ARPA ORDER NO.: 189-1

H
Do / =
Q0 £
G\J Iy r_j." SEF IR
Q0 =
H . Gt
(A = " R-857-ARPA R, oo
= April 1972

\

_. =

User’s Manual for GLYPLIT:
A Program to Translate ILLIAC IV
GLYPNIR to IBM 360 PI

R. E. Hoffman

- A Report prepared for
ADVANCED RESEARCH PROJECTS AGENCY

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

U S Deportment of Commerce
Springfield VA 22151

SANTA MONICA, CA. 90406

Thls document has besm approved
for public release and sxle; its
distribution is unlimited.

ARPA ORDER NO.: 189-1

R-857-ARPA
April 1972

User’s Manual for GLYPLIT:
A Program to Translate ILLIAC IV
GLYPNIR to IBM 360 PL/I

R. E. Hoffman

A Report prepared for
ADVANCED RESEARCH PROJECTS AGENCY

SANTA MONICA, CA. 90406

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

-
-

Bibliographies of Selected Rand Publications

Rand maintains a number of special subject bibliographies containing abstracts of
Rand publications in fields of wide current interest. The following bibliographies are
available upcn request:

Aerodynamics « Arms Control « Civil Defense
Communication Satellites « Communication Systems
Communist China « Computer Simulation « Computing Technolcgy
Lecisionmaking « Game Theory « Maintenance
Middle East « Policv Sciences o Program Budgeting
SIMSCRIPT and Its Applirations « Southeast Asia
Space Technology and Planning « Statistics « Systems Analysis
USSR/East Europe « \Weapon Systems Acquisition
Weather Forecasting and Control

To obtain copies of these bibliographies, and to receive information on how to obtain
copies of individual publications, write to: ~ Publications Department, Rand, 1700
Main Street, Santa Monica. Californiu 99406.

Published by The Rand Corporation

-iii-

PREFACE

Before a new computer is installed, it is common practice to de-
bug its rrograms by simulating the operation of the new machine on an
existing computer. GLYPNIR is a programming language for the ILLIAC IV,
a computer being developed by the University of Illinois and Burroughs
Corporation. To facilitate the debugging of scientific GLYPNIR pro-
grams, a GLYPLIT execution process (GLYPNIR to PL/I translator) was
devised. The present report is a user's manual for GLYPLIT.

This work was sponsored by the Advanced Research Projects Agency
as part of the ARPA/Rand Dynamics of Climate Program, of which a sig-
nificant.element is the use of the ARPA-sponsored ILLIAC IV computer.

_~ This report should be of interest to those facing similar trans-
lation problems or considering the differences between code for an
ILLIAC IV type machine and a serial machine (especially Appendix A),
as well as to users of the GLYPLIT system. The reader is assumed to
have a working knowledge of GLYPNIR and IBM's 360 Job Control Language;

familiarity with PL/I is desirable but not essential.

Preceding page biank

SUMMARY

This report is a user's manual for GLYPLIT: a program to trans-
late the ILLIAC IV higher-level language GLYPNIR [1] to PL/I for the
IBM 360 [2]. GLYPLIT was developed to provide a mechanism for debug-
glug GLYPNIR programs before the ILLIAC IV computer beromes available,
and may still offer a c¢onvenient approach to debugging such programs
after the ILLIAC IV is operational.

Before a new computer is available, a traditional approach to
writing and debugging programs for it is to simulate the new machine
on an existing computer. In doing this, at least two programs are
usually written for the existing computer: an acsembler, which trans-
lates assembly language programs fcr the new computer into the new
machine language; and a simulator, which simulates the new machine's
operaticn in this machine language code. The University of Illinois
took this approach for the ILLIAC IV with the production of the ASK
assembler and SSK simulator for the Burroughs 5500 {(and later the
6500). In addition, they produced a higher-level language called
GLYPNIR, whose compiler produces ILLIAC IV assembly language for input
to the ASK assembler.

Thus potential ILLIAC IV users may write GLYPNIR programs and
have them compiled, assembled, and simulated. Unfortunately, the
process is quite slow. A typical 1000-card GLYPNIR program takes
roughly 2 minutes to compile, 7 minutes to assemble, and, for 3 seconds
of ILLIAC IV time, 10 days to simulate. If the jurpose of a run is
hardware simulation, the user must work within this Illinoi: system;
however, if the purpose of a run is to debug a GLYPNIR program, then
GLYPLIT offers a faster, more economical approach. With GLYPLIT, the
1000-card, 3-second simulation takes roughly 7 minutes to translate
to PL/I, 6 minutes to compile, and 30 minutes to execuve on a 360/65,
a machine comparable to the Buiroughs 6500.

GLYPLIT is itself a PL/I and assembly language program that runs
on any IBM 360 under the full operating system. PL/I statements may
be freely intermixed with the GLYPNIR to be translated, making the
full range of PL/I input/output and debugging features available.

i~

The translator does not accept full GLYPNIR as input, but takes
a subset suitable for much of the "scientific" programming (FORTRAN-
like) expected on the ILLIAC IV. As alluded to above, hardware~oriented
features of GLYPNIR are not translatable, such as the &ability to in-
sert ASK code, the alphameric WAND and WIMP machine ouperations, and the
explicit specification of registers possible for efficiency. The re-
striction to scientific GLYPNIR programs also means that all of GLYPNIR's
list and pointer processing capabilities have been left out. However,
these considerations will not usually interfere with the primary goal
of GLYPLIT: to facilitate the debugging of scientific GLYPNIR.

This report details the restrictions of rthe CLYPNIR subset ac-
cepted, describes user control of the translator and insertion of user-
supplied PL/I, describes the translator output, ani discusses the IBM
360 Job Control Language necessary to run the system. Several appen-
dixes inclua= the structure of the generated PL/I, selected PL/I com-
piler and execution messages, translator messages, and a summary of the

restrictions of the GLYPNIR subset (Appendix F).

-vii-

ACKNOWLEDGMENTS

Although full responsibility for any errors in the translator
program must rest with the author, I wish tc thank Duncan Lawrie at
the University of Illinois (GLYPNIR's inventor) for numerous conveisa=
tions and encouragement. Thanks also go to my Rand colleagues !latt

Clark and, especially, Sam Oman--GLYPLIT's first, patient usel.

ix

Preceding page blank

CONTENTS

PREFACE ® 0 0 006 0 6 060 05 06000000 SN0 sl ® 6 0 0 0 000 0 00 00NN i i i
SUMRY ® 6 70 00 00 00 000G L OO 00 00 TE 00 OO G0 G0 G 0SS IDO OSSOSO DNES v
ACKNOWI‘EDGMENTS 6 0 0060 00 0 06000 0000000 SO OO PSSO NS N CO N OSSO OSSN vii

FIGYJRES © 6 0.0 0000006000000 000000 00 G000 G0 0000006 00000000 I OSSN Xi

Section
1. TINTRODUCTION 4ecevvsevacesococononancsosanannnns .

1.1 Suggestions for Ysing this Manual
1.2 Organization of the Report Ceeeseseranes

2, RESTRICTIONS AND DIFFERENCES OF THE GLYPLIT SUBSET

2.1 IntroduCtion sesereeereeeeceeeoesenssonsasonss
2.1.1 Numbering of Subsections P O

2.2 Coding Procedures and Program Structure

2.2.1 Character Set and Coding Form

2.2.4 Tdentifiers .siveieveverenneeencenennocs

2.2.5 Statementscecescsesecccscncooones
2.2.10 PrOBTAmM +ueevsvrooonsocossacnsascness

3 TILLIAC IV Architecture Versus 360 Architecture

.4 Basic Elements of the Languageeceeeeees

2.4,1 Declarations ..seeesecescesoscenseronns

2.4.4 Partial Word Designatorseeeee.. 000

2.5 Pointers, Fleld Content Designators, and

Dynamic Storage Allocationccenueeesses

2.6 Expressions ceeeas Ceeseasessaeresana

2,6.1 Arithmetic Expressiousc.eoc.. 000000

2.6.2 Alphameric EXpressionsveceeerseces

2.7 Assignment Statements ...usesccecscsocssssoses

2.7.1 Generalvevinsnrvcnncrtooscocnsen

2.8 Control Statements ..ivssesesseesoosoccosvones

2.8.1 LOOP Statementveveeeveovsssoansoss

2.8.2 FOR Statement ..ueseeeseoneooossoossosss

2.8.7 The Debug Statementeeeeeseeceososes

2.9 Subroutines .uieeieieriiirrriiircerttoonscrononns

2.2,1 DesScription .sveesvesrvecnvcorocscnonses

2.9.3 Separately Compiled Subroutines

2.10 System SUDTOULINES sseuvererscecrosoooocoosonons 11

2.10.1 SHIFT and REVOLVE ..ivvevvecvosocsnsons 11

2.10.2 ROULE tievrsvssenanrnssnoscononssvonss 11

2.10.4 ALPHA .0t vinenenennnsncsncnsncansnnsss 12

2.10.5 BOOLEAN ..ivevsennnnnsooorsconsasonores 12
2,10.6
2.10.8

oV ULUESSE & WN

WO 00000000 NNSNSNSNSNNN

Trigonometric, Square Root, Natural
Log, and Exponentiationeceveees 13
2,11 TInput/Output Statements ..eseesevecesescsssoes 13

—x-.

2,12 Explicit Use of Hardware Registers and
Assembly Language cececceesacacacscncersicnnns
2,C Diagnostic MeSSageS . ..seesssseccsaacessscasons
2.D Operation Manualeccveeesseccvvvsscacens

3. PL/I INPUT/OUTPUT AND DIBUGGING FEATURES ..ecovveees
3.1 Introduction .siiieveresscccssosecceosssconscnces
3.2 Mixing of PL/I and GLYPNIR; The %%B Option
3.3 PL/I Input/OutPul seeessosscoosocssssessasosons
3.4 PL/I Debugging Features .eeeesocoseccosssonsess
4, USER CONTROL OPTIONS DURING TRANSLATION .eceecsccees
4,1 JCL PARM Options .ecececeorcsosccccscescascsoscna
4.1.1 {#PES--Number of Processing Elements
4,1.2 GLY--Control of GLYPNIR Output ..eseeeee
4,1,3 PL1--Control of Generated PL/I Output ..
4,1.4 PAGES--Maximum Number of Pages Allowed .
4,1.5 MSGS--Maximum Number of Messages
Allowed ..cvivennsessoscsscsrsnnsssnne
4,1.6 MSG--Minimum Significant Message Level .
4,1.7 LC (Left Column), RC (Right Column), and
CC (Carriage Control)--Source Card
Margin Control ..eeseevvvscessvrasanas
4.1.8 BCRC--Boolean Constant Repeat Count
4.1.9 LINES--Number of Lines per Page of
SYSPRINT Output .cicevescecorcoscscans
4,2 1In-Line Control Optionsecceeceoovcscsosans
4,2,1 ZZC Cards ..vesesscessassccsocssonssnsss
4.2,2 EXTERNAL Declarations .eeeeeescccesscces
4.2.3 DOUBLE Precision Declarations «eeeeeccees
4,2.4 SUBR Declaration .seieececsssoncosssanee
5. JOB CONTROL LANGUAGE .evcevcosococosssscconcscasanses
5.1 GLYPLIT Translation Steép eeceoceccsocccescoccaas
5.2 The PL/I Compile, Link Edit, and Go Step «.c.e.
5.3 Separately Compiled Subroutines «ccceeescececes
6. GLYPLIT OUTPUT .svceocscevsososssescascsssscossonsons
6.1 SYSPRINT Flle ceceevesveeconsanssetsessnsoscsssnns
6.2 PLIN F1le cieveevcossnvscoscososcsssssonsnenansse
Appendix
A, GENERATED PL/I STRUCTURE sceevovcscvsvsoosccsssscanasse
8, SELECTED PL/I COMPTLER AND EXECUTION MESSAGES ¢ceceee
C. GLYPLIT MESSAGES .ccecevevooesrssosccacacosnsscessccans
D. SUMMARY OF JCL PARM OPTIONS c.ceeevessaocccecccacenns
E. SAMPLE JCL LISTINGS s¢sceccecccocsosccsoscasocsascanass
¥, SUMMARY OF IMPORTANT GLYPLIT RESTRICTIONS .cececeososs

REFERENCES to._otlo.tt.octottt00.0.tlOt.ctlto.....c.ttiaoiit

13
13
13

14

14
14
15
17

21
21
21
21
21
22

22
22

22
23

26
27
27
27
28
28

29

29
30
32

34

34
34

37
44
47
55
56
61

63

2.1
2.2
2.3
4.1
4.2
4.3
6.1

-xi-

FIGURES

Main Program and Subroutine Togetherceoecevesces
Main Program seevecseesesssssscsosasssscosnsscnssnscncans
Subroutine sesesessssesssssssssssssocossssssscssasnans
fIPES = 64 +uevevseesansncsosssssssssasssassssanssnsss
fIPES € 64 +vveveressesnssosasesasssssssnnsannsssssssas
FPES > 64 ¢uvuve-eesnsnssnsnsnsessssssssasnsssassnsses

Sample output LR R R I R I B R I B A B I N I A A N N N N A NN NN RN NN

Appendix

E.1l
E.2
E.3
E.4

E.5

Translation 292 0 0 000 2R 02 00 0P PPN RN NN N NSNS BB R RNONPRDR NSNS OEDS
Translation and Compilation ..eeeesesssescscsssssnnans
Translation, Compilation, Link Edit, and Execution ...

Translation and Compilation of a Separate
(Main) Routine LU IR B S I B B R I B B R I R R I BB I IR I B B B B

The Subroutines and ExXecution ..ceevsesescsscocsnsssass

10
10
10
23
24
24
35

57
57
58

59
60

X1l

ERRATA

R-857-ARPA USER'S MANUAL FOR GLYPLIT: A PROGRAM TO TRANSLATE

Page 5.

Page 16,

Page 33.

Page 62,

ILLIAC IV GLYPNIR TO IBM 360 PL/I
R. E, Hoffman, April 1972

Under 2.2.5 Statements, the last sentence should read:

This count does not include leading and trailing blanks
on any card, or user-supplied PL/I, or control cards.

