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The Air Force Program Monitor is Lt. Darryl P. Greenwood. 
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SUMMARY AIMD ABSTRACT 

This report consists of two parts. The first is a review and discussion 

of the contents of the three Quarterly Reports under the contract 

effort terminating on 8 June 1972. This discussion updates that work by 

comparing it with recent other work and new data. The basic results deal 

with the fluctuating properties of the focal area of a focused laser beam 

in turbulent air, viz., 

1. The average focal area for horizontal propagation, 

2. An extension of (1) to slant-path geometry, 

3. The power spectrum of the focal-spot radius. 

The second part, self-contained, is a new theory of plane-wave irradiance 

scintillation. It contains the prediction that the log-amplitude variance 

is proportional to L 
-1/2 

(C2) 
-1/6 

in the saturation regime. The theory 

is an extension of the work presented recently in a Special Report under 

the present contract effort. 
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PART I 

REVIEW AND DISCUSSION OF RESULTS 

The results obtained and reported in [l] through [4] will be reviewed 

briefly, and discussed in context with the most recent developments else- 

where, 

A.  BROADENING OF A FOCUSED BEAM IN TURBULENT AIR 

The focal spot of a focused laser beam scintillates because atmospheric 

turbulence causes irregularly varying undulations in the rays leaving the 

optical aperture and propagating to the focus (diffraction limited to an 

area characterized by a typical radial length ~ rT . = kL/r where r is 

the aperture radius). Three specific calculations pertinent to this effect 

have been given, 

1. The average area of the focal spot for horizontal propaga- 

2 
tion, i.e. uniform C « 

' n 

2. An extension of (1) for slant-path propagation, using the 

2 
altitude-dependent model of C (z) summarized by Uyngaard, 

et alt5]. 

3.  The power spectrum of the focal-spot radius. 

The method of computing (1) requires some comment, A laser beam is a com- 

bination of modes in which a lowest-order mode usually dominates[6]. The 

ensuing expression for its electric field is too cumbersome for analytic 

work and conr.equently an approximate approach due to Schmeltzer[7] is 



followed. It yields a result for the irradiance[l] that contains errors 

of 0(L/kro
2). At optical freq encies and for apertures of the order of 

2    3 
1-meter diameter the length kr  ~ 10 km and therefore this approximation 

is not serious for applications in which L < 10 km is envisioned. A second 

choice to be pondered is a suitable definition of focal-spot area. Several 

definitions have been proposed: 

(a)  The half-power radius r ' defined so that the irradiance 
Xi 

at (r^1,!) is. related to that on the main axis at (0,L) by 

t  i 

L < I(r ' L) > = 0.5 < I(0,L) >. 

ii 

(b)  A zero-th-moment radius r , 

(r )2 = / d2p < I(p,L) >/< I(0,L) > 

(c)  A second-moment radius^ r ^ 
Xi 

rL2 H I  d2p p2 < I(P'L) >/ I  d2p < I<^L> > 

id)      An irradiance-squared definition^ r (I ), 
Li 

rL
2(I) = [J* d2p < I(p,L) >]2/ J d2p < I

2 (p,L) > 

Definitions (a) and (b) yield rather similar results which require a num- 

ber of approximations in order to find some asymptotically valid analyti- 

cal expressions. Definitions (c) and (d) can be modified in order to 

2 
subtract out the diffraction-limited area ~ r, . Definition (d) remains 

Lo ^  ' 

intractable analytically; however, Herrmann and Bradley[8] have used this 



definition (without the averaging procedure) in a numerical solution of 

the parabolic wave equation. We prefer definition (c) because it yields 

[3] a fundamental result that can be interpreted simply. 

2    2  - . T3  1/3 „2 
r. = rT  + 1.3 L K   C . 
L   Lo m   n ' (1) 

where K    is the microscale wave number. This result has been compared to 

those obtained from (a) in [3], and it was concluded that the difference 
t 

is not appreciable in spite of the fact (see Eq. (4) of [3]) that r 
Li 

2 
depends upon a somewhat different combination of powers of C , L,  and k. 

Recently [9] data on beam broadening have been reported. The accompanying 

analysis (and presentation) of these data correspond most closely with 

definition (a). Reasonable agreement between optical-frequency data and 

calculations exist, but the infra-red results are less in agreement. As 

well as we can infer at this time, beam-spread data was processed around 

a beam-wandering center. However, the analysis based on expressions (a) 

through (c) requires that no distinction be made between beam spread and 

2     2   -1/3 
wander. Specifically, the beam-wander variance < cp > ~ c  Lb 

where b is an effective beamwidth radius. The measured beam-spread parame- 

2      2      2 2 
ter is<S9 >=<9 > - < cp > where < 0 > is the angle associated with 

Equations (3), (4) of [3], Thus 

<e2>~c2L^-1/3 
n o 

2 5/3      2 
for 0.4 k   L £    '    C     » 1 o n 

„ 12/5 ,6/5,2/5 ,      «,  , 2 T   .  5/3      2  „ . 
~ C L        k for 0.4 k   L A C     «1 n on 

(3) 



2 
We think the trouble may lie partly in the fact that < 6cp   > is processed 

as a measure of beam spread and then compared to a theoretical expression 

for < e2> as in (3). 

2   -13 -2/3 
First consider the X = 0,6-um case. Let Ä = 1 cm, C  »10  m '  L = 1 km, ^ o     ' n 

2 
This makes C  L correspond to the measured data. With these values, 

2   5/3  2 2 
0.4 k L A    C  «1. Hence < 9 > is given by either of the two forms 

-1/3    -1/3       -1/3 
in (3); they are numerically the same. However, b   ^ Iv,   w 0,2 J6    . 

2     2    -1/3   -1/3 
Thus the measured quantity < (6cp) >~c  L(j&    -b   )~ 

2    -X/2 2 no 2 
0,8 C  L ^  ' ~ 0,8 < 9 > is interpreted analytically as < 6 >. The 

error is at worst 20 percent. However, for X  = 10,6 jam, we find that 

< 6 > is now given by C    L   k  , and is thus reduced at most by 

2/5 2 2 
the factor (0.6/10.6) ' « 0,3, In that case <e >«1,5<9 > and there 

2       2 
is clearly an important difference between < 6cp > and < 6 >, namely 

2 2 
< 6cp > « 0,3 < 9 >, There might be an important discrepancy between 

measured and theoretical beam width at X = 10,6 \m  for this reason. 

We have dealt with slant-path propagation in [3], The basic problem is 

2 
that the knowledge of C (z) at altitudes z above several hundred meters 

is scant.   We have simply extrapolated the z   and z   models of [5]. 

?     2    2 
Instead of Eq. (1), we obtain for rT - rT  = rT  , 

L LO Lg 

2 n        ' ^    " 2      2 
rT      « 3.9 L   K f    ds  (s/L)    C    (z) downwards 
LB 

m       Jo v      '      n w 

(2) 

= 3.9 L2K 1/3     f    ds  (1 - s/L)2 C 2(z)     upwards 
m ti n 

o 



Greenwood[10] has evaluated these integrals in terms of hypergeometric 

2 
functions. In [3] we present some asymptotic limits of r   as a function 

of the altitude Z of either the transmitter or receiver (one part of the 

2 
link is always on the ground). The graphs of rL (Z) versus Z must be used 

with some caution when Z > 500 m, but they serve as a guideline. 

The power-spectral analysis (3) has one important limitation; it is re- 

stricted to the angle of arrival of a ray. This appears to us to be cor- 

rect for a focused beam as explained in Section IV.A of [3]. However, some 

question has now arisen with respect to the reinterpretation of the Gurvich, 

et al. data presented in Figure 10 of [11] which we discussed in [3]. It 

is possible that these data were gathered by an interferometric technique, 

and our theory is not applicable to an interferometer without modifica- 

tion. Nevertheless, the agreement of these data with the predictions in 

[3] appears to us to be excellent, so that possibly our Keinterpretation 

remains valid. 

