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PULSED MICROWAVE BREAKDOWN IN GASES WITH A

LOW DEGREE OF PREIONIZATION*

by

E., F. Dawson* and S. Lederman*
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ABSTRACT

This paper rresents the results of experiments on microwave
breakdown at an open end waveguide antenna in Air, Argon, MNitrogen,
Carbon Dioxide and Methane at pressures of 0.3 and 30 Torr. The antenna
was operated at 9.375 GHz under pulsed conditions at varying pulse rates.
Very low degrees of preionization were obtained by adjusting to very
slow pulse rates. The power needed to maintain the discharge wae
measured and from that the electric field strength was calculated. This
is presented as a function of pressure for each gas at pulse rates
ranging from 10 to 500 pulses per second. At low pulse rates, signifi-
cantly higher power levels are needed to maintain the discharge. An'
interesting feature is the dovble minima observed at low pulse rates in
the data for breakdown field strength as a function of pressure for
carbon Dioxide and Methane. The data was also used to calculate
jonization frequency as a function of effective electric field for all
five gases. Where possible, this data is conpared with data reported by

other investigators.
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I. INTRODUCTION

Microwave breakdown of gases has been investigated for many years
by many researchersl-lz. For the purpose of studying electrical
breakdown characte;istics of a gas, microwave discharge experiments have
the advantage over the other discharge experiments of eliminating
electrode influences on the discharge, thus simplifying the interpretations.
Maclonald has ccvered most of the microwave work that was done before
1966 in his book (Ref. 1) with extensive references to others' work,

The gaces studied have mainly been Air, for its Practical importance and
the noble gases because they could be treated theoretically. Little
work has been done on polyatomic gaces.,

Much of the exper.imental work was done with c.w, fields in which
the microwave breakdown field strength derends only on four parameters:
the ionization potential of the gas molecules, the mean free path of
electrons in the gas which is inversely proportional to pressure, the
diffusion length, which is governed by the dimension of' the breakdown
region, and finally, the frequency of the applied field. 1In pulsed
fields, however, the pulse width and initial electron density are also
factors. Since it is the free electron in a gas that will most readily
absorb energy from an applied microwave field, it is important to have
a few free electrons in the gas to start a discharge. Most previous
investigators have resorted to radioactive sources to provide the low
level free electron density needed to initiate a discharge1'4'7. Such
experiments result in lower bound measurements of breakdown rfield
strength ,

In this paper, experiments on pulsed discharges in which the free
electrons from the previous pulse serve as the source of initial free
electrons are discussed. Pulse rates were varied to determine the

maximum power levels applicable at very low pulse rates before the



onset of breakdown. Somewhat similar experiments in Helium were reported

by Mentzoni an& Domehoels. The experiments reported here were conducted
in Air, Argon, Nitrogen, Carbon Dioxide and Methane. These provided

data which could be compared with other reported data and produced data
which may be of value in designing spacecraft to operate on other planets,

Some interesting and unexpected results are discussed.,

II. BACKGROUND

-~

The basic theory of microwave breakdown of gases is well-known and
is discussed in many references (Refs. 1-6 among others). The theory is
developed from the continuity equation for electrons in a small element
of volume in the field. Consideration of the conditions of these
experiments leads to a relatively simple expression for the continuity
equations.

First, ionization caused by sources other than the action of the
microwave field is neglected. This is a comnion assumption and usually
good except in very hot gases such as occur in re-entry sheaths. Also,
recombination of electrons and ions is neglected since it is proportional
to the product of electron and ion densities. From the available data,
this is seen to be very small prior to breakdown. A net ionization
frequency, Vhet’ is used since that is what can be determined

experimentally. This is given by

Vnet™ Vi ~ Va (1)
where v; and v, are the ionization and attachment frequencies per free
electron, respectively. Finally, the diffusion term v2(Dn) is
approximated by -(D/A®)n where n is the free electron density, D is the

diffusion coefficient for free electrons in the gas, and A is the

characteristic diffusion length. This approximation assumes D is




spatially constant and there is only one mode of diffusion which decays
in the characteristic distance A. With these assumptions, the continuity
equation may be written as

R Vpee - (2)

The further assumption is made that Vhet * D and A are constant in time,
In c.w. fields, breakdown is said to occur if the production rate

exceeds the loss rate but in pulsed fields, it must exceed it by a

sufficient amount to produce some critical level of electron density,

n o during the pulse. Then, if there are ng free electrons at the start

of the pulse which is of width 7, Eq. (2) may be integrated to show that

the condition needed to achieve breakdown in a pulsed microwave field is

D 1 oy
Vnet = 77+ ?1na; (3)

