
00

00

Q
^S57-ARPA

April 1972

ARPA ORDER NO.: 189-1

User's Manual for GLYPLIT:
A Program to Translate ILLIAC IV

GLYPNIR to IBM 360 PL/ID D CV

R. E. Hoffman
lEfoMHlOE

st?«tat

IEI5ED U IE

•■■ A Report prepared for

ADVANCED RESEARCH PROJECTS AGENCY
Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Deportmonl of Commorce
Springfield VA 22151

Rand
SANTA MONICA, CA 90406

taMaaam uaa»aaa*Mi 3T TU« documonl kn bwa CffpioySS
for ptahUc r*l«aM and mam; Us
clsferibution u unllmit«d.

■■

IN

ARPA ORDER NO.: 189-1

R-857-ARPA

April 1972

User's Manual for GLYPLIT:
A Program to Translate ILLIAC IV

GLYPNIR to IBM 360 PL/I
R. E. Hoffman

A Report prepared for

ADVANCED RESEARCH PROJECTS AGENCY

Rand
SANTA MONICA, CA. 90406

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

(>
li

Bibliographies of Selected Rand Publications

Rand maintains a number of special subject bibliographies containing abstracts of
Rand publications in fields of wide current interest. The following bibliographies are
available upon request:

Aerodynamics • Arms Control • Civil Defense
Communication Satellites • Communication Systems

Communist China • Computer Simulation • Computing Technolc<;y
Decision ma king • Game Theory • Maintenance

Middle East • Policy Sciences • Program Budgeting
SIMSCRIPT and Its Applications • Southeast Asia

Space Technology and Planning • Statistics • Systems Analysis
USSR/East Europe • Weapon Systems Acquisition

Weather Forecasting and Control

To obtain copies of these bibliographies, and to receive information on how to obtain
copies of individual publications, write to: Publications Department, Rand, 1700
Main Street, Santa Monica. California 90406.

Published by The Rand Corporation

-iil-

PREFACE

Before a new computer is installed, it is common practice to de-

bug its programs by simulating the operation of the new machine on an

existing computer. GLYPNIR is a programming language for the 1LLIAC IV,

a computer being developed by the University of Illinois and Burroughs

Corporation. To facilitate the debugging of scientific GLYPNIR pro-

grams, a GLYPLIT execution process (GLYPNIR to PL/I translator) was

devised. The present report is a user's manual for GLYPLIT.

This work was sponsored by the Advanced Research Projects Agency

as part of the ARPA/Rand Dynamics of Climate Program, of which a sig-

nificant element is the use of the ARPA-sponsored ILLIAC IV computer.

, This report should be of interest, to those facing similar trans-

lation problems or considering the differences between code for an

ILLIAC IV type machine and a serial machine (especially Appendix A),

as well as to users of the GLYPLIT system. The reader is assumed to

have a working knowledge of GLYPNIR and IBM's 360 Job Control Language;

familiarity with PL/I is desirable but not essential.

Preceding page blank

SUMMARY

This report is a user's manual for GLYPLIT: a program to trans-

late the ILLIAC IV higher-level language GLYPNIR [1] to PL/I for the

IBM 360 [2]. GLYPLIT was developed to provide a mechanism for debug-

ging GLYPNIR programs before the ILLIAC IV computer becomes available,

«nd may still offer a rjnvenient approach to debugging such programs

after the ILLIAC IV is operational.

Before a new computer is available, a traditional approach to

writing and debugging programs for it is to simulate the new machine

on an existing computer. In doing this, at least two programs are

usually written for the existing computer: an assembler, which trans-

lates assembly language programs for the new computer into the new

machine language; and a simulator, which simulates the new machine's

operation in this machine language code. The University of Illinois

took this approach for the ILLIAC IV with the production of the ASK

assembler and SSK simulator for the Burroughs 5500 (and later the

6500). In addition, they produced a higher-level language called

GLYPNIR, whose compiler produces ILLIAC IV assembly language for input

to the ASK assembler.

Thus potential ILLIAC IV users may write GLYPNIR programs and

have them compiled, assembled, and simulated. Unfortunately, the

process is quite slow. A typical 1000-card GLYPNIR program takes

roughly 2 minutes to compile, 7 minutes to assemble, and, for 3 seconds

of ILLIAC IV time, 10 days to simulate. If the purpose of a run is

hardware simulation, the user must work within this Illinoii system;

however, if the purpose of a run is to debug a GLYPNIR program, then

GLYPLIT offers a faster, more economical approach. With GLYPLIT, the

1000-card, 3-second simulation takes roughly 7 minutes to translate

to PL/I, 6 minutes to compile, and 30 minutes to execute on a 360/65,

a machine comparable to the Buirroughs 6500.

GLYPLIT is itself a PL/I and assembly language program that runs

on any IBM 360 under the full operating system. PL/I statements may

be freely intermixed with the GLYPNIR to be translated, making the

full range of PL/I input/output and debugging features available.

-vl-

The translator does not accept full GLYPNIR as input, but takes

a sublet suitable for much of the "scientific" programming (FORTRAN-

llke) expected on the ILLIAC IV. As alluded to above, hardware-oriented

features of GLYPNIR are not translatable, such as the ability to in-

sert ASK code, the alphameric WAND and WIMP machine operations, and the

explicit specification of registers possible for efficiency. The re-

striction to scientific GLYPNIR programs also means that all of GLYPNIR's

list and pointer processing capabilities have been left out. However,

these considerations will not usually interfere with the primary goal

of GLYPLIT: to facilitate the debugging of scientific GLYPNIR.

This report details the restrictions of the GLYPNIR subset ac-

cepted, describes uset- control of the translator and insertion of user-

supplied PL/I, describes the translator output, and discusses the IBM

360 Job Control Language necessary to run the system. Several appen-

dixes inclua^ the structure of the generated PL/I, selected PL/I com-

piler and execution messages, translator messages, and a summary of the

restrictions of the GLYPNIR subset (Appendix F)•

-vii-

ACKNOWLEDGMENTS

Although full responaibility for any errors in the translator

program must rest with the author. I wish to thank Duncan Lawrie at

the University of Illinois (GLYPNIR's inventor) for numerous conveisa-

tions and encouragement. Thanks also go to my Rand colleagues TIatt

Clark and, especially, Sam Oman-GLYPLIT's first, patient user.

■■.. .

Preceding page blank

CONTENTS

PREFACE ill

SUMMARY v

ACKNOWLEDGMENTS vli

FIGURES xi

Section
1. INTRODUCTION 1

1.1 Suggestions for Using this Manual 2
1.2 Organization of the Report 3

2. RESTRICTIONS AND DIFFERENCES OF THE GLYPLIT SUBSET 4

2.1 Introduction 4
2.1.1 Numbering of Subsections 4

2.2 Coding Procedures and Program Structure 4
2.2.1 Character Set and Coding Form 4
2.2.4 Identifiers 5
2.2.5 Statements 5
2.2.10 Program 5

2.3 ILLIAC IV Architecture Versus 360 Architecture 5
2.4 Basic Elements of the Language 6

2.4.1 Declarations 6
2.4.4 Partial Word Designators 6

2.5 Pointers, Field Content Designators, and
Dynamic Storage Allocation 7

2.6 Expressions 7
2.6.1 Arithmetic Expressions 7
2.6.2 Alphameric Expressions 7

2. 7 Assignment Statements , 7
2.7.1 General 7

2.8 Control Staftements 7
2.8.1 LOOP Statement 7
2.8.2 FOR Statement 8
2.8.7 The Debug Statement 8

2.9 Subroutines 8
2.9.1 Description 8
2.9.3 Separately Compiled Subroutines 9

2.10 System Subroutines 11
2.10.1 SHIFT and REVOLVE 11
2.10.2 Route 11
2.10.4 ALPHA 12
2.10.5 BOOLEAN 12
2.10.6-
2.10.8 Trigonometric, Square Root, Natural

Log, and Exponentiation 13
2.11 Input/Output Statements 13

-x-

2.12 Explicit Use of Hardware Registers and
Assembly Language 13

2.C Diagnostic Messages 13
2.D Operation Manual 13

3. PL/I INPUT/OUTPUT AND DLBUGGING FEATURES 14

3.1 Introduction 14
3.2 Mixing of PL/I and GLYPNIR; The %%B Option 14
3.3 PL/I Input/Output 15
3.4 PL/I Debugging Features , 17

4. USER CONTROL OPTIONS DURING TRANSLATION 21

4.1 JCL FARM Options 21
4.1.1 #PES—Number of Processing Elements 21
4.1.2 GLY—Control of GLYPNIR Output 21
4.1.3 PL1—Control of Generated PL/I Output .. 21
4.1.4 PAGES—Maximum Number of Pages Allowed . 22
4.1.5 MSGS—Maximum Number of Messages

Allowed 22
4.1.6 MSG—Minimum Significant Message Level . 22
4.1.7 LC (Left Column), RC (Right Column), and

CC (Carriage Control)—Source Card
Margin Control 22

4.1.8 BCRC—Boolean Constant Repeat Count 23
4.1.9 LINES—Number of Lines per Page of

SYSPRINT Output 26
4.2 In-Llne Control Options 27

4.2.1 %%C Cards 27
4.2.2 EXTERNAL Declarations 27
4.2.3 DOUBLE Precision Declarations 28
4.2.4 SUBR Declaration 28

5. JOB CONTROL LANGUAGE 29

5.1 GLYPLIT Translation Step 29
5.2 The PL/I Compile, Link Edit, and Go Step 30
5.3 Separately Compiled Subroutines 32

6. GLYPLIT OUTPUT 34

6.1 SYSPRINT File 34
6.2 PLIN File 34

Appendix
A. GENERATED PL/I STRUCTURE 37
3. SELECTED PL/1 COMPILER AND EXECUTION MESSAGES 44
C. GLYPLIT MESSAGES 47
D. SUMMARY OF JCL FARM OPTIONS 55
E. SAMPLE JCL LISTINGS 56
F. SUMMARY OF IMPORTANT GLYPLIT RESTRICTIONS 61

REFERENCES 63

\
-xl-

FIGURES

2.1 Main Program and Subroutine Together 10

2.2 Main Program 10

2.3 Subroutine 10

4.1 #PES - 64 23

4.2 /fPES < 64 24

4.3 #PES > 64 24

6.1 Sample Output 35

Appendix

E.l Translation 57

E. 2 Translation and Compilation 57

E.3 Translation, Compilation, Link Edit, and Execution ... 58

E.4 Translation and Compilation of a Separate
(Main) Routine 59

E.5 The Subroutines and Execution 60

X»'

ERRATA

R-857-ARPA USER'S MANUAL FOR GLYPLIT: A PROGRAM TO TRANSLATE
ILLIAC IV GLYPNIR TO IBM 360 PL/1
R. E. Hoffman, April 1972

Page 5. Under 2.2.5 Statements, the last sentence should read:

This count does not include leading and trailing blanks
on any card, or user-supplied PL/I, or control cards.

Page 16, Mid-page equations should read:

(a(i) DO i-i. TO 1.) for one subscript,

((a(l,j) DO i«=i TO i«) DO j=J1 TO j2) for two subscripts,

etc. (Of course, i and j may be reversed for the opposite
I/O order.)

EX: PUT FILE(SYSPRINT) DATA ((A(I) DO 1-1 TO 64)).

Note that two sets of parentheses are necessary--one for
the array specification and one for the data list.

Page 33. Line 15.1 should read:

15.1 //LKED.SYSLIN DD DSN=**.PL1L.SYSLIN,DISP=0LD

Page 62. A twelfth entry is necessary, which reads:

12. According to GPN/11, GLYPNIR initializes all local
variables to zero on the first entry to a block.
The translator does not.

-1-

1. INTRODUCriON

A traditional approach to writing and debugging programs for a

new computer, before that machine is available, is to simulate the new

machine on an existing computer. To do this, at loast two programs

are usually written for the existing computer: an assembler, which

translates assembly language programs for the new computer into the

new machine; and a simulator, which simulates the operation of the

new machine in this machine language code. This approach was taken

by the University of Illinois for the ILLIAC IV with the production

of the ASK assembler and SSK simulator for the Burroughs 5500 (and

later the 6500). In addition, the further step of producing a higher-

level language, GLYPNIR [1], was taken. The GLYPNIR compiler produces

ILLIAC IV assembly language for input to the ASK assembler.

Thus, potential ILLIAC IV users may write GLYPNIR programs and

have them compiled, assembled, and simulated. Unfortunately, the pro-

cess is quite slow, A typical 1000-card GLYPNIR program takes roughly

2 minutes to compile, 7 minutes to assemble, and, for 3 seconds of

ILLIAC IV time, 10 days to simulate/

However, if-the purpose of a run is to debug GLYPNIR programs

rather than to produce a hardware simulation, then GLYPLIT offers a

faster, more economical approach.

GLYPLIT—-a GLYPNIR to PL/I Translator—runs on any large* IBM

System 360 under the full operating system (OS). It accepts a subset

of GLYPNIR suitable for much of the "scientific" programming (FORTRAN-

llke) expected on the ILLIAC IV, and translates it into PL/I [2]. The

PL/I may then be compiled and run, on any suitable 360, and the results

checked. PL/I statements may be freely intermixed with the GLYPNIR to

be translated, making the full range of PL/I input/output and debugging

features available. For debugging scientific GLYPNIR programs, this

GLYPLIT-'-PL/I-^execution process is more economical then the GLYPNIR->

t
Assuming a simulator ratio of 300,000 seconds of 6500 time to 1

second of ILLIAC IV time.

At least 300K of core is required for most GLYPNIR programs. More
may be required for syntactically complex programs.

?v

-2-

assembly^-simulator process. The 1000-card, 3-second simulation takes

roughly 7 minutes to translate to PL/I, 6 minutes to compile, and 30

minutes to execute on a 360/65.