B.  IRBADIANCE SCXNTILLATIGN OF A PLANE WAVE IN TURBULENT AIR 

The second major part of our investigation deals with what is perhaps the 

most fundamental problem in the field: the amplitude fluctuations o£ a 

plane wave. As of June 1971, these fluctuations were known theoretically 

and experimentally to be governed by a log-normal probability distribution 

determined by a parameter cre = 0.31 k
7' L   Cn in the homogeneously 

2 
turbulent (horizontal propagation) case. Under conditions in which ae 



exceeds unity it was observed that the log-amplitude variance saturates 

2 
then decreases as a&    increases. No satisfactory theoretical explanation 

has been given. 

We have summarized extensively in a special report [4] what; seems to us 

the most promising formalism tor dealing with this problem: selective 

summation of terms in the infinite series of products of n-th Born terms 

in each moment of irradiance I. The most important facet of this report 

is the physical interpretation of the integrals which define the scatter- 

ing processes; i.e. the physical interpretation of all the factors in each 

term. Furthermore, the report contains error bounds that appear more 

accurate than found elsewhere. 

This work has led to an approximate solution in the saturation regime of 

the amplitude-fluctuation problem:  the amplitude is still log-normal and 

its log-variance varies as (cTe
2)" ' . The major break-through was to 

recognize the effect of ray-bending upon diffraction effects: a prelimi- 

nary version of the new theory has been reported in [2]. The full theory-- 

whlch includes a further elaboration of the work in [4]--is appended in 

this report in technical-report form. 

C.  ERRATA TO QUARTERLY REPORT NO. 3 (RADC-TR-72-119)[3] 

In this section a few corrections to, and additional remarks about the 

results presented in the third Quarterly Report [3] will be added. 

(i) The numerical coefficient in the denominator of r  in Eq. (10) 
oc     1     \     / 

+1/2 
should be (1.3)    =1.14 (instead of 1.4). 

. ■ 

y 



(ii)     Figures 2 and 3 give values of r      that are too high by a factor 

10.    To correct these    and to make the results consistent with 

Eq.  (10) and Figure 1,it is suggested that the values of the Or- 

dinate s in Figures 2 and 3 be lowered by a factor 10. 

(iii)    The results of section II hold for air-to-ground propagation, where- 

as those of section III hold for ground-to-air propagation.    Thus, 

Figure  5 is for slant-path,  down situations and Figure 6 (the 

caption of which should refer to laser targets) for slant-path, up 

situations.    All text in sections II and III should be modified 

in this sense.    The origin of the original confusion is the re,- 

ciprocity invoked in  interpreting < B(r,'r1)B*(?,r2) >   in Eq. 

(A-3).    The coordinate s in Eqs.  (11) and (18) should have its 

zero at the receiver end because of reciprocity.    The "dirty 

windshield" analogy is therefore not relevant. 

(iv)      An » sign is needed in Eq.  (36c). 

(v)       Table II is for UT = 0 (not UT-0). 

(vi)      Instead of Eq. (41b), we can obtain another approximation to W0(ü)) 

in the üT2'3 region from Eq. (34) by setting q = 5/6 and 1-hc « x. 

It yielHc 

n1/2 r(i/3) 2    2    .2/3 
Wa(a)) ~ TT^  M(l/6,l,-^ü /OL, ).ü) 

0 (Aa))X/J 1 

where M(=.F1)  is a Kummer function.    This formula reduces to (36b) 

and (38b)  for ü) > (üT; u) > Aw. 
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PART II 

STRONG IRRADIANCE FLUCTUATIONS IN TURBULENT AIR: PLANE WAVES* 

By 

D. A. de Wolf 

RCA Laboratories 

Princeton, New Jersey 08540 

ABSTRACT 

Analytical results are found for irradiance statistics of a plane 

wave propagating through uniformly turbulent air. They arise through 

a new error analysis of approximations made in selective summation of 

diagram contributions to the iterated moment equations (in integral form). 

The results are determined by three regimes of parameter k ' L1 • C 2 
n 

determined by its location with respect to powers of the micro- and macro- 

2    -1/6 9        L 
scale Fresnel numbers (/C L/k)    ~ 0.3 and (kL /L) ~ 10 (the numer- m o 

ical values are for 0.6-|im radiation and a horizontal pathlength L ~ 1 km). 

The modified-Rytov result is found in the lowest regime. Irradiance I 

is log-normal in the intermediate (saturation) regime and the loj-amplitude 

variance decays asymptotically as (/c 7'3L3C 2)"1 . When k^L11^ 2 
m    n n 

2 
far exceeds the macroscale Fresnel number kL /L, the irradiance tends to 

an exponential distribution (in agreement with previous results). 

This research was supported by the Advanced Research Projects Agency 

of the Department of Defense and was monitored by Rome Air Development 

Center under Contract No. F30602-71-C-0356. 



This work deals with the statistics of the irradiance of an optical 

wave propagating through uniformly turbulent air. The fundamental sta- 

tistics of even a plane wave in this medium have been predicted only for 

small and for extremely large values of the parameter 

ae » 0.31 k  L   C . This parameter, a function of pathlength L, 

9 
wavenumber k, and refractiva-index structure constant C , appears to be the 

one that governs the irradiance statistics for a plane wave. We will 

present new results for the hitherto unsolved intermediata region where 

a^ exceeds unity but not necessarily by very much: the so-called satura- 

tion regime. Also, new error limits will be given that enable one to 

separate three regimes of statistical results for irradiance I, depending 

2 
upon the magnitude of a      and the micro- and macroscale Fresnel numbers. 

Tatarski [l] has pointed out that our previous result [2] yielding 

a constant-plus-Rayleigh distribution for I is incomplete due to omission 

of a class of diagram contributions. We have found this criticism to be 

correct, and consequently that result must be limited to the radlowave 

case [3] of large macroscale tresnel numbers L/kL , in which case the 

partial summation suffices (but a  must then be replaced by 

2  5/3 2 
OL « 0.2 k LLo  Cn ). Subsequently, we amended the optical case [4] 

to find an Instantaneous ray solution with some of the experimentally 

observed characteristics of irradiance statistics. However, the solu- 

tion only predicts the statistics of I globally, and the ray interpreta- 

2 
tion is questionable when a  > 1. 

G 

The following pertinent developments have been reported in this 

journal: Sancer and Varvwtsis [5] have presented an irradiance variance 

10 



2 
vs a  curve that saturates, by solving an approximated equation. Brown 

[6] has voiced serious objections to their assumptions and approximations, 

and their results appear to be unconfirmed. Young [7] attributes satura- 

tion to beam spreading by atmospheric turbulence, but he does not attempt 

to give a full analysis. Molyneux [8] derives equations for the N-th 

M 2 
moment of I, i.e., for <I >. He obtains the same result for < I > as 

in [3] and therefore Tatarski's criticism may hold here, too. A related 

development by Brown [9] also yields general moment equations. None of the 

above works allow predictions of the probability distribution of I. Furutsu 

[10] derives the moment equations once again by a method using characteris- 

tic functionals of the refractive index, and he finds that the logarithm of 

the irradiance follows a Rice distribution. This result has two peculiari- 

ties:  (i) the irradiance variance goes to zero as the gaussian-beam field 

that is used as the free-space reference field approaches a plane wave, and 

(11) the exponent of the mutual-coherence function is assumed to be a 

quadratic function of the separation distance of the correlated observation 

points. This prediction therefore does not appear to apply to a plane wave 

in turbulent air. 