The net ionization frequency, Vnet? is a function of the applied
field strength, its frequency, the gas in question, and its pressure.
Experimentally, it is most citen plotted as a function of effective
electric field which is defined as the d.c. field, which would produce
the equivalent energy transfer to the electrons. The effective electric
field E, is given by

| E, = B/[1+ ()2 1" (4)
‘ m
where E is the rms electric field strength
w is the angular frequency of the applied field

Vm is the electron collision frequency for momentum transfer

Then, the puwer gain by an electron in the field is just
e?®E ?
e

mwv
m

P =

(5)

where e and m are the electron charge and mass.
It is well-known that if an electron did not undergo collisions,
it would gain no net energy from the microwave field because its velocity

would always be exactly out of phase with the field. With collisions,
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however, the average electron gains energy on each elastic collision
despite the randomness of the process, because the energy gain is
proportional to E?. It should be noted also that the electron gains
much faster near W=y . Since the collision frequency is pressure
dependent, the minimum field needed to break down the gas can be expected

at about the pressure for which \h=w'

III. EXPERIMENTS

In these experiments, it was decided to determine experimentally the
breakdown characteristics of a practical structure. Specifically, an
open end waveguide antenna was used, although this geometry yields a
complicated field configuration and no exact solution is available.
However, one treatment of the near field of this type antenna is given
by Fante and Mayhane. Theoretical treatments of the effects of non-
uniform fields have been given by Epstein9 and Mayhan and Fantelo, but
were only moderately successful. One of the major difficulties in
treating problems theoretically is that the ;lectron energy distribution
functions are very complicated and the ionization and diffusion
coefficients must be calculated from these distribution functions. 1In
the analysis given here, only average values of ionization and diffusion
coefficients are used.

Diagrams of the experiment and instrumentation are shown in Figs. 1
and 2. The antenna was mounted in a 6-inch brass flange which sealed
the vacuum bottle. The waveguide was sealed from the vacuum bottle by
a thin mica window seal on the inside surface of the flange. A thin,
0.001 inch thick, copper gasket provided good electrical contact between
the window mount and the brass flange. This antenna, with the mica
window, had a VSWR of approximately 1.5 with a corresponding reflection

coefficient of 0.2. The X-band magnetron could be pulsed at rates over
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a range covering from 10 to 500 pulser per second., The power delivered
was controlled roughly by varying the high voltage applied to the mag-
netron and fine tuned by four flap attenuators in the waveguide line.

Since the power needed to maintain breakdown was the measured
quantity, the discharge had to be started. Although the microwave power
was often enough to do this, a spark source, approximately 2 cm from
the antenna as shown in Fig. 2 was used, if necessary, to start the
discharge. This was especially needed at low pulse rates. The
microwave absorbent material and copper screening shown in Fig., 2 were to
protect people in the room from the radiation,

In the experiments, microwave power was generated at 9.375 GHz and
at pulse rates of 500, 100, 50, 20 and 10 pulses per second. The power
was fed to the open end waveguide antenna, which radiated into the
bottle. Crystal detectors were used, as shown in Fig. 1 to monitor the
power incident on the antenna, the power reflected from the antenna and
the power transmitted through the bottle. When the gas broke down, the
transmitted power decreased sharply and, of course, the reflected power
increased sharply. This was used as the criterion for breakdown
detection and corresponded to the electron density reaching the level
at which the plasma frequency equaled the applied frequency, which, in
this case, amounted to nm:10:2 electrons/cm®. The power was then reduced
to the leve. at which breakdown just could be maintained, which could
be seen by comparing the transmitted pulsed shape with the incident
pulse shape. When breakdown occurred at the end of the pulse, the
transmitted pulse would show a part missing. This is shown in Fig. 3
in an oscilloscope photograph.

As shown in Fig. 1, a small part of the incident power was coupled
off by a directional coupler and fed through an attenuator to a
thermistor power meter. Having first calibx “ted the directional

couplers, attenuator and thermistor mount at 9.375 GHz, the average



incident power could be determined from the average power reading at
the thermistor, and the peak power could be determined from the average
power reading, the pulse rate, and pulse width, In the theory, « aqmare
pulse shape of width 7 was always assumed. Such ideal pulses, of course,
are not obtained in praciice. As pointed out in Ref. 3, the pulse
shape can be approximated by a trapezoidal shape. 7ihe effeéﬁive pulse
width then is somewhat longer than the level at which peak power is
maintained. In these experiments, the pulse width was measured at
approximately 70% of the maximum pulse height. The errors introduced
by treating the pulses shown in Fig. 3 as trapezocidal pulses should bhe
very smali.