It must be remembered that the purposes, and thus the results of

the simulator and the translator are different. For example, because

of Internal number representations, answers via GLYPLIT mav differ as

early as the fourth significant digit from answers via the simulator.

Also, hardware-oriented features of GLYPNIR are not translatable, such

as the ability to Insert ASK code, the alphameric WAND and WIMP machine

operations, and the explicit specification of registers possible for

efficiency. The restriction to scientific GLYPNIR programs means that

all of GLYPNIR's list and pointer processing capabilities have been

left out. However, these considerations will not usually interfere

with the primary goal of GLYPLIT: to facilitate the debugging of

scientific GLYPNIR. (Appendix F summarizes the important restrictions).

1.1 SUGGESTIONS FOR USING THIS MANUAL

Many instructions and explanations in this manual make sense only

In the context of a GLYPNIR program using the indicated construct. Thus

the reader should not be troubled if all is not clear on the first read-

ing. Furthermore, a number of sections are Intended as supplements to

the GLYPNI1 Programming Manual, ana so a complete description of GLYPNIR

Is not provided. This is especially true of Sec. 2, Restrictions and

Differences of the GLYPLIT Subset/

The best approach for most new GLYPNIR programmers will be to read

the GLYPNIR Programming Manual thoroughly, read this manual (especially

noting restrictions and differences as per Sec. 2), and then try some-

thing. Given the context of a user's program, both manuals will (hope-

fully) make sense.

A machine comparable to the Burroughs 6500.

Section 2 is numbered to correspond to the GLYPNIR manual, and
sections for which no comment is necessary are not included. Thus to
see if there are any translator restrictions for a particular GLYPNIR
construct, the user may scan the Sec. 2 subheadings in the table of
contents. If the item does not appear, then no special precautions
are necessary.

-3-

Also note that Fig. 3 of Appendix E is a complete example, in-

cluding both a GLYPNIR program and Job Control Language (JCL). With

minor modifications to thr JCL for the upfr's installation, this ex-

ample may be punched and run as an aid to getting started.

1.2 ORGANIZATION OF THE REPORT

Thin report details the restrictions of the GLYPNIR subset ac-

cepted (Sec. 2) , presents the PL/I input/output and debugging features

(Sec. 3), describes user control of the translator and insertion of

user-supplied PL/I (Sec. 4) , discusses the IBM 360 Job Control Language

necessary to run the system (Sec. 5), and describes the translator

output (Sec. 6). Several appendixes include the structure of the

generated PL/I, PL/I compiler and execution messages, translator mes-

sages, and a summary of the restrictions of the GLYPNIR subset.

-*-

2. RESTRICTIONS AND DIFFERENCES OF THE GLYPLIT SUBSET

2.1 INTRODUCTION

This section describes the restrictions on full GLYPNIR that de-

fine the subset of GLYPNIR acceptable to the GLYPLIT translator. The

main omissions are pointers (and thus field-content designators), and

such hardware-oriented features as alphameric operators, code state-

ments, and explicit use of hardware registers. (See Appendix F for a

summary.)

2.1.1 Numbering of Subsections

In this aection, auhaeotion numbers correspond to numbers in the

GLYPNIF Programming Manual (GPM) [1]. For example, subsection 2.2.6

corresponds to GPM 2.6, and 2,6.3.2 corresponds to GPM 6.3.2. Those

parts of the GPM fcr which no comment is necessary, I.e., for which

there are no restrictions on or differences between GLYPNIR and GLYPLIT,

are not Included.

An important difference, which applies throughout, is due to the

different Internal representations of numbers between the ILLIAC IV

and the "60 (see 2.3 for details).

2.2 CODING PROCEDURES AND PROGRAM STRUCTURE

2.2.1 Character Set and Coding Form

The 360 GLYPLIT Implementation uses the samt; character set as
+

GLYPNIR, with the following important exceptions:

GLYPNIR 360 GLYPLIT USE

[] < > or ^ I oubscrlpt delimiters. Note that
this may cause problems if an
attempt is made to use "<" for
"less than." "LSS" should be
u',ed instead. 4

x * Multiplication symbol.

t
But punched in standard 360 EBCDIC Instead of B6500 BCL.

i and I are the 360 interpretations of (and] punched on a
Burroughs EBCDIC keypunch.

-5-

GLYPNIR 360 GLYPLIT USE

•«- • or :■ Assignment statement replacement
operator.

£ LEQ Relational operator.

it GEQ Relational operator.

t NEQ Relational operator.

< < or LSS See [] above.

The source margins for GLYPLIT are defined by user parameters LC

and RC, but are usually defaulted to columns 1-72 (see 4.1.7). No

sequence field checking is done.

2.2.4 Identifiers

Only the first 31 characters of any identifier are retained.

(ERROR message 48 is generated for identifiers of length > 31 char-

acters.) All of GLYPLIT Internally generated identifiers start with

the letters 'QQ'. Thus, the user should avoid identifiers starting

with 'QQ1, except to achieve special effects in user-written PL/I code

(see Sec. 4).

2.2.5 Statements

Statements input to GLYPLIT may be split over several cards. The

maximum number of characters permitted between semicolons is ^ 256.

This count does not include leading and trailing blanks oa any card.

2.2.10 Program

If a label is prefixed to the first BEGIN of the program, it ap-

pears at the top of each pige of SYSPRINT output. There may be no com-

ments or PL/I after the final 'END.1.

2.3 ILLIAC IV ARCHITECTURE VERSUS 360 ARCHITECTURE

This section covers internal number representations.

-6-

GLYPNIR Type INTEGER

ILLIAC IV 360

number bits sign + 48 sign + 31

number slg. digits » 14.3 9.2

decimal range ±281 474 976 710

GLYPNIR Type REAL

655 ±2 147 483 647

ILLIAC IV 360

Exponent

number bits 15(base 2) 7(base 16)

decimal range « - 4933 to 4931 - 79 to 75

number bits sign + 48 sign + 24 or 56

number slg.
digits « 14.3 7.2 or 16.7+

decimal ranges ** ±4.2xl0"4933 to ±5.9xlOA931 ±5.4xl0"79 to ±7.2xl075

2.4 BASIC ELEMENTS OF THE LANGUAGE

2.4.1 Declarations

Only types PE INTEGER, PE REAL, CU INTEGER, CU REAL, and BOOLEAN

(and their abbreviations) are recognized (see 2.9.1 for special sub-

routine parameter declarations of CNPOINT and PCPOINT).

2.4.2.3 Equivalence on Simple Variables. Not Implemented.

2.4.4 Partial Word Dealgnatora

Not Implemented.

2.4.5.1 Arithmetic Literals. The only acceptable explicit base specifier

Is '(16)', base sixteen, usually used for BOOLEAN mode natterns.

Single or double precision as a user option (see 4.2.2).

-7-

2.4.5.2 Alphameric Literals. Not Implemented.

2.4.5.3 Boolean Literals. See 4.1.8 for effects on Boolean literals

when #FES 4 64.

2.5 POINTERS. FIELD CONTENT DESIGNATORS. AND DYNAMIC STORAGE ALLOCATION

Not Implemented.

2.6 EXPRESSIONS

GLYPLIT accepts only arithmetic and Boolean expressions.

2.6.1 Arithmetic Expressions

GLYPLIT does not accept arithmetic FCD> or alphameric expre88lon>

as arithmetic prlmary>.

2.6.2 Alphameric Expressions

Not implemented.

2.6.3.2 Boolean Literals. Note that only base sixteen •(16)' is legal

as an explicit base specifier.

2.7 ASSIGNMENT STATEMENTS

2.7.1 General

Only the real, Integer and Boolean entries In Table 7.1.i In the

GLYPNIR Programming Manual are meaningful.

2.8 CONTROL STATEMENTS

2.8.1 LOOP Statement

The <lnltlal>, <lncrement>, and <llinlt> values have permissible

ranges of -2147483647 to 2147483647 in GLYPLIT. No error messages will

be generated unless the values ara outside of the above ranges. GLYPNIR's

legal ranges are 0 to 1677216 for <lnlLlal> and <Ilmlt> and 0 to 16384

for increment >.

-8-

2.8.2 FOR Statement (iterative)

Not Implemented. The FOR ALL statement (G"iJM 8.3) ia Implemented.

2.8.7 The Debug Statement

Not Implemented.

2.9 SUBROUTINES

2.9.1 Deacrlptlon

Subroutines are as described, except that (1) the AS construct

is not legal and (2) empty or missing parameters are not allowed. Note

that the formal parameters of the subroutine declaration are the only

variables which may be of types FCPOINT or CNPOINT. These types are

substitutes for PREAL and CREAL VECTORS. That is, to pass on a real

vector (PE or CU) to a subroutine, declare the formal parameter to be

of type FCPOINT or CNPOINT, and use the unsubscripted vector name as

an actual parameter in the CALL statement. Inside tl.e subroutine,

refer to the pointer type parameter as if it is a vector in the usual

way. For example:

BEGIN
PREAL VECTOR V[10];
SUBROUTINE S(FCPOINT A);
BEGIN

CINT I;
LOOP 1-1,1,10 DO

A[0] - A[0] + A[I];
END;

S(V)

END.

Note that while inside the subroutine the vector will always be

assumed to be of type REAL. If an integer vector is passed to the sub-

routine, it will be converted to type REAL by the normal parameter-

p&ssing mechanism.

-9-

Functlon subroutines may be of type PE or CU REAL or INTEGER or

BOOLEAN. GLYPLIT prefixes all function names with the letters 'SS'.

See 2.9.3, 4.2.2, A.3, B.l, and B.2 for the effects of this.

2.9.3 Separately Compiled Subroutines

This is a translator feature not yet available in GLYPNIR. Its

purpose is to allow subroutines from a GLYPNIR program to be translated

and compiled separately, and then link edited and run together (see 5.3

for link edit JCL information). There are at least two possible reasons

for using this option. First, the current PL/I implementation allows

only 255 iterative DO-END or BEGIN-END blocks in one compilation. PL/I

Issues TERMINAL EPROR IEM0071I message if this limit is executed, as it

m;.y well be for GLYPNIR programs of more than a few hundred cards. Thus,

the GLYPNIR program must be broken into two or more parts, which may theu

be translated and compiled separately. A second reason for using this

option is reduced cost, achieved by eliminating the need t.o retranslate

and recompile sections of the code that are not changing.

The only convenient way to allow separate compilation is to have

a main program, and one or more separate subroutines. Two problems must

be solved: the main program must know about the subroutine (accomplished

with the %%C SUBR option), and the separate parts must be able to com-

municate (accomplished via parameters and/or the %%C EXTERNAL option).

Figures 2.1 to 2.3 (and following notes) show a subroutine within a main

program, and then the same subroutine and main program ready to be trans-

lated and compiled separately.

Note the following:

1. In Fig. 2.1, the P2 inside the subroutine is the same as the

P2 outside the subroutine because P2 was not redeclared in the sab-

routine. Thus, communication is established through the global variable

P2, and through the parameter PI.

2. In Fig. 2.2, the main routine is made aware of the subroutine

via the %%C SUBR card, followed by the subroutine declaration, but with-

out the body of the subroutine.

3. In Fig, 2.3, just the subroutine is input to the translator.

It must now end with "END." Instead of "END;", because all input to the

translator is terminated by "END.".

-10-

Together:

BEGIN
PREAL P2;
SUBROUTINE S(PREAL Pi);

BEGIN PREAL A;

P2 - PI + A;

END;

S(...);

END.

Fig. 2.1 -Main Program and Subroutine Together

Separate: Figures 2.2 and 2.3 are each to be presented to the
translator-compiler separately.

BEGIN
%%C EXTERNAL
PREAL P2;
UC SUBR
SUBROUTINE S(PREAL PI);

S(.

END.

);

SUBROUTINE S(PREAL PI);
BEGIN PREAL A;
%%C EXTERNAL
PREAL P2;

P2 - PI + A;

END.

Fig. 2.2—Main Program Fig. 2.3—Subroutine

4. The global variable P2 is given the EXTERNAL attribute via

the %%C EXTERNAL card in both Fig. 2.2 and Fig. 2.3. This makes it

common to all routines in which it is made external. Thus, communi-

cation is still through the parameter PI, and the global variable P2.

5. All variables used in the subroutine must be in one of three

classes:

a. They may be parameters passed through the calling

sequence, e.g., PI;

b. They may be global variables known to several routines

via the external attribute, e.g., P2;

c. Or they may be completely internal to the subroutine,

e.g., A.

6. Even if no parameters are present, the %%C SUBR card is still

required in Fig. 2.2.

7. See 5.3 for JCL information. Sections 4.2.2 and 4.2.4 detail

the %%C SUBR and EXTERNAL option.

8. PL/I generates error message IEM2867I (see B.2) for separately-

compiled subroutine or external variable names of more than seven char-

acters. To avoid this, limit all separately-compiled subroutine or

external variable names to seven characters and, because GLYPLIT pre-

fixes all function subroutine names with 'SS', limit all separately-

compiled function subroutine names to five characters.

2.10 SYSTEM SUBROUTINES

2.10.1 SHIFT and REVOLVE

The <value> to be shifted or revolved must be a Boolean expression,

e.g., the word MODE.

2.10.2 Route

As noted in the GPM, the <inode pattern> may be any Boolean expres-

sion, or empty. Even though GLYPLIT accepts either, only the aeoond

oaae, empty, is oorreatly implemented. Any Boolean expression is

ignored. GLYPLIT translates all routes as demonstrated by the follow-

ing example:

PREAL P1,P2,PJ,P4;

PI - RTL(1,,P2+P3) + P4;

becomes

DCL (Pi,P2,P3,P4)(0:63) FLOAT BIN;

DO QQ-0 to 63; IF MODE (QQ) THEN DO;

Pl(QQ) =■ P2(MOD(QQ+l,63)) + P3(MOD(QQ+l ,63)) + P4(Q0);

Thus, the expression Is evaluated In the source PE only if the mode is

true in the destination PE. This is exactly what GLYPNIR does if the

<mode pattern> is empty.