The situation in the USSR is somewhat more encouraging. Important 

work by Tatarski, Shishov, Klyatskin, and others prior to 1971, including 

numerical solutions [12] of the moment equations, is reviewed by 

Barabanenkov, et al.[ll]. Since then, Gochelashvily and Shishov [13] 

have produced further analytical results: approximate solution of the 

2 2 
< I > equations yields the Rytov approximation for small o , and 

- asymptotically - an exponential distribution of I at large distances. 

11 



Some preparation is needed to present the result of this paper. 

Consider error parameters : 

(i) 

a2 ML/kLX
2 

where K^ is the microscale wavenumber.    For kilometer paths at optical 

... 2      „    2 ? 
trequencies, a.    w 3a    , and the numerical  factor preceding a     varies 

slowly with L and k.    The parametric dependence of a      upon L, k,  and 
2 2 9 

Cn    is obtained from the fact that ae    = < ^   > where X     is the real 

part of the complex phase ^1 of the Rytov approximation, which in turn 

is given by 

t^L) = ^J   f dzjd& (K,Z)exp[-iK2(L-z)/2k]   , (2) 
Sir ,,*,■ 

-2 
where (2*)    dfi (£,2) is a Fourier-Stieltjes increment of the permittivity 

deviation 6£  (p,z) describing the Fourier analysis of this random process 

in any z = constant plane. 

Our result is: 

< IN>   = I0
Nexp[2N(N-l)a€

2[l-H)(a1
2)5/6])    for a^ « 1 

= Io
Nexp[2N(N-l)a£

2.0(a1
2)"7/6]        for a/ « 1 « o/    (3) 

= N«. Io
N[l + Oic2

l/3e'02)] for 1 « o/ 

The electric field E = E^xp^-o^2) for small values of a 2     Thus the 

logarithm of the irradiance  is normally distributed.    For  large values 

12 



2 
of o2 , the electric field is governed by a Rayleigh distribution of 

2 2 
amplitude. There is an intermediate region a« « 1 « a, that yields 

2 
a log-normal irradiance asymptotically as a«    •* 0 such that the log-amplitude 

2  -1/6 
variance is proportional to (a    )        .    The "saturation" region form (for 

n 

1 ^ a,  ) lies between the first two forms of (3) and it appears that I 

is log-normal and that the log-amplitude variance makes a transition 

2 2   —1/6 
from a linear dependence on a      to a dependence upon (o    ) in agree- 

ment with experimental evidence. 

The result  is obtained by the method of selective summation of dia- 

gram contributions.    The entire Born series for E is substituted into 

N < I    >   and the dominant contributions arising after a diagram renormal- 

ization of terms are summed.    The error analysis is therefore a crucial 

aspect of the method.    A geometrical-optics interpretation of the 

change-of-angle upon scattering allows one to estimate the error and 

to make very significant approximations. 

I.     THE BORN SERIES IN SMALL-ANGLE SCATTERING APPROXIMATION 

A very brief derivation of the parabolic wave equation in the form 

most useful for selective-summation methods will be given because the 

source of the approximations needs to be specified carefully.    The basic 

equation for a plane wave propagating from the origin plane z = 0 to 

the point of observation r = (0,0,L) is [4]: 

2 
B(r) = 1 + ^ Jd^/dS (K1,Zl)G(r-r1)exp(-iK1.P1)B(^1) (4) 

4jt ""■1" '*""" ■*   •       ^ 

13 



where coordinate^ =  (p^p,  dg (K^z)  is the two-dimensional Fourier- 

Stieltjes increment when the random variable 6fi  (r)  is Fourier-analyzed 

in a z = constant plane, B(r)  is the electric field E(r) divided by the 

equivalent  free-space field Eo(r) = exP(ik2).  and G(r-r.)   is the Green's 

function multiplied by the  factor f expt-ik^)]}.    The d2p1  integration 

in (4) can be performed.    Let us write B^) = AC^expEicpC^)], with 

real functions A and cp.    Then stationary-phase analysis  [4]  shows that 

the only region in the ^ = const, plane of importance is the immediate 

vicinity of the stationary points^ that obey the equation 

^P/'rill—f.A^'VV (5) 

where VT is the transverse derivative,   in this case at r   . 
-1' 

,2 
However, the d p1 integration is not carried out for (4). but for 

00 

its iterated form B = Z  Bn. and it can be done without stationary- 

phase analysis to obtain, 

l^W^mi^W'^j-toj).        (6) x 
IN 

Qm = ^ n K, •■ m  j=m — j 

where ^ = z^-z^  zo = L, andj^ is a shorthand notation that does 

not show the dependence on index n. If. however, a stationary-phase 

analysis is done on each d2pm factor of Bn obtained from (4) by the n-th 

iteration, even though we did not use this analysis in deriving (6), 

we find that the only regions in the zm  = const, planes of importance 
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are the immediate vicinities of the stationary points p   that obey, 
—m      ■7' 

(o ,-p )/|r .-r | = -Q /k  . (7) 
Vm-l~m Um-l-m1   «-'m 

There is an important connection between (7) and (5) that we wish to ex- 

ploit in this work. However, first we discuss two approximations always 

made in (6): 

Approximation (i): We set z < z . for all z , i.e., backscatter con- 
m   m-1        m 

tributions are ignored. The effect has been discussed before by many 

workers, e.g. in [ll]. It can be understood by regarding the spectrum 

*(K,k ) of 66 (p.z). The ratio of the variances of the d£ (K,,z.) fac- 
— z — —J    J 

tor in (6) when dz. is integrated over a distance -Az and +Az is propor- 

tional to the ratio *(K,2k)/*(K,0) where 2jtL        < K < K  .    In optics 
«••     wv o        m 

4(K,2k) « 0 for all practical purposes and the  dz. integration over -Az 
— J 

is negligible. 

2    2v Approximation (ii):    Terms of 0(Q    /k ) are ignored compared to unity. 
9  9     9  9 

When n-m « 10 one might estimate Q /k ^ K /k «1. Unfortunately, mm 
2 2 

large-n terms are sometimes required, n-m can become large, and Q /k 

2 2 
may greatly exceed K    /k . Furthermore, there is a cumulative effect of 

2 2       2 2 1/2 
errors due to dropping all Q /k in (1-Q /k )   in (6). 

m m 

2 2 
A great aid in understanding the effect of terms of 0(0 /k ) cora- 

m 

pared to unity in (6) is the geometrical interpretation of the vectors 

Q /k given by (7). It states that |Q /kl is the (sine of the) angle of 
A»m Hfn 

the stationary-phase ray determined by the increments d6 (K ,z )"*d6(K ,z ) 
-*m m      n n 

for given z . Let us consider (7) for m=l, and simultaneously for all m —.^—.^———— 

n > 1. Also, all dS (K.,z.) are allowed to vary in all terms for j > 1 
— -'J J 
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(i.e., the j = 1 increment is not varied). The total effect of (p-p.)/|r-r1I 

of (7) in all these terms must be identical to that in (5). The total 

collection of all^j/k (with correct sign preceding it), which we denote 

by (Q./k) must then be identical in effect, as all d£ (K.,)2.) are are varied, 
— i. •-' J  J 

to the right-hand side of (5). Because the KL/k term subtracts out, we 

have, 

{22/k} = k'V^r^ (8) 