The power radiated from the antenna was calculated using the
incident power, the measured VSWR to caléulate the reflected power, and
assuming no power was dissipated in the window. From Poynting's

Theorem, the power radiated by an antenna is given by
—_ 2
P=c¢yc J;Erms da (6)
where €o is the permittivity of free space, c’'is the velocity of light

and the integration is carried out over the area of the antenna. 1In

this case, the field distribution was assumed to be that of the TEOl

mode, so the integration gives ,
-3
| 2
P=1.33 x10 EZ _A (7)
Here, P is in watts if E:ms A has the units of (volts)?3. Erms is the

rms value of the electric field strength at the center of the antenna.
Using this relation, the transmitted power measurement was converted to
electric field strength at the center of the antenna.

The derivation of Eq. (7) ignores the effects of edges on the near
field configuration, yet the data plotted in Figs. 4-8 compares well

8

with that taken by other investigators. Fante and Mayhan™ have shown

that the field strength outside the aperture can be written as
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_ _ z
E = Ex = E_ cos (%) (1-2m EJ (8)

where 2B is the width of the aperture parallel to the Y axis, x is the
axis parallel to the height of the guide, z is the distance from it and
L is an effective length. This neglects the z component of the field
which is important only at the top and bottom edges of the aperture. 1In
any case, the field is strongest directly at the aperture where its
0onfiguration is neafly the same as the TEOl mode. The good agreement
between the breakdown electric field versus pressure curves taken at 500
pPulses per second in Air and those reported by other investigators (Refs.
and 7) was taken as confirmation that thig approximation was fairly good.
For each gas, tests were run asing the pulse rates vf 10 to 500
bulses per second and measuring the power levels needed to mainfain the
discharge. At the high pulse rates, the average power was measured by
the thermistor power meter. From this, the peak power was calculated
and from that, the electric field in the center of the aperture was
found as described. At the same time, the crystal response was noted,
and thus, a calibration curve for the crystal was obtained,
Subsequently, at the slowest pulse rates, where the power meter could
not be expected to be accurate, the power could be measured from the
crystal .asponse.
The results of the breakdown tests are shown in Figs., 4-8, These
are compared with breakdown fields calculated from data reported by
Schar fran and Morita7 in Figs. 4-8. For Air, considerable data is
available on ionization frequencies1'7'13'14. The calculated breakdown
curve shown in Fig, 4 was obtained from data from Schar fman and Morita7
and from Light and Taylor13. This curve was in very close agreement with
one calculated from McDonald's datal, though at the low Pressure end
(0.3 Torr) the agreement between the experimental points and the curve

calculated from McDonald's data was slightly better. For Carbon Dioxide



and Methane, no such data was available for comparison.

In order to calculate the breakdown curves, EJ. (3) was used.
Firstc, the characteristic diffusion length, A, in these experiments, was
calculated to be approximately 0.34 cm. This is an average value since
it is not a clearly defined quantity for this geométry, but dces not
vary by more than a few percent from this value. Then, the diffusion
coefficients for the different gases were calculated as follows: It is
known from kinetic theory that for electrons in a gas, the free diffusion
coefficient, D = 3%%: + Where U is the average energy of the electrons
and Vi is the electron collision frequency for momentum transfer. Now,
it is argued that the average energy U is directly proportional to the
ionization potential of the molecules in the gas because electrons with
energies greater than the ionization potential will quickly lose it in
ionizing collisionss. Therefore, the velocity distribution function o(v)

will be almost a step function

o(v) constant v<v, (9)

o(v) 0 v2v,

where %mvi' = Ui = ionization potential., Then, it is found that

v = 3/4vi and U = 9/16Ui, Therefore, D can be said to be proportional
to Ui/vh' and the values of diffusion coefficicnt, D, in different gases
can be calculated from the value in Air, if the relative values of

ionization potential and collision frequency, v_, are known. That is,

m
(u,) (v.)
= q.__ m air
Dg iUi,air Ym g Dair .

where the subscript g refers to the gas in question.