The purpose of a non-empty mode pattern is to prevent evaluation

of the expression in certain source PEs, even if the destination PE is

true. This results in an undefined value in those destination PEs,

but this is presumably to be changed in a subsequent statement. An

example might be:

PI - RTL(1,P3 NEQ 0, P2/P3)

IF RTL(1,,P3) EQL 0 THEN PI - P2;

Unfortunately, the first statement, translated by GLYPLIT, could result

in a ZERODIVIDE error, because P2/P3 might be evaluated in a PE, where

P3 is zero. An acceptable alternative would be:

IF RTL(1,,P3) NEQ 0 THEN P1-RTL(1,,P2/P3)

ELSE P1-P2;

(Note: If the current mode pattern is all true, then "MODE" is

frequently used as the routing <mode pattern^ because GLYPNIR gener-

ates the most optimal code. But no problem can result even though

GLYPLIT ignores this, because the mode pattern is all true.)

2.10.4 ALPHA

Not implemented.

2.10.5 BOOLEAN

The act'ml parameter for the BOOLEAN function must be a hexadecimal

literal, e.g., B00LEAN(0FFF(16)).

-13-

2.10.6-2.10.8 Trigonometric, Square Root. Natural Log,
and Exponentiation

These functions are automatically available in GLYPLIT. In uther

words, the instructions of GPM 10.6 for including ASK assembly language

subroutines must be ignored. No declarations of any kind are necessary

or allowed for SIN, COS, TAN, COT, ATAN, SQRT, LN, or EXP.

2.11 INPUT/0T1TPUT STATEMENTS

Not implemented. See 4.2 for GLYPLIT I/O via PL/I.

2.12 EXPLICIT USE OF HARDWARE REGISTERS AN^ ASSEMBLY LANGUAGE

Not implemented.

2.C DIAGNOSTIC MESSAGES

See Appendix C.

2.D OPERATION MANUAL

All cards starting with the '$• in column 1 are ignored by GLYPLIT,

except for listing. See Sees. 4 and 5 for GLYPLIT operation.

: .

-14-

3. PL/I INPUT/OUTPUT AND DEBUGGING FEATURES

3.1 INTRODUCTION

The ability to mix PL/I statements freely with the GLYPNIR to be

debugged is a useful feature of the translator; however, it does re-

quire some user knowledge of PL/I. The essentials of PL/I's I/O and

debugging features are covered here, but for complex I/O, variable

setting, or other PL/I procedures the user is referred to the IBM PL/I

manuals [2-3].

3.2 MIXING OF PL/I AND GLY?NIR; THE %%B OPTION

All PL/I statements must be placed on %% cards (%% in columns 1

and 2, and possibly a "B" in column 3). These will appear as comments

to GLYPNIR, and will be passed directly to the PL/I file by the trans-

lator after stripping off the %% (or %%B). PL/I statements are termi-

nated by semicolons (";")• Several statements may be placed on one

card or one statement continued on several cards, much as in GLYPNIR.

The %%B Option: the major task of the translator is to "put in

the inner DO loops". Thus the GLYPNIR

PREAL PI, P2, P3;

PI - P2 + P3;

must be changed to the PL/I

DCL(P1,P2,P3) (0:63) FLOAT BIN;

DO QQ - 0 TO 63;

IF MODE(QQ) THEN DO;

Pl(QQ) - P2(QQ) + P3(QQ);

END; END;

The %%B option is used to control the location of the user-sup-

plied PL/I. If the "B" is in column 3, i.e., "%%B", then the PL/I

on the card is guaranteed to be outside (to Break) any current gen-

erated DO loop. If the "B" is not present, the PL/I may be inside a

DO loop, if one is currently open. There will be a current open DO

loop if one has been started by the appearance cf a PE or BOOLEAN

-15-

left-hand-side assignment statement, and If all subsequent statements

have been PE or Boolean assignment statements and have not Involved

certain types of routing. That is, assignment statements are collected

into a common DO until a non-conforming statement -«uses the DO to be

broken (closed).

There are also other reasons for closing a DO, and it is admittedly

harder for a user to be sure his PL/I will end up inside a DO. However,

this is not the common case—being outside the DO is usually desirea.

This is guaranteed by a %%B. The user may of course check the location

of his PL/I by reading the PL/I on the SYSPRINT file from the PL/I

compiler.

Note that if user PL/I is to be included in a generated DO for

special effects, then the DO loop index, always called QQ, may be used.

See Appendix A for other naming conventions and more information on

DO location.

3.3 PL/I INPUT/OUTPUT

The following is a brief introduction, but should allow the in-

experienced user to get started (just try something). Further details

are in Ref. 2.

All GLYPNIR I/O must be conducted via PL/I I/O statements. These

are GET and PUT for stream reads and writes (corresponds somewhat to

FORTRAN formatted I/O), and READ and WRITE for record-oriented I/O

(corresponds somewhat to FORTRAN binary or unformatted I/O).

When reading/writing arrays, note that PL/I stores arrays in

opposite order to FORTRAN, i.e., the rightmost subscript varies fastest

in PL/I.

READ

FILE (file-name) INTO(one-variable-name);

WRITE

The READ/WRITE syntax is fairly self-evident. The length of the

variable in bytes should usually be the same as the record length (LRECL)

of the DGB parameter on the DD JCL card defining the file.

!GET)
PUT I

-16-

!DATA (optlonal-llst-of-varlables)
LIST (liat-of-variables)
EDIT (llst-of-varlables)(forwat specification)

The 'FILE(file-name)' Is optional, although If omitteK,', a warning

message will be generated during compilation. If It Is fitted, file

SYSIN will be assumed for a GET, and file SYSPRINT assuv^i for a PUT.

The format-specification applies to EDIT only. The elements of

the list of variables must be separated by commas. Each element may

be a simple varlaole name, an array name, a repetitive specification

for arrays (see below), or for output, a constant. Character constants

are contained by single quote marks (') and may be split across cards

with column 72 and column 1 being taken as contiguous (although note

that the %% required In columns 1 and 2 will become blanks In the nldst

of the constant). A repetitive array specification is of the form

(a(i), DO 1-1, TO O for one subscript,

((a(i,J), DO 1-ij^ TO i2), DO j-^ TO j2) for two subscripts,

etc. (Of course, 1 and j may be reversed for the opposite I/O order.)

LIST-directed I/O transmits just the elements. For input the ele-

ments must be constants separated by commas or blanks; for output they

will be separated by blanks and formatted automatically, according to

their attributes.

DATA-dlrected I/O transmits the variable names as well as the

v .ues (like NAMELIST I/O in FORTRAN) and is extremely useful for de-

bugging output. For input, the form is variable-name - constant,

separated by commas and/or blanks. The last element of the list must

be followed by a semicolon. The list-of-varlables is optional: on

input, the names in the Input determine the variables transmitted, and

on output all variables known in the block will be transmitted if no

list is given.

EDIT-directed output is Boat like FORTRAN formatted I/O and re-

quires the format-specification. Format Items are separated by commas

and may be grouped by placing several in parentheses. A single item

or group may be repeated by preceding it with a constant or variable

PL/1 FORTRAN

F(w) Iw

F(w,d) Fw.d

E(w,d) Ew.d

A(v) Aw

X(w) wX

SKIP(n) II...1
n

PAGE 1H1

-17-

followed by a blank. Some legal format items and their FORTRAN equiv-

alents follow:

Meaning

Integer in field width w.

Floating in field width w with d digits
to right of decimal point.

Scientific notation in field width w with
d digits to right of decimal point.

Characters in field width w. If w not
supplied, length of element being trans-
mitted determines length.

w spaces.

Skip n records—see below.

Skip uo top of.page.

Note that there is no "Hollerith" format. To output a character constant

in PL/I, the constant is placed in quotes in the variable list and an A

format specification is used (usually without the field width w).

SKIP and PAGE may be added to any GET/PUT statement (except PAGE

and GET are not legal together). The following example illustrates much

of the above:

PUT FILE(SYS?RINT) EDITCTWO INTEGERS:' ,I,J,'FOUR REALS:',

A.B.C.D)(A,F(5).F(10),SKIP(2),A,4 F(10,5))PAGE;

LIST-, DATA-, and EDIT-directed I/O is called stvem I/O because

little cognizance is taken of card, line, or other record boundaries.

Successive PUT statements will continue on the same line until there is

no more room, or until a SKIP or PAGE specification is encountered.

Successive GET statements will continue reading from the same card until

no more columns remain, or until a SKIP skips to the start of the next

card.

3.4 PL/I DEBUGGING FEATURES

The principal debugging aid in PL/I (besides easy LIST- anJ DATA-

directed I/O—see 3.3) is the condition prefix. It looks somewhat like

-18-

a GLYPNIR label with the form

(a,b,c,...):

and may be placed on any statement including a BEGIN-END or PROCEDURE-

END block. On a block, a condition applies to all statements within

the block, except that it may be negated for a statement (or block)

within the block by placing the opposite condition on that statement

(or block). On an IF statement, the condition applies only to the

Boolean expression of the IF. Similarly, a condition on an iterative

DO (generated as a result of LOOP and FOR statements) applies only to

expressions in the DO statement (J,k, and m in DO i-j TO k BY m) and

not to statements contained within the DO-END group.

To aauae a condition prefix to apply to a group of etatements ,

enclose the group in a BEGIN-END block and place the prefix on the

BEGIN. Condition prefixes may also appear on PROCEDURE statement» (he-

fore the procedure name) to apply to all statements in the procedure.

Thus, to have a condition prefix apply to a uihole GLYPNIR program, make

it the very first card presented to the translator (with %% in columns

1 and 2).

If a condition prefix occurs on a labeled statement (or procedure),

it must precede the label (or procedure na 2), e.g.,

%%(NOOFL,CHECK(A,B)):
LABEL1: BEGIN...

The content of the condition prefix is a list selected for the

following possibilities (there are others described in the PL/I manual

[2], but these should be the most useful for a GLYPLIT user). All con-

ditions may be preceded by "NO" to negate them. The conditions are

shown with their defaults, i.e., with or without the NO as assumed by

the compiler. Also shown are the acceptable abbreviation and the stan-

dard system action.

Condition Abbr. Meaning

FIXEDOVERFLOW FOFL Occurs when an integer exceeds the
maximum shown in 2.3. System
action* terminate.

-19-

Condltlon

OVERFLOW

UNDERFLOW

Abbr.

OFL

UFL

ZERUDIVIDE

NOSUBSCRIPTRANGE

ZDIV

NOSÜBRG

CHECK(a,b,c.. .)

Meaning

Occurs when the magnitude of a real
number exceeds the maximum shown In
2.3 (approximately 7.
action: terminate.

2*1075). System

Occurs when the magnitude of a real
number Is less than the minimum shown
In 2.3 (approximately S.^lO"79).
System action: set result to 0, print
messaget and continue.

Occurs when attempt Is made to divide
by 0. System action: terminate.

Occurs when attempt Is made co use a
subscript out of the range of an array.
System action: terminate. This can
be a useful debugging aid, but because
of Its great expense (may more than
doubxe execution time) it is normally
not enabled.

The most important of the PL/I debug-
ging options. a,b,c... represents a
list of names which may be variable
names (including unsubscripted array
nar.es), entry (procedure) names, and
statement labels. For entry nmes and
labels, the name will ba automaticaMy
printed each time it is invoked or
passed. For variables (which may not
be parameters), the variable name and
its new value will be printed each time
it is set, e.g., by appearing as the
left-ham. side of an assignment state-
ment, by input, or by being the con-
trolled variable of an iterative DO
(the result of LOOP and FOR statements,
etc.) .

Two unfortunate notes for CHECK:

o CHECK may appear only on a BEGIN-
END or PROCEDURE blocu.

o If an array name is CHECKed, the
whole cpmy will be printed every-
time any element is changed. Ex-
ample: assume a PREAL A, which
will become an array of length 64
words in the PL/I. The statement
"A - 1" will require a DO loop in
the PL/I to set each of the 64

-20-

Cot.'iltlon Abbr. Meaning

values to 1. If A is being checked,
the whole array will be printed
64 times, once for each time
through the DO loop.

-21-

4. USER CONTROL OPTIONS DURING TRANSLATION

There are two classes of options: JCL FARM options, and in-line

control options.

^.1 JCL FARM OPTIONS

The aser supplies these options on the 360 JCL EXEC statement

for the GLYFLIT execution step in the form FARM = 'list', and apply

throughout a translation. They help specify either the input format

or, more frequently, the output format. Defaults, shown below in

parentheses, are supplied for all options. See also 5.1 for details

of FARM syntax, and Appendix D for a summary.

4.1.1 //FES—Number of Processing Elements (Default - 64)

This is one of the more important options. It specifies how many

PEs the generated FL/I code should simulite. Any number from 1 to 999

is legal, l-'or fast execution of the generated code, debugging may

often be conducted using only a few PEs. Alternatively, for duplica-

ting results of existing codes, some number of PEs other than 64 may

be useful (e.g., 44 or 100). With most "scientific" GLYPNIR programs,

few other changes will be necessary if #PES is changed. In particular,

processes depending on the number of PEs and Boolean constants may cause

problems (see 4.1.8 for oommente on Boolean aonstante if #FES t 64).

4.1.2 GLY—Control of GLYPNIR Output (Default - 1)

If GLY - 1, list the GLYPNIR input only on the SYSPRINT file.