Mid-page equations should read:

(a(i) DO i=i_ TO iz) for one subscript,

1

((a(i,5) DO i=i)

etc. (Of course, i and j may be reversed for the opposite
1/0 order.)

EX: PUT FILE(SYSPRINT) DATA ((A(I) DO I=1 TO 64)).

TO iz) DO j=jl TO j2) for two subscripts,

Note that two sets of parentheses are necessary--one for
the array specification and one for the data list,

Line 15.1 should read:
15.1 //LKED,SYSLIN DD DSN=*,PL1L, SYSLIN,DISP=0LD

A twelfth entry is necessary, which reads:

12. According to GPN/11l, GLYPNIR initializes all local
variables to zero on the first entry to a block.
The translator does not,

1. INTRODUC:ION

A traditional approach to writing and debugging programs for a
new computer, before that machine is available, is to simulate the new
machine on an existing computer. To do this, at l-ast two programs
are usually written for the existing computer: an assembler, which
translates assembly language programs for the new computer into the
new machine; and a simulatnr, which simulates the operation of the
new machine in this machine language code. This approach was taken
by the University of Illinois for the ILLIAC IV with the production
of the ASK assembler and SSK simulator for the Burroughs 5500 (and
later the 6500). 1In addition, the further step of producing a higher-
level language, GLYPNIR (1], was taken. The GLYPNIR compiler produces
ILLIAC IV assembly language for input to the ASK assembler.

Thus, potential ILLIAC IV users may write GLYPNIR programs and
have them compiled, assembled, and simulated. Unfortunately, the pro-
cess is quite slow. A typical 1000-card GLYPNIR program takes roughly
2 minutes to compile, 7 minutes to assemble, and, for 3 seconds of
ILLIAC IV time, 10 days to simulete.

However, if-the purpose of a run is to debug GLYPNIR programs
rather than to produce a hardware simulation, then GLYPLIT offers a
faster, more economical approach.

GLYPLIT-~a GLYPNIR to PL/I Translator--runs on any large* IBM
System 360 under the full operating system (0S). It accepts 2 subset
of GLYPNIR suitable for much of the "scientific" programming (FORTRAN-
like) expected on the ILLIAC IV, and translates it into PL/I [2]. The
PL/I may then be compiled and run on any suitable 360, and the results
checked. PL/I statements may be freely intermixed with the GLYPNIR to
be translated, making the full range of PL/I input/output and debugging
features available. For debugging scientific GLYPNIR programs, this
GLYPLIT->PL/I+execution process is more economical then the GLYPNIR+>

1-Assum:Lng a simulator ratio of 300,000 seconds of €500 time to 1
second of ILLIAC IV time.

*At least 300K of core is required for most GLYPNIR programs. More
may be required for syntactically complex programs.

assembly>simulator process. The 1000-card, 3-second simulation takes
roughly 7 minutes to translate to PL/I, 6 minutes to compile, and 30
minutes to execute on a 360/65.+

It must he remembered that the purposes, and thus the results of
the simulator and the translator are different. For example, because
of internal number representations, answers via GLYPLIT mav differ as
early as the fourth significant digit from answers via the simulator.
Also, iiardware-oriented features of GLYPNIR are not translatable, such
as the ability to insert ASK code, the alphameric WAND and WIMP machine
operations, and the explicit specification of registers possible for
efficiency. The restriction to scientific GLYPNIR programs means that
all of GLYPNIR's 1list and point:r processing capabilities have been
left out. However, these considerations will not usually interfere
with the primary goal of GLYPLIT: to facilitate the debugging of
scientific GLYPNIR. (Appendix F summarizes the important restrictions).

1.1 SUGGESTIONS FOR USING THIS MANUAL

Many instructions and explanations in this manual make sense only
in the context of a GLYPNIR program using the indicated construct. Thus
the reader should not be troubled if all is not clear on the first read-
ing. Furthermore, a number of sections are intended as supplements to
the GLYPNIR Programming Manual, auc so a complete description of GLYPNIR
is not provided. This is especially true of Sec. 2, Restrictions and
Differences of the GLYPLIT Subset.$

The best approach for most new GLYPNIR programmers will be to read
the GLYPNIR Programming Manual thoroughly, read this manual (especially
noting restrictions and differences as per Sec. 2), and then try some-
thing. Given the context of a user's program, both manuals will (hope-

fully) make sensc.

+A machine comparable to the Burroughs 6500.

Section 2 is numbered to correspond to the GLYPNIR manual, and
sections for which no comment is necessary are not included. Thus to
see 1f there are any translator restrictions for a particular GLYPNIR
construct, the user may scan the Sec. 2 subheadings in the table of
contents. If the item does not appear, then no special precautions
are necessary.

Also note that Fig. 3 of Appendix E is a complete example, in-
cluding both a GLYPNIR projram and Job Control Language (JCL). With
minor modifications to the¢ JCL for the uecr's installation, this ex-

ample may be punched and run as an ald to getting started.

1.2 ORGANIZATION OF THE REPORT

This report details the restrictions of the GLYPNIR subset ac-
cepted (Sec. 2), presents the PL/I input/output and debugging features
(Sec. 3), describes user control of the translator and insertion of
user-supplied PL/I (Sec. 4), discusses the IBM 360 Job Control Language
necessary to run the system (Sec. 5), and Jescribes the translator
output (Sec. 6). Several appendixes include the structure of the
generated PL/I, PL/I compiler and execution messages, translator mes-

sages, and a summary of the restrictions of the GLYPNIR subset.

—q-

2, RESTRICTIONS AND DITFERENCES OF THE GLYPLIT SUBSET

2.1 INTRODUCTION

This section describes the restrictions on full GLYPNIR that de-
fine the subset of GLYPNIR acceptable to the GLYPLIT translator. The
main omissions are pointers (and thus field-content designators), and
such hardware-oriented features as alphameric operators, code state-
ments, and explicit use of hardware registers. (See Appendix F for a

summary.)

2,1.1 Numbering of Subsections

In thig section, subsection numbers correspond to numbers in the
GLYPNIR Programming Manual (GPM) [l1]. For example, subsection 2.2.6
corresponds to GPM 2.6, and 2.6.3.Z corresponds to GPM 6.3.2. Those
parts of the GPM fcr which no comment is necessary, i.e., fcr which
there are no restrictions on or differences between GLYPNIR and GLYPLIT,
are not included.

An important difference, which applies throughout, is due to the
different internal representations of numbers between the ILLIAC IV
and the 760 (see 2.3 for details).

2.2 CODING PROCEDURES AND PROGRAM STRUCTURE

2.2.1 Character Set and Coding Form

The 360 GLYPLIT implementation uses the same character set as

GLYPNIR,* with the following important exceptions:

GLYPNIR 360 GLYPLIT USE

{] <>or ¢ 1 subscript delimiters. Note that
this may cause problems 1if an
attempt is made fo use '"<" for
"less than." '"LSS" should be
used instead.$

x * Multiplication symbol.

+But punched in standard 360 EBCDIC instead of B6500 BCL.

$
¢ and | are the 360 interpretations of [and] punched on a
Burroughs EBCDIC keypunch.

GLYPNIR 360 GLYPLIT USE
+ - or (= Assignment statement replacement
operator.
% LEQ Relational operator.
= GEQ Relational operator.
¢ NEQ Relational operator.
< < or LSS See [] above.

The source margins for GLYPLIT are defined by user parameters LC
and RC, but are usually defaulted to columns 1-72 (see 4.1.7). No

sequence field checking is done.

2,2.4 1Identifiers

Only the first 31 characters of any identifier are retained.
(ERROR message 48 is generated for identifiers of length > 31 char-
acters.) All of GLYPLIT internally generated identifiers start with
the letters 'QQ'. Thus, the user should avoid identifiers starting

with 'QQ', excent to achieve special effects in user-written PL/I code

(see Sec. 4).

2.2.5 Statements

Statements input to GLYPLIT may be split over several cards. The
maximum number of characters permitted between semicolons is v 256,

This count does not include leading and trailing blanks ou any card.

2.2.10 Program

1f a label is prefixed to the first BEGIN of the program, it ap-
pears at the top of each pige of SYSPRINT output. There may be no com-

ments or PL/I after the final 'END.'.

2.3 ILLIAC IV ARCHITECTURE VERSUS 360 ARCHITECTURE

This section covers {internal number representations.

number bits
number sig. digits &

decimal range

Exponent
number bits
decimal range &
Mantissa
number bits
number sig.
digits &

decimal ranges =

$4.2x10

GLYPNIR Type INTEGER
ILLIAC IV

sign + 48
14.3
+281 474 976 710 655

GLYPNIR Type REAL

ILLIAC IV

15(base 2)
- 4933 to 4931

sign + 48

14.3

to 15.9x10

2,4 BASIC ELEMENTS OF THE LANGUAGE

2.4.1 Declarations

-4933 4931

360

sign + 31
9.2
2 147 483 647

360

7(base 16)
- 79 to 75

sign + 24 or 56*

7.2 or 16.7+

79 75

+5.4x10 "7 to $7.2x10

Only types PE INTEGER, PE REAL, CU INTEGER, CU REAL, and BOOLEAN
(and their abbreviations) are recognized (see 2.9.1 for special sv.-
routine parameter declarations of CNPOINT and PCPOINT).

2.4.2.3 Equivalence on Simple Variables.

2.4.4 Partial Word Designators

Not implemented,

Not implemented.

2.4.5.1 Arithmetic Literals. The only acceptable explicit base specifier

18 '(16)', base sixteen, usually used for BOOLEAN mode natterns.

Single or double precisicn as a user option (see 4.2.2).

-7 -

2,4,5.2 Alphameric Literals. Not implemented.

2.4.5.3 Boolean Literals. See 4.1.8 for effects on Boolean literals
when {!PES ¥ 64.

2.5 POINTERS, FIELD CONTENT DESIGNATORS, AND DYNAMIC STORAGE ALLOCATION

Not implemented.

2.6 EXPRESSIONS

GLYPLIT accepts only arithmetic and Boolean expressions.

2,6.1 Arithmetic Expressions

GLYPLIT does not acceyt <arithmetic FCD> or <alphameric expression>

as <arithmetic primary>.

2.6,2 Alphameric Expressions

Not implemented.

2.6.3.2 Boolean Literals. Note that only base sixteen '(16)' 1s legal

as an explicit base specifier.

2.7 ASSIGNMENT STATEMENTS

2.7.1 General

Only the real, integer and Boolean entries in Table 7.1.1 in the
GLYPNIR Programming Manual are meaningful.

2.8 CONTROL STATEMENTS

2.8.1 LOOP Statement

The <initial>, <increment>, and <limit> valuvee have permissible
ranges of -2147483647 to 2147483647 in GLYPLIT. No error messages will
be generated unless the values ara outside of the above ranges. GLYPNIR's
legal ranges are 0 to 1677216 for <initial> and <I{imit> and 0 to 16384

for <increment>.

2.8.2 FOR Statement (iterative)

Not implemented. The FOR ALL statement (G'M 8.3) 28 implemented.

2,8.7 The Debug Statement

Not implemented.

2.9 SUBROUTINES

2.9.1 Description

Subroutines are as described, except that (1) the AS construct
is not legal and (2) empty or missing parameters are not allowed. Note
that the formal parameters of the subroutine daclaration are the only
variables which may be of types PCPOINT or CNPOINT. These types are
substitutes for PREAL and CREAL VECTORe. That is, to pass on a real
vector (PE or CU) to a subroutine, declare the formal parameter to be
of type PCPOINY or CNPOINT, and use the unsubscripted vector name as
an actual parameter in the CALL statement. Inside the subroutine,
refer o the pointer type parameter as if it is a vector in the usual
way. For example:

BEGIN

PREAL VECTOR V[10];

SUBROUTINE S(PCPOINT A);

BEGIN

CINT I;

LOOP I=1,1,10 DO
A[0]) = A[O] + A[1];

END.

Note that while inside the subroutine the vector will always be
assumed to be of type REAL. If an integer vector is passed to the sub-
routine, it will be converted to type REAL by the normal parameter-

passing mechanism,

-9-

Function subroutines may be of type PE or CU REAL or INTEGER or
BOOLEAN. GLYPLIT prefixes all function names with the letters 'SS'.
See 2.9.3, 4.2.2, A.3, B.l, and B.2 for the effects of this.

2.9.3 Separately Compiled Subrouvtines

This is a translator fecture not yet available in GLYPNIR. Its
purpose 1is to allow subroutines from a GLYPNIR program to be translated
and compiled separately, and then link edited and run together (see 5.3
for link edit JCL information). There are at least two possible reasons
for usiag this option. First, the current PL/I implementation allows
only 255 iterative DO-END or BEGIN-END blocks in one compilation. PL/I
issues TERMINAL ERROR IEMO071I messagr if this limit is executed, as it
miy well be for GLYPNIR programs of more than a few hundred cards. Thus,
the GLYPNIR program must be broken into two or more parts, which may the.
be translated and compiled separately. A second reason for using this
option is reduced cost, achieved by eliminating the need .o retranslate
and recompile sections of the code that are not changing.

The only convenient way to allow separate compilation is to have
a main program, and one or more separate subroutines. Two problems must
be solved: the main program must know about the subroutine (accomplished
with the %Z%C SUBR option), and the separate parts must be able to com-
municate (accomplished via parameters and/or the %%C EXTERNAL option).
Figures 2.1 to 2.3 {(and following notes) show a subroutine within a main
program, and then the same subroutine and main program ready to be trans-
lated and compiled separately.

Note the following:

1. In Fig. 2.1, the P2 inside the subroutine is the same as the
P2 outside the subroutine because P2 was not redeclared in the sub-
routine., Thus, communication is established through the global variable
P2, and thcough the parameter P1.

2. 1In Fig. 2.2, the main routine is made aware of the subroutine
via the 7%C SUBR card, followed by the subroutine declaration, but with-
out the body of the subroutine.

3. 1In Fig. 2.3, just the subroutine is input to the transiator.

It must now end with "END." instead of "END;", because all input to the
translator is terminated by "END.".

