

tuitively inadmissible in that they did not agree with the

author's past combat experiences and judgments.

Within this model, when the attrition rates are

relatively small which have the values around 0.01 (cases

I, II and V), there seems to be no difference between the

available strategies, regardless of the force strengths.

When the attrition rates are around 0.04 (cases

II, IV and VI) if the Red force has higher attrition rates

then it would be better for the Blue force to try to break

contact by choosing the second strategy. If the Red force

has lower attrition rates then the first strategy seems to

become optimum for the Blue force.

D. THIRD SOLUTION: A STOCHASTIC DUEL WITH DISPLACEMENT

In this stochastic duel two contestants A and B begin

with infinite ammunition supplies and fire simultaneously

at intervals (which need not be specified). On each round
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fired each contestent has a fixed probability, p and p.,
PA

of killing his opponent. However, if he misses he may either

miss completely with probability rA and rB or he may have a

"near miss" with probability gA and gB" In this event of a

"near miss" the opponent mnist displace and take up a new

firing position. It is assumed that in making a displace-

ment a contestant loses one firing time. That is, the time

to displace is the same as the time between rcands [Ref. 17].

Thus, it can be seen that this model can be applied to

the problem of a riverine ambush when both sides, the Blue

force and the Red force, form as two separate blocs which

are the two contestants A and B described above. The force

which has greater probability in scoring a hit on its tar-
get is declared the winner. It is also assumed that with

this type of duel, both forces use artillery and that the

Red force cannot score a "near miss" since as it can be

seen in the following strategies, the Blue force is always

in the move whether it gets a miss or a "near miss".

Furthermore, the crew onboard the patrol boat do not have

to displace when the Red force can score a "near miss".

1. The Strategies

The strategies of the Blue force after the initial

ambush in this case are similar to the ones in the second

solution, namely:

a. Slow down the boat and do not try to stay

immobile but try to move in a haphazard way so that its
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probability of being hit would be less although this may

also reduce its fire-power accuracy.

b. Turn left and try to break contact by going

straight ahead at full speed and at the same time use

artillery to fire on enemy position until both sides are

out of their weapon systems effective range. The prob-

abilities do not vary with range and the probabilities

of being hit are small compared with the ones, in the

first strategy.

2. The Model

Let 0 represent the state that a force bloc is in

a firing condition (this means it did not receive a near

miss on the previous round) and let x represent the state

that a force bloc is in a displacement condition and can-

not fire (that means that he received a near miss on the

previous round). State probabilities for the pair A,B

on any given round n may now be represented by the nota-

yion fn(..) where the first position in the argument re-

presents the state of A or the Blue force and the second

of B or Red force. Thus four states for the pair are

possible on any given round, n.

fn(O0) probability that A, B fire on nth round

fn(Ox) = probability that A fires and B does not on

the nthl round

fn(xO) = probability that B fires and A does not on

the nth round

fn(xn) = probability that neither fires on the nth round.
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,.3

The. matrix which gives the transition probabilities

from any state-pair to any other state-pari is

to
from 00 Ox x0 xx

00 rArB gArS gBrA gAgB

Ox rA 0 0

x0 rB 0 g0

xx 1 0 0 I 0

Thus the following difference equations may be written:

fn (0) fn-1(00)rArB+fn_1 (0x)rA+fn_1l(x0)rB+fnl(xx)

fn(Ox) = fn-(00)gArB+fn-i(x)gA

fnX0 =n-1 (00) gBrAf~ x)g

f (xx) = f~~(Oggfn(X = n-(00)gAgB

where PA+rA+ga = PB+rB+gB = 1.

The initial conditions are:

f 0 (00) = 1, f 0 (Ox) = f 0 (xO) f 0 (xx) = 0

The probability that A or Blue force wins is

n~oo n~lP(A)f (00) + pA E fn(Ox)n=oP(A) n A n=o

Ancker, Jr. and Williams [17] by transforming the

recurrence formulas into algebraic relations, gave the

solutions to P(A) as follows:

XA (R - XB)
P (A)=

R(XA+XB-XAXB)

where

PA PA
XA-

A -gA PA+rA
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XB - -g

gB PB+rB

l-gAgB

1-9

Similar formula is obtained for P(B).

In the case of a riverine ambush, B = 0 or R = 1

and =BA=pPB

XA (I-PB)
P(A)=

XA - XAPB+PB

where

PA

x rA

PB (R' -XA)P(B)
R' (pB+XA-PBXA)

where

1

-gA

3. The Input and Output Data

Suppose pA = 0.2 = 0.3

rA = 0.6 rB 0.7

gA = 0.2 gB = 0

then

XA =0.25, XB = 0.3, R, = 1.25

P(A) 0.369 P(B) 0.505
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Thus the Blue force has smaller probability of

winning, therefore it would better use the second strategy,

i.e., try to break contact with the Red force.

4. Discussion of Results

The values of P(A) and P(B) thus obtained depend on

the different values of XA, XB and R which in turn depend
BI

on the values of PA' PB' rA' rB' gA' gB.

P(A) and P(B) can be plotted as contour map in Fig.
6. With any set of values pA' ,B' rAD rB' A whenever , r

P(A) is greater than P(B), for the problem of a riverine

ambush, the first strategy would be the optimum strategy for

the patrol boat.

6
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V. CONCLUSIONS

The initial purpose of this thesis was to try to develop

insight into an optimal strategy for the patrol boat patrol-

ling along a river before being ambushed at a bend of the

river and then an optimal stratgegy for the same patrol boat

after the ambush had been initiated.

For modelling purposes, the actual (real-world) combat

situation was conceptualized as consisting of several parts.

In the first of these, a game-theoretic model and a statisti-

cal decision theory model were used for the problem before

the ambush. It was found that the strategy to sail the boat

close to the inside of the bend of the river seemed to be

the optimum strategy for the Blue force in this stage of the

game.

In the second stage of the game, i.e., after the ambush

had been initated, three mathematical models of combat were

used to try to find an optimal strategy for the patrol boat.

The first model was deterministic. The second and third

models were stochastic. In the stochastic model, the attri-

tion rates were assumed to be constant.

To be able to actually compare the two models, deter-

ministic versus probabilistic, it was necessary to have

time or range-dependent attrition rates in both cases and

to use the same weapons system. For this comparison,

Bonder [Ref. 10] notes that H. Weiss has observed that

there exists very little difference between probabilistic
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flow of the solutica and detarainistic IwMsut2 for fm

involving more than a few doeam MM. Talplar afltf. lot bm

also stated that a detandaifatic attritiom modl &W.* the

expected 'valle of the cozz-s*,ovA=ng s-taoastic attaritieft

model should be in clase agreamat for lazle amobrs of

ca~attntsand sumallI tine.. Otherwise tb.re W~ beUSX

survivoS for G-teruinist~ic =D3e ltbha for StCCUSt.ic
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