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3. ABSTRACT

A broad class of materials possessing both instantaneous ponlinear elasticity and
dissipation in addition to fading wemory with aging effects is described. The ueasure
of the generalized imput function, which is a multiplet in terms of the deformation
gradient, the temperature, the gradient of the temperature, as well as various chemica
affinities, is given a semi-norm over a Banach Space. The sg¢mi-norm includes a
sumnmand which i3 a modification of the Steklov Average tc P < integrable Lebesgue
functions, It ie assumed that the generalized response is a nonlinear function of
the present input and a mate.ial property-history kernel determined by a Steklov-
Lebesgue norm. Examples applied to solid propellant axe given.{
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“ON THE GENERAL THEORY OF STEKLOV-AGING MATERIALS"

J. Edmund Fitzgerald, D.Sc.

Professor of Applied Mechanics
and Civil Engineering
University of Utah
Salt Lake City, Utah U.S.A.

' SQ?MARY

A broad class of materials possessing both instantaneous nonlinear
elasticity and dissipation in addition to fading memory with aging effect:
is described. The measure of the generalized input function, A, which
is a muiti-plet in F, the deformation gradient; 6, the temperature;

g = grad®, as well as various chemicil affinities, Akx; is given by a
semi-norm over a Ranach Space. With the definition of the history
At = pAL(s) = (t-s)% sego,w) ang with the restriction of At to past
history given by At = Ar(s) = Ar(t-s); se(0,») the sami-norm is:

. . 1/
t (1) ? + < p
HRSH Sg = g“ (O)Ihi (o) + Zf%f-;!—e_agﬁ J‘;lA;(S)Iphg(S)dﬁ}

Y
with [m'Shg(s)ds] Pewand bh(s) 20 . (1)

. D
and A(i’(O) the present 1" time rate of change.

The second summand is a modification of the Steklov Averaye
[Kantovovich, 1964] to P - integrable Lebesgue functions.

It 4s assumed that the generalized rasponse f(t) is a noniinear
function(al) of the present input A(t) and a materjal roRerty~history
kernel determined by the Steklov-Lebesgue norm |]A (s)?lsP such that

a(t) = F[I In¥s)] lsg])\(t) (2)

Equation (1) shows that as time increases mesD increases and
that the influence of the past history on present response decireases.
For a given finite duration input, ite influence decreases both ?he
longer in the past it ocourved and the older the material is, This
latter effect ic termed Steklov-aging, As the age of the material
beco?e§ very large the past history effects are obliterated and from
Eq. (1

. il JA%(s)1 g =il1\(”(o)|hi(o) : (3

mesD + « i=0
/
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Thus a. Steklov-aging material under long term aging approaches
the behavior of a nonlinear viscoelastic or Markoffian type material.
F?$ very small inputs, A(o) and small time rates of change of inputs,
aM1)(0), the material, after iong term aging, becomes linearly
viscoelastic. .

Exampies of the theory as applied to solid propellants and a
sand-asphalt concrete are given.




1.0 IRTRGDUCTION

The applicetion ¢f the iirezr and nonlinesr thecries of viscoelas-
ticity has had wide application in the chajacterization and stress
analysis of se?fd srapeljants, highly solids joaded pelymers, and
asphaly pavement during the past two decades.

Sc long as the characterization and verification of the selected
constitutive equation was confined to the ysuai loading or straiming
conditions such as a constant strzin ralz, ramp relaxation, or constant
stress creep the comparisen of theory with experiment was generally
satisfactory. This resuit was to be expectad since the theory and
experiment are often & curve fitting exercise over a narrow range of
load types.

When viscoelastic theery is appiied to the prediction of repeated
Toads such as a sawtooth input or muitiple vamp input, the predictive
resufts of the theory are often guite unsatisfactery. The above state-
ment applies to linear viscoelasticity as well as to the several forms
of nonlinear viscoelasticity utilizing the muitipie integral approach.

Details of the previous statements are presented in [Fariis and
Fitzgerald, 1970], [Fitzgerald and Farris, 1970}, and Chapter X1 of
[Fitzgerald and Hufferd, 1977]. A most exceilent comparative review
is given in [Stafford, 1969].

Figure 1 demonstrates the above problem based ugon some of Farris'
experiments, using a filled polyurethane propellant,

The use of a repeated sawtooth _train history is typified by the
curves of Figure 2 for a highly solids loaded polybutadiene dcvilo-
nitrile propeliant [Bennett, 1971].
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Previous piblications by the author and his co-workers enployed
the use of nomogeneous functions of ths strain history made spacific
through Lebesgue norms. The Lebesgue norm, l!ellLP is essentiaily the
weighted P-summable integral of the infinitesimal strain hisiory, €

wherein

HeHLP:N

1y
)" hp(s)ds} P {8)
meas S

The term hP(s) is a positive decreasing function of s for fading
memory theories where P is taken as unity. Certain boundedness restric-
tions apply to hp(s2. '

For P + =, the Chebyshev norm resuits wherein

lleli,_ = ess. sup el (5

Using a rather simple expression [Farris, 1970] for stress, T,

versus strain ¢, wherein

Henlle 1%, (43 (6)
Ty;(t) = 435 AL
Entia

the results of Figure 3 were obtatned [ Farris, 1970].