If we iterate (4) m-1 times,  then find the stationary-phase equivalent 

of (5) for^P    i   in the last term,  and then apply the above comparison 

with (7)  in similar fashion, we obtain 

LWk3  = k" Vrm> (9> 
in the understanding that d£ (K.,z.)  is varied for all j > m, and that all 

terms B   with n > m are considered simultaneously.    This is an extremely 

valuable identification because the right-hand side of  (9)  can be iden- 

tified with the angular deviation of a ray in a geometrical-optics 

medium: 

k'iFT<P(rm> = ¥Zm)/dzm <10) 

where the (for small angles quite permissible) approximation 

dp/dr « dp/dz has been included.    Note that we cannot replace any par- 

ticular^Q^/k by dp/dz  in (6).    But we can estimate the effect of the 

^„xiM  in (6) by regarding the behavior of dp(z )/dz    through applica- 
-f m-rj. .— mm     »  r r 

tion of (9) and (10). No matter how complicated cp(r ) actually is, the 

phase derivative is determined by the directions of the rays through 

the point r . Thus r   ^m 
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dp(2 )/dzm = i-VT    f 
m dz 6e   [p(z),z] (Ha) 

after making the small-angle approximation of straightening rays.    The 

right-hand side of (11a)  is a statistical quantity that approaches a 

normal variable with zero mean and with variance, 

<(dp/dzm)2>    ~     K1/3zC2 

•-m     m m       m n (lib) 

in a turbulent medium with the usual modified Kolmogorov spectrum 

<(8 P)2>4(K,0)   « C 2K"11/3exp(-K2/K 2).    When K 1/3LC 2 « 1, we can n m        m    n 
2 2 

be sure that all Qm /k are small to this order because the statistical, 

nearly normal, variable Idp/dzl will seldomly exceed several times its 

r-ns value determined by (lib). Thus, the approximation amounts to the 

neglect of diffusion effects: the cumulative scattering at large angles 

is ignored. In short, approximation (ii) is based on the statistical 

(geometrical-optics) estimate 

%2*21 o«m
1/3™n

2>   ' m m (12) 

1/3   2 
and when K   L C  « 1 we find that (6) reduces to, m    n » /• > 

n ik 
J  8n o 

z.-l 
/ j  *ZJ™  i^.Zj) .11^ exp[-iQm2(zm.1-zm)/2k] 

X [l+OOc 1/3L C 2)] 

(13) 

There is an extra condition hidden in (13). When the factors 

2 2 1/2 
(1-Qm /k )  ' are expanded in a Taylor series in the exponential in (6), 

the leading terms are estimated from ikzm[(l-Qm
2/k2)1^2-(l-Q ^/k2)1^2]. m m 

2   2  3 
The first one is given in (13), and the second one is 0(K Q ., L/k ) N m xm+l    ' 
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and - in accordance with all sagittal approximations - it must be much 

less than jr.    Using (12), we find this error to be 

0(K 2Q..2L/k3) < 0(L2K 1/3k'1L C 2) m  Tn+1 m on7 

2    1/3 -12 
hence L K    '  k    L C      « 1  for validity of (13).    However, because m o n J        ^    / 

2 1/3      2 
L « kL     we note that this condition is implied by K        LC      «1, 

o r m n 

and therefore  it need not be stressed. 

Now we return to (13), which is equivalent to the parabolic equa- 

tion  [11], and rewrite it as 

(14a) 

X {^expf-iK 2(L-z )/2k]exp[-iK -Q ..(L^)^]) m—i. m    m        ^m »»mri   m 

The two exponential factors can be ignored in the high-frequency limit 

k -> oo. As we have shown previously [3], and as Modesitt [14] has recently 

pointed out again, (14) can be summed to yield the WKB-phase integral 

in the form also known as the Moliere approximation. The Rytov approxi- 

mation follows if only the second exponential factor for each m is ignored. 

2 
The modified-Rytov approximation given in (3) for o, « 1 fjllows by 

essentially ignoring this exponential factor in < I > for N > 1 rather 

than in B. In fact, the study that follows is centered around the role 

of these exponential factors when (14) is substituted into < I > . 

Let us write (14a) formally in a short-hand notation: 

B    "  fm"1 n o 
= n  / m"i dz dg (m)F (m) (14b) m=o J m   v  n v^"/ 
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Let us first consider   <  IN >  for N = 1.    It consists of a sum of terms 

<   B B * >    in which p and q are summed from zero to  infinity.    Let us 
p q 

consider a particular term for which p + q = n. We write this term, using 

(14b), as 

f teV"  /P"1 dZp rL dz^'-'f^1  d^'  dg (l)Fp(l)...d£(q)Fq*(q) 

(15) 

For given z   ••'z   ,z1
,'--z   ' we can rearrange the factors to become 

z      ,l 

fL dZl"... J11"1    dzn    dS (l")Fn(r)...d£(n")Fn(n") (16) 

where z "•■■z " is a permutation of V " VV ' "V  that leaves the 

ordering z.wl > zi and z.^' > z* unchanged.    Likewise Fn(i,l)  is one of 

the F    or F * factors depending upon which coordinate is permuted into 
p      q 

z.".    There are exactly n'./p'.q'.  integrals of type (16) that constitute 

(15).    A similar procedure can be carried out for N > 1 but obviously 

it  is much more cumbersome to describe.    The point is that (16)  is now 

an ordered integral. 

Two simplifications of the n-point integral in all terms  (16) are 

possible regardless of the joint probability density of dfi (l)...d&(n) 

provided the binary correlation length i « L (the length Z  is of the 

order of the macroscale L ) . 

(i)    The n-point correlation can be separated into n'./Z      (n/2)'.  products 

of binary correlations < d£ (i)d6(j)   >   .    All products containing 
2 2 

higher:-order correlations are negligible by errors 0(Lo /L ) to 

2 2 2       2 
some power, and cumulatively by 0(k Lo e ) where e is a short-hand 
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notation for the permittivity variance. The proof is given in 

[3] and more exhaustively by Brown [15]. 

(ii) Of the remaining products of binary correlations, only 

<d£ (r,)dS(2")> "^dS (n-1") d£ (n")> is significant. The 

others contain at least two extra restrictions of intervals Az 

2 2 
to a distance ~ L which introduces reduction factors of 0(L /L ) 

o o 
2 2 2 

per product and 0(k L e ) cumulatively again. Furthermore there 

2 2 
are some errors 0(Q /k ) due to the F factors. These are negligible m n o o 

by virtue of (9)-(ll). 

In summary, the normalized electric field B(=E/E ) can be expressed 

as a sum of B over all integer n, which are given by (14). These are 

N      N      N 
inserted into < I > = io < (BB*) > and the above properties (i) and 

(ii) are applied to the many ordered-integral terms which go into this 

2  2 2 
N-th moment. The results are then restricted by errors 0(k L e ) and 

1/3  2 
0(/cm  LCn ). Figure 1 is very useful for illustrating these. The cross- 

hatched areas are those where these errors are large. The other regions 

2     2 
of this e (or Cn ) vs L/L plot are useful for defining parameter regimes. 

Optical propagation appears to be restricted to regions I and III. The 

theoretical difficulties lie in the transition from III to III , because 
w     s 

2 
this is where o. increases above unity. The other areas are more ger- 

mane to radiowave propagation and they need not be discussed at present 

Previous solutions for < I 

I, II, and IV (when N > 1) 

Previous solutions for < I > in [2] and [3] are restricted to regions 
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Figure 1.    Parameter-region diagram for approximate solutions to the wave 
equation In turbulent air.    Cross-hatched regions Indicate 
breakdown of the parabolic equation and/or of Important statis- 
tical assumptions. 
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II.    THE MODIFIED-RYTOV APPROXIMATION 

2 
Let us consider < I   >   .    It  is determined by the sum over all in- 

teger n, m,  p, q of   < B
nBm*B B *>.    Let n-hn+p+q = 2M.    The statistical 

simplification explained in connection with (15) allows one to represent 
2 

< I > by a sum of diagram contributions, each diagram corresponding 

not to n, m, p, and q, but to the half sum M. Each diagram consists of 

horizontal z-axes placed under each other, one for each B factor (dashed 

lines for B* axes)  Each two-point correlation <d£ (i) d£ (i+l)> is 

represented by a "bead" on an axis, or by a "rung" between two axes, 

depending upon which R-factor the random increment dS (or perhaps its 

complex conjugate) is part of. Figure 2 gives some examples. It can be 
2 

seen that < I > is given by the sum of all tope-logically different dia- 

grams with M features (M = 0, 1, •••). Note that an M = 2 diagram with 

a bead to the left of a rung is topologically different from one with a 

bead to the right of a rung. The diagram rules have been explained be- 

fore [2,3]. 