If GLY - 2, output the GLYPNIR input only as PL/I comments on the

PLIN file.

If GLY - 3, output the GLYPNIR to both files.

See also the next parameter.

4.1.3 PL1—Control of Generated PL/I Output (Default - 2)

If PL1 - 1, list the generated PL/I only on the SYSPRINT file.

If PL1 - 2, output the generated PL/I only to file PLIN (pre-

sumably for Input to the PL/I compiler).

-22-

If PL1 - 3, output the PL/I to both files.

The most useful combinations of GLY and PL1 are the defaults

(GLYPNIR on SYSPRINT, PL/I on PLIN) if the PL/I dorts not need to be

looked at, or GLY - 3 and PL1 - 2 (GLYPNIR on S7SPRINT, and GLYPNIR

and PL/I mixed on ^LIN) if the PL/I does need to be looked at,

4.1.4 PAGES—'.aximum Number of Pages Allowed (Default - 50)

This par/meter, like MSGS, is intended to prevent an error from

generating reams of useless output.

4.1.5 MSGS—Maximum Number of Messages Allowed (Default - 50)

This parameter option prevents some runaway translator or user

error from generating useless error message output.

4.1.6 MSG—Minimum Significant Message Level (Default - 1)

Messages are classed into four levels: 1--WARNING, 2—ERROR,

3—SEVERE, and 4--TERMINAL. This parameter specifies the minimum

level for which messages should be printed. Messages in a level be-

low MSG are neither printed nor do they contribute toward the MSGS

count (see 4.1.5). The level of each message is printed with it and

is also noted in Appendix C.

4.1.7 LC (Left Column). RC (Right Column), and CO (Carriage Control)-
Source Card Margin Control (Defaults - 1, 72, 0 respectively)

Normally GLYPNIR input should be in columns 1-72, with columns

73-80 ignored, except for listing; however, special purposes may re-

quire different margins. If so, LC may be set to the leftmost column

to bi» considered, and RC to the right. In addition, CC may be set to

a column to be scanned for printer carriage control as follows:

Contents of Column CC Action

1 Skip to top of page

0 (zero) Double space

-23-

Contents of Column CC

- (minus)

+ (plus)

Anything else

Action

Triple space

No space

Single space

Note that the GLYPNIR compiler does not support these options.

LC. RC, and CC must obey the relations

1 * LC.RC.CC * 80

LC < RC

CC < LC or CC > RC.

All vefevenoee to oolwrme 1 and 72 throughout this nrinual should

be interpreted as referring to columns LC and ÄC, reepeatively,

4.1.8 BCRC—Boolean Constant Repeat Count (Default - 1)

This section discusses the treatment of Boolean h3X constants by

GLYPLIT.

Define n as being the number of bits represented by a hex constant;

thus, n - the number of hex characters in the constant * 4. Note that

n ie aluaya a multiple of 4, although #PES need not be. Thus n may vary

from 4 (1 hex character) to 64 (16 characters). The problem is to map

the n bits represented by the constant into the #PES PEs. There are

three cases.

4.1.8.1 »PES - 64. This is the normal GLYPUIR case. If n - 64,

the n bits map exactly left to right into PEs 0 to 63.

If n < 64, then the n bits map into the n rightmost PEs, and the

leftmost 64 - n PEs get zeros.

,10 •••

10 • •

n • 64

n bits

64 PEs

n < 64

Fig. 4.1-#PE.O - 64

-.

-24-

4,1.8.2 IPES < 64, If n ^ //PES, the n bits map into the right-

most n PEs and the leftmost #PES - n PEs get zeros.

If n > iflPES, then the leftmost //PES/2 bits map into the leftmost

#PES/2 PEs, and the rightmost #PES/2 bits will map into the rightmost

#PES/2 PEs. (If #PES is odd, then the extra bit is included on the

left.) In other words, the n - //PES middle bits are ignored.

y
10

n - #PES n < //PES

n bits

//PES FEs

0 1

n > //PES

Fig. 4.2-#PES < 64

4.1.8.3 #PES > 64. If n < 64, the n bits map into the rightmost

n PEs, and the leftmost //PES - n PEs g» t seros.

If n - 64, then the leftmost 32 bits map inco PEs 0 to,31, the

rightmost 32 bits map into the rightmost PEa, and the middle PEs are

filled by repeating bits 33-BCRC through 32 as often as necessary.

That l8j the rightmost BCRC bits of the leftmost 32 bits are repeated

to fill the middle.

n < 64

32nd bit

10 ••• 1010 ••• 1

10••101 10110110 0 •• 1 //PES PEs

n - 64, BCRC - 3, //PES - 72

Fig. 4.3—#PES > 64

-25-

4.1.8.4 User-Supplied Interpretation of Boolean Constants. If

the actions described above for //PES j* 64 are inadequate, then there

are two alternate approaches a user may take. Whenever a Boolean cor-

stant appears, it is replaced by a QQBCx variable, e.g., MODE - BOOLEAN

(^(16)) becomes MODE(QQ) - QQBCl(QQ) within a DO loop. The Boolean

constant variables are initialized via the following declaration:

DCL QQBCx (0:63) BIT(l) INIT CALL QQBCI(QQBCx,'he');

"x" is an integer to form a unique name, and 'he' is the actual hex

constant character string in quotes. Then, on entry to the program,

PL/I automatically calls the procedure QQBCI once for each declaration,

which initializes the variable 'QQBCx' to the hex string 'he', as de-

scribed in 4.1.8.1-',.1.8.3. (The QQBCI procedure is contained in the

GLYPLIT execution library-card 15 of 5.2.) A group of ten of these

declarations is generated for every ten unique Boolean constants en-

countered, with a final group (the only group if there are no more than

ten in the program) occurring at the end of the generated code.

The first alternative is to make the user parameter BCRC > 0. In

this case, no declaration for Boolean constants will be generated, al-

though each unique Boolean constant will still be replaced by a variable

of the form QQBCx. Thus the user Is expected to declare and initialize

all the QQBCx variables generated via user-written PL/I.

A second alternative is for the '«aer to supply his own routine

called QQBCI. It should be of the following form:

QQBCI: PROCEDURE(BC,LITERAL);

DCL BC(0:n) BIT(l), LITERAL CHAR(16) VAR;

END;

where n - #PES - 1.

Because the literal will be passed exactly as presented by the

user in his GLYPNIR input, the user may simply make his Boolean

-26-

constants numbers, o.g., '1', '2', etc., and use LITERAL as an index

Into a table containing the desired initial values. An example follows

for Boolean constants of 3 bits.

QQBCI: PROCEDURE(BC, LITERAL);

DCL BC(0:2) BIT(l), LITERAL CHAR(16) VAR;

DCL TBL(0:2,2) BIT(l) INITCOIO','lOl') ;

BC - TBL(*,LITERAL);

END

The assignment statement is an array assignment: the '*' means

all elements in the range of that dimension. PL/I automatically con-

verts the character contents of LITERAL to integer if the contents are

a number.

Thus, if the user supplies this routine, and does not give BCRC - 0

(which would cause no declarations to be generated), then the statement

Bl - BOOLEAN(1(16)) OR BOOLEAN(2(16)) ;

is translated as (assuming //PES - 3)

DO QQ - 0 TO 2;

Bl(QQ) - QQBCl(QQ) | QQBC2(QQ);

END;

and causes the declarations

DCL QQ3C1(0:2) BIT(l) INIT CALL QQBCI(QQBCI,'1');

DCL QQBC2(0:2) BIT(l) INIT CALL QQBCI(QQBC2, ^^ ;

to be generated. Then on entry to the main program, QQBCI would be

called twice and QQBCI and QQBC2 would be initialized to '010' and

•101'.

4.1.9 LINES—Number of Lines per Page of SYSPRINT Output (Default - 60)

Useful for installations with short paper.

-27-

4.2 ni-__iE CONTROL OPTIONS

These options are placed on %%C cards and mixed with the GLYPNIR

Input. Unlike PARM options, which apply to a whole translation, these

options normally apply to only the next statement or to a range of

Gtatementa.

4.2.1 %ZC Cards

All In-line GLYPLIT control options must be placed on cards start-

ing with %%C In columns 1, 2, and 3. (These cards will be comments to

GLYPNIR.) Several options may be placed on one card but the option

words START and END may not both appear on one card. All option words

may appear in any order separated by any number of blanks or any other

aharaotere. Note that this means that comment cards starting with ZZC

should be avoided because they will ue misinterpreted as option cards.

(See 3.2 for discussion of 7.% cards for PL/1.)

4.2.2 EXTERNAL Declarations

Declarations may be made to have the PL/I external attribute by

use of the ZZC EXTERNAL card. This card should precede a GLYPNIR de-

claration for which the external PL/I declaration is to be generated.

The option normally applies only to the following declaration. If the

option word "START" is also on the card, however, all following declara-

tions will be made external until a %%C option card with the words

"EXTERNAL" and "END" appears.

External declarations and subroutine parameters are the only easy

methods of inter-subroutine communication for separately oompiled pro-

cedures in PL/I. The external attribute takes the pl».c . of COMMON in

FORTRAN. (See 2.9.3 for separately compiled procedures.)

Note that PL/I generates an error message (see B.2) for separately-

compiled subroutine or external variable names of more than seven char-

acters. To avoid this, limit all separately-compiled subroutine or

external variable names to seven characters and, because GLYPLIT pre-

fixes all function subroutine names with 'SS", limit all separately-

compiled function subroutine names to five characters.

x

-28-

In conformance with a recently Issued ILLIAC IV Document [6), COMMON

and ENDCOMMON statements may be used Instead of %%C START EXTERNAL and

%%C END EXTERNAL, respectively. However, using COMMON and ENDCOMMON

will have exactly the same effedt as the START and END EXTERNAL state-

ments and no more. That Is, the <common block name> will be completely

ignored (if supplied) , and the rule that does not apply is "two vari-

ables which occur at the same place in the common block correspond even

though their names may be different." As noted, using EXTERNAL and

COMMON simply gives the variables being declared the PL/I external at-

tribute. In PL/I, variables with the external attribute in different

procedures are matched strictly by name, and it does not matter where

the declarations occur in the procedures.

4.2.3 DOUBLE Precision Declarations

The PL/I declarations generated for GLYPNIR declaration statements

may be made double precision via the %%C DOUBLE card. (See 2.3 for

meaning of single and double precision.) The option normally applies

only to the next declaration. If the option word "START" is also on

the card, however, all following declarations will be made double pre-

cision until a %%C option card with the words "DOUBLE" and "END" appears.

Note that all built-in functions (EXP, SIN, etc.) will automatically

return double precision results if their arguments are double precision.

4.2.4 SUBR Declaration

The X%C SUBR causes the next subroutine declaration to generate

only the entry information. It is assumed that the body of the sub-

routine does not follow, but will instead be compiled separately. (See

2.9.3 for full details.) This option normally applies only to the next

subroutine declaration. If the option word "START" is also on the card,

however, all following subroutine declarations w^ll generate only entry

information until a %%C option card with the words "SUBR" and "END" appears.

Also, see note at the end of 4.2.2.

In conformance with a recently issued ILLIAC IV Document [6], sub-

routine entry declarations may also be made by preceding the declaration

with the word EXTERNAL. The <output> and <filen?me part- do not, how-

ever, apply and must not be specified.

-29-

JQB CONTROL LANGUAGE

This section describes, mainly by example, the IBM 360 JCL neces-

sary to execute the translator, to compile the generated PL/I, to link

edit the object code along with the GLYPLIT execution library, and to

execute the final result. These steps are called the GLYPLIT transla-

tion step, the PL/I compilation step, the link edit step, and th? exe-

cution GO step, respectively.

The JCL used for the last three steps is the standard, IBM-sup-

plied PL/I Compile-Link Edit-GO cataloged procedure found at roost in-

stallations. As such, the complete cataloged procedure is not displayed;

only the cataloged procedure EXEC card and the override DD cards are

shown.

As may be seen by the IBM technical terms already used without

definition, this section is not a course in JCL; rather, the user is

assumed to have a basic knowledge of IBM JCL and to be capable of mod-

ifying what follows for his own needs and installation. For more JCL

information, see Refs. 4 and 5. Sample listings may be found in

Appendix E.

5.1 GLYPLIT TRANSLATION STEP

1 //jobname JOB installation-defined-parameters

2 //GLYPLIT EXEC PGM-OLYPGO,REGION-300K,

3 // PARM-'parameter-list'

4 //STEPLIB DD DSN-llbrary,DISP-SHR

5 //SYSPRINT DD SYSOUT-A,

6 // DCJ>-(RECFM-"BA,LRECL-125,BLKSIZE»3129)

7 //PLIN DD DSN-plin-file,DISP-plin-dlsp,

8 // DCB-(RECFM-FB,LRECL-80,BLKSIZE-7280)

9 //GLYPNIR DD *

Card 2. The GLYPLIT translator program lq named GLYPGO and is

assumed to exist in the "library" of card 4. The REGION shown, 300K,

should be adequate for most translations, except for those requiring

an especially deep parse (e.g., very complex arithmetic expressions).

Less than 300K -nay also be used fcr economy.

-30-

Card 3. The FARM parameter is used to supply the options described

In 4.1. Individual parameters are separated by commas (If there are

more than one) and the whole list Is enclosed In quotes. The FARM param-

eter Is not necessary If all of the defaults shown In 4.1 are acceptable.

Card 4. The "library" should be the Installation-defined parti-

tioned data set name containing the translator module, GLYFGO,

Cards S and 6. The SYSPRINT card defines the file for all trans-

lator messages output, as well as the GLYFNIR Input listing and possibly

a list of the generated FL/I as controlled by the FARM parameters GLY

and FL1 (see 4.1.2-4.1.3). Other blocking factors may be used.