Separate:

Together:

BEGIN

PREAL P2;

SUBROUTINE S(PREAL Pl1);
BEGIN PREAL A;

P2 = P1 + A;

END;

S(eee);

le

Fig. 2.1--Main Program and Subroutine Together

BEGIN

%#%C EXTERNAL

PREAL P2;

%%C SUBR

SUBROUTINE S(PREAL P1);

END.

Fig. 2.2--Main Program

Figures 2.2 and 2,3 are each to be presented to the
translator-compiler separately.

SUBROUTINE S(PREAL Pl);
BEGIN PREAL A;

Z%C EXTERNAL

PREAL P2;

Fig. 2.3--Subroutine

e ool

4. The global variable P2 is given the EXTERNAL attribute via
the Z%C EXTERNAL card in both Fig. 2.2 and Fig. 2.3. This makes it
common to all routines in which it is made external. Thus, communi-
cation 1s still through the parameter Pl, and the global variable P2,

5. All variables used in the subroutine must be in one of three
classes:

a., They may be parameters passed through the calling
sequence, e.g., Pl;

b, They may be global variables known to several routines
via the external attribute, e.g., P2;

c. Or they may be completely internal to the subroutine,
e.g., A.

6. Even if no parameters are present, the %Z%C SUBR card is still
required in Fig. 2.2,

7. See 5.3 for JCL information. Sections 4.2.2 and 4.2.4 detail
the %%ZC SUBR and EXTERNAL option.

8. PL/I generates error message IEM2867I (see B.2) for separately-
compiled subroutine or external variable names of more than seven char-
acters. To avoid this, limit all separately-compiled subroutine or
external variable names to seven characters and, because GLYPLIT pre-
fixes all function subroutine names with 'SS', limit all separately-

compiled function subroutine names to five characters.

2,10 SYSTEM SUBROUTINES

2.10.1 SHIFT and REVOLVE

The <value> to be shifted or revolved must be a Boolean expression,

e.g., the word MODE.

2.10.2 Route

As noted in the GPM, the <mode pattern> may be any Boolean expres-
sion, or empty. Even though GLYPLIT accepts either, only the second
cage, empty, is correctly implemented. Any Boolean expression is
ignored. GLYPLIT translates all routes as demonstrated by the follow-
ing example:

PREAL P1,P2,PJ,P4;
Pl = RTL(1,,P2+P3) + P4;

becomes

DCL (Pi,P2,P3,P4)(0:63) FLOAT BIN;
DO Q=0 to 63; IF MODE (QQ) THEN DO;
P1(QQ) = P2(MOD(QQ+1,63)) + P3(MOD(QQ+1,63)) + P4(Q0);

Thus, the expression is evaluated in the source PE only if the mode is
true in the destination PE. This is exactly what GLYPNIR does if the
<mode pattern> is empty.

The purpose of a non-empty mode pattern is to prevent evaluation
of the expression in certain source PEs, even if the destination PE is
true. This results in an undefined value in those destination PEs,
but this is presumably to be changed in a subsequent statement. An

example might be:

P1 = RTL(1,P3 NEQ O, P2/P3)
IF RTL(1,,P3) EQL O THEN Pl = P2;

Unfortunately, the first statement, translated by GLYPLIT, could result
in a ZERODIVIDE error, because P2/P3 might be evaluated in a PE, where

P3 is zero. An acceptable alternative would be:

IF RTL(1,,P3) NEQ O THEN P1=RTL(1,,P2/P3)
ELSE Pl=P2;

(Note: 1If the current mode pattern is all true, then "MODE" is
frequently used as the routing <mode pattern> because GLYPNIR gener-
ates the most optimal code. But no problem can result even though

GLYPLIT ignores this, because the mode pattern is all true.)

2.10.4 ALPHA

Not implemented.

2.10.5 BOOLEAN

The actnal parameter for the BOOLEAN function must be a hexadecimal
literal, e.g., BOOLEAN(OFFF(16)).

-13-

2.10.6-2.10.8 Trigonometric, Squave Reot, Natural Log,
and Exponentiation

These functions are automatically available in GLYPLIT. In uther
words, the ingtructions of GPM 10.6 for including ASK assembly language
subroutines must be ignored. No declarations of any kind are necessary
or allowed for SiN, COS, TAN, COT, ATAN, SQRT, LN, or EXP.

2.11 INPUT/QUTPUT STATEMENTS

Not implemented. See 4.2 for GLYPLIT I/O via PL/I.

2.12 EXPLICIT USE OF HARDWARE REGTSTERS AN ASSEMBLY LANGUAGE

Not implemented.

2.C DIAGNOSTIC MESSAGES

See Appendix C.

2.D OPERATION MANUAL

All cards starting with the '$' in column 1 are ignored by GLYPLIT,
except for listing. See Secs. 4 and 5 for GLYPLIT operation.

~14-

3. PL/I INPUT/OUTPUL AND DEBUGGING FEATURES

3.1 INTRODUCTION

The ability to mix PL/I statements freely with the GLYPNIR to be
debugged is a useful feature of the translator; however, it does re-
quire some user knowledge of PL/I. The essentials of PL/I's I/0 and
debugging features are covered here, but for complex I/0, variable
setting, or other PL/I procedures the user is referred to the IBM PL/I

manuzls [2-3].

3.2 MIXING OF PL/I AND GLYZNIR; THE %Z%B OPTION

All PL/I statements must be placed on %% cards (%% in columns 1
and 2, and possibly a "B" in column 3). These will appear as comments
to GLYPNIR, and will be passed directly to the PL/1 file by the trzns-
lator after stripping off the %% (or %%ZB). PL/I statements are termi-
nated by semicolons (";"). Several statements may be placed on one
card or one statement continued on several cards, much as in GLYPNIR.

The %%B Option: the major task of the translator is to "put in
the inner DO loops". Thus the CGLYPNIR

PREAL Pl1l, P2, P3;
Pl = P2 + P3;

must be changed to the PL/I

DCL(P1,P2,P3) (0:63) FLOAT BIN;
DO QQ = 0 TO 63;
IF MODE(QQ) THEN DO;

P1(QQ) = P2(QQ) + P3(QQ);
END; END;

The %Z%B option is used to control the location of the user-sup-
plied PL/I. If the "B" is in column 3, i.e., "%%B", then the PL/I
on the card is guaranteed to be outside (to Break) any current gen-
erated DO loop. If the "B'" is not present, the PL/I may be inside a
DO loop, if one is currently open. There will be a current open DO

loop if one has been started by the appearance ¢f a PE or BCOLEAN

-15-

left-hand-side assignment statement, and if all subsequent statements
have been PE or Boolean assignment statements and have not involved
certain types of routing. That is, assignment statements are collected
into a common DO until a non-conforming statement ~uses the DO to be
broken (closed).

There are also other reasons for closing a DO, and it is admittedly
harder for a user to be sure his PL/I will end up inside a DO. However,
this is not the common case--being outside the DO is usually desirea.
This is guaranteed by a %Z%ZB. The user may of course check the location
of his PL/I by reading the PL/I on the SYSPRINT file from the PL/I
compiler.

Note that if user PL/I is to be included in a generated DO for
special effects, then the DO loop index, always called QQ, may be used.
See Appendix A for other naming coaventions and more information on

DO location.

3.3 PL/1 INPUT/OUTPUT

The following is a brief introduction, but should allow the in-
experienced user to get started (just try something). Further details
are in Ref. 2,

All GLYPNIR I/0 must be conducted via PL/I I/0 statements. These
are GET and PUT for stream reads and writes (corresponds somewhat to
FORTRAN formatted 1/0), and READ and WRITE for record-oriented I/0
(corresponds somewhat to FORTRAN binary or unformatted 1/0).

When reading/writing arrays, note that PL/I stores arrays in
opposite order to FORTRAN, i.e., the rightmost subscript varies fastest
in PL/I.

READ
FILE (file-name) INTO(one-variable-name);
WRITE

The READ/WRITE syntax is fairly self-ewident. The length of the
variable in bytes should usually be the same as the record length (LRECL)
of the DCB parameter on the DD JCL card defining the file.

~16=-

CET DATA (optional-list-of-variables)
PUT FILE(file-name) { LIST (list-of-variables)
EDIT (list-of-variables) (format specification)

The 'FILE(file-name)' is optional, although if omitte!, a warning
message will be generated during compilation. If it is .itted, file
SYSIN will be assumed for a GET, and file SYSPRINT aseuu:! for a PUT.

The format-specification applies to EDIT only. Tne elements of
the list of variables must be separated by commas. Each element may
be a simple variaple name, an array name, a repetitive specification
for arrays (see below), or for output, a constant. Character constants
are contained by single quote marks (') and may be split across cards
with column 72 and column 1 being taken as contiguous (although note
that the Z%Z required in columns 1 and 2 will become bla~ks in the nidst

of the constant). A repetitive array specification is of the form

(a(1), DO 1=1l T0 {2) for one subscript,

((a(1,3), DO 1=11 TO 12), DO j=j1 TO jz) for two subscripts,
etc. (Of course, 1 and j may be reversed for the opposite [/0 order.)

LIST-directed I/0 transmits just the elements. For input the ele-
mants must be constants separated by commas or blanks; for output they
will be separated by blanks and formatted automatically, according to
their attributes.

DATA-directed I/0 traismits the variable names as well as the
vs -ues (like NAMELIST I/0 in FORTRAN) and is extremely useful for de-
bugging output. For input, the form is variable-name = constant,
separated by commas and/or blanks. The last element of the list must
be followed by.a semicolon. The list-of-variables is orztional: on
input, the names in the input determine the variables transmitted, and
on output all variables known in the block will be transmitted if no
list is given.

EDIT-directed output is m.st like FORTRAN formatted I/O and re-
quires the format-specification. Format items are separated by commas
and may be grouped by placing several in parentheses. A single item

or group may be repeated by preceding it with a constant or variable

-17-

followed by a blank. Some legal format items and their FORTRAN equiv-

alents follow:

PL/I FORTRAN Meaning

F(w) Iw Integer in field width w.

F(w,d) Fw.d Floating in field width w with d digits
to right of decimzl point.

E(w,d) Ew.d Scientific notation in field width w with

d digits to right of decimal point.

A(v) Aw Characters in field width w. If w not
supplied, length of element being trans-
mitted determines length.

X(w) wX w spacas.
SKIP(n) 1/e.00/ Skip n records--see below.
S,
n
PAGE 1H1 Skip to top of.page.

Note that there is no "Hollerith" format. To output a character constant
in PL/I, the constant is placed in quoteg in the variable list and an A
format specification 1s used (usually without the field width w).

SKIP and PAGE may be added to any GET/PUT statement (except PAGE
and GET are not legal together). The following example illusirates much

of the above:

PUT FILE(SYSPRINT) EDIT('TWO INTEGERS:',I,J,'FOUR REALS:',
A,B,C,D) (A,F(5),F(10) ,SKIP(2),A,4 F(10,5))PAGE;

LIST-, DATA-, and EDIT-directed I/0 is called stream 1/0 because
little cognizance is taken of card, line, or other record boundaries.
Successive PUT statements will continue on the same line until there is
no more room, or until a SKIP or PAGE specification is encountered.
Successive GET statements will continue reading from the same card until
no more columns remain, or until a SKIP skips to the start of the next

card.

3.4 PL/1 DEBUGGING FEATURES

The principal debugging aid in PL/I (besides easy LIST- and DATA-
directed I/0--see 3.3) is the condition prefix. It looks somewhat like

-18-

a GLYPNIR label with the form

(a,b,c,...):

and may be placed on any statement including a BEGIN-END or PROCEDURE-
END block. On a block, a condition applies to all statements within
the block, except that it may be negated for a statement (or block)
within the block by placing the opposite condition on that statement
(or block). On an IF statement, the condition applies only to the
Boolean expression of the IF. Similarly, a condition on an iterative
DO (generated as a result of LOOP and FOR statements) applies only to
expressions in the DO statement (j,k, and m in DO i=j TO k BY m) and
not to statements contained within the DO-END group.

To cause a condition prefix to apply to a group of statements,
enclose the group in a BEGIN-END block and place the prefix on the
BEGIN., Condition prefixes may also appear on PROCEDURE statements (be-
fore the procedure name) to apply to all statements in the procedure.
Thus, to have a condition prefix apply to a whole GLYPNIR program, make
it the very first card presented to the translator (with %% in columns
1 and 2).

If a condition prefiz occurs on a labeled statement (or procedure),
it must precede the label (or procedure na 2), e.g.,

%% (NOOFL, CHECK (A,B)) :
LABEL1l: BEGIN.,.

The content of the condition prefix is a 1list selected for the
following possibilities (there are others described in the PL/I manual
(2], but these should be the most useful for a GLYPLIT user). All con-
ditions may be preceded by 'NO" to negate them. The conditions are
shown with their defaults, i.e., with or without the NO as assumed by
the compiler. Also shown are the acceptable abbreviation and the stan-

dard system action.

Condition Abbr, Meaning
FIXEDOVERFLOW FOFL Occurs when an integer exceeds the

maximum shown in 2.3. System
action* terminate.

-19-

Condition Abbr. Meanin
OVEXFLOW OFL Occurs when the magnitude of a real

number exceeds the maximum shown in
2.3 (approximately 7.2x1079). System
action: termirnate.

UNDERFLOW UFL Occurs when the magnitude of a real
number is less than the minimum shown
in 2.3 (approximately 5.4x10779).
System action: set result to 0, print
message, and contilnue.

ZERUDIVIDE ZD1V Occurs when attempt is made to divide
by 0. System action: terminate.
NOSUBSCRIPTRANGE NOSUBRG Occurs when attempt 1s made to use a

subscript out of the range of an array.
System action: terminate. This can
be a useful debugging aid, but because
of its great expense (may more than
doubie execution time) it is normally
not enabled.

CHECK(a,b,c...) The most important of the PL/I debug-
ging options. a,b,c... represents a
1list of names which miy be variable
names (including unsubscripted array
nar.es), entry (procedure) names, and
statement labels. For entry necmes and
labels, the name will be automatically
printed cach time it is invoked or
passed. For variables (which may not
be parameters), the variable name and
its new value will be printed each time
it is set, e.g., by appearing as the
left-han¢ side of an assignment state-
ment, by inpv:t, or by being the con-
trolled variable of an iterative DO
(the result of LOOP and FOR statements,
etc.).