It should be noted that the general form of Ea. (&), which 1s the

th

L, norm divided by the Lp novm to the n*" power (with P > 1), when

multiplied by €1y yields the following results:

- A A
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+For a constant strain rate test, €11 = Rt

lepgll = B [leggilp = Rt - —E
€11lle = Rt lleqgilp = Rt =« ———%
n T-n
Ty7 = A(P+1) b gt /e
or Ty = A(P+1) © eqqt (7}

*For a step relaxation test €11 = &

1/
Hegghlo = g5 Ilepgllp =g, t 7

-n

The Tast result predicts an inverse power law for the relaxation
modulus, A t'"/F, so that the value of A and the slope, n/P, can be

determined from a step relaxation test since G(t) = A £/P

relax.
The constant strain rate test yields the secant medulus

G(t)secant = ‘P+])n/P G(t)re'lax. (9)

from which P+1, hence P and n may be determined.

The predictions of Figure 3 were made using data obtained as described.

A cemparison of the above norm expression with 1inear viscoelasticity for
a polyurethane propellant is given in Figure 4 [Farris, 1970].
A more general expansion of Farris' earlier exprassions has been

given by [Vakily and Fitzgerald, 1972] wherein the stress function

5o
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involves & sum of Lebesgue norm ratios and the naturally occurring

jnverse, puwer taw kernel in. the viscoelastic integral as follows:

NN Hella Y

Tn(fr)’=z S Ay i j.t(tw)'mjé (t)dt - (10)
—t Lad. 1j I!?[lp 0 1
i=a dJ=o0 i

The first term of the above expansion, 1 = j = 0 with G =

yields
IENGIL
I{ = !
Tit) = Ay e Ty | ey (t) )
0

which is the previous Farris expression, Eq. (6).
Including tne current value of the strain, ls]]j and simplifying

a three term expansion.of Eq. (10) results in

T, (t) ﬂ———n——l i (t) + A Wle”l !
o = € ~
I 12)
/- (t"T) ‘] 3'” (,T)d'l' . ( )
0

where we have defived [le|f, = le].

Various other specific forms of the above Lebesgue norws may ba

formulated.

Applying Eq. (12) to a series of compression fests on a sand-

1972] where the constants were evaluated from constant strain rate

“step" relaxation tests:

asphalt mixture prodused the following expression [Vakily and Fitzgerald,

[
©TE A e A




)'Blog( o 4.32 . t 0.8 | .
T(t) = i\ﬂ'lﬂ; e(t) + ]-H_?:!T; (t-1) e('t)d'r} a3 .

The moduli for a strain of 0.37% and 0.5% is shown in Figs. 5

and 6.

Thz constant strain rate tests for two different rates are given

in Fig. 7.

The ramp relaxation test results are given in Fig. 8.
Using the expression, Eq..(13), derived from the above data,

predictions shown as open circles and experiments, shown as solid lines,

S

were conducted for

(1) an interrupted ramp strain input at two different

(2) a single constant strain rate "sawtooth® strain,

(3)

Again, it is clear that the sand-asphalt material exhibits a degree
of permanent memory similar to the filled polyurethane propellant and
the PBAM propeliant.

strain rates, shown in Figs. 9 and 10. A comparison

of the above predictions with those of linear visco-

élasticity is given in Fig. 11

shown in Fig. 12

a repeated constant strain rate test cycled between

a set maximum strain and zerc load, Fig. 13.

gerald, 1972].

An expression for the stresc such as

T(¢)

= fU(t), ||ue), ]

Figures & through 13 are from [Vakily end Fitz-

(14)

——
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produces a stress-st“axn relation with no re]axation but with the Mullins
effect predomwnant [Mullins, 1947].

A mathematical justification for the above norms, and their restric-
tions, is given in [Hufferd and Fitzgeraid, 1972] including thermodv amic
impYications. _

In general, one may express .the Cauchy stress tenso?, T, as a

function of the norms, for example
T, el 1l ] - (15)

where U is the positive square root of the right Cauchy-Green (finite
strain) tensor. The result’:. poiynomial function following the well
kngwn Riviin-Spencer exp.:..iousn for initially 1sotropic materials will
»roduce an expressian Ly to the sacond power in the U and its norms
with coefficienis that are polynomials, or preferably here, rational

fractions “in the joint invariants
t)‘u, tY’Uz, bl Y tY’HU”LP, etC.