Cards 7 and 8. The PLIN card defines the file for the output PL/I

generated by the translator. As with SYSPRINT, Its contents are con-

trolled by the parameters GLY and FL1. The "plln-flle" name may be a

temporary (e.g., &&TEMP) or a permanent file name. A permanent file

may be especially useful If a text editing system to edit the file Is

available. Corrections or additions may ♦•hen be made to the generated

FL/I before it is compiled. Alternative] modifications can be made

by punching the file as cards. The "plin-disp" will depend on whether

the file is old, new, temporary, permanent, etc. If the file is new,

UNIT, VOLUME, and SPACE parameters will be required. With respect to

SPACE, the transistor typically generates 2.2 cards of FL/I for every

card of GLYFNIR input (assuming the GLYFNIR input is not being copied

to PLIN). Other blocking factors may be used.

Card 9. This card defines the location of the GLYFNIR to be input

to the translator. The example assumes that the GLYFNIR cards follow

in the input stream.

See Appendix C for the condition codes returned by the translator.

5.2 THE FL/I COMPILE. LINK EDIT. AND GO STEP

The IBM-supplied cataloged procedure, PL1LFCLG for FL/I Level F

Complle-Link Edit-GO, Is used for these three steps. Only the pro-

cedure execution card and override DD cards are shown.

-31-

10 // EXEC PI.1LFCLG,REGION.PL1L-250K,COND.PL1L-(15,LT,GLYPLIT),

11 // FARM PLllVSM-(2,72),SIZE-999999,STMr,NEST',

12 // TIME.GO'-go-time,REGION.G0=go-region

13 //PL1L.SYSIN DD T)SN-plln-file,DISP-plin-flnal-disp

14 //LKED.SYSLIB DD DSN=3YS1.PL1LIB,DISP=SHR

15 // DD DSN-GLYPLIT-execution-library,DISP=SHR

16 //LKED.SYSLMOD DD DSN-user-pds(mod-name),DISP=OLD

17 //GO.SYSIN DD *

Card 10. The PL/I generated for GLYPNIR programs of more than a

couple hundred cards usually causes the PL/I compiler to be inefficient

if the standard compilation region is used. The region shown, 250K,

usually results in economical compilation for programs under 1000 cards

of GLYPNIR. If the compilation time seems excessive, increase the

region; alternatively smaller programs may permit a decreased region.

(It takes % 25 CPU sec on a 360/91 to translate 500 typical GLYPNIR

cards, and 16 CPU sec to compile the 1100 generated PL/I statements.)

The C0ND.PL1L parameter shown stops compilation if TERMINAL errors

were made during translation. Even if SEVERE errors were made, it Is

frequently worthwhile to be able to see the PL/l generated, although

a lower COND parameter may be used. (See Appendix C for condition codes

returned.)

Card 12. The SM-(2,72) part of the PL1L.PARM is included mainly

to exhibit the source margins ot the GLYPLIT generated PL/I; this value

is usually the compiler-supplied default. The SIZE subpararaeter is

necessary to take advantage of whatever REGION is supplied on card 10.

The STMT subparameter, also usually a compiler default, causes code to

be generated so that if the compiled program fails during execution,

error messages will include the PL/I statement number. (Appendix B

discusses tracing problems back to the GLYPNIR.) The NEST subparameter

is very useful fcr matching BEGIN or DD - END blocks.

Card IP.. As always, it is important to provide a limiting "go-

time" for the execution step, and usually necessary to provide a "go-

region" to override the small standard default.

In addition, it ma> be desirable to override the PL/I and LKED

COND parameters, especially if PL/l messages at the ERROR level are

-32-

generated. As noted In Appendix B, some ERROR level messages may not

impede execution.

Card 13. The SYSIN card defines the input to the compiler. The

"plin-flle" name may refer back to or be the same as the PLIN DD-nsme

from card 7, and the "plin-final-disp" will indicate the desired status

of the file after the Job.

Carde 14 and 15. The LKEU.SYSLIB definition is a concatenation

of the standard PL/I library and the installation-defined residence of

the GLYPLIT execution library. This library includes all of the mathe-

matical and data manipulation functions bvilt into the GLiPLIT system

(e.g., MAX, MIN, ROWSUM) as well as a routine called QQBCI for initial-

izing Boolean constants.

Card 16. The LKED.SYSLMOD card is optionally used to save the

final translated and compiled program for repeated execut .on with dif-

ferent user data. The example assumes an existing partitioned data

set within which the link-edited module is to be saved under the name

"mod-name".

Card 17. The GO.SYSIN card defines the source of any user data

(if present). This card will be required: if PL/I statements such as

%XB GET FILE (SYSIN) EDIT(A,B,C)(3 F(10,4));

have been inserted with the GLYPNIR. Other DD cards raay also be added

to the GO step if required by the user.

5.3 SEPARATELY COMPILED SUBROUTINES

This section presents only the additional JCL necessary tc trans-

late and ".ompile subroutines separately, followed by a link edit and

GO step to run them together, (See 2.9.3 for discussion ol this option,

with examples.)

The JCL for the GLYPLIT step is the same, except that the "plin-

flle" name must be changed for each separate translation if the results

are to be saved permanently.

Instead of a combined Complle-Llnk Edit-GO step, each piece is Just

compiled separately with something like the following JCL;

-33-

20 // EXEC PL1LFC,PARM.PL1L-'SM-(2,72),STMT'

21 //PL1L.SYSIN DD DSN-plin-file,DISP-plin-final-disp

22 //PUL.SYSLIN DD DSN-obJect-pdß(mod-namei) ,DISP-OLD,

23 // DCB-BLKSIZE-3200

Card 20. If the piece being complied Is small, the standard region

will probably be adequate.

Card 22, As before, except that "pUn-flle" must be changed for

each separate translation If the output from each translation Is being

saved.

Cards 22 and 23. This Is the output from the PL/I compiler: an

object module named "mod-name," Is saved In an already existing parti-

tioned data set with the name "object-pds". "Mod-name." is the member

name for this module and should be different for each separately com-

piled routine.

To link edit and run the modules together, a separate Link Edit-GO

step may be used, or the final compilation may use the same Compile-Llnk

Edit-GO step shown above. If using PL1LFCLG, the only additional JCL

required is a //LKED.SifSLIN data set and a //LKED.OBJLIB card as follows:

15.1 //LKED.SYSIN DD DSN-*.PL1L.SYSLIN,DISP-0LD

15.2 // DD *

15.3 INCLUDE OBJLIB(mod-name.mod-name-,...)

16.1 //LKED.OBJLIB DD DSN-object-pds,DISP-OLD

The cards are numbered to show where they belong in the PL1LFCLG

JCL shown above. All "mod-names" separately compiled and saved on the

"object-pds" should be included (the new module just compiled is auto-

matically included and its name, if on the INCLUDE card, will be ignored)

The above is only one of many ways to accomplish the link edit, but

it is fairly convenient and short.

-3A-

6. GLYPLIT OUTPUT

GLYPLIT generates two output files, SYSPRINT and PLIN, under con-

trol of the two user parameters GLY and PL1. File SYSPRINT contains

all messages issued during translation, as well as a listing of the

GLYPNIR input (if GLY-1 or 3), and a listing of the generated PL/I (if

PL1-1 or 3), File PLIN is the input to the PL/I compiler. It contains

the generated PL/I (if PI1«2 or Z) and the GLYPNIR input as PL/I com-

ments (if GLY=2 or 3). (GLY and PLI aire described in 4.1.2 and 4.1.3.)

6.1 SYSPRINT FILE

Figure 6.1 is a sample of the translator's SYSPRINT output. The

date, time, and GLYPLIT version number are shown at the top of each

page. Also shown is the name of the routine bo.ing translated at the

start of the page. For the main routine, the label on the first BEGIN

will be shown if it «•^ists. (If net, the name 'MAIN' will be used.

The translating name may be blank for the first one or two pages.)

Page 1 of the output shows the FARM options specified by the user

as well as a complete list of options in force during the translation.

Subsequent pages include, for each card, the card number, the sub-

routine nesting level, and the BEGIN-END block level within the tub-

routine. These last two numbers may run a few cards behind the listing

of the card which starts the subroutine or block.

The translator messages format is fully described in Appendix C.

6.2 PLIN FILE

This is a card image file intended to be input to the PL/I compiler.

In addition to the PL/I (both generated and supplied by the user on %%

cards), it will contain the GLYPNIR input as PL/I comments if GLY-2 or

3. This option is useful during attempts to study both the results of

translation and the relationships between generated and user-aupplled

PL/I. Two caveats: the GLYPNIR statement may appear a few PL/I state-

ments before the actual PL/I statements it caused to be generated; and

if several GLYPNIR statements appear on one card, the card will be

■35-

• ■

5

S

O +

<
o

IM IO O
r^ in •
ii n <M i/) ii o '-•

00 II II IU« II
Ol >. -< O O O H
Q. _l _l < 00 VI X
» O 0. 0. X X _J

• t
••
00

I/) M4

X
o Z

a.
oo
to
z
O

z

a

z
a

>
UJ
-I

<

<
♦

A

•• V

o m
» a
t~ -> »
JJ
Q A

II v

< m
o

3 It!

3
••O

§s

o f-- H-
H. h •^
<t 00 *-*
-J LU ~i
oo Q.

f » UJ

OC f-i LJ

1- II ^ > a
l- -J 1 •-• O 3
-1 J
a. >- u

z
o

>

Z

o
o.

ec <
> ae
-g

«-I
J>- »-
so
o o:

■OCX-
i to *" l
; 5 i
IW K(

X
r

4

<
a. >
o — •o

AX

VI
a »-

a

in

s

g"

-»
•HO •* •

I
-I

• ♦

*«>4 one n
a

u. ac «
u.»- « a

_i x
< z

A <

A
II -»

V
< o

BJ5
• 0.

a. v
•JO ; <

ii

ce ui

o u. a.
O a. •-

tu o
-• o
Z l-

* a. «.
_i H- o —
• < o
n o — CD

■»z
a —
o o
Ü UJ
-I at

X
a —
u is
o tu
J IO

i
UJ

IM
I-

a
i-a
z o — a
o •
a h-
u> a

X a
— o
oa a •

31-
Z

XI-.-
oc z o > — a
< Oo a a
■an
h- l>J
3 >
O UI
oe -J

S* Irt z

3
O
of

si
z to

Q

i
3
a

to
UJ
o
o

o
o

„ .. o ">
-l o » •■
o «o —
— o •
gll -4

n «
o A -»

AX
o ->a
wo
o oo
U. U. -J

o
w
a

o

to

pg w (M <vi -< ^>4Wf-<>4NrMiM«tmmm'»^^mN'4>4<-i

»4 ^4 ^4 »H »4

— o
j oc or»ooo>o»<'M«v*in«h"«o*0'-iN(n*in«r»«o^O'-,M«^*in'ON«iO'0'^
a < rj<Mi\icijrnmw,,^<«i«»»'»'<><«>i'i***#'»,'r'*'*,'*'«'<ninj>ininir. inininin*-o
> O M M f\| rg IM (M 1MOJ CMIMIMIM (M rg rg fC CM N "M »M IM »M M rg «M M «l N IM N M NIM IM N <M

-36-

relisted several times (unchanged), once for each statement. (Note

that the expressions "IF Boolean expression THEN", "ELSE", "LOOP ij-

i2,l.,l, DO", "label:", etc., all count as "statements" for multiple

card-listing purposes.)

Each PL/I statement contains a sequence identifier in columns

73-80. Columns 73-76 contain the first four characters of the label

on the first BEGIN (if it exists) or "MAIN" (if it does not). Columns

77-80 contain a (probably non-unique) sequence number. The same se-

quence number is given to all PL/I statements generated (directly or

indirectly) by a single GLYPNIR statement, and is equal to the card

number of the GLYPNIR statement. When an error occurs during execu-

tion of the translated program, the system error message will usually

include the PL/I statement number. By referring to the SYSPRINT list-

ing generated during the PL/I compile step, the statement number may be

associated with the sequence number, which leads to the GLYPNIR card

number shown on the listing from the GLYPLIT step.

See Appendix A fjr a general description of the PLIN file and

naming conventions followed.

-37-

Appendix A

GENERATED PL/I STRUCTURE

The purpose of this appendix Is to aid those users who must study

the PL/I generated on the file PLIN. A discussion of overall structure

Is followed by notes for Individual statement types, and then the naming

conventions employed.

OVERALL STRUCTURE OF GENERATED PL/I

The first BEGIN causes the generation of the statement "label:

PROCEDURE OPTIONS(MAIN);" where the label Is the label on the BEGIN (If

it exists) or 'MAIN' (If there Is no label). Following this are always

a large number of DCL statements for MODE, PEN, the various built-in

functions, etc. Then comes the bulk of the user's program, and finally

additional DCL statements for Boolean constants, the IF Boolean expres-

sion stack, formal and actual parameters, and any other variables that

the translation may require in addition to the user's variables.

NOTES FOR SELECTED INDIVIDUAL STATEMENT TYPES

Assignment Statements and Generated DO Loops

The translator has two main tsaks. The first is to change GLYPNIR's

syntax to PL/I's. Thus, LOOP 1-1,1,5 DO becomes DO 1-1 TO 5 BY 1. The

second and major task Is to "put in the inner DO loops". Thus

PREAL P1,P2,P3;

P1-P2+P3;

becomes

DCL (P1,P2,P3)(0:63) FLOAT BIN(21);

DO OQ-O TO 63;

IF MüüE(QQ) THEN DO;

P1(QQ)-P2(QQ)+P3(QQ);

END; END;

-38-

It Is clearly desirable to collect as many assignment statements as

possible Into the same DO, thereby reducing the overhead associated

with the DO and IF MODE(OQ) statements. Assignment statements are

collected Into the same DO as long as 'Aey do not have a CU lefthand

side, and do not have any routing conflicts with assignments already

in the DO. An example of this last condition would be the following:

PREAL P1,P2,P3;

P3 - RTR(1,,P1);

PI - P2

RTR(1,,P1) is translated to Pl(MOD(QQ-l,63)). If the two assignment

statements are collected in the same DO, then Pl(QQ) will be updated

by the second assignment before It Is used by the first.