Consider an M-feature diagram and keep features 2, 3, ■ • •, TA  fixed. 

The first feature can then be one of the ten shown in Figure 3. We now 

utilize the following property in < B B *B B *> with (14) 
n m    p q ' .       ' '• 

<dS (1)  dS (j)>  = 4A2« (K.,z,-z,)d2K.d2K. 59(K4  + K.), (17) 

The minus sign in the (two-dimensional) Dirac delta factor holds if i 

belongs to a B and j to a B* factor, or vice-versa, and the plus sign 

in the two other cases.    The function S^CK.AZ) can be Fourier transformed 

with respect to Az into the well-known three-dimensional spatial turbulence 
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Figure 3. Ten possible locations of a feature 
of an < 1^ > diagram. 
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spectrum *(K,k2).    In the present work, the only form of the spectrum 

that will appear  is *(K,0) which is written as *(K)  for convenience. 

The first factor of the sum of ten M-feature diagrams thus obtained is 

(keMn)2    fL dzJdh^iKj 

X ac1(12)+C1(34)-K:i(14)+C1(23)-2]  -  [^(13)^(24)10^ 

r    9 (18a) 
Cl s cos^ (L-z)/k] 

C^ij) = cos^^Q^^^^^a-z^/k] 

The vectors^(l) in the definitions of C^'ij) pertain to the sum of 

K -vectors, p > 2, connecting the i-t'u B axis of the diagram to all 

other axes. Note in particular thatj}^ L' andJJ.'^ are kept fixed for 

all ten diagrams generated by allowing the m = 1 feature to take ail 

ten choices of Fig. 3. Note also that these ten diagrams have already 

incorporated some symmetry features with other sets of ten diagrams to 

yield only cosine factors in (18a). For example, the contribution 

< BmBTi*B«B«*> can be taken together with the<B B *B B * > contribution 
" " P H n m q p 

The second and other factors following (18a) cannot be written out in 

similar fashion because (18a) contains vectors KL.'-'K . If we were 
*~2      —m 

to change, say, the second feature (m = 2), then this would modify some 

of the C1(ij) factors in (18a). However, we can also take a particular 

M-diagram without allowing any of the features to be permuted, and then 

we obtain a contribution, 

f*\"'Sd\ mSl H-    /Vl ^„W X (-D^-Vj)        (18b) 
lOfl" o 
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where Fra(ij) stands for one of the    cosine factors in {•••) of 0.8a), 

but for any m, when i 3* j, and Fm(ii) = 1/2.    All the bookkeeping diffi- 

culties lie in the C (ij) factors.    We will use both forms (18)  in the m 

following.    Note finally that (18a) corresponds to the moment equation 
2 

for < I   >    preferred by other workers. 

The modified-Rytov approximation is obtained by setting all C (ii) = 1 
m ■J 

Consider m = 1 first and set (^(ij) = 1 in (18a), which then reduces to 

i2 2 k e 
4n 

/CO 

dzi J «Vi*(V(1"cos[V(L-zi)/kl} • <19) 

This reduced form of (18a) is independent of vectors K_••-K . Therefore 

the m = 2 feature can be treated in exactly the same way as the m = 1 

feature in (18a); after permutation of the second feature a common fac- 

tor identical to (18a) results except that we have C-fij) factors. Now 

we set C2(ij) = 1 to obtain a form similar to (19). The product of all 

these factors for m = 1 to m = M must exhaust all possible M-feature 

diagrams. One need only sum from M = 0 to M = o» to obtain < I2 > , 

i.e. 

<I2^   , 2 V «oM k2-2  s 

2    k2 2  J = h    ^Pf-ST / dzJ  dK1K1*(K1)(lK:i)] (20) 

= Io exp(4ae ) . 

The procedure is easily generalized for < IN > with N > 2. An expres- 

sion similar to (18a) can be written down; the main difference is that 

C1(12)+ ••• + C1(23) is replaced by a sum of N terms corresponding to 
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< BB*> rungs, the numerical term -2 is replaced by -N, and C (13)-+C (24) 

is replaced by N(N-l) terms exhausting all < BB> and < B*B*> rungs. 

It need not be written down. The same procedure is easily observed to 

yield, 

< IN> = Ic
N exp[2N(N-l)ae

2]  . (21) 

In this fashion, the first of Eqs. (3) is easily derived. The remain- 

ing analysis of this result is for the purpose of estimating the error 

induced by setting all Cjij) = 1. We shall do this systematically, 

first for m = 1 then for ra = 2,3,-.., etc. It is preferable, however, 

to simplify (18a) first by means of an intermediate renormalization which 

simplifies the diagram bookkeeping, 

RENORMALIZED BEADLESS DIAGRAMS 

There is a contribution of a numerical term -2 in the. { ) factor 

in (18a) due to the four possible positions of beads in the first factor. 

It is therefore quite easy to renormalize the integrals by summing out 

the contribution of all beads, and the advantage of the new expressions 

is that the renormalized diagrams have rungs only. Let us start with 

any diagram without beads interpreted by means of (18b). Consider in 

this diagram any axis segment between two contiguous rungs. Now generate 

a new set of diagrams by placing zero, one, two, — beads on this par- 

ticular segment. The sum of the contributions from these new diagrams 

can be seen from (18b) to correspond to an extra factor 

k2 2 exp[-167" / ^^xvr^ = e^-«<vr*m>3 

26 

■ 



in the contribution (18b). We can do the same thing for every axis seg- 

ment of the original diagram. The result is, 

(i) we have generated all possible diagrams with M rungs and any 

number of beads; 

(ii) we have generated a factor exp(-öL) for every horizontal axis, 

2 
i.e., a factor exp(-4Qli) for every   < I   > renormalized dia- 

grams.    (The explicit form of (XL is given in the introduction.) 

Clearly there is nothing special about M,  and the net result is that 

we can restrict ourselves to headless diagrams.    An M-rung renormalized 

diagram is interpreted as follows.    The corollary of (18a) is 

exp(-toL).(ke/4rt)2    & dzJdh^iKj 

X {[C1(12)4€1(34)-K31(14)+C1(23)-C1(13)-C1(24)] (22) 

+[c1(i3)4<:1(24)](i-c1)} , 

and the corollary of (18b) will not be written down here because it 

differs only by a factor exp(-4ofL). Note that we have reordered the 

terms somewhat in (22), aside from the renormalization. Steps (19)-(21) 

are easily repeated, using (22). The only difference is that {•••} re- 

duces to 2 + 2(1-0.)  sich yields a factor 4o!L + 4a  at all places in 

(20) and (21) where previously only 4a  appeared. This cancels the 

factor exp(-4Q!L). There is a definite advantage to the reordering in 

(22) which will become apparent in the error analysis. In order to in- 

vestigate the effect of setting C^ij) = 1 in (22), we utilize (23a) as 

the prototype for analyzing any of the terms in the second row of (22), 
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and (23b) for the third row of (22). 