The value of collision frequency, v for electrons in the gas,

mg’
may be found approximately from setting W=y at the pressure for which
the minimum breakdown field was measured as suggested in the basic theory

and assuming th==cgp. From the data shown in Figs. 4-8, the values of



C obtained in this way are somewhat higher than generally accepted, so

following a suggestion in Scharfman and Morita7, the collision
frequencies were also calculated relative to the ﬁccepted value for Air.
This was done by noting the relative pressures at which the minimum in
the breakfdown fields were obscrved. Thus,

(pmin)air

cC_=¢ ' (11)
g air zpmin;g

where Caiy = 5.3 x 10°. Using these approximations and the data of
Figs. 4-8 for the high pulse rates, the results of Table I were obtained.
The values of collision frequency for Argon and Nitrogen found in this
way agree well with those found in Ref. 7.

One more assumption was needed to calculate the breakdown curves
from Eq. (5) and that was the value of ;E « This was agsumed to be 108,
Since n,®10'% electrons/cm®, this amounted to n ™10t electrons/em®. 1t
is the logarithm of this ratio that is needed in %q. (3), 80 the results
were not very sensitive to this value. With this assumption and the
calculation of the diffusion term at a given pressure, the necessaiy
ionization frequency was obtained. Then, using the data of Scharfman
and Morita7, the effective electric field needed to obtain that
ionization frequency was found and from the calculatedicollision
frequency, converted to actual rms field strength. This was done at
each pressure and the results Plotted in Figs, 4-6. sjnce no data was
available on Carbon Dioxide and Methane, no such curves could be obtained
for these gases.

Equation (3) can also Me used with the data in Figs. 4-8 to obtain
curves of ionization frequency as a function of effective field. The
same assumptionsz were made for diffusion coefficients, collision
frequency and the ratio ;%-, and the ionization frequency calculated
for each pressure. Then, tl.e breakdown field measured at 500 pulses

per seconc was used and converted to effective field:using the




calculatéd collision frequency. The results are plotted in Figs. 9-13,

for the five gases and conpared where possible with other data. 1In .
Fig. 11, which shows data for Nitrogen, comparison with data from

Schar fman and Morita7 and from Harrison8 are included. The agreement

between these sets of data and those derived from these experiments is

seen to he fairly good.

A calculation of the loss rates of free electrons in the gas by
attachment and diffusion indicated that essentially all free electrons
should have been gone in times of the order of 10 milliseconds.

Because of these calculations, it was expected that the breakdown

field strengths wculd rapidly shift to the single pulse levels when the

pericd between pulses was of the order of 10 milliseconds, i.e., 100

Pulses per second. As seen in Figs. 4-8, the breakdown field strengths

increased considerably, but it was still possible to maintain a discharge

even at much slower pulse rates. 1Ir single pulse operation, however, it

was not possible to generate a discharge although the breakdown field -
strengths at 10 pps were still below the single pulse levels.

Several processes should be considered in explaining the behavior
at low pulse rates. First, consider the electron loss processes.
Recombinz.iion losses depend on ion and electron densities. Attachment
losses increase with iicreasing pressure, but diffusion losses decrease
with increasing pressure,so combined they tend to cancel each other. To
a first approximation,attachment and diffusion vary linearly with pressure
and combined, they give a minimum loss rate at the medium pressures
between 1 Torr and 10 Torr. However, long term loss rates are not well-
known. The combined action of recombination, attachment ard diffusion
may lead to higher losses at pressures of 1 to 10 Torr, which could
explain the double minimum observed in Figs. 7 and 8. These would not
have a large effect until the pulse raie was so slow that the electron

densities would be reduced to very low values. It may be noted in .

10 '



Figs. 4-8 that the breakdown curves with two minima were found only in

Methane, Carbon Dioxide and possibly Air. All these gases should have
large attachment losses as will be discussed later. Nitrogen and Argon,
on the other hand, should not exhibit attachment losses and the breakdown
curves for them do not show the double minima (see Figs. S5 and 6).

A second consideration is, that since attachiment is one of the
major loss processes of free electruns in some gases, it would be
expected that negative ions could plaf an important role. These ions
could be long lived, but the extra electran would b2 relatively lossely
bound. Therefore, they could be neutralized relatively easily thus
yielding the necessary free electrons which would then dominate the
ionization process. This process could possibly lead to curves with two
minima, since the ions and electrons would exhibit different collision
frequencies.

A complicating factor in considering diffusion losses in the
discharge is that both free and ambipolar Jiffusion occur. At low
electron densities, the electrons diffuse freely. When the electron
density is above about 10° electrons/cm®, ambipolar diffusion occurs;
that is, the electrons and ions are restricted by electrocstatic forces
and must diffuse together. The result is that the ions diffuse faster
and the electrons diffuse much slower. The ambipolar diffucion coefficient

behaves approximately as

X

D (12)

amb * Dfree( %)
where m/M is the ratio of electron to ion mass.