If the routing conflict occurs in the same statement, then a

temporary lefthand side Is needed. Thus

PINT PI;

PI - RTL(1,,P1);

becomes

DCL PI(0:63) FIXED BIN;

DO QQ"0 TO 63; IF MODEv'OQ) THEN DO;

QQAST(QQ)-P1(M0D(QQ+1),63);

END; END;

DO QQ-0 TO 63; IF MODE(QQ) THEN DO;

P1(QQ)-QQAST(QQ);

The models for arithmetic assignment statements and routing have

already been given by example above. The model for Boolean aaaignments,

shown by example below, are different from arithmetic assignment state-

ments. This is because a Boolean relation containing PE variables is

-39-

automatlcally true in off PEs (as per 6.3.1 In the GLYFNIR Programming

Manual), but Is not affected by the MODE If It does not contain P£

variables.

PE variables appear In Boolean expressions chiefly In relations.

For Boolean assignments with PE relations,

BOOLEAN B1,B2,B3;

PINT P1,P2,P3;

Bl - PI GEQ P2 OR B2 AND PI LEQ P3;

P2 - Bl AND B3;

becomes

DCL(B1,B2,B3)(0:63) BIT(l);

L!C
T
J(P1,P2,P3)(0S63) FIXED BIN;

DO QQ-0 TO 63;

IF MODE (QQ) THEN DO;

QQREl(QQ) - Pl(QQ) >- P2(QQ);

QQRE2(QQ) =■ Pl(QQ) <- P3(QQ); END;

ELSE QQRE1(QQ),QQRE2(QQ) = TRUE;

B1(Q0) - QQREl(QQ) | B2(QQ) & QQRE2(QQ);

B2(QQ) - Bl(QQ) & B3(QQ);

where QQRE1 and QQRE2 are declared at the end of the generated PL/I as

DCL (QQRE1,QQRE2)(0:63) BIT(l);

BEGIN

A BEGIN becomes a DO/*BEGIN*/ unless It Is followed by declarations.

Declaration Statements

PL/I attributes correspond to the different GLYPNIR types as follows:

-40-

GLYPNIR PL/I

REAL FLOAT BIN(21) single precision

REAL FLOAT BIN(53) double precision (see A.2.3)

INTEGER FIXED BIN(31)

BOOLEAN BIT(1)(0:63)

In addition, for PREAL or PINT types the dimensionality attribute

"(0:63)" (actually 0:#PES) is appended.

The %ZC EXTERNAL option (see 4.2.2) causes the "EXT" attribute to

be appended.

For subroutine statements, declarations are added for the entry

point in front of the subroutine and for the formal parameters after

the subroutine declaration. Thu.,

FREAL SUBROUTINE S(PCP0INT VI, PREAL PI, CINT OUT Cl);

becomes,

DCL SSS ENTRY ((*,*) FLOAT BIN, (*) FLOAT BIN,

FIXED BIN, (0:63) FLOAT BIN):

SSS: PROCEDURE (VI, P1,C1,QQFRP);

DCL Vl(*,*) FLOAT BIN, Pl(*) FLOAT BIN, Cl FIXED BIN,

(S,QQFRPR) (0:63) FLOAT BIN:

Note the addition of the fourth parameter for this sample function

subroutine. The result is returned in QQFRPR, so that a function may

be called more than once per statement. Throughout the function sub-

routine, references to S (the original function name) are left unchanged.

Then, at the end of the function subroutine, S is assigned to QQFRPR.

Non-function subroutines do not require the extra parameter, and do

not have their name prefixed by SS.

IF (and ELSE). FOR, and WHILE Statements

These three statements are all characterized by a controlling

Boolean expression (abbreviated cbe), and generate similar code. Their

general GLYPNIR form is

-41-

keyword cbe DO statement

For IF, the 'DO' is replaced by 'THEN'. For the ELSE part of the IF,

the cbe is implicitly the negation of the cue following the IF keyword.

There are two main variations, depending on the presence of PE and

Boolean variables in the cbe versus a cbe with only CU variables.

Only CU Variables in the cbe. The IF-ELSE recuires no translation.

The WHILE becomes

QQW1: IF cbe THEN DO;

statement;

GO TO QQW1;

END;

A FOR cbe must contain non-CU variables.

PE or Boolean Variables in the cbe. The form for all Is

QQM1 = MODE; /* An array assignment statement to save the mode */

QQW1: /* the label only for WHILE statements */

DO QQ = 0 TO 63;

IF MODF(QQ) THEN

QQIFBEl(QQ),/* for IFs*/ MODE(QQ) - cbe

END;

IF ANY (MJU/E) THEN DO: /* only for WHILE statements */

statement,

GO TO QQW1: END; /* only for WHILEs */

/* the following DO and statement, present only for ELSE

statements */

DO QQ = TO 63;

IF QQMl(QQ) THEN MODE(QQ) = -,QQIFBE1(QQ);

ELSE MODE(QQ) = FALSE;

END;

statement, /* statement body of ELSE */

MODE ■ QQM1 /* restore original mode */

-42-

NAMING CONVENTIONS

With one exception, all user-declared names of variables are un-

changed in the PL/I. The one exception is function subroutines. These

have the characters SS prefixed to their names. (This need not be done

by the user for separately-compiled function subroutines, because the

translator does it automatically.)

The following shows the various temporary variables and labels

created by the translator, as well as a brief description of their

types and uses. Small "x" represents an Integer which, for each name.

Increases frou one by one to make each Instance of a name unique (where

necessary). Note that all names start with "QQ". Users should thus

avoid QQ except to achieve special effects by using one of the follow-

ing names. '(0:63)' should be interpreted aa '(GiZ/PES)'.

Name

QQ

QQAPx

QQFRBx

QQFRCIx

Type

FIXED BIN(16)

(0:63) FLOAT BIN(21)

(0:63) BIT(l)

FIXED BIN(31)

QQFRCRx

QQFRPIx

QQFRPRx

QQIFBEx

FLOAT BIN(21)

(0:63) FIXED BIN(31)

(0:63) FLOAT BIN(21)

(0:63) BIT(l)

Use

"P£" index for generated iterative
DOs.

Actual parameters that are complex
PE expressions are evaluated outside
the subroutine call and assigned to
temporaries QQAPx.

Boolean-type function subroutines
return their multiple values to a
final added argument of this form.

CU-typfi function subroutines return
their value to a final added argu-
ment of this form (mainly for con-
sistency with multiple value PE
functions). Type INTEGER.

Similar to Q;FRCIx, but type REAL.

PE-type function subroutines return
their multiple values to a final
added argument of this form. Type
INTEGER.

Similar to QQFRPIx, but type REAL.

Preserves the controlling Boolean
expression of an IF for use by a
possible matching ELSE.

-43-

Naoe

QQMx

Type

(0:63) BIT(l)

QQ/ZPES

QQREx

FIXED BIN(16)

(0:63) BIT(l)

Use

A mode "stack" for preserving the
mode before an IF, FOR, or WHILE
if the controlling Boolean expres-
sion contains PE or Boolean
variables.

Number of PEs being simulated from
user-parameter #PES.

Because of the different MODE treat-
ment necessary for Boolean assign-
ment statements containing PE
relations versos those without,
these relations are evaluated
separately and assigned to tempor-
aries QQREx.

The GLYPNIR functions listed below are all supplied by the load

module GLYSUBS, which must be link edited with th compiled PL/I result-

ing from a translation, 'x* will be 'R' for REAL or 'I* for INTEGER,

depending on the argument type.

Name Type

QQEVERY function BIT(l)

QQSOME function BIT(i)

QQPORx 'unction FLOAT BIN

QQGL.Bx function

QQMAXx function

QQMINx function

QQROWSx function

Use

Function to evaluate Boole o quan-
tifier EVERY.

Function to evaluate Boolean quan-
tifier SOME.

'ORs* together all values of Its
PE argument to produce a CU
variable.

See GPM 10.10.

See GPM 10.9.1.

See GPM 10.9.2.

See GPM 10.11.

-44-

Appendlx B

SELECTED PL/I COMPILER AND EXECUTION MESSAGES

This appendix discusses some of the common messages that may

arise during compilation or execution of the generated PL/I. It also

describes how to trace problems from the message back to the GLYPNIR.

PL/I COMPILER MESSAGES

All PL/I messages appear at the end of the PL/I listing and fall

Into one of four levels: WARNINGS, ERRORS, SEVERE ERRORS, and TERMINAL

ERRORS.

In GLYPLIT applications, TERMINAL messages usually indicate a com-

piler error, or an Implementation restriction exceeded. In the first

case, the only thing to do (before IBM arrives) is to twiddle the PL/I

by changing the GLYPNIR. (The CHECK condition prefix and the optimiza-

tion level of the compiler are often associated with terminal errors.

Removing CHECKS, and/or including 'OPT-C in the PL1.PARM often cures

them.) Implementation restrictions are discussed in Appendix J of the

PL/I (1)') Programmers' Guide [3]. In this case, the solution is to break

up the GLYPNIR so that the restriction is not exceeded. (Exceeding tne

number of blocks restriction causes TERMINAL message IEM0071I and re-

quires separating the GLYPNIR into one or more separately-compiled

routines. See 2.9.3.)

SEVERE messages are usually the result of syntactically ..ncorrect

PL/I. If a GLYPLIT message was not generated during translation for

the statement in question, the translator has generated bad PL/I and

should be reported to the GLYPLIT distributor. Usually, however,

translator messages have also been generated and once the GLYPNIR is

corrected, the PL/I problems will cease.

ERROR messages may indicate syntax errors (in which case the solu-

tion is the same as for SEVERE messages) or may refer to certain imple-

mentation restrictions. In particular, ERROR message IEM2867I will be

generated if any external (separately-compiled) subroutine or variable

name exceeds seven characters (see the note at the end of 4.2.2). As

-45-

long as the first four characters and the last three form a unique

name, this will cause no problems (although It will require a COND-

(8,LT,GLYPLIT) override In the LKED step, because a return code of 8

will be returned).

In most cases, there should be no TIHttUNAL, SEVERE, or ERROR

messages. WARNING messages, however, <i ; be frequently generated for

data and parameter conversions and other conditions. These should al-

ways be checked, especially data conversions, as they may reveal un-

expected problems.

User-supplied PL/I may, of course, cause messages at all levels.

COMPILED CODE EXECUTION MESSAGES AND TRACING PROBLEMS
BACK TO THE GLYPNIR "

PL/I execution messages are of the form

IHEmmml message text IN STATEMENT mm NEAR OFFSET aaa

FROM ENTRY POINT ccc

where

mmm Identifies the message;

nnn gives the PL/I statement number (If the STMT option Is

Included as described In 5.2, card 11);

aaa Is an address (usually of little Interest unless It Is

outside of the program address space. In which case PL/I's

error recovery has failed);

ccc gives the PL/I subroutine naiv, containing the offending
t

statement number; and

message text will briefly describe the error (e.g., OVERFLOW,

ZERODIVIDE, PROTECTION VIOLATION, etc.).

f
The main program will be called MAIN If no label Is prefixed to

the first BEGIN (see 2.2.10). Also, since GLYPLIT prefixes all func-
tion subroutine names with 'SS* (see 2.9.1), If an error occurs Inside
of a function subroutine named FUNC, then ccc will be SSFUNC.

-46-

The message text and the message explanation, which may be found

In Appendix K of the PL/I (F) Programmers* Guide [3], will usually de-

fine the nature of the error.

The error may be traced back to the GLYPNIR as follows:

The PL/I statement number (nnn in the message format above)

identifies the PL/I statement. Then, given the PL/I listing,

the sequence number in columns 77-80 of the card image contains

the corresponding GLYPNIR card number shown on the GLYPNIR

listing during translation. The particular GLYPNIR construct

on the card may usually be identified from the offending

PL/I statement text.

Two caveats: the sequence number and card number may not always

agree exactly, so a little matching of the GLYPNIR and the PL/I text

may be necessary; and if the entry point ccc is a 6LYPLIT execution

library subroutine (like QQROWSUx or QQMAX), then, since PL/I does

not provide a traceback, the offending GLYPNIR must be identified by

examining all of the named subroutine calls in relation to the user-

generated output.

Note that, for debugging purposes, conditions like ZERODIVIDE may

be disabled with condition prefixes as described in 3.A. Similarly,

if PROTECTION VIOLATION or other addressing problems occur, SUBSCRIPT-

RANGE may be enabled to find the usual cause of these problems.

-47-

Appendix C

GLYPLIT MESSAGES

The messages listed below are produced by GLYPLIT during a trans-

lation and are written on SYSPRINT Intermixed with the GLYPNIR listing.

Messages fall Into one of four levels as follows:

WARNING: Indicates a syntax or other error, which was probably

corrected acceptably. Generates RETURN CODE - A.

ERROR: Indicates a syntax or other error, which may (rarely)

have been corrected. Will usually cause a PL/I mes-

sage at the ERROR level. Generates RETURN CODE - 8.

SEVERE: Indicates a syntax error, for which no correction was

attempted, or a translator Internal table overflow.

PL/I generated probably also syntactically Incorrect

at the SEVERE level. GLYPNIR Input text usually

skipped up to the next BEGIN, END, or SEMICOLON.

Generates RETURN CODE - 12.