(ke/M2 fL dzfd2K«(K)cos[K-^(L-Z)k] (23a) 

(ke/4K)2 fL dzJd2K4(K)(l-cos[K2(L-z)/k]}cos[K:^Q(L-z)/k] (23b) 
o 

Here, ^Q is a short-hand notation for Q, ^-Q, J • The error analysis 

is not affected if (L-z) in (23) is replaced by L, to obtain 

(,k2e2L/8n)f*  dKK«(K)Jo(K4QL/k) (24a) 
o 

(k2e2L/8jt)r dKK«(K)Jo(K/!QL/k)(l-(k/K2L)sin(K2L/k)}   , (24b) 

where J    is a Bessel  function.    From here on,  the Kolmogorov spectrum 
o 

[16]  is used, with the von Karman modification for wavenumbers K < Lo"  : 

*(K) « 15.7Lo
3(l+K2Lo

2)"1I/6eXp(-K2//Cm
2) (25) 

The numerical factor in (25) differs from that used by Tatar ski [16] 

due to a different Fourier-transform normalization.    Insertion of (25) 

into (24) yields forms which serve as the basis for error analysis: 

(15.7/4«)k2
€

2LLo[a2
5/6K5/6(a2)/211/6r(ll/6)]   , (26a) 

with a0 = 4QL/kL      , / o 

4a 2bx(o1) with a1 = ^Q(L/k)1/2. (26b) 

Here, Ksyfi(o9) is a modified Bessel function, r(ll/6)  is a gamma 

function, and b (a.)  is related to a confluent hypergeometric function, 

specifically by Eq.  (47.33) of [16].    Only the following two limiting 
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forms of this function are required in this work: 

b (oj = 1 - 2.36(o/r/b as a, -> 0 
x    1 1 1 

2v5/6 
as  g,   -rv 

(27) 

= -0.0242(o1
2/4)"7/6 as Oj ->«» 

There is a small detail in the o1 -> 0 form regarding the magnitude of 
o 2 

a. with respect to the inverse microscale Fresnel number k^o /L that 
2 

is of no importance here (it is assumed that a^    does not decrease below 

this number). With (26) it is easily seen for small £Q/k that (26) re- 

duces to, 

4dL[l + 0(o2
2)5/6] (28a) 

4a€2[l + 0(a1
2)5/6] (28b) 

A factor 2 has been multiplied into (26) and (28) to make (24) correspond 

to the sum of terms in (22). Furthermore, the definitions imply that 

a2    ^ a\    s0 that it su£fices to re(luire ^i « l  in (28i>) in order 

that the modified-Rytov expressions (20) and (21) follow. 

2 
Wich the development of (9)-(ll), it thon follows that al    can be 

identified with the parameter of Eq. (1). There is one difference. In 

considering (22) for C1(ij), it is necessary to consider simultaneously 

all diagrams with M > 1. In that case^/k can be identified again with 

k^VjpU,), and 4Q0/k is then certainly less than 2k"N7rrcp(r1); it can 

even be zero if the two runged axes to which £Q0 belong form an uncon- 
2 

nected subdiagram. However, in the worst case, we can replace (^Q/k) 

1/3 2 by 4L/C   C  (ignoring a factor of order unity) and thus convert the 
m   n 

2     2 
above defined parameters o, and a» to. 
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i ra        n m n 

a2
24->(L/kLo

2)0l
2     . 

(29) 

III. THE SATURATION REGIME: 1 < k7'6!,11'^ 2 « kL 2/L 
n     o 

The results of the previous section indicate that the log-amplitude 

(or log-irradiance) variance is a linear function of the parameter 

a  ~ k  L   C  , All measurements to date show a variation from this 
€ n 

2 
behavior when a     > 1; a saturation effect occurs in the sense that the 

2 
variance attains a maximum value close to a  =1. We shall define a 

2     2 
saturation regime by the inequality 1 < a  « kL /L, and it corresponds 

2 2 
reasonably well to the slightly sharper inequality a*    « 1 « o* 

whenever the identification (29) is utilized. 

2      2 
Clearly a     «   kL /L does imply that ^Q/k in the first set of 

e      o 
2 5/6 

terms of (—) in (22) is small enough to set C1(ij) = 1 + 0(a2 ) 

for the same reasons as set forth in Eqs. (23)-(28). Consequently, 

(22) reduces to, 

exp(-40!L)-[(ke/4Ä)2yj dz^K^OcpU + [^(13)^(24)Hl-C^}]  (30) 

Through an obvious symmetry property that maps every diagram of 
m 

< BB*BB*> into one of < B*BB*B >, and vice-versa, C. (24) may be replaced 

by 0.(13). The filter factor {—) in (39) reduces to 

2{1 + [C1(13)][l-C1]). A rough estimate, similar to that of Eqs. (23)- 

(28), yields something like exp(-toL) • [4oL + 4a 2b (a 2)] for (30). It 
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2 
shows, using (27), that the term proportional to 4a      is modified dras- 

2 
tically as a,    increases above unity.    Therefore (28b)  is not valid, 

and (20) does not follow in this case. 

The following approximation is the basis for a saturation-regime 

result: Replace all Q  .,      /k by the function p^z ) to be defined later. 
"■'IBT.I rf«. 1   m 

The  index  i pertains to the B factor  in question.    Then replace C (13) 
m 

by an average <C (13)> . All M factors are now separable and we can 

2 
reduce < I > to an exponential form in the same way that (20) was de- 

rived from its defining series: 

< I2> = Io
2 exp{2(ke/4«)2(/

J dzJA^d^Hl-C^) 

X < cos[K.Ap(z)]>+ 0(a2
2)5/6} <31) 

It is reasonable because of the following argumenfci; the  rough estimate 

of (30) indicates that the M-th order term of < I2 > is of order (toL^/M! 

2 
if effects of 0(a    ) compared to (XL are ignored.    Terms with M « toL 

(4ü!L is a very large number compared to unity) are unimportant and con- 

sequently Q_ is a sum of a large number of vectors K1.    Furthermore. 

J^2      Z22 "    contains a sum of M"1 non-cancelling K. vectors (some of 

these occur with a factor 2) because the binary-correlation property 

(17)  implies 

Q<1>^<2)+Q<3>^^  = 0 (32) 

for all m. Consider the 0.(13) factor in (30). It is a function of 
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m 

V- 
':■'' 

2 2 
of 4(K2)d K2-—^(^d KJJ with the other M-l filter factors.    Because 

2-2C (13)(1-C ) « 2 in the integrand it  follows that the main contri- m m 

bution of C^lSXl-C^)  is found by    etting the other M-l  filter factors 

equal to 2   [see the discussion immediately following (30)].    Consequently 

GT(13)  is a function of Q9^  '-Q,    ^ which is a sum of all K, vectors 

2 2 
of the remaining integrand *(K2)d K2—*(Km)d Kin. There is complete 

analogy to a two-dimensional random-walk problem where K, is a random 

phasor and *(K ) its probability density. Therefore Q,   -Q9   tends 

to a Gaussian random variable because M is large, and with zero mean. 

We replace it by a quantity with the same statistical properties and 

then replace (^(13) by < (^(13) > . This Gaussian quantity will be named 

ap(z) at present and it will be identified in the Appendix with ray co- 

ordinates. However, at present it need not be discussed further. After 

having made the substitution for Q0/k, we now consider the M = 2 factor 

analogous to (30), and repeat the very same argument for G2(13) - which 

2 2 
involves only the <I,(K-)d K0---4(K )d K factors. As m -♦ M it appears 

incorrect to continue this procedure because the number M-l-m of K, 
«—j 

vectors in Q +1  "^m+i   becomes small. Nevertheless, the error in 

2 
so doing is small because the M-th term of < I   >  is considered 

together with many subsequent higher-order terms in which z    is not one 
m 

of the last z coordinates. 