Two unfortunate notes for CHECK:

o CHECK may appear onlv on a BEGIN-
END or PROCEDURE bloc...

o If an array name is CHECKed, the
whole array will be printed every-
time any element is changed. Ex-
ample: assume a PREAL A, which
will become an array of length 64
words in the PL/I. The statement
"A = 1" will require a DO loop in
the PL/I to set each of the 64

-20-

Cordition Abbr. Meaning

values to 1. If A is being checked,
the whole array will be printed

64 times, once for each time

through the DO loop.

-21-

4, USER CONTROL OPTIONS DURING TRANSLATION

There are two classes of options: JCL PARM options, and in-line

control options.

4,1 JCL PARM OPTIONS

The user supplies these options on the 360 JCL EXEC statement
for the GLYPLIT execution step in the form PARM = 'list', and apply
throughout a translation. They help specify either the input format
o:, more frequently, the output format. Defaults, shown below in
parentheses, are supplied for all options. See also 5.1 for details

of PARM syntax, and Appendix D for a summary.

4.1.1 {#PES--Number of Processing Elements (Default = 64)

This is one of the more important optirns. It specifies how many
PEs the generated PL/I code should simulite. Any number from 1 to 999
1s legal. lor fast execution of the generated code, debugging may
often be conducted using only a few PEs. Alternatively, for duplica-
ting results of existing codes, some number of PEs other than 64 may
be useful (e.g., 44 or 100). With most "scientific" GLYPNIR programs,
few other changes will be necessary if #PES is changed. In particular,
processes depending on the number of PEs and Boolean constants may cause

problems (see 4.1.8 for commente on Boolean constante 1) #FES # 64).

4,1,2 GLY--Control of GLYPNIR Qutput (Default = 1)

If GLY = 1, 1ist the GLYPNIR input only on the SYSPRINT file.

If GLY = 2, output the GLYPNIR input only as PL/I comments on the
PLIN file.

If GLY = 3, output the GLYPNIR to both files.

See also the next parameter.

4.1.3 PLl--Control of Generated PL/I Output (Default = 2)

If PL1 = 1, list the generated PL/I only on the SYSPRINT file.
If PL1 = 2, output the generated PL/I only to file PLIN (pre-
sumably for input to the PL/I compiler).

-22-

If PL1 = 3, output the PL/I to both files.

The most useful combinations of GLY and PL1 are the defaults
(GLYPNIR on SYSPRINT, PL/I on PLIN) if the PL/I doas not need to be
looked at, or GLY = 3 and PL1 = 2 (GLYPNIR on SYSPRINT, and GLYPNIR
and PL/I mixed on FLIN) if the PL/I doee need to be looked at.

4.1.4 PAGES--'iaximum Number of Pages Allowed (Default = 50)

This parimeter, like MSGS, is intended to prevent an error from

generating reams of useless output,

4,1.5 MSGS--Maximum Number of Messages Allowed (Default = 50)

This parameter option prevents some runaway translator or user

error rrom generating useless error message output.

4.1.6 MSG--Minimum Significant Message Level (Default = 1)

Messages are classed into four levels: 1--WARNING, 2--ERROR,
3--SEVERE, and 4--TERMINAL. This parameter specifies the minimum
level for which messages should be printed. Messages in a level be-
low MSG are ncither printed nor do they contribute toward the MSGS
count (see 4.1.5). The level of each message is printed with it and

is also noted in Appendix C.

4.1.7 1C (Left Column), RC (Right Column), and CC (Carriage Control)--
Source Card Margin Control (Defaults = 1, 72, 0 respectively)

Normally GLYPNIR input should be in columns 1-72, with columns
73-80 ignored, except for listing; however, special purposes may re-
quire different margins. If so, LC may be set to the leftmost column
to be considered, and RC to the right. In addition, CC may be set to

a column to be scanned for printer carriage control as follows:
Contents of Column CC Action

1 Skip to top of page

0 (zero) Double space

-23-

Contents of Column CC Action
- (minus) Triple space
+ (plus) No space
Anything else Single space

Note that the GLYPNIR compiler does not support these options.
LC. RC, and CC must obey the relations
1 < LC,RC,CC < 80
LC < RC
CC < LC or CC > RC.

All references to columms 1 and 72 throughout this minual should
be interpreted as referring to colums LC and RC, respectively.

4.1.8 BCRC--Boolean Constant Repeat Count (Default = 1)

This section discusses the treatment of Boolean h2x constants by
GLYPLIT,

Define n as being the number of bits represented by a hex constant;
thus, n = the number of hex characters in the constant % 4. MNote that
n 18 always a multiple of 4, although #PES need not be. Thus n may vary
from 4 (1 hex character) to 64 (16 characters). The problem is to map
the n bits represented by the constant into the #PES PEs., There are

three cases.

4.1,8.1 #PES = 64. This 1is the normal GLYPNIR case. If n = 64,
the n bits map e:itactly left to right into PEs 0 to 63.

If n < 64, then the n bits map into the n rightmost PEs, and the

leftmoat 64 - n PEs get zeros.

10 XX D) see I\ n bits

S
10 « - 1 D -+ + D10 === 1] g4 ppg

ne= 54 n < 64

Fig. 4.1--#PES = 64

-24-

4.1.8.2 #PES < 64. 1If n < {fPES, the n bits map into the right-
most n PEs and the leftmost #PES - n PEs get zeros.

If n > #PES, then the leftmost #PES/2 bits map into the leftmost
#PES/2 PEs, and the rightmost #PES/2 bits will map into the rightmost
fPES/2 PEs. (If #PES is odd, then the extra bit is included on the
left.) 1In other words, the n = #PES middle bits are ignored.

10 ee- 10 === 1 n bits

10 - . 1 @ » - * O0J10 <+ U ypgs res

n = #PES n < {{PES

Toee s l1esel

1 # . . 0ol @ . . 1

n > {PES

Fig. 4.2--#PES < 64

4.1.8.3 #PES > 64. If n < 64, the n bits map into the rightmost
n PEs, and the leftwost #PES - n PEs g-t zeros.

If n = 64, then the leftmost 32 bits map inco PEs O to.3l, the
rightmost 32 bits map into the rightmost PEs, and the middle PZs are
filled by repeating bits 33-BCRC through 32 as often as necessary.
That 1s, the rightmost BCRC bits of the leftmost 32 bits are repeated
to fill the middle.

32nd bit
¥
10 sss 10 ¢+ 1010 ¢+ 1
\ _I
g = = = 0116 LB 0-+101] 101101100 +-- y #PES PEs
n < 64 n = 64, BCRC = 3, #PES = 72

Fig. 4.3--#PES > 64

-25-

4.1.8,4 User-Supplied Interpretation of Boolean Constants. If

the actions described above for #PES ¥ 64 are inadequate, then there
are two alternate approaches a user may take. Whenever a Boolean con-
stant appears, it is replaced by a QQBCx variable, e.g., MODE = BOOLEAN
(NF(16)) becomes MODE(QQ) = QQBC1(QQ) within a DO loop. The Boolean

conatant variables are initialized via the following declaration:

DCL QQBCx (0:63) BIT(1) INIT CALL QQBCI(QQBCx,'hc');

"x" 1s an integer to form a unique name, and 'hc' is the actual hex
ronstant character string in quotes. Then, on entry to the program,
PL/I automatically calls the procedure QQBCI once for each declaration,
which initializes the variable 'QQBCx' to the hex string 'hc', as de-
scribed in 4.1.8.1-%.1.8.3, (The QQBCI procedure is contained in the
GLYPLIT execution library-card 15 of 5.2.) A group of ten of these
declarations is generated for every ten unique Boolean constants en-
countered, with a final group (the only group if there are no more than
ten in the program) occurring at the end of the generated code.

The first alternative is to make the user parameter BCRC = 0. 1In
this case, no declaration for Boolean constants will be generated, al-
though each unique Boolean constant will still be replaced by a variable
of the form QQBCx. Thus the user is expected to declare and initialize
all the QQBCx variables generated via user-written PL/I,

A second alternative 1s for the wser to supply his own routine

called QQBCI. It should be of the following form:

QQBCI: PROCEDURE(BC,LITERAL);
DCL BC(O:nj BIT(l), LITERAL CHAR(16) VAR;

END,

where n = {PES - 1.
Because the literal will be passed exactly as presented by the
user in his GLYPNIR input, the user may simply make his Boolean

-26=

constants numbers, «.g., 'l', '2', etc., and use LITERAL as an index
into a table containing the desired initial values. An example follows

for Boolean constants of 3 bits.

QQBCI: PROCEDURE(BC, LITERAL);
DCL BC(0:2) BIT(i), LITERAL CHAR{16) VAR;
DCL TBL(0:2,2) BIT(1) INIT('010','101');

BC = TBL(*,LITERAL);
END

The assignment statement is an array assignment: the '*' means
all elements in the range of that dimension. PL/I automatically con-
verts the character contents of LITERAL to integer if the contents are
a number.

Thus, if the user supplies this routine, and does not give BCRC = 0

(which would cause no declarations to be generated), then the statement
Bl = BOOLEAN(1(16)) OR BOOLEAN(2(16));
is translated as (assuming #PES = 3)

DO QQ = 0 TO 2;

B1(QQ) = QQBC1(QQ) | QQBC2(QQ);
END;

and causes the declarations
DCL QQBC1(0:2) BIT(1) INIT CALL QQBCI(QQBC1,'1");
DCL QQBC2(0:2) BIT(1) INIT CALL QQBCI(QQBC2,'2');

to be generated. Then on entry to the main program, QQBCI would be
called twice and QQBCl and QQBC2 would be initialized to 'G10' and
'101°,

4,1.9 LINES--Number of Lines per Page of SYSPRINT Output (Default = 60)

Useful for installations with short paper. '

-27=

4.2 1IN-__JE CONTROL OPTIONS

These options are placed on Z%XC cards and mixed with the GLYPNIR
input. Unlike PARM options, which apply to a whole translation, these
options ncrmally apply to only the next statement or to a range of

Ctatementis,

4.2,1 Z%%C Cards

All in-line GLYPLIT control options must be placed on cards start-
ing with ZZC in columns 1, 2, and 3. (These cards will be comments to
GLYPNIR.) Several options may be placed on one card but the option
words START and END may not both appear on one card. All option words
may appear in any order separated by any number of blanks or any other
characters. Note that this means that comment cards starting with %%C
should be avoided because they will ve misinterpreted as option cards.
(See 3.2 for discussion of %% cards for PL/I.)

4.2.2 EXTERNAL Declarations

Declarations may be made to have the PL/I external attribute by
use of the %ZIC EXTERNAL card. This card should precede a GLYPNIR de-
claration for which the external PL/I declaration is to be generated.
The option normally applies only to the following declaration. If the
option word "START" is also on the card, however, all following declara-
tions will be made external until a %%C option card with the words
"EXTERNAL" and "END" appears.

External declarations and subroutine parameters are the only easy
methods of inter-subroutine communication for separately compiled pro-
cedures in PL/I. The external attribute takes the plec. of COMMON in
FORTRAN. (See 2.9.3 for separately compiled procedures.)

Note that PL/I generates an error message (see B.2) for separately-
compiled subroutine or external variable names of more than seven char-
acters. To avoid this, limit all separately-compiled subroutine or
external variable names to seven characters and, because GLYPLIT pre-
fixes all function subroutine names with 'SS', limit all separately-

compiled function subroutine names to five characters.

~28-

In conformance with a recently issued ILLIAC IV Document [6), COMMON
and ENDCOMMON statements may be used instead of 7%%C START EXTERNAL and
A%C END EXTERNAL, respectively. However, using COMMON and ENDCOMMON
will have exactly the same effect as the START and END EXTERNAL state-
ments and no more. That is, the <common block name> will be completely
ignored (if supplied), and the rule that does not apply is "two vari-
ables which occur at the same place in the common block correspond even
though their names may be different." As noted, using EXTERNAL and
COMMON simply gives the variables being declared the PL/I external at-
tribute. In PL/I, variables with the external attribute in different
procedures are matched strictly by name, and it does not matter where

the declarations occur in the procedures.

4.2.3 DOUBLE Precision Declarations

The PL/I declarations generated for GLYPNIR declaration statements
may be made double precision via the %%C DOUBLE card. (See 2.3 for
meaning of single and double precision.) The option normally applies
only to the next declaration. If the option word "START" is also on
the card, however, all following declarations will be made double pre~
cision until a %Z%C opticn card with the words "DOUBLE" and "END" appears.

Note that all built-in functions (EXP, SIN, etc.) will automatically

return double precision results if their arguments are double precision.

4.2.4 SUBR Declaration

The Z%C SUBR causes the next subroutine declaration to generate
only the entry information. It is assumed that the body of the sub-
routine does not follow, but will instead be ccmpiled separately. (See
2.9.3 for full details.) This option normally applies only to the next
subroutine declaration. If the option word "START" is also on the card,
however, all following subroutine declarations will generate only entry
information until a Z%C option card with the words "SUBR" and "END" appears.

Also, see note at the end of 4.2,2.

In conformance with a recently issued ILLIAC IV Document [6], sub-
routine entry declarations may also be made by preceding the declaration
with the word EXTERNAL. The <output> and <filenesme part- do not, how-

ever, apply and must not be specified.

5. _JOB CONTROL LANGUAGE

This section describes, mainly by example, the IBM 360 JCL neces-
sary to execute the translator, to compile the generated PL/I, to link
edit the object code along with the GLYPLIT execution library, and to
execute the final result. These steps are called the GLYPLIT transla-
tion step, the PL/I cumpilation step, the link edit step, and thLe exe-
cution GO step, respectively,

The JCL used for the last three steps is the standard, IBM-sup-
plied PL/I Compile-Link Edit-GO cataloged procedure found at most in-
stallations. As such, the complete cataloged procedure is not displayed;
only the cataloged procedure EXEC card and the override DD cards are
shown,

As may bc seen by the IBM technical terms already used without
definition, this section 18 not a course in JCL; rather, the user is
assumed to have a basic knowledge of IBM JCL and to be capable of mod-
ifying what follows for his own needs and installation. For more JCL
information, see Refs. 4 and 5. Sample listings may be found in

Appendix E.