TERMINAL: Usually not a syntax error, but Indicates a ^YPLIT

Internal consistency check failed. Plea?- report to

GLYPLIT distributor. Suggestions are ^Iven with each

message below for rearranging code to attempt to get

around problem. Generates RETURN CODE - 16.

Messages listed on SYSPRINT have the format:

****** level: message text ** msgno **

where "level" Is one of the four levels discussed above, and "msgno" Is

an Integer which uniquely Identifies the message. If a message must be

continued on more than one line, then lines after the first will have a

msgno of 0.

In the list of messages below, each message Is given In the format

msgno L message text

explanation and/or suggestions If necessary

-48-

where "L" is an abbreviation for the level of the message: W.E.Sjand

T, respectively. In the message text, "ccc" represents a character

string filled In from the GLYPNIR, and "nnn" represents an Integer.

GPM refers to the GLYPNIR Programming Manual [1].

1 S PROGRAM DID NOT START WITH <ID:|> BEGIN OR A SUBROUTINE DECLARATION.

A main program must start with a BEGIN, optionally preceded by

an ID; or a subroutine declaration If It Is a separately trans-

lated subrontlne (see 2.9.3). "MAIN:BEGIN" was assumed.

2 S UNRECOGNIZABLE SYNTAX.

This message may be generated for rather trivial errors In

statements that, at first glance, look correct. It Is fre-

quently the result of a missing semicolon, a misspelled keyword,

not having a space between a keyword and a '(' or ')', etc.

3 S NEST OF LOOP, FOR, WHILE, IF, AND/OR ELSE STATEMENTS TOO DEEP
LIMIT IS 10.

These statements may be nested. I.e., completely contained within

each other, up to a maximum depth of iö. An 'IF* and Its corre-

sponding 'ELSE' count as 1. The solution xs to break up the

structure by using statement labels and GO TO statements.

4 S BOTH SIDES OF AN ASSIGNMENT STATEMENT MUST BE Of THE SAME TYPE-
BOOLEAN OR ARITHMETIC.

See GPM 7.1.

5 S LOGICAL END OF PROGRAM FOUND BEFORE END OF GLYPNIR INPUT. ERROR
SCAN CONTINUES.

This means that at least one more 'END' has been parsed success-

fully than 'BEGIN'. BEGINs may be lost due to syntax errors In

a statement just- oefore a BEGIN.

6 S ccc NOT DECLARED AS A LABEL, BUT WAS DECLARED ON CARD NUMBER nnn.

Generated either for a GO TO with an undeclared destination or

for 'ccc:' if ccc is not a declared label. In the later case,

may be a result of using a ':' Instead of a ';'.

7 T UNKNOWN QQCTRL - nnn.

Report to GLYPLIT distributor. May sometimes be cured by re-

moving %%C cards.

-49-

8 S THE BODY OF A FOR, LOOP, OR WHILE STATEMENT MAY NOT BE LABELED.

See GPM 8.3, 8.1, and 8.4, respectively. These statements all

require setting up iterative counts or other tests and a branch

directly to the body would miss the settings.

9 T FCSTI ^ 0 AT SUBROUTINE CALL, FCSTI - nnn.

Report to GLYPLIT distributor. May sometimes be cured by re-

moving any nested function calls or function calls as parameters.

10 E LABEL ccc MUST BE DECLARED IN THE INNERMOST BLOCK IN WHICH IT
IS USED.

The PL/I code will probably execute correctly, but this is a

GLYPNIR error as stated in the GLYPNIR Programming Manual.

12 S LOOP STATEMENT HEADERS MUST CONTAIN ONLY CU VARIABLES.

See GPM 8.1. The iterative FOR is the correct substitute if

PE variables are required, but it is not implemented, so the

user must do the incrementing and testing with assignment, IF,

and GO TO statements.

13 S ONLY 'FOR ALL' STATEMENTS ARE IMPLEMENTED.

The two unlmplemented kinds of FOR statements are the iterative

FOR (for which the user may substitute his own IF, assignment,

and GO TO statements), and the FOR ANY, which is obsolete (and

for which the user may usually substitute a FOR ALL).

15 S 'IF' STATEMENTS NESTED TOO DEEPLY—LIMTT IS 10.

Replace some of the nested IF structure with statement labels

and GO TO statements.

16 S THE ELSE IS NOT MATCHED BY A PRECEDING IF.

This means that at least one more 'ELSE* has been successfully

parsed than 'IF'. It may result from a syntax error in a pre-

ceding IF. In a nest of IF/ELSE statements, this message may

appear at the end of the nest rather than with the actual un-

matched ELSE.

-50-

17 S FORMAL PARAMETER 'ccc' DOES NOT HAVE A LEGAL TYPE. CREAL

ASSUMED.

The TYPE of a formal parameter must be declared with the

parameter in the subroutine declaration, e.g., TYPE PREAL

for PI in SUBROUTINE S(PREAL PI). See GPM 9.1.

18 S TYPE ccc IS NOT IMPLEMENTED. PREAL ASSUMED.

In GLYPLIT, only types CREAL, CINT, PREAL, and PINT are

allowed.

19 S DIMENSION MUST BE BETWEEN 0 AND 2049. 100 ASSUMED.

Note that in GLYPNIR, subscripts always run from 0 tc the

dimension given.

20 S SUBROUTINE DECLARATIONS NESTED TOO DEEPLY. LIMIT IS 5.

The solution is to declare subroutines at same level instead

of within each other.

21 E ALL DECLARATIONS MUST BE AT THE HEAD OF THE BLOCK.

The generated PL/I will probably be correct because this is

not a PL/I restriction, bat it is a GLYPNIR error.

22 S 'ccc' MUST BE A CU EXPRESSION.

23 S 'ccc' MUST BE A PE EXPRESSION.

24 S IF A FORMAL PARAMETER IS DECLARED TO BE A POINTER, THEN THE
ACTUAL PARAMETER MUST BE AN UNSUBSCRIPTED VECTOR NAME.

Subroutine declarations are the only circumstance in GLYPLIT

where pointers are permissible. As noted in Chapter 5 of the

GLYPNIR Programming Manual, this is the only mechanism for

passing unsubscripted vectors, i.e., whol». arrays, to sub-

routines. To pass a subscripted vector parameter, i.e., a

single element of a vector (e.g., a row for PE vectors cf a

scalar for CU vectors), the formal parameter declaration ic

just CREAL, PREAL, CINT, or BOOLEAN. See also 2.9.

25 S ccc HAS BEEN DECLARED AS A VECTOR AND MUST BE SUBSCRIPTED.

This occurs for an unsubscripted vector name as an actual

parameter when the corresponding formal parameter is not of

type POINTER. See also message 24.

-51-

26 T FUNCTION_CALL_END_S, BAD PROC-SYNTAB-PT.

Report to GLYPLIT distributor. May sometimes be cured by re-

arranging function calls.

:? S ccc NOT DECLARED AS A FUNCTION.

An attempt was made to use ccc as a function subroutine, but it

was net declared with a type, e.g., PREAL SUBROUTINE ccc and

so it may only appear as a subroutine call, i.e., 'ccc;'.

28 E NUMBER OF PARAMETERS IN CALL TO ccc DOES NOT AGREE WITH
NUMBER DECLARED.

Although GLYPNIR permits missing parameters, GLYPLIT does not.

29 W ROUTES WHERE THE <MODE PATTERN> IS NOT EMPTY MAY CAUSE PROBLEMS.

See this GLYPLIT Manual 2.10.2.

30 S IMP AND EQV ARE NOT IMPLEMENTED. PLEASE USE PL1 BOOL FUNCTION.

This refers to the Boolean operators IMP and EQV. The BOOL

function may be used as follows:

B1(QQ)IMP B2(QQ) = B00L(B1(QQ) ,B2(QQ) , 'HOI')

B1(QQ)EQV B2(QQ) = B00L(B1(QQ),B2(QQ), 'lOOl')

Because Bl and B2 represent Boolean variables, thftlr PL/I

declarations will be Bx (0:63) BIT(l). In GLYPKIR, the

statement might be

B3-B1 IMP B2;

But in the translated PL/I the user must supply the DO loop.

Thus the complete user-supplied substitute for the above

statement would be:

%%B DO QQ-0 TO 63:

%% B3(QQ)-BOOL(B1(QQ),B2(QQ),,1101,); END;

31 W THE FIRST CHARACTER CF A HEX CONSTANT SHOULD BE s: '9'.

See GPM 4.5.1.

32 S HEX CONSTANTS HAVE A MAXIMUM LENGTH OF 16 SIGNIFICANT HEXITS.

A hex constant may contain 17 characters only if the first is

'0'. It may never contain more than 17 characters.

-52-

34 S ccc NOT DECLARED AS A VECTOR. MAY BE CAUSED BY USING < FOR LSS.

This occurs If an attempt In made to subscript a name that

has not been declared as a vector. Note: this will occur If

"<" Is used for "less than", e.g., PKP2, since "<" also de-

limits subscripts. Use "LSS" for "less than".

35 S SUBSCRIPTS ARE NESTED TOO DEEPLY, LIMIT IS 5.

E.G., Ä<B<C<D<E<F<G»»» Is one too many,.

36 S ccc NOT DECLARED.

Will occur If the declaration of ccc contained a syntax error

or If the BEGIN-END blocks structure Is In error. Note that In

GLYPNIR, all variables must be declared. Also, any global vari-

able used In a subroutine declaration. I.e., used In the body of

the subroutine but declared In the main program, must be declared

before the subroutine.

37 S ccc HAS BEEN DECLARED AS A VECTOR AND MUST BE SUBSCRIPTED.

This occurs for unsubscrlpted vector names appearing other than

as actual parameters. See also message 25.

39 E REACHED END OF GLYPNIR INPUT BEFORE LOGICAL END OF PROGRAM.

Means successfully parsed at least one more 'BEGIN' than 'END*.

An END may have been lost if It was not preceded by a semicolon

and/or a syntax error occurred.

40 W PROGRAM SHOULD END WITH 'END:'.

Final period Is probably missing.

41 S ccc ALREADY DECLARED IN THIS BLOCK ON CART nnn.

A variable may be redeclared in an inner block, but not twice

in the same block. BEGIN-END structure probably wrong.

42 W MSG MAY NOT BE SET GREATER THAN 3.

The user FARM parameter MSG may not be set so as to Ignore

TERMINAL messages. 3 assumed.

43 W THE FOLLOWING PART OF THE INPUT PARAMETER WAS UNRECOGNIZABLE:
'ccc'

This refers to the FARM parameter irom the JCL EXEC card, ccc

shows the offend'ng part of the parameter.

-53-

44 E MUST HAVE l^/PE5^999. 64 ASSUMED.

45 W IF GLY PARM IS 2 OR 3 THEN PL1 PARM MUST BE 2 OR 3.

That is, if the GLYPNIR input is to be copied to the PLIN

file, then there must be a PLIN file requested. Two is

added to parameter PL1.

46 W MUST HAVE THE FOLLOWING RELATIONSHIPS: LC,RC,CC<81; LC<RC;
AND (CC<LC OR CC<RC).

That is, all source must be on an 80 or less column card

image; the left margin must be to the left of the right

margin; and any carriage control column must be outside of

the source margins. Assumed LC«1, RC-72, COO.

47 E APPARENTLY MISSING SEMICOLON. SEMICOLON INSERTED BEFORE ccc.. .

This message rarely appears, because the translator seldom

can parse the input if semicolons are missing.

48 E TRUNCATION HAS OCCURRED. MAYBE JUST NAME>31 CHARACTERS.
CHECK PL1 GENERATED.

During translation, many pieces of the GLYPNIR must be placed

into temporary locations, all of which have fixed maximum sizes.

If the translator attempts to store a piece in a temporary loca-

tion too small for it, then the niece will be truncated, i.e.,

all characters past the limiting size will be lost and this

message will be issued. Names of length > 31 characters are

truncated in this manner (as stated in 2...4), and as long

as the first 31 characters are unique, no problems will arise.

However, truncation of other syntactic constructs, e.g.,

actual and formal parameters, subscripts, etc., will usually

result in erroneous PL/I. When this message appears, the

user should check the PL/I to see if the translation of the

offending statement is coirect. Usually, a PL/I compiler

error message will also result. The solution is to determine

the truncated construct and break it into smaller pieces.

49 W 'ELSE' MUST BE PRECEDED BY A STATEMENT OR BLOCK AND NOT BY A •
SEMICOLON.

The form "IF <Boolean expre8Sion> THEN s,; ELSE s, " is incorrect.

No semicolon should be present, s.. and s. must be single state-

ments or BEGIN-END blocks.

-54-

5Ü E LABELS ON ELSE STATEMENTS MUST FOLLOW THE 'ELSE1, NOT PRECEDE IT.

See GPM 8.5.

51 S DECLARATIONS MAY NOT BE LABELED.

52 S FUNCTION CALLS NESTED TOO DEEPLY. LIMIT IS 5.

53 W TRIED TO TAKE ddd OF CU value 'ccc'. USED CU VALUE SHOWN DIRECTLY.

ddd Is either MAX, MIN, or ROWSUM. See (i?H 8.9 and 8.11.

54 W ALREADY INSIDE ccc DCL BLOCK. NEW 'START ccc1 CARD IGNORED.

Refers to %%C option.

55 W NOT INSIDE ccc DCL BLOCK. 'END ccc' CARD IGNORED.

Refers to %%C option.

56 S STATEMENT TOO LONG. NUMBER OF CHARACTERS BETWEEN SEMICOLONS MUST
BE LESS THAN 257 (NOT COUNTING ALL BUT ONE LEADING AND TRAILING
BLANKS ON EACH CARD).

See 2.2.5 in this manual.

57 W EXTRA SEMICOLON IGNORED.

Extra semicolons are illegal in GLYPNIR.