A straight-forward extension of the procedure to   <I   >   yields 

< IN>  = Io
Nexp{2N(N-l)(ke/4It)

2   /    dz/d^O^Kl-G^ 

x<cos[K1-Ap(z1)]>+ N0(a2
2)5/6} 

(33) 
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The important point is not. that^Q^/k has been replaced byjD(z) 

but that C (13) has been replaced by an average <   C (13) >   which is 
m "• 

2 
not a function of JK +1>"-^M' If we "^Y ignore 0(o2 ^ we then note  that 

we have shown in (33) that the irradiance is also log-normal in the 

saturation regime. 

2 2 
The 0(a9 ) effects become negligible as the Fresnel number L/klr 

goes to zero. Consider this limit for the sake of clarifying (33). 

2 2 As a     -»o0 (or a,    -* <») the irradiance I reduces to I    because the error el o 

term in (33) is 0(a    )        •    The only way to allow o     -*•.» consistent 
2 

wich L/kL     -+ 0 and wilih the diffusion condition (12), namely 
o 

1/3      2 
K        LC     « 1 is to allow k -»■«».    So this transition is essentially 

m n > 

to a high-frequency limit in which case it is not surprising that 

I—I    [17]. o 

2 
However, our interest is in the case that k = const, and that C 

n 
2 

ST/d/or L increase. Let us take L ~ 1 km and allow C  to increase since 
n 

this is in accord with the experimental situation. The Fresnel number 

2    4 2-4 2 
L/kL  ~ 10 at optical freqv ncies. Thus a, ~ 10 o^ and the 

0(a9 )   terms can be kept very small in (34) compared to the 0(a ) 

2 
terms for a, > 10. 

Finally, in the Appendix we work out an estimate of (33). It yields, 

< IN> = Io
N exp[2N(N-l)ae

2-0(a1
2)"7/6] . (34) 

The last result indicates that the log-amplitude variance decreases 

asymptotically as a    '0(.a.   )    ~ 0(o )   . We discuss this further 
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in section V. The decrease with increasing ae cannot continue indefinitely 

2 
because ultimately a,,    exceeds unity and expression (30) is no longer 

o 
valid. An asymptotic solution for the case that a0    -* «> will be given in 

the next section. 

IV. THE RAYLEIGH REGIME: k7^6!11^ 2 » kL 2/L 
n     o 

Expressions (24) or, equivalently, (26) have to be handled quite 
2 

differently when a2    »1.    They then reduce to 

toLU1/2/27/3r(5/6)].a2
1/3exP(-a2) (35a) 

/. 2 n(    2.-7/6 4a
e '^i > (35b) 

III o 
Both of these forms vanish as a2 -> » and therefore we can no longer 

utilize the grouping of terms in (22). Previously, the grouping of terms 

in the second line of (22) yielded a factor 2, regardless of whether 

/^Q = 0 or ^Q M in any of the C^ij). Now it does make a difference; 

for 4Q ^ 0, C1(ij) reduces to a vanishingly small term as a, -* », in 

contrast to the case AQ = 0 which yields C^ij) = 1. In this case, we 

utilize the corollary of (18b) which differs from (18b) by an exponential 

factor, and by omission of i = j factors. Evidently, the main contribu- 

tion now comes from a subclass of diagrams: those for which all C fii) = 1 
—— mv J    ' 

i.e. for which allAQ = 0.  Inspection of the renormalized headless dia- 

grams in conjunction with the property (32) shows that this subclass of 

diagrams has the following properties: 
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(i) There are no < 13 > nor < 24 > rungs (the notation < 13 > in- 

dicates correlation between the first and the third horizontal 

axes). In general, there are no < BB > nor < B*B* > rungs. 

(ii) Any B axis is connected by rungs to only one B* axis, and 

vice versa. That is to say, all diagrams can be factored 

into products of < BB* > diagrams. 

Instead of (22) and similar factors for m = 2, — ,M as the contri- 

2 
but ion of a diagram with M rungs to < I > , we have in general for 

N 
<I > according to the above procedure, 

M ,2 2 Än-1 M k2 2 fm-1  f 
exp(-2NQ!L) -^ -\ J   d2Jd

ZKm*(Km)Cm(ij) 

(36) 

m=l ig 2 o    m"'  m  m m 

= exp(-2NQL)•(2(XL)M/M,. 

Let us try to add up (36) for all M-rung diagrams where n pairs of B 

and B* axes have no rungs. We may not have any mixing, i.e., we cannot 

have two rungs connecting one B to two B* axes, or vice versa, otherwise 

at least one C (ij) £  1. For one choice of n pairs of conjugate B and 

B* axes there are (N-n)'. ways of pairing the remaining N-n pairs of B 

and B* axes two by two... Let us. assume for one choice of pairing that 

there are m.. ,m2, ""w-n run8s on the N-n pairs we have chosen. Ob- 

viously m. + --- + ni,  = M. Then we obtain 
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(N-n)' e •2NaL V     V     Mt  

I1 ^ " Vn
=lml! — Vn1 " e 

-MQL 

= CN-n}'. e   (1-e   )    , 

(37) 

for all M-rung diagrams that leave a single choice of n pairs of B,B* 

axes unconnected to each other by rungs. We need one more numerical 

factor in (37) before summing over n from n = 0 to n = N, namely the 

number of ways that we can choose n pairs B and B* from N pairs B and 

B*. This number is easily seen to be 

N2(N-1)2 — (N-n+n2 

1222 — n2       ~ (n')2[(H-n)I]2 
iNjf 

(38) 

Thus, we obtain <!>/<!>     by summing the product of (37) with (38) 

over n from n = 0 to n = N: 

<IN>   =<!> N    f\ (N'.)2 

^ (n!)2(N-n)I 

-2naL  ,.     -2Q!LNN-n e (1-e        ) (39) 

The meaning of (39) for small and intermediate (XL has been worked out 

in [2] and [3], but in the present case QL » 1 and we retain only the 

n = 0 term in (39) to obtain, 

<IN> = Nl Io
N[l + 0(a2

l/3e"u2)] (40) 

This result is the Rayleigh limit: a special case of a result found 

earlier [2] for region IV of Fig. 1 where QL had not greatly exceeded unity. 

It states that as ff2 ->• <», the irradiance approaches an exponential dis- 

tribution (i.e., the amplitude becomes Rayleigh-distributed). 
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V. COMMENTS ON THE IRRADIANCE-VARIANCE SATURATION 

The results (3) - or more fully (21), (28), (29), (34), and (40) - 

allow us to reconsider the irradiance-variance saturation. It seems 

somewhat easier to consider the log-amplitude X = % In I and to plot 

2 2 
<X > as a function of a    .    The results indicate: 

2      2 2 2   -1/6 
(i) <X > = a  for values of a  much less than (K L/k)   , 

€ £ m 

a number of order unity. 

(ii)<X2> « a^-ia*)'7*6*   (ae
2)"1/6 for intermediate values 

(K 
2L/k)"1'6 « a 2 « kL 2/L. The log-amplitude variance m e     o o  r 

2 -1/6 
changes from linear growth to a decrease as (a )    as 

2 
a     grows beyond a number of order unity. This trend appears 

to agree well with experimental observation. 

2 
(iii) < X > should level off asymptotically at the level 

2 
it /24 « 0.41 vrhen the Rayleigh limit is reached, i.e., when 

2     2 2 
a  » kL /L. It depends on the magnitude of kL /L 

2 2 
whether < X > has dropped below jt /24 before leveling off 

or not. 

Experimental data now exists with which to check these aspects of 

the theory. Mevers, et al. [18] have found a decrease with (o )' 

in region (ii), in good agreement with our result. The newer data of 

Kleen and Ochs [19] as well as the older data of Gracheva [20] exhibit 

a trend of this type (although no analytical expression for their data 

is given and although their data exhibit appreciable spread). Furthermore, 
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2 o 
<X > appears to drop below the ultimate level of it /24 (presumably 

because kL /L ~ 10 is so large a number). 