5.1 GLYPLIT TRANSLATION STkP

//Jobname JOB installation-defined-parameters
//GLYPLIT EXEC PGM=GLYPGO,REGION=300K,

// PARM='parameter-list'

//STEPLIB DD DSN=library,DISP=SHR

//SYSPRINT DD SYSOUT=A,

// DCh=(RECFM-VBA,LRECLN125,BLKSIZE=3129)
//PLIN DD DSN=plin-file,DISP=plin-disp,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=7280)
//GLYPNIR DD *

O 00 N O B W N

Card 2. The GLYPLIT translator program is named GLYPGO and is
assumed to exist in the "library" of card 4. The REGION shown, 300K,
should be adequate for most translations, except for those requiring
an especially deep parse (e.g., very complcx arithmetic expressions).

Less than 300K may also be used fcr economy.

=30~

Card 3. The PARM parameter is used to supply the options described
in 4.1. 1Individual parameters are separated by commas (i1f there are
more than one) and the whole list is enclosed in quotes. The PARM param-
2ter is not ne:zessary if all of the defaults shown in 4.1 are acceptable.

Card 4. The "library" should be the installation-defined parti-
tioned data set name containing the translator module, GLYPGO,

Cards 5 and 6. The SYSPRINT card defines the file for all trans-
lator messages output, as well as the GLYPNIR input listing and possibly
a list of the generated PL/I as controlled by the PARM parameters GLY
and PL1 (see 4.1.2-4,1.3). Other blocking factors may be used.

Cards 7 and 8. The PLIN card defines the file for the output PL/I
generated by the translator. As with SYSPRINT, its contents are con-
trolled by the parameters GLY and PLl. The "plin-file" name may be a
temporary (e.g., &TEMP) or a permanent file name. A permanent file
may be especially useful if a text editing system to edit the file 1is
available. Corrections or additions may *hen be made to the generated
PL/I before it is compiled. Alternativel modifications can be made
by punching the file as cards. The "plin-disp" will depend on whether
the file is old, new, temporary, permanent, etc. If the file is new,
UNIT, VOLUME, and SPACE parameters will be required. With respect to
SPACE, the transl:tor typically generates 2.2 cards of PL/I for every
card of GLYPNIR input (assuming the GLYPNIR input is not being copied
to PLIN). Other blocking factors may be used.

Card 9. This card defines the location of the GLYPNIR to be input
to the translator. The example assumes that the GILYPNIR cards follow

in the input stream.

See Appendix C for the condition codes returned by the translator.

5.2 THE PL/I COMPILE, LINK EDIT, AND GO STEP

The IBM-supplied cataloged procedure, PLILFCLG for PL/I Level F
Compile-Link Edit-GO, is used for these three steps. Only the pro-

cedure execution card and override DD cards are showm.

31~

10 // EXEC PLlLFCLG,REGION.PL1L=250K,COND.PL1L=(15,LT,GLYPLIT),
11 // PARM PL1L='SM=(2,72),SIZE=999999,STMT,NEST',

12 // TIME.GO=go-time,REGION. GO=go-region

13 //PLIL.SYSIN DD DSN=plin—file,DISP=plin—final-disp

14 //LKED.SYSLIB DD DSN=3YS1.PL1LIB,DISP=SHR

15 // DD DSN=GLYPLIT-execution-library,DISP=SHR

16 //LKED.SYSLMOD DD DSN=user-pds (mod-name) ,DISP=0LD

17 //GCO.SYSIN DD *

Card 10. The PL/I generatad for GLYPNIR programs of more than a
couple hundred cards usually causes the PL/I compiler to be inefficient
if the standard compilation region is used. The region shown, 250K,
usually results in economical compilation for programs under 1000 cards
of GLYPNIR. If the compilation time seems excessive, increase the
region; alternatively smaller programs may permit a decreased region.
(It takes " 25 CPU sec on a 360/91 to translate 500 typical GLYPNIk
cards, and 16 CPU sec to compile the 1100 generated PL/I statements.)
The COND.PL1L parameter shown stops compilation if TERMINAL errors
were made during translation. Even if SEVERE errors were made, it is
frequently worthwhile to be able to see the PL/I generated, although
a lower COND parameter may be used. (See Appendix C for condition codes
returned,)

Card 11. The SM=(2,72) part of the PLIL.PARM is included mainly
to exhibit the source margins ot the GLYPLIT generated PL/I; this value
is usually the compiler-supplied default. The SIZE subparameter is
necessary to take advantage of whatever REGION is supplied on card 10.
The STMT subparameter, also usually a compiler default, causes code to
be generated so that if the compiled program fails during execution,
error messages will include the PL/I statement number. (Appendix B
discusses tracing prob.ems back to the GLYPNIR.) The NEST subparameter
is very usefn! £:5: watching BEGIN or DD - END blocks.

Card 12. As always, it is important to provide a limiting "go-
time" for the execution step, and usually necessary to provide a '"go-
region" to override the small standard default.

In addition, it may pe desirable to override the PL/I and LKED
COND parameters, especially if PL/I messages at the ERROR level are

-32-

generated. As noted in Appendix B, some ERROR level messages may not
impede execution.

Card 13. The SYSIN card defines the input to the compiler. The
"plin-file" name may refer back to or be the same as the PLIN DD-name
from card 7, and the "plin-final-disp" will indicate the desired status
of the file after the job.

Cards 14 and 15. The LKED.SYSLIB definition is a concatenation
of the standard PL/I library and the jnstallation-defined residence of
the GLYPLIT execution library. This library includes all of the mathe-
matical and data manipulation functions built into the GLrPLIT system
(e.g., MAX, MIN, ROWSUM) as well as a routine called QQBCI for initial-
izing Boolean constants.

Card 16. The LKED.SYSLMOD card is optionally used to save the
final translated and compiled program for repeated execut'on with dif-
ferent user data. The example assumes an existing partitioned data
set within which the link-edited module is to be saved under the name
"mod-name"'.

Card 17. The GO.SYSIN card defines the source of any user data
(1f present). This card will be required if PL/I statements such as

Z%B GET FILE (SYSIN) EDIT(A,B,C)(3 F(10,4));

have been inserted with the GLYPNIR. Other DD cards may also be added
to the GO step if required by the user.

5.3 SEPARATELY COMPILED SUBROUTINES

This section presents only the additional JCL necessary t¢ trans-
late and ~ompile subroutines separately, followed by a link edit and
GO step to run them together. (See 2.9.3 for discussion or this option,
with examples.)

The JCL for the GLYPLIT step is the same, except that the "plin-
file" name must be changed for each separate translation if the results
are to be saved permanently,

Instead of a combined Compile-Link Edit-GO step, each plece is just
compiled separately with something like the following JCL:

-33-

20 // EXEC PL1LFC,PARM.PL1L='SM=(2,72),STMT'

21 //PL1L.SYSIN DD DSN=plin-file,DISP=plin-final-disp
22 //PL1L.SYSLIN DD DSN-object-pds(mod-namei),DISP=OLD,
23 // DCB=BLKSIZE=3200

Card 20. 1f the plece being compiled is small, the standard region
will probably be adequate.

Card 21, As before, except that 'plin-file" must be changed for
each separate translation if the output from each translation is being
saved.

Cards 22 and 23. This 1s the output from the PL/I compiler: an

object module named "mod-name," 1s saved in an already existing parti-

i
tioned data set with the name ''object-pds'". '"Mod-name," is the member

name for this module and should be different for each :eparately com-
piled routine.

To 1link edit and run the modules together, a separate Link Edit-GO
step may be used, or the final compilation may use the same Compile~Link
Edit-GO step shown above. If using PL1LFCLG, the only additional JCL

required is a //LKED.SYSLIN data set and a //LKED.OBJLIB card as follows:

15.1 //LKED.SYSIN DD DSN=*,PL1L.SYSLIN,DISP=0LD
15.2 // DD *

15.3 INCLUDE OBJLIB(mod-name1
16.1 //LKED.OBJLIB DD DSN=object-pds,DISP=0LD

mod-namez,...)

The cards are numbered to show where they belong in the PL1LFCLG
JCL shown above. All "mod-names" separately compiled and saved on the
"object-pds'" should be included (the new module just compiled is auto-
matically included and its name, 1f on the INCLUDE card, will be ignored).
The above is only one of many ways to accomplish the link edit, but

it is fairly convenient and short.

—34—

6. GLYPLIT OUTPUT

GLYPLIT generates two output files, SYSPRINT and PLIN, under con-
trol of the two user parameters GLY and PL1., File SYSPRINT contains
all messages issued during translation, as well as a listing of the
GLYPNIR input (1f GLY=1 or 3), and a listing of the generated PL/I (if
PL1=1 or 3), File PLIN is the iaput to the PL/I compiler. It contains
the generated PL/I (if PL1=2 or 2) and the GLYPNIR input as PL/I com~
ments (if GLY=2 or 3). {GLY and PL1 ave described in 4.1.2 and 4.1.3.)

6.1 SYSPRINT FILE

Figure 6.1 is a sample of the translator's SYSPRINT output. The
date, time, and GLYPLIT version number are shown at the top of each
page. Also shown is the nawe of the routine being translated at the
start of the page. For the main routine, the label on the first BEGIN
will be shown if it exists. (If nct, the name 'MAIN' will be used.

The translating name may be blank for the first ome or two pages.)

Page 1 of the output shows the PARM options specified by the user
as well as a complete list of options in force during the translation.

Subsequent pages include, for each card, the card number, the sub-
routine nesting level, and the BEGIN-END block level within the sub-
routine. These last two numbers may run a few cards behind the listing
of the card which starts the subroutine or block.

The translator messages format is fully described in Appendix C.

6.2 PLIN FILE

This is a card image file intended to be input to the PL/I compiler.
In addition to the PL/I (both generated and supplied by the user on %%
cards), it will contain the GLYPNIR input as PL/I comments if GLY=2 or
3. This option is useful during attempts to study both the results of
translation and the relationships between generated and user-supplied
PL/I. Two caveats: the GLYPNIR statement may appear & few PL/I state-
ments before the actual PL/I statements it caused to be generated; and

if several GLYPNIR statements appear on one card, the card will be

-35.

9

i

39vd

39vd

263668211

€G8:65:11

ln shain sl ¥ NS "R

00 INF* T4 1= 4001 1 1T 192
£0°0 = <Hf>04 1 T 092

t)°0 = <Q>04 1 682

A ON N 01 S32404 SIV0IY¥CD 3 1 a8s2

NI939 T 82

$4214 INIDdId*IA INIDdId* AN IN1OdId 962
4251 INIOAId*A INIOdId*N INIDdIS)IZAIT INILNOUENS 1174
XdYAY N 1AN0UENS 3 tanl 1 1 ¥s2

x 1 1 €s?

3 1 | G {74

taN3 2 1 1s2

¢ ON3 € 1 062

tON3 L 1 6%

t (V=0°2 -~ & 1 892
(V'300W*TIYIY + (V'3Q0N*T)IT1M)=dIV + ¥ = <D 4 L SEY T4
t <MD = V¥ € 1T 9%

N1938 € 1 (1%4

00 WN*T*1=1 4001 € LR 274

t11vda = WN € 1 €42

${0°T-1Vi0)eS521°0 = 41V 4 T 2%2

N 1936 2) G £ 74

N3HL O°1 ¥i9 1VuQ dI 2 T 092

! <F>dXa / 4430 = 1V¥Q 1 1 6€2

N1938 1 1 8€2

0G0 WP T¢1=r 4001 1 1 if2

¢ <1 + 2 AlQ WM EAQ = 4330 1 1 9€2

NN INID $1VuQat 4430447V TV3IYD 1 1 s€2

ty v3ud A G 7% 4

NI936 1 €2

9 AVYYV SHAOCHWS 2 1 2¢2

$(D INIOC2d IXY¥AY 3INILNOAUINS 1€2

TA31 N IINCHBNS T ¢aN3 1 1 a€z

¢ ON3 2 T 622

t ¥ - CT=F21E0 = <T-F> 1ED 4 T 82z

f v o+ <FP>LED = <P>1€ED 2 QY+ 4

¢ gs1130 = V 2 1 922

$3INIL 2L/2Q0/€Q 331va

1 =nW1
Q=9 SKW
0§ =SIOSH
Qs =539vd
2=11d
€=ATO
2L =S3d#

LEL Y 2L/20/€0 :31vQ

%3078 WeNS Q¥vd

TA3T 2ONILVIENVYL T°1 NOISH¥3A 11dATO

S1 NIILVISNVYHL SIHL ¥0d4 SNOILdU 40 :SI7 31374W0D ML

2L =S3d#*C=A0D

$SMOTIT104 SV 3uv 3131413345 SNOILJC WOLVISNVEL LI74AT0

SONITLVISNVAL 11 NOIS @A 114477

-36-

relisted several times (unchanged), once for each statement. (Note
that the expressions "IF Boolean expression THEN", "ELSE", "LOOP i,=
12,13,14 DO", "label:", etc., all count as ''statements' for multiple
card-listing purposes.)

Each PL/I statement contains a sequence identifier in columns
73-80, Columns 73-76 contain the first four characters of the label
on the first BEGIN (if it exists) or "MAIN" (if it does not). Columns
77-80 contain a (probably non-unique) sequence number. The same se-
quence number is given to all PL/I statements generated (directly or
indirectly) by a single GLYPNIR statement, and is equal to the card
number of the GLYPNIR statement., When an error occurs during execu-
tion of the transiated program, the system error message will usually
include the PL/I statement number. By referring to the SYSPRINT list-
ing generated during the PL/I compile step, the statement number may be
associated with the sequence number, which leads to the GLYPNIR card
number shown on the listing from the GLYPLIT step.

See Appendix A fur a general description of the PLIN file and

naming conventions followed.