Again,.a three-dimensional expression similar to Farris' is derived

for a single tem, homogeneous 7orm for T, namely

y tr||u}]," |
T(t) = A -t—r-l-]-u-l-l; (u(t) - 1) (186)

Applicatiun of the above tensorial equation to a uniaxial test

produce results similar to those previously shown,

-8
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2.0 AGING EFFECTS AND THE STEKLOV AVERAGE

The Lebesgue rorms previously described are such that they produce
the integral of the strain history on a P - sumnable Bhsis. The use. of a
non-uini ¢ weighting function, hp(s), will provide for fading semory effects.

The Lebesgue norms may have a basis in microscopic theory as presented by

Farris in his doctoral thesis.

Nevertheless, the norms as used herein are simely continuum postulates
whose use is justified by the results shown hereiw: and in the various quoted
references. -

‘With the integrals as used, however, no aging effects are included.

Consider now a class of materials whose response is governed by certain

weighted averages of the past strain history as well as by the present value
of the strain and its several time derivatives.

A norm on such a space may be censtructed as follows for » generalized

<input A

\ 1,
“A (s)]] N-X!A (0)]h, (o) + E[W!M S)lphg (S)ds]

T Y, |
1 \P Pe o and 1P
with [mghp(s)ds] < ‘and hp(s) _>_9 .
5 ,
and A(i)(o) the present i-th rates of change. (17}

The above is actually a semi-norm unless measC is finitc,
Considering especially the second summand in Eq. (17), we shall call
it a Steklov Average since it is a generalization of the Steklov-Lebasgue

average givenin [Kantorovich and Akilov, 1964].

x Twa

e




A slight variation in the above, which will be termed the modified S:eklov

Average and which satisfies all the requirements of a norm (or semi-norm) is

given by
/P
Hatlke =) s rl\t(S)IPhp (s)ds (18)
’ Sp (T+k measD)_’D By p :

with k>0 . .
- Dropping the fading memory factor hp(s), for simplicity, results then in
o I V4
P N, ={ vy f A" ¢ (19)
* . - = * s
{ R L

, where we have taken measD = t for the usual rather smooth physical inputs, A .
Looking at the Lebesgue norm ratios of Eq. (10) or Eg. (11) for example
L B and the definitions Eq.(84) and Eq. (19) yieids the following relation bgiween

the LP norms and the' Sp newis

. [tk [l T A(g%ﬁ}n
a , - J(Mt) (20)
) s | LN,
L P
; and for Q + o« ,

- N n .
| LA LI A
blAnf TET

P “p
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It is readily shown that the ratio
[1all3
T'm£31VQ>P, P>1 (22)
P
since the dominance of LQ over LP is well known when >P' [Kantorovich and
AkiTov, 13964] and for k>0, the multiplier is also >1.
::‘5 Defining T“‘ as the stress obtained from Lebesguz norms as in the previous
sectivh 1.0, the stress obtained by substituting modified Steklov norms is
) TS where
? -P
;- n
j Pt (14 kt)gp— (23)
or with @ + «
n/P
T = TH(1 + kt) (24)
Consider for example a material governed by a simple permanent memury
’ norm relation such as Ea. (6)
I
w t n
L l|€]1i|m
T-” A[‘W Sn(t) (25)
For a step relaxation test with strain magnitude e (25) yieids
|
; L. -n/P
{ Applying instead the ratio of the modified Steklov norms Sp produces
A T8 ae, tP (14 kn™P (27)

| ~11-
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For a material which is sirained immediately upon being formed, t t* .

T T

Qtherwise hawever, t is the time relative to the begiuning of the step strain
L : whereas t* is the actual time from the initial creation of the material to
| the present. The difference in behavior of the LP and Sp horms is shown

in Fig. 14. A step load-unload input is used with the L,, S, and L =S =

e max. curves plotted for an example. After the load occurs, Ly is constant
L as is L. However, the S] norm reduces with time since it is averaging over

the life of the specimen.

The relation between the Ly and Sy norms is, from (4) and (19)

r llallg = [1all,_ 01+ ke) /P (28)

| It will also be noticed from Eq. (24) that the exponent of the "aging"
term 1+kt* is equal to the positive numerical slope of the inverse power

law relaxation modulus, n/P .

Consider a typical solid propellant with n/P = 0.2 , then

L Ty = A et ? (14w E (29)

If the relaxation modulus increases by 20% over a one-year ambient aging
| then k33 x 1078, sec™! .

A typical CTPB propellant increases its modufus by 20% in 100 days.