58 S 'WHILE' STATEMENTS NESTED TOO DEEPLY. LIMIT IS 10.

Replace WHILE structure with IF and GO TO statements, but note

limit on depth of a structure made of any combination of IFs,

WHILES, and FORa is also 10.

59 S A SUBROUTINE MAY NOT CONSIST OF A SINGLE IF STATEMENT. PLEASE
ENCLOSE THE IF STATEMENT IN A BEGIN-END BLOCK.

This is a translator restriction.

60 S RE PARAMETER NUMBER nnn: EITHER BOTH THE FORMAL AND ACTUAL
PARAMETERS MUST BE BOOLEAN OR NEITHER MAY BE. NO CONVERSION

IS POSSIBLE.

If a formal parameter is of type Boolean, then the argument

muat be also, and vice versa.

61 W 'EXTERNAL' ATTRIBUTE NOT ALLOWED IN SUBROUTINE DECLARATION.
IT HAS BEEN IGNORED.

The word EXTERNAL is used as part of the entry declaration only

in the routine which aalle the subroutine. See Sec. 4.2.4.

62 W ALREADY INSIDE BLOCK OF COMMON DECLARATION. SECOND COMMON
STATEMENT WITHOUT INTERVENING ENDCOMMON STATEMENT IGNORED.

63 E NOT IN BLOCK OF COMMON DECLARATIONS. I.E., NO COMMON STATE-
MENT TO MATCH ENDCOMMON STATEMENT. ENDCOMMON IGNORED.

-55-

Appendlx D

SUMMARY OF JCL FARM OPTIONS

The following options are input as a list, PARM-'llst', on the

GLYPLIT EXEC card (see card 2, 5.1). They are fully described in 4.1

under the subsections shown.

Subsection Name Range Default

4.1.1 #PES 1-999 64

Meaning

Number of PEs for which code
is to be generated.

4.1.2

4.1.3

GLY

PL1

1

2

3

1-3

List GLYPNIR on SYSPRINT.

List GLYPNIR on PLIN.

List GLYPNIR on both SYSPRINT
and PLIN.

Same as GLY but refers to
generated PL/I.

4.1.4 PAGES >0 50 Maximum number of SYSPRINT
pages allowed.

4.1.5 MSGS >0 50 Maximum number of messages
allowed on SYSPRINT.

4.1.6 MSG 1-3 1 Minimum cignificant message
level.

4.1.7 LC 1-80 1 Source text left margin.

RC 1-80 72 Source text right margin.

CC 0-80 0 Carriage control character
column.

4.1.8 BCRC 1-64 Number of bits to repeat for
Boolean constants if #PES > 64.

-56-

Appendlx E

SAMPLE JCL LISTINGS

The following five annotated figures show samnle JCL for:

Figure Contents

E.l Translation

E.2 Translation and compilation

E.3 Translation, compilation, link edit,
and execution

E.4 Translation and compilation of a
separate routine

E.5 Translation and compilation of a
final separate routine followed
by link edit and execution of
several routines

-57-

//TRANS JOB PARAMETFRS
//(iLYPLIT EXFC PGM=&LYPGn,REC;i(1N=300K
//S1FPLIH 00 DSN=LGLYPLITtniSP=SHR //S1FPLIB On DSN=LGLYPLITtniSP=SHR

//SYSPRINT OD SYSOUT=A,DCB=(RFCFM = VRA.LRFCL = l?%HLKSIZF = 3129)

//(,\ YPWTR nn * //GI.YPNIR DO *

GLYPMIR INPUT DFCK

Fig. E.l—Translation

//TRANCHMP JOB PARAMETERS
//GLYPLfT FXFC PGM=GL YPGfl.RFGI nN = 300K
//STHPLIH 00 nSN=LGLYPLIT,DlSP=SHR
//SYSPRINT Of) <;v<:nMT = A.nru-iocA-c»_.-„.

//(>LYHLfT FXFC PGM = GLYPGn,RFGinN = 300K
//STHPUH HO nSN=LGLYPLIT,DlSP = SHR
//SYSPRINT 00 SYS0UT = A,0CH=(RFCFM = VRA,LRFCL = 1?'5 HI KS I 7P-^ i voi

//GLYPMIR 00 *

GLYPNIR INPUT DFCK

//PL I EXEC PLlLFC,RFGinN.PLlL=250K,PARM.PLlL=«SI/F = qq99q9i
//PL1L.SYSIN 00 nSN = *.GLYPLIT.PLIN,.)ISP = f)LD
/*

Fig. E.2—Translation and Compilation

Note:

1. The REGION.PLIL and SIZE subparameter assume a large program
(>350 cards of GLYPNIR).

-58-

//.'RANCLG JOB PARAMFTHRS
//GLYPLIT EXFC PGM=GL YPGO.RFr, I f)Ni = 300K , PAKM= •KPFS=A,

//S1FPLIB DD n.SM = LGLYPLlTtni$P = SHR
//SYSPRINT DO SYSniiT=Afr)CR=(RFCFM = VBA,LPF:CL = 137,RLKSIZF = ft5R^)
//PLIM Of) nSN=f.f1TrMP,(KB=(RFCFM = FRtLRFCL=Rn,BLKSIZE = BOO) ,
// r)lSP=(MFW,P/\SS) ,IIMIT = ?.YS(V, fSPACE = (TRK»(1 tl))
//GLYPNIR DO *
« THIS PROGRAM READS IN A ^ BY A ARRAY (WlTF THAT THF
% MUMBHR (IF PF:S=4) AMD PRINTOUT? THF ARRAY» THF MAXIMUM
% VALUE IN THE ARRAY, THE MINIMUM, ähil) THE AVERAGE OF AIL
3! ELEMENTS IN THE ARRAY.
%

DEMO: BEGIN
PREAL VECTOR X<3>; % ALL VECTORS HAVE A LOWER BOUMO OF 0.
CREAL MAXIMUM, MINIMUM, SUM, TEMP:
CINT I;

SÜKB GET EILE(SYSIN) EUIT(X) K (A E (5 , C) , SK I P)) ;
%
MAXIMUM = MAX(X<0>); MINIMUM = MIN(X<n>): SUM = ROWSUM(X<n>);
LOOP 1=1,1,3 00
BEGIN

TEMP = MIN(X<I>);
IF TEMP LSS MINIMUM THEM MINIMUM = TEMP:
TEMP = MAX(X<I>);
IF TEMP GTR MAXIMUM THEN MAXIMUM = TEMP;
SUM = SUM + ROWSUM(X<I>):

END:

%*B PUT FILE(SYSPRIMT) EI)IT('THE ARRAY =«,X,'THF MAXIMUM =»,
«iK MAXIMUM,«THE MIMIMUM = • , MI NI MUM, • THE AVERAGE =',
«X SUM/16.0)
X% (A, 4 E(H,2),3 (SKIP,X(n),4 F(R,?)),
%% 3 (SKIPC?) ,A,E(R,?))) :
END.
//PL1 EXEC PL1LFCLG,CnND.PLlL=(9,LT,GLYPLIT),
// TIME.GO=(,10),REGION.G0=100K
//PL1L.SYSIM Of) OSN = *.GLYPLIT.PLIN,OISP=OLO
//LKED.SYSLIB DO OSM=LGLYPLIT,01SP=SHR
// DD 0SN=SYS1.PL1LIR,DISP=SHR
//GO.SYS IN 00 «
2. 3. 4. 5.
6. 7. 1. 8.
9. 16. 10. 11.
12. 13. 14. 15.

Flg. E.3—Translation, Compilation, Link Edit, and Execution

Notes: 1. This is a complete sample. With only minor changes to the
JCL (the JOB card and the data set named LGLYPLIT), the
new user may run this as an aid to getting started.

2. The purpose of the codes are stated in the comments heading
the program.

3. For those unfamiliar with PL/I input/output, the PUT EDIT
statement at the end should be helpful.

-59-

//MAIM JMH PÄRA^t-fF^S
//GLYPL11 f-Xf-C PRM=GLYPROfReGION«3(yOKt

// HARM='«PFS=A'
//STFPLlh DO OSN = Lr,LYPLIT.niSM = SHR
//SYS PR I MT Of) SYSÜIlT = A,nCH=(«f:CFM = \/rtAtL«FCL = l?T,BLKSIZF- = 31?9)
//PL IN HD nSN = r.f.TFMptnCB=(RFCFM = FH,l.kFf.L=PO.RLKSIZF = «00) ,IIW1 T= SYSOA ,
// ()ISP=(N'FW,PASS) ,SPAr.F=(TRK, (1,1))
//GLYPMI« HD *
MAIM: RFGIN ^ SAMPLF MAIM PROGRAM
X%C FXTFi^MAL
PRFAL P? :
Ä5;C StIHR
SUKROIITIKF S(PRFAL PI)!
P?. = 7.0:
IF RnnLFAM(07FFFFFFFFFFFFFFFI IM) THFN SIP?-1».);
**h PUT F1LF(SYSPRIMT) OATAIP?);
FNO.
//PL1 FXFC PL1LFC,
//PL 11. .SYSLIM Of» nSM = OHJl. IH(MAIM) ,01 SP=(IVFW,CA1LG) »
// DCH=RLKSl?F = 3i?00,ltNIT = 2 3l4,V(»L»SFH = SFRMt>M,
// SPA(:F = {TRK, (in, io,?()))
//PLll. .SYSIM Of) OSM = =:=.(;LYPLIT.PLIN,I)ISP=()LO

Fig. E.4—Translation and Compilation of a Separate (Main) Routine

Notes: 1. The FARM parameter on the GLYPLIT EXEC card specifies 4 PEs.

2. Note the setups (%%C EXTERNAL and %%C SUBR cards) for the
separately compiled subroutine S (see Fig. E.5).

2. The FLIL.SYSLIN card saves the object code generated by the
compiler on a new partitioned data set—OBJLIB—under the

member name iMIN.

-60-

//SI'L'.« .JOB PARAMFrTFRS
//GLYPLIT fcXFC PGMseRLYPGn,R(rG I(IN=30OKf

//STFPLIH DD ()SN = LGLYPLIT,niSP = SHK
//SYSP«?NT HD SYSrillT=AtnCH=(RFCFM = VHA,LPFCL=12S,HLKSlZF = ?}li»9)
//PLIM HO r)SN = f.£TFMP,riCH=|RFCFM = FBtLRFCL = S0,HLKSI7F = H()n) ,l)NI T = SYSl)A t

// niSD=(NFW,PA,SS)»SrACF=(TRK,(l,l))
//GI.YPMIR Of) «
SOhROUTINF S(P«FAL Pli; % SÄMPLF SliBRfUlTlNF
BEGIN
r*C EXTFRNAL
PRFAL P?;
P2 = S0«T(P?+P1);
FNO.
//PL1 EXEC PLILFCLGt
// CtiMn.PLlL=(b,LT,GLYPLIi)»
// TiMF.GO=< ♦10),RFGIC1N.GO=100K
//PLIL.SYSLIN DO r'SN=nBJL I B (S) ,01 SP = nL0
//PL1I..SYSIN 00 OSN = «.GLYPLIT.PLIM,OISP = nLO
//LKFD.SYSLIB 00 OSN=LGLYPLIT»01SP=SHR
// 00 f)SM = SYSl.PLlLIB,r)ISP = SHR
//LKFO.SYSLIN 00 OSM = *.PL1L .SYSLIN,01SP=nLO
// 00 *

INCLUOF OBJLJB(MAIN,S)
//LKEO.OBJLIB 00 l)SN = nBJL I B , 01 SP = SHR
/«

Fig. E.5—The Subroutines and Execution

Note:

1. The execution of the MAIN routines and subroutines will print
P2(0) = 7.0 P2(l) = 3.0 P2(2) = 3.0 P2(3) = 7.0 on SYSPRINT.

-61-

Appendlx F

SUMMARY G IMPORTANT GLYPLIT RESTRICTIONS

For a more complete discussion, see the subsection indicated in

parentheses after each restriction.

1. NO CODE statements, and therefore no ILLIAC IV Assembly
Language (ASK), are permitted.

2. In RTL and RTR, a non-empty <mode pattern> is ignored.
(2.10.2)

3. Only types PREAL, CREAL, PINT, CINT, and BOOLEAN are
implemented. (2.^.1)

4. Subscript delimiters may be < > as well as []. (2.2.1)

5. Iterative FOR statement not implemented. (2.8.5)

6. Limit of 256 significant characters between semicolcns.
(2.2.5)

7. Identifiers limited to 31 characters. (2.2.4)

8. Arithmetic literals: '(16)' is the only explicit base
specifier permitted. (2.4.5.1)

9. DEBUG statement not implemented. (2.8.7)

10. SHIFT and REVOLVE functions take only Boolean expressions as
paraneters. (2.10.1)

11. Empty or missing parameters in a subroutine call are not
allowed. (2.9.1)

Preceding page blank

REFERENCES

1. Lawrie, D. H., GLYPNIR Programming Manual^ Department of Computer
Science, University of Illinois, Urbana, Illinois, August 27,
1970.

2. PL/I (F) Lrnguage Reference Manual, IBM Corporation, Order No.
0028-8201-3, 4th ed., June 1970.

3. PL/I (F) Programmer's Guide, IBM Ccrporation, Order No. GC28-
6594-6, 7th ed., June 1970.

4. IBM System 360, Job Control Language Reference, IBM Corpora ion,
Order Ao. GC28-6704-0, 1st ed., June 1970.

5. IBM System 360, Job Control Language Vser'n Guide, IBM Corporation,
Order No. GC28-6703-1, 1st ed". , June 1970.

6. Baer, D. M., Subroutines in the GLYPNIR Compiler, ILLIAC IV Docu-
ment 257, January 15, 1972.