-37=

Appendix A

GENERATED PL/I STRUCTURE

The purpose of this appendix is to aid those users who must study
the PL/I generated on the file PLIN. A discussion of overall structure
is followed by notes for individual statement types, and then the naming

conventions employed.

OVERALL STRUCTURE OF GENERATED PL/I

The first BEGIN :auses the generation of the statement ''label:
PROCEDURE OPTIONS(MAIN);'" where the label is the label on the BEGIN (if
it exists) or 'MAIN' (if there is no label). Following this are always
a large number of DCL statements fo: MODE, PEN, the various built-in
functions, etc. Than comes the bulk of the user's program, and finally
additional DCL statements for Boolean constants, the IF Boolean expres-
sion stack, formal and actual parameters, and any other variables that

the translation may require in addition to the user's variables.

NOTES TOR SELECTED INDIVIDUAL STATEMENT TYPES

Assigament Statements and Generated DO Loops

The translator has two main tssks, The first is to change GLYPNIR's
syntax to PL/I's. Thus, LOOP I=1,1,5 DO becomes DO I=1 TO 5 BY 1. The

second and major task is to "put in the inner DO loops". Thus

PREAL P1,P2,P3;
P1=P2+P3;

becomes

DCL (P1,P2,P3)(0:63) FLOAT BIN(21);
DO 0Q=0 TO 63;
IF MODE{QQ) THEN DO;
P1(QQ)=P2(QQ)+P3(QQ);
END; END;

-38-

It 18 clearly desirable to collect as many assignment statements as
possible into the same DO, therebv reducing the overhead associated
with the DO and IF MODE(QQ) statements. Assignment statements are
collected into the same DO as long as "hey do not have a CU lefthand
side, and do not have any routing conflicts with assignments already

in the DO. An example of this last condition would be the following:

PREAL P1,P2,P3;
P3 = RTR(1,,P1);
Pl = P2

RTR(1,,Pl) is translated to P1(MOD(QQ-1,63}). If the two assignment
statements are collected in the same DO, then P1(QQ) will be updated
by the second assignment before it is used by the first,

If the routing corflict occurs in the same statement, then a

temporary lefthand side 1s needed. Thus

PINT P1;
P1 = RTL(1,,Pl);

becomes

DCL P1(0:63) FIXED BIN;

DO QQ=0 TO 63; IF MODE(QQ) THEN DO;
QQAST(QQ)=P1(MOD(QQ+1),63) ;
END; END;

DO QQ=0 TO 63; IF MODE(QQ) THEN DO;
P1(QQ)=QQAST(QQ);

The models for arithmetic assignment statements and routing have
already been given by example above. The model for Boolean assignments,
shown by example below, are d’.fferent from arithmetic assignment state-

ments. This 18 because a Boolean relation containing PE variables is

-39~

automatically true in off PEs (as per 6.3.1 in the GLYPNIR Programming
Manual), but is not affected by the MODE if it does not contain Pi

variables.

PE variables appear in Boolean expressions chiefly in relations.

For Bcolean assignments with PE relations,

becomes

BOOLEAN B1,B2,B3;

PINT P1,P2,P3;

Bl = P1 GEQ P2 OR B2 AND P1 LEQ P3;
B2 = Bl AND B3;

DCL(B1,B2,B3)(0:63) BIT(1l);
0C.(P1,P2,P3)(0:63) FIXED BIN;
DO QQ=0 TO 63;

IF MODE (QQ) THEN DO;

QQRE1(QQ) = P1(QQ) >= P2(QQ);

QQRE2(QQ) = P1(QQ) <= P3(QQ); END;
ELSE QQREL(QQ),QQRE2(QQ) = TRUE;
B1(Q0} = QQRE1(QQ) | B2(QQ) & QQRE2(QQ);
B2(QQ) = B1(QQ) & B3(QQ);

where QQREl and QQRE2 are declared at the end of the generated PL/I as

BEGIN

DCL (QQRE1,QQRE2)(0:63) BIT(1l);

A BEGLN becomes a DO/*BEGIN*/ unless it is followed by declarations.

Declaration Statements

PL/I attributes correspond to the different GLYPNIR types as follows:

-40-

GLYPNIR PL/I

REAL FLOAT BIN(21) single precision

REAL FLOAT BIN(53) double precision (see 4.2.3)
INTEGER FIXED BIN(31)

BOOLEAN BIT(1)(0:63)

In addition, for PREAL or PINT types the dimensionality attribute
"(0:63)" (actually O:{PES) is appended.

The %%C EXTERNAL option (see 4.2.2) causes the "EXI" attribute to
be appended.

For subroutine statements, declarations are added for the entry
point in front of the subroutine and for the formal parameters after

the subroutine declaration. Thu,,

PREAL SUBROUTINE S(PCPOINT V1, PREAL P1, CINT OUT Cl);

hecomes,

DCL SSS ENTRY ((*,*) FLOAT BIN, (*) FLOAT BIN,
FIXED BIN, (0:63) FLOAT BIN):
SSS: PROCEDURE (V1, P1,C1,QQFRP);
DCL Vi(*,*) FLOAT BIN, P1(*) FLOAT BIN, Cl1 FIXED BIN,
(S,QQFRPR) (0:63) FLOAT BIN:

Note the addition of the fourth parameter for this sample function
subroutine. The result is returned in QQFRPR, so that a function may
be called more than once per statement. Throughout the function sub-
routine, references to S (the original function name) are left unchanged.
Then, at the end of the function subroutine, S is assigned to QQFRPR.
Non-function subroutines do not require the extra parameter, and do

not have their name prefixed by SS.

IF (and ELSE), FOR, and WHILE Statements

These three statements are all characterized by a controlling
Boolean expression (abbreviated cbe), and generate similar code. Their

general GLYPNIR form is

-41--

keyword cbe DO statement

For IF, the 'DO' is replaced by 'THEN'. For the ELSE part of the IF,
the cbe is implicitly the negation of the cbe following the IF keyword.
There are two main variatioas, depending on the presence of PE and

Boolean variables in the cbe versus a cbe with only CU variables.

Only CU Variables in the cbe. The IF-ELSE recuires no translation.
The WHILE becomes

QQWl: 1IF cbe THEN DO;
statement;
GO TO QQWl;
END;

A FOR cbe must contain non~-CU variables.

PE or Boolean Variables in the cbe. The form for all in

QQM1 = MODE; /* An array assignment statement to save the mode */
QQW1l: /* the label only for WHILE statements */

DO QQ = 0 TO 63;
IF MODF{QQ) THEN
QQIFBE1(QQ),/* for 1Fs*/ MODE(QQ) = cbe
END;
IF ANY (MuoR) THEN DO: /* only for WHILE statements */
statement,
GO TO QQWl: END; /* only for WHILEs */
/* the following DO and statement, present only for ELSE
statements */
DO QQ = TO 63;
IF QQM1(QQ) THEN MODE(QQ) = —QQIFBEL(QQ);
ELSE MODE(QQ) = FALSE;
END;
statement, /% statement body &f ELSE */
MODE = QQM1 /* restore original mode */

NAMING CONVENTIONS

With one exception, all user-declared names of variables are un-
changed in the PL/I. The one exception is function subroutines. These
have the characters 5S prefixed to their names. {(This need not be done
by the user for separately-compiled function subroutines, because the
translator does it automatically.)

The following shows the various temporary variables and labels
created by the translator, as well as a brief description of their
types and uses. Small "x'" represents an integer which, for each name,
increases frouw one by one to make each instance of a name unique {where
necessary). Note that all names start with "Q('. Users should thus
avoid QQ except to achieve specizl effects by using one of the follow-

ing names, '(0:63)" should be interpreted as '(0:#PES)'.

Name Iype Use

Q FIXED BIN(16) "PE" index for generated iterative
DOs.

QQAPX (0:63) FLOAT BIN(21) Actual parameters that are complex

PE expressions are evaluated outside
the subroutine call and assigned to
temporaries QQAPx.

QQFRBx (0:63) BIT(1) Boolean-type function subroutines
return their multiple values to a
final added argument of this form.

QQrRCIx FIYED BIN(31l) CU-type: function subroutines return
their value to a final added argu-
ment of this form (mainly for con-
sistency with multiple value PE
functions). Type INTEGER.

QQFRCRx FLOAT BIN(21) Similar to Q.!FRCIx, but type REAL.

QQFRPIx (0:63) FIXED BIN(31l) PE-type function subroutines return
their multiple values to a final
added argument of this form. Type

INTEGER.
QQFRPRx (0:63) FLOAT BIN(21) Similar to QQFRPIx, but type REAL,
QQIFBEx (0:63) BIT(1) Preserves the controlling Boolean

expression of an IF for use by a
possible matching ELSE.

-43-

Name Iype Use
QQMx (0:63) BIT(1) A mode "stack" for preserving the

mode before an IF, FOR, or WHILE
if the controlling Boolean expres-
sion contains PE or Boolean

variables.

QQ#PES FIXED BIN(16) Number of PEs being simulated from
user-parameter #PES.

QQREx (0:63) BIT(1) Because of the different MODE treat-

ment necessary for Boolean assign-
ment statements containing PE
relations versus those without,
these relations are evaluated
separately and assigned to tempor-
aries QQREx.

The GLYPNIR functions listed below are all supplied by the load
module GLYSUBS, which must be link edited with th. compiled PL/I result-
ing from a translation. 'x' will be 'R' for REAL or 'I' for INTEGER,
depending on the argument type.

Name Type Use

QQEVERY function BIT(1) Function to evaluate Boolean quan-
tifier EVERY.

QQSOME function BIT(1) Function to evaluate Boolz:an quan-
tifier SOME.

QQPORx “unction FLOAT BIN 'ORs' together all values of its
PE argument to produce a CU
variable,

QQGR:Bx function See GPM 10.10.

QQMAXx function See GPM 10.9.1.

QQMINx function See GPM 10,9,2.

QQROWSx function See GPM 10.11.

b4

Appendix B

SELECTED PL/I COMPILER AND EXECUTION MESSAGES

This appendix discusses some of the common messages that may
arise during compilation or execution of the generated PL/I. It also

describes how to trace problems from the message back to the GLYPNIR.

PL/I COMPILER MESSAGES

All PL/I messages appear at the end of the PL/I listing and fall
into one of four levels: WARNINGS, ERRORS, SEVERE ERRORS, and TERMINAL
ERRORS.,

In GLYPLIT applications, TERMINAL messages usually indicate a com-—
piler error, or an implamentation restriction exceeded. In the first
case, the only thing to do (before IBM arrives) is to twiddle the PL/I
by changing the GLYPNIR. (The CHECK condition prefix and the optimiza-
tion level of the compiler are often associated with terminal errors.
Removing CHECKS, and/or including 'OPT=0' in the PL1.PARM often cures
them.) Implementation restrictic:'s are discussed in Appendix J of the
PL/I (¥) Programmers' Guide [3]. In this case, the solution is to break
up the GLYPNIR so that the restrictiou is not exceeded. (Exceeding the
number of blocks restriction causes TERMINAL message IEMOO71I and re-
quires separating the GLYPNIR into one or more separately-compiled
routines. See 2.9.3.)

SEVERE messages are usually the result of syntactically :ncorrect
PL/I. 1I1f a GLYPLIT message was not generated during translation for
the statement in question, the translator has generated bad PL/I and
should be reported to the GLYPLIT distributor. Usually, however,
translator messages have also been generated and once the GLYPNIR is
corrected, the PL/I problems will cease.

ERROR messages may indicate syntax errors (in which case the solu-
tion is the same as for SEVERE messages) or may refer to certain imple-
mentation restrictions. In particular, ERROR message IEM2867I will be
generated if any external (separately-compiled) subroutine or variable

name exceeds seven characters (see the note at the end of 4.2.2)., As

45—

long as the first four characters and the last three form a unique
name, this will cause no problems (although it will require a COND=
(8,LT,GLYPLIT) override in the LKED step, because a return code of 8
will be returned).

In most cases, there should be no ""RMINAL, SEVERE, or ERROR
messages. WARNING messages, however, .'v be frequently generated for
data and parameter conversions and other conditions. These should al-
ways be checked, especially data conversions, as they may reveal un-
expected problems.

User-supplied PL/I may, of course, cause messages at all levels.

COMPILED CODE EXECUTION MESSAGES AND TRACING PROBLEMS
BACK TO THE GLYPNIR

PL/I executicn messages are of the form

IHEmmmI message text IN STATEMENT nun NEAR OFFSET aaa

FROM ENTRY POINT ccc

where
mmm identifies the message;
nnn gives the PL/I statement number (if the STMT option is
included as described in 5.2, card 11);
asa 1s an address (usually of little interest unless it is
outside of the program address space, in which case PL/I's
error recovery has failed);
ccc gives the PL/I subroutine nas. containing the offending
statement number;+ and
message text will briefly dervribe the error (e.g., OVERFLOW,
ZERODIVIDE, PROTEZZION VIOLATION, etc.).
T

The main program will be called MAIN if no label is prefixed to

the first BEGIN (see 2.2.10). Also, since GLYPLIT prefixes all func-

tion subroutine names with 'SS' (see 2.9.1), 1if an error occurs inside
of a function subroutine named FUNC, then ccc will be SSFUNC.,

-46-

The message text and the message explanation, which may be found
in Appendix K of the PL/I (F) Programmers' Guide [3], will usually de-
fine the nature of the error.

The error may be traced back to the GLYPNIR as follows:

The PL/I statement number (nnn in the message format above)

identifies the PL/I statement. Then, given the PL/I listing,

the sequence number in columns 77-80 of the card image contains
the corresponding GLYPNIR card number shown on the GLYPNIR
listing during translation. The particular GLYPNIR construct
on the card may usually be identified from the offending

PL/I statement text.

Two caveats: the sequence number and card number may not always
agree exactly, so a little matching of the GLYPNIR and the PL/I text
may be necessary; and if the entry point ccc is a GLYPLIT execution
library subroutine (like QQROWSUx or QQMAX), then, since PL/I does
not provide a traceback, the offending GLYPNIR must be i{dentified by
examining all of the named subroutine calls in relation to the user-
generated output.