In the pulsed discharge both free and ambipolar diffusion occur.
During the actual discharge the electron density is approximately
1012 elec/cm® at the aperture, so ambipolar diffusion is the controlling
process there, Far away from the aperture the electron density would be

much lower, thus free diffusion wruld occur. Also, during the pulse, as

11



the electron density in the aperture increases, the diffusion undergoes
transition from free to umbipolar. It was assumed that free diffusion
controlgs the ovnset of breakdown because it is much faster than ambipolar
diffusion. For the same reason, it was assumed that ambipolar diffusion
controls the loss of electrons by diffusion after the pulse. Therefore,
the ambipolar diffusion coefficient given in Eq. (12) was used to

calculate the diffusion loss rates,

IV. RESULTS AND CONCLUSIONS

The results of the measurements of the field strengths needed to
maintain breakdown in Air, Argon, Nitrogen, Carbon Dioxide and Methane
are shown in Figs. 4-8 for pressures between 0.3 and 30 Torr and at
pulse rates from 10 to 500 pulses per second. For comparison, breakdown
curves calculated from data reported by other investigators are shown
where possible.

In all the gases, the peak power level at the slow pulse rates
(10 pulses per second) couid be raised substantially above that at the
faster pulse rates (500 pulses per second). At the sluw pulse rate the
data showed an interesting effect in that there were two minima in the
breakdown field strength versus pressure curves for Carbon Dioxide and
Methane. The effect showed a large increase in the peak power radiated
before a discharge would be sustained. This behavior was attributed
primarily to the combination of the electron loss processes and the
efficiency of heating the electrons.

Unfortunately, not much is known about electron loss processes at
low densities, especially in Carbon Dioxide and Mzthane. Thzrefore, the
data and explanations must be presented at this time without satisfactory
proof. Any explanation must account for the following observations:

1. The process depends or. pulse rate and has a time constant of

12




the order of 1/10 sec.

2. significantly higher fields are required at the very low pulse
rates,

3. The process is pressure dependent and some of the breakdown
curves exhibit two minima.

4. At pressures below 1 Torr the breakdown fields at slow pulse
rates closely matched those at faster pulse rates,

5. The effect was rrincipally observed in co2 and CH4.

The data taken at 500 pulses per second was used to calculate the
net ionization frequency as a function of effective electric field. The
results of these calculations are shown in Figs, 9-13. Again, data from
other investigators is shown where possible. Generally, the ionization
frequencies calculated from the measurements reported here fall above
the other data. This might be attributed to impurities in the gases,

since the purity level was not high in these tests.
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Gas

Air

TABLE I

ELECTRON COLLISION FREQUENCIES AND DIFFUSION COEFFICIENTS

CALCULATED FROM ANTENNA BREAKDOWN DATA
—_— e N NTA DREARDOWN DATA

Pressure at
Minimum Breakdown
Field

pmin(Torr)

Collision
Frequency

/P

-l
(sec. Torr)
5.3 x 10°
3.6 x 10°
5.3 x 10°

5.8 x 10°

6.7 x 10°

16

Ionization
Potential

U

i
(ev)

12.5(02)
15.8
15,5
13.7

12.6

Free Diffusion

Coefficient

D

(gm’Torr/sec)

l1.63

3.21

2.02

l1.63

1.30

x 10°

x 106

x 10°

x 106

x 10°¢




TABLE II

ELECTRON AFFINITIES
*Electron
Gas A i By
A -1.,0
N >0
N2 <0
o 1.47
o, 0.44
NO 0.91
NZO ———
NO2 1.6
CO2 dissociative attachment
co dissociative attachment
CH, ———
CH, 1.13
CH2 ————
CH 1.6
H 0.8
H, 0,9
c 1.3

*Values from Ref. 14, Chapter 8; and Ref. 15, p. E=73
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TIME 0.5 pSEC/BOX -~

FIG.3 INCIDENT AND TRANSMITTED PULSES
RESPECTIVELY DURING BREAKDOWN AS

MEASUREC B8Y GRYSTAL DETECTORS
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IONIZATICNS /sec./ TORR

Vnet /P

of EFFECTIVE FIELD FOR AR
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NET IONIZATION FREQUENCY AS A FUNCTION OF
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FIG. 9 IONIZATION FREQUENCY VS E-FIELD FOR

AR
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CARBON DIOXIDE
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