% With a slope n/P = 0.2 , hence, the value of k fs 15 x 1078 sec ~1,

| ' It is also to be notad that for large velues of kt", the aging is
described by a streignt 1ine on a log-log scale. Further for n/P = 0, no

relaxation and no strain rate effects, the aging is nonexistent.

by uied
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Because of the smali values of k, the use of the Lp rather than the SP

A

norms for short time loads o newly formed materig?s ie fully equivaient.
Further, for short loading times relative to the‘fi%é of the material,
'(]+kt )“’IP is essenfia]ly a constant and Steklowv. aging ré&uces to the sn-
called nomothetic aging process {DeArriaga, 196§§i

For finite strain, the essential results aiso. huld Consider an incom-
pressible material subject to a simle step eiongattpn~W1th a stretch ratio
of A where A is the stretched length divided by the fhitial ]ength Using
a simple constitutive equation of the form of (16) bnt with modified Steklov

norms instead of Lebesgue norms as in (21) results in

ne) = A[}l;";"z’f]n AN T KA (USRI (30)

<

" For u material stretched when newly formed ahd then held at the siretch
ratio, A, with t = ¢

N X7 M LTS BT ) B
T(t) A{Aﬂ (s 0" o) | (31)

For long times. then as t » = ,

Crrey w 222 10 e L |
T p{wzx“”] - (32)

One could obviously extend the expansion to higher order terms in U,
bui the essentiail noint to be made is that the material does not fully relax

as t +» . For the typical material previousiy mentioned, if the relaxation

In addition, there can be considered an elastic componant with no loss of

generality, »]3=

modulus at one second were 1000 psi, the final modulus would reduce to 60 psi.
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‘ 3.0 CONCLUSIONS

& It has been proposed that the characterizaticn of relaxing, rate sensitive

5 materials be based upon certain weighted averages of the past history which

3} are semi-norms called modified Steklov averages.

i§ The ratinnaleis based upon previousiy mentioned guidance from molecular

%% theory but is primarily based upon the postulate that the present response of

i{ . a material is gpverngd by i1ts present deformation gradient and a selected

i ) weighted P~-summable Steklov average (17).

ii , Since in engineering practice, one seldom knows the detailed past of a

2 structures thermal and deformation history but usually knows the average and

i . the maximums, no serious loss of applicability should result, .

f The justification for the use of the proposed norms is based upon the
several examples given herein where the predictions using norms is shown to

be superior in accuracy to the predictions based upon linear viscoelasticity.
The use of the §; or L maximum value norms implies that the material also is

sensitive to the maximum strain value 1t has ever been subjected to. The

possible extension of the concept to viscoplastic materials is under study.

j‘ . Farris has shown that for a selected class of solid propellants the
Ef use of the conventional time-temperature superposition integral is valid.
E;: . The present author suggests that the time temperature shift integral

o ¢

‘ ' 2 =f ;—:r-d'c (33)
. 120

for reavced time £ with the temperature shift factor ar be used in the modified
Steklov norm for aging effects. It is, of courée} equally possible to use an

absoluta reaction rate correction for the kt terin in (19).

o N

o -14-
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The use of a rather simple homogeneous fraction involving oriy the max.
norm and the P-norm of the modified Steklov average (25) produces three
specific results for infinitesmal deformations

.the relaxation modulus is described by an inverse power law, t'"/P

.the constant strain rate curves are described by a power law whose

“exponent is unity plus the relaxation modulus exponent, t]'"/P

.the relaxation and secant moduli are subject to an age hardening

process n/P described by the factor (1+kt)

.for very long term stretching and aging, the material stress response

is nonvanishing as shown in (32).

It has been also shown that for short aging times the form of the
equations reduces to ratios of Lebesque norms only. For short term loading
relative to the age of the material, a homothetic aging process is produced.

There does not exist a unique inverse for strain as a function of stress,
i.e., a general creep inverse. Indeed, an inverse does not generally exist
unless a nonconstant weighting function, hp(s) is used. Even then, there

results a nonlinear integral equation of the type

a(s)" ~=f|¢(s)l hp(s)ds ; ¢(s) = 2P(s) (34)

with the exponent m a rational fraction whose value will generally be near unity.

Since the present value of stress is governed by certain averages of
the past strain history, uniqueness in the inverse is not to be expected.

It is therefore suggested that a creep law be formulated in the same fushion

as (25), for example

e(t) = f[”T“§P' ”T”sw s T(t)] (35)

-15-
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made specific as- ’

THS. Jm
e(t) = B ”T“s T(t) (36)

-]

<3

which for a constant strass, To, rgsults in
e(t) = 8T, tVP (1 + kt)™P (37)

The calculation time necessary to use the various norm equations given
herein is much shorter for general inputs than the time needed for visco-
elasticity. This computer time saving results from the fact that the norms
are only a number at the present time whose value changes by the modified
average at each step. If, however, nonconstant weighting functions, hp(s),

are used, no computational advantage results.

~16-
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