Note that, for debugging purposes, conditions like ZERODIVIDE may
be disabled with condition prefixes as described in 3.4. Similarly,
if PROTECTION VIOLATION or other addressing problems occur, SUBSCRIPT-
RANGE may be enabled to find the usual cause of these problems.

=47~

Appendix C

GLYPLIT MESSAGES

The messages listed below are produced by GLYPLIT during a trans-
lation and are written on SYSPRINT intermixed with the GLYPNIR listing.

Messages fall into one of four levels as follows:

WARNING:

ERROR:

SEVERE:

TERMINAL:

Indicates a syntax or other error, which was probably

corrected acceptably. Generates RETURN CODE = 4,

Indicates a syntax or other error, which may (rarely)
have been corrected. Will usually cause & PL/I mes-
sage at the ERROR level. Generates RETURN CODE = 8,

Indicateas a syntax error, for which no correction was
attempted, or a translator internal table overflow.
PL/I generated probably also syntactically incorrect
at the SEVERE level. GLYPNIR input text usually
skipped up to the next BEGIN, END, or SEMICOLON.
Generates RETURN CODE = 12,

Usually not a syntax error, but indicates a ”.YPLIT
internal consistency check failed. Plear. report to
GLYPLIT distributor. Suggestions are given with each
message below for rearranging code to attempt to get
around problem. Generates RETURN CODE = 16.

Megsages listed on SYSPRINT have the format:

Rk k ki

level: message text *k mggno **

where "level" 1s one of the four levels discussed above, and "msgno" is

an integer which uniquely identifies the message. If a message must be

continued on more than one line, then lines after the first will have a

magno of O,

In the list of messages below, each message is given in the format

msgno L message text

explanation and/or suggestions if necessary

-48-

where "L" 1s an abbreviation for the ievel of the message: W,E,S,and
T, respectively. In the message text. ''ccc" represents a character
string filled in from the GLYPNIR, and '"nnn" represents an integer.

GPM refers to the GLYPNIR Programming Manual [1].

1 S PROGRAM DID NOT START WITH <ID:|> BEGIN OR A SUBROUTINE DECLARATION.
A main program must start with a BEGIN, optionally preceded by
an ID; or a subroutine declaration if it is a separately trans-
lated subroutine (see 2.9.3). "MAIN:BEGIN" was assumed.

2 S UNRECOGNIZABLE SYNTAX.
This message may be generated for rather trivial errors in
statements that, at first glance, look correct. It is fre-
quently the result of a missing semicolon, a misspelled keyword,
not having a space between a keyword and a '(' or ')', etc.

3 S NEST OF LOOP, FOR, WHILE, IF, AND/OR ELSE STATEMENTS TOO DEEP
LIMIT IS 10,
These statements may be nested, i.e., completely contained within
each other, up to a maximum depth of). An 'IF' and its corre- '
sponding 'ELSE' count as 1. The solution .s to break up the
structure by using statement labels and GO TO stata=ments.

4 S BOTH SIDES OF AN ASSIGNMENT STATEMENT MUST BE Of THE SAME TYPE--
BOOLEAN OR ARITHMETIC.
See GPM 7.1.

5 § LOGICAL END OF PRNGRAM FOUND BEFORE END OF GLYPNIR INPUT. ERROR
SCAN CONTINUES.
This means that at least one more 'END' has been parsed success-
fully than "BEGIN'. BEGINs may be lost due to syntax errors in

a statement just pefore a BEGIN.

6 S cce NOT DECLARED AS A LABEL, BUT WAS DECLARED ON CARD NUMBER nnn.
Generated either for a GO TO with an undeclared destination or
for 'ccc:' if ccc 18 not a declared label. In the later case,

may be a result of using a ':' instead of a ';'.

7 T UNKNOWN QQCTRL = nnn.,
Report to GLYPLIT distributor. May sometimes be cured by re-

moving %%C cards.

10

12

13

15

16

-49-

THE BODY OF A FOR, LOOP, OR WHILE STATEMENT MAY NOT BE LABELED.
See GPM 8.3, 8.1, and 8.4, respectively. These statements all
require setting up iterative counts or other tests and a branch

directly to the body would miss the settings.

FCSTI # O AT SUBROUTINE CALL, FCSTI = nnn.

Report to GLYPLIT distributor. May sometimes be cured by re-
moving any nested function calls or function calls as parameters.
LABEL ccc MUST BE DECLARED IN THE INNERMOST BLOCK IN WHICH IT

IS USED.

The PL/I code will probably execute correctly, but this is a
GLYPNIR error as stated in the GLYPNIR Programming Manual.,

LOOP STATEMENT HEADERS MUST CONTAIN ONLY CU VARIABLES.

See GPM 8.1. The iterative FOR is the correct substitute if
PE variables are required, but it is not implemented, so the
user must do the incrementing and testing with assignment, IF,

and GO TO statements.

ONLY 'FOR ALL' STATEMENTS ARE IMPLEMENTED.

The two unimplemented kinds of FOR statements are the iterative
FOR (for which the user may substitute his own IF, assignment,

and GO TO statements), and the FOR ANY, which is obsolete (and

for which the user may usually substitute a FOR ALL).

'IF' STATEMENTS NESTED TOO DEEPLY--LIMTT IS 10.
Replace some of the nested IF structure with statement labels

and GO TO statements.

THE ELSE 1S NOT MATCHED BY A PRECEDING IF,

This means thst at least one more 'ELSE' has been successfully
parsed than 'IF'. It may result from a syntax error in a pre-
ceding IF. In a nest of IF/ELSE statements, this message may

appear at the end of the nest rather than with the actual un-

matched ELSE.

17

18

19

20

21

22

23

24

25

=

FORMAL PARAMETER 'ccc' DOES NOT HAVE A LEGAL TYPE. CREAL
ASSUMED.

The TYPE of a formal parameter must be declared with the
parameter in the subroutine declaration, e.g., TYPE PREAL
for P1 in SUBROUTINE S(PREAL Pl). See GPM 9.1.

TYPE ccc IS NOT IMPLEMENTED. PREAL ASSUMED.
In GLYPLIT, only types CREAL, CINT, PREAL, and PINT are

allowed.

DIMENSION MUST BE BETWEEN O AND 2049. 100 ASSUMED.
Note that in GLYPNIR, subscripts always run from 0 to the

dimension given.

SUBROUTINE DECLARATIONS NESTED TOO DEEPLY. LIMIT IS 5.
The solution is to declare subroutines at same level instead

of within each other.

ALL DECLARATIONS MUST BE AT TME HEAD OF THE BLOCK.

The generated PL/I will probably be correct because this is
not a PL/I restriction, but it is a GLYPNIR error.

'cec' MUST BE A CU EXPRESSION.

'cce' MUSYT BE A PE EXPRESSION.

IF A FORMAL PARAMETER IS DECLARED TO BE A POINTER, THEN THE
ACTUAL PARAMETER MUST BE AN UNSUBSCRIPTED VECTOR NAME.
Subroutine declarations are the only circumstance in GLYPLIT
where pointers are permissible. As noted in Chapter 5 of the
GLYPNIR Programming Manual, this is the only mechanism for
passing unsubscripted vectors, i.e., wholas arrays, to sub-
routines. To pass a subscripted vector parameter, i.e., a
single element of a vector (e.g., a row for PE vectors cf a
scalar for CU vectors), the formal parameter declaration ic
just CREAL, PREAL, CINT, or BOOLL:N. See also 2.9.

cce HAS BEEN DECLARED AS A VECTOR AND MUSY BE SUBSCRIPTED.
This occurs for an unsubscripted vector name as an actual
parsmeter when the corresponding formal parameter is net of

type POINTER. See also message 24,

26

28

29

30

31

32

-51-

FUNCTION_CALL END_S, BAD PROC-SYNTAB-PT.
Report to GLYPLIT distributor. May sometimes be cured by re-

arranging function calls.

ccc NOT DECLARED AS A FUNCTION.

An attemnt was made to use ccc as a function subroutine, but it
was nct declared with a type, e.g., PREAL SUBROUTINE ccc and
so it may only appear as a subroutine call, i.e., 'ccc;'.
NUMBER OF PARAMETERS IN CALL TO ccc DOES NOT AGREE WITH

NUMBER DECLARED.

Although GLYPNIR permits missing parameters, GLYPLIT does not.

ROUTES WHERE THE <MODE PATTERN> 1S NOT EMPTY MAY CAUSE PROBLEMS.
See this GLYPLIT Manual 2.10.2.

IMP AND EQV ARE NOT IMPLEMENTED. PLEASE USE PL1 BOOL FUNCTION.
This refers to the Boolean operators IMP and EQV. The BOOL
function may be used as follows:

B1(QQ)IMP B2(QQ) = BOOL(B1(QQ),B2(QQ), '1101')

B1(QQ)EQV B2(QQ) = BOOL(B1(QQ),B2(QQ), '1001')

Because Bl and B2 represent Boolean variables, their PL/I
declarations will be Bx (0:63) BIT(1). In GLYPFIR, the
statement might be

B3=Bl1 IMP B2;

But in the translated PL/I the user must supply the DO loop.

Thus the complcte user-supplied substitute for the above
statement would be:

ZZB DO QQ=0 TO 63:

%% B3(QQ)=BOOL(B1(QQ) ,B2(QQ),'1101'); END;

THE FIRST CHARACTER CF A HEX CONSTANT SHOULD BE =< '97,
See GPM 4.5.1.

HEX CONSTANTS HAVE A MAXIMUM LENGTH OF 16 SIGNIFICANT HEXITS.
A hex constant may contain 17 characters only if the first is

'0'. It may never contain more than 17 characters.

34

37

39

40

41

42

43

-52-

ccc NOT DECLARED AS A VECTOR. MAY BE CAUSED BY USING < FOR LSS.
This occurs if an attempt is made to subscript a name that

has not been declared as a vector. Note: this will occur 1f
"<" i3 used for "less than", e.g., P1<P2, since '<" also de-

limits subscripts. Use "LSS" for "less than".

SUBSCRIPTS ARE NESTED TOO DEEPLY, LIMIT IS 5.

E.G., A<B<C<D<E<F<G>>>>>> {is one too many.

ccc NOT DECLARED,

Will occur if the declaration of ccc contained a syntax error

or 1f the BEGIN-END blocks structure is in error. Note that in
GLYPNIR, all variables must be declared. Also, any global vari-
able used in a subroutine declaration, i.e., used in the body of
the subroutine but declared in the main program, must be declared

before the subroutine.

ccc HAS BEEN DECLARED AS A VECTOR AND MUST BE SUBSCRIPTED.
This occurs for unsubscripted vector names appearing other than

as actual parameters., See also mesgsage 25.

REACHED END OF GLYPNIR INPUT BEFORE LOGICAL END OF PROGRAM.
Means successfully parsed at least one more 'BEGIN' than 'END',
An END may have been lost if it was not preceded by a semicolon

and/or a syntax error occurrec.

PROGRAM SHOULD END WITH 'END:'.
Final period is probably missing.

ccc ALREADY DECLAREL IN TAIS BLOCK ON CARKD nan,
A variable may be redeclared in an inner block, but not twice

in the same block. BEGIN-END structure probably wrong.

MSG MAY NOT BE SET GREATER THAN 3.

The user PARM parameter MSG may not be set so as to lgnore
TERMINAL messages. 3 assumed.

THE FOLLOWING PART OF THE INPUT PARAMI'TER WAS UNRECOGNIZABLE:
'cee!

This refers to the PARM parameter ivom the JCL EXEC card. ccc

shows the offend’ng part of the parameter.

44

45

46

47

48

49

~53-

MUST HAVE 1<{PES<999. 64 ASSUMED.

IF GLY PARM IS 2 OR 3 THEN PL1 PARM MUST BE 2 OR 3.

That 1is, if the GLYPNIR input is to be copled to the PLIN
file, ther there must be a PLIN file requested. Two is
added to parameter PLL.

MUST HAVE THE FOLLOWING RELATIONSHIPS: LC,RC,CC<81; LC<RC;
AND (CC<LC OR CC<RC).

That 1s, all source must be on an 80 or less column card
image; the left margin must be to the left of the right
margin; and any carriage control column must be outside of

the source margins. Asaumed LC=1, RC=72, CC=0.

APPARENTLY MISSING SEMICOLON. SEMICOLON INSERTED BEFORE ccc...
This message rarely appears, because the translator seldom

can parse the input if semicolons are missing.

TRUNCATION HAS OCCURRED. MAYBE JUST NAME>31 CHARACTERS.

CHECK PL1 GENERATED.

During translation, many pieces of the GLYPNIR must be placed
into tewporary locations, all of which have fixed maximum sizes.
If the translator attempts to store a piece in a temporary loca-
tion too small for it, then the viece will be truncated, i.e.,
all characters past the limiting size will be lost and this
message will be issued. Names of leagth > 31 characters are
truncated in this manner (as stated in 2...4), and as long

as the first 31 characters are unique, no problems will arise.
However, truncation of other syntactic constructs, e.g.,

actual and formal parameters, subscripts, etc., will usually
result in erroneous PL/I. When this message appears, the

user should check the PL/I to see if the translation of the
offending statement is coirect. Usually, a PL/I compiler

error message will also result. The solution is to determine
the truncated construct and break it into smaller pieces.

'ELSE' MUST BE PRECEDED BY A STATEMENT OR BLOCK AND NOT BY A .
SEMICOLON.

The form "IF <Boolean expression> THEN 8;3 ELSE sz" is incorrect.
No semicolon should be present. 8, and s, must be single state-

ments or BEGIN-END blocks.

54—

5C E LABELS ON FLSE STATEMENTS MUST FOLLOW THE 'ELSE', NOT PRECEDE 1IT.
See GPM 8.5.

51 S DECLARATIONS MAY NOT BE LABELED.
52 S FUNCTION CALLS NESTED TOO DEEPLY. LIMIT IS 5.

53 W TRIED TO TAKE ddd OF CU value 'cecc'. USED CU VALUE SHOWN DIRECTLY.
ddd is either MAX, MIN, or ROWSUM. 3ee GPM 8.9 and 8.11.