Figure 4 gives a sketch of a saturation curve satisfying the above 

9 
predictions. The dip below the Rayleigh limit it /24 has been shown in 

t2 
<X> 

<x>«<%2 

I 

24 

/ 

/ 
/      LOG-NORMAL Ij RAYLEIGH I 

V             -i          l 
„/A^a(^,e    —|  

(k/AC^L/e ( kL2
0/L) ^ 

Figure 4. Log-amplitude variance <x > vs a ^ k7'6 L  6 Cn2: 
A sample curve fitting the (dashed) asymptotes given 
by theory. 

exaggeration [it may or may not occur, depending upon the magnitude of 

2 -1/6 
the coefficient of (oe )   ]. The major weakness of the theory is its 
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2 -1/6      2 
inability to predict the coefficient of (a )    in < X > in the satu- 

2 
ration limit. The maximum of < X > is therefore also not predictable 

in the present form of this work. 

: 
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APPENDIX: SATURATION-REGIME LOG-AMPLITUDE VARIANCE 

The result of section III for the saturation regime was, 

< IN>= Io
Nexp[2N(N-I)<SX2> ], 

2<BX2>= (ke/4jt)2 J    dzJd2K«(K){l-cos[K2(L-z)/k]) (Al) 

x < cos[K'Ap(z)]> . 

Here, it will be argued that Ap(z) is the difference of two ray-coordin- 

2 
ate realizations, and a first-order estimate of < BX > will be given. 

In order to determine the nature of Ap(z) we will rederive (Al) in another 

fashion by regarding the equation for i|r = InB obtained from the parabolic 

wave equation, 

2ik m^z + ^yir + k26e + (VT\|f)2 = 0  . (A2) 

The Rytov approximation (2) results when the last term of (A2) is dropped. 

We will follow a procedure analogous to that described in [4] to circum- 

vent the difficulty of the last term. Let ^ = X + icp. We obtain the 

ray equation kdp(z)/dz = ^_i|f from (4) by modifying the stationary-phase 

method to the more precise steepest-descent approximation [4]. Consider 

the transformation from the cartesian coordinate system (x^z) to the 

locally orthogonal curvilinear system (p(s),s). It is easily seen that 

V^f  = 0 in the new coordinate system; SUf  and &J(  are invariant with re- 

spect to the transformation and they may be expressed in any coordinate 

system. However cty/öz is not invariant. Nevertheless, the curvilinear 

effects can be ignored in cty/öz because the difference between cty/öz and 

1/3  2 
cty/ös is 0(/cm  LCn ) as given by (11). Thus to good approximation 
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2ik ät/ös + ^pt + k26e = 0 (A3) 

along rays determined by kdp(z)/dz = yjf in terms of the original coordin- 

ate system.    By utilizing 6e  (s) = 6e(p(z),z) and by replacing dz « ds 

and (L-s) « (L-z) we write the solution of (A3) as, 

* = (ik/8rt2)J    dzid£(K,z)exp{-iK'[p(z)+(L-z)K/2k])     . (A4) 

Eq. (A4) constitutes an important correction to (2), even in the limit 

p -+ 0, because   <t>   ^ 0-    Tatarski,  in a slightly different formulation 

[21] has computed  <X>   in the geometrical-optics regime where 

2 ? sin[K (L-z)/2k] may be replaced by K (L-z)/2k.    It is this difference 
2 

with (2) that yields the first equation in (Al), where   <&X >   repre- 

sents the variance of X = Re\If.    The derivation of (34) ensures the con- 
2 

servation law <X> + <5X > = 0 so that it suffices to compute one of 

2 
these two quantities.     If <5X  >   is formed from (A4) by subtracting 

2 2 <X>    from <X > , we obtain (Al) because the correlation between 

d£(K1,z1) and p(z0) can be ignored (note that the multivariate Gaussian, 

or Markov, property holds for these quantities, e.g., as in paragraph 

65 of [16]).    The modified-Rytov approximation (21) follows by setting 

Ap(z) = 0. 

The. above procedure clearly is an improvement upon the customary 

Rytov approximation. However (A4) is valid beyond the region in which 

2 2 
a, «1. It breaks down when a2 , given by (29), approaches unity be- 

cause the WKB expression for phase is significantly different from the 

straightened-ray expression. This can be seen from (A4) by ignoring 

the filter factor and repeating the estimate of (23a) with ^QL/k replaced 
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by Ap (with variance ~ V1^3^- Thus, accepting the validity of 
2 

(A4) for (r2 « 1, we find (Al) from (A4) as described above. By 

comparing the result of this method to (33) we have been able to identify 

the hitherto unspecified Ap(2) with the difference of two ray-coordinate 

realizations. 

Now an estimate of <5X2> can be given. In (Al) we set 

<cos[K-Ap(z)]> = exp[-K2<Ap2(2)>/4] by utilizing the Gaussian property 

of A^. Furthermore, we insert e
2«(K) « 32JtrCn

2K"ll/3 from (25) into (Al), 

transform variable K into x = K2(L-z)/k, to obtain 

<5X2>   =rk7/6Cn
2/dzZ

5/6/dxx-11/6(l-cosx)exp[-xk<Ap2(z)>/4(L-z)]   . 

(A5) 

where coefficient r « 0.033Jt
2. The major problem is to compute < Ap2(z)> . 

The ray coordinates ^(z) converge tO£(L) = 0 and diverge randomly as 

L-z grows. Considering the fact that the integrand of (Al) is negligible 

for L-z -> 0, we shall approximate <Ap2(z)> « 4<p2(z)> as if both 

ray realizations are independent. This approximation should be better 

for large L, i.e. for large cTj2. We utilize the well-known geometrical- 

optics expression for <p2(z)> given by Tatarski [21] when p(L) = 0 

and ray derivative p^O) = 0, 

< P2(2)> = (4r/3)Cn
2/Cm

1/3[(L-Z)
3 + 32(L-z)2] (A6) 

to obtain, 

<5X2>   = rCn
2k7/6L11/6

o/dyy5/6/dxx-n/6(1.cosx)exp[Wi2f(y)] 

f(y) = (4r/3)(l-y)(l+2y)  , <A7) 
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2    2 1/3 2 2 
and a. = kL /c ' C  in agreement with (29). It can be seen that <5X > 

i-      m   n 

reduces to a  = 0.31k7' L11' C  in the limit a,2 -* 0. In order to 
€ n i 

2 
obtain an expression for large a,   ,  we return to (Al) and partially in- 

tegrate (....] with respect to z. Upon utilizing the approximations 

incorporated into (A6) and (A7) we obtain 

2,7/6,11/6 . RVZ- _ Z)7/6TlI/6f   f     ,     -11/6,.     -1   .     v        ,4 2   .. < 5X >   = rCn k '  L        IJ    dxx (1-x    sinx)exp(- T r^i x) 
o 

+ Sra^   / dyy(l-y) /   dxx-5/6[l- ^f^  W-xa^y)]) 

(A8) 

For  large a,   ,  it is permissible to replace the filter factors in each 
2 

term of (A8) by the x    term of their power-series expansion.    It can be 

seen from the ensuing expression that the leading terms of (A8)  for large 
2 

a,    yield the dependence. 

<&X2> = ae
2-0(a1

2)"7/6 

which we have utilized in (34).    The numerical coefficient can be com- 

puted from (AS), but it may only have an approximate meaning in view 

2 2 
of the approximation < Ap (z)> « 4<p (z)> . 

Note: A revised version of pp. 9-43 is currently being prepared 
for publication. 
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