54 W ALREADY INSIDE ccc DCL BLOCK. NEW 'START ccc' CARD IGNOEED.
Refers to 7%ZZC option.

55 W NOT INSIDE ccc DCL BLOCK. 'END ccc' CARD IGNORED.
Refers to %%C option.
56 S STATEMENT TOO LONG. NUMBER OF CHARACTERS BETWEEN SEMICOLONS MUST

BE LESS THAN 257 (NOT COUNTING ALL BUT ONE LEADING AND TRAILING
BLANKS ON EACH CARD).

See 2.2.5 in this manual.

57 W EXTRA SEMICOLON IGNORED.
Extra semicolons are illegal in GLYPNIR.

56 S 'WHILE' STATEMENTS NESTED TOO DEEPLY. LIMIT IS 10.
Replace WHILE structure with IF and GO TO statements, but note
limit on depth ¢f a structure made of any combination of IFs,
WHILEs, and FORs is also 10.

59 S A SUBROUTINE MAY NOT CONSIST OF A SINGLE IF STATEMENT. PLEASE
ENCLOSE THE IF STATEMENT IN A BEGIN-END BLOCK.
This is a translator restriction.

60 S RE PARAMETER NUMBER nnn: EITHER BOTH THE FORMAL AND ACTUAL

PARAMETERS MUST BE BOOLEAN OR NEITHER MAY BE. NO CONVERSION
IS POSSIBLE.

If a formal parameter is of type Boolean, then the argument

mus ¢ be also, and vice versa.

61 W 'EXT%RNAL' ATTRIBUTE NOT ALLOWED IN SUBROUTINE DECLARATION.
IT HAS BEEN IGNORED.

The word EXTERNAL is used as part of the entry declaration only
in the routine which calls the subroutine. See Sec. 4.2.4.

62 W ALREADY INSIDE BLOCK OF COMMON DECLARATION. SECOND COMMON
STATEMENT WITHOUT INTERVENING ENDCOMMON STATEMENT IGNORED.

63 E NOT IN BLOCK OF COMMON DECLARATIONS. I.E., NO COMMON STATE-
MENT TO MATCH ENDCOMMON STATEMENT. ENDCOMMON IGNORED.

Appendix D

SUMMARY OF JCL PARM OPTIONS

The following options are input as a list, PARM='list', on the
GLYPLIT EXEC card (see card 2, 5.1). They are fully described in 4.1

under the subsections shown.

Subsectien Name Range Default Meaning
4.1.1 {#PES 1-999 64 Number of PEs for which code
is to be generated.
4,1,2 GLY 1 List GLYPNIR on SYSPRINT,
List GLYPNIR on PLIN,
List GLYPNIR on both SYSPRINT
and PLIN.
4.1,3 PL1 1-3 2 Same as GL'{ but refers to
generated PL/I.
4,1.4 PAGES >0 50 Maximum number of SYSPRINT
pages allowed.
4,1.5 MSGS >0 50 Maximum number of messages
allowed on SYSPRINT.
4,1.6 MSG 1-3 1 Minimum cignificant message
level.
4.1.7 LC 1-80 1 Source text left margin.
RC 1-80 72 Source text right margin.
cc 0-80 0 Carriage control character
column,
4,1.8 BCRC 1-64 1 Number of bits to repeat for

Boolean constants if #PES > 64,

-56-

Appendix E

SAMPLE JCL LISTINGS

The following five annotated figures show sample JCL for:

Figure Contents

E.1 Translation

E.2 Translation and compilation

E.3 Translation, compilation, link edit,

and execution

E.4 Translation and compilation of a
separate routine

E.5 Translation and compilation of a
final separate routine followed
by link edit and execution of
several routines

-57-

//TRANS JOB PARAMETFRS

/FGLYPLIT FXEC PGM=GLYPGN,REGION=300K

//STEPLIR 9D DSN=LGLYPLIT,DISP=SHR

//SYSPRINT D SYSOUT=A.DCB=(RFCFM=VBA.LRFCL=125oHLKSIZE=3129)

//PLIN DD DSN=8£TEMP.DCH=(RFCFM=FBoLRFCL=ROoHLKSIZE=ROO)9UNIT=SYSDAo
// DISP=NEW,SPACE=(TRK,(1,1))

//GLYPNIR DD =

GLYPNIR INPUT DECK

/%

Fig. E.1--Translation

//TRANCOMP JNR PARAMETERS

//GLYPLIT EXEC PGM=GLYPGO,RFGION=300K

//STRPLIB DD DSN=LGLYPLIT¢DISP=SHR

//SYSPRINT DD SYSOUT=A.DCB=(RECFM=VBAoLRFCL=125oBLKSIZE=3129)

//PLIN DD 05N=88TEMP.DCB=(RECFM:FH,LRFCL=RO,BLKSIZE=800),UNIT=SYSDA.
/7 DISP=‘NEWvPASS)1SPACE=‘TRK9‘101))

//GLYENIR DD %

GLYPNIR INPUT DECK

//PL1 EXEC PLlLFC,RFGIﬂN.PL1L=250K'PARM.PL1L='SI£F=999999',
//PL1L.SYSIN DD DSN=% . GLYPLIT.PLINJODISP=0LD
/%

Fig. E.2--Translation and Compilation

Note:

1. The REGION.PLIL and SIZE subparameter assume a large program
(>350 cards of GLYPNIR).

58~

// RANCLG JOB PARAMETFRS

//GLYPLIT EXFC PGM=GLYPGNHREGION=3(00KPARM=VHPFS =4

//7SVEPLIB DN DSN=LGLYPLIT,DISF=SHR

//SYSPRINT DD SYSOUT=A,NCR=(RFCFM=VBA,LRFCL=137,RBLKSIZ2F=65R4)
//PLIN DD DSN=EETeMP+DCB=(RFCFM=FRB,LRFCL=RO,RLKSIZF=800),

// DISP=(NFWPASS Y JUNTT=2YSO VY, SPACE={TRKy(141))

//GLYPNIR DD %

£ THIS PRNOGRAM READS IN A 4 BY 4 ARRAY (NOTF THAT THF

% NUMBER OF PES=4) AND PRINTOUTS THE ARRAY, THF MAXIMIM

% VALUF IN THE ARRAY, THE MININUM, aNl) THE AVERAGE (IF AlL

% ELEMENTS IN THE ARRAY,

P

NDEMOS: BFGIN

PREAL VECTOR X<3>: % ALL VFCTORS HAVE A LOWER DBOUND OF 0,
CRFAL MAXIMUM, MIMIMUM, SUM, TEMPS

CINT 1.

%

ZEB GFT FILE(SYSIN) ENITIX) (&4 (4 F(5,C)4SKIP));

4

MAXTIMEM = MAX(X<OD>)3 MINIMUM = MIN(X<O>): SUM = ROWSUM{XO>):

LOOP 1=1,1,3 NN
BEGIN
TEMP = MIN(X<I>);

IF TEMP LSS MINIMUM THEN MINIMUM = TEMP:
TEMP = MAX(X<I>):
IF TEMP GTR MAXIMUM THEN MAXIMUM = TEMP;
SUM = SUM + ROWSUM(X<I>):
END:
%
2%B PUT FILF(SYSPRINT) EDIT('THF ARRAY =1,X,'THF MAXIMUM =1,
2% MAXIMUM, V THE MIMIMUM =0 ,MINTMIMy * THE AVERAGE =1,
%% SUM/16.0)
%% (Ayd FBy2)93 (SKIP,X(11)y4 F(By2)),
2% 3 (SKIP(2)4AsF(B,2)))2
END.
//PLY EXEL PLILFCLG . CONDGPLIL=(9,LT,yGLYPLIT),
/1 TIMELGO=(410)4RFGININ.GO=100K

//PLILGSYSIN DN DSN=#,GLYPLITPLIN,DISP=1'LD
//LKEDLSYSLIB DD DSN=LGLYPLIT,NDISP=SHR

// DD DSN=SYS1.PLILIR,DISP=SHR

//7GOLSYSIN DD =

2. 3. 4o 5

6. T le B.

9. 16 10. 11,

12 13. 14, 15.

Fig. E.3--Translation, Compilation, Link Edit, and Execution

Notes: 1. This 1s a complete sample. With only minor changes to the
JCL (the JOB card and the data set named LGLYPLIT), the
new user may run this as an aid to getting started.

2. The purpose of the codes are stated in the comments heading
the program.

3. For those unfamiliar with PL/I input/output, the PUT EDIT
statement at the end should be helpful.

-59-

//7MAIN JNHR PARAMETFRS

//7GLYPLTT EXFC PGM=GLYPGOREGINN=300K,

// FARM='#PFS=41

//7STFPLIR DD DSN=LGLYPLIT.NISP=SHR

//7SYSPRINT DD SYSOUT=A4NCR=(RFCFM=VBA,LRFCL=1254BLKSTIZF=31279)
J/7PLIN BD DSN=EETEMP (DCR=(RFECFM=FH,I.RFCL=RDRLKSIZF=R00) UNTT=SYSDA,
// NISP=(NFWLPASS) 4 SPACE=(TRK,4{1,1))

//GLYPNIR DD

MAINM: BEGIN % SAMPLE MAIN PROGRAM
Y%C EXTFRNAL

PREAL P2

EAC SUBR

SURROUTINF S{PRFAL P1);

P2 = 7.0¢

IF ROOLFAN{OTFFFFFFFFFFFFFFE(L6)) THEN S(P2-5.):

Y%K PUT FILF(SYSPRINT) DATA(PZ2):

END,

//7PLY EXFC PLILFC.

//7PLILLSYSLIN DN NSM=NRJLIBIMAIN) 4DISP=(NFW,CATLG)

// NCHR=RLKSTIZF=3200,UNIT=2314,VOL=SFR=SFRNIIM,

// SPACF={TRK.{1N,10.20))

//PLYLLSYSIN DD DSN=%,GLYPLITLPLIN.,DISP=0LN

Fig. E.4-—-Translation and Compilation of a Separate (Main) Routine

-
.

Notes: The PARM parameter on the GLYPLIT EXEC card specifies 4 PEs.

2. Note the setups (%%C EXTERNAL and %%C SUBR. cards) for the
separately compiled subroutine S (see Fig. E.5).

(9%

The PLIL.SYSLIN card saves the object code generated by the
compiler on a new partitioned data set--0BJLIB--under the
member name MAIN.

-60-

//SURR - JOB PARAMETFERS
J/GLYPLIT EXFC PGM=GLYPGOWREGIIIN=300K,
// PARM=V#PFS =4
//STEPLIB DD DSN=LGLYPLIT,DISP=SHR
//SYSPRINT DD SYSOUT=A,NCB=(RFCFM=VBALLRFCL=125,BLKS17F=3129)
J/7PLIN DD NDSN=LETEMP GiCU=(RFCFM=FR,LRFCL=RQ,BLKSI7?7F=HO0),UNIT=SYSnA,
// DISP=(NFW,PASS) +SPACF=(TRKy{1,41))
//7GLYPNIR DI =
SUBROUTINE S(PRFAL P11, % SAMPLFE SUBROUTINF
BREGIN
XUC EXTERNAL
PREAL P2:
P2 = SORT(P2+P1):
//7PLY1 EXEC PLILFCLG,
// CONDGPLIL=(54LTH6LYPLIT),
// TIMFLGD=(410)yRFGION.GO=100K
//PLIL.SYSLIN DD DSN=0BJLIB(S),DISP=0LD
//7PLYLILGSYSIN ND DSN=%,GLYPLIT.PLIN,DISP=0LN
//LKEDLSYSLIR DN DSN=LGLYPLIT,LDISP=SHR
/7 D DSN=SYS1 L PLILIRB,DISP=SHR
J/LKFDSYSLIN DD DSN=xPL1L «SYSLINGZDISP=0LD
/7 DD %
INCLUDF OBJLIB{MAIN,S)
//LKEDLOBILIB DD NSN=0KJL IB.NISP=SHR
/%

Fig. E.5--The Subroutines and Execution

Note:

1. The execution of the MAIN routines and subroutines will print
P2(0) = 7.0 P2(1) = 3.0 P2(2) = 3.0 P2(3) = 7.0 on SYSPRINT.

-61-

Appendix F

SUMMARY (IMPORTANT GLYPLIT RESTRICTIONS

For a more complete discussion, see the subsection indicated in

parentheses after each restriction.

1. NO CODE statements, and therefore no ILLIAC IV Assembly
Language (ASK), are permitted.

2. In RTL ard RTR, a non-empty <mode pattern> 1s ignored.
(2.10.2)

3. Only types PREAL, CREAL, PINT, CINT, and BOOLEAN are
implemented. (2.4.1)

4. Subscript delimiters may be < > as well as []. (2.2.1)
5. Iterative FOR statement not implemented. (2.8.5)

6. Limit of 256 significant characters between semicolcns.
(2.2.5)

7. Identifiers limited t> 31 characters. (2.2.4)

8. Arithmetic literals: '(16)' is the only explicit base
specifier permitted. (2.4.5.1)

9. DEBUG statement not implemented. (2.8.7)

10. SHIFT and REVOLVE functions take only Boolean expressions as
parareters. (2.10.1)

11. Empty or missing parameters in a subroutine call are not
allowed. (2.9.1)

-63-

Preceding page blank

REFERENCES

Lawrie, D. H., GLYPNIR Programming Manual, Department of Computer
Science, University of Illinois, Urbana, Illinois, August 27,
1970.

PL/I (F) Longuage Reference Manual, IBM Corporation, Order No.
GC28-8201~3, 4th ed., June 1970.

PL/I (F) Programmer's Guide, IBM Ccrporation, Order No. GC28-
6594-6, 7th ed., June 1970.

IBM System 360, Job Control Larigyuage Reference, 1BM Corporation,
Order Jo. GC28-6704-0, 1lst ed., June 1970.

IBM System 360, Job Control Language User's Guide, IBM Corporation,
Order No. GC28-6703-1, 1lst ed., June 1970.

Baer, D. M., Subroutines in the GLYPNIR Compiler, ILLIAC IV Docu-
ment 257, January 15, 1